
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

 

http://wrap.warwick.ac.uk/156279 

 

 

 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/156279
mailto:wrap@warwick.ac.uk


 

 

 

 

 

 

 

 

 

 

Exploring cell-type and single cell 

specific responses in plants to environmental stimuli 
 

by 

 

Cantug Bar 
 

Thesis 
Submitted to the University of Warwick  

for the degree of  

Doctor of Philosophy 

 

Dr. Miriam Gifford 

Dr. Steve Jackson  

 

 

 

School of Life Sciences 
Jan 2020 



TABLE OF CONTENTS 
 

LIST OF FIGURES ................................................................................................... I 

LIST OF TABLES ................................................................................................... IV 

ACKNOWLEDGEMENTS ...................................................................................... V 

DECLARATIONS .................................................................................................... VI 

ABBREVIATIONS ................................................................................................ VII 

ABSTRACT .............................................................................................................. XI 

1. INTRODUCTION .............................................................................................. 1 

1.1. ABIOTIC AND BIOTIC ENVIRONMENTAL FACTORS INFLUENCING PLANT 
GROWTH AND DEVELOPMENT .................................................................................... 1 

1.2. COMMUNICATION OF STRESS PERCEPTION IN PLANTS .................................... 3 

1.3. ENABLING SOLUTIONS TOWARDS GLOBAL FOOD SECURITY USING 
MODULATION OF NOVEL MOLECULAR MECHANISMS ................................................ 13 

1.4. CELL TYPE SPECIFIC AND SINGLE-CELL RESEARCH IN PLANTS ..................... 16 

1.5. PRINCIPLES OF FACS FOR INVESTIGATING CELLULAR PROPERTIES ............... 21 

1.6. IMPORTANCE OF INVESTIGATING CELL-TYPE AND SINGLE-CELL RESPONSES IN 
PLANTS 24 

2. MATERIALS AND METHODS .................................................................... 27 

2.1. PLANT MATERIALS ...................................................................................... 27 

2.2. GROWTH CONDITIONS .................................................................................. 27 

2.3. PLANT TREATMENTS ................................................................................... 29 

2.4. MICROBIAL STRAINS ................................................................................... 30 

2.5. MICROBIAL GROWTH CONDITIONS .............................................................. 31 

2.6. MOLECULAR BIOLOGY ................................................................................ 32 

2.6.1. DNA extraction ................................................................................... 32 

2.6.2. Polymerase chain reaction (PCR) ..................................................... 33 

2.6.3. RNA extraction ................................................................................... 34 

2.6.4. cDNA synthesis and quantitative PCR(qPCR) ................................... 35 



2.6.5. Gateway cloning and bacterial transformation ................................. 37 

2.6.6. A. rhizogenes mediated hairy root transformation of M. truncatula . 39 

2.6.7. Protoplast generation ......................................................................... 40 

2.6.8. Fluorescence activated cell sorting (FACS) ...................................... 41 

2.6.9. Protoplast regeneration ..................................................................... 42 

2.7. MICROSCOPY .............................................................................................. 44 

2.7.1. Medicago Truncatula ......................................................................... 44 

2.7.2. Arabidopsis thaliana .......................................................................... 44 

2.8. COMPUTATIONAL METHODS ........................................................................ 45 

2.8.1. Image grey value extraction ............................................................... 45 

2.8.2. Image data analysis ............................................................................ 46 

2.8.3. Meta-analysis of gene expression data .............................................. 46 

3. IDENTIFYING CELL-TYPE SPECIFIC TRANSCRIPTOMIC EFFECTS 
OF NITROGEN AVAILABILITY IN M. TRUNCATULA .................................. 49 

3.1. INTRODUCTION ............................................................................................ 49 

3.1.1. Soil nitrogen availability .................................................................... 49 

3.1.2. Plant root physiology and specialized root structures ....................... 52 

3.1.3. Nodulation: interaction with nitrogen-fixing bacteria ....................... 55 

3.1.4. Nitrogen uptake by plants .................................................................. 57 

3.1.5. Communication of nitrogen status ..................................................... 60 

3.1.6. Influence of Next on root system architecture ..................................... 60 

3.1.7. Objective of this work ......................................................................... 64 

3.2. RESULTS ..................................................................................................... 65 

3.2.1. New reporter constructs for tissue-specific fluorescence expression in 
M. truncatula roots ............................................................................................. 65 

3.2.2. Hairy root transformed plants exhibit random localizations of reporter 
protein ...........................................................................................................71 

3.2.3. Hairy root transformation trials for studying tissue specific responses 
using FACS ......................................................................................................... 78 



3.2.4. Testing protoplast generation efficiency in M. truncatula roots after 
hairy root transformation and N treatment ........................................................ 81 

3.2.5. Meta-analysis of nitrogen responses in M. truncatula compared to A. 
thaliana at the tissue type level .......................................................................... 83 

3.3. DISCUSSION ................................................................................................ 91 

4. INVESTIGATING CELL SPECIFIC IMMUNE RESPONSES IN 
ARABIDOPSIS THALIANA .................................................................................. 95 

4.1. INTRODUCTION ............................................................................................ 95 

4.1.1. A. thaliana – Pseudomonas syringae pathosystem ............................ 95 

4.1.2. Immune systems of A. thaliana ........................................................... 96 

4.1.3. Stochasticity of gene expression ....................................................... 100 

4.1.4. Objective of this work ....................................................................... 105 

4.2. RESULTS ................................................................................................... 106 

4.2.1. Selection of biotic stress specific marker genes ............................... 106 

4.2.3. Investigating effect of wounding stress on WRKY11 gene expression 
upon biotic stress recognition .......................................................................... 112 

4.2.4. Increased sample size can overcome WRKY11 induction effect by 
unintended abiotic stress .................................................................................. 113 

4.2.5. DNA content of spongy mesophyll subpopulations are positively 
correlated with gene expression levels ............................................................ 116 

4.2.6. Influence of cellular heterogeneity on bacterial host selection ....... 126 

4.3. DISCUSSION .............................................................................................. 128 

5. APPROACHES TOWARDS EXPLOITING STOCHASTICITY OF GENE 
EXPRESSION ........................................................................................................ 131 

5.1. INTRODUCTION .......................................................................................... 131 

5.1.1. Epigenetic trait inheritance .............................................................. 131 

5.1.2. Protoplast regeneration ................................................................... 132 

5.1.3. Objective of this work ....................................................................... 133 

5.2. RESULTS ................................................................................................... 133 



5.2.1. Osmoticum in sheath fluid is an important component for high 
efficiency, live protoplast sorting ..................................................................... 133 

5.2.2. Regeneration studies of single-sorted protoplast cells in suspension 
cultures...... ....................................................................................................... 138 

5.2.3. Regeneration studies of sorted protoplast in low density suspension 
cultures.... ......................................................................................................... 140 

5.3. DISCUSSION .............................................................................................. 142 

6. GENERAL DISCUSSION ............................................................................. 143 

BIBLIOGRAPHY .................................................................................................. 148 



 I 

LIST OF FIGURES 
 

Figure 1.1. Simplified graphical representation of relationship between plant growth 

and health with environmental nutrient availabilty .................................................. 2 

Figure 1.2. Flowchart of events triggered by environmental stimuli leading to 

response.  .............................................................................................................. 4 

Figure 1.3. Principal effects of intracellular ROS accumulation on redox sensing 

mechanisms in regulation of stress specific TF activity. ...................................... 7 

Figure 1.4. Phytohormone signalling pathways in communication of stress perception 

and production of stress response. .......................................................................... 9 

Figure 1.5. Molecular dynamics of Jasmonic acid-Gibberellic acid cross-talk within 

growth/defence trade-off. .................................................................................... 13 

Figure 1.6. Impact of agriculture on natural soils. ................................................ 14 

Figure 1.7. Laser microdissection of a sample. ................................................ 17 

Figure 1.8. Workflow of a Drop-seq technique. ................................................ 18 

Figure 1.9. Schematic representation of  FACS. ................................................ 20 

Figure 1.10. Hydrodynamic focusing at a FACS nozzle. .................................... 22 

Figure 1.11. Optics and electronics of FACS. ................................................ 23 

Figure 2.1. A. thaliana leaf numbering according to leaf developmental age. ........ 30 

Figure 3.1. The nitrogen cycle. ........................................................................ 50 

Figure 3.2. Plant root architecture. ........................................................................ 53 

Figure 3.3. Lateral root initiation. ........................................................................ 55 

Figure 3.4. Nodule development. ........................................................................ 57 

Figure 3.5. Schematic of nitrate import and export in the root. ........................ 58 

Figure 3.6. Systemic LR responses to heterogenous nitrogen concentrations.   ....... 62 

Figure 3.7. Effects of changing nitrogen concentrations on nodules. ............ 63 

Figure 3.8. Gateway cloning strategy of promoters of interest. ........................ 70 

Figure 3.9. Stages of plant growth for non-transformed and hairy root transformed M. 

truncatula. ............................................................................................................ 72 

Figure 3.10. Stereomicroscope and epifluorescence images of hairy root transformed 

M. truncatula 14 days after transformation. ............................................................ 74 

Figure 3.11. Confocal microscopy images of fluorescence positive M. truncatula roots 

transformed with epidermis specific constructs. ................................................ 75 



 II 

Figure 3.12. Confocal microscopy images of fluorescence positive M. truncatula roots 

transformed with cortex specific constructs. ............................................................ 76 

Figure 3.13. Confocal microscopy images of fluorescence positive M. truncatula roots 

transformed with pericycle specific constructs. ................................................ 77 

Figure 3.14. Stages of hairy root transformed M. truncatula growth on MFM with 

deficient (0.5 mM) and sufficient (1 mM) N concentrations.  ........................ 79 

Figure 3.15. Expression levels of N responsive genes after treatment with mock (1 

mM) and excess (5 mM, 10 mM) N concentrations. ................................................ 81 

Figure 3.16. Protoplast profiles of fluorescence positive hairy-root transformed and 

non-transformed M. truncatula roots.  ............................................................ 82 

Figure 4.1. Infection stages of P. syringae DC3000 pv. Tomato. ........................ 96 

Figure 4.2. Zig-zag model of plant pathogen interactions. .................................. 100 

Figure 4.3. Central dogma model and where variability can be introduced. .......... 101 

Figure 4.4. Graphical representation of  intrinsic and extrinsic noise. .......... 102 

Figure 4.5. Examples of stochastic gene expression function in various organisms. 

.................................................................................................................................. 104 

Figure 4.6. Confocal microscopy images of A. thaliana Col-0 and A. thaliana Col0 

prWRKY11:NLS-YFP stable transformant mesophyll cells.  ...................... 109 

Figure 4.7. Workflow for single-cell fluorescence imaging and quantification under 

biotic stress. .......................................................................................................... 111 

Figure 4.8. pWRKY11::YFP-NLS stable transformants exhibit increased average RF 

values upon induction with flg22. ...................................................................... 112 

Figure 4.9. WRKY11 gene expression measured under a combination of biotic and 

abiotic stresses. .............................................................................................. 113 

Figure 4.10. Nuclear fluorescence intensity of pWRKY11::YFP-NLS in spongy 

mesophyll tissue cells. .................................................................................. 114 

Figure 4.11. Nuclear area of corresponding RF values and their correlation at T0. 

.................................................................................................................................. 117 

Figure 4.12. Temporal changes in single-cell pWRKY11::NLS-GFP spongy 

mesophyll nuclear fluorescence intensity in mock and flg22 treated samples.   ...... 118 

Figure 4.13. Effect of protoplast generation on spongy mesophyll cell WRKY11 gene 

expression with and without flg22 treatment.  .............................................. 120 

Figure 4.14. Protoplasts with distinct properties can be isolated from a genetically 

identical population using FACS. ...................................................................... 122 



 III 

Figure 4.15. YFP signal intensity distribution histograms of protoplasts treated with 

mock (water) and flg22, generated by FACS. .............................................. 124 

Figure 4.16. Average WRKY11 gene expression of HF and LF cells 1 hr after mock or 

flg22 treatment from three biological replicates. .............................................. 125 

Figure 4.17. P. syringae DC3000 GFP AvrRpm1 bacteria tracking in A. thaliana Col0 

pWRKY11:YFP-NLS spongy mesophyll tissue. .............................................. 127 

Figure 5.1. Protoplast regeneration workflow. .............................................. 134 

Figure 5.2. Optimization of live protoplast sorting efficiency. ...................... 137 

Figure 5.3. Single-cell sorting and regeneration of protoplasts in suspension culture. 

.................................................................................................................................. 139 

Figure 5.4. Low-density sorting and regeneration of protoplasts in suspension culture. 

.................................................................................................................................. 141 

 

  



 IV 

LIST OF TABLES 
 

Table 2.1. Microbiological material generated and used in this study. ............ 31 

Table 2.2. PCR primer specifications. ............................................................ 33 

Table 2.3. Components used for 25 μl PCR with Q5 high fidelity DNA polymerase.34 

Table 2.4. PCR thermal cycle specifications. ........................................................... 34  

Table 2.5. Master mix compositions per triplicate in 96 and 384-well qPCR setup. 35  

Table 2.6. Primers used for M. truncatula qPCR. ................................................ 36 

Table 2.7. Primers used for A. thaliana qPCR. ................................................ 36 

Table 2.8. Components used for qPCR with SYBR® green Jumpstart™ Polymerase. 

.................................................................................................................................... 37 

Table 2.9. Thermal cycling conditions used in qPCR with SYBR® green Jumpstart™ 

Polymerase. ............................................................................................................ 37 

Table 2.10. Macro and micronutrients table required for preparation of protoplast 

regeneration media. ................................................................................................ 43 

Table 3.1. Genes commonly used as markers to study epidermis, cortex and pericycle. 

.................................................................................................................................... 67 

Table3.2. Primer sequences for amplifying promoter regions of interest. ............ 69 

Table.3.3. Number of tissue specific DE genes in A. thaliana and number of their 

corresponding homologs in M. truncatula. ............................................................ 84 

Table.3.4. Number of overlapping or opposing N responsive genes after comparison 

of tissue specific ortholog genes identified in A. thaliana with genes identified in M. 

truncatula whole roots. .................................................................................... 85 

Table. 3.5. List of overlapping genes differentially expressed in both A. thaliana tissue 

types and M. truncatula whole roots after N treatment. .................................... 87 

Table.3.6. List of genes oppositely differentially expressed in A. thaliana tissue types 

and M. truncatula whole roots after N treatment. ................................................ 89 

Table 4.1. List of highly upregulated FLARE genes in leaves of 12 day old A. thaliana 

Col-0 seedlings 30 minutes after flg22 treatment. .............................................. 107 

Table 4.2. Legend for acronyms used in this Subsection. .................................. 115 

Table 5.1. Specifications of not-optimized ad optimized FACS procedures for high 

efficiency, live plant protoplast sorting. .......................................................... 135  



 V 

ACKNOWLEDGEMENTS 
 

This thesis was made possible by influence of many individuals. During this process 

some had larger impact than the others and I wish to acknowledge their support and 

guidance in this section. These people made me grow not just as an academic but also 

as a person through the span of my research.  

Guidance of my supervisors Dr. Miriam Gifford and Dr. Vardis Ntoukakis was 

invaluable through this journey. Their perspectives in research has shaped mine and 

given me new visions towards the future I would otherwise not possess. For that, I will 

be forever grateful. I would also like to thank my secondary supervisor Dr. Steve 

Jackson and my advisory panel members Prof. Patrick Schafer, Prof. Murray Grant 

and Prof. George Bassel for their advice in shaping my research through my studies. 

I would like to thank Dr. Beatriz Lagunas, Dr Silke Lehmann, Dr. Ruth Schafer, Dr. 

Daniela Sueldo, Dr. Sophie Piquerez, Dr. Ana Domingues Ferreras, Dr. Alonso Javier 

Pardall Bermejo, Dr. Sarah Taubman and Ian Hands-Portman for their unending 

patience in my struggles with technical equipment and experimental optimization 

processes. Your mentorship provided the sustenance required for this work. I 

appreciate every minute you have taken from your work to indulge my questions.  

I would like to share my appreciation with my colleagues and friends who had similar 

struggles in their academic endeavours yet still helped me overcome the obstacles on 

my path. I would like to share my deepest gratitude with Natassa Kanali, Dr. Estelle 

Dacheux, Dr. Mark Walsh and Dr. Eri Tsukamoto for making the four years I spent in 

the UK the most fantastical years so far and bringing laughter, and imagination to my 

life. If I stood standing at the end, know that you had a big part in it. 

I would like to acknowledge Breagha Magill and Alex Sokolnik for their help in 

experimental procedures and producing results. Their presence made my days of chaos 

more manageable. 

I would also like to thank my family. For all they have given so much from themselves 

to make me who I am today. No words exist in any language to define my gratitude to 

them. I will forever strive to reach the high bar they have set.  

Finally, I want to thank the kingfisher who showed me the way when I was lost. Thank 

you all… Truly  



 VI 

DECLARATIONS 
This thesis is written and submitted to University of Warwick in accordance with the 

regulations towards the completion of my degree as a Doctor of Philosophy. It has 

been written by me and was not submitted for previous consideration towards 

completion of another degree. The work in this thesis has been performed by me except 

otherwise stated. 

  



 VII 

ABBREVIATIONS 
1O2 Singlet Oxygen 

ABA Abscisic acid 

ABRC Arabidopsis Biological Resource Centre 

AFB3 AUXIN SIGNALLING F-BOX 3 

APX Ascorbate peroxidase 

AU Arbitrary unit 

BASTA Glufosinate 

BR Brassinosteroid 

CAT Catalase 

cDNA complementary deoxyribonucleic acid 

CDPK Calcium dependent protein kinase 

cHATS Constitutive high-affinity transporter system 

ChIP Chromatin immunoprecipitation 

CK Cytokinin 

CM Chorismate mutase 

co Cortex 

COBL8 COBRA-LIKE 9 

COI1 CORONATINE INSENSITIVE 1 

CTR1 CONSTITUTIVE TRIPLE RESPONSE 1 

DE Differentially expressed 

dH2O Distilled water 

DNA Deoxyribonucleic acid 

dpt Days post transformation 

DR Downregulated 

EFR ELONGATION FACTOR-TU RECEPTOR 

EIN2 ETHYLENE INSENSITIVE 2 

ep Epidermis 

ES Enzyme solution 

ET Ethylene 

ETI Effector triggered immunity 

ETR1 ETHYLENE RESPONSE 1 

ETS Effector triggered susceptibility 



 VIII 

EXT1 EXTENSIN 1 

EXTPA7 EXPANSIN A7 

FACS Fluorescence activated cell sorting 

FDA Fluorescein diacetate 

FLARE Flagellin rapidly elicited 

FLS2 FLAGELLIN SENSING 2 

FRK1 FLG22-INDUCED RECEPTOR-LIKE KINASE 1 

FS Forward scatter 

GB Gibberellin 

GFP Green fluorescence protein 

GID1 GA INSENSITIVE DWARF 1A 

GMO Genetically modified organism 

GO Gene ontology 

GPI Glycosylphosphatidylinositol 

GPX Glutathione peroxidase 

GUS B-Glucuronidase 

H2O2 Hydrogen peroxide 

HATS High-affinity transporter system 

HF High relative fluorescence 

HR Hypersensitive response 

HSFA1A HEAT SHOCK FACTOR A1A 

iHATS Inducible high-affinity transporter system 

INTACT Isolation of nuclei in tagged in specific cell types 

JA Jasmonic acid 

JAZ JASMONATE-JIM-DOMAIN  

JIN1/MYC2 JASMONATE INSENSITIVE/MYC2 

LATS Low-affinity transporter system 

LB Luria-Bertani 

LF Low relative fluorescence 

LR Lateral root 

LR-FC Lateral root founder cell 

MAPK Mitogen activated protein kinase 

MAPKK Mitogen activated protein kinase kinase 



 IX 

MAPKKK Mitogen activated protein kinase kinase kinase 

MFM Modified Fahräeus media 

mRNA Messenger ribonucleic acid 

MS Murashige and Skoog 

N Nitrogen 

NAC NAM/ATAF/CUC 

NASC Nottingham Arabidopsis Stock Centre 

NB-LRR Nucleotide binding-leucine rich repeat 

Next External nitrogen concentration 

NF Nod factor 

NHL10 NDR/HIN1-LIKE 10 

NLS Nuclear localization signal 

NPF6.3 NITRATE TRANSPORTER 1.1 

NPR1 

NONEXPRESSOR OF PATHOGENESIS 

RELATED GENE 1 

NRT1.1 NITRATE TRANSPORTER 1.1 

NRT1.3 NITRATE TRANSPORTER 1.3 

O•-2 Superoxide radical 

OD Optical density 

OH. Hydroxyl radical 

PAMP Pathogen associated molecular pattern 

PCD Programmed cell death 

PCR Polymerase chain reaction 

PEP ENDOPEPTIDASE 

PHI1 PHOSPHATE INDUCED 1 

PI Propidium iodide 

PIF PHYTOCHROME INTERACTING FACTOR 

PIM Protoplast induction media 

PLC Phospholipase C 

PLT PLETHORA 

PP Protoplast 

PR Pathogenesis related 

PR Primary root 



 X 

pr Pericycle 

PRR Pathogen recognition receptor 

PrxR Peroxiredoxin 

Pst Pseudomonas. syringae pv. tomato 

PTI PAMP triggered immunity 

qPCR Quantitative polymerase chain reaction 

R genes Resistance genes 

RAP2.4A RELATED TO APETALA 2.4A 

RF Relative fluorescence 

RF-CoT Relative fluorescence change over time 

RH Root hair 

RLK Receptor like kinase 

RNA Ribonucleic acid 

RNAP  RNA polymerase 

ROS Reactive oxygen species 

RSA Root system architecture 

RuBisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase 

SA Salicylic acid 

SAR Systemic acquired resistance 

SASSC Sendai Arabidopsis Seed Stock Centre 

SLY1  SLEEPY 1 

SOD Superoxide dismutase 

TF Transcription factor 

TGA TGACG sequence specific binding proteins 

TY Tryptone-yeast extract 

UR Upregulated 

WER WEREWOLF 

YFP Yellow fluorescence protein 

  



 XI 

ABSTRACT 
 

Organisms are in constant interaction with their environment where they respond to 

abiotic and biotic changes, and in turn affect their surroundings. During these 

interactions, they undergo molecular, physiological and developmental changes in 

order to adapt to the dynamic circumstances. As our understanding of organism-

environment interactions has grown it was found that multicellular organisms not only 

have cell-type specific responses, but these responses are not uniform amongst cells 

of that cell type types. Studying environmental responses at a whole organism level is 

thus a challenge, whereby using mixed cell samples can mask the detection of specific 

effects. In this thesis, the aim was therefore to investigate cell-type and single-cell 

specific responses towards environmental stress conditions in plants. 

In Chapter 3, materials for researching nitrogen responses in root tissue types of the 

model legume plant Medicago truncatula were generated. Vector constructs were 

assembled using promoter sequences with known epidermis, cortex or pericycle 

tissue-specific expression activity to drive reporter proteins. Tissue specific expression 

for two out of six constructs was confirmed using transient transformation, paving the 

way for stable transformation of M. truncatula to study tissue-specific expression in 

legume root systems. In Chapter 4, cell-specific variability in perception of the 

bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana was investigated 

using an inducible reporter line. High variability in reporter protein expression was 

observed amongst genetically identical leaf spongy mesophyll cells. This variation 

was found to be highly correlated with nuclear size, which has been shown previously 

to be an indication of ploidy number. Transcriptomic work in this chapter led to the 

conclusion that cells exhibiting high reporter protein expression possessed an overall 

higher transcription capacity. In Chapter 5, potential methods of exploiting the cellular 

variability identified in Chapter 4 were investigated, with the purpose of regenerating 

a whole plant from a single cell exhibiting higher expression capabilities. To that end, 

fluorescent activated cell sorting for isolating live protoplasts was optimised, 

increasing the efficiency from 0.01% to 30%. Low-density protoplast regeneration 

trials proved challenging, but this method development paves the way for future work.  
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1. INTRODUCTION 

1.1. ABIOTIC AND BIOTIC ENVIRONMENTAL FACTORS INFLUENCING 

PLANT GROWTH AND DEVELOPMENT 
Ecosystems are made up of non-living (abiotic) and living (biotic) factors. Interactions 

of these factors with and within each other is what creates the self-sustaining 

ecosystem we call Earth. Plants are major contributors in our ecosystem and necessary 

organisms to sustain life as producers of oxygen, food, and many more plant-based 

products. As all organisms, plants are influenced by their environment and have to 

respond to the environmental cues they perceive. Efficiency and communication of 

this perception as well as timing and precision of the response contribute to the overall 

fitness of plants within that ecosystem.  

Abiotic factors affecting plant life are comprised of chemical and physical properties. 

These factors include but are not limited to; soil nutrient content, soil texture, pH, 

water availability, light availability and ambient temperature. In a natural environment 

they are in constant flux due to phenomena such as; seasonal changes, storms, fires, 

volcanic eruptions and daily modulations. But these factors can also be influenced by 

human intervention. In agricultural practices, this presents as fertilization, irrigation, 

pollution and modification of the natural environment through tilling or excavation. 

Within such dynamic environment, successful development of an organism, depends 

on these abiotic factors to remain within a certain range. This is defined as the 

“sufficiency range” and is different for every organism and every environmental factor 

(Driessche, 1998). Below and above this range, an organism will have impaired 

development due to deficiency or toxicity effects, respectively (Figure 1.1).  
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Figure 1.1. Simplified graphical representation of relationship between plant 
growth and health with environmental nutrient availabilty. Optimal plant 
growth requires environmental factors to be within a certain range. This range is 
called the adequate zone. Below or above this range the growth rate starts decreasing 
exponentially, resulting in symptoms of deficiency or toxicity. Skewness and 
kurtosis of the graph can change depending on the environmental factor and plant, 
however deficiency, adequte, and toxicity zones are present for all factors (adapted 
from Miller, 2014). 

 

Biotic factors include all living organisms (bacterial, fungal, plant and animal 

populations etc) contained within a defined ecosystem. Just like abiotic factors, they 

can be influenced by naturally occurring events as well as human intervention. 

However, their interaction with the environment and each other is even more complex 

due to symbiosis and competition events occurring between these organisms. As a part 

of the biotic factors, plants are no exception to these events. With a focus on plant-

bacteria symbiosis, nodules are a good example for the interaction between legume 

plants and nitrogen fixing organisms. In this mutualistic relationship, the plant gains a 

steady supply of nitrogen from the nitrogen fixing bacteria while the bacteria obtain a 

niche, carbon fixed in the leaves and other nutrients (Ledgard and Steele, 1992). Plants 

can also have a parasitic relationship with bacteria in the form of pathogenesis. In order 

to defend against invading pathogens, plants evolved over time to possess an innate 

immune system (Jones and Dangl, 2006).  
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1.2. COMMUNICATION OF STRESS PERCEPTION IN PLANTS 
Upon recognition of an environmental stimulus that is disadvantageous or poses a 

threat, many organisms can migrate to a more advantageous location (taxis) to increase 

their chances of survival. Plants can adjust their growth and development direction but 

remain sessile. Their inability to be mobile in the face of negative or positive stimuli 

results in high selective pressure. It is this type of pressure that drove evolution of 

plants to possess extremely flexible mechanisms for rapid perception, communication 

and response to environmental stimuli.  

One of the most crucial steps in producing a response to environmental stress is the 

ability to rapidly recognize and communicate the triggering stimuli before the stress 

becomes unmanageable. To that end, plants employ specialized receptors that are able 

to recognize specific types of stress and activate corresponding signalling 

mechanisms. Most common mechanisms for communication of stress recognition 

include opening of ion channels, activation of mitogen-activated protein kinase 

(MAPK) cascades (Latrasse et al., 2017) or cytoplasmic accumulation of signalling 

molecules such as reactive oxygen species (ROS) (Laloi et al., 2004) and 

phytohormones (Verma et al., 2016). Each stress type will trigger a unique 

combination of signalling pathways. In turn, this activates specific transcription factors 

to remodel the chromatin for regulating expression of relevant genes depending on the 

triggering stress type (Figure 1.2). This mechanism allows generation of highly 

specific responses and help enable plants allocate resources between maximising 

growth or ensuring survival (Abuqamar et al., 2009; Chinnusamy et al., 2004). 
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Figure 1.2. Flowchart of events triggered by environmental stimuli leading to 
response. Plants perceive stress through extracellular or intracellular receptors. 
Perception of stimuli initiates signal transduction pathways such as MAPK 
cascades, ROS accumulation and phytohormone production for communication of 
stimuli. These pathways affect proteins such as transcription factors or regulators of 
chromatin topology for regulation of specific relevant for producing the appropriate 
response to the triggering stimuli. (adapted from Atkinson, Lilley and Urwin, 2013) 

 

MAPK signalling cascades enable rapid coordination of responses  

Eukaryotes regularly rely on MAPK pathways for transduction of external signals to 

regulate internal response mechanisms (reviewed in Cristina, Petersen and Mundy, 

2010). MAPK pathways minimally consists of three components. These are: MAPK 

Kinase Kinase (MAPKKK) proteins, which are serine serine/threonine kinases 

phosphorylating the second component of the pathway, MAPK Kinase (MAPKK). 

MAPKK proteins are dual-specificity kinases phosphorylating threonine and tyrosine 

residues on the third component of the pathway; MAPK. Finally, MAPKs are 

serine/threonine kinases phosphorylating a wide range of targets such as transcription 

factors and cyto-skeleton associated proteins (Nakagami et al., 2005).  



 5 

With a need for production of highly specific responses to a wide range of 

environmental stimuli, high variety of MAPKKK, MAPKK and MAPKs exist. So far, 

20 MAPK, 10 MAPKK and 60 MAPKKK proteins were identified so far in A. thaliana 

with most of these genes having orthologues in M. truncatula, O. sativa and N. 

benthamiana (Ichimura et al., 2002). With so many MAPK proteins available in the 

cytoplasm, specificity of these cascades was found to be regulated by scaffold proteins 

that maintain the proximity of MAPK proteins involved in particular pathways through 

spatio-temporal restrictions (reviewed in Morrison and Davis, 2003). One example of 

this is found in yeast where the protein Ste5p with no enzymatic activity was found to 

be required for operation of the yeast mating pheromone pathway. In this example, 

Ste5p was found to create a signalling module consisting of MAPKKK Ste11p, 

MAPKK Ste7p, MAPK Fus3p, thus restricting their spatial distribution, increasing 

their chances of interaction (Widmann et al., 1999). Later, Arabidopsis Receptor for 

Activated C Kinase 1 (RACK1) proteins were discovered to have scaffold functions 

in MAPK signalling. RACK1 was found to facilitate transduction of biotic stress 

signalling, triggered by Pseudomonas aeruginosa and Xanthomonas campestris 

pathogens in the immune response (Cheng et al., 2015). RACK1 was found to bind 

MAPKKK, MEKK1; MAPKK, MKK4/5 and MAPK, MAPK3/6 prior to any stimulus 

to form a signalling module. It was also found that RACK1 interacted with the b 

subunit of heterotrimeric G module to further increase specificity by restricting spatial 

distribution of the module to the origin of signal transduction (Cheng et al., 2015). 

These examples support the existence of scaffold proteins, possibly existing in many 

different combinations, that are specific for a triggering stimuli. 

One of the most widely studied MAPK signalling pathways in plants is for recognition 

of pathogens. In A. thaliana, this pathway initiates with perception of a 22 amino acid 

conserved motif present on pathogen flagellin structure (flg22) by a transmembrane 

pathogen recognition receptor Flagellin-sensitive 2 (FLS2) (Chinchilla et al., 2007). 

Intracellular kinase domain of FLS2 phosphorylates the MAPKKK, MEKK1 which 

phosphorylates the MAPKKs MKK4 and MKK5. Activated MKK4 and MKK5 

proteins phosphorylate MAPK proteins MPK3 and MPK6 however targets of these 

MAPKs remain unknown. Independent of their targets, it was found that this MAPK 

pathway results in activation of WRKY22 and WRKY29 genes encoding transcription 

factors responsible for regulation of immune responses (Asai et al., 2002).  
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With so many members, MAPK pathways also function in transduction of signals from 

abiotic stress recognition. An example cascade was discovered in A. thaliana in 

communication of cold and salinity stress, consisting of MAPKKK, MEKK1; 

MAPKK, MKK2 and MAPK MPK4 (Ichimura et al., 2000).  In addition to their role 

in signal transduction, MAPK cascades can also integrate signals from different 

sources. MAPK proteins can regulate and themselves be regulated by reactive oxygen 

species (ROS), another molecule with signalling function produced within the cell 

(Apel and Hirt, 2004; Takahashi et al., 2011; Zhang et al., 2006). This makes MAPK 

cascades an important mediator of cross-talk between different stresses (Andreasson 

and Ellis, 2010; Rohila and Yang, 2007).  

ROS signalling can modulate abiotic and biotic responses 

ROS collectively refers to singlet oxygen (1O2), hydrogen peroxide (H2O2), superoxide 

radical (O•-2) and hydroxyl radical (OH•) molecules constantly produced within a cell 

in low amounts as a by-product of metabolic activities (Apel and Hirt, 2004). These 

molecules are highly toxic to the cell itself and can damage protein, DNA and lipid 

structures (Gill and Tuteja, 2010). To offset their toxic effects, plants constantly 

produce ROS scavenging enzymes such as superoxide dismutase (SOD), ascorbate 

peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX) and peroxiredoxin 

(PrxR) functioning in the removal of H2O2 (Mittler et al., 2004).  

Plants also produce non-enzymatic molecules called antioxidants. These consist of 

ascorbic acid, glutathione and flavonoids which are effective in counteracting OH• and 
1O2 (Gechev et al., 2006). On top of their antioxidant abilities these molecules also 

possess signalling properties. Ascorbic acid was found to be involved in regulating 

cell cycle as well as functioning as coenzyme (reviewed in Hossain et al., 2018) 

Glutathione was found to have an important role in generation of biotic stress 

responses, likely through NPR1, via SA-mediated pathway through hormonal 

crosstalk (Ghanta and Chattopadhyay, 2011). Flavonoids were found to be involved in 

many pathways including plant fertility, auxin transport (systemic as well as local) and 

mediation of responses to biotic interactions be it a mutualistic (Nodule formation, 

mycorrhizal association) or parasitic (pathogenesis) in nature (Peer and Murphy, 

2006).  

The delicate balance of ROS production and removal is broken upon perception of 

stress (Apostol et al., 1989). Upon abiotic stress perception, a burst of intracellular 
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ROS is generated. Following this event, ROS removal mechanisms work to re-

establish the balance and reduce elevated ROS levels. In the case of biotic stress 

perception, an initial ROS burst similar to one produced after abiotic stress perception 

is produced. If the stress persists, it is followed by a stronger, secondary burst which 

is maintained over time and leads to events causing programmed cell death (PCD) 

(Grant and Loake, 2000). 

 

 
Figure 1.3. Principal effects of intracellular ROS accumulation on redox-
sensing mechanisms in regulation of stress specific TF activity. ROS 
accumulating in the cell after stress perception can lead to I) conformational change 
in quaternary structure inducing or reversing multimer formation; II) 
association/dissociation from a partner/repressor; III) proteolytic processing of 
membrane bound proteins, allowing trans-localization; and IV) change in tertiary 
structure for regulation of DNA binding activity (adapted from He, Van Breusegem 
and Mhamdi, 2018). 

 

Four different mechanisms have been identified so far for signalling function of ROS 

in plants. In elevated concentrations, intracellular ROS can alter tertiary or quaternary 

structure of proteins through modification of disulphide or covalent bonds. The 

resulting change in conformation can lead to state-switching (active to inactive etc.) 

for proteins sensitive to ROS. An example of this mechanism was observed in 

regulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENE 1 (NPR1). 
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Normally found in their inactive dimeric state held together by disulphide bonds, 

increased ROS production reduces these bonds and allows monomerization, leading 

to activation of the NPR1 (Tada et al., 2008). Another example is HEAT SHOCK 

FACTOR A1A (HSFA1A), activated through oxidation of its disulphide bonds that 

allow trimerization and translocation of active form from cytoplasm to nucleus for 

regulation of gene expression (Figure 1.3.I) (Liu et al., 2013).  

Modification of protein conformation also affects interactions of these proteins with 

their targets (Figure 1.3.II). An example of altered protein-protein interactions was 

observed between NPR1 and its interacting TGACG sequence-specific binding protein 

(TGAs) TFs. In order to achieve regulation of gene expression, NPR1 forms a complex 

with TGAs, however upon reduction with ROS, NPR1 loses its ability to interact with 

an unmodified TGA (Després et al., 2003).  

Changing intracellular ROS concentrations can also lead to proteolytic modification 

of proteins and transcription factors to alter their states (Figure 1.3.III). An example of 

this mechanism was observed for NAM/ATAF/CUC (NAC) TF, ANAC013. In its 

inactive state, this TF is a membrane bound transcription factor with a subcellular 

localization to ER (He et al., 2018). After treatment of cells with ROS generating agent 

methyl viologen, ANAC013 was found to switch to an active state through proteolytic 

cleavage from its anchor on the ER, and translocating to nucleus for regulation of gene 

expression (De Clercq et al., 2013).  

Lastly, ROS can alter affinity of proteins to DNA targets (Figure 1.3.IV). This was 

observed in the activity of RELATED TO APETALA 2.4A (RAP2.4A) TF. In its 

active state, RAP2.4A has a homodimeric structure stabilized by an intermolecular 

disulphide bond. It was found that oxidation or reduction of this stabilizing bond 

strongly reduces its DNA binding affinity (Shaikhali et al., 2008). 

Phytohormone signalling during plant environmental responses 

Plants often recognize stresses locally (e.g. at one leaf surface or one lateral root), 

however in order to overcome them, responses are often required to be mounted 

globally (at a whole plant level). In order to achieve this, plants utilize hormones for 

long distance systemic signalling. This way they can regulate developmental processes 

as well as coordinate stress responses in multiple locations at once, or to multiple 

stresses at once. Studies show that phytohormones abscisic acid (ABA), salicylic acid 
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(SA), jasmonates (JA), ethylene (ET), cytokinins (CK), gibberellins (GB), 

brassinosteroids (BR) and strigolactones play significant roles in control and 

coordination of these responses against biotic and abiotic stress (Bari and Jones, 2009; 

Verma et al., 2016).  

 

 
Figure 1.4. Phytohormone signalling pathways in communication of stress 
perception and production of stress response. Upon salt or drought stress, ABA 
(Red) pathway is activated which leads to stomatal closure in order to prevent excess 
water loss. This response also creates a physical barrier for subsequent pathogen 
attacks. Upon first stages of biotic stress, ABA regulates callose deposition in tissues 
to slow down pathogen infection further however acts antagonistically if the 
pathogen stress persists leading to suppression of defence response genes. SA 
(orange), JA (Green) and ET (Blue) pathways get activated by biotic stress 
perception. SA signalling pathway is triggered by presence of biotrophic pathogens 
and through cross talk with ROS, functions in mounting systemic acquired 
resistance throughout the plant. JA and ET pathways both get activated by 
necrotrophic pathogen and in both pathways, accumulation of phytohormones lead 
to repression of transcription factor repressors JAZ and CTR1 respectively that 
activate transcription factors required for chromatin remodelling to produce the 
necessary defence responses. (Arrows, positive regulation; Blocked arrows, 
negative regulation; adapted from Atkinson and Urwin, 2012). 

 

 



 10 

Abscisic Acid (ABA) signalling responses 

ABA has a role in communication of both abiotic and biotic stress perception. 

However, upon biotic stress perception ABA can both activate or repress defences 

against biotic stresses (Atkinson and Urwin, 2012). It was found that its dual nature is 

coordinated by the timing of the stress and the state of the host plant. For example, if 

a plant has previously recognized an abiotic stress such as drought or salinity, the 

resulting ABA accumulation causes closure of stomata (Figure 1.4-Red). While the 

plant gains a temporary resistance to drought, it also gains a temporary resistance to 

pathogen attack by physically restricting pathogen entry to plant tissues (Figure 1.4-

Red) (Lee and Luan, 2012). If a plant has not recognized such triggering cues 

beforehand and does get infected, at early stages of the infection a wild-type ABA 

pathway can regulate local deposition of callose to prevent further invasion (Figure 

1.4-Red) (Ton et al., 2009). However, in later stages of the pathogen infection, ABA 

acts antagonistically as a negative regulator of defence through modulation of genes 

involved in the SA pathway  (Ton et al., 2009).  

 

Salicylic Acid (SA) pathway interactions 

SA production is generally associated with responses against biotrophic and hemi-

biotrophic pathogens (Loake and Grant, 2007) such as the oomycete Peronospora 

parasitica or bacterial Pseudomonas syringae, respectively (Glazebrook, 2005). 

Following local perception of pathogen attack, increased biosynthesis and 

accumulation of SA beyond basal levels allows mounting of systemic acquired 

resistance (SAR), a state where the plant exhibits global broad-spectrum disease 

resistance against consecutive infections even from unrelated pathogens to the 

triggering attack (Gao et al., 2015) (Figure 1.4-Orange). In this mechanism, increased 

SA concentrations along with high ROS concentrations result in state-switching of 

NPR1 protein from its inactive oligomeric form to monomeric form and facilitates its 

translocation to the nucleus (Figure 1.4-Yellow & Orange). Consequently, interaction 

of NPR1 with TGA transcription factors within the nucleus induces SAR related and 

pathogenesis related (PR) gene expression to encode a number of proteins with 

antimicrobial properties that confer resistance to pathogens (Dong, 2004). Studies 

performed on Nicotiana benthamiana showed that once activated, SAR could persist 

up to 20 days post initial pathogen recognition(Ross, 1961). 
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Jasmonic Acid (JA) responses 

JA is generally responsible for activation of defence in response to necrotrophic 

pathogens (Wasternack and Hause, 2013) such as fungus Alternaria brassicicola 

(Glazebrook, 2005). JA acts as an internal signalling molecule with active and inactive 

states. In its active state (JA-Ile) (Fonseca et al., 2009), it interacts with its intracellular 

receptor Coronatine Insensitive1 (COI1). This interaction leads to degradation of 

Jasmonate-ZIM-Domain (JAZ) (Chini et al., 2007), a repressor of Jasmonate 

Insensitive 1/MYC2 (JIN1/MYC2) transcription factor. Once its repressor is 

eliminated, the JIN1/MYC2 TF can affect chromatin remodelling and activate JA-

responsive gene expression, leading to a pathogen recognition response such as a burst 

of internal ROS production and Ca2+ influx (Eulgem and Somssich, 2007) (Figure 1.4-

Yellos & Green).  

 

Ethylene (ET) signalling pathway 

Similar to JA, ET plays a role in modulating responses against necrotrophic pathogens 

(Wasternack and Hause, 2013). ET often acts synergistically with JA in the activation 

of defence related genes upon necrotrophic pathogen recognition (Glazebrook, 2005; 

Thomma et al., 2001). In the absence of ET, the CONSTITUTIVE TRIPLE 

RESPONSE (CTR1) protein represses ETHYLENE INSENSITIVE 2 (EIN2), a 

positive regulator of ET signalling by targeting it for proteasomal degradation. When 

ET concentration increases in the environment and is perceived by its receptor 

ETHYLENE RESPONSE 1 (ETR1), the repressor CTR1 is supressed, which in turn 

allows EIN2 to activate EIN3 family TFs in the nucleus (Ju et al., 2012) (Figure 1.4-

Blue). These TFs lead to chromatin remodelling which leads to generation of specific 

ethylene responses such as accumulation of cell-wall strengthening hydroxyproline 

rich proteins, production of secondary metabolites such as phytoalexins, and localized 

cell death, depending on the triggering stimuli (Binder, 2020).  

Plant growth and defence trade-off 

Energy is a finite and valuable resource for plants and is stored in the form of 

carbohydrates created through photosynthesis. Because of this, plants require tightly 

regulated pathways for resource allocation between organs. In optimal conditions, 

carbohydrate resources are used for growth. However, upon stress recognition, these 
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resources can be re-allocated for use in defence responses in order to ensure survival. 

This was illustrated in previous studies, with the use of radiolabelled carbon and 

nitrogen to trace the synthesis and re-allocation of ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO). RuBisCo functions in production of herbivory 

defence-related molecules nicotine and phenol amide upon biotic stress perception 

(Ullmann-Zeunert et al., 2013). In another study, a starch-free mutant was found to 

have delayed production of SA-related defence responses against a hemi-biotrophic 

pathogen suggesting requirement for re-allocation of stored energy to mount defence 

responses (Engelsdorf et al., 2013).  

Research into the molecular processes underlying these phenotypes showed plant cells 

to have altered transcriptome and proteome profiles upon stress recognition in favour 

of pathways that promote defence responses while inhibiting pathways responsible for 

growth. This mechanism was termed the growth/defence trade-off and was found to 

be modulated by transcription factors activated by hormone signalling pathways 

(Bilgin et al., 2010). Upon recognition of biotic stress, increased intracellular levels of 

SA and JA were found to lead to downregulation of genes responsible for production 

of chlorophyll and photosystem components which leads to reduced photosynthetic 

capacity (SA: Sugano et al., 2010; JA: Jung et al., 2007). Many auxin and GA 

regulated genes responsible for promoting growth were also found to be 

downregulated upon pathogen attack as a result of this trade-off (Auxin: Kazan and 

Manners, 2009; GA: Yang et al., 2012). Another example of this growth/defence 

trade-off can be seen in the antagonistic relationship between GA and JA signalling 

pathways (Figure 1.5). Direct interaction of DELLA and JAZ repressor proteins 

regulated by intracellular GA and JA concentrations, respectively were found to play 

a crucial role in modulation of this relationship (Hou et al., 2010). Repression of 

DELLA proteins by JAZ was found to relieve repression of PHYTOCHROME 

INTERACTING FACTOR (PIF) TFs by DELLA and result in enhanced growth (De 

Lucas et al., 2008). This cross-talk is suggested to be altered upon pathogen attack 

with evidence showing JAZ protein degradation after stress perception. This would 

lead to increased active intracellular DELLA repressor levels and more PIF TF 

repression that in turn results inhibition of growth (Yang et al., 2012).  
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1.3. ENABLING SOLUTIONS TOWARDS GLOBAL FOOD SECURITY USING 

MODULATION OF NOVEL MOLECULAR MECHANISMS 

Food production and agriculture is a continuously growing industry that is 

continuously adapting to try to follow the needs of a rising population. The global 

human population was estimated to be under 6 million before the introduction of 

agriculture approximately 9000 BC. By the year 1000, this number was already 

increased to 250 million, and by the year 2000 it stood at 6.1 billion people (Livi-

Bacci, 2017). UN projections from 2017 predict the world population will reach 9.8 

billion by 2050 (UN, 2017). Analysing this data, it was extrapolated that a 60-70% 

increase in food production must be achieved between 2005 and 2050 to sustain this 

exponentially growing population (Fischer, Byerlee and Edmeades, 2014; ELD, 

2015). However, even with the increased rate of improvement in food production, it is 

not possible to sustainably match such exponential growth with conventional methods 

(Fuglie et al., 2012). This is because changes are not only dependent on the rate of 

 
Figure 1.5.  Molecular dynamics of Jasmonic acid-Gibberellic acid cross-talk 
within growth/defence trade-offs. A schematic representing effect of hormones on 
each other to direct growth or defence in suitable conditions. While GA acts in 
favour of growth, JA acts towards defence. At the crossroads of this mechanism is 
DELLA-JAZ interaction. Shapes represent key proteins functioning in hormone 
pathways, colours represent which hormone pathway each protein functions in. 
These are: GA pathway, green; JA pathway, Red. (Arrows, positive regulation; 
Blocked arrows, negative regulation; COI1 (CORONATINE INSENSITIVE 1); 
JAZ (JASMONATE JIM-DOMAIN); MYC (transcription factor); SLY1 (SLEEPY 
1); GID1 (GA INSENSITIVE DWARF 1A); DELLA (repressor protein); PIF; 
(Huot et al., 2014). 
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introduction of new practices stemming from research or availability of resources but 

also the current state of agricultural land, practices, and policies in place.  

Agricultural yields are variable throughout the year due to unpredictable 

environmental factors throughout the seasons. Focusing on the abiotic factors first, in 

recent years, loss of arable land (Tian and Niu, 2015) and changing climate trends 

(Shcherbak et al., 2014) due to global warming have become two extreme examples 

affecting agriculture. Use of fertilizers and mechanization of agriculture has been 

among lead practices to increase agricultural yield. However, using these invasive 

methods, human intervention has rendered 33% of arable land less productive due to 

leaching, salinization, acidification or contamination (FAO and ITPS, 2015) (Figure 

1.6).  

 

 
Figure 1.6. Impact of agriculture on natural soils. As a result of intensive 
agricultural applications such as tilling, fertilization and intense irrigation, there is 
erosion of fertile topsoil over time, leading to, and linked to acidification of soil and 
release of greenhouse gasses and leaching of nutrients respectively. All this affects 
overall fertility of the soil over time and leads to reduced soil biodiversity (taken 
from Kopittke et al., 2019) 

 

It is a fact that use of nitrogen fertilizers achieve significant crop yield increases around 

the globe. However, effectiveness of nitrogen fertilizers have diminished over time 

from 68% in 1961 to 47% in 2010 (Lassaletta et al., 2014). With such reduction, 

overfertilization as a result of intent to keep yields high became a major issue. This 

mal-practice created the main source of nitrous oxide release, a greenhouse gas with 
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significantly more potential contribution to global warming than CO2 (Shcherbak et 

al., 2014). Consequently, nitrogen-fixing legume plants have become increasingly 

popular in recent years to enrich N-depleted fields since they can be grown without 

fertilizer dependency. This thus contributes towards development of sustainable 

agricultural practice and reduction of greenhouse gas emissions (Valentine et al., 

2018). On top of this, it was reported that the presence of legume plants contributed to 

sustaining a healthy soil microbiome that improves agricultural yields (Zhou et al., 

2017). For these reasons, legume-rhizobia symbiosis is becoming an increasingly 

popular topic in research for generating a complete understanding of the complex 

molecular mechanism of nodulation in development of next generation, sustainable 

agricultural practices. One crucial aspect of this mechanism is the effect of available 

soil nitrogen on nodulation and responses stemming from specific tissue types in 

legume roots at different soil nitrogen levels.  

Biotic factors, including pests and pathogens, present an equally large challenge to 

agriculture (Bebber et al., 2014). Intervention of humans in the ecosystem over time 

has changed the way that biotic factors affect agriculture today. For thousands of years, 

agricultural practices adopted use of crops with high genetic diversity that were 

adapted to their local environments. Approximately fifty years ago, with green 

revolution these genetically diverse crop populations were slowly replaced by 

monoclonal crop populations with high yield. These crop varieties often possess 

reduced plasticity and thus reduced resistance to pathogen infections as a collective 

response. This has been seen to result in an increase in the chance that a widespread 

infection can emerge in agricultural practices (Crews et al., 2018). To address these 

problems, first response was to utilize chemicals such as pesticides in high-density 

agriculture. However, it was found that chemical-based pest and pathogen 

management had long-term detrimental effects on both environment and human health 

(Wilson and Tisdell, 2001). As a result, re-integration of biodiversity to agriculture 

received greater attention  

Classical selective breeding programs were popular for transferring desired traits from 

related species in this endeavour however, they were very slow, with years required to 

make a stable product and with the unpredictability of biology they had trouble 

delivering the required agricultural robustness gains (Stamp and Visser, 2012). With 

the situation as it is, potentials of using molecular methods and biotechnological 
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approaches to meet the challenges for increasing both crop yield and resistance were 

recognized (Brookes and Barfoot, 2016). However, public concern about genetically 

modified organisms (GMOs) presented a great obstacle for these gains to be brought 

to market. Backlash against GMOs led to their prohibition in many countries, despite 

the great benefits they can offer.  

With discovery and then application of the CRISPR/Cas9 gene editing system, 

biotechnological solutions have moved back into the spotlight. This approach 

promises fast and reliable targeted allele swapping of desired genes between varieties 

of the same species without losing agricultural robustness in market quality (Zaidi et 

al., 2018). However, still considered genetically modified by some, even transgene-

free systems are not fully accepted by society as the Cartagena Protocol on Biosafety 

to regulate safe handling of biotechnologically modified living organisms 

(https://bch.cbd.int/protocol/) has not yet been ratified by countries such as Argentina, 

Australia, Canada and USA among others (Dalla Costa et al., 2017). 

1.4. CELL TYPE SPECIFIC AND SINGLE-CELL RESEARCH IN PLANTS 

Plants, like other multicellular organisms, consist of many different specialized cell 

types that are highly coordinated in their growth and development. Each cell type 

possesses a distinct pattern of chromatin structure that dictates gene expression. 

Because of this, the response of each cell type to a stimulus, be it abiotic or biotic, is 

highly specific. In context of agriculture, roots of plants consist of highly specialized 

cell types, each with its own distinct function, gene expression pattern as well as 

cellular processes. In legumes, particular cell types (cortex and pericycle) must be 

coordinated during regulation of nodulation. Thus, investigating cell type specific gene 

expression and understanding the interaction of biological processes between cell 

types can help pave the way for the biotechnological work in the future for 

improvement of nitrogen fixing plants and enhancement of sustainable agriculture.  

However, cell type specific mechanisms cannot be investigated through classical 

approaches that typically involve profiling a whole organ or organism. Over the last 

20 years, interest in uncovering tissue type specific responses spurred on development 

of new technologies, making use of different approaches (reviewed in Hu et al., 2016). 

Today it is possible to measure mRNA levels in a single cell and this data can be 

analysed to uncover the functions of specific cell types.  
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One of these techniques is the isolation of nuclei tagged in specific cell types 

(INTACT) (Deal and Henikoff, 2011). In this method, transgenic lines are generated 

to express biotin in the nuclear envelope of their cell types of interest. These materials 

can then be subjected to necessary treatments and lysed. Subsequently, biotin tagged 

nuclei are isolated using streptavidin coated metal beads and magnets. Authors suggest 

the whole process of nuclear isolation, cDNA synthesis and chromatin 

immunoprecipitation (ChIP) can be completed within two days (Deal and Henikoff, 

2011). While this method provides a fast and clean protocol for isolating cell nuclei, it 

is not a viable system for studying cytoplasmic transcriptome or cell specific 

responses.  

 

 
Figure 1.7. Laser microdissection of a sample. a) Tissue of interest is fixed to halt 
cellular activities, embedded in paraffin and thin sections are mounted on 
microdissection slide. Area of interest is selected using the equipment interface. b) 
A high-power UV laser traces the marked borderline to excise the tissue from the 
slide. c) Excised area is collected in a receptacle for downstream processes such as 
nucleic acid or protein extraction. (taken from https://www.leica-
microsystems.com/solutions/life-science/laser-microdissection/) 

 

Another technique to study tissue specific properties is laser microdissection. It is a 

method that allows precise excision of an area from an intact tissue sample with the 

use of a high-powered laser (Figure 1.7). In order to achieve this, the tissue is fixed 

with non-crosslinking chemicals to prevent interference with the downstream 

procedures (Emmert-Buck et al., 1996). However, the method tends to result in 

degradation of cellular contents, including mRNA transcripts due to invasive fixation 

and embedding procedures. While this method possesses incredible specificity, it is 

fairly limited to excision of cell clusters, rather than single cells or thousands of cells. 
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Figure 1.8. Workflow of a Drop-seq technique. 1) Cells are disaggregated and 
used to create a cellular suspension. 2) Cells in suspension are fed into the 
microfluidic chamber to be mixed with a microparticle containing primers with 
unique sequence tags and lysis buffer. 3) After mixing, a continuous flow of oil 
creates droplets containing a combination of either cells, microparticles, both or 
none. 4) Following droplet formation, lysis buffer causes immediate cell lysis and 
5) RNA is hybridized to the primers on the microparticles. 6) At this stage, droplets 
are broken and mRNA bound to drop-specific tagged primers on beads is used for 
7) reverse transcription, 8) amplification of transcripts and 9) sequencing (taken 
from Macosko et al., 2015). 

 

Drop-Seq (Single cell RNA-Seq) is another technique for studying single cell gene 

expression. It was made possible by recent advances in microfluidics technology for 

cell encapsulation and also development of cell-by-cell sequence barcoding (Macosko 

et al., 2015). In this method, a tissue of interest is disaggregated and loaded into a 

microfluidics system where each cell is encapsulated in a droplet of reaction mixture 

(Figure 1.8.1&2). Next, a bead conjugated with primers carrying a specific barcode is 

delivered to each droplet (Figure 1.8.3). Cells are then lysed within the droplets and 

release intracellular mRNAs that can now bind to the barcoded primers (Figure 

1.8.4&5). This step is followed by reverse transcription, amplification and sequencing 

(Figure 1.8.6-9). The power of this protocol stems from its high-throughput nature. 

Thousands of cells can be sequenced in parallel, and the barcodes can be used to trace 

sequences to individual cells. While the technique itself is indiscriminate in 

sequencing of disaggregated cell populations, with specialized bioinformatic 

approaches applied to the sequencing data it is possible identify unique cell identities 

from gene expression data (Rodriguez-Villalon and Brady, 2019). 
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The last technique to be discussed in this subsection is fluorescence activated cell 

sorting (FACS). A well-established technique commonly used for cell type specific 

studies in both animals and plants (Figure 1.9). Its power comes from its ability to 

identify cell types through use of cellular morphology (Mammalian cells only) and 

fluorophore markers or cell type specific reporters. For fluorescence detection 

applications, fluorophores can be expressed in cells of interests in transgenic lines or 

cells can be labelled using fluorescent antibodies binding to known cell type specific 

marker proteins. Similar to the Drop-seq method, cells have to be disaggregated for 

the protocol. Once they are in a suspension, cells can be interrogated by lasers for their 

relative size, density and fluorescence. Cells with desired traits can be isolated and 

studied. Using this method, it is possible to obtain either single or thousands of cells 

within minutes with a high level of purity for a multitude of downstream processes 

(Bonner et al., 1972).  

As one of the oldest techniques for enrichment of cell types from a heterogenous 

population of cells, FACS was initially used to study bacteria (Ito et al., 2009), yeast 

(Li et al., 2000) and mammalian cells (Hang and Fox, 2004) and was rapidly taken up 

by the plant biology field (Bargmann and Birnbaum, 2010; Herzenberg et al., 2002). 

Since then, FACS has been used to study tissue type specific transcriptomes 

(Birnbaum et al., 2003; Brady et al., 2007a; Gifford et al., 2008), metabolomes 

(Moussaieff et al., 2013), proteomes (Petricka et al., 2012) and chromatin structure 

(Frerichs et al., 2019) in model plant species such as A. thaliana. It was also used to 

study transcriptomic changes in A. thaliana root cell types to changing environmental 

salinity (Geng et al., 2013), pH, sulphur (Iyer-Pascuzzi et al., 2011) and nitrate 

(Gifford et al., 2008), as well as oomycete biotic stress responses (Coker et al., 2015). 

Thus FACS was the technique of choice in this work due to its versatility, ease of use 

and availability of established protocols. 
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Figure 1.9. Schematic representation of FACS. Disaggregated cell suspension is 
fed into FACS system where cells are aligned to create single file hydrodynamic 
focusing. This allows a single cell to be interrogated by lasers and the reflected or 
refracted light to be detected as an event and plotted as a histogram in the linked 
software. The stream leaves the nozzle vibrating at a high frequency. These 
vibrations cause the continuous stream to break into droplets with ideally one cell 
being within each droplet. Events with preferred specifications are selected through 
gating on histograms in the linked software (following analysis of the data on a 
linked computer) and droplets containing these events are charged. Charged droplets 
enter an electric field and their trajectory is diverted to the collection tubes. (Adapted 
from: https://nanocellect.com/blog/how-does-flow-cytometry-work/) 
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1.5. PRINCIPLES OF FACS FOR INVESTIGATING CELLULAR PROPERTIES 

FACS is a technique made possible through integration of hydrodynamics, acoustics, 

optics and electronics principles from physical sciences (Bonner et al., 1972). Thus, 

its components can be studied under these four areas.  

In order to accurately profile cells, each cell has to be interrogated one by one by the 

lasers in the equipment. For this reason, cells have to align in a single file. In order to 

achieve this effect, hydrodynamic focusing principles are used. In hydrodynamics, 

when two fluids with different velocities are run alongside each other, they do not mix 

due to the difference in speed (Golden et al., 2012). The fluidics system includes three 

components: sample line, carrying sample fluid with cells; sheath line, carrying sheath 

fluid and the nozzle (Fulwyler, 1965). In the system, sample line runs within the sheath 

line and inject the sample fluid into a faster moving sheath fluid. This configuration 

results in encapsulation of sample fluid carrying the cells with sheath fluid before both 

shoot out of the nozzle (Figure 1.10.A). By changing the speed of each fluid, it is 

possible to adjust the thickness of the sample fluid encapsulated by the sheath fluid 

(Golden et al., 2012). For example, increasing the velocity of the sheath fluid will 

create a thinner sample stream in the core, forcing cells to retain a single file alignment 

(Figure 1.10.B). For this reason, in most studies the size of particles that can be sorted 

varies around one third of the nozzle size used (Golden et al., 2012).  
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Figure 1.10. Hydrodynamic focusing at a FACS nozzle. Sheath fluid (light blue) 
encases the sample fluid (dark blue) to create a core stream. A) When sheath fluid 
pressure is low, the core stream is wide enough that the cells can move freely around 
and can block each other when interrogated by the laser. B) By increasing the sheath 
fluid pressure, thickness of the sample fluid can be adjusted to a point where the 
core stream is one cell thick, enabling cell-by-cell interrogation with lasers. (adapted 
from: https://static.bdbiosciences.com/training/itf/Module%203%20-
%20Fluidics/presentation_html5.html) 

 

Once the cells are aligned, they pass through a laser which interrogates the relative 

size, density and fluorescence of each one (Figure 1.11.A). Relative size of cells are 

interrogated by forward scatter, depending on the scattering of transmitted light 

(Figure 1.11.B) (Mourant et al., 2000). Relative internal complexity of a cell is 

interrogated by side scatter by measuring intensity of refracted light at 90° (Figure 

1.11.C) (Marina et al., 2012). Fluorescence is measured by quantifying the emitted 

light from cells after excitation with different lasers (Bonner et al., 1972) (Figure 

1.11.D). Depending on the specifications of the equipment, and availability of 

fluorophores up to 52 combinations can be detected with current FACS equipment 

(Herzenberg et al., 2002).With larger size, higher internal complexity or higher 

fluorophore level of an interrogated cell, detectors produce a higher voltage pulse 

(Marina et al., 2012). These voltage pulses are then converted into data points and can 

be visualised in population histograms and/or scatterplots (Figure 1.11.E, F). Using 

these graphs, it is possible to select a subset of the overall population by assigning 

‘gates’ to events/cells with traits of interest (Figure 1.11.F). 

A B 
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Figure 1.11. Optics and electronics of FACS. A) Schematic of optics system in a 
FACS. Each event/cell is interrogated by a laser with forward scatter detected by the 
forward detector while side scatter and fluorescence quantity are detected by the 
side detectors. B-D) Correlation between voltage production and cell size, internal 
complexity and fluorescence intensity. E,F) Conversion of voltage signals to data 
points and their representation as population histogram plots for visualization. These 
plots can be either one dimensional E) or multiple histograms can be combined to 
create a 2-D population distribution F) for visualization of multiple parameters at 
one point where the events can be gated for sorting. Gate 1 represents large cells 
with high internal complexity, Gate 2 represents large cells with lower internal 
complexity and Gate 3 represents small cells with lowest internal complexity (taken 
from:https://youtu.be/EQXPJ7eeesQ?list=PLZhxzzyMIQIHhQ2TOGm3HNLA04
ZsTmOLW). 
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Following interrogation of cells, the stream is broken into droplets by high frequency 

vibrations ideally encapsulating 1 cell per droplet. (Figure 1.9). Since the flow speed 

of the fluid, and the distance to interrogation point is known, based on parameters 

recorded when the machine is set up, it is possible to calculate the amount of time 

required for a cell to reach the breaking point (Bonner et al., 1972). At the time of 

droplet break if a droplet contains a cell of interest selected for sorting, the stream is 

charged and thus after the breaking point, that droplet retains the charge. After 

breaking from the stream, the droplets enter a strong electric field. Trajectory of 

charged droplets are altered in the electric field and droplets are directed towards a 

collection tube (Figure 1.9) (Bonner et al., 1972). Depending on the type and quantity 

of charge applied to a droplet it is possible to perform 2- or 4-way sorting (2 or 4 gates) 

of events/cells and also sorting cell-by-cell into individual wells of a collection plate 

(Herzenberg et al., 2002). 

1.6. IMPORTANCE OF INVESTIGATING CELL-TYPE AND SINGLE-CELL 

RESPONSES IN PLANTS 

Studying plant responses to environmental stress has been the topic of many studies 

over the years. However, many of these studies focused on responses at the whole 

plant level. With widespread adoption of cell-type isolation methodologies such as 

FACS in plant science, it can be seen that each cell-type possesses its own unique 

response to the same triggering environmental stimuli. For example, by isolating 

individual cell types in A. thaliana roots after increased nitrogen treatment, 4,931 

genes out of 6,202 were found to be differentially expressed only at cell-type level 

(Gifford et al., 2008). Similar reports have been accumulating in the last decade (Coker 

et al., 2015; Frerichs et al., 2019; Geng et al., 2013; Moussaieff et al., 2013; Petricka 

et al., 2012) suggesting these differences to stem from epigenetic variations. 

Collectively, these subtle differences makeup the mechanism creating the stress 

response throughout the plant. Thus, study of cell-type and single-cell responses in 

this work contributes towards a holistic understanding of how plants respond to 

environmental stress and can enable exploration of if these subtle differences can be 

exploited for crop improvement.  
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In the first part of this thesis, this work focuses on studying cell-type specific responses 

in legume plant roots under high-soil-nitrogen stress. This system was chosen based 

on environmental aspects explained in Section 1.2. and because legumes belong to the 

Fabaceae family which is the second most important plant crop family accounting for 

27% of the world crop yield (Smýkal et al., 2015). With increasing number of 

annotations on legume model species M. truncatula genome, it has become possible 

to perform high accuracy omics research from individual cell-types. Using these 

annotations, implications of such subtle changes in molecular mechanisms between 

cell types can be understood. This will lead to development of better agricultural 

practices during utilization of legumes in land regeneration and sustainable agriculture 

practices. To achieve his goal, in this work, transgenic M. truncatula lines harbouring 

tissue type specific promoters driving fluorescent marker proteins will be generated 

and tested for specificity with FACS technique.  

Second part of this work focuses on investigating cell-specific responses within A. 

thaliana leaf spongy mesophyll tissue upon perception of pathogen stress. This topic 

was chosen as it was found that even though each cell in an organism is considered 

genetically identical it was observed that there are subtle differences among 

individuals of monoclonal populations or cells of same tissue type. While these were 

attributed to differences in epigenetic traits and spontaneous genetic mutations 

(Feinberg and Irizarry, 2010), role of cell-to-cell variation in responses to 

environmental cues are yet to be investigated in plants. To achieve this goal, spongy 

mesophyll tissue of transgenic A. thaliana pathogen responsive reporter lines will be 

interrogated with confocal microscopy for differences in reporter protein 

accumulation. Subsequently, cells exhibiting variation will be isolated using FACS for 

investigation of the differences at genetic, transcriptomic and molecular level. 

Third and final part of this work focuses on investigating possible exploitation of cell-

to-cell variations in plants for establishing a novel crop improvement method. This 

topic was pursued as it was found that variation among cells can play a role in 

providing better adaptation to changing environmental factors. For example, such 

function was demonstrated in mammalian cells in their response to Salmonella 

typhimurium infection where different subpopulations of genetically identical 

macrophages arose upon pathogen attack (Avraham et al., 2015). Thus, by detecting 

and selecting desirable variations with the help of cell sorting methods, we can 
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potentially select novel ‘natural’ mutations for use in crop biotechnological 

applications. To that end, high responsive spongy mesophyll cells towards pathogen 

stimulus will be isolated from transgenic A. thaliana pathogen responsive reporter 

lines using FACS. Subsequently, sorted cells will be cultivated in suspension cultures 

for regeneration into an adult plant.  
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2. MATERIALS AND METHODS 

2.1. PLANT MATERIALS 

All Medicago truncatula plants used in this study possess A17 Jemalong ecotype.  

All Arabidopsis thaliana plants used in this work possess Col-0 ecotype background. 

A. thaliana pAtWRKY11::3xmVenus-NLS transgenic lines used for the stochasticity 

experiments were generated in the work of Poncini et al., 2017 (NASC: N2107974).  

2.2.  GROWTH CONDITIONS 

Medicago truncatula 

M. truncatula A17 seeds to be used for in vitro studies were scarified in 95 % sulphuric 

acid (5 ml/100 seeds) for 25-35 mins at room temperature with constant agitation until 

2-3 dark spots appeared on the majority of them. After that, sulfuric acid was removed 

and seeds were washed three times with 10 ml cold dH2O, discarding the washing 

liquid each time. Following scarification, seeds were surface-sterilized for 5 mins in 7 

% sodium hypochlorite (NaOCl) solution (5 ml/100 seeds) and washed eight times 

using dH2O. Seeds were then sown on 1.5 % dH2O-phytoagar in 12x12 cm square 

plates with 2 cm spacing. For seeds to rehydrate, a drop of dH2O was added on each 

seed and left for 30 mins with an open lid under a class 2 sterile laminar flow cabinet. 

This was repeated twice. Two growth pouches (CYGTM Germination Pouch, Mega 

International, Newport, MN, USA) cut to size were placed in the lids of the plates and 

dampened with dH2O. Plates were then closed upside down, sealed with micropore 

tape and wrapped in aluminium foil to ensure darkness before stratification. Seeds 

were kept at 4 °C for 4 days if they had been collected more than 8 months ago or 7 

days if collected < 8 months. Following stratification, seeds were moved to a 24 °C 

growth cabinet with 16 hr photoperiod at 100 m-2s light intensity. Still upside down, 

they were left covered with aluminium foil for 24 hrs to germinate. Germinated seeds 

exhibiting straight roots with over 2 cm length were used for hairy root transformation 

studies or transferred to sterile liquid Modified Fahräeus Media (MFM) (0.5 mM 

MgSO4*7H2O, 0.7 mM KH2PO4, 0.8 mM Na2HPO4*2H2O, variable NH4NO3, 20 µM 

Ferric Citrate, 8 µM MnSO4*H2O, 4 µM CuSO4*5H2O, 7.34 µM ZnSO4*7H2O, 16 

µM H3BO3, 4.13 µM Na2MoO4, 1mM CaCl2, pH 6.50; for solid media 1.5% 

PhytoAgar was added before autoclaving) for downstream applications. 
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In order to grow M. truncatula A17 on soil, seeds were sown in 9x9 cm pots containing 

M peat mix (Sphagnum Moss peat and sand, pH 5.3-5.8, supplemented with 180 mg/L 

N, 90 mg/L P, 299 mg/L K), covered and stratified for 4-7 days. After stratification, 

seeds were transferred to a 24 °C growth room with 16 hr photoperiod at 100 m-2s light 

intensity. One week after germination, individual seedlings were transferred to 13x13 

cm plastic pots containing F2 soil (Supplier: ICL, UK; Sphagnum Moss peat and sand, 

pH 5.3-5.8, supplemented with 144 mg/L N, 73 mg/L P, 239 mg/L K) and grown to 

maturity in a growth chamber at 24 °C with a 16 hr photoperiod at 100 m-2s light 

intensity. After the formation of first seed pods, plants were subjected to drought 

conditions to stimulate seed set. Dried aboveground tissue was harvested into paper 

bags and seed pods were separated from all debris manually. Seed pods were then 

stored in paper bags in a dry location. 

Arabidopsis thaliana 

For in vitro studies, A. thaliana seeds were surface sterilized by chlorine treatment. To 

achieve this, 300 seeds were first treated with 1 ml 0.02% Tween-20 solution for 10 

seconds. Then the tween solution was discarded and replaced with 1 ml 70% Ethanol 

solution and incubated for 10 seconds. Finally, 70 %Ethanol solution was discarded 

and replaced with 1 ml 8% NaOCl solution and incubated for 5 mins with constant 

agitation. After incubation, the NaOCl solution was discarded and seeds were washed 

with 1 ml dH2O eight times before sowing on solid half-Murashige and Skoog (MS) 

medium (Duchefa Biochemie), with 1% sucrose, pH 5.80 ± 0.02 and 0.5% Phytagel 

(Sigma). If required for selection, Glufosinate (BASTA) was added to the medium at 

a final concentration of 20 μg/mL after the media is autoclaved and cooled down 

before pouring plates. 

To grow on soil, A. thaliana seeds were sown in 9x9 cm plastic pots containing 

Arabidopsis mix (~45% wt/wt F2 mixture, ~20% Silver sand, ~35% fine vermiculite, 

56 g intercept) and stratified for 2 to 3 days at 4 °C in darkness. After stratification, 

seeds were germinated in a growth chamber with 10 h light, 22 °C, 60 % humidity for 

two weeks. After germination, each seedling was transferred to an individual pot with 

same soil composition and grown under same conditions for 4 additional weeks (to a 

total of 6 weeks) at which point they were used in experiments. For seed propagation, 

plants were transferred to a growth chamber with 22 °C and 16 hr light photoperiod. 

After primary shoot emergence, plants were placed in perforated plastic bags and 



 29 

watered until late flowering stage. After formation of first siliques, plants were 

subjected to drought conditions to stimulate seed set. Dried aboveground tissue was 

harvested into paper bags and seeds were separated from all debris using a 425 µm gap 

mesh sieve. 

2.3. PLANT TREATMENTS 

Medicago truncatula ammonium nitrate treatment 

Liquid MFM with deplete (1 mM), replete (5 mM) and excess (10 mM) ammonium 

nitrate (NH4NO3)were prepared as treatments. Each solution was used to fill a 12x12 

cm square petri dish. 14-day old hairy root transformed M. truncatula seedlings were 

removed from the growth chamber immediately after dawn, so each biological repeat 

is at the same stage of circadian rhythm. Plates were uncovered under a class 2 sterile 

laminar flow cabinet and growth pouches were submerged in MFM solutions in the 

12x12 petri dishes for 30 secs with gentle agitation. After 30 secs, growth pouches 

were transferred back onto their original solid media, covered with the plate lid and 

incubated at 25 °C, for 2 hrs. At the end of the incubation period, roots were harvested 

into Eppendorf tubes and immediately frozen in liquid nitrogen.  

Infiltration of Arabidopsis thaliana leaves  

A. thaliana plants were grown for 6 weeks as described in Section 2.2. For each 

experiment, two healthy plants were selected and removed from the growth cabinet 

immediately after dawn. The developmental age of leaves was determined by counting 

and leaf numbers 7-8-9 were marked (Figure 2.1). Two of the most similar stage leaves 

out of the three were selected. One side of the leaf was infiltrated with water (mock), 

while the other side was infiltrated with 100 nM flg22 peptide (treatment). Infiltrated 

leaves were immediately used for microscopy. 
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Figure 2.1. A. thaliana leaf numbering according to leaf developmental age. 

(adapted from Berens et al., 2019). 

 

2.4. MICROBIAL STRAINS  

In this study, Escherichia coli TOP10 bacteria were used for amplification of plasmid 

constructs. Agrobacterium rhizogenes Arqua1 was used for transient transformation 

of fluorescence plasmid constructs in M. truncatula hairy roots. Pseudomonas 

syringae DC3000 and P. syringae DC3000-GFP-AvrRpm1 was used for pathogenesis 

and bacterial tracking studies. 
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Table 2.1. Microbiological material generated or used in this study.  
Microbe Name Plasmid Insert Antibiotic 

E. coli TOP10 None None None 

E. coli TOP10 

 

pBGWFS7 

 

pAtEXPA7 
Spectinomycin 

(50 µg/ml) 

+ 

Streptomycin 

(50 µg/ml) 

pSlyEXT1 

pAtCO2 

pAtPEP 

pMtrNRT2 

pMtrN21 

A. rhizogenes Arqua1 None None None 

A. rhizogenes Arqua1 

 

pBGWFS7 

 

pAtEXPA7 
Spectinomycin  

(50 µg/ml) 

+ 

Streptomycin  

(50 µg/ml) 

pSlyEXT1 

pAtCO2 

pAtPEP 

pMtrNRT2 

pMtrN21 

P. syringae DC3000 None None 
Rifampicin 

(100 µg/ml) 

P. syringae DC3000-YFP-

AvrRpm1 
pVSP61 AvrRpm1 

Rifampicin 

(100 µg/ml) 

+ 

Kanamycin 

(25 µg/ml) 

 

2.5. MICROBIAL GROWTH CONDITIONS 

All microbiological material was stored at -80°C in 20 % glycerol. To prepare these 

stocks, 600 µl of overnight grown bacterial culture was added to 200 µl autoclave-

sterilized 80 % glycerol solution, mixed thoroughly and flash frozen in liquid nitrogen. 

For each bacterial study, glycerol stocks were initially streaked onto the appropriate 

solid media to make a master plate. These master plates were stored at 4°C and used 

as necessary for a week before being discarded. Both E. coli TOP10 and A. rhizogenes 

Arqua1 bacteria were grown in Luria-Bertani (LB) media (1 % tryptone, 0.5 % yeast 

extract, with 1 % NaCl for liquid, pH 5.5; and also, with 1.5 % agar for plates) (Bertani, 

2004) containing the appropriate antibiotics at 37 °C and 28 °C respectively (Table 



 32 

2.1). Liquid LB cultures of E. coli and A. rhizogenes were grown overnight at 37 °C 

and 28 °C respectively in a shaking incubator with constant agitation at 220 rpm.  

P. syringae DC3000 and P. syringae DC3000-GFP-AvrRpm1 bacteria were grown in 

King’s Broth (KB) media (20 g/L proteose peptone, 8.6 mM K2HPO4, 163 mM 

glycerol, pH adjusted to 7.0 with HCl before autoclaving, for liquid; with 1.5% agar, 

added for solid) (King et al., 1954) containing the appropriate antibiotics (Table 2.1) 

and incubated at 28 °C overnight in a shaking incubator with constant agitation at 220 

rpm. 

All work with A. rhizogenes Arqua1 was carried out under DEFRA plant health 

license. To that end, all A. rhizogenes Arqua1 biological material was transported with 

triple containment in air-tight containers. All media and inoculated biological material 

were labeled and autoclaved immediately. All equipment in contact with A. rhizogenes 

Arqua1 biological material along with the surfaces where the work has been performed 

were either autoclaved for sterilization or sterilized with 10% bleach followed by 70% 

ethanol. 

2.6. MOLECULAR BIOLOGY 

2.6.1. DNA EXTRACTION 

Genomic DNA was extracted from fresh plant material using Chelex (Bio-Rad, Cat 

no: 1421253) following the method of de Lamballerie et al., 1992. Extracted samples 

were eluted in nuclease free dH2O. Quality of the extracted gDNA was assessed using 

a Nanodrop ND-1000 (Thermo Fisher Scientific) and stored at -20 °C.  

Plasmids were extracted from E. coli liquid cultures using the QIAprep spin miniprep 

kit (Quigen, Cat no: 27014) following the manufacturer’s specifications. For optimal 

plasmid extraction from A. rhizogenes the protocol was modified in accordance to the 

specifications defined in Weber et al., 1998. Bacteria were grown in 10 ml liquid LB 

instead of 5 ml. Harvested cells were lysed with 250 µl lysis buffer, inverted 10 times 

and 350 µl neutralization buffer was added right after. The mixture was immediately 

inverted until the solution turned colorless. Remaining steps of the protocol were 

unchanged. Finally, plasmids were eluted in nuclease free dH2O. Quality of the 

plasmid DNA was assessed using Nanodrop ND-1000 (Thermo Fisher Scientific) and 

stored at -20°C. 
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2.6.2. POLYMERASE CHAIN REACTION (PCR)  

Amplification of promoter sequences was performed using Q5 high fidelity DNA 

polymerase (NEB, Cat no: M0491). Primer specifications and PCR conditions used 

for amplification of regions are given in Table 2.2 and Table 2.3 and Table 2.4 

respectively. All primers were synthesised by Integrated DNA Technologies (IDT; 

Leuven, Belgium). Lyophilized primers were resuspended with dH2O to 100 μM and 

stored at -20 °C as stocks. Fresh aliquots were taken from these stocks before 

experiments and diluted to10 μM to set up PCRs. These aliquots were kept at -20 °C 

up to a month. 

 

Table 2.2. PCR primer specifications. Underlined sequences represent overhangs 

required for successful gateway transformation.  

Primer Name Sequence Tm 

(°C) 

GC 

% 

Product 

Size 

prAtEXPA7-F CACCACCCTGACATTCTCTCCCAA 65 50 
630 

prAtEXPA-R AGAGGGGATTTTCAACGACAG 64 48 

prSlyEXT1-F CACCGCAGAAGTTTTAAGCTCTAAG 58 38 
1132 

prSlyEXT1-R AGAAGAATTGGATTCTAAGGC 59 38 

prAtPEP-F CACCAACTGGTTGACAATGTGGGC 66 50 
1261 

prAtPEP-R TCGAGTGTGATGTGGCCTTT 67 50 

prAtCO2-F CACCGGGCCTAATCGCTCAAAACA 65 50 
520 

prAtCO2-R ATGTGACCCGTGACTCTTGT 66 50 

prMtrNRT2-F CACCGTTTTCCGATGGCACTATTTGT 63 41 
902 

prMtrNRT2-R TGTTATGTGGCCCAAAATGC 64 45 

prMtrN21-F CACCCCCCAATTACAACTCCGTAGA 64 48 
1029 

prMtrN21-R TGCCACAAGAATGAAATAGCAC 63 41 
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Table 2.3. Components used for 25 µl PCR with Q5 high fidelity DNA polymerase 

Component Stock Concentration Volume used (µl) 

Q5 Reaction Buffer 5X 5  

dNTP 10 mM 0.5 

Forward primer 10 µM 1.25 

Reverse primer 10 µM 1.25 

Template DNA  variable 

Q5 High-Fidelity DNA 

Polymerase 
 0.25 

Nuclease-free water  to 25 

 

Table 2.4. PCR thermal cycle specifications 

Step Name Temperature Duration # of Cycles 

Initial 

Denaturation 
95 °C 1 min 1 

Denaturation 95 °C 10 sec 

25 Annealing See Table 2.2 20 sec 

Extension 72 °C 1 min 

Final extension 72 °C 2 min 1 

 

PCR products were run on 1 % agarose gel in TAE buffer (1 mM EDTA disodium 

salt, 40 mM tris, 20 mM acetic acid/glacial) using NEB 1 kb DNA ladder (NEB, Cat 

no: N3232L) as size marker. Amplified products with the correct length were extracted 

from the gel using Monarch Gel extraction kit (NEB, Cat no: T1020S) according to 

the manufacturer’s specifications, eluted in nuclease free dH2O and stored at -20 °C. 

2.6.3. RNA EXTRACTION 

Plant tissue from A. thaliana leaves or M. truncatula roots was stored in an Eppendorf 

tube and frozen in liquid nitrogen upon harvest. The Monarch Total RNA Miniprep 

Kit (NEB, Cat no: T2010S) was used for obtaining total RNA from plant tissue 

following the manufacturer’s specifications. 

Protoplasts to be used for RNA extraction were frozen in liquid nitrogen immediately 

after sorting and kept at -80 °C until processing. The Monarch Total RNA Miniprep 

Kit (NEB, Cat no: T2010S) was used for obtaining total RNA from the protoplasts, 
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with minor modifications to manufacturer’s specifications. In this procedure, steps 

required for sample disruption and homogenization were skipped since this was not 

required for protoplasts and the procedure was followed as instructed from RNA 

binding and elution section.  

2.6.4. CDNA SYNTHESIS AND QUANTITATIVE PCR(QPCR) 

cDNA synthesis was performed with 100 ng of RNA using the SuperScript™ II 

Reverse Transcriptase (Thermo Fisher Scientific, Cat no: 18064), following 

manufacturer’s specifications, using a primer for polyA tails 

(TTTTTTTTTTTTTTTTTTTAGCN); an additional 10 μl nuclease free dH2O was 

added to a final volume of 30 μl and cDNA was stored at -20 °C. 

qPCR was performed with SYBR® Green JumpStart™ Taq ReadyMix™ (Sigma, 

S4438). Minor modifications were made to the protocol in master mix compositions 

(Table 2.4). For 96 well setup, 61 µl aliquots were made into tubes and 5 µl of sample 

cDNA was added before distributing 20µl in each well of the reaction plate. For 384-

well setup, 36.9 µl aliquots were made into tubes and 3.1 µl sample cDNA was added 

before 9 µl was distributed in the reaction plate. Primer pairs, components, and 

conditions used for the reactions are given in Table 2.5, Table 2.6, Table 2.7 and Table 

2.8 respectively. Each cDNA sample was run three times as technical replicates and 

experiments were performed for three biological replicate samples. A 384-well plate 

CFX384 Touch™ Real-Time PCR Detection System (Bio-Rad Laboratories), and a 

96-well plate Mx3005P qPCR System (Agilent Technologies) were used for thermal 

cycling and fluorescence detection. 

 

Table 2.5. Master mix compositions per triplicate in 96 and 384-well qPCR setup.  

 V for 96-well setup (µl) V for 384-well setup (µl) 

Primer F 2.96 1.8 

Primer R 2.96 1.8 

dH2O 22.66 13.3 

SYBR Green 33.0 20 
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For samples whose amplification level passed a threshold of fluorescence intensity 

(Ct), cycle crossing points were extracted from the software (Bio-Rad CFX manager 

software; Agilent MxPro qPCR) and imported to Microsoft Excel. Data was analysed 

using the ΔΔCT method defined by Livak and Schmittgen, 2001. TIP41 and b-Tubulin 

genes were used as reference genes for A. thaliana and M. truncatula respectively due 

to their highly consistent expression levels at the studied conditions (Unpublished data, 

Gifford lab, University of Warwick). 

 

Table 2.6. Primers used for M. truncatula qPCR. 

Primer Name Sequence Tm 

(°C) 

GC 

% 

Product 

Size 

q-NRT2.1-F TTCGGAATGCGAGGAAGAATA 61.91 43 
138 

q-NRT2.1-R TGCTTGTGCTCCAACTGAGAA 62.09 48 

q-NIA1-F TGGAACCAAGGAGATTGCTGT 61.96 48 
144 

q-NIA1-R ATTTCTCCTTTGTGGGGCCTA 62.01 48 

q-NIR-F AGACATGTGGCTGTGAGCAAA 61.85 48 
108 

q-NIR-R CCTAGCCATGCATCCCATAAA 62.03 48 

qb-Tub-F TTTGCTCCTCTTACATCCCGTG 60.35 50 
101 

qb-Tub-R GCAGCACACATCATGTTTTTGG 59.52 46 

 

Table 2.7. Primers used for A. thaliana qPCR. 

Primer Name Sequence Tm 

(°C) 

GC 

% 

Product 

Size 

q-WRKY11-F GGCAGCGTCTCCAATGGAAAA 61.49 52 
231 

q-WRKY11-R TGCACTTATCGCCGGTACTCT 61.29 52 

q-PHI1-F TTGGTTTAGACGGGATGGTG 57.52 50 
130 

q-PHI1-R ACTCCAGTACAAGCCGATCC 59.18 55 

q-FRK1-F ATCTTCGCTTGGAGCTTCTC 57.00 50 
108 

q-FRK1-R TGCAGCGCAAGGACTAGAG 60.00 58 

q-NHL10-F TTCCTGTCCGTAACCCAAAC 59.75 55 
72 

q-NHL10-R CCCTCGTAGTAGGCATGAGC 56.16 50 

q-TIP41-F GAACTGGCTGACAATGGAGTGT 60.81 50 
161 

q-TIP41-R GTTGGTGCCTCATCTTCGCC 61.65 60 



 37 

 

Table 2.8. Components used for qPCR with SYBR® green Jumpstart™ 

Polymerase. 

Component 
Volume per triplicate (μl) 

66 μl (96-well) 30 μl (384-well) 

2 x JumpStart Taq 

ReadyMix ™  

33 15  

10 μM Forward Primer  2.96 1.35 

10 μM Reverse Primer  2.96 1.35 

100µg/µl Template DNA  5 2.3 

dH2O 22.66 10 

 

Table 2.9. Thermal cycling conditions used in qPCR with SYBR® green 

Jumpstart™ Polymerase. 

Step Temperature Time Cycles 

Initial Denaturation  94 °C 2 min 1 

Denaturation  94 °C 15 sec 

40 
Annealing, elongation 

& fluorescence 

reading 

*60/62 °C 60 sec 

Dissociation curve 40 – 98 °C 10 sec / 0.5 °C 1 

 

2.6.5. GATEWAY CLONING AND BACTERIAL TRANSFORMATION 

pENTR/D-TOPO ligation 

PCR-amplified and gel purified fragments extracted from agarose gel were cloned into 

the entry vector using pENTR™/D-TOPO™ Cloning Kit (Thermo Fisher Scientific, 

Cat No: K240020) using the manufacturer’s specifications. 

E.coli TOP10 electro-transformation  

E. coli TOP10 electro-competent cells were prepared with the following method. A 

single bacterial colony from a master plate was inoculated in 10 ml liquid LB media. 

A culture was grown overnight and sub-cultured the next day into 50 ml liquid LB 

media without antibiotics. In order to quantify bacterial concentration, optical density 
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measurements of the bacterial culture were taken with a spectrophotometer at the 600 

nm wavelength light every hour. The culture was grown until OD600=0.5 and 

immediately transferred onto ice. The bacterial suspension was centrifuged at 2000g, 

4 °C for 5 mins and the supernatant discarded. The pellet was resuspended in 15 ml 

ice-cold TB1 buffer (30 mM CH3COOK, 50 mM MnCl2.4H2O, 100 mM RbCl2, 10 

mM CaCl2.2H2O, 15 % Glycerol v/v, pH 5.8; filter sterilized and stored at -20 °C), 

and centrifuged again at 2000 g, 4 °C for 5 mins. The supernatant discarded again, and 

pellet was resuspended in 2 ml TB2 buffer (10 mM MOPS, 10 mM RbCl2, 75 mM 

CaCl2.2H2O, 15 % Glycerol, pH 5.8; filter sterilized and stored at -20 °C). The final 

suspension was split into 50 μl aliquots, flash frozen in liquid nitrogen and stored at -

80 °C.  

For transformation, 10-50 ng (in a maximum of 2 μl) plasmid were added to 50 μl E. 

coli TOP10 electro-competent cells thawed on ice, incubated for 5 mins and 

transferred to a pre-chilled electroporation cuvette (Scientific Laboratory Supplies 

Ltd., Cat no: FBR-201) with 1 mm gap. Transformation was performed on the 

Escherichia coli (Ec1) setting (1.8 kV, 1 pulse) of Bio-Rad MicroPulser electroporator 

and 500 μl LB media with no antibiotics was added to cells immediately afterwards. 

The suspension was homogenized by gentle pipetting, transferred to an Eppendorf tube 

then incubated at 37 °C for 2 hrs, shaken at 220 rpm. The suspension was spread onto 

an LB plate with appropriate antibiotic selection (Table 2.1) and incubated at 37 °C 

overnight. Eight colonies were selected for colony PCR using primers in Table 2.2. 

Colonies containing an insert were inoculated in liquid LB media with antibiotics and 

grown overnight 37 °C, then used for plasmid extraction.  

LR recombination reaction 

Plasmid DNA extracted from positive colonies were used for LR recombination with 

Gateway™ LR Clonase™ II Enzyme Mix (11791, Invitrogen™, Thermo Fisher 

Scientific) into destination vector pBGWFS7 (Karimi et al., 2002) according to 

manufacturer’s specifications. After recombination, products were immediately 

transformed into E.coli TOP10 bacteria as described above. Extracted plasmids were 

subjected to Sanger sequencing (LIGHTRUN, GATC Biotech) with primers designed 

to the flanking region of the insertion site on pBGWFS7 plasmid to obtain complete 

sequence of insert (seqPrimer pBGWFS7-F: TGCAAGCTCTCCCATATG, 

seqPrimer pBGWFS7-R: CTGAACTTGTGGCCGTTTA).  
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A. rhizogenes Arqua1 electro-transformation 

Plasmids containing an insert with the correct orientation and no mutations were 

transformed into A. rhizogenes Arqua1. For this, A. rhizogenes Arqua1 electro-

competent cells prepared with the following method. A single colony of bacteria from 

an LB-agar master plate was inoculated in 10 ml liquid TY media (1.6% wt/vol 

tryptone, 1% wt/vol yeast extract, 0.5% wt/vol NaCl) with antibiotics. The culture was 

grown overnight, and 2 ml were sub-cultured the next day into 200 ml liquid TY media 

without antibiotics. The culture was grown until OD600=0.5 and immediately 

transferred onto ice. The bacterial suspension was split into 50 ml aliquots, centrifuged 

at 4000 g, 4 °C for 15 mins and supernatant discarded. The pellet was resuspended in 

50 ml ice-cold dH2O and centrifuged at 4000 g, 4 °C for 15 mins. The same 

resuspension and centrifugation steps were sequentially repeated using 25 ml, 1 ml 

and 0.5 ml ice-cold dH2O. The final 0.5 ml bacterial suspension was split into 50 μl 

aliquots, flash frozen in liquid nitrogen and stored at -80 °C.  

For electro-transformation, A. rhizogenes Arqua1 a vial of electro-competent cells was 

thawed on ice and 600 ng plasmid (in a maximum of 2 μl solution) was added. The 

suspension was incubated on ice for 5 mins and transferred into a pre-chilled electro-

transformation cuvette with 1 mm gap (Scientific Laboratory Supplies Ltd., Cat no: 

FBR-201). Cells were electroshocked using the Agrobacterium tumefaciens (Agr) 

setting (2.2 kV, 1 pulse) on Bio-Rad MicroPulser electroporator and 1 ml cold TY 

media without antibiotics was immediately added into the cuvette. The suspension was 

incubated at 28 °C, for 3 hrs, at 220 rpm, then spread on an LB-agar plate with 

antibiotic selection and incubated overnight. Eight colonies were selected for colony 

PCR using primers in Table 2.2. Colonies containing the insert were used to make 

bacterial stocks as described in Section 2.4.  

2.6.6. A. RHIZOGENES MEDIATED HAIRY ROOT TRANSFORMATION OF M. 

TRUNCATULA 

M. truncatula A17 hairy root transformation was performed following the protocol 

described in (Chabaud et al., 2006) with following minor modifications. Seedlings 

inoculated with transformed A. rhizogenes Arqua1 were placed inside a growth pouch 

soaked with MFM containing 1mM NH4NO3. No selective chemicals were used in the 

growth media post transformation. Seedlings were grown for two days in at 22 °C 

growth cabinets with 12 hr light cycle before being transferred to 25 °C growth 
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cabinets with 12 hr light cycle. They were then grown for the appropriate time before 

being used in experiments.  

2.6.7. PROTOPLAST GENERATION  

Medicago truncatula 

Protoplast isolation from M. truncatula roots was performed using the method 

described in Jia, Zhu and Xie, 2018 with the following minor modifications. Root 

tissue was harvested onto an acetate paper containing 1 ml of digestion solution made 

with 0.5 M Mannitol as osmoticum (10 mM MES pH 5.7, 1.5% (wt/vol) Cellulase R-

10 (Duchefa), 2% (wt/vol) Maceroenzyme R-10 (Duchefa), 0.5 M D-Mannitol, 10 mM 

CaCl2, 5% Viscozyme (Thermo-fischer), 1% Bovine serum albumin). Roots were 

chopped with a razor-blade until <1 mm and transferred into a 70 µm cell strainer 

(Fisher Scientific, Cat No: 11597522) which was then transformed into a small petri 

dish containing 2.5 ml digestion solution. The suspension was incubated at room 

temperature for 1 hr with 100 rpm agitation in darkness. After incubation, the cell 

strainer was washed with W5 (10 mM MES, 154 mM NaCl, 125 mM CaCl2, 5 mM 

KCl and pH 5.7) solution and the cell suspension was transferred to a round bottom 

polypropylene tube. Cell suspension was centrifuged at 100 g and resuspended with 

W5 solution twice before finally resuspend in WI solution prepared with 0.5 M 

Mannitol (4 mM MES, 0.5 M D-Mannitol, 20 mM KCl, pH 5.7). Final protoplast 

concentration was determined using a hemacytometer and adjusted to 1x104 

protoplasts/ml with WI solution before proceeding with FACS.  

Arabidopsis thaliana 

For protoplast preparation of Arabidopsis leaves, the tape-sandwich method by Wu et 

al., 2009 was employed. Plants were grown as described in Section 2.1 and leaf 

numbers 7-8-9 were marked for use. Plants were watered before dawn to open stomata 

and harvested right after dawn for synchronization of circadian rhythms between 

biological repeats. Leaves were cut from the base of the leaf blade and stuck on a 2 cm 

wide green tape (STARLABS, Mat No:E9055-1912) with adaxial side towards the 

tape. Then, the abaxial side of the leaf was covered with Magic Tape (M3, Cat no: 

810) and tapes were ripped open to remove the abaxial epidermal layer. Distal and 

proximal sides of the leaf were then trimmed off along with excess green tape and the 

exposed leaf tissue was submerged into the enzyme solution (ES) (20 mM MES pH 



 41 

5.7, 0.6 M mannitol, 20 mM KCl, 10 mM CaCl2, 0.1 % BSA, 1.5 % cellulase R10, 0.4 

% Maceroenzyme R10). A maximum of 8 leaves per 3 ml of ES were used per 

digestion reaction. The leaves were incubated at room temperature for 1 hr without 

agitation and in darkness. Following incubation, Tapes with leaf tissue were washed 

off using 1 ml micropipette tips with enlarged nozzles by cutting to gently release the 

protoplasts into the media. Protoplast suspension was then transferred to a round 

bottom polystyrene culture tube (STARLABS, Mat No: I1485-2810). An equal 

volume of W5 solution (2 mM MES pH 5.7, 154 mM NaCl, 125 mM CaCl2, 5 mM 

KCl) was added. The protoplast suspension was centrifuged at 100 g for 3 mins and 

the supernatant removed. The wash step was repeated with an equal volume of W5 

and supernatant removed. A half volume of MMG solution (4 mM MES pH 5.7, 0.6 

M Mannitol, 15 mM MgCl2) was added. Intact protoplasts were counted on a Fuchs-

Rosenthal hemacytometer. Protoplasts were centrifuged at 100 g for 3 mins and 

Protoplast Induction Media (PIM) (Table 2.9.) was added to obtain a concentration of 

2x105 protoplasts/ml and used for FACS. 

2.6.8. FLUORESCENCE ACTIVATED CELL SORTING (FACS) 

Medicago truncatula 

Protoplasts resuspended in WI solution were filtered through a 40 µm mesh (Fisher 

Scientific, Cat no: 11587522) and 1ml of protoplast suspension was added to a 5 ml 

polypropylene sorting tube (FALCON, Cat No: 352063). Protoplasts obtained from 

non-transformed M. truncatula Jemalong A17 leaves were used as a non-fluorescence 

reference to distinguish GFP positive population. Gates were set to capture protoplasts 

exhibiting high green (B488-530/30-A) and red (B488-695/40-A) fluorescence levels, 

with these populations absent in the non-transformed plant protoplast samples. Gated 

protoplasts were sorted directly into ice-cold RNA extraction buffer of Monarch Total 

RNA extraction kit (NEB, Cat no: T2010S) and immediately used for RNA extraction. 

Arabidopsis thaliana 

Protoplasts resuspended in PIM solution were filtered through a 40 µm mesh (Fisher 

Scientific, Cat no: 11587522) and 1ml of protoplast suspension was added to two 5 ml 

polypropylene sorting tubes (FALCON, Cat No: 352063). 100 nM of flg22 or an equal 

volume of dH2O was added to the tubes as treatment or mock, respectively. A BD 

FACSAria Fusion cell sorter was used for sterile sorting of protoplasts using a 
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homemade sheath fluid (4 mM MES pH 5.8, 0.185 M KCl, 5 mM CaCl2), 130 µm 

nozzle, 10 psi sheath pressure, 50 mV laser power and cooler unit set to 0 °C. Intact 

protoplasts were identified using scatter plots indicating forward scatter (FS), GFP 

filter (B488-530/30-A) and autofluorescence (B488-695/40-A) (Grønlund et al., 

2012).  

Protoplasts obtained from A. thaliana Col-0 leaves were used as a non-fluorescence 

reference for setting a threshold to distinguish protoplasts with low and high green 

(B488-530/30-A) and red (B488-695/40-A) fluorescence intensity levels in reporter 

line A. thaliana pAtWRKY11::3xmVenus-NLS. 2x104 protoplasts were sorted of both 

high and low fluorescence intensity populations from mock and flg22 treated samples. 

These samples were flash frozen and used for RNA extraction.  

For live cell sorting and culturing, the BD FACSAria Fusion cell sorter was used to 

sort sterile protoplasts. Previous settings were utilized; however, sheath fluid was 

modified to contain to contain a sugar osmoticum with the composition 0.3 M glucose, 

4 mM MES pH 5.8, 20 mM KCl. Protoplasts were either sorted singly in each well of 

a 96-well plate containing 100 µl PIM solution, or in bulk (1x104) into wells of a 24-

well plate containing 2 ml PIM solution. 

2.6.9. PROTOPLAST REGENERATION 

The protoplast regeneration method used in this project is based on the work by 

(Chupeau et al., 2013) with the following modifications. Concentration of protoplasts 

used in the study was decreased from proposed 8x104 pp/ml to either single cells or 

1x104 pp/ml. Protoplasts were centrifuged at 100 g for 2 min at room temperature after 

sorting into 4 ml of PIM solution. 3 ml of supernatant solution was removed and the 

protoplasts at the bottom of the tube were resuspended, then transferred into wells of 

a 24-well plate (FALCON, Cat No: 351147).  

Protoplast regeneration requires sequential replacement of growth media for 

promotion of cell division. Solutions used for this process were given in Table 2.9 and 

timeline of media replacement was described in Chupeau et al., 2013. Samples were 

imaged using an epifluorescence microscope on dates of media replacement (ZEISS, 

AxioVert.A1). 
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Table 2.10. Macro and micronutrients table required for preparation of 
protoplast regeneration media.  

PIM 
(mg/L) 

CIM1 
(mg/L) 

CIM2 
(mg/L) 

SIM    
(mg/L) 

Macrosalts 
KNO3  505 505 1010 1010 
NH4NO3  160 400 800 0 
CaCl2 , 2H2O  440 440 440 220 
MgSO4 , 7H2O  370 370 370 185 
KH2PO4  170 170 170 85 

Microelements 
Fe Citrate NH4 30 30 30 50 
KI  0.01 0.01 0.01 0.8 
H3BO3  1 1 1 3 
MnCl2, 4H2O  0 0 0 30 
MnSO4, 4H2O  0.1 0.1 0.1 0 
ZnSO4, 7H2O 1 1 1 12 
Na2MoO4, 2H2O 0 0 0 0.9 
CuSO4, 5H2O 0.03 0.03 0.03 0.09 
CoCl2, 6H2O 0 0 0 0.09 
AlCl3  0.03 0.03 0.03 0 
NiCl2, 6H2O  0.03 0.03 0.03 0 

Vitamins 
myo-Inositol 100 100 100 100 
PanthotenateCa  1 1 1 1 
Biotin 0.01 0.01 0.01 0.01 
Nicotinic acid 1 1 1 1 
Pyridoxin 1 1 1 1 
Thiamin 1 1 1 1 
Folic acid 0.2 0 0 0 

Other constituents 
Glucose 40000 0 0 0 
Sucrose 0 30000 20000 20000 
Mannitol 60000 70000 60000 40000 
2,4-D 1 0 0 0 
Thidiazuron (TZ) 0.022 0.11 0.22 0 
Indole-3-butyric acid (IBA)  0 0 0 0.1 
Meta-topolin 0 0 0 0.2 
MES 700 700 700 700 
Bromocresol purple (BCP  8 8 8 8 
pH of fresh medium  5.6 5.6 5.6 5.6 
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2.7. MICROSCOPY 

2.7.1. MEDICAGO TRUNCATULA 

Fluorescence microscopy 

M. truncatula A17 seedlings subjected to hairy root transformation with tissue-specific 

reporter constructs were tested for the presence of green fluorescence in emerging 

roots using  a fluorescence stereomicroscope (ZEISS, AxioVert.A1) with blue 

epifluorescence light at 488 nm. Fluorescent sections were then used as material for 

generating protoplasts as described in section 2.6.7.  

Root tissue cross-sectioning and confocal microscopy 

Excised GFP-expressing root tissue was used for cross-section sample preparation. 

Bacteriological agar (Sigma Aldrich, Cat no: 9002-18-0) was dissolved in water as 5% 

w/v, boiled and poured into a petri dish to the brim. It was cooled down slowly by 

mixing, with the temperature measured constantly. Upon reaching 55 °C, excised root 

tissue was embedded into the agar vertically and the dish was transferred to 4 °C. After 

solidification, blocks of agar containing the embedded roots were cut and a Vibratome 

1000 Classic was used to take 100 µm slices creating the cross-sections. Sections were 

imaged first under a light microscope then those with a perpendicular cut to the root 

were stained with 1 % propidium iodide (PI) for 5 mins before imaged using Zeiss 

LSM 710 confocal microscope. Samples were interrogated using 488 nm excitation 

laser and emission was collected at both 493-541 nm for GFP fluorescence and 645-

735 nm for PI signal.  

2.7.2. ARABIDOPSIS THALIANA 

Imaging of nuclear fluorescence and bacterial tracking in A. thaliana was performed 

using a Nikon Eclipse-Ti inverted microscope fitted with an ANDOR CSU-X 

Confocal Spinning Disc and ANDOR TuCam dual camera adapter units. Experiments 

were performed on 5-6 week-old Arabidopsis thaliana Col-0 and pWRKY11:NLS-

YFP plants. Leaves were counted and leaf numbers 7-8-9 were marked (Figure 2.1). 

The healthiest leaf among the chosen three was selected for infiltration.  

Pathogenesis induction with flg22 peptide 

Half of the leaf was infiltrated from the abaxial side with dH2O (mock) and the other 

half was infiltrated from abaxial side with 100 nM flg22 (elicitor) in dH2O. Two 
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chambers of 5 mm diameter were punched out from a double-sided tape and stuck onto 

a microscope slide. Chambers were loaded with 5 µl of mock or elicitor liquid. 3 mm 

diameter leaf discs were cut from the middle of the infiltrated section of either side of 

the leaf and mounted on the slide with the adaxial side facing towards the slide in the 

chamber. The coverslide was closed onto the sample, ensuring no air bubbles on the 

leaf disc and the slide was loaded onto the microscope stage with immersion oil. 

Confocal microscopy was performed using a 40X objective lens, 488 nm laser with 30 

% power, 300 gain, 100 ms exposure time and no binning. Images were taken 10 mins 

post infiltration (T0) and 1 hr post infiltration (T1), starting from stomata on abaxial 

epidermis with a 2 µm step size for 30 steps, ending in the mid spongy mesophyll 

layer.  

Bacterial tracking  

Half of the leaf was infiltrated from the abaxial side with dH2O (mock) and the other 

half was infiltrated from abaxial side with OD 0.1 P. syringae DC3000 YFP-AvrRpm1 

in dH2O. Two chambers of 5 mm diameter were punched out from a double-sided tape 

and stuck onto a microscope slide. Chambers were loaded with 5 µl dH2O and 3 mm 

diameter leaf discs were cut from the middle of the infiltrated section of either side of 

the leaf. Cut leaf discs were mounted on the slide with the adaxial side facing towards 

the slide in the chamber. The coverslide was closed onto the sample, ensuring no air 

bubbles on the leaf disc and the slide was loaded onto the microscope stage with 

immersion oil. Confocal microscopy was performed using a 20X objective lens, 488 

nm laser with 30 % power, 300 gain, 100 ms exposure time and no binning. 

Continuous imaging property of the ANDOR CSU-X spinning disc confocal 

microscope was utilized to record live movements of bacteria within the spongy 

mesophyll leaf tissue for 5 min at 10 mins post infiltration (T0) and 5 hr post 

infiltration (T1).  

2.8. COMPUTATIONAL METHODS 

2.8.1. IMAGE GREY VALUE EXTRACTION 

Image analysis from confocal microscopy was performed with Fiji free software 

(https://fiji.sc/). Z-projections were created by summation of pixel intensity of all z-

stacks taken for each image. Background was subtracted using the rolling ball method 

with a 50 µm ball radius. The resulting image was subjected to an intensity threshold 
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adjusted manually to create a mask for fluorescent nuclei. The created mask was used 

to define regions of interest. Area, min&max grey value, centre of mass, shape 

descriptors, integrated density and mean grey value traits for all regions bigger than 

40 µm2 were extracted into excel for further analysis.  

2.8.2. IMAGE DATA ANALYSIS 

Image grey value extraction was performed for 15 biological replicates of Mock-T0, 

Mock-T1, flg22-T0 and flg22-T1 samples. Integrated density and mean values of each 

biological replicate were normalized by division using the batch mean of 0 hr 

timepoint of each treatment. Replicate data after batch normalization was pooled. Data 

was further normalized for photobleaching effect during confocal microscopy. 

Difference between mean values of Mock-T0 and Mock-T1 samples was added to all 

values of 1hr samples to compensate for photobleaching and final data were analyzed 

by the statistical tools in Prism v8.0 software (Tests outlined in results). 

2.8.3. META-ANALYSIS OF GENE EXPRESSION DATA 

A. thaliana tissue type specific gene expression data in response to excess (5 mM) N 

(KNO3) treatment was obtained from the work of Gifford et al., 2008. In this work, A. 

thaliana transgenic lines expressing GFP in their lateral root cap (E4722), epidermis 

and cortex (E1001), endodermis and pericycle (E470), pericycle (E3754) (obtained 

from http://enhancertraps.bio.upenn.edu) and stele tissues (pWOL::GFP) (Bonke et 

al., 2003) were used. Experiments were performed in triplicate and 6000 seeds per 

replicate were grown for 12 days at 16-h light (50 mmol photons m-2s-1light 

intensity)/8-h dark cycles at 22°C in 1x Murashige and Skoog basal medium 

supplemented with 3 mM sucrose and 0.5 mM ammonium succinate as N source to 

ensure healthy plant development. N treatments were performed at the start of the light 

period on day 12 with KNO3 addition to the media to a final concentration of 5mM for 

2 hours. Mock treated samples were supplemented with 5mM of KCl. Following 

treatment, roots were harvested and subjected to protoplast generation. Protoplasts 

exhibiting fluorescence were isolated from sample using FACS. Total RNA was 

extracted from isolated protoplasts using Qiagen RNAeasy RNA clean-up kit. 

Extracted RNA was then quantified in Affymetrix ATH1 GeneChip following 

standard procedures for amplifying, labelling, and hybridizing RNA samples. 

Transcriptome expression data was normalized using dChip software 

(http://www.dchip.org) while reproducibility of replicates was analysed using the 
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correlation coefficient and r2 value of replicate pairs in the S-PLUS 7.0 software 

package (Insightful Corp.). ANOVA was used to determine genes with significant 

differential gene expression specific cell types in comparison to all cell types. All 

genes exhibiting significant differential expression, either upregulation above 2-fold 

or downregulation below 0.5-fold after excess N treatment were selected to create a 

list of N-responsive gene IDs. Gene IDs in this list were used in a search against M. 

truncatula using Legume IP V3 online homology search tool 

(http://plantgrn.noble.org/LegumeIP/gdp/0/NA) (Dai et al., 2020) in order to identify 

putative orthologs. 

M truncatula var. Jemalong A17 whole root and root protoplast response to excess N 

treatment (5 mM KNO3) was obtained from Gifford lab. (Unpublished work). In this 

work, experiments were performed in triplicate with 8 M. truncatula seedlings grown 

vertically on modified Fahräeus medium supplemented with 0.3mM NH4NO3 as the 

sole nitrogen source for 7 days with 16-h light (50 mmol photons m-2s-1light 

intensity)/8-h dark cycles at 24°C. At the start of the light period on 8th day, seedlings 

were treated with either 5 mM of KNO3 in dH2O for 2 hrs or with 5 mM KCl in dH2O 

as mock. Following treatment, roots were harvested to either freeze in liquid nitrogen 

or subjected to protoplast generation. Total RNA was extracted using Qiagen RNeasy 

plant mini kit and 50ng of each sample was used for LIQA (Agilent)-kit one cycle 

amplification and hybridisation to 4x44k 60mer Medicago truncatula (A17) one-

colour Agilent arrays. Microarray data (Agilent array 60mer probe, 43,803 sequences) 

obtained from this study was normalised and expression values for probes were 

extracted using the LIMMA Bioconductor package in R. Samples were first pooled by 

taking the median for each gene across all arrays, within array normalisation was 

carried out using a LOESS local regression, and between array normalisation carried 

out using a quantile method. The microarray was designed against an old M. truncatula 

genome version (M. truncatula (A17) Mt3.0), thus in order to determine which genes 

were represented on the microarray compared to a more recent annotation, nBLAST 

(NCBI) was used to search for similar sequences within M. truncatula (A17) Mt4.0 

genes based on identifying best hits (E-value<20). Global expression levels between 

replicates, and between protoplast and whole root arrays were then compared using an 

R2 test to analyse reproducibility of the experiment. 
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To characterise changes in expression patterns, a linear model was fit for each gene 

across the series of arrays by a least square’s regression (lmFit function in LIMMA). 

To assess model fit, a t-statistic test was used, and P-values calculated by computing 

empirical Bayes statistics for differential expression (eBayes function in LIMMA). 

Genes with a statistically different (P-value<0.05) expression in N-treated vs. against 

mock-treated samples with regulation above 2-fold or downregulation below 0.5-fold 

were selected for further analysis. Genes exhibiting statistically different (P-

value<0.05) expression in mock-treated whole root samples compared to expression 

in mock-treated root protoplast samples were excluded from differentially expressed 

list of genes since they might represent changes simply due to the protoplast generation 

protocol. 

Expression patterns of putative ortholog pairs were investigated between the tissue 

specific N-response list from A. thaliana and the M. truncatula N-response list using 

MS Excel. Numbers of genes were visualized in Venn diagrams created using the 

online tool Venny 2.0 (Oliveros, 2007). GO terms for the genes identified to have 

similar expression patterns in both lists were extracted using PhytoMine tool 

(https://phytozome.jgi.doe.gov/phytomine/begin.do) in Phytozome 12 (Goodstein et 

al., 2012). 
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3. IDENTIFYING CELL-TYPE SPECIFIC TRANSCRIPTOMIC 

EFFECTS OF NITROGEN AVAILABILITY IN M. TRUNCATULA  

3.1. INTRODUCTION 

3.1.1. SOIL NITROGEN AVAILABILITY 

Nitrogen (N) is a critical element for all living organisms, found in the chemical 

structure of nucleic acids and amino acids. For this reason, N is  one of the biggest 

limiting factors for plant growth (Masclaux-Daubresse et al., 2010) . In soil, plants 

forage for nitrogen in either organic (amino acids and nucleic acids) or inorganic 

(ammonia (NH4+) and nitrate (NO3-)) form (Galloway, 2013). While organic nitrogen 

comes from decomposing remains or wastes of living organisms (Figure 3.1) 

(Galloway et al., 2004), inorganic nitrogen comes from the largest reservoir of N on 

earth, the atmosphere (Hans Wedepohl, 1995; Ward, 2013). However, atmospheric 

nitrogen (N2) is inaccessible to organisms in its gaseous form. Yet, it can be made 

available for terrestrial and marine life through a process called nitrogen fixation. 

Nitrogen fixation is the process of combining N2 gas with hydrogen to create 

ammonium (NH4+). This reaction can occur either abiotically, during lightning strikes 

and fossil fuel combustion (Andreae, 2019; Jickells, 2006); or biotically by specialized 

nitrogen fixing organisms such as rhizobia (Capone, 2001; Galloway et al., 2004). In 

its simplest form, incorporation of nitrogen from atmosphere to terrestrial and marine 

environment by nitrogen fixation, utilization of terrestrial and marine-bound nitrogen 

by organisms and subsequent release of this nitrogen back to the atmosphere through 

various methods are the main stages of the nitrogen cycle (Figure 3.1).  
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Figure 3.1. The nitrogen cycle. Starting from the top right, atmospheric nitrogen is 
converted into ammonia through nitrogen fixation process either abiotically through 
lightning or biotically through microbes. Although it is possible for plants to utilize 
N in NH3 form, some of it is converted into nitrates through nitrification by 
nitrifying microbes. Nitrates can then either be assimilated by plants and integrated 
into their structure or return to the atmosphere as N2 through denitrification process 
by denitrifying bacteria. Assimilated nitrogen in plants return to the soil as organic 
material after death or through death of animals which consumed them. Their 
remains are decomposed by microbes and the nitrogen released re-enter the cycle as 
ammonia. While all these processes occur naturally, human intervention through 
fertilization or burning of fossil fuels can also create an ammonia and nitrate input 
to the cycle. (Taken from: https://www.britannica.com/science/nitrogen-cycle) 

 

Without human intervention, the nitrogen cycle would continuously move to balance 

itself. On the other hand, mankind has an ever-growing need for more efficient food 

production due to the exponentially increasing population. In the 1900s, discovery of 

the Haber-Bosch process to chemically mass-produce nitrogen fertilizers, allowed 

agricultural practices to utilize fertilizers to increase yields significantly in a movement 
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called the green revolution (Erisman et al., 2008). While this movement has increased 

food production significantly, it was later found that the human intervention to natural 

processes had a negative impact on the environment. Over the years, researchers 

studied the effects of this extensive fertilizer use on agricultural lands. It has been 

found that efficiency of fertilizer use has decreased from 80% in 1960s to 30% in 2014 

for cereal crops (Lassaletta et al., 2014) and that approximately 80% of nitrogen 

fertilizers were leached from soil by irrigation runoff into water bodies, oceans or 

rivers (UNEP and WHRC, 2007). Leaching of such high concentrations of nitrogen 

into water bodies resulted in significant increases in eutrophication, overgrowth of 

algal and plant life in affected areas due to abundance of nutrients (Carpenter et al., 

1998). These overgrowths lead to depletion of dissolved inorganic carbon sources and 

production of greenhouse gasses (NO2) 300 times more dangerous than CO2 (Billen et 

al., 2013). Upon realization of these drawbacks, tight regulations put in place in 1980s 

allowed partial recovery of damages done over the decades, however agricultural 

practices still continue to utilize excessive amounts of fertilizers (Storkey et al., 2015). 

With growing concerns for food security and aims to create sustainable agricultural 

practice, incorporation of economically important natural nitrogen-fixing legumes 

such as pea, alfalfa, clover, common bean, or peanut (Smýkal et al., 2015) into the 

agricultural processes presents a promising way to reduce extensive fertilizer use 

(Stagnari et al., 2017). Thus, plant science study has turned to examine these plants in 

more detail. Some researchers have focused on increasing the effectiveness of 

economically important nitrogen-fixing legume plants in ways of disease resistance, 

increased yields and adaptability to different geographies (Venkateswarlu et al., 2007). 

Others have considered utilizing biotechnological approaches to integrate nitrogen 

fixing machineries into non-legume crops in hopes to reduce dependency on extensive 

fertilizer use (Huisman and Geurts, 2020). In either case, their ability to form 

symbiotic relationship with nitrogen fixing bacteria makes nitrogen-fixing legume 

plants an attractive organism to pursue for addressing current agricultural problems.  
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3.1.2. PLANT ROOT PHYSIOLOGY AND SPECIALIZED ROOT STRUCTURES 

Legumes do not differ from other plants in their general physiology. They can be 

divided into two parts with systems above-ground (shoot), and below-ground (root). 

While shoot systems: leaves, stem etc., are specialized for photosynthetic activity, 

structural stability and transport; root structures: primary roots (PR), lateral roots (LR) 

and root hairs (RH) etc., provide structural support while growing in a solid media 

(soil) as well as provide access to water and essential molecules for growth. One 

characteristic in their root systems set legumes aside from the rest of the plants; these 

are nodules. These are specialized structures formed to house the symbiotic nitrogen 

fixing bacteria. To understand the function of the nodule, it is important to understand 

each component of the root system architecture (RSA) (Koevoets et al. 2016). 

In seedlings and mature legumes RSA is set around a primary root (De Smet et al., 

2010). As they develop, these roots can be divided into three distinct zones in the 

apical-basal axis of root growth (Figure 3.2) (Verbelen et al., 2006). Starting from the 

tip of the root, the first zone is the division zone which contains the root meristem and 

the quiescent centre formed of undifferentiated cells that divide continuously to give 

rise to all other cells in the root (Figure 3.2.I). Next, is the elongation zone where cells 

are no longer dividing but have started to increase in size (Figure 3.2.II). Finally, 

furthest from the root tip is the maturation zone where cells slow down their elongation 

and reach to their final size, completing their path of differentiation depending on their 

spatial location (Figure 3.2.III). This is the zone where formation of specialized 

structures such as root hairs and nodules can be first observed (Verbelen et al., 2006).  
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Figure 3.2. Plant root architecture. A longitudinal-section of a plant root tip 
showing the three distinct developmental zones during root growth. From root tip to 
the top, I) first is the zone of cell division where undifferentiated cells in quiescent 
centre divide to create new cells. II) As the root grows further these newly formed 
cells start increasing in size in the zone of elongation. III) Following sufficient 
enlargement, cells start differentiating into their pre-designated fates to form 
specialized structures or attain tissue specific properties. At the cross-section is the 
root shows concentric layers of cell types. From outer to inner layers, first is the 
epidermis, first point of contact for nutrient and water uptake from the environment. 
Next, is the cortex, mainly functioning in transportation of nutrients and water 
between epidermis and stele as well as carbohydrate storage shipped from the 
aboveground tissues. Then comes the endodermis which secretes suberin to create 
the Casparian strip for preventing water loss from the vascular bundle in stele. 
Finally, the innermost tissue is the formed of pericycle, origin of lateral root 
formation, and the vascular bundle formed of xylem and phloem. (adapted from 
Macmillan higher education) 

 

Plant roots are not only formed of zones on the apical basal axis but also are composed 

of tightly packed concentric rings of tissue types with distinct cell identities and 

functions on the radial axis (Figure 3.2). From the outside, the first layer is the 

epidermis. It is the first point of contact for water and nutrient intake from the 

environment (Evert and Eichhorn, 2006). Cells in this layer can also form specialized 

structures called root hairs which play a very important role in water and nutrient 

uptake as well as plant-microbe interactions (Sprent, 2009) . The next layer is the 
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cortex, and amongst other roles, this layer is responsible for transportation of water 

and nutrients scavenged by the epidermis towards the vascular tissue and store 

carbohydrates transported from leaves in form of starches. Cortical tissue can be 

formed of a different number of cell layers. While cortex in A thaliana is a single layer 

of cells, there are 3-5 cell layers in M. truncatula roots. Further towards the centre of 

the root is the endodermis. At this layer, tightly packed cells with lignin deposits form 

the Casparian strip, a barrier for water transport between the vascular tissue and the 

cortex, preventing water loss from the vascular tissue (Naseer et al., 2012). Closest to 

the core is the pericycle tissue where a subset of cells undergo de-differentiation then 

cell division to form LR founder cells (LR-FC) (de Smet, 2012). Lastly, the bundle of 

vascular tissue composed of xylem and phloem in the centre of all these layers form 

the stele. This layer is responsible for the transportation of water between belowground 

and aboveground systems. Therefore, each cell layer in the root plays a vital role in 

uptake of nutrients from the environment and distribution of it throughout the plant.  

In addition to PR, plants deploy LRs that are developed post-embryonically to improve 

nutrient and water foraging capacity. These structures originate from LR-FCs that 

reside in localized sections of root pericycle. Up to this day, there is no conclusive 

evidence showing how founder cells are selected to initiate the LR formation (Torres-

Martínez et al., 2020). However, it was found that regulation of local auxin levels in 

pericycle cells was a morphogenetic trigger for LR-FC differentiation to LR and can 

be regulated by a nitrogen sensing protein NITRATE TRANSPORTER1.1 (NRT1.1, 

now known as NPF6.3) (Banda et al., 2019; Dubrovsky et al., 2008; Tian et al., 2014). 

Lateral root initiation occurs in sequence of cell divisions. In the first stage, pericycle 

cells undergo a series of anticlinal divisions (Figure 3.3.A-B). This is followed by a 

second stage with continuing anticlinal divisions in pericycle and endodermis 

accompanied with periclinal divisions of pericycle cells (Figure 3.3.C). At the third 

stage, endodermis and pericycle cells undergo periclinal division, along with anticlinal 

division of inner cortex cells and initiate early LR formation (Figure 3.3.D) (Herrbach 

et al., 2014). 
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Figure 3.3. Lateral root initiation. In stage I, A) LR formation initiates from 
pericycle by anticlinal division of LR-FC. Later in this stage, these divisions expand 
further B) to neighbouring cells of LR-FC in pericycle and endodermis. In Stage II, 
C) Pericycle cells start dividing periclinally as anticlinal divisions continue rippling 
out in pericycle and endodermis. In Stage III, D) Periclinal divisions further expand 
to the neighbouring cells in pericycle and endodermis. Also, at this stage, inner 
cortex cells start dividing anticlinally. Following initiation, LR primordium occurs 
with repeated alternating asymmetric divisions of these cells and eventually adopts 
the root meristem organization to emerge from the overlaying tissue (Herrbach et 
al., 2014).  

 

3.1.3. NODULATION: INTERACTION WITH NITROGEN-FIXING BACTERIA 

LRs can only increase nutrient uptake if there are nutrients readily available in soil for 

uptake. In the case of N depletion, most plants would suffer developmental impairment 

since it is a key macro-nutrient. However, during legume-rhizobia symbiosis, legumes 

can form specialized structures called nodules to house N-fixing bacteria and gain 

access to an otherwise unusable N source. Nodulation is a complex process with tightly 

controlled parallel events occurring within and at the surface of the root (Madsen et 

al., 2010). In order to attract rhizobia, flavonoids are released from epidermal cells to 

the immediate vicinity of the root (rhizosphere) (Bauer and Caetano-Anollés, 1990). 

These flavonoids attract rhizobia towards the root and cause them to secrete molecules 

known as Nod-factors (Figure 3.4.A) (Bensmihen et al., 2011). Recognition of nod-

factors by root hairs results in oscillations of Ca+2 levels inside epidermal cells, 

inducing the symbiosis signalling pathway. Upon activation of this pathway, the root 

hair tip starts curling around the rhizobia, trapping it (Esseling et al., 2003). An 
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infection thread is formed by invagination of the plant cell membrane to create a 

pathway for rhizobia towards cortical tissue (Figure 3.4.B) (Timmers et al., 1999). 

Simultaneously, cortical cells start dividing immediately below the bacterial infection 

site and create a nodule meristem (Figure 3.4.C (Patriarca et al., 2004). The infection 

thread continues growing and branches out into the early nodule meristem (Gage, 

2004). Rhizobia is then released into the early nodule formations encapsulated in 

membrane-bound structures. The bacteria start dividing to form bacteroids (Figure 

3.4.D) (Downie, 2014) and form N-fixing symbiosomes. Due to the anaerobic nature 

of nitrogen fixing bacteria, leghaemoglobin molecules are produced in nodules to 

regulate O2 levels before nitrogen fixation can start (Wittenberg et al., 1974). Finally 

vascular structures extend towards the root stele, from the symbiosomes establishing 

pathways to exchange organic carbon from shoot system and nitrogen fixed in nodules 

(Figure 3.4.E) (Brewin, 1991). 
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Figure 3.4. Nodule development. Legume plant roots exude flavonoids into root 
rhizosphere to attract symbiotic bacteria. These flavonoids attract nearby symbiotic 
bacteria into root hairs where the bacteria secrete Nod factors (NF) to initiate 
nodulation (A). Upon detection of NF, root hair starts curling around the bacteria 
and an infection thread is formed in the middle of the root hair (B). The infection 
thread elongates to create a path towards the cortical tissue where the cortex cells 
are simultaneously dividing to create an early nodule meristem (C). Rhizobia 
growing through the infection thread is released into membrane bound structures the 
in early nodule meristem cells and divide to create bacteroids (D). Finally, nodule 
reach maturation after synthesis of leghaemoglobin and formation of nodule 
vascular tissue with the stele for food-nutrient exchange (taken from Le Roux et al., 
2017).  

 

3.1.4. NITROGEN UPTAKE BY PLANTS  

Plants can direct roots to areas rich in N, however it is the transporter proteins that 

perform the uptake of N from the environment. There are two main type of N 

transporter proteins in plant roots, one is trying to take N into the cells (influx) while 

the other tries to expel it (efflux) (Figure 3.5) (O'Brien et al. 2016). The exact function 
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of efflux proteins remains unclear however, it was hypothesized that they take part in 

transport of N into xylem for transport to shoot systems (Hanson, 1978; Wang et al., 

2012). The delicate balance in the activity of both transporters keep the root internal 

nitrogen concentrations in check. 

 

 
Figure 3.5. Schematic of nitrogen import and export in the root. Nitrate (green), 
ammonia (orange), amino acid (red) and ureide (purple) transporters performing in 
root N uptake, root/nodule to xylem transport and xylem/phloem transport. Once 
nitrogen reaches the xylem or phloem, it is transported to shoots in one direction 
from xylem or in both directions via phloem. (Abbreviations are: NO3-, nitrate; 
NH4+, ammonium; AA, Amino acid; Ur, ureides adapted from Tegeder and 
Masclaux-Daubresse, 2018).  

 

NO3- was found to be the predominant form of N source in agricultural land (Von 

Wirén et al., 2000). Thus, its transporters have been extensively studied. Its 

transporters were classified into two distinct groups based on their affinity towards 

NO3-. Low-affinity transport systems (LATS) which facilitate N transport from high 

external N concentrations (NEXT) (>1 mM) and high-affinity transport systems 

(HATS) which performed best in low NEXT (~0.2 mM) (Crawford and Glass, 1998). 

Later it was shown that HATS could be further classified into two subclasses 
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depending on their type of expression. Transporters with expression levels changed by 

NEXT were classified as inducible HATS (iHATS) while others with independent gene 

expression from NEXT were classified as constitutive HATS (cHATS) (Aslam et al., 

1992; Behl et al., 1988). Both of these systems were found to be present in the root at 

all times and expressed simultaneously, with their ratios changing depending on the 

NEXT levels (Kronzucker et al., 1999).  

So far, the identified NO3- transporters were categorized under four gene families 

(NPF, NRT2, CLC and SLAC/SLAH). Among these transporters, first one to be 

identified in Arabidopsis thaliana was NRT1.1 (AT1G12110), currently known as 

NPF6.3, belonging to the NPF gene family with specificity towards multiple substrates 

such as peptides and hormones along with NO3- (Figure 3.5.1-5) (Krouk et al., 2010b; 

Tsay et al., 1993). This transporter was found to have dual-affinity properties, meaning 

that it can perform both as a HATS and a LATS (Liu and Tsay, 2003). What was more, 

NPF6.3 was found to play a key role in sensing NEXT like a receptor and activate 

downstream signalling pathways for regulating gene expression in response to 

changing NEXT in both short and long term (Bouguyon et al., 2015; Ho et al., 2009).  

Compared to the NPF gene family, NRT2 gene family possesses less members, 

however transporters of this family have a high substrate specificity for NO3- and 

mostly perform as HATSs (Von Wittgenstein et al., 2014; Wirth et al., 2007). Main 

characteristic of NRT2 transporters is that they require a partner protein belonging to 

the NAR2 (NRT3) gene family for their function (Kotur et al., 2012). Components of 

this mechanism are still under investigation however it was found that NRT2.1 

(AT1G08090) gene in this family plays a key role in regulation of LR initiation under 

changing NEXT (Little et al., 2005).  

N can also be taken up from the environment as NH4+ whose transporters are mostly 

monovalent cation channels with high substrate specificity (Tyerman et al., 1995). 

NH4+ can easily become toxic to plants if its uptake is not regulated. For this reason, 

its transport is performed by HATS with saturable kinetic patterns and LATS with 

non-saturable kinetic patterns to prevent excess uptake even in high external NH4+ 

concentrations (Tegeder and Masclaux-Daubresse, 2018). 
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3.1.5. COMMUNICATION OF NITROGEN STATUS 

Expression of N transporter proteins is regulated by a feedback mechanism where 

NO3- and its assimilation products, NH4+ and glutamine, were found to act as signalling 

molecules (Orsel et al., 2002).  

One of the key receptors in this pathway was found to be the dual-transporter protein 

previously identified in Arabidopsis, NPF6.3. A working model of NO3- signal 

perception and transduction by NPF6.3 was reviewed in O’Brien et al. 2016 where it 

was shown that changing NEXT causes NPF6.3 to activate phospholipase C (PLC) 

which in turn triggers the Ca+2 signalling pathway to result in activation of 

transcription factors responsible for regulation of NO3- response genes including but 

not limited to major NO3- transporter genes NPF6.3, NRT2.1, NRT2.2 (Bouguyon et 

al., 2015; Riveras et al., 2015).  

Regulation of N responses can also be controlled by hormone signalling. Hormones 

such as; auxin (Ma et al., 2014), cytokinin (CK) (Sakakibara et al., 2006), ET (Tian et 

al., 2009), ABA (Ondzighi-Assoume et al., 2016) and JA (Sun et al., 2006) were found 

to play role in these regulations and N availability also effects hormone biosynthesis, 

and transport (O’Brien et al., 2016). Consequently, hormones regulate transcriptional 

networks related to N responses. For example, CK production was found to be altered 

by transcriptional regulation of CK biosynthesis genes through NPF6.3 signalling 

activity (Medici and Krouk, 2014). Moreover, NPF6.3 transporter activity was 

required for upregulation of an auxin receptor gene AUXIN SIGNALING F-BOX 3 

(AFB3) (AT1G12820) to trigger auxin signalling pathway and activate a NAC family 

TF gene NAC4 (AT5G07680) to control LR initiation (Vidal et al., 2010). On the other 

hand, it was also shown that NPF6.3 can also directly take part in transport of auxin in 

low NO3- concentrations, regulating its distribution in the root tissue (Krouk et al., 

2010b).  

3.1.6. INFLUENCE OF NEXT ON ROOT SYSTEM ARCHITECTURE  

Plants, forage necessary nutrients in the most energy efficient way possible. Foraging 

capacity can be maximized by the size, angle, and number of PR, LRs, RH and nodules 

in RSA. Composition of this architecture is plastic and can be altered over the lifespan 

of the plant in response to changing environmental conditions (Robinson, 1994). One 

of the conditions effecting RSA is the soil N content and at the core of the molecular 
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mechanisms regulating N-dependent RSA lie the nitrogen transporter proteins. These 

proteins not only take part in the uptake and distribution of N, but some also act as 

signal receptors, transducers and hormone transporters to regulate LR formation as 

well as nodulation.  

It was observed that when A. thaliana encounters high NEXT at a location, it produces 

more LRs into that location to increase foraging capacity while inhibiting LR meristem 

activation if it encounters low NEXT (Figure 3.6 A) (Gruber et al., 2013; Zhang and 

Forde, 1998). Many genes responsible for regulation of LR activation in response to 

NEXT were identified over the years and were reviewed in O’ Brien et al. 2016. Among 

these genes, two NO3- transporter proteins NPF6.3 and NRT2.1 were found to play a 

key role in repression of LR emergence under N deprivation and C/N availability, 

respectively (Krouk et al., 2010a; Little et al., 2005). 

While N signal is perceived locally by plants, the responses were observed to be both 

local as well as systemic. A MADS-box TF, ANR1 was identified to be involved in 

production of some of the local responses along with NPF6.3. It was proposed that at 

high NEXT, NPF6.3 sensing of NO3- induce ANR1 expression which in turn trigger 

local LR proliferation (Gan et al., 2012; Krouk et al., 2010b). At low NEXT, NPF6.3 

would act as an auxin transporter, removing auxin from LR primordia and preventing 

initiation (Krouk et al., 2010b; Mounier et al., 2014).  

To understand systemic responses, experiments were performed in vertical and split 

root systems with heterogenous supply of N to the plant root (Figure 3.6.A&B) 

(Linkohr et al., 2002; Ruffel et al., 2011). These experiments lead to the understanding 

of systemic N-supply which represses LR formation in root areas in contact with low 

N concentrations and systemic N-demand which activates LR formation in areas in 

contact with high N concentrations (Figure 3.6.B). While the exact mechanism of these 

systemic responses is still under investigation it was hypothesized that cytokinin plays 

an important part in systemic N-demand signalling but not in systemic N-supply 

signalling (Ruffel et al., 2011).  
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Figure 3.6. Systemic LR responses to heterogenous nitrogen concentrations. A) 
Vertical and split root experimental systems in A. thaliana which apply 
heterogenous N concentrations to the same PR or different PR of the same plant to 
uncover local and systemic regulation of N signalling and RSA. B) Split root 
systems were constructed with A. thaliana in three set-ups to study systemic N 
responses. Either both roots of a plant were supplied with either high NO3- (red) and 
low NO3- (grey) or each root was supplied with either high or low NO3- 
concentrations. In the end, a CK-dependent N demand signal (pink) was found to 
systemically induce root development, while a N-supply signal (black) was found 
to systemically repress root development (Figure A: Zhang and Forde, 1998; Figure 
B: Mounier et al., 2014; Ruffel et al., 2011; Walch-Liu et al., 2006;). 

 

Nodules, as another specialized component of RSA, can also be influenced by the 

changes in NEXT. Significant reduction in total nodule number, size and nitrogen 

fixation ability was observed when a legume plant was supplied with high NO3- 

(Figure 3.7) (Hodge, 2004; Walch-Liu et al., 2006; Wong, 1988). It was found that 

this decrease was more pronounced with higher NEXT and could persist for days even 

after removal of excess N from the environment (Jeudy et al., 2010). Thus, it was 

hypothesized that this response was because foraging a readily available N source is 

much more energy efficient for a plant than maintaining a symbiotic relationship with 

bacteria when the N source is present (Wong, 1988).  
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Figure 3.7. Effects of changing nitrogen concentrations on nodules. A) Nodule 
mass/plant, B) N2 fixed/unit nodule mass and C) number of nodules/plant was 
observed to decrease significantly with increasing NEXT (Wong, 1988). 

 

Similar to systemic responses in LR regulation, in split root experiments performed 

with legume plant M. truncatula, it was shown that the overall nitrogen fixation 

capacity of the plant was significantly reduced when a portion of the root was supplied 

with sufficient N although the remaining root tissue was still in starvation (Ruffe et 

al., 2008). These findings suggested a systemic signal in plants for the regulation of N 

fixation in response to nitrogen availability (Ruffe et al., 2008). In systemic regulation 

of nodulation, NO3- itself was found to act as a signalling molecule to inhibit various 

stages of nodulation from as early as flavonoid signalling stage to nodule maturation 

stage (reviewed in Nishida and Suzaki, 2018). However, this was not the only 

mechanism identified for regulation of nodulation. Legume plants also utilize a 

feedback inhibition pathway called autoregulation of nodulation (AON). In M. 

truncatula, this pathway utilizes CLAVATA3/embryo-surrounding region (CLE) 

peptides to prevent colonization of the root by rhizobia upon recognition of high NEXT 

(Reid et al., 2011). In the absence of CLE receptor super numerary nodules (SUNN) 

plants present hyper-nodulation as they cannot regulate their nodule number (Schnabel 

et al., 2005). On top of these pathways, plants can also present altered hormone 

concentrations when conditions are not favourable for nodulation. Increased ET, JA 

and SA were all found to inhibit nodulation in legume plants potentially through a 

defence/growth trade-off mechanism (Sun et al., 2006; Van Spronsen et al., 2003). 

Mechanisms for regulation of nodulation at high NEXT remains unclear despite the 

implications of this having large agricultural value, making it all the more worthwhile 

for investigation.  
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3.1.7. OBJECTIVE OF THIS WORK 

Nodulation responses to changing N concentrations has been well studied at whole 

root level on legume model plant M. truncatula. However, given the unique cell 

identity of each cell type found in roots, we hypothesize that each tissue could have a 

unique set of gene expression changes in response to N changes. In order to investigate 

the transcriptomic changes of each tissue type, epidermis, cortex and pericycle cells 

should be isolated from the whole root using a FACS approach. 

This chapter aims to generate the plant material required for isolation of epidermis, 

cortex or pericycle cells using FACS. To that end, new tissue specific reporter 

constructs were created and M. truncatula plants were transformed using hairy-root 

transformation method. This would allow generation of mosaic plants expressing 

fluorescence marker proteins. Following transformation, localization of fluorescence 

protein expression was investigated by confocal microscopy. Constructs with correct 

expression patterns were subjected to protoplast generation and used for FACS to 

isolate tissue specific cells to lay the groundwork for future studies. 

High NEXT was reported to result in reduced nodule formation and N-fixation 

efficiency in M. truncatula. To investigate the changes toxic NEXT induces in the tissue 

type-specific transcriptomic landscape, microarray data obtained from high NEXT-

treated M. truncatula whole roots were compared with microarray data obtained from 

high NEXT treated A. thaliana root cell types.  
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3.2. RESULTS 

3.2.1. NEW REPORTER CONSTRUCTS FOR TISSUE-SPECIFIC FLUORESCENCE 

EXPRESSION IN M. TRUNCATULA ROOTS 

Isolation of tissue specific cells using FACS requires plant material expressing reporter 

molecules (e.g., fluorescent proteins, b-glucuronidase (GUS) etc.) in tissues of 

interest. Stably transformed plant material expressing tissue specific reporter proteins 

is widely available for model plant species A. thaliana (Brady et al., 2007a). However, 

such transformants are not so common for legume model plants M. truncatula or L. 

japonicus due to a longer labour-intensive transformation process. So, in this chapter 

we focused on designing and generating the necessary vectors for transformation of 

M. truncatula, and subsequently evaluating the feasibility of using hairy root 

transformation system for investigating any changes in tissue-type specific gene 

expression of nitrogen responsive elements upon external N treatments. 

Plant root cells are highly differentiated and genes with specific or unique expression 

are associated with the development or function of individual tissue types. The first 

aim of this study was to identify putative promoter regions with potential root tissue 

specific expression. Previously, upstream regulatory elements of tissue type specific 

genes identified in Arabidopsis were used to express GUS in pericycle, endodermis, 

cortex and epidermis of Lotus japonicus in physiological studies to understand 

contribution of tissue types in the developmental stages of nodulation (Gavrilovic et 

al., 2016). In another work, tissue specific promoters of Arabidopsis were used to drive 

expression of GUS gene in model legume species M. truncatula (Sevin-Pujol et al., 

2017), suggesting that promoter sequences retain some cell type specificity across 

species.  

Many such genes have been investigated through transcriptome-wide studies 

performed on Arabidopsis (Birnbaum et al., 2003; Brady et al., 2007a). Some of these 

genes have been well characterised and widely used as markers in tissue type specific 

studies for the expression of reporter proteins (Table 3.1). Epidermis marker genes 

used in previous studies include: EXTENSIN (EXT1), a rodlike flexuous glycoprotein 

component of cell wall structure (Lamport, 1966); EXPANSIN A7 (EXPA7), a protein 

that plays a key role in root hair initiation and root growth (Cho and Cosgrove, 2002); 

WEREWOLF (WER), encoding a MYB transcription factor protein for regulation of 
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position dependent fate determination of epidermal cells into hair and non-hair cells 

(Lee and Schiefelbein, 1999) and COBRA-LIKE9 (COBL9), which is a 

glycosylphosphatidylinositol (GPI) anchored cell membrane protein responsible for 

correct orientation of microfibrils and cellulose crystallization (Roudier et al., 2002). 

Cortex marker genes include: ENDOPEPTIDASE (PEP), and a bifunctional 

inhibitor/lipid-transfer protein (CO2) identified in Arabidopsis (Ron et al., 2014); and 

C2H2 zinc-finger domain transcription factor proteins E49 and LRC1 (Lee et al., 

2006). Marker genes of pericycle include: NITRATE TRANSPORTER1.3 (NRT1.3), 

a nitrate influx transporter (Unpublished data, Gifford Lab, University of Warwick); 

N21, an EamA-like transporter family protein (Young et al., 2011); E29, a basic helix-

loop-helix TF and E47, RING/FYVE/PHD zinc finger TF (Lee et al., 2006). 
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With that in mind, AtEXPA7, SlyEXT1, AtCO2, AtPEP, MtrNRT1.3 and MtrN21 

genes were selected as primary candidates for creating transgenic plants based on the 

fact they had been partially tested in the past. The promoter region of SlyEXT1 

(epidermis) and promoter regions of AtPEP, AtCO2 (cortex) were previously used in 

M. truncatula to drive tissue-type expression of GUS (Sevin-Pujol et al., 2017). 

However, none of these promoters had been used to create a reporter construct 

expressing a fluorescent reporter protein in M. truncatula. The promoter regions of 

MtrNRT1.3 (pericycle) (Unpublished data, Gifford Lab, University of Warwick) and 

AtEXPA7 (epidermis) (Lagunas et al., 2018) had been previously studied in M. 

truncatula to drive tissue type fluorescence reporter expression, however, results from 

different studies showed that the expression of the genes’ promoters varied depending 

on the developmental age of plants (Lagunas et al., 2018; Unpublished data, Gifford 

Lab, University of Warwick), posing a problem for carrying out studies with extended 

time frames. Within this study we aimed to use these promoters but optimise them for 

use with fluorescent reporter protein procedures.  

Upstream region of each gene was identified between the start codon of the gene of 

interest and stop codon of its preceding gene. This sequence was considered as the 

maximum usable upstream region and primers were designed within these boundaries 

with maximum possible coverage (Table 3.2). After designing the primers, a “CACC” 

overhang was added to the 5’ end of forward primers (Table 3.2) to provide 

directionality for insertion into amplification vector pENTR-D/TOPO used in this 

study (Figure 3.8). 
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Table3.2. Primer sequences for amplifying cloned promoter regions of interest. 

Primer name 
Sequence 

origin 

Product 

size (bp) 
Sequence 

pAtEXPA7 Forward A. thaliana 
630 

CACCACCCTGACATTCTCTCCCAA 

pAtEXPA7 Reverse  A. thaliana AGAGGGGATTTTCAACGACAG 

pSlyEXT1 Forward S. lycopersicum 
1132 

CACCGCAGAAGTTTTAAGCTCTAAG 

pSlyEXT1 Reverse S. lycopersicum AGAAGAATTGGATTCTAAGGC 

pAtPEP Forward A. thaliana 
1261 

CACCAACTGGTTGACAATGTGGGC 

pAtPEP Reverse A. thaliana TCGAGTGTGATGTGGCCTTT 

pAtCO2 Forward A. thaliana 
520 

CACCGGGCCTAATCGCTCAAAACA 

pAtCO2 Reverse A. thaliana ATGTGACCCGTGACTCTTGT 

pMtrNRT1.3 Forward M. truncatula 
902 

CACCGTTTTCCGATGGCACTATTTGT 

pMtrNRT1.3 Reverse M. truncatula TGTTATGTGGCCCAAAATGC 

pMtrN21 Forward M. truncatula 1029 CACCCCCCAATTACAACTCCGTAGA 

pMtrN21 Reverse M. truncatula  TGCCACAAGAATGAAATAGCAC 

 

Promoters were amplified from the genomic DNA of the origin of the gene sequence 

given in Table 3.2. pAtEXPA7, pAtCO2 and pAtPEP were amplified from A. thaliana 

Col0 ecotype, pMtrNRT1.3 and pMtrN21 were amplified from M. truncatula A7 

ecotype and lastly pSlyEXT1 was amplified from S. lycopersicum Money-maker 

ecotype. Amplified sequences were then cloned into the gateway compatible 

amplification vector pENTR/D-TOPO and transformed into E.coli TOP10 bacteria. 

After antibiotic selection, colony PCR was performed to confirm the presence of the 

insert then eight positive colonies were grown overnight in liquid media for plasmid 

DNA extraction.  

Next an appropriate plasmid expressing a fluorescent protein reporter in which to 

insert the tissue-specific promoter was determined. In studies involving tissue specific 

work, a major challenge is the mobility of proteins between cells (Crawford and 

Zambryski, 2000; Lagunas et al., 2018). Due to the highly compact nature of roots that 

have a high surface contact area between cells, this was of particular concern. It was 

possible to address this problem in two different ways. One of the major factors for 

protein mobility was identified as diffusion through plasmodesmata (Han and Kim, 

2016), In a previous approach implemented by researchers, they increased protein 

product size beyond the maximum exclusion limit of plasmodesmata. A way to 

achieve this is by conjugating other proteins to the reporter protein. Previously, 

expression of a double conjugated reporter molecule (2xGFP) with 54 kDa size was 
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enough to significantly restrict its movement into neighbouring cells (Araújo et al., 

2017; Crawford and Zambryski, 2000). Another common solution to restrict mobility 

was to direct reporter proteins into sub-cellular compartments using localization 

signals (Balkunde et al., 2017). This approach also significantly decreases mobility of 

proteins and increases targeting specificity.  

Since constructs for tissue-specific M. truncatula expression were being created with 

future work in mind, it was decided to conjugate a second reporter protein that also 

allows detection with a different approach. GUS staining is a widely used technique 

to visualize protein localizations in root tissues (Quaedvlieg et al., 1998). Stable lines 

expressing GUS as well as GFP would be an extremely valuable asset in the future for 

researchers studying legume root and nodule development (Lagunas et al., 2018). To 

that end, two vectors; pKGWFS7 and pBGWFS7 (Karimi et al., 2002), were found to 

satisfy the conditions set above. Since these gateway compatible vectors were 

designed to express a GFP-GUS conjugated protein, the final size of the reporter would 

be 106 kDa. Knowledge from previous work on reporter protein mobility in plant 

tissues suggest a reporter protein with such size will have its movement to 

neighbouring cells significantly reduced (Crawford and Zambryski, 2000).  

 

 
Figure 3.8. Gateway cloning strategy of promoters of interest. Upstream regulatory 
regions of genes of interest will be amplified by PCR using gateway compatible 
primers containing a CACC sequence at the 5’ end of the forward primer. Amplified 
fragments will be inserted into gateway compatible amplification vector pENTR using 
D-TOPO insertion. After amplification of the plasmid, LR reaction will be carried out 
with pBGWFS7 vector to obtain the final product.  
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Gateway cloning reactions were carried out from the pENTR entry plasmid to the 

pBGWFS7 destination vector for each promoter sequence. Inserts were sequenced to 

determine the orientation of ligation as well as to confirm that there were no mutations 

(School of Life Sciences Genomics facility, University of Warwick. All plasmids 

possessed inserts with the correct orientation and no point mutations. pSlyEXT1, 

pAtEXPA7, pAtCO2, pAtPEP, pMtrNRT2 and pMtrN21 were successfully cloned 

into the pBGWFS7 destination vector. Destination vectors were then transformed into 

A. rhizogenes Arqua1 and A. tumefaciens GV3101 bacteria for transient and stable 

transformation studies respectively.  

3.2.2. HAIRY ROOT TRANSFORMED PLANTS EXHIBIT RANDOM LOCALIZATIONS OF 

REPORTER PROTEIN 

The second step in creating plant material with tissue type specific reporter expression 

was testing the accuracy of reporter protein localization. Since stable transformation 

of plants is a long and laborious process, localization of reporter proteins was 

investigated using hairy root transient transformation system (Chabaud et al., 2006).  

First, effects of transformation on plant development and time for emergence of 

fluorescent roots was investigated (Figure 3.9). Although transformed plants showed 

slower root formation 7 days post transformation (dpt) (Figure 3.9.A), this difference 

was not observable after 10 dpt (Figure 3.9.A, J, D, M). No fluorescence was observed 

in emerging roots until 10 dpt (Figure 3.9.B, C, K, L). 75% (~23) of 30 plant roots 

showed florescence signal in approximately 10% (~0.5 cm) of the newly emerged root 

tissue at both 10 dpt and 14 dpt (Figure 3.9.O,R). Intensity and the area of fluorescence 

signal was increased after 14 dpt (Figure 3.9.R). In light of these results, it was decided 

to investigate localization of reporter proteins at 14 dpt for each vector. 
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Figure 3.9. Stages of plant growth for non-transformed and hairy root 
transformed M. truncatula. Plants were transformed with pBGWFS7 plasmid 
containing prAtCO2::GFP-GUS at 7 (A-C, J-K), 10 (D-F, M-O) and 14 (G-I, P-R) 
days after transformation. White arrows indicate location of imaging from the whole 
root. Magenta arrows indicate presence of fluorescence. Scale bars for images A, D, 
G, J, M, P represent 1 cm. Scale bars for images B, C, E, F, H, I, K, L, N, O, Q, R 
represent 1 mm. 
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M. truncatula A17 ecotype seedling roots were transformed using A. rhizogenes 

Arqua1 containing the vectors created in Section 3.2.1. At 14 dpt, root sections 

exhibiting fluorescence were excised from four transformed seedlings (Figure 3.10) 

and used to prepare cross sections for confocal microscopy embedded in 5% bactoagar 

(Figure 3.11; 3.12; 3.13). Among the samples transformed with epidermal construct 

pSlyEXT1::GFP-GUS, only one of the transformed plants showed epidermal 

localisation, while the other three showed localisation in cortex tissue (Figure 3.11.G-

I). All of the four samples for the second presumed epidermis specific construct, 

pAtEXPA7::GFP-GUS, showed localization in cortex tissue (Figure 3.11.D-F). All 

four samples prepared for presumed cortex-specific constructs pAtCO2::GFP-GUS 

and pAtPEP::GFP-GUS expressed GFP in the cortex (Figure 3.12.A,B). No signal was 

detected for plants transformed with the pericycle specific, pMtrNRT2::GFP-GUS and 

pMtrN21::GFP-GUS constructs (Figure 3.13.D-I).  
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Figure 3.11. Confocal microscopy images of fluorescence positive M. truncatula 
roots transformed with epidermis specific constructs. A-C) Root cross sections 
of untransformed M. truncatula Jemalong A17 embedded in 5% bactoagar. 
Fluorescence positive root cross sections embedded in 5% bactoagar were obtained 
from hairy root transformed M. truncatula plants with epidermis specific promoter 
regions prAtEXPA7 (D-F) and prSlyEXT1 (G-I). Fluorescence signal was localized 
in epidermis for only one out of the four samples prepared for the prSlyEXT1 
transformant (Data not shown). Fluorescence signal was localized in cortex for all 
four samples prepared for the prAtEXPA7. Images are representative of four cross 
section sample prepared from individual transformation events. White arrows 
represent presence of fluorescence, magenta arrows represent expected location of 
fluorescence presence. Scale bars represent 50 µm. (GFP: green fluorescence 
protein, PI: propidium iodide, pr: pericycle, co: cortex, ep: epidermis.) 
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Figure 3.12. Confocal microscopy images of fluorescence positive M. truncatula 
roots transformed with cortex specific constructs. A-C) Root cross sections of 
untransformed M. truncatula Jemalong A17 embedded in 5% bactoagar. 
Fluorescence positive root cross sections embedded in 5% bactoagar were obtained 
from hairy root transformed M. truncatula plants with cortex specific promoter 
regions prAtCO2 (D-F) and prAtPEP (G-I). Fluorescence signal was localized in 
cortex in all four samples for plants transformed with prAtCO2 (D) and prAtPEP 
(H). Images are representative of four cross section sample prepared from individual 
transformation events. White arrows represent presence of fluorescence, magenta 
arrows represent expected location of fluorescence presence. Scale bars represent 
50 µm. (GFP: green fluorescence protein, PI: propidium iodide, pr: pericycle, co: 
cortex, ep: epidermis.) 
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Figure 3.13. Confocal microscopy images of fluorescence positive M. truncatula 
roots transformed with pericycle specific constructs. A-C) Root cross sections of 
untransformed M. truncatula Jemalong A17 embedded in 5% bactoagar. 
Fluorescence positive root cross sections embedded in 5% bactoagar were obtained 
from hairy root transformed M. truncatula plants with pericycle specific promoter 
regions prMtrNRT1.3 (D-F) and prMtrN21 (G-I). No fluorescence signal was 
detected in any of the four samples for plants transformed with prMtrNRT1.3 (D) 
and prMtrN21 (H) when compared to images obtained from non-transformed 
samples (A). Images are representative of four cross section sample prepared from 
individual transformation events. White arrows represent presence of fluorescence, 
magenta arrows represent expected location of fluorescence presence. Scale bars 
represent 50 µm. (GFP: green fluorescence protein, PI: propidium iodide, pr: 
pericycle, co: cortex, ep: epidermis.) 
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At the end of the second stage of this study, two of the six vectors originally created 

for tissue type specific expression in M. truncatula A17 roots showed correct 

localization to their respective tissue types while one showed mixed but promising 

results. So, in light of these findings, it was possible to expand the library of material 

available for tissue type specific studies in M. truncatula. Materials showing positive 

results can be used in future studies for stable transformation of legume model plants, 

providing visualization with both fluorescent and GUS staining methods.  

3.2.3. HAIRY ROOT TRANSFORMATION TRIALS FOR STUDYING TISSUE SPECIFIC 

RESPONSES USING FACS 

As previously mentioned, stable transformation of M. truncatula is a long and 

laborious process. In the previous stages of this study, two reporter constructs; 

pAtPEP::eGFP-GUS and pAtCO2::eGFP-GUS, were successfully created for marking 

the cortex using hairy root transformation method. At this stage of the study, feasibility 

of working with transiently transformed plants to study tissue-type specific responses 

upon changing nitrogen concentrations was investigated. 

In this workflow, 40 M. truncatula plants were subjected to hairy root transformation 

and grown on N-deficient (0.5 mM) media for two weeks. However, it was observed 

that the efficiency of transformation was reduced when plants were grown in N-

deficient concentrations (0.5 mM) following hairy root transformation, as compared 

to the efficiency when they were grown on N-sufficient media (1 mM). In order to 

understand the effects of N availability on transformation efficiency, 80 M. truncatula 

plants were subjected to hairy root transformation with pAtCO2::GFP-GUS construct 

and split into two groups. While one group was grown on N-deficient (0.5 mM) media 

the other was grown on N-sufficient (1 mM) media. This experiment was replicated 

twice and transformed number of roots and length of fluorescence signal was observed 

at 7, 10 and 14 dpt in each experiment (Figure 3.14). It was found that number of 

transformed plants per experiment was increased from ~8 (20%) to ~30 (~75%) when 

they were supplied with sufficient nitrogen concentrations following transformation 

(Figure 3.14.B). It was also observed that the average length of transformed root 

sections were longer in samples supplied with sufficient nitrogen, with an increase 

from 5±2 mm, to 7±3 mm (Figure 3.14. F, O; I, R). 
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Figure 3.14. Stages of hairy root transformed M. truncatula growth on MFM 
with deficient (0.5 mM) and sufficient (1 mM) N concentrations. Plants were 
transformed with pBGWFS7 plasmid containing prAtCO2::GFP-GUS. 
Fluorescence presence in roots were investigated 7 (A-C, J-K), 10 (D-F, M-O) and 
14 (G-I, P-R) days after transformation using epifluorescence microscopy. White 
arrows indicate location of imaging from the whole root. Magenta arrows indicate 
presence of fluorescence. Scale bars for images A, D, G, J, M, P represent 1 cm. 
Scale bars for images B, C, E, F, H, I, K, L, N, O, Q, R represent 1 mm. 
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This reduction in sample availability has direct effect on the number of material 

available for protoplast generation as it reduces the number of protoplasts available to 

run through FACS for isolation. In order to obtain a high number of transformants, 

samples might need to be grown on media with sufficient N post transformation. 

However, this raised the question; could plants still produce a distinguishable response 

towards excess N treatments (>5 mM) if they were grown on N sufficient (1 mM) 

concentrations? To test this, 40 M. truncatula A17 seedlings were transiently 

transformed with pAtCO2::GFP-GUS, split into three groups and were grown on 

MFM media supplied with sufficient (1mM) NH4NO3; with three replicates. After 14 

days, roots of each group were treated with either 1 mM NH4NO3, 5 mM NH4NO3 or 

10 mM NH4NO3 for 2 hours. Roots were subjected to protoplast generation and total 

mRNA was extracted from protoplasts. qPCR analysis was performed to quantify 

expression levels of known nitrogen responsive genes; NRT2.1, a HATS nitrate 

transporter; NITRATE REDUCTASE 1 (NIA1), the first enzyme in the nitrate 

assimilation pathway of higher plants (Yu et al., 1998) and NIR (Figure 3.15). It was 

found that despite being grown on a media with sufficient nitrogen source, plants retain 

their ability to respond to excess nitrogen concentrations. Gene expression was 

increased 3-fold for NRT2.1, 7-fold for NIA1 and 4-fold for NIR gene when plants 

were treated with 5 mM NH4NO3 in comparison to the mock treatment with 1 mM 

NH4NO3. This response was found to be dose dependent for NIA1 and NIR genes 

which exhibited a 24-fold and 8-fold change in gene expression when treated with 10 

mM NH4NO3 in comparison to the mock treatment with 1 mM NH4NO3. Whereas 

NRT2.1 gene expression did not change after treatment with 10 mM NH4NO3. 

Collectively, these results indicate it was possible to induce gene expression by excess 

N applications even if the plants were grown on media supplied with sufficient N.  
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Figure 3.15. Expression levels of N responsive genes after treatment with mock 
(1 mM) and excess (5 mM, 10 mM) N concentrations. M. truncatula were subjected 
to hairy root transformation with pBGWFS7 vector containing pAtCO2::GFP-GUS 
and grown on 1 mM MFM plates for 14 days before treating with mock (1 mM 
NH4NO3), 5 mM (Dotted columns) or 10 mM (Black columns) NH4NO3. NRT2.1 
gene expression increased 3-fold after 5 mM NH4NO3 treatment (Dotted columns) 
compared to mock treated plants. Same fold change was observed in plants treated 
with 10 mM NH4NO3 (Black columns). NIA1 gene expression increased 7-fold and 
24-fold after while NIR gene expression increased 4 and 8-fold after 5 mM (Dotted 
columns) and 10 mM (Black columns) NH4NO3 treatment respectively. Graph 
depicts results obtained from one biological replicate and error bars represent technical 
replicates. 
 

3.2.4. TESTING PROTOPLAST GENERATION EFFICIENCY IN M. TRUNCATULA ROOTS 

AFTER HAIRY ROOT TRANSFORMATION AND N TREATMENT 

In order to determine the efficiency of protoplast generation from transformed roots, 

transformed plants were grown on MFM media containing sufficient (1 mM) NH4NO3 

for 14 days and then treated with MFM media supplied with excess (10 mM) NH4NO3 

concentrations. With sufficient NH4NO3 supply, transformation efficiency was 

observed to be ~75% (22) out of 30 transformed plants. Root sections exhibiting 

fluorescence were harvested to generate protoplasts. Protoplast suspension mixture 

was then profiled using FACS with gates created in 2-D scatter plots containing 

forward scatter (FS) or autofluorescence (B488-695/40-A) at x- axis, and GFP filter 

(B488-530/30-A) on y-axis (Figure 3.16) (Section 2.6.8) (Grønlund et al., 2012). Data 

obtained from this profiling was then used to quantify ratio of fluorescent protoplasts 

obtained per transformed plant.  

0

5

10

15

20

25

30

NRT2.1 NIA1 NIR

Re
la

tiv
e 

ex
pr

es
sio

n(
AU

)
1mM

5mM

10mM



 82 

 
Figure 3.16. Protoplast profiles of fluorescence positive hairy root transformed 
and non-transformed M. truncatula roots. A&C) 2-D scatterplot of events 
showing green fluorescence intensity levels (Excitation: 488nm, Emission: 530±15 
nm) and forward scatter values. Each dot represents an interrogated event by FACS. 
Colours of the dots indicate which gate they belong to in panel B&D. B&D) 2-D 
scatterplot of events showing green fluorescence intensity levels (Excitation: 488 
nm, Emission: 530±15 nm) and red fluorescence intensity levels (Excitation: 488 
nm, Emission: 695±20 nm). Gates are drawn around events exhibiting GFP presence 
(Green), no/low GFP presence (Blue) and cell debris (Red). No GFP events were 
identified in non-transformed plants while GFP events cells totalled ~1% of the total 
events interrogated from transformed plants. 

 

This experimental design was run with two biological replicates and for each 

experiment a maximum of 500 fluorescent positive protoplasts were identified out of 

all protoplasts (5x104) generated. 

To obtain high enough mRNA concentrations for standard RNAseq, a minimum of 

1x103 protoplasts were required. From flow cytometry profiles, it can be seen that the 

fluorescent population is approximately 1% of the total number of events. This means 

that a total of 1x105 protoplasts would be required to achieve the necessary number of 

fluorescent protoplasts. From protoplast generation experiments during the study, it 
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was found that approximately 37 protoplasts could be generated per mm root tissue 

used following the protocol in Section 2.3.7. Also, from previous transformation 

studies in this work, it was found that approximately 7 mm section of each transformed 

root exhibited fluorescence. Using these numbers, it was calculated that the average 

number of total protoplasts obtained from one transformed plant was approximately 

259. Taking into account that only 75% of plants exhibit fluorescence after hairy root 

transformation, 515 seedlings would have to be transformed per biological replicate. 

Due to the dynamic nature of plant nitrogen responses, handling >515 plants for 

transformation and harvesting fluorescence positive fluorescence tissue might lead to 

missing expression frames for detection. Thus, hairy root transformation method 

utilized in this study for transformation of M. truncatula roots was concluded to be an 

inefficient system to study tissue type specific expression changes to environmental 

stimuli compared to the reliable expression and abundant material provided by plant 

material with stable transformations. In light of these findings, reporter plasmid 

constructs were used to start stable transformation of M. truncatula. 

3.2.5. META-ANALYSIS OF NITROGEN RESPONSES IN M. TRUNCATULA COMPARED 

TO A. THALIANA AT THE TISSUE TYPE LEVEL 

With the decrease of inorganic N fertilizer efficiency, overfertilization of land has had 

to increase to retain total yields (Lassaletta et al., 2014). This in turn leads to run-off 

of excess nitrogen to water bodies which causes significant environmental damage due 

to eutrophication (FAO and ITPS, 2015). Recent agricultural practices have started to 

make more use of biological fertilization methods through application of nodulating 

legume plants (Valentine et al., 2018). However, elevated N levels remaining in soil 

can inhibit nodule formation in legumes (Streeter, 1985). Thus, in order to gain a better 

understanding into the nodulation mechanism of legumes, potential overlap between 

nitrogen responses between species was investigated. In order to achieve this, 

differential expression of N-responsive orthologs genes were identified in A. thaliana 

root epidermis, endodermis, pericycle and stele tissues and compared with the N-

responsiveness of these genes in M. truncatula whole roots in response to excess N 

treatment (5mM KNO3). 

In this approach, the microarray dataset obtained from Gifford et al. 2008 that was 

analysed consisted of A. thaliana transgenic lines expressing GFP in either epidermis, 

endodermis, pericycle or stele tissue. Plants were grown for 12 days and treated with 
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either 5 mM KNO3 (excess N treatment) or 5 mM KCl (mock). Protoplasts were 

generated from N-treated roots and those exhibiting fluorescence (indication of a tissue 

type) were isolated using FACS for each transgenic line. Total RNA was extracted 

from sorted protoplasts and used in microarray gene expression analysis (Gifford et 

al., 2008). The microarray data from this work was re-analysed and genes exhibiting 

significant (P-value<0.05) upregulation (UR) above 2-fold or downregulation (DR) 

below 0.5-fold in response to excess N were determined for each tissue type out of a 

total of 22810 genes represented on the A. thaliana microarray used (Table 3.3).  

 

Table.3.3. Number of tissue-specific DE genes in A. thaliana and number of 

their corresponding homologs in M. truncatula. (UR = N-upregulated, DR = N-

downregulated.) 

Tissue types # A. th genes 

Epidermis-UR 41 

Epidermis-DR 113 

Endodermis-UR 20 

Endodermis-DR 35 

Pericycle-UR 4321 

Pericycle-DR 40 

Stele-UR 14 

Stele-DR 1529 

 

Next, corresponding putative orthologs of these DE genes in A. thaliana were 

identified in M. truncatula, as described in Section 2.8.3. In doing so, lists of genes 

were obtained with potential tissue specific expression in M . truncatula root tissues. 

Since no tissue specific transcriptomic work is available in M. truncatula roots, 

expression of these ortholog gene lists were interrogated in transcriptomic analysis of 

M. truncatula whole roots with excess N treatment (Gifford lab, Unpublished data, 

University of Warwick) to at least determine if they were N-responsive in whole roots, 

and the direction of regulation (N-upregulated or N-downregulated). In the N-response 

experiment used to generate this dataset, 8 M. truncatula seedlings had been grown 

for 8 days and roots were subjected to either 5 mM KNO3 (excess N treatment) or 5 

mM KCl (mock) for 2 hrs. Treated roots had either been used directly for total RNA 



 85 

extraction or subjected to protoplast generation followed by total RNA extraction, or 

order to ask which genes were affected by the protoplast generation procedure. 

Extracted RNA had been amplified and hybridized to microarrays.  

The dataset was obtained and first, in order to utilise more up to date bioinformatic 

analysis, M. truncatula v3.0 gene IDs used at the time of the experiment for 

constructing microarray probes were converted into their JCVI M. truncatula v4.0 

equivalents (see Section 2.8.3) (Tang et al., 2014). Likely because the v3.0 genome 

annotation of M. truncatula consisted of genes identified by bioinformatic approaches, 

there is a low overlap between genes annotated in v3.0 and v4.0. Therefore, during 

conversion of gene IDs into v4.0, only approximately 40% of the microarray probes 

were found to map to v4.0 possessed equivalents.  

In order to remove genes whose expression was affected by protoplast mock treated 

samples of whole root and root protoplast were compared. 1463 genes were found to 

exhibit significant differential expression between them, indicating expression 

changes due to protoplast generation. No significant GO enrichment was found for 

these protoplast generation stress responsive genes and they were excluded from any 

further analysis 

 

Table.3.4. Number of overlapping or opposing N responsive genes after 
comparison of tissue specific ortholog genes identified in A. thaliana with 
genes identified in M. truncatula whole roots. 

 Overlapping (A.th/M.tr) Opposite (A.th/M.tr) 
 UR/UR DR/DR UR/DR DR/UR 

Epidermis 0 0 0 0 
Endodermis 0 0 0 0 
Pericycle 13 1 3 0 
Stele 0 2 0 5 

 

From this N responsive genes, ones exhibiting significant UR (P-value<0.05) above 

2-fold or DR below 0.5-fold in response to excess N treatment were identified. After 

this comparison, a total of 88 genes were found to have significant (P-value<0.05) DE 

with 53 UR and 35 DR genes in M. truncatula whole roots in response to 5 mM KNO3 

treatment. When the N-responsive ortholog list from the A. thaliana study and N 

responsive gene list from the M. truncatula study were compared, there were a total of 
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16 overlapping DE genes. Of these 16 genes, 14 (13 UR, 1 DR) were identified in 

pericycle and 2 (0 UR, 2DR) were identified in stele tissue types (Table 3.4). There 

were no overlap of orthologous genes found to be N-regulated in M. truncatula whole 

roots and in A. thaliana epidermis or endodermis. 

Next, the identity and annotation of each gene was investigated in order to ask whether 

their common regulation by nitrogen in M. truncatula and A. thaliana might make 

sense. In pericycle, 5 of the UR genes were hypothetical, thus were not followed up 

on. Although analysis of their A thaliana orthologs could be useful in future. The 

remaining 8 non-hypothetical UR genes in pericycle were found to localize to a wide 

range of cellular components including nucleus, cytoplasm, mitochondria and plasma 

membrane. Two of these UR genes, SEVEN IN ABSENTIA (SINA) 

(Medtr5g076540) and Ubiquinol oxidase 1a (Medtr5g026620) were found to have 

activity in ubiquitin dependent protein degradation. Two other UR genes, 

Triacylglycerol lipase SDP1 (Medtr1g087300) and P21-Rho-binding domain protein 

(Medtr1g041515) had functions in lipid catabolic processes and transfer. The 

remaining three UR and one DR genes exhibited a variety of functions including metal 

ion binding, DNA binding and kinase activity.  

In stele tissue two genes were identified to  be N-down-regulated in both species. 

These were: Pentameric polyubiquitin (Medtr6g061930), involved in ubiquitin 

dependent protein degradation pathway and chorismate mutase (Medtr1g013900), 

involved in shikimate pathway.  
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Table. 3.5. List of overlapping genes differentially expressed in both A. thaliana 

tissue types and M. truncatula whole roots after N treatment. (DE gene selection 

performed as described in Section 2.8.3. GO terms are descriptive of identified 

genes) 

A. thaliana 
Tissue v.4.0 ID Expressed 

protein 

GO Terms 
Cellular 

Component 
Molecular 
Function  

Biological 
Process 

Upregulated 

Peri Medtr1g087300 Triacylglycerol 
lipase SDP1 

 GO:0004806 GO:0016042 

Peri 
Medtr5g076540 

Seven in 
absentia family 
protein 

GO:0005634 
GO:0004839 
GO:0008270 
GO:0016746 

GO:0007275 
GO:0006511 

Peri 
Medtr5g083820 

DUF1639 
family protein  GO:0016301  

Peri 
Medtr7g070715 PIF1-like 

helicase 
 GO:0005524 

GO:0003678 

GO:0000723 
GO:0006281 
GO:0006310 

Peri 
Medtr5g026620 

Ubiquinol 
oxidase 1a 

GO:0005739 
GO:0016021 
GO:0070469 

GO:0009916 
GO:0046872 
GO:0102721 

GO:0010230 

Peri 
Medtr1g041515 

P21-Rho-
binding domain 
protein 

GO:0005737 GO:0120013 GO:0120009 

Peri 
Medtr1g019680 

Agenet domain 
protein  GO:0046872 GO:0030001 

Peri 
Medtr4g006330 Hypothetical   

GO:0003676 
GO:0004523  

Peri Medtr3g057920 Hypothetical  GO:0016592  GO:0006355 
Peri Medtr5g034180 Hypothetical  GO:0000793 GO:0030674 GO:0007131 

GO:0042138 
Peri Medtr6g465290 Hypothetical  GO:0009507   
Peri Medtr2g047120 Hypothetical  GO:0016021   

Downregulated 

Peri Medtr1g105840 
Cysteine-rich 
receptor-kinase-
like protein 

GO:0005886 
GO:0016021 

GO:0004674 
GO:0005524 

GO:0006468 

Stele Medtr6g061930 
Pentameric 
polyubiquitin 

GO:0005634  
GO:0005737 

GO:0031386  
GO:0031625 

GO:0016567  
GO:0019941 

Stele Medtr1g013900 Chorismate 
mutase 

 GO:0004106 GO:0009073   
GO:0046417 

GO Terms legend 
Cellular Component Molecular Function Biological Process 

GO Term Description GO 
Term Description GO 

Term Description 

GO:0000793 Condensed Chromosome GO:0003
676 Nucleic acid binding GO:0046

417 Chorismate metabolic process 

GO:0005634 Nucleus GO:0003
678 DNA helicase activity GO:0000

723 Telomere maintenance 

GO:0005737 Cytoplasm GO:0004
106 Chorismate mutase activity GO:0006

281 DNA repair 

GO:0005739 Mitochondrion GO:0004
523 

RNA-DNA hybrid ribonuclease 
activity 

GO:0006
310 DNA recombination 

GO:0009507 Chloroplast GO:0004
674 

Protein serine/threonine kinase 
activity 

GO:0006
355 

Regulation of transcription, 
(DNA-templated) 
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GO:0016021 Integral component of 
membrane 

GO:0004
806 Triglyceride lipase activity GO:0006

468 Protein phosphorylation 

GO:0016592 Mediator complex GO:0004
839 Ubiquitin activating enzyme activity GO:0006

511 
Ubiquitin dependent protein 
catabolic process 

GO:0070469 Respirasome GO:0005
524 ATP binding GO:0007

131 
Reciprocal meiotic 
recombination 

GO:0005886 Plasma membrane GO:0008
270 Zinc ion binding GO:0007

275 
Multicellular organism 
development 

  GO:0009
916 Alternative oxidase activity GO:0009

073 
Aromatic amino acid family 
biosynthetic process 

  GO:0016
301 Kinase activity GO:0010

230 Alternative respiration 

  GO:0016
746 Transferase activity (Acyl groups) GO:0016

042 Lipid catabolic process 

  GO:0030
674 

Protein-macromolecule adaptor 
activity 

GO:0016
567 Protein ubiquitination 

  GO:0031
386 Protein tag GO:0019

941 
Modification-dependent 
protein catabolic process 

  GO:0031
625 Ubiquitin protein ligase binding GO:0030

001 Metal ion transport 

  GO:0046
872 Metal ion binding GO:0042

138 
Meiotic DNA double-strand 
break formation 

  GO:0102
721 

Ubiquinol: Oxygen reductase 
activity 

GO:0120
009 Intermembrane lipid transfer 

  GO:0120
013 Lipid transfer activity   

 

As well as the commonly regulated genes (i.e., N-regulated in the same direction in 

both species, which were the majority of common responses), we also found a total of 

8 oppositely DE genes when two studies were compared (Table 3.4). Of these, 3 were 

identified in pericycle and all were UR in A. thaliana while being DR in M. truncatula 

roots. One of the two genes was ANAC079/ANAC080/ATNAC4 (Medtr7g011120) 

which is found in nucleus and involved in regulation of gene expression while the 

other was Pentameric polyubiquitin (Medtr6g061930), which is also found in nucleus 

with a function in ubiquitin dependent protein degradation process. The remaining 5 

genes in this list were DR in the A. thaliana stele and UR in M. truncatula roots. Two 

genes out of 5 were hypothetical thus were not investigated further. The remaining 

three genes were: SINA family protein (Medtr5g076540) which is associated with 

nucleus and functions in ubiquitin dependent protein degradation processes (the same 

gene that is UR in A. thaliana pericycle) while others were DUF1639 family protein 

(Medtr5g083820) and a G-type lectin S-receptor-like Serine/Threonine-kinase 

(Medtr2g011240) with no defined activity in a particular nitrogen-related process 

(Table 3.6).  
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Table.3.6. List of genes oppositely differentially expressed in A. thaliana tissue 
types and M. truncatula whole roots after N treatment. (DE gene selection 
performed as described in Section 2.8.3. GO terms are descriptive of identified 
genes) 

A. thaliana 
Tissue v.4.0 ID Expressed 

protein 

GO Terms 
Cellular 

Component 
Molecular 
Function 

Biological 
Process 

UR/DR (A.th/M.tr) 

Peri Medtr7g011120 
ANAC079/A

NAC080/ATN
AC4 protein 

GO:0005634 GO:0003677 GO:0006355 

Peri Medtr6g061930 
Pentameric 

polyubiquitin 
GO:0005737 GO:0031386 GO:0016567 
GO:0005634 GO:0031625 GO:0019941 

Peri Medtr2g010840 
Putative 

Transmembra
ne protein 

GO:0016021   

DR/UR (A.th/M.tr) 

Stele Medtr5g076540 
Seven in 
absentia 

family protein 

GO:0005634 GO:0004839 GO:0007275 
 GO:0008270 GO:0006511 
 GO:0016746  

Stele Medtr2g047120 Hypothetical  GO:0016021   

Stele Medtr5g083820 
DUF1639 

family protein  GO:0016301  

Stele Medtr2g011240 
G-type lectin 
S-receptor- 
like kinase 

GO:0005886 GO:0004674 GO:0006468 
GO:0016021 GO:0005524 GO:0048544 

 GO:0030246  
Stele 

 
Medtr4g006330 

 
Hypothetical   GO:0003676  

 GO:0004523  
GO Terms legend 

Cellular Component Cellular Component Cellular Component 
GO Term GO Term GO Term GO Term GO Term GO Term 

GO:0005634 Nucleus GO:0003676 Nucleic acid binding GO:0006355 
Regulation of 
transcription, 
(DNA-templated) 

GO:0005737 Cytoplasm GO:0003677 DNA binding GO:0006468 Protein 
phosphorylation 

GO:0005886 Plasma membrane GO:0004523 RNA-DNA hybrid 
ribonuclease activity GO:0006511 

Ubiquitin 
dependent protein 
catabolic process 

GO:0016021 Integral component 
of membrane GO:0004674 

Protein 
serine/threonine 
kinase activity 

GO:0007275 
Multicellular 
organism 
development 

  GO:0004839 Ubiquitin activating 
enzyme activity GO:0016567 Protein 

ubiquitination 

  GO:0005524  ATP Binding GO:0019941 
Modification-
dependent protein 
catabolic process 

  GO:0008270 Zinc ion binding GO:0048544  Recognition of 
pollen 

  GO:0016301 Kinase activity   
  GO:0016746 Transferase activity 

(Acyl groups)   
  GO:0030246 Carbohydrate binding   
  GO:0031386 Protein tag   
  GO:0031625 Ubiquitin protein 

ligase binding   
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In this study some genes were found to have different expression patterns depending 

on the tissue type that they were expressed in. While SINA family protein 

(Medtr5g076540), DUF1639 family protein (Medtr5g083820) and two hypothetical 

proteins (Medtr4g006330, Medtr2g047120) were all UR in pericycle, in stele tissue 

they were found to be DR in A. thaliana and UR in M. truncatula. Similarly, 

Pentameric polyubiquitin (Medtr6g061930) was found to be DR in both A. thaliana 

stele and M. truncatula roots. However, it was found to be UR in A. thaliana pericycle, 

but DR in M. truncatula. This shows the importance of tissue specific work in 

accurately quantifying gene expression in a multicellular organism.  
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3.3. DISCUSSION 

Tissue specific reporter expression in hairy root transformed M. truncatula roots 

In this work it was possible to express a fluorescent reporter protein in M. truncatula 

root cells without any diffusion to neighbouring cells using cell type specific promoter 

expression via the transient transformation ‘hairy root’ protocol. Compared to 

previous work conducted with hairy root transformation for GUS reporter protein 

expression, the length of transformed root area/plant seemed to be significantly lower 

in this study (Díaz et al., 2005; Mysore and Senthil-Kumar, 2015). Previously it was 

indicated that use of selection molecules such as kanamycin improved selection 

efficiency (Boisson-Dernier et al., 2001), however research conducted in Gifford lab 

(Unpublished data, University of Warwick) suggests use of selection using antibiotics 

did not bring any increase in the number of root segments found to be transformed. 

Thus, it might be worthwhile to adopt a different method of culture for hairy root 

transformed M. truncatula seedlings more suitable for use of selective molecules such 

as kanamycin or BASTA. These molecules are contact selective molecules meaning 

that in order for them to function, plant tissue has to be in contact with the media 

containing these molecules. Thus, it is possible the use of growth pouches could be 

preventing the molecules from working. So, here it is proposed that post-

transformation culture conditions without use of growth pouches should be optimized 

if hairy root transformed plants are to be used in future studies.  

Of the six constructs designed for the purpose of tissue-specific expression of GFP-

GUS reporter protein, only two, pAtCO2::YFP-GUS and pAtPEP::YFP-GUS  were 

truly cell-type specific. Tissue-specific expression of the other four promoters had 

been found in previous studies (Hayashi et al., 2014; Lee et al., 2006; Sevin-Pujol et 

al., 2017); thus, it is possible that the issue lies with the protocol used in this work, 

rather than the constructs. A previous study also reported mis-localization in hairy root 

transformations and hypothesized that they were caused by random integration of 

inserts into the genome of the organism (Boisson-Dernier et al., 2001). Activity of 

promoter regions is highly dependent on chromatin topology of the cell at a given time. 

Tissue-specific genes of differentiated cells are often found in genomic regions with 

euchromatin conformation (Marstrand and Storey, 2014). If the transformed sequence 

is integrated into the heterochromatin region of the genome, reporter proteins cannot 

be transcribed, leading to silencing. Alternatively, it is also possible for the insert to 
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integrate itself to a genomic region also active in different tissue types. In such an 

event, the promoter driving expression of the reporter could express the reporter 

protein in a different location. In this study, it was found that the majority of vectors 

led to reporter expression in cortex tissue. It is possible that the transformation events 

observed in the study resulted in integration of the insert into locations that are 

accessible for the cortical tissue of the root, and it would be interesting to investigate 

this further.  

Despite being a fast method for testing constructs, the inability to produce consistent 

material with reliable expression has been acknowledged as the main drawback of 

hairy root transformation protocol should the researcher want to isolate transformed 

cells for further analysis (such as via FACS) (Bortesi and Fischer, 2015). Besides, 

although it is possible to perform single cell RNA sequencing with current technology 

from a small number of (transformed) cells, information obtained from low quantity 

RNA-seq experiments could be skewed due to gene ‘dropouts’ where gene expression 

can be observed in one sample but not in another as a result of mRNA starting quantity, 

quality and amplification efficiency during sequencing (Kharchenko et al., 2014). 

Thus, generation of good sequencing data requires a minimum of 1x103 cells for high 

accuracy results and it was calculated that this would require an immensely large 

amount of plant material to start with (Section 3.2.4). For these reasons, it is suggested 

that the future experiments involving isolation of M. truncatula root tissue-type 

transcriptome data utilizes stable transformants expressing tissue-specific reporters.  

Exploring tissue specific genes in M. truncatula using bioinformatic approaches 

In the Section 3.2.5, a number of genes with similar N-response patterns were 

identified in pericycle or stele tissues in A. thaliana compared to in M. truncatula roots 

using bioinformatic investigation. The fact that these genes were DE in both whole 

root of M. truncatula as well as pericycle or stele of A. thaliana suggests that they 

might indeed have a functional role in root N responses, and it is possible to predict 

that they might be N-responsive in these inner cell types in M. truncatula. This could 

be explored in future work using cell type specific reporter lines from the promoters 

of the genes that were identified. Similar to described in Gifford et al., 2008, different 

expression patterns for the same genes were observed depending on the tissue they 

were expressed in A. thaliana, compared to their whole root expression directions in 

M. truncatula, strengthening the importance of carrying out tissue specific studies.  
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One such protein that has different N-responses depending on cell type was SEVEN 

IN ABSENTIA (SINA), an E3 ligase that is involved in determining ubiquitination 

specificity by ‘selecting’ the target proteins (Herder et al., 2008). It was UR upon N 

treatment in A. thaliana pericycle tissue as well as M. truncatula roots, but DR in A. 

thaliana stele tissue and UR in M. truncatula roots after N treatment. This protein 

contains an N-terminally located RING finger domain and a conserved SINA domain 

(Hu and Fearon, 1999). Functionally, SINAs were found to regulate auxin-induced 

lateral root (LR) formation in A. thaliana. This effect was linked to SINA5 targeting 

of NAC1 transcription factor for ubiquitin dependent proteolysis (Xie et al., 2002). 

NAC1 is a member of the NO APICAL MERISTEM/CUP-SHAPED COTYLEDON 

(NAM/CUC) family (Xie et al., 2000) that functions as an auxin signal transducer 

downstream of TRANSPORT INHIBITOR RESPONSE 1 (TIR1) for auxin dependent 

LR formation (Ruegger et al., 1998). SINA proteins function in dimers, and expression 

of a non-functional counterpart (a dominant negative mutant) was shown to inhibit 

SINA5 activity in A. thaliana (Xie et al. 2002). This feature was used to investigate 

SINA function in A. thaliana. By expressing a dominant-negative SINA5 protein 

mutant (SINA5DN) in A. thaliana more LR production was observed (Xie et al., 

2002). This would explain its N-upregulation in pericycle tissue in A. thaliana as 

recognition of increased N concentrations would induce LR formation (O’Brien et al., 

2016), and it suggests that it might also be N-upregulated in the pericycle in M 

truncatula.  

In other experimental work, it was shown that expression of the dominant negative 

SINA5DN in M. truncatula roots had an adverse effect on nodule development. The 

authors reported delayed nodule primordia formation as well as interference to 

infection thread formation or symbiosome development when SINA5DN was 

expressed (Herder et al., 2008). It already reported that high external N concentrations 

inhibited nodule formation and efficiency  (Wong, 1988). With this information here 

it is hypothesized that SINA may be a key regulatory node in RSA pathways across 

species and could act to co-regulate lateral root and nodulation numbers. In this 

hypothesis, transcription of SINA would be significantly downregulated in a 

nodulating plant, with the consequence of reducing the auxin influx into pericycle. 

This would then affect development of new LR or nodule primordia formation in 

response to increased environmental N concentrations (Mathesius, 2008). For this 
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reason, SINA proteins could present a valuable target for investigating RSA responses 

to external N concentrations in future M. truncatula tissue specific studies. 

Pentameric polyubiquitin (Medtr6g061930) is another protein involved in the 

ubiquitin molecular process and is differentially expressed across tissue types of A. 

thaliana. It was DR in both A. thaliana stele and M. truncatula whole roots, however 

in pericycle, it was UR in A. thaliana and DR in M. truncatula whole roots. It has been 

found that ubiquitin mediated protein activation could regulate amino acid (glutamine) 

export from A. thaliana root tissue through ubiquitination of GLUTAMINE DUMPER 

1 (GDU1), a xylem/phloem localized protein, by a RING-type E3 ubiquitin ligase 

LOSSOFGUD2 (LOG2) (Pratelli et al., 2012). Ubiquitination was also found to 

function in responses to changing C/N through activity of RING -type E3 Ub ligase 

activity of NITROGEN LIMITATION ADAPTATION (NLA) found in xylem (Peng 

et al., 2007). This function was further supported by the discovery of ubiquitin function 

in C/N response by ligases ATL31 and ATL6 (Sato et al., 2009). While ubiquitin 

mediated gene regulation and protein activation was found to be an important player 

in modulating N responses in root pericycle and stele, the reason for expression of 

pentameric polyubiquitin having different N-regulation in different tissues in A. 

thaliana and possibly in M. truncatula is not yet clear and could be investigated 

further.  

With the knowledge obtained from experiments performed in this work, this chapter 

is concluded with the recommendation to use stable transformants expressing tissue 

specific reporter protein for studying tissue specific gene expression responses to 

environmental conditions. Importance of carrying out tissue specific gene expression 

studies and identifying genes with potential tissue-specific activity was also shown for 

the pursuit of holistic understanding regarding plant root nitrogen responses. Further 

work on this topic will generate invaluable information for assessing relationships 

between tissue types of M. truncatula under N toxicity responses at the transcriptomic 

level as well as understanding molecular regulation mechanisms of root systems 

architecture under various changing environmental conditions.  
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4. INVESTIGATING CELL SPECIFIC IMMUNE RESPONSES IN 

ARABIDOPSIS THALIANA 

4.1. INTRODUCTION 

4.1.1. A. THALIANA – PSEUDOMONAS SYRINGAE PATHOSYSTEM 

A. thaliana, also known as thale cress, is a small, flowering annual plant. It is a member 

of Brassicaceae family along with other flowering crop plants such as broccoli, 

cauliflower, brussel sprouts etc. Its close relationship to crop plants, relatively small 

genome, rapid growth rate and ease to cultivate means this model plant system has 

long enabled molecular and genetic study of plant growth and development (Liu et al., 

2014). Its genome has been extensively sequenced and is highly annotated (Koornneef 

and Meinke, 2010). Its transcriptomic (reviewed in Zhu and Wang, 2000) and 

proteomic profile (reviewed in Wienkoop, Baginsky and Weckwerth, 2010) has been 

studied under various abiotic and biotic conditions, which led to identification of 

mechanisms underlying metabolic and cellular processes that enable responses to these 

factors. In the endeavour towards identification of gene function, numerous gene 

mutants and transgenic lines of A. thaliana have been created and gathered in extensive 

collections e.g. the Arabidopsis Biological Resource Centre (ABRC), the Nottingham 

Arabidopsis Stock Centre (NASC), and the Sendai Arabidopsis Seed Stock Centre 

(SASSC) (Scholl et al., 2000). 

 A. thaliana has a wide range of pathogens such as: bacteria (Meyer et al., 2005), fungi 

(Van Baarlen et al., 2007) and oomycetes (Roetschi et al., 2001), making it a great 

candidate for studying biotic stress responses. Among its bacterial pathogens, P. 

syringae is an important one with hemibiotrophic properties which can infect almost 

all economically important crop species to cause bacterial spec disease (Bull et al., 

2010). P. syringae pathogenesis follows two stages. First is the epiphytic stage where 

the bacteria live on the surface of above ground tissues (leaves stems, flowers etc.) and 

replicate (Figure 4.1.A&B) (Hirano and Upper, 2000). Over time they start entering 

the plant structure that they are occupying, through stomata or open-wounds (Figure 

4.1.C) (Melotto et al., 2008); this is the start of the endophytic phase. Upon entry, the 

bacteria replicate exponentially and colonize the apoplastic space. During the final 

stages of pathogenesis, bacterial infection leads to localized necrosis of the tissue, 

creating the signature black specs (Figure 4.1. D&E).  
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With a wide range of hosts, different strains of P. syringae are identified by pathovar 

(pv.) names derived from their hosts (Xin and He, 2013). It was found that despite 

having tomato as its host species, P. syringae pv. Tomato (Pst) was also able to infect 

A. thaliana and induce pathogenesis (Whalen et al., 1991). Following this discovery, 

extensive biological and experimental resources available in A. thaliana increased 

popularity of this pathosystem for investigating mechanisms underlying bacterial 

pathogenesis and plant immunity (reviewed in Xin and He, 2013). 

 

 
Figure 4.1. Infection stages of P. syringae DC3000 pv. Tomato. A-C) Epiphytic 
stage, D-F) Endophytic stage. A) Uninfected leaves but with the pathogen on the 
outside of the leaf, B) P. syringae replicating to form a biofilm on the leaf surface, 
C) P. syringae breaching physical barriers and entering the plant apoplastic space 
through stomata, D) P. syringae replicating exponentially within the apoplastic 
space, E) cell death leading to localized necrosis of plant tissue, F) Disease specific 
symptom emergence as necrotic specs on leaves. (adapted from Xin and He, 2013). 

 

4.1.2. IMMUNE SYSTEMS OF A. THALIANA  

Unlike animals, plants lack the benefits of a dynamic, somatic adaptive immune 

system. This means animals can acquire pathogen-specific receptors after an encounter 

with a pathogen, preparing the organism for future pathogenic challenges (“Molecular 

Biology of the Cell (4th Ed),” 2002). However, plants cannot acquire such pathogen-
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specific receptors throughout their lifetime. Instead, they possess innate immune 

systems with components already present in the germline that have to provide 

resistance to a broad range of pathogens presenting as physical barriers or molecular 

mechanisms (Jones and Dangl, 2006). 

Physical barriers in plant innate immunity include a cuticle made of waxes to prevent 

penetration of pathogens into the tissues (Martin et al., 1976) along with rapid stomata 

closure upon recognition of pathogen signal (Gudesblat et al., 2009). These barriers 

delay or prevent entry of pathogens into the plant tissue. Some pathogens evolved to 

circumvent these defences. For example fungal spores can secrete cutinases for 

digestion of cuticle layer and penetrate into the plant tissue to establish themselves 

(reviewed in Serrano et al., 2014). In another mechanism, pathogens secrete coronatine 

(a similar molecule to methyl-jasmonate) to revert pathogen induced closure of 

stomata to gain entry into plant tissue (Gudesblat et al., 2009) When that happens, 

plants rely on their molecular defence mechanisms.  

First line of molecular defence is called Pathogen Associated Molecular Pattern 

(PAMP)-Triggered Immunity (PTI). This mechanism is able to recognize molecules 

with conserved structures that are unique to pathogens called PAMPs. For example, 

highly conserved 22 amino acid motif (flg22) present on the flagellin protein of a 

bacteria (Felix et al., 1999) or an 18 amino acid motif (elf18) present in bacterial 

elongation factor EF-Tu protein are considered bacterial PAMPs (Kunze et al., 2004). 

Recognition of these motifs occurs via specific Pattern Recognition Receptors (PRRs) 

such as FLAGELLIN SENSING 2 (FLS2) for flg22 and ELONGATION FACTOR‐

TU RECEPTOR (EFR) for elf18 which are localised on the plant cell membrane 

(Newman et al., 2013; Postel and Kemmerling, 2009) PAMP recognition triggers a 

burst in ROS production and calcium influx. Following this, activation of MAPKs or 

Calcium Dependent Protein Kinase (CDPK) pathways lead to activation of 

transcription factors such as WRKY transcription factor gene family to regulate 

defence response genes (Boudsocq et al., 2010; Jixin Dong, Chunhong Chen, 2003). 

Members of this family are transcription factors, possessing a conserved WRKYGQK 

amino acid sequence followed by a Cys2His2 or Cys2HisCys zinc-binding motif 

(Eulgem and Somssich, 2007). WRKY gene superfamily members have diverse 

functions. Some members of this family are positive regulators of stress responses, 

e.g. WRKY53 and WRKY70 (Hu et al., 2012), while others, have a negative 
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regulatory effect on regulation of stress responses, e.g. WRKY11 and WRKY17 

(Journot-Catalino et al., 2006). Remodelling of chromatin with such TFs lead to 

activation of defence response genes. Some such defence response genes include, 

FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1) which is preferentially 

activated through MAPK signalling cascade, PHOSPHATE INDUCED 1 (PHI1), 

preferentially activated by the CDPK signalling pathway and NDR/HIN1-LIKE 10 

(NHL10) activated through the synergistic effect of both signalling pathways (Zheng 

et al., 2005).  

In A. thaliana, PTI responses can halt progression of infection for Pst strains unable 

to circumvent these responses (Figure 4.2). However, some Pst strains possess 

molecules evolved through natural selection of traits which promote successful 

infection (Chisholm et al., 2006). These molecules are virulence factors called 

effectors which are delivered into plant cells by the bacteria using a Type III secretion 

system (Xin and He, 2013). When inside the host cell, these effectors can recognize 

and interfere with the functions of key plant proteins involved in PTI responses. In the 

absence of protection against such interference, pathogens are able suppress plant 

defences, leading to Effector Triggered Susceptibility (ETS) (Figure 4.2). An example 

of ETS is seen in reduced PMR4-dependent callose deposition following the 

degradation of RIN4 protein, a plasma membrane associated negative regulator of PTI, 

by the Pst effector AvrRpt2 (Kim et al., 2005).  

To overcome this, plants have also evolved to possess resistance (R) genes producing 

nucleotide binding-leucine rich repeat (NB-LRR) proteins that uses such effectors as 

cues to inform a more specialized immune system called Effector Triggered Immunity 

(ETI) (Figure 4.2). ETI responses are significantly stronger than PTI and generally 

results in hypersensitive response (HR), which is in essence localized programmed cell 

death of infected cells to stop progression of the infection (Dodds and Rathjen, 2010). 

NB-LRR proteins recognize effectors within the cytoplasm through direct or indirect 

protein-protein interactions (Dodds and Rathjen, 2010). Direct recognition occurs 

when effectors interact with NB-LRRs directly to trigger ETI gene activation. First 

example of this model was discovered in rice-Magnaporthe grisea pathosystem where 

the NB-LRR protein produced by the Pi-ta R gene in rice showed direct affinity to the 

AvrPi-ta effector protein produced by M. grisea in a yeast two-hybrid system (Jia et 

al., 2000). This model was further supported when a similar direct recognition was 
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observed in A. thaliana-bacterial wilt pathosystem where RRS1 NB-LRR protein 

exhibited positive interaction with bacterial effector protein PopP2 in a yeast two-

hybrid system (Deslandes et al., 2003). In indirect recognition, effector target proteins 

are guarded by NB-LRRs through different models. One is the guard model where the 

effector target protein is the guardee and the NB-LRR protein recognizes the 

modification of effector protein on the guardee (Dangl and Jones, 2001). For example, 

in A. thaliana-P. syringae pathosystem, AvrRpm1 effector phosphorylates RIN4 

which is then recognized by RPM1 NB-LRR to trigger ETI (Li et al., 2014). Another 

is the decoy model, where a modified version of effector target protein with little to no 

role in PTI or ETI signalling acts as the target of the effector. NB-LRRs recognize the 

modification on the decoy protein to induce ETI response (van der Hoorn and 

Kamoun, 2008). An example of this model was first found in Tomato-Pst pathosystem 

where the effectors AvrPto and AvrPtoB phosphorylates a serine/threonine protein 

kinase. Pto, oligomerized with its NB-LRR, Prf. Upon phosphorylation of Pto, Prf 

induces ETI responses (reviewed in Ntoukakis et al., 2014).  
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Figure 4.2. Zig-zag model of plant pathogen interactions. This model involves 
three stages. First, proximity of pathogens and presence of PAMPs in their 
conserved structures trigger a PTI response which include increase in ROS 
production, calcium influx and extracellular callose deposition. These responses can 
prevent further colonization of host plant by the pathogen. However, at times, 
pathogens can obtain gain-of -function mutations to express proteins called effectors 
which can suppress key regulators of PTI responses to cause ETS. This allows these 
pathogens to have an evolutionary advantage over the rest and increase rate of 
colonization. In turn, plants can also obtain gain-of-function mutations in proteins 
called NB-LRRs produced by R genes which to recognize the novel effectors and 
activate ETI to induce cell death to prevent further spread of the disease. Plants with 
such mutations gain an evolutionary advantage over the corresponding pathogens. 
This alternation between ETS and ETI underpins the constant evolutionary ‘arms 
race’ between pathogens and plants (taken fromJones and Dangl, 2006). 

 

In order for defence mechanisms to ensure survival of a plant, each cell should be able 

to produce a similar response to the pathogen stress. However, it is known that 

molecular capabilities of each cell can differ despite identical genetic content. In order 

to gain a better understanding on how this affects immune responses we should first 

look at the concepts of stochastic gene expression and cellular noise.  

4.1.3. STOCHASTICITY OF GENE EXPRESSION  

Rates of reactions are defined by the number of molecules spatially present for the 

reaction. When interacting molecules are found in abundance for a reaction, removal 

of a single molecule does not affect the overall reaction rate. However, components of 

reactions in living systems are present in low copy numbers (Swain, Elowitz and 

Siggia, 2002). For this reason, even minute changes in one of the components in 

biological reactions can have a significant affect. And, because of the interconnected 
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nature of biological pathways, this affect can be transferred through the entire system. 

With this in mind, stochastic effects were proposed to have a major function in the 

cell-to-cell gene expression variation observed in clonal populations (Swain, Elowitz 

and Siggia, 2002).  

 

 
Figure 4.3. Central dogma model and where variability can be introduced. k0 
and k1 are the rates of change between active and passive promoter states. V0: rate 
of transcription, d0: rate of mRNA degradation, v1: rate of translation, d1: rate of 
protein degradation. (adapted from Shahrezaei and Swain, 2008). 

 

At gene expression level, these stochastic effects were found to originate from intrinsic 

or extrinsic sources to create intrinsic or extrinsic cellular gene expression noise (Raj 

and van Oudenaarden, 2008). Intrinsic sources are locally defined through the 

stochastic nature of biochemical reaction rates in biological metabolic processes due 

to heterogenous spatial distribution of molecules required for transcription, translation 

machineries. This positioning of euchromatin domains in relation to transcription 

machinery localization as well as spatial positioning of mRNAs in relation to 

translation machinery localization (Figure 4.3) (Singh and Soltani, 2013). Intrinsic 

cellular noise can be observed through comparison of gene expression levels of two 

genes regulated by the same promoter within the same cell (Figure 4.4). On the other 

hand, extrinsic sources are related to the temporal fluctuations in number of molecules 

that take part in the biological processes such as RNA polymerases (RNAPs), 

ribosomes and mRNA degradation machinery within a cell, over the course of its 

lifetime (Figure 4.3) (Swain et al. 2002). These sources result in extrinsic cellular noise 

which can be observed through comparison of gene expression levels of one gene 

between cells in a clonal cell population (Figure 4.4).  
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Figure 4.4. Graphical representation of intrinsic and extrinsic noise. Intrinsic 
noise is the difference in expression of two different genes within a cell due to 
chromosome position, promoter structure etc. Extrinsic noise is the difference in 
expression of a gene between two different cells in a genetically identical population 
(adapted from Araújo et al., 2017). 

 

So far, three major functions have been proposed for cellular stochasticity. One of the 

proposed functions was to enhance cellular physiological regulation of gene 

expression. This enabled thorough coordination of a large set of genes with varying 

activity states, that respond to the same stimuli (Cai et al., 2008).  

Another function was proposed in driving adaptive evolution of organisms through 

creation of a wide range of phenotypes without a mutation. This function was 

investigated in E. coli, where cellular noise resulted in state-switching of some bacteria 

into a ‘persistent’ state to create a heterogenous population which enabled the 

‘persistent’ individuals within the clonal population to survive an antibiotic treatment 

(Balaban et al., 2004) (Figure 4.5.A). In another study performed on E. coli, 

researchers observed an increased range of fluorescence phenotype (Broad mutants) 

in a clonal E. coli population (Narrow mutants) expressing GFP under selective 

pressure. This increased range of phenotype was caused by cellular noise and 

researchers were able to exploit this heterogeneity to select for cells with increased 

GFP fluorescence to create a population with higher average GFP intensity than the 

original clonal population utilizing FACS (Ito et al., 2009) (Figure 4.5.B).  
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Cellular noise was also proposed to have an influence on cellular differentiation in 

multicellular organisms (Eldar and Elowitz, 2010). In studies performed on rat neural 

crest stem cells, it was found that only a fraction of the clonal population adopted 

neural fates. Size of this fraction was found to be affected by the abundance of Bone 

morphogenic protein 2 (BMP2) and Transforming Growth Factor-b (TGF- b) protein 

in cells which was stochastically determined (Shah et al., 1996). It was also reported 

that transcription factor Nanog influencing pluripotency and self-renewal capabilities 

of embryonic stem cells along with TF Oct4, also shows stochastic expression within 

a clonal population (Eldar and Elowitz, 2010; Loh et al., 2006) (Figure 4.5.C). Another 

example of developmental regulation of cellular noise was found in plants where, 

fluctuations in protein levels of transcription factor ATML1 in giant cells in plant 

sepals initiate pattern formation (Meyer et al., 2017).  

While function of stochastic gene expression has been a research topic in many 

organisms, its function in plants have not been extensively studied beyond its role in 

aspects of development. As stochastic gene expression has been observed to be 

involved in adaptive evolution for may organisms, it can be hypothesized that it might 

also have a role in stress perception and response of plants to environmental stress 

factors. 
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Figure 4.5. Examples of stochastic gene expression functionality in various 
organisms. A) E. coli grown in a microfluidic chamber supplemented with enough 
growth medium. Upon application of Ampicillin, most bacteria die while a colony 
which underwent a state-switching to become a persistent cell survives the treatment 
and can continue growth. Merged image of a clonal E. coli population expressing a 
red and green fluorescent protein regulated by identical, constitutive promoter 
regions. Green to red intensity differs for each cell due to intrinsic noise. B) A clonal 
population of E. coli cells were subjected to 5 rounds of selection in 1st generation 
and 4 rounds of selection in 2nd and 3rd generations to obtain higher average GFP 
intensity levels per forward scatter (FI/FS) (Black boxes) values representing cell 
size at the end of selection process. During this selection process, mutants arose with 
showing large (broad mutants, magenta lines) or small (narrow mutants, blue lines) 
fluctuation in their FI/FS levels narrow. C) Merged image of clonal mouse 
embryonic stem cell population expressing fluorescent proteins under regulation of 
Oct4 promoter (Red) or pluripotency regulator Nanog gene promoter (Green). Red 
florescence protein seems to be expressed more homogenously than the green 
fluorescent protein (Eldar and Elowitz, 2010). 

 

 

 

 

 

 



 105 

4.1.4. OBJECTIVE OF THIS WORK 

Stochasticity is known to play a role in adaptive evolution of unicellular organisms. 

Here, one hypothesis is that that the extrinsic noise among the cells of a plant tissue 

type could result in a fraction of cells presenting with more active defence states at a 

given time which could play a role in plant immunity to a pathogen.  

This chapter aims to investigate role of cellular noise in plant immune responses 

against pathogen recognition using A. thaliana Col0 - P. syringae pv. tomato DC3000 

pathosystem. To that end, an A. thaliana recombinant line expressing a fluorescent 

reporter protein regulated by an immune response gene promoter was sought among 

previously identified immune response genes. After obtaining reporter lines, cell-to-

cell variation in reporter gene expression upon pathogen elicitor recognition were 

measured using a confocal microscopy and image analysis. Transcriptomic source of 

variability was investigated using qPCR after isolating cells showing highest and 

lowest variation utilizing FACS. 
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4.2. RESULTS 

4.2.1. SELECTION OF BIOTIC STRESS SPECIFIC MARKER GENES 

To study cellular stochasticity in plants, previous research utilized promoter regions 

of genes to drive expression of nuclear localized reporter proteins (Araújo et al., 2017; 

Shahrezaei and Swain, 2008). Accumulation of these reporter proteins were then 

quantified by confocal microscopy and used as a proxy to extrapolate gene expression 

levels in each cell (Araújo et al., 2017). This work follows a similar rationale to 

investigate the role of stochastic gene expression in spongy mesophyll cells on PTI 

responses, using characterisation of expression levels with confocal microscopy and 

in cells isolated using FACS. Towards this goal in studying cellular responses to biotic 

stress, the first step was to identify promoter regions of genes exhibiting expression 

changes upon perception of biotic stress.  

Identifying genes with a very specific response to a particular biotic stress is crucial 

but can be hard to do. This is because reporter protein quantification techniques 

(confocal microscopy, FACS) can introduce unintended abiotic stresses (wounding, 

cold, salt, osmotic etc.). It is known that biotic and abiotic stress pathways can 

influence each other through crosstalk (Saijo and Loo, 2020). For this reason, a gene 

of interest should show a high expression change in response to biotic stress, and a 

minimal change in expression in response to any abiotic stress. Over 8,200 PTI genes 

were found to have altered gene expression within 60 mins of bacterial perception in 

A. thaliana seedlings (Zipfel et al., 2004). A way to minimize cross-talk between 

defence related genes is to minimize time of elicitor treatment, which can be achieved 

by utilizing genes with rapid responses. Thus, 252 flagellin rapidly elicited (FLARE) 

genes induced within 30 mins of flg22 treatment were used from a microarray study 

to narrow down the list (Navarro et al., 2004). To aim to select genes with the highest 

expression levels, candidates were chosen from this list. In the end, 16 genes with more 

than 10-fold expression change were selected to create a primary candidate gene list 

(Table 4.1). 

Next, the effect of wounding, cold, salt and osmotic stresses on expression of these 

primary candidate genes were investigated using the abiotic stress database under 

tissue and experiment viewers of eFP Browser (Kilian et al., 2007; Toufighi et al., 

2005; Winter et al., 2007). Three genes out of 16 were found to have a very low gene 

expression change under abiotic stresses defined previously.  
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Table 4.1. List of highly upregulated FLARE genes in leaves of 12-day old A. 

thaliana Col-0 seedlings 30 minutes after flg22 treatment (Kilian et al., 2007; 

Navarro et al., 2004). 

AGI Number Gene description 
Fold-change after treatment relative to control  

flg22 wounding cold salt osmotic 

FLARE genes with known or putative roles in signal perception* 

AT2g40000 
Putative nematode-

resistance protein 
22.70 2.12 1.25 1.01 1.75 

AT4g260901 RPS2 18.00 1.75 0.70 0.88 1.12 

AT2g39200 
Putative Mlo 

protein 
13.90 1.13 0.65 0.70 2.70 

AT1g61560 
Similar to Mlo 

protein 
10.90 1.66 1.24 1.01 2.22 

AT2g31880 RLK-LRR5 13.40 3.24 0.45 0.96 1.47 

AT5g25930 RLK-LRR22 11.30 2.80 0.40 0.74 1.40 

AT2g33580 RLK-Lys 17.70 2.44 0.40 0.85 1.09 

AT2g191301 RLK-SD 17.60 1.12 0.71 0.81 1.19 

AT4g23220 RLK-DUF26 33.20 12.28 0.47 1.51 1.40 

FLARE genes with known or putative roles in signal transduction** 

AT4g23810 AtWRKY53 34.6 1.51 0.48 1.22 4.63 

AT4g18170 AtWRKY28 32.2 0.88 0.79 1.27 2.56 

AT4g01250 AtWRKY22 24.1 1.68 0.91 1.34 1.74 

AT2g38470 AtWRKY33 28.6 2.46 0.62 1.07 2.51 

AT4g315501 AtWRKY11 13 1.39 0.49 0.81 1.31 

AT4g35480 
RING-H2 finger 

protein, RHA3b 
28 6.14 0.96 1.34 1.74 

AT2g42360 
Putative RING 

finger protein 
10.3 7.57 2.01 0.98 4.04 

* Genes involved in signal perception produce receptors with extracellular domains that function in 
recognition of extracellular pathogen presence and triggering of intracellular signalling cascades 
** Genes involved in signal transduction produce intracellular proteins which receive signals from 
signalling cascades initiated by the receptor proteins. 
1) Genes exhibiting high induction levels within 30 mins after flg22 treatment while also having 
low induction levels upon abiotic stress treatment.  
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One candidate was RPS2 (AT4G26090), a plasma membrane NB-LRR protein which 

has been found to provide resistance to P. syringae containing the avirulence effector 

gene avrRpt2 (Bent et al., 1994). A second candidate was an S-domain lectin protein 

kinase (RLK-SD) (AT2G19130) with an unknown function in A. thaliana. Last 

candidate, a member of WRKY transcription factor family, WRKY11 (AT4G31550) 

was found to have a strong response to flg22 but only a weak response to abiotic stress 

changes. This gene has been found to be involved in negative regulation of plant basal 

pathogen resistance in A. thaliana (Journot-Catalino et al., 2006). 

As mentioned in Section 2.2.1, in order to limit mobility of reporter proteins between 

the cells and for the ease of fluorescence quantification, reporter proteins should 

include a nuclear localization signal. According to these specifications, the NASC and 

TAIR databases as well as previous studies were investigated for the presence of a 

stable transformant of A. thaliana nuclear localized fluorescent reporter line regulated 

by the promoter of RPS2, RLK-SD or WRKY11 gene. While no existing reporter plant 

material was found for RPS2 or RLK-SD promoters, one was found in NASC database 

for WRKY11 promoter (NASC no: N2107974) (Poncini et al., 2017). This reporter 

plant line is a stable transformant of the A. thaliana Col-0 ecotype and was previously 

used to visualize expression of reporter proteins in A. thaliana root structures after 

various PAMP treatments (Poncini et al., 2017). The transformant contained a 1.7kb 

long WRKY11 promoter region regulating expression of three conjugated mVENUS 

(YFP) fluorescent proteins and a nuclear localization signal. This line was chosen as 

the primary plant material to work with throughout this study and is referred to as 

pWRKY11::YFP-NLS.  

4.2.2. SUBPOPULATIONS WITH HIGH AND LOW FLUORESCENCE EXIST AMONG 

A.THALIANA PWRKY11::YFP-NLS SPONGY MESOPHYLL CELLS 

100 pWRKY11::YFP-NLS seeds were grown on BASTA selective media to select 

confirmed homozygous insertion plants; selection was repeated in triplicate. Over 90% 

of the 100 pWRKY11::YFP-NLS seeds germinated in each replicate. Following 

mendelian genetics, since the number of germinating seeds exceeded 75%, it was 

concluded that the lines were indeed homozygous. Failed germination of 10% of the 

seeds was attributed to variable seed germination efficiency. 
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In order to determine if the pWRKY11::YFP-NLS reporter line expressed the reporter 

protein in the leaves, germinated seeds were grown to adulthood (6 weeks old) and 

fluorescence activity in leaf mesophyll cells investigated using confocal microscopy 

without flg22 or P. syringae induction. It was found that pWRKY11::YFP-NLS plants 

exhibited high levels of fluorescence in their leaf tissues including epidermis, palisade 

parenchyma and spongy mesophyll tissue even without biotic stress induction (Figure 

4.6). So far, WRKY11 promoter was not reported to have tissue type specific activity 

so reporter protein expression in all tissue types was expected. Such a high level of 

fluorescence observed in uninduced plants however suggests that the WRKY11 

promoter is predominantly found in a highly active state.  

 

 
Figure 4.6. Confocal microscopy images of A. thaliana Col-0 and A. thaliana 
Col0 prWRKY11:NLS-YFP stable transformant mesophyll cells. A) No YFP 
fluorescence was observed in mesophyll tissue A. thaliana Col-0. D) Nuclear 
localization of YFP in mesophyll cells of prWRKY11:NLS-YFP stable 
transformants without flg22 induction. B, E) Chlorophyll autofluorescence was 
used to show viability of cells. E, F) Leaf tissue integrity can be seen in brightfield 
images. (Scale bar = 50µm).  

 

In a previous study, it was stated that GFP and its derived proteins (such as YFP) fold 

into a compact protein structure that is highly resistant to protein degradation in a 

number of cells from Saccharomyces cerevisiae, to Caenorhabditis elegans, to 

Nicotiana benthamiana (Ward and Bokman, 1982). This feature was favourable for 
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marking cell lineages or locations within a cell; however, it was stated that the same 

feature could result in accumulation of GFP or its derived proteins inside a cell and 

cause reduced sensitivity in confocal imaging for detection of dynamic processes 

(Corish and Tyler-Smith, 1999; Cubitt et al., 1995). With this in mind, a high 

WRKY11 promoter activity in uninduced plants, could result in over-accumulation of 

YFP which is already insensitive to observe dynamic processes and interfere with 

measurement of changes in YFP expression under WRKY11 promoter control. For 

this reason, it was asked if it would still be possible to identify changes in 

pWRKY11::YFP-NLS fluorescence intensities in cells upon biotic stress treatments. 

To accomplish this, leaves of 6-week old plants were treated with flg22 and imaged 

immediately using confocal microscopy. In order to quantify changes in individual 

nuclei over time, a fixed location on a sample was imaged at 10 mins (T0) and 1hr 

(T1) after flg22 treatment (Figure 4.7.A,B). Fluorescence intensities of cells with 

nuclear sizes between 25 µm2 and 100 µm2 (n=28) were quantified (Figure 4.7.C, D). 

This way, epidermal cell nuclei were excluded while focusing on mesophyll tissue 

since pathogens colonize the air spaces within mesophyll tissue upon entry into the 

leaf ( Xin and He, 2013). Next, values were normalized to reduce the impact of batch 

effects, photobleaching over time and use of different leaves to obtain relative 

fluorescence (RF) (Section 2.6.1 & Section 2.6.2)(Figure 4.7.E).  
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Figure 4.7. Workflow for single-cell fluorescence imaging and quantification 
under biotic stress. A) A. thaliana plants were grown for 6 weeks and leaf number 
7 and 8 were infiltrated with either mock or flg22. 3 mm diameter leaf discs were 
cut out of infiltrated leaves and imaged with confocal microscope immediately (T0) 
and 1 hr after infiltration (T1). B, C, D, E) Fluorescence intensity in raw images (B) 
were quantified using ImageJ software. Since reporter protein is nuclear localized, 
an intensity threshold allowed defining nuclear outlines (C). Total fluorescence 
intensity of each nucleus was extracted using ImageJ software pixel analysis (D) 
into worksheets for further analysis (E).  

 

It was found that flg22-treated cells had a significant increase in RF of YFP at T1 in 

comparison to T0 (Mann-Whitney u-test, p<0.001) (Figure 4.8). This result showed 

the accumulation of YFP reporter protein was not interfering with the detection of 

change in RF upon induction of biotic stress. However, no difference was observed 

between RF of mock and flg22 treated samples at T1. Since samples were normalized 

for the use of different leaves, the starting fluorescence intensity values showed no 

difference, so, no change in RF was expected for mock treated samples. The fact that 

there was no significant difference between mock T1-RF and flg22 T1-RF was an 

indication that unintended abiotic stress factors introduced during the confocal 

microscopy procedure could be causing induction of reporter protein expression in 

mock-treated samples as much as flg22 treated samples. 
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Figure 4.8. pWRKY11::YFP-NLS stable transformants exhibit increased 
average RF values upon induction with flg22. RF distribution of pWRKY11::YFP-
NLS spongy mesophyll cells 1 hour after mock (water) or flg22 (100nm flg22) 
treatment. RF values of flg22-treated cells showed an increase over time (Mann-
Whitney u-test, p<0.001). However, RF values of mock and flg22 treated samples 
increased at a similar rate and no significant difference was found at T1. Mock n= 28 
nuclei, flg22 n=32 nuclei. 
 

4.2.3. INVESTIGATING EFFECT OF WOUNDING STRESS ON WRKY11 GENE 

EXPRESSION UPON BIOTIC STRESS RECOGNITION 

The effect of wounding stress and biotic stress on WRKY11 expression was 

investigated in adult A. thaliana leaves using qRT-PCR. Leaves were either: left 

untreated, mock (dH2O) treated, wounded, treated with flg22 or both wounded and 

flg22-treated. Tissue samples were collected 1hr post-treatment and gene expression 

was compared to a non-treated sample collected at 0 hr (Figure 4.9.A). It was found 

that after wounding stress, WRKY11 gene expression was increased when compared 

to a mock treated sample (Figure 4.9.B). It was seen that WRKY11 expression was 

found to increase to a higher level when leaves were treated with flg22, and even 

higher when applied in combination with wounding (Figure 4.9.B). In comparison to 

the untreated sample, WRKY11 gene expression showed a 2-fold increase after 

wounding stress, 5-fold increase after flg22 treatment and 8-fold increase after the 

combination of both treatments (Figure 4.9.B). This data shows that although 

wounding stresses can influence expression of WRKY11 gene, its influence is 

significantly lower than flg22. Since the two are additive it is possible that the 
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influence of wounding and biotic stress might be via at least partially non-overlapping 

pathways. 

 

 

Incubation Wounding flg22 
Relative gene expression fold difference 

Rep 1 Rep 2 Rep 3 

- - - 1.00±0.15 1.00±0.12 1.00±0.14 

+ - - 7.19±0.06 6.73±0.04 8.06±004 

+ - + 38.14±0.07 37.01±0.05 41.93±0.06 

+ + - 16.56±0.22 15.24±0.17 17.55±0.20 

+ + + 51.74±0.14 48.17±0.08 52.22±0.12 

Figure 4.9. WRKY11 gene expression measured under a combination of biotic 
and abiotic stresses. A) Experimental design for wounding and biotic stress 
treatment of 6 weeks old pWRKY11::YFP-NLS leaves. B) WRKY11 gene expression 
was found to be affected by both wounding and flg22 treatment, compared to 
untreated control. However, flg22 induction resulted in a significantly higher 
WRKY11 mRNA production when compared to wounding-treated samples. This 
increase could also be observed in samples already wounded. Graph in Figure B 
depicts Rep 1; the trend is representative of three biological replicates. Error bars 
represent technical replicates. No fitting statistical test was found as distribution of 
data cannot be determined. 

 

 

4.2.4. INCREASED SAMPLE SIZE CAN OVERCOME WRKY11 INDUCTION EFFECT BY 

UNINTENDED ABIOTIC STRESS  

Previous work to investigate the influence of cellular stochasticity utilizing confocal 

microscopy took advantage of a high number of data points for measurement and 

analysis (n³500) (Araújo et al., 2017). Thus, it was hypothesized that in order to 

characterise immune responses across cells in a leaf, a large number of data points 
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would be required. For this reason, the same experiment, measuring changes in 

fluorescence intensity over time (Figure 4.7.A) was replicated thirteen more times with 

plants grown in exactly the same conditions, harvested at exactly the same time of the 

day and imaged with same microscopy settings; in total, 268 nuclei were imaged 

(Section 2.4 & Section 2.5.2). Data was normalized to attempt to eliminate batch 

effects and technical biases (Section 2.6.1 & Section 2.6.2) and to determine relative 

fluorescence (RF) values for measurements at 10 mins (T0) and 1hr (T1) post flg22 

treatment (Figure 4.10.A). 

 

   

Figure 4.10. Nuclear fluorescence intensity of pWRKY11::YFP-NLS in spongy 
mesophyll tissue cells. A) Relative nuclear fluorescence intensities for population of 
spongy mesophyll cells followed a non-normal distribution for each sample and time 
point (Kolmogorov-Smirnov normality test, p<0.0005). The flg22-treated sample 
showed higher pWRKY11::YFP-NLS value after 1 hr, compared to all other samples 
and time points (Mann-Whitney t-test, p<0.0005). (HF: Top 10% cells with highest 
nuclear RF, LF: Bottom 10% cells with lowest nuclear RF; Table 4.2) B) Relative 
fluorescence change of cells 1 hr after treatment. flg22-treated cells have a higher 
expression change over time compared to mock-treated cells. Mock and flg22 n= 268 
nuclei obtained from 14 biological replicates, normalized for batch effects and 
analysed together. Mann-Whitney u-test, p<0.0001.  
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Table 4.2. Legend for acronyms used in this Subsection. 

Acronym Meaning 

pWRKY11::YFP-NLS A. thaliana Col-0 transformant expressing nuclear 

localized YFP under WRKY11 promoter 

RF Relative fluorescence 

T0-RF Relative fluorescence at T0 

T1-RF Relative fluorescence at T1 

RF-CoT Relative fluorescence change over time 

HF Top 10% cells with highest relative fluorescence  

LF Bottom 10% cells with lowest relative fluorescence 

 

Using a larger sample size (268 cells compared to 28 cells analysed previously), the 

significant increase in mean population RF was more evident 1 hr after flg22 treatment 

when compared to all other samples and time points (Figure 4.10). This showed that it 

was possible to overcome the potential variation introduced during the procedure (i.e. 

wounding effects as a result of sample harvesting) on pWRKY11::YFP-NLS activity 

during confocal microscopy technique with higher number of data points. 

Cellular RF data of each sample was non-normally distributed and possessed a positive 

skew (Figure 4.10.A). This type of distribution suggested the majority of the cells tend 

to have a relatively low RF with some cells having a significantly higher expression 

of the reporter protein. In each sample there was a subpopulation of cells forming the 

top 10% of the total population exhibiting significantly higher RF compared to the 

population mean (Figure4.10.A). In this work, RF was used as an idicator of WRKY11 

promoter activity, thus it was concluded that some cells had higher WRKY11 

expression at a given point in time than others. This phenomenom was attributed to 

extrinsic noise that can result from temporal fluctuations in the number of molecules 

that take part in biological processes, such as RNA polymerases (RNAPs), ribosomes 

and mRNA degradation machinery within a cell. While abundance of these molecules 

fluctuates over the lifetime of a cell regulated by the cell cycle stage, ploidy number 

of a cell has been found to determine the potential range and level of fluctuations 

within a cell (Jovtchev et al., 2006; Katagiri et al., 2016). 
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4.2.5. DNA CONTENT OF SPONGY MESOPHYLL SUBPOPULATIONS ARE POSITIVELY 

CORRELATED WITH GENE EXPRESSION LEVELS 

Given that plant somatic cells can obtain autopolyploidy spontaneously and 

stochastically, it was hypothesized that HF cells observed in single cell fluorescence 

imaging studies could possess higher ploidy numbers. To investigate this hypothesis, 

ploidy numbers within the population were to be inferred and analysed to ask if there 

was any correlatation to the RF values. It was previously found that nuclear size could 

be an indicator of ploidy number among epidermal cells of plant leaf population 

(Araújo et al., 2017; Katagiri et al., 2016) . By comparing the RF values of cells with 

the lowest nuclear size and the highest nuclear size, it was planned to compare cells 

with high and low ploidy numbers without needing to quantify the precise ploidy level. 

Following the rationale set out above, T0-RF and nuclear size for the top 10% cells 

based on the largest nuclear area and the bottom 10% cells with the smallest nuclear 

area were determined and then compared. It was found that T0-RF of top 10% cells 

were much higher than that of bottom 10% cells (p<0.001) (Figure 4.11.A,B). To 

further investigate the relationship between these variables, nuclear area and RF values 

were analysed and it was found that nuclear area and RF were significantly positively 

correlated for both mock (r= 0.7672, p<0.0001) and flg22-treated samples (r= 0.6782, 

p<0.0001); one-tailed non-parametric Spearman correlation analysis (Figure 

4.11.C,D). This positive correlation between T0-RF and nuclear size suggested that 

ploidy level could indeed be an indicator of or influence on levels of gene expression. 

In light of this information, it could be that the top 10% cells T0-RF (HF) cells in the 

population might have this higher level of RF because they are able to produce more 

reporter protein due to their high ploidy number. If this is true, it should be possible to 

observe a larger RF change over time (RF-CoT) in the HF cells, due to increased 

capacity to produce new protein. 
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Figure 4.11. Nuclear area of corresponding RF values and their correlation at 
T0. A, C) Nuclear area values are increasing with increased RF values for both mock 
and flg22 treated samples at T0. B, D) A high, significant positive correlation 
between relative fluorescence and nuclear size in pWRKY11::YFP-NLS spongy 
mesophyll cells was observed after a non-parametric spearman test for both mock 
and flg22 treated samples at T0 (p<0.001).. For XY distribution plots, each value on 
the x-axis represents a cell. Right y-axis represents the corresponding T0hr RF value 
(orange) and left y-axis represents the corresponding nuclear area (blue).  

 

To ask if HF cells have a larger RF response, RF-CoT was calculated for each cell by 

subtracting T0-RF values from T1-RF values (Figure 4.10.B). In line with the 

prediction, the RF-CoT population mean for flg22-induced samples was higher than 

that of mock-treated samples (p<0.0001) (Figure 4.12). However, there was a negative 

correlation between T0-RF and RF-CoT values for both mock (p<0.0001, r= -0.5419) 

and flg22-treated samples p<0.0001, r= -0.3864); one-tailed non-parametric Spearman 

correlation analysis. This indicates that although cells with higher ploidy possess high 

expression of reporter protein at steady state, their inducibility is significantly lower 

than the rest of the population.  
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Figure 4.12. Temporal changes in single-cell pWRKY11::NLS-GFP spongy 
mesophyll nuclear fluorescence intensity in mock and flg22 treated samples. flg22 
treated cells (B) exhibit a higher change in RF values (black line) compared to the RF 
change in mock treated cells (A-black line). Each value on the x-axis represents a cell 
and each value on the left y-axis represents the corresponding T0hr RF value (blue), 
T1hr RF value (orange) and each value of the right y- axis represents the corresponding 
RF change over time (black) after 1 hr. 
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As previously explained, low turnover rate of GFP derived reporter proteins can lead 

to accumulation within the cell and limit the ability to detect dynamic changes, 

including gene expression levels (Corish and Tyler-Smith, 1999). However, this 

obstacle can be overcome by investigating these dynamic changes at gene expression 

level. In order to test this hypothesis, HF cells and bottom 10% cells with lowest 

fluorescence after flg22 treatment (LF) (Figure 4.11) were isolated among a population 

of protoplasts generated following the procedure described in Section 2.6.7 and 

subjected to qPCR analysis to quantify relative WRKY11 gene expression. The 

protoplast generation procedure in preparation for FACS can induce stress-responsive 

gene expression, although the effected genes have been largely defined (Gifford et al., 

2008), to ask if WRKY11 was affected by protoplast generation, an experimental 

workflow was set up, with protoplast samples frozen at each step. WRKY11 gene 

expression for mock and flg22-treated leaf samples that subsequently were processed 

through this workflow was then measured using qPCR (Figure 4.13.A). It was found 

that WRKY11 expression was increased during protoplast generation, but to a much 

lower level than it was induced by flg22 treatment (Figure 4.13.B). 
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Protoplast 

Generation 

Incubation 

(1hr) 
flg22 

Relative gene expression fold difference 

Rep 1 Rep2 Rep3 

- - - 1.00±1.4 1.00±0.92 1.00±0.93 

+ - - 89.26±0.94 91.14±0.86 122.22±0.97 

+ + - 110.66±1.82 114.83±1.72 189.58±1.17 

+ + + 696.19±0.31 691.38±0.28 905.98±0.23 

Figure 4.13. Effect of protoplast generation on spongy mesophyll cell WRKY11 
gene expression with and without flg22 treatment. A) Experimental design of 
protoplast generation. Samples were frozen either without treatment, right after 
protoplast generation, 1 hr after mock (water) treatment or 1hr after flg22 treatment. 
B) Protoplasts showed increased WRKY11 gene expression immediately after 
protoplast generation. However, no further increase in WRKY11 gene expression 
was found in mock (water) treated samples after 1hr incubation while a significant 
increase was observed in WRKY11 expression 1 hr after flg22 (100 nM) treatment. 
Graph in Figure B depicts Rep 1; the trend is representative of three biological 
replicates. Error bars represent technical replicates. No fitting statistical test was 
found as distribution of data cannot be determined. 

 

Since flg22 treatment was found to significantly induce WRKY11 gene expression even 

after protoplast generation, it was possible to proceed with isolation of HF and LF cells 

from a population of protoplasts using FACS. Plant leaf protoplasts possess 

chlorophyll which has a wide autofluorescence range (550-700 nm) and can influence 
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detection in the YFP channel. For this reason, protoplasts obtained from A. thaliana 

Col-0 ecotype were used to set a threshold in each FACS experiment (Figure 4.14.A). 

After the threshold was set, protoplasts obtained from pWRKY11:YFP-NLS plants 

were run through FACS. All events above the threshold were considered to have high 

fluorescence and thus were considered to correspond to HF cells, while all events 

falling below the threshold possessed low fluorescence and thus were considered 

belong to the LF group. However, it was observed that majority of the 

pWRKY11:YFP-NLS protoplast fluorescence values fell below the non-fluorescence 

threshold, suggesting that although pWRKY11:YFP was expressed in all cells, it was 

so low that the fluorescence was hard to detect during FACS. To identify the exact 

nature of these subpopulations, the peak below the fluorescence threshold was divided 

into two gates (P3 gate and P4 gate) and the fluorescence zone above the threshold 

was gated as initially designed (P5 gate). Events were sorted from P3, P4, P5 gates 

and isolated protoplasts were observed under epifluorescence microscope.  

Based on microscopy, events sorted from the P3 gate consisted mostly of cell debris 

or broken cells (Figure 4.14.C&D). Events sorted from gates P4 and P5 (Figure 4.14.E-

H) consisted mostly of intact cells. When their fluorescence intensities were compared 

qualitatively, it was seen that protoplasts isolated from P5 gate exhibited much brighter 

fluorescence emission compared to the protoplasts isolated from P4 gate (Figure 

4.14.F&H) when excited with the same intensity of epifluorescence light. For this 

reason, the P4 gate was set to isolate LF cells whilst the P5 gate was set to isolate HF 

cells (Figure 4.15). 
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With gates selected for isolating LF and HF protoplasts, experiments in triplicate were 

designed to obtain LF and HF protoplasts after flg22 treatment and sort into RNA 

extraction buffer for qPCR analysis of WRKY11 expression (Figure 4.15.A) In this 

setup, after protoplasts were obtained from leaf tissue after they were treated with 

mock (water) or 100nM flg22 for one hour then sub-populations isolated using FACS 

(Figure 4.15.B&C). It was found that there was a ~1% increase in number of induced 

cells between mock and flg22 treated populations (Figure 4.15.B&C). This difference 

was lower than the 100% increase that was seen when cells were viewed with confocal 

microscopy (Figure 4.10). There might be two possible explanations for such a change. 

Firstly, stress caused by protoplast generation and FACS procedure could alter cellular 

responses and limit the extent of activation of the WRKY11 promoter. Secondly, it 

might be that the data normalization to reduce batch and technical biases after confocal 

microscopy might have affected quantification of changes. Despite the fact that it was 

not possible to observe an apparent response to induction in the form of increased 

reporter fluorescence of the total population, HF and LF populations could still be 

observed within the protoplast population and could be isolated.  
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Figure 4.15. YFP signal intensity distribution histograms of protoplasts treated 
with mock and flg22, generated using FACS. A) Experimental design for protoplast 
generation, induction and FACS analysis of protoplasts. A, B) YFP intensity 
distribution profile of protoplast populations generated from 6 week old A. thaliana 
pWRKY11::YFP-NLS plants using FACS 1hr after mock (A) or flg22 (B) treatment. 
Gates for high YFP fluorescence (HF), low YFP fluorescence (LF) and cell debris 
were previously defined in Figure 4.14. ~1% increase in number of HF cells was 
observed after flg22 treatment compared to mock treated samples.  
 

qPCR analysis was performed using the Livak-Schmittgen Method (Livak and 

Schmittgen, 2001) based on normalization against the TIP41 housekeeping gene. With 

this analysis, no significant difference was observed in WRKY11 expression between 

LF and HF populations in mock or flg22 samples (Figure 4.16.A). However, it was 

seen that TIP41 expression levels were consistently higher in HF cells in comparison 
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to LF cells among the replicates (Figure 4.16.C). It was hypothesized that this 

difference could be due to the greater DNA content found in HF cells (as found earlier) 

and thus Livak-Schmittgen method might not be suitable to normalise WRKY11 

expression levels. 

 

 
Figure 4.16. Average WRKY11 gene expression of HF and LF cells 1 hr after 
mock or flg22 treatment from three biological replicates. A) Relative mRNA 
abundances calculated using the Livak normalization method; no significant 
differences were observed between samples. B) When relative mRNA abundances 
calculated without housekeeping gene normalization. There is a significant 
difference between HF and LF subpopulations in both mock and flg22 treated 
populations. C) Relative expression levels of housekeeping genes for HF and LF 
cells. all plots are representative of three biological replicates, error bars represent 
standard deviation from technical replicates. Error bars represent three biological 
replicates. No fitting statistical test was found as distribution of data cannot be 
determined. 

 

For this reason, we performed gene expression calculations without normalization to 

TIP41. It was observed that WRKY11 gene expression in flg22-treated HF cells was 

much higher than in mock-treated HF cells, and also higher than in LF cells in both 

mock  and flg22 samples (Figure 4.16.B). The greatest increase in WRKY11 expression 

was observed in HR flg22-treated cells compared to LF flg22-treated cells. This 

suggests a change in WRKY11 transcription upon flg22 treatment linked to the 

transcriptional ability of the cell , even if the change is not evident at the level of YFP 

reporter fluorescence intensity (Figure 4.15). 



 126 

4.2.6. INFLUENCE OF CELLULAR HETEROGENEITY ON BACTERIAL HOST SELECTION  

Based on the findings of the previous experiments, it was hypothesized that the 

difference between gene expression levels of HF and LF cells could have a 

physiological impact on the selection of host cells by the pathogen P. syringae 

DC3000. For example, infection might be seen preferentially on cells with a lower 

WRKY11 expression level, with a lower defence response. Bacterial establishment and 

ETI was expected in tissues between 3hrs-5hrs after inoculation. This was based on 

previous studies where ETI presence and severity was measured in P. syringae 

infected A. thaliana Col-0 plant leaves (Mackey et al., 2002). In order to test this 

hypothesis, a suspension of P. syringae DC3000 GFP AvrRpm1 (OD=0.1) was 

injected from the abaxial side of A. thaliana pWRKY11:3xYFP-NLS leaf to fill the 

air gaps. Leaf discs were cut immediately after injection and leaves were imaged at 

1.5 hrs and 5.5 hrs post injection. Due to their rapid and 3-D movements, it was not 

possible to track movements of an individual bacteria over the time period using the 

microscope setup in this experiment, but some observations about their location was 

inferred. At 30 mins, bacteria exhibited rapid and random movements within the 

spongy mesophyll air gaps filled with liquid (Figure 4.17, white arrows). At 5.5 hrs, 

bacteria exhibited three different movement types: either (a) a twitching motion at a 

fixed location; this was observed close to a cell adjacent, suggesting that there might 

be establishment followed by bacterial cell division (Figure 4.17, magenta arrows). (b) 

a slow, random motion within the liquid filled air pockets of the spongy mesophyll 

(Figure 4.17, golden arrow). (c) a fast, random motion (Figure 4.17, white arrows) 

similar to the bacterial behaviour at 30 mins. However, it was not possible to observe 

an HR response in potentially infected cells (Figure 4.17, white asterisk) at the point 

of imaging. For this reason, it was not possible to determine whether variation in 

WRKY11 expression plays a role in host selection in the P. syringae - A. thaliana 

interaction. 
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Figure 4.17. P. syringae DC3000 GFP AvrRpm1 bacteria tracking in A. thaliana 
Col0 pWRKY11:YFP-NLS spongy mesophyll tissue. Bacteria was syringe 
infiltrated from the abaxial side of the leaf with OD 0.1 concentration. Confocal 
imaging of the mesophyll tissue was performed from abaxial side of the leaf to create 
a live video in order to observe bacterial movement. Here, two images with 1 second 
apart were captured from the video sequence taken at the exact same location at 30 
mins (A, B) and 5.5 hrs (C, D) after infiltration to observe cellular states and 
movement speed of bacteria. White arrows represent rapid movement of bacteria in 
and out of the focal plane. Golden arrows represent slow moving of bacteria. 
Magenta arrows represent bacteria with twitching motion accompanied by possible 
daughter cells. White asterisk indicates potentially infected plant spongy mesophyll 
cell nucleus (Scale bars = 20 µm) 
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4.3. DISCUSSION 

In this study, it was able to observe stochastic, inducible activity of WRKY11 promoter 

in genetically identical spongy mesophyll cells with confocal microscopy based on 

assessing variation in reporter protein expression upon pathogen elicitor treatments. 

During this process, it was found that a large sample size (many cells) was imperative 

to observe differences stemming from biotic stress while reducing effects of technical 

procedure on the results. The change in YFP fluorescence intensity (proxy to WRKY11 

expression) in cells with already high WRKY11/YFP expression was found to be 

significantly reduced upon flg22 treatment. Since this trend was observed in both mock 

and flg22 treated samples, it was hypothesized to be due to the saturation of YFP 

reporter protein inside a cell rather than a response directly linked to biotic stress 

perception. It was hypothesized that this YFP accumulation was caused by higher basal 

activity levels of WRKY11 promoter than expected, in conjunction with the long half-

life of the mVenus YFP reporter protein. In order to overcome these issues in future 

studies, it is proposed that new reporter lines should be generated with a promoter 

region with lower to no activity under un-infected conditions and exhibit better 

inducibility upon biotic stress perception. RPS2 (AT4G26090), a plasma membrane 

NB-LRR protein which has been found to provide resistance to P. syringae containing 

the avirulence effector gene avrRpt2 (Bent et al., 1994) and RLK-SD (AT2G19130) an 

S-domain lectin protein kinase with an unknown function in A. thaliana, were two 

other genes identified in this work. Both possess lower expression levels compared to 

WRKY11 in un-infected conditions, hence they are good candidates for generation of 

new promoter lines. To further increase detection sensitivity, reporter proteins should 

also consist of a single fluorescent molecule with two nuclear localization tags along 

with a degron tag. A single copy of the reporter protein will not only reduce the 

saturation of the signal but also allow quantification of its transcript by qPCR analysis. 

This is because conjugation multiple reporter proteins of same type causing random 

fragment amplification in qPCR. While this might cause increased leaking to 

neighboring cells, inclusion of double nuclear localization tags has been shown to 

overcome this effect (Balkunde et al., 2017). Addition of a degron tag will direct the 

reporter protein to the degradation complex for rapid turnover, reducing its half-life 

and prevent its overaccumulation in the cell (Wilmington and Matouschek, 2016) 

allowing more sensitive detection of changes in cells with already high fluorescence 
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upon flg22 perception, and use towards the biological aims of this work. On the other 

hand, bioluminescence microscopy, a novel technique for imaging luminescence in 

live cells could also be utilized by expressing luciferase-like reporter proteins under 

promoters of interest (Horibe et al., 2016).  

Among the variation of the reporter protein expression in mesophyll tissue, 

fluorescence intensity levels were found to be significantly positively correlated to the 

size of the cell nucleus. It has previously been shown that cell size was indicative of 

cellular ploidy level (Jovtchev et al., 2006) and, in previous crop plant research, higher 

cell ploidy numbers were found to be closely related to higher increased gene 

expression (Osbon et al., 2003). With this knowledge, two subpopulations, called HF 

and LF, were selected from cells consisting of the top 10% and bottom 10% 

fluorescence intensities respectively. Then, the level of WRKY11 expression in both 

HF and LF populations were investigated where it was observed that WRKY11 

expression in HF cells was significantly higher than that of LF cells in both mock and 

flg22 treated samples. This was supportive of the hypothesis of higher genetic material 

in HF cells as more starting material would produce larger quantities of transcripts. 

And a way of obtaining larger genetic content in genetically identical cells is through 

spontaneous autopolyploidy events. This was in support of the findings in section 4.2.5 

where a positive correlation was identified between cell size and fluorescence intensity 

levels of spongy mesophyll cells through confocal microscopy. However, it is also 

possible that this difference is caused by a difference in abundance or activity of 

transcriptional machinery between HF and LF cells. Thus, further investigation is 

required at the genomic and proteomic levels to accurately determine the source of this 

difference. A wider view of the transcriptomic landscape for both LF and HF 

populations is also necessary in order to understand differences for non-biotic stress 

responsive genes as well as biotic stress responsive genes in response to flg22 

treatment. For this reason it is proposed next step of this work to be an RNA-Seq, 

ATAC-Seq, INTACT or protein-seq experiment in isolated HF and LF populations.  

Based on knowledge that relative gene expression quantification methods can mask 

physiological differences stemming from sources of extrinsic noise, it is proposed that 

any future transcriptomic or proteomic work investigating single-cell stochastic gene 

expression should adopt a method for absolute quantification of transcripts which 

accurately quantifies number target transcripts in a solution rather than comparing it 
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to an internal reference gene (Dhanasekaran et al., 2010). With this approach, an 

accurate prediction of molecule abundance could be performed for each individual cell 

or subpopulation. In this approach, use of housekeeping genes should still be 

mandatory to enable detection of differences due to technical or biological variation. 

Investigating if the variation in WRKY11 promoter activity is truly correlated with 

ploidy levels is highly relevant for investigating mechanisms underlying plant 

adaptaion to stress. Increased ploidy levels were found to be associated with a better 

ability to adapt to the stresses caused by a dynamic environment due to allele dosage 

effect which causes non-additive increase in production of transcripts due to more 

available genetic material (reviewed in Udall and Wendel, 2006). This could affect the 

extent of response by a cell if it possesses different genetic content from the rest of the 

cells within the same cell/tissue type or cellular region. Thus an experiment was 

designed in order to ask if cells with different nuclear sizes (and theoretically a higher 

ploidy number) affected bacterial host selection mechanisms or exhibited any 

differences in their response upon pathogen perception. However, it was not possible 

to test this hypothesis due to technical limitations regarding capturing of bacteria via 

microscopy or the ability to generate a large enough sample population, due to 

restricted objective scope area. One method to test this hypothesis would be; rather 

than observing mobility of bacteria, assessing if reporter protein expression levels are 

correlated with the number of immobile bacteria carrying a reporter protein could be 

used. In this approach, a 20x objective should be used in conjunction with sample 

scanning and image-stitching method to maximize observed area. However, bias from 

image stitching should be taken into account during analysis. Samples should be 

imaged at 0 mins, 30 mins, 3 hrs, 6 hrs and 9 hrs to observe responses of plant cells 

over time with immobile bacteria adjacent to them. It is also imperative to include a 

control sample from the same plant, imaged in the same conditions as the bacteria-

treated sample and adjusting for the photobleaching effect on reporter proteins caused 

due to long term confocal scanning.  

It can be postulated that stochastic gene expression has a role in adaptability of plants 

to dynamic environments by maintaining a wide range of phenotypes to utilize a bet 

hedging strategy (Balaban et al., 2004). Understanding the sources of this stochasticity 

might help discover novel mechanisms between plant-stress relationships which can 

be applied to improving agricultural practices.   
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5. APPROACHES TOWARDS EXPLOITING STOCHASTICITY OF 

GENE EXPRESSION  

5.1. INTRODUCTION 

5.1.1. EPIGENETIC TRAIT INHERITANCE 

Epigenetics refers to all non-genomic contributors within a cell that are involved in the 

regulation of gene activity states (Deans and Maggert, 2015). These contributors can 

be inherited mitotically or meiotically in somatic or germline cells respectively 

(Bohacek and Mansuy, 2017). So far, three major contributors in epigenetic regulation 

have been identified (Cooper and Hausman, 2007). One, covalent modification of 

DNA where a methyl group (CH3) is covalently bound to the fifth position of a 

cytosine residue. Following this modification, DNA undergoes a structural change that 

can result in altered gene expression. In promoter regions, this modification can cause 

gene silencing, whereas in transcribed regions, it can cause increased transcriptional 

activity (Jones, 2012). Two, covalent modification of histone tails with molecules 

including (but not limited to) methyl, acetyl and phosphate groups. These 

modifications can cause conformation changes chromosome regions between 

euchromatin and heterochromatin states, ultimately regulating transcription of genes. 

Three, regulation of gene expression through activity of non-coding RNAs (ncRNA). 

These are RNA molecules smaller than 200 nucleotides that are not translated into 

proteins. These molecules can also be regulated by other epigenetic mechanisms and 

they are thought to play a role in mRNA regulation similar to transcription factors 

(Peschansky and Wahlestedt, 2014). All epigenetic mechanisms are dynamic and are 

known to be significantly modified by environmental factors (Bräutigam et al., 2013). 

Because of this, their role in affecting transmission of acquired traits to following 

generations has been a topic for investigation (Bohacek and Mansuy, 2017; Wibowo 

et al., 2018).  

Along with their ability to be induced by environmental factors, it has been proposed 

that epigenetic factors might function as an adaptation mechanism to give an edge to 

the offspring (reviewed in (Sahu et al., 2013). An example of this is “priming” in 

plants, whereby recognition of stress triggers changes in the physiological, 

transcriptional, proteomic and epigenetic landscapes, resulting in the plant having an 

activated immune system, called a primed state (reviewed in Mauch-Mani et al., 
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2017). In this state, if the plant is challenged again with the same triggering stress, it 

generates a faster, stronger response. This hypothesis was supported by experiments 

conducted on A. thaliana-P. syringae pathosystem (Slaughter et al., 2012). These 

epigenetic changes can occur in both somatic and germline cells, for that reason, it is 

also referred to as plant immunological memory (Molinier et al., 2006; Reimer-

Michalski and Conrath, 2016).  

Polyploidy is another factor that induces major epigenetic changes in the cell (Ding 

and Chen, 2018) and is an important mechanism for emergence of novel functional 

traits during evolution. Emergence of polyploid populations follows a two-stage path 

(Parisod et al., 2010). In the first stage, the emerging polyploid has to have some form 

of immediate benefit in order to be successfully establishment in its environment. 

These benefits, referred to as ‘revolutionary changes’, have been found to be 

influenced by a number of epigenetic factors including methylation of coding and non-

coding DNA leading to gene silencing, and activation of retroelements (Levy and 

Feldman, 2004). These epigenetic changes in turn could induce epialleles that can be 

inherited in the next generation(s) to improve chances of establishment (Song et al., 

2017). In the second stage, the polyploid has to have a high level of plasticity in order 

to be able to adapt to emerging challenges in the environment. These are referred to as 

‘evolutionary changes’ and they occur over a longer span of time via mutation and 

remodelling of the genome (Flagel and Wendel, 2009). 

5.1.2. PROTOPLAST REGENERATION 

Protoplasts derived from plant cells have been found to possess the ability to 

reprogram their genetic material, allowing them to dedifferentiate into a totipotent 

state given the right culture conditions (Avivi et al., 2004). For this to happen, cells 

are generally induced with auxin and cytokinin phytohormones that are perceived as 

growth regulators, driving the de-differentiated cells to divide and produce microcalli. 

Following this stage, each consecutive media used in this procedure is produced with 

a varying ratio of auxin and cytokinin phytohormones to promote cell division, induce 

shoot or root formation to obtain a fully regenerated plant (Takebe et al., 1971). When 

protoplast regeneration was performed with different plant species, it was found that 

each species exhibited different rates of regeneration. While Nicotiana benthamiana 

exhibited regeneration rate of 100% (Bourgin, Chupeau and Onier, 1979), A. thaliana 

exhibited ~50% (Chupeau et al., 2013), Brassica oleracea ssp botrytis (cauliflower) 
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89% (Kirti et al., 2001), Brassica oleracea ssp italica (broccoli) 32% (Kirti et al. 2001) 

and Brassica oleracea ssp capitata (cabbage) 37% (Kirti et al. 2001). 

Some researchers have utilized protoplast regeneration as a means to an end in 

studying early developmental events in plant cells or understanding transcriptomic 

mechanisms underlying plant de-differentiation (Chupeau et al., 2013, Avivi et al., 

2004). An additional application was realised when used in conjunction with the 

methodology for somatic fusion of protoplasts to create hybrid plants that would 

otherwise be impossible through classical breeding methods (Evans, 1983). Using this 

approach many new hybrids of existing plants were introduced into agricultural 

collections (Waara and Glimelius, 1995). 

5.1.3. OBJECTIVE OF THIS WORK 

In Chapter 4, it was found that a genetically identical population of cells can exhibit 

stochastic gene expression and response to biotic stress stimuli. This heterogenous 

distribution was found to be in part correlated with the ploidy number of a cell which 

allowed higher levels of gene expression. Here, we hypothesize that by utilizing the 

power of FACS, it could be possible to select the previously identified high expressive 

subpopulation (HF) from pWRKY11::YFP-NLS protoplasts and culture them to 

regenerate a new plant. If this change was fixed via an epigenetic mechanism, the 

offspring could potentially inherit the high expression levels of its ancestor.  

5.2. RESULTS 

5.2.1. OSMOTICUM IN SHEATH FLUID IS AN IMPORTANT COMPONENT FOR HIGH 

EFFICIENCY, LIVE PROTOPLAST SORTING  

Protoplast regeneration is a sensitive and laborious procedure spanning months with 

many critical control points (Figure 5.1). For a successful workflow, there a number 

of considerations to be taken into account. 
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Figure 5.1. Protoplast regeneration workflow. Leaf number 9-10-11 from 6 
weeks old healthy pWRKY11::YFP-NLS plants were used for protoplast 
generation. Cells exhibiting high fluorescence were selected by FACS and put into 
protoplast induction media. Media is changed as directed in section 2.6.9 for 
induction of dedifferentiation and microcalli formation. 

 

First, regeneration efficiency of the protoplasts is dependent on the age and prior stress 

condition of the plant (Bourgin, Chupeau and Onier, 1979). For this reason, leaves at 

a younger developmental stage (leaf number 9-10-11) from plants with optimal health 

(no light stress effect, no wounding etc.) were chosen for protoplast generation.  

In this work, second important point to consider is the number of live protoplasts that 

can be obtained from FACS procedure. Settings for FACS are given in Table 5.1, with 

three components to particularly consider. One specification was for the sheath fluid.  

During sorting, this fluid encapsulates protoplasts in drops, forming approximately ¾ 

of the drop volume. If the composition of this fluid does not sustain homeostasis of 

protoplasts, they will die before even reaching the collection tube. A crucial factor is 

maintaining the osmotic pressure of protoplasts. For this reason, an osmoticum was 

added in the design of the new sheath fluid composition. Glucose was chosen among 

four other candidates; fructose, galactose, mannose and mannitol since it does not form 

crystals upon evaporation of solvent, in this case water. Otherwise, the growing 

crystals would shear the delicate cell membrane or block the microtubing in a FACS 

machine. The pH of the sheath fluid was reduced to 5.8 as the optimal range for 

protoplast culturing, to sustain protoplast viability after sorting procedure. KCl salts 

were also added to allow charging of stream and correct functioning of the sorting 

system. Finally, NaN3, a toxic chemical used to prevent contaminant growth in 

commercial sheath fluids was not included in the homemade sheath fluid composition.  
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The second component of FACS to be optimized was the physical equipment 

specifications. These include nozzle size, sheath and sample pressures. The diameter 

of sample fluid encapsulated by sheath fluid in FACS should usually be 1/3rd of the 

nozzle size used. Given the plant cells ranges from 10-100 µm, a 130 µm nozzle size 

(largest available) was used. This way, protoplasts up to ~45 µm in diameter could 

easily be sorted. In line with these specifications, all generated protoplasts were 

filtered using a 40 µm mesh to reduce creation of cell debris within FACS. Next, in 

order to reduce the mechanical stress on the sensitive membrane structures of 

protoplasts, sheath pressure was lowered from a commonly used 20 psi to 10 psi, and 

sample pressure was reduced from 10 psi to 2 psi.  

The third component that was optimised was the sorting specification. To further 

increase membrane stability, samples were chilled to +4˚C before running through 

FACS to rigidify the cell membrane. Cells were then sorted into a collection tube filled 

to ¾ with protoplast induction media solution which provided cushioning for sorted 

cells.  

 

Table 5.1. Specifications of not-optimized and optimized FACS procedures for 

high efficiency, live plant protoplast sorting.  
 

Variable Not-optimized Optimized 

Sheath Fluid 

Specifications 

pH pH 7.4 PBS buffer pH 5.8 MES buffer 

Osmotic Pressure No osmoticum 0.4M Glucose 

Salts NaCl, KCl, NaN3 KCl 

Equipment 

Specifications 

Nozzle size 100µm 130µm 

Sheath pressure 20psi 10psi 

Sample pressure 10psi 2psi 

Sorting 

Specifications 

Temperature Room temp 4˚C 

Sorting receptacle Empty tube 
Tube filled ¾ with 

PIM media 

Sorting 

efficiency 

Live cells/sorted 

events 
~0.01% ~30% 
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To test the optimized FACS procedure, protoplasts were generated from leaf number 

9-10-11 of six-weeks old A. thaliana plants and stained with the fluorescent viability 

dye fluorescein diacetate (FDA), and subjected to both non-optimized and optimized 

protocols. 2x103 events with high fluorescence were sorted with each method. 

Protoplasts exhibiting fluorescence were counted under epifluorescence microscope 

(Figure 5.2) and the percent efficiency was calculated as the number of cells that 

survived per 100 events sorted (Table 5.1). Without optimization, efficiency of live 

cell sorting was calculated to be approximately 0.01%, after optimisation it was 

increased to approximately 30%, a number sufficient for further studies.  
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Figure 5.2. Optimization of live protoplast sorting efficiency. A,B,E,F) Images 
of protoplasts at 3x105 PP/ml concentration as suspension in WI media before 
FACS. C,D) Images of sorted, FDA-stained protoplasts using non-optimized 
protocol. G,H) Images of sorted, FDA-stained protoplasts using optimized FACS 
protocol. Scale bars represent 20 µm for A,B,E,F; 50µm for C,D,G,H. 
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5.2.2. REGENERATION STUDIES OF SINGLE-SORTED PROTOPLAST CELLS IN 

SUSPENSION CULTURES 

Using the optimized protocol, pWRKY11::YFP-NLS single-protoplasts exhibiting 

high fluorescence were sorted from the P5 gate set in Section 4.2.3 (Figure 4.14) into 

96 well tissue culture plates containing 100 µl of PIM solution with one cell sorted 

into each well. The media was changed as directed in Chupeau et al., 2013 to induce 

microcalli formation. Single-cell sorting experiments were performed three times and 

576 single cells (6, 96-well plates) were sorted for each experiment with an average of 

a 25% viability rate, in line with optimization tests. It was reported that cells should 

exhibit division 2 days after sorting (Chupeau et al., 2013). No division was observed 

in any of the surviving cells after two days in PIM media. After 5 days, approximately 

50% of the cells (~270) showed loss of chloroplasts, which was indicative of de-

differentiation. However, no signs of nuclear-division was observed at this stage 

(Figure 5.3.A,B). At day 12, approximately 10% of the de-differentiated cells 

exhibited expanding cell wall structures. However, still no nuclear division was 

observed in the expanded cell, indicating an abortive fate and the other 90% of cells 

were no longer viable (Figure 5.3.C,D). Cells showing cell-wall expansion were 

imaged again at day 22 after culture media was refreshed. No further cell-wall 

expansions or nuclear divisions were observed at this time. After a month in culture, 

all cells exhibited significantly reduced nuclear fluorescence indicating they were no 

longer viable (Figure 5.3.E,F).  
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Figure 5.3. Single-cell sorting and regeneration of protoplasts in suspension 
culture. A,B) De-differentiating protoplast losing its chloroplasts after 5 days of 
culture in PIM. C,D) Expansion of cell wall without nuclear division signifying 
potential abortion of future cell division. E-F) No further expansion of cell-wall and 
gradual loss of nuclear fluorescence indicating cell death. G-H) No visible nuclear 
fluorescence indicating dead cells. (Scale bars = 20 µm) 
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5.2.3. REGENERATION STUDIES OF SORTED PROTOPLAST IN LOW DENSITY 

SUSPENSION CULTURES 

In the study of Chupeau et al., 2013, a minimum culture density of 8x104 PP/ml was 

used, which was the only difference between the methods used in their study compared 

to the one PP/ml density used in this study. For this reason, it was hypothesized that 

the number of cultured protoplasts might be the reason for reduced regeneration rates. 

To test this hypothesis, 1x104 PP exhibiting high fluorescence were sorted into 24 well 

tissue culture plates containing 1ml of PIM using P5 gate set in Section 4.2.3 PP as 

opposed to 1 PP/ml in a well. Due to technical limitations in this study, 1x104 

protoplasts was the maximum amount that could be sorted with each experiment. 

Compared to the single cell sorting protocol (Figure 5.3), protoplasts sorted in bulk 

had significantly greater division rates 2 days after sorting into PIM (Figure 5.4.A). At 

day 2, approximately 60% of the surviving PP retained their nuclear structure and did 

not de-differentiate, while the remaining 40% lost their chloroplasts, underwent 

chromosomal rearrangement and exhibited signs of cell division (Figure 5.4.A,B). 

After a week of incubation, at day 9, approximately 2% of the cells which lost their 

chloroplasts, underwent repeated divisions to result in microcalli formations. At this 

stage, approximately 10 microcalli could be seen in the protoplast suspension culture, 

all of which possessing multiple fluorescent nuclei. Remaining cells with arrested 

divisions were observed to have lost their cellular integrity with no nuclei in them 

(Figure 5.4.C,D). At this stage, the overall efficiency of regenerating PP/total number 

of PP sorted, was approximately 0.1%. 15 days after sorting, the remaining microcalli 

still possessed multiple nuclei but halted further growth, despite replacement of media. 

It was also observed that the nuclear fluorescence of the reporter protein was 

significantly reduced. This was an indication that the microcalli had aborted 

regeneration. After 30 days, it was found that all microcalli but one had lost their 

nuclear fluorescence. Eventually, this microcallus also lost fluorescence despite all 

efforts.  
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Figure 5.4. Low density sorting and regeneration of protoplasts in suspension 
culture. A,B) De-differentiating protoplast losing its chloroplast and nucleus for 
cell division 2 days after sorting in PIM. C,D) De-differentiated protoplasts divide 
to create multinuclear microcalli while most protoplasts lose their cell membrane 
and die 9 days after sorting into PIM. E,F) No further expansion of cell-wall and 
gradual loss of nuclear fluorescence. G,H) Last live microcalli remaining from 
2x103 sorted protoplasts. (Scale bars = 20 µm) 
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5.3. DISCUSSION 
While the optimization of FACS and protoplasts was successful, regeneration of 

protoplasts using the suspension culture method presented challenges in testing 

hypotheses about the inheritance of defence responses state. However, the second 

round of testing showed that that using increased number of sorted protoplasts had a 

positive effect on stimulation of microcalli formation. Upon further research, it was 

found that protoplasts release signalling molecules to the environment to stimulate 

growth of other cells. This is known as media conditioning and was found to be 

possible only in high protoplast culture densities (Schäffler and Koop, 1990). To 

increase regeneration rate in low-density protoplast cultures, the best techniques were 

found to be ones utilized in single cell engineering and plant somatic embryogenesis 

studies. These studies suggest employment of either external media conditioning or 

protoplast nursing techniques (Schäffler and Koop, 1990). In the conditioning method, 

protoplast induction media is pre-incubated with a high density of protoplasts before 

use in single-cell regeneration studies. This method supplies the necessary signalling 

molecules for regeneration without having a need for incubating cells in high 

concentration. In the nursing method, the cells of interest are incubated in conjunction 

with other protoplasts separated by porous barriers, allowing exchange of signalling 

molecules. These barriers can either be made from low melting point agar in a 

designated area of growth or by micro-fluidic cell encapsulation (Grasso and Lintilhac, 

2016; Schäffler and Koop, 1990). Employing these strategies in conjunction with the 

optimized protoplast generation and FACS techniques developed in this study should 

provide a chance to test the inheritance hypothesis in future.  
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6. GENERAL DISCUSSION  

Transgenic legume model plants with tissue type reporter expression is important 

for development of agricultural practices 

Global food demand is increasing with each passing year (Fischer et al., 2014), and at 

the same time current agricultural practices result in degradation of land, 

contamination of water and release of greenhouse gasses (Shcherbak et al., 2014; FAO 

and ITPS, 2015). This brings challenges to human health but also soil and 

environmental health. In order to address these pressing challenges, sustainable 

agricultural practices have to be adopted as soon as possible. These approaches need 

to be built on holistic land management principles, creating systems that support each 

other and minimize outside intervention. Due to their unique relationship with 

nitrogen-fixing bacteria, legumes are a key player in this process since they can enable 

nitrogen-enrichment of soils without using chemical fertilizers (Valentine et al., 2018). 

For this reason, it is crucial to understand molecular processes happening during 

nitrogen fixation in legume roots and nodules. While studies are ongoing on this topic, 

approaches have mostly focussed at looking at the whole root system (Mounier et al., 

2014; Ruffel et al., 2011; Streeter, 1985; Zhang et al., 1999), despite the fact that since 

each tissue type in a root possesses different chromatin landscape and their molecular 

processes will vary. This means that valuable information about the regulation of 

nodulation will be missed or overlooked. Previous tissue-specific work in the model 

Brassicaceae species A. thaliana showed that thousands of genes are regulated at the 

cell-type level (Gifford et al., 2008). While such detailed work has been performed for 

A. thaliana, members of the Fabaceae (legume) family such as M. truncatula still 

require significant amount of research at the cell type level. One of the reasons for this 

is the fact that M. truncatula stable transformation is long and laborious, thus, research 

requires a significantly longer time (Song et al., 2013).  

In this thesis, two tissue specific vectors for expression of a fluorescent and GUS 

reporter protein in cortex tissue were generated and tested via transient transformation. 

These are valuable resources for stable transformation practices in future tissue 

specific studies on legume plants as current tissue specific research in M. truncatula is 

dependent on laser-microdissection methodology which only allows isolation of a 

limited amount of cells at a time (Hogekamp et al., 2011; Sevin-Pujol et al., 2017). By 

creating these stable transgenic lines, it will be possible to study cell-type specific gene 



 144 

expression in legumes with greater accuracy due to better sequence coverage. This will 

help understand the role of each tissue type in a variety of cellular processes such as 

nodulation and lateral root formation as well as for identifying specific responses 

produced by each tissue type under various environmental conditions such as variation 

in soil nutrient content, pH, pathogen stress etc. Understanding these responses will 

create a foundation for driving future work on wider use of N-fixing rhizobia and 

ultimately, improvement of agricultural practices.  

One such improvement would be advances in research on engineering the nitrogen 

fixation ability of legumes into economically important crop species such as cereals 

(Bailey-Serres et al., 2019). In order to achieve this, it is imperative to understand the 

nitrogen fixation process as a whole with all its components in all parts of a root from 

initiation of nodule formation, to nodule maturation, nitrogen fixation machinery and 

distribution of fixed N to the necessary parts of the plant (Burén and Rubio, 2018; 

Yang et al., 2018). Besides, as root system architecture is managed by a combination 

of signals stemming from multiple tissue types (Herrbach et al., 2014; Le Roux et al., 

2017), a holistic understanding of the root with all its components is required to 

understand how to influence the RSA by adjusting soil components for guiding the 

plants to have better adaptability to their environment. An example of this was 

published by Uroz, Courty and Oger, in 2019 where they explained legume-rhizobia 

symbiosis creating a symbiosis cascade, altering the microbial composition of the soil 

significantly. Such alterations could in turn create beneficial relationships between 

subsequent crops sown in such soil to improve crop quality and yield.  

Stochastic gene expression could have a role in adaptation of plants against 

pathogen attack 

On top of the complexity of variable cell-type specific expression, we know that 

genetically identical cells also have variation in gene expression such as in their extent 

of responses to changing environmental conditions. These responses were previously 

identified in prokaryotes (Balaban et al., 2004), single celled eukaryotes (Freddolino 

et al., 2018; Liu et al., 2015) and multicellular organisms (Dragotakes et al., 2020)). 

In prokaryotes stochastic switching of genetically identical bacteria to growing or 

persistent states resulted in survival of persistent cells upon antibiotic treatment and 

death of cells at growth state allowing survival of the population as a whole (Balaban 

et al., 2004). In S. cerevisiae, increased CUP1 gene promoter noise was found to confer 
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better resistance to copper toxicity in industrial fermentation processes (Liu et al., 

2015). And in mammals, macrophage phagolysosome pH was found to be 

stochastically determined within and between cells to allow preservation of energy 

while maintaining a wide range of defence against pathogens (Dragotakes et al., 2020). 

In this work, it was possible observe the phenomenon of phenotypic variation in A. 

thaliana leaf spongy mesophyll cells challenged with pathogen stress (flg22 bacterial 

elicitor treatment) using fluorescent confocal microscopy. Results presented in this 

work indicate that the variation might be linked to the innate transcriptional ability of 

the cell that can be a result of increased genetic content through spontaneous 

autopolyploidy events. Indeed it was previously found that increased genetic material 

would result in higher, non-additive, gene expression through allele dosage effects 

(Osborn et al., 2003). It was found that differential expression of stress related genes 

were more pronounced in autotetraploid A. thaliana plants in comparison to diploid 

plants (Ng et al., 2012). However, it is also known that increased expression of stress 

responsive genes might have a negative impact on the development of a plant (Heil 

and Baldwin, 2002). Thus, it is possible that through spontaneous stochastic 

autopolyploidy, somatic plant cells enable a compromise for creating stronger 

responses upon stress, while still allowing healthy development of a plant. Spongy 

mesophyll cells identified with high initial responses in this work (Figure 4.10.A-HF 

cells), were proposed to be sentinel cells for rapid recognition of environmental 

stresses and generation of immediate responses. This is a novel concept for plant stress 

response. Its phenotypic implications as well as transcriptomic and proteomic sources 

should be investigated in future studies. To that end, it should be possible to utilize 

selective power of FACS in identification of these sentinel cells and measure RNA 

and protein levels at the same time using methods such as the RNA expression and 

protein sequencing assay (REAP-seq) (Peterson et al., 2017) or citing of 

transcriptomes and epitopes by sequencing (CITE-seq) (Stoeckius et al., 2017). 

Information gained from these studies will allow us to understand the adaptation 

function of heterogeneity present in seemingly identical cells in plants. 

Transcriptional states can be inherited over generations, via the mechanism of 

transgenerational epigenetic inheritance in plants (Hauser et al., 2011). There is an 

intriguing possibility that stronger or more variable flg22 responses in one cell could 

be passed to the next generation. In this frame, each somatic cell can become a 
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potential precursor for improvement of the next plant generation, if cells with desired 

properties can be selected then they can be used as the basis for plant regeneration.  

In this study, two methods were used for regeneration of sorted protoplasts with 

improvements in the protocol. First, a gentler sorting approach was studied to obtain 

high number of live protoplasts. However it is possible to achieve higher live sorting 

rates utilizing the recent advancements in microfluidic cell detection and sorting 

technologies (Yu et al., 2018). Moreover, in order to increase regeneration efficiency, 

sorted protoplasts require cultures with a specific topology that supports their growth 

(Schäffler and Koop, 1990). It was found that regeneration of low density or single 

protoplasts requires specialized approaches such as microdroplet encapsulation 

(Grasso and Lintilhac, 2016; Koop and Schweiger, 1985) or nursing culture (Eigel and 

Koop, 1989). Microdroplet encapsulation approach provides structural support to 

single cells while limiting the space in which the growth promoting hormones released 

from the protoplast can accumulate and increase regeneration efficiency. Nursing 

culture approach utilizes a microchamber allowing diffusion of growth promoting 

hormones from a high-density protoplast culture to a low density one without them 

mixing. With such tools, it might be possible to expand on the pool of material 

available for crop improvement, making each cell a potential new plant, without 

genetically modified methods, thus bringing new options for sustainable agriculture 

but addressing the lack of legislation enabling use of genetic modification. 

Broader impact of findings 

Future of food security is under threat by unsustainable agricultural practices and use 

of slow classical breeding methods. Thus, the scientific community carries the 

responsibility to investigate better possibilities to alleviate these threats by coming up 

with alternative methods. With developing technology and better understanding of 

molecular biology, each research project pushes mankind one step closer to this goal.  

In order to make this goal into reality, this study presented the importance of 

understanding molecular mechanisms underlying phenotypes emerging from nitrogen 

effect on nodulation and pathogen stress response. In this study, multiple novel ideas 

with potential to grow were presented. One is the prospect of ‘sentinel cells’ in plant 

mesophyll tissue towards creating responses against pathogen stress. Along with 

recent research in transgenerational trait inheritance, these cells (once identified) could 

prove an invaluable source for next generation breeding technologies for cultivating 
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plants with better stress resistance. In another example, orthologs of M. truncatula 

nodulation genes in A. thaliana were found to have differential expression patterns in 

response to nitrogen treatment suggesting encouraging research on more information 

for legume cell-type specific gene expression profiles. To that end, novel transgenic 

legume plants with cell-type specific reporter expression has already been started. By 

utilizing these lines it could be possible to identify key players in nodulation and thus 

contributing to the efforts for utilizing bioengineering approaches to create crop 

species that are self-sufficient in their nitrogen requirement. In conclusion, findings of 

this study can be treated as valuable primers for creating sustainable agricultural 

practices and next generation plant breeding techniques. 
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