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Abstract Causal questions drive scientific enquiry. From Hume to 

Granger, and Rubin to Pearl the history of science is full of examples of 

scientists testing new theories in an effort to uncover causal mechanisms. 

The difficulty of drawing causal conclusions from observational data has 

prompted developments in new methodologies, most notably in the area 

of graphical models. We explore the relationship between existing 

theories about causal mechanisms in a social science domain, new 

mathematical and statistical modelling methods, the role of 

mathematical proof and the importance of accounting for uncertainty. 

We show that, while the mathematical sciences rely on their modelling 

assumptions, dialogue with the social sciences calls for continual 

extension of these models. We show how changing model assumptions 

lead to innovative causal structures and more nuanced casual 

explanations. We review differing techniques for determining cause in 

different disciplines using causal theories from psychology, medicine, and 

economics. 

Keywords: causality; Bradford Hill criteria; instrumental variables; causal 

algebras; graphical models; Bayesian Networks; mental models; 

uncertainty; proof. 

Introduction 

When can we say that one thing is the cause of another?  In common 

parlance, we usually intend to convey that cause is a necessary and 

sufficient precursor of an effect.  While this question motivates much of 

scientific research, causality may not be immediately amenable to the 

rigour and certainty of mathematical proof. Rather, some probabilistic, 

interventionist notion of causality is required to model the observations 

and uncertainty in the system. 

In the search for truth and evidence, typically, we want to understand the 

real world and so we build a model that captures the entities, stimuli, 

relationships, and behaviours we observe (French, 2015). This can be a 

simulation or a mathematical model that describes the observed elements 

of interest. However, uncertainties arise because the model can only ever 

be an approximate representation of the world. There may be uncertainty 

about scientific theory, the strength of the effect, randomness, unknown 
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future values, and calculation accuracy.  Additionally, all models 

incorporate subjective uncertainties, degrees of belief and preferences 

automatically built in by the choices and assumptions of the modellers. 

This leads to uncertainty about the descriptive model’s ability to capture 

all the salient features of the world, uncertainty pertaining to the beliefs 

and values encoded within the model and uncertainty about how many 

analyses to perform to be sure of the model. 

The lack of uncertainty in mathematical proofs, and their enduring nature 

is what attracts some to the field (Barons and Chleboun, 2015). 

Woodward, in his account of interventionist causation states that, 

‘genuinely explanatory proofs are those that show us how the truth of 

some theorem depends on the assumptions from which the theorem is 

proved.’ Thus, ‘when a theory tells us how Y would change under 

interventions on X, we have (or have material for constructing) a causal 

explanation’ (Woodward, 2003). Proofs that are truly explanatory 

characterise a property about a structure in a theorem such that it is 

evident that the result depends on the property. Proofs of this nature 

allow us to see how the effect changes in response. Essentially, proofs are 

an immutable tool to aid research in its search for causal relationships.  

We begin with a history of causal understanding then describe current 

tools for causal analysis, and move on to recent developments in causal 

analysis and how the dialogue between mathematical, medical and social 

sciences are pushing the boundaries of knowledge. 

A brief, interdisciplinary history of causation 

The tension between existing coherent causal theories (understanding of 

biological mechanism, domain expertise, etc.) and the results of models, 

built from observational data has a rich history. Understanding the nature 

of the current dialogue between theory and practice requires knowledge 

of the history of causal understanding as well as the state of existing 

methodologies. This knowledge base prompts discussion about pivotal 

new modelling techniques that allow for more nuanced representations of 

causal mechanisms. 

The complexities of statistical models may sometimes obscure what 

scientists actually mean by cause. Helpfully, Cox and Wermuth identify 

three broad types of causality (Cox and Wermuth, 1996): 
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A. Causality as a statistical dependence which cannot be removed by 

alternative acceptable explanatory variables 

B. Causality as inferred consequence of some intervention in the system  

C. Causality as inferred consequence of some intervention in the system 

augmented by some understanding of a process or mechanism accounting 

for what is observed.  

Questions of life and death prompted the earliest causal investigations. 

Several disciplines point to John Snow as one of the first scientists to frame 

causal questions systematically. John Snow was a medical doctor with an 

aptitude for mathematics. In the 1830s, Snow worked to understand what 

caused a devastating outbreak of cholera (Snow, 1855). At the time, the 

causal mechanism for cholera was unknown and Snow was sceptical about 

the prevailing miasma theory. After plotting on a map the number of 

outbreaks on each street and examining the counts, Snow noticed that the 

deaths clustered around the Broad Street water pump.  However, no one 

working at the nearby brewery was getting ill. Further enquiry revealed 

that brewery workers drank beer during the lunch hour and not water 

from the Broad Street pump. His findings helped to prove that water 

contamination was a cause of cholera, drawing a causal conclusion from 

observational data. This is type B causality in the Cox and Wermuth 

framework. 

Around the same time, Semmelweis investigated deaths in a hospital 

where he observed a decline in childbed fevers when doctors washed their 

hands with chlorinated lime after working on cadavers and before 

attending the maternity unit. His careful charting looks convincing today, 

but without the relevant germ theory developed and proved a few 

decades later through experimentation by scientists like Pasteur and Koch, 

Semmelweis’s findings failed to find an audience. This unfortunate failure 

to communicate convincingly an unexpected causal link, type B causality 

in the Cox and Wermuth framework, underlines the fact that researchers 

expect to find explanations that cohere with their existing causal theories. 

The opposition Semmelweis met with after uncovering a new biological 

mechanism highlights just how difficult causal questions are to answer, 

particularly when the only information at our disposal is observational. 

A few years later, economist George Yule began asking causal questions as 

he investigated the relationship between the changes in poverty rate with 

the proportion of public benefits (Yule, 1895). Controlling for confounders 

and multiple variables (Type A causality) proved pivotal to a multiple linear 

regression model, laying the foundation for much of the regression tools 

that proliferated among economists.  
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Phillip Wright sought to investigate the relationship between tax policy 

and demand and supply elasticity (Wright, 1928). His work on this subject 

introduced the concept of instrumental variables (IVs). In cases where a 

correlation exists between the explanatory variable of interest and the 

error term in the model, a variable that is correlated with the explanatory 

variable of interest, but independent the error term or outcome, may be 

added to the model. Then, by holding one variable constant and varying 

another, how the other changes can be used to infer relationships. For 

example, tobacco tax affects tobacco use but not health making it a 

candidate IV to investigate the causal link between smoking and health. 

Instrumental variables, another example of type A causality, have been a 

formative tool for addressing questions of causation in economics. Later 

developments in statistical theory would further augment the importance 

of IVs. 

As causal questions gathered momentum in the medical, social, and 

mathematical sciences, psychologists questioned how humans 

understand cause. Kenneth Craik, pioneer of mental models, maintained 

that, ‘If the organism carries a ‘small-scale model’ of external reality and 

of its own possible actions within its head, it is able to try out various 

alternatives, conclude which is the best of them, react to future situations 

before they arise, utilize the knowledge of past events in dealing with the 

present and the future, and in every way react in a much fuller, safer, and 

more competent manner to the emergencies which face it’ (Craik, 1944). 

People construct internal models to represent the causal texture of the 

environment (Tolman and Brunswik, 1935). Understanding the nature of 

how humans comprehend cause is crucial to avoiding fallacies in the 

development of causal models and introducing error and uncertainty.  

A critical advancement in causal thinking occurred in 1965, when 

epidemiologist Sir Austin Bradford Hill proposed a set of criteria for 

determining causal relationships from observational studies. Working 

together with physician Richard Doll, they had uncovered the causal link 

between smoking and lung cancer from observational data. Since a 

randomised controlled trial would be both unethical and infeasible, 

Bradford Hill and Doll instead had interviewed lung cancer patients about 

their smoking habits and exposure to other postulated causes (exposure 

to car fumes, tarmac dust and coal fire dust). In one of the earliest case-

control studies, they matched the lung cancer patients to patients with 

carcinomas of the stomach or colon by age, sex, social class, and place of 

residence. The risk of developing lung cancer proved to be 50 times greater 

among patients who smoked 25 or more cigarettes a day when compared 

with non-smokers. This established a strong correlation, but in order to 

definitively establish the causal link, they undertook a prospective study 

of over 24,000 smokers and non-smokers among male medical 
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professionals aged over 35 (who smoked at the same rates as other 

occupations at the time).  The causal link (type A and C causality) was 

demonstrated by a clear dose-response among smokers and a clear 

difference in rates of lung cancer between smokers and non-smokers. 

Causality was accepted when they published these preliminary findings 

three years later (Doll and Bradford Hill, 1950).  

From these observational studies, Bradford Hill went on to establish a set 

of criteria for determining cause from observational data. The criteria 

require that a causal effect should demonstrate:  

• Strength, a large effect size  

• Consistency (reproducibility)  

• Specificity to a particular population, site, disease  

• Temporality, cause happens before effects,  

• Appropriate biological gradient, dose response  

• Plausible mechanism between cause and effect  

• Coherence, agreement between observations and laboratory results 

• Experimental evidence, where practicable 

• Analogy, similarity to the effect of similar factors.  

Since their development in 1965, the criteria have provided a hallmarks of 

causal links for medicine, epidemiology, and public health. 

In the late 1980s and early 1990s the next important advance was the 

development of new types of graphical models, probabilistic models in 

which a graph expresses a conditional dependence structure between 

variables, and probability captures uncertainty by using appropriate 

distributions of values rather than point estimates. These uncover type A 

and C causality. Clive Granger proposed econometric time series models 

that defined a Granger cause (Granger, 1988) when the cause occurs prior 

to the effect and the cause has unique information about the future values 

of its effect. Rubin developed a potential outcomes framework, posing 

counterfactual questions about what would have been observed had 

different conditions prevailed. Judea Pearl and other statisticians and 

computer scientists explored the rich space of probabilistic graphical 

models that have been successfully applied to a vast array of applications, 

specifically Bayesian networks (BNs, see Figs. 1 and 2). Graphical models 

have now become ubiquitous and are typically one of the first tools used 

to address causal questions.  
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As network data becomes more readily available in the medical and social 

sciences, enabling the use of probabilistic graphical models, the debate 

about the importance of theory versus methodology is more pressing than 

ever. We will review these methods below before posing interdisciplinary 

questions at the boundary of current causal theory and methodology in 

the subsequent section. 

Current tools of causal analysis  

Current practices for determining causation vary across disciplines, in line 

with the history of each discipline. Randomised control trials remain the 

gold standard, especially in medicine, but where this is infeasible, 

scientists turn to discipline-specific tools to analyse observational data. 

Medical scientists tend to place particular importance on existing theories 

about causal pathways, in preference to allowing causal discovery 

algorithms to guide their experiment design. Since it is usually infeasible 

to measure every possible variable, current understanding about plausible 

causal explanations tend to drive experimental design. 

Bradford Hill criteria for study design 

Epidemiology uses the Bradford Hill criteria to synthesise results from 

observational studies. For example, the Bradford Hill criteria have been 

used to make the case that sleep deprivation is a cause of obesity and of 

several chronic diseases, each criterion satisfied by different study designs 

(Cappuccio et al., 2010). In the USA, as the average number of hours adults 

reported sleeping declined from 9.0 in 1910 to 6.8 in 2005, average BMI in 

the same population rose from 23.0 in 1910 to 26.9 in 2005, suggesting an 

association.  A cross-sectional meta-analysis (Cappuccio et al., 2008) 

showed an association between short duration of sleep and obesity 

prevalence (the proportion of cases in the population at a time point) in 

both children and adults, demonstrating the strength, specificity and 

consistency of association. A prospective study to see if exposure precedes 

outcome then determines the directionality. Recent work measured 

obesity incidence and showed that both children and adults with short 

sleep had an increased risk of developing obesity over time with the same 

order of magnitude. Carefully designed, short term randomised controlled 

trials of short and disturbed sleep determined a dose-response in key 

hormonal changes which replicated across people and reversed when 

sleep returned to normal.  Observed changes in the levels of two 

hormones, leptin and ghrelin, which regulate appetite provide a plausible 

biological mechanisms for sleep deprivation causing obesity. Analogous 

results found plausible mechanisms for sleep deprivation causing 

diabetes, hypertension and coronary heart disease. (Spiegel et al., 2009, 

Broussard et al., 2012; Cappuccio et al., 2011; Leng et al., 2015). 
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In all of these studies, the effects are strong (large relative risks), 

consistent, show a temporal sequence, a dose – response, have biological 

plausibility and reversibility in controlled trial conditions (at least short-

term), so under the Bradford Hill criteria we accept that poor sleep causes 

obesity and causes these chronic diseases. These criteria continue to guide 

study design in epidemiological research today. Understanding how these 

criteria are implemented is crucial for appropriate extra-disciplinary 

applications of statistical methods. This represents an area of growth for 

interdisciplinary work between statisticians and epidemiologists.  

Causation as invariant statistical dependence in graphical 

models 

Whilst the medical sciences are focused on uncovering the biological 

mechanism responsible for cause in a system in order to provide 

appropriate interventions, the mathematical sciences offer a powerful 

alternative to the traditional way of addressing this problem. Probabilistic 

graphical models offer a tremendous opportunity to inform experimental 

design alongside the qualitative considerations outlined above.  

To address the questions of statistical dependence and consequences of 

interventions, scientists across disciplinary boundaries often use graphical 

models. Partially inspired by Wright’s work on path diagrams (Wright, 

1934), researchers began to use graphical models to depict the 

relationships between elements of a system. One of the most pervasive 

types of graphical model is the Bayesian network. These structures model 

problems as sets of nodes and directed edges without cycles.  For instance, 

our system might be represented by the Bayesian network in Figure 1. 

 

Figure 1: A sample Bayesian network. In this graph, X, Y and Z are random 

variables and the directed edges (arrows) represent the dependencies between 

the variables.  This is a directed acyclic graph (DAG), since it is not possible to 

return to any node by following the directed edges. Formally, a BN is a directed 

acyclic graph and a set of independence statements. 

Whilst it is tempting to interpret the arrows here as strictly causal, the 

mathematical interpretation of this graph is rather less strong. Under the 

critical Markov assumptions, it tells us that X and Z are independent given 

Y (Markov, 1954). Missing edges in graphs (such as that between X and Z) 

demonstrate independences in the graph—our starting point for 

determining what doesn’t cause what in a graph. In fact, each graph 

belongs to a class of equivalent graphs that encode the same conditional 

independence relationships.  
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In our example, the Bayesian networks in Figure 2 are all equivalent 

because they all represent X and Z as conditionally independent. Bayesian 

networks also fulfil the Faithfulness Assumption, which means that all of 

the necessary conditional independence statements are encoded by the 

network. That is, there are no additional, context-specific independences 

necessary to model the system (Meek, 1995; Spirtes et al., 2000). 

 

 

 

Figure 2: Equivalent Bayesian 

networks, all encoding that X is 

independent of Z given Y. 

 

 

 

To determine what Pearl terms ‘genuine cause’ our model must admit an 

instrumental variable (Figure 3) to identify which causes are invariant 

across the class of equivalent graphs. A Bayesian network is truly causal 

when each of the nodes is invariant to marginalisation. That is, forcing a 

variable node to take a particular value has the same effect on the other 

nodes as if the variable had taken that value naturally. 

 

Figure 3: Bayesian network encoding that Z is independent of both X and U, given 

Y.  Z is an instrumental variable. i) Z is associated with the treatment X. ii) Z is 

independent of the unobserved confounding factors affecting our treatment and 

outcome (X and Y, respectively). iii) Z is independent of Y given X and the 

unobserved confounders. 

Using these fundamental assumptions, Bayesian networks that are 

invariant to marginalisation can be used to determine mathematically 

causal relationships within a system. These networks can then be used to 

estimate the effect of proposed interventions using Pearl’s Do-Calculus 

(Pearl, 2009), and so can form the basis of policy decision support.  
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The promise of Bayesian networks has catalysed research into algorithms 

to find network structure from data and causal relationships within a 

network (Entner, 2013). Causal discovery algorithms have expedited the 

disciplinary reach of these methods, and as more and more data becomes 

available, the social sciences are beginning to leverage these methods.  

However, their usefulness is limited unless used alongside domain 

expertise and qualitative considerations, such as that used in the Bradford 

Hill criteria. 

Recent advancement in causal analysis  

The collaboration between quantitative and qualitative approaches to 

causation represents a key area for research growth, providing methods 

to combine data, expert knowledge and plausible assumptions to reach 

causal conclusions. Mathematicians are working to refine the assumptions 

of graphical models, remedy limitations of scope in existing methodology 

and define new classes of models that may be better suited to specific 

causal questions raised in an array of disciplines.  

Refining model assumptions 

When using observational data the question arises how we can compute 

the causal effect of one variable on another from data obtained from 

passive observation without interventions? By using a graph to represent 

the problem, this becomes a graph-theoretic problem. Pearl (2016) 

introduced a back-door criterion, identifying which variables should be 

conditioned on when investigating a causal relationship between other 

variables. 

Bayesian networks can legitimately be used as long as the model meets 

the Markov and faithfulness assumptions. The faithfulness assumption 

strengthens the inferences we can draw in some practical applications 

(e.g. Chen et al., 2007).  A live area of research seeks to relax these and 

other assumptions in robust ways to obtain more flexible notions of causal 

inference.  

One recent example of a method for relaxing the faithfulness assumption 

for when treatment and outcome are confounded is the witness 

protection program protocol developed by Silva and Evans (2016). This 

provides ways to find a set of variables that allow a witness variable to be 

used as an instrumental variable to give bounds on the average causal 

effect. This also allows us to differentiate between strong directed effects 

and strong active paths and thus more nuanced definitions of causation. 

In this way, the new witness variable bridges back-door adjustment and 

the IV adjustment via the faithfulness assumption. 
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The importance of assumptions in mathematical and modelling cannot be 

overstated: the real purpose of causal discovery methods is not to provide 

neat answers, but rather to demonstrate that observational data is 

compatible with more tentative answers. For this it may be necessary to 

devise new models 

Defining new models: the chain graph 

The complex, rich and diverse tasks of the statistician include 

understanding research questions in other fields, designing empirical 

studies, evaluating models and methods of analysis, and interpreting 

evidence in data and results of statistical analyses. Understanding a 

problem statistically requires thorough investigation of the context, 

response variables of interest, regressors, and intermediate or mediating 

variables.  

However, naïve or inappropriate use of statistical methodology can lead 

to indefensible conclusions and studies which fail to replicate the same 

results with appropriate alternate data sets.  Failure to replicate a studied 

effect calls into question the hypothesised causal relationships. From a 

statistical perspective, some methods may not permit replication. 

Consequently, some measures of dependence are inappropriate if 

replication under stated conditions is a purpose of the research, such as in 

medical applications. For example, applying multivariate methods to 

several binary variables will not give replication when the context 

conditions of studies differ strongly. To address this, Wermuth and 

Marchetti (2017) demonstrate that replicable results are permitted by 

well-fitting, mean zero Ising models (Ising, 1925). 

Another difficulty is that, in a given study, joint responses may be needed 

to properly capture effects of interventions. For instance, a medication to 

treat high blood pressure affects both systolic and diastolic blood pressure 

simultaneously, so it is not appropriate to model them as occurring 

sequentially. Hence, models should include joint responses whenever no 

order is plausible for several responses which remain related after their 

regressions on important explanatory variables. 

To circumvent the limitations of the DAG models (Figure 1) to capture joint 

responses, Wermuth and Cox (2013) suggest regression graphs, a chain 

graph structure that encodes the ordering of joint responses by blocking 

together variables of the same type (response, intermediate, explanatory, 

background) and that represent conditional independences between 

them. These graphs are particularly adept at representing joint responses, 

(Cox and Wermuth, 1993; Drton, 2009; Fallat et al., 2017).  
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Interdisciplinary efforts towards careful definition of the problem context, 

possible regressors, and joint responses motivates advancements in 

probabilistic graphical models. 

Defining new classes of models as series of events 

While the Bayesian network is a powerful tool for causal models, it is not 

always appropriate. Often, causal claims may be presented as a narrative 

of sequential events which can be described mathematically by an event 

tree. These can be transformed to a new class of graphical model, the 

chain event graph (CEG) which admits a unique causal algebra. Using 

algebraic statistics, we can extend the machinery of Bayesian networks to 

other classes of graphical mode in the following way.  

In an undirected graph, the directionality of the relationships between 

variables represented by an undirected edge is ambiguous, so no causal 

structure can be inferred. In a directed graph, such as a Bayesian network 

(BN), we have potential causal relationships given by the set of possible 

collections of conditional independence statements that describe the 

data. Causal discovery algorithms score possible BNs according to how well 

they fit the data. Often, these discovered graphs are then reverse-

engineered to infer causal implications and estimate causal effects, 

assuming graph is the truth. Although the output of the causal discovery 

algorithms is often taken to be causal, Spirtes and Pearl argue that such 

output alone is not sufficient to deduce a cause (Spirtes, 2000; Pearl, 2009) 

since there is an entire class of statistically equivalent graphs which can be 

represented by the same essential graph, having only the directed edges 

common to all graphs in the class.  These are all candidates for truly causal 

relationships. Pearl further defines a genuine cause in a graph as a random 

variable that has an associated instrumental parent within its essential 

graph.  

This idea can be expanded beyond BNs to other classes of graphical 

models. In particular, we now have a suite of tools that allow us to fully 

explore chain event graphs (CEGs). Cowell and Smith (2014) develop causal 

discovery techniques to find the best fitting CEG from data. Thwaites et al. 

(2010) demonstrated how the causal hypotheses of a CEG offer a profound 

flexibility. These classes have been extended even further using computer 

algebras (Görgen, 2017). Görgen and Smith (2017) define the statistical 

equivalence classes of staged trees, identifying the set of possible 

representations. Potential causal directionality on variables deduced from 

quaternion relationships can be found from algebraic features shared by 

all elements in an equivalence class. This is analogous to essential graphs. 

As shown by Collazo et al. (2018), this new class of graphs accommodates 

a much richer space of causal hypotheses. 
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Impact on the social sciences 

Joint responses, asymmetric and sequential relationships seen in the 

medical and social sciences have driven the development of new 

mathematical models to explore them. Mathematical models are also 

used to explore mental models. 

For psychologists, one open question regarding causation is how do 

people update their mental models of cognition? Causal judgements help 

us learn to predict and control our world, build causal models, to reason 

about evidence, and to determine how we attribute responsibilities to 

ourselves or others, especially with respect to legal or medical evidence. 

Causal judgements also affect our temporal beliefs; it has been shown that 

these mental models can even override our perception of the order in 

which things happen (Bechlivanidis and Lagnado, 2016). When learning 

about a system, we may choose interventions to target local uncertainty 

in a model (Bramley et al., 2015; 2017).  The metaphor of Neurath’s ship 

describes how experience is believed to update mental causal models. ‘We 

are like sailors who on the open sea must reconstruct their ship but are 

never able to start afresh from the bottom. Where a beam is taken away 

a new one must at once be put there, and for this the rest of the ship is 

used as support. In this way … the ship can be shaped entirely anew, but 

only by gradual reconstruction’ (Quine, 1960).  In the absence of knowing 

all possible models, a current mental model shifts slowly in the light of 

evidence, adapting with local changes.  

Current studies are underway to investigate how people learn graphical 

models. While the development and proliferation of Bayesian network 

methods proved a useful tool for psychologists to articulate new models 

of cognition, their work in turn has profound insight for how statisticians 

communicate their results to convey understanding to non-specialists. 

This is particularly important when probabilistic graphical models are used 

to underpin decision support mechanisms designed to evaluate alternate 

courses of action (Smith, 2010; Smith et al., 2015; Barons et al., 2018). 

Economists and medical researchers share a common interest in 

determining the role and importance of theory in these new causal 

experiments. Some economists (Deaton and Cartwright, 2016; 

Heckerman et al., 1995) advocate that there can be no causation without 

theory. This ties in to the Bradford Hill criterion—that we expect any 

potentially valid causal explanation not to contradict known theories. 

Medical professionals are concerned about the increasing reach of causal 

discovery algorithms to suggest new biological mechanism.  For example, 

in Hill et al. (2012), dynamic Bayesian networks were used to infer the 

protein signalling network structure in a breast cancer cell line. This 
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generated testable hypotheses, which were then independently validated 

using targeted inhibition, improving knowledge about breast cancer. 

The debate about the importance of theory is a rich opportunity for 

computational scientists to develop models more attune to relevant 

theories. Discovering reproducible, robust causal results demands working 

alongside other disciplines to further the symbiotic relationship between 

the mathematical and social sciences. 

Discussion 

Causal theory and techniques to determine causation from observational 

data have an uneasy alliance. The mathematical sciences have produced 

powerful statistical models and machine learning techniques that have 

rendered causal discovery techniques accessible to a new range of social 

sciences. Economists and psychologists are using these new methods to 

ask more in-depth questions about drivers in economics and cognition. 

Causal discovery techniques discover plausible biological mechanisms with 

increasing rapidity.   

Mathematical methods are inevitably subject to the underlying 

mathematical assumptions on which their foundational proofs rely. 

Ideally, causal analysis across disciplines works in tandem, with model 

results guiding further discovery in the medical or social sciences. In turn, 

practitioners in medical and social sciences may expose the limitation of 

current methodology, which in turn prompts mathematical developments 

to create bespoke models. The tension between existing theories about 

causal mechanisms can be a productive conversation rife with new 

research opportunities. 
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