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Abstract

Streets and motorways are the basic blocks in the core of our transportation net-
works. In recent years, increases in available sensory and computing power have
allowed us to start massive gatherings of data related to their use and performance,
and to obtain insightful information via data science. This, in turn, has increased our
ability to create systems that estimate the state of the transportation networks and
provide us with control capabilities over it, giving rise to the concept of Intelligent
Transportation Systems. These systems aim to provide deeper levels of observabil-
ity to our transportation networks so that their capacity can be increased without
the need of further heavy investment to develop traffic infrastructure, especially in
terms of laying new roads and streets.

In this thesis we aim to contribute to this process in both urban and interur-
ban settings. Here we propose two different algorithms to estimate and forecast
expected travel time in motorways over the long term, ranging from hours to a
week. The first of them is centred around the identification of the different traf-
fic regimes and leveraging their specific characteristics to improve estimation and
forecasting. The second of them looks further into the differentiation between re-
current and non recurrent congestion from the point of view of statistical analysis
in the frequency space, using the natural frequencies of the traffic system to tell
them apart and exert prediction. We also delve into how Intelligent Transportation
Systems can affect our cities, looking at how reinforcement learning can create in-
dependent agents capable of controlling traffic lights at intersections. We do this
by first looking at the most effective agent architectures in different junctions of
increasing complexity. Then we dive into the difference in performance for agents in
charge of vehicular intersections, provided by an array of reward functions that use
different measures obtained from the traffic flow. Finally, we expand these systems
to also take pedestrians into account, investigating the rewards that produce the
lowest waiting times when serving different modes of transportation with opposing
needs.
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CHAPTER 1

Introduction

The world in which we live is becoming progressively more interconnected. One

driving force in this process is our ever increasing ability to gather data from the

events happening around us, and leveraging it to obtain deeper insights about them

via Data Science. This tendency is having an enormous impact on the way that we

interact with different systems around us. Especially as they transition from their

traditional form to new ”smart” approaches which attempt to improve the efficiency

and uses of said systems. We can see examples of this on the recent evolution of

applications aimed at sectors such as utility grids, medicine, online retail, smart

assistants and Intelligent Transportation Systems.

Intelligent Transportation Systems (ITS), which are at the core of the re-

search here presented, were defined by the European Union as ”systems in which

information and communication technologies are applied in the field of road trans-

port, including infrastructure, vehicles and users, and in traffic management and

mobility management, as well as for interfaces with other modes of transport” [10].

Effectively, ITS allow us to make better use from our current transportation infras-

tructure in two main ways: on one hand, it is possible to divert some of our increasing

sensing capabilities towards our road networks to better understand their internal

workings in an attempt to estimate their typical behaviour and use this to generate

predictions, and on the other hand, we can direct some of the newly available com-

puting power to actively manage these systems in real time, achieving increases in

capacity that would not be possible with traditional transportation systems. Here,

both approaches will be used in conjunction with Data Science for different prob-

lems, looking to generate better estimates of travel times for inter-urban networks,

and also at how can urban networks be actively managed in real-time.

Improvements on the reliable estimation and forecasting of travel times in

inter-urban road networks allow road users to forward plan journeys to minimise
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travel time, potentially increasing overall system efficiency. On busy motorways,

however, congestion events can cause large, short-term spikes in travel time. These

spikes make direct forecasting of travel time using standard time series models dif-

ficult on the timescales of hours to days that are relevant to forward planning. The

problem is that some such spikes are caused by unpredictable incidents and should

be filtered out, whereas others are caused by recurrent peaks in demand and should

be factored into estimates.

Improving the operation of urban road networks can significantly reduce

traffic congestion, as well as promote active travel and public transport within a

city and reduce emissions. Optimising the timings of adaptive traffic signals can

play a large role in achieving this by making effective use of green lights in response

to the demand levels on each approach to a junction and by promoting progression

across multiple junctions.

However, most currently used algorithms have been improved only incremen-

tally since their initial development in the 1980s, and so do not take advantage of

either modern traffic data sources, nor modern computational resources. Recent im-

provements in CPU and especially GPU power are allowing for vision-based sensors

to gather large amounts of real-time data that a few years ago seemed unattain-

able, such as individual vehicle position and speeds, at a much lower marginal cost

than would be feasible with traditional actuated sensors. As a side effect of these

developments the area covered by sensors is ever increasing. It is also becoming

possible to direct some of these towards pedestrians, which are now also starting

to be actively factored in these systems with similar importance to vehicles. This

process is allowing the development of novel smart control approaches, harnessing

the power of real-time data to deliver cheap and responsive systems that can adapt

to a variety of situations.

In this thesis, we study different ways in which Data Science can be applied

to create or improve realistic Intelligent Transportation Systems in motorways and

urban areas, aiming at increasing our estimation, forecasting and control of road

traffic based systems.

In Chapter 2 we introduce the context and basic mathematical concepts that

will be required for the development of the rest of the thesis.

In Chapter 3, we present a new method for long-term estimation of the ex-

pected travel time for links on highways and their variation with time. The approach
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is based on a time series analysis of travel time data from the UK’s National Traffic

Information Service (NTIS). Time series of travel times are characterised by a noisy

background variation exhibiting the expected daily and weekly patterns punctu-

ated by large spikes associated with congestion events. Some spikes are caused by

peak hour congestion and some are caused by unforeseen events like accidents. We

present an algorithm that uses thresholding to split the data into background and

spike signals, each of which is analysed separately. The the background signal is

extracted using spectral filtering. The periodic part of the spike signal is extracted

using locally weighted regression (LWR). The final estimated travel time is obtained

by recombining these two. We assess our method by cross-validating in several UK

motorways. We use 8 weeks of training data and calculate the error of the resulting

travel time estimates for a week of test data, repeating this process 4 times. We find

that the error is significantly reduced compared to estimates obtained by simple seg-

mentation of the data and compared to the estimates published by the NTIS system.

Chapter 4 presents a deeper study of the troublesome spikes uncovered in

Chapter 3. Here we introduce the Wavelet Augmented Regression Profiling (WARP)

method for long-term estimation of typical travel times. We look at how Wavelets

can be used to analyse a travel time signal, looking at its statistical properties in the

frequency-time space, finding which data points are outliers with respect to the base

dynamics of the road section and classifying them into background and spikes in a

more sophisticated manner than it was done in the previous chapter. It then fur-

ther separates the spikes into contributions from recurrent and residual congestion.

The linear separation of the components is achieved using a combination of wavelet

transforms, spectral filtering and locally weighted regression. The background and

recurrent congestion contributions are then used to estimate typical travel times

with horizon of one week in an accurate and computationally inexpensive manner.

We train and test WARP on the M6 and M11 motorways in the United Kingdom

using 12 weeks of link level travel time data obtained from the UK’s National Traf-

fic Information Service (NTIS). When evaluating the algorithm via rolling forecast

evaluations, WARP compares favourably to estimates produced by a simple seg-

mentation method and to the currently published estimates.

In Chapter 5, a number of modern deep reinforcement learning architec-

tures are considered for the task of traffic light control in urban junctions, and

compared against commercial systems when using a traffic profile based on realis-

tic demand scenarios. The focus is primarily placed on two Deep Reinforcement
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Learning classes: Deep Q-Networks (DQN) and Synchronous Actor-Critic (A2C)

methods. DQN focuses on estimating the optimal value function from the present

state. A2C estimates the optimal policy and maintains a running estimate of the

optimal value from the present state. In both cases a neural network is used to guide

the algorithm towards optimal decisions. Modern implementations and extensions

of these systems are used to this end: in the case of DQN, Double Deep Q-Learning,

Dueling architectures and Prioritized Experience Replay are used; for Actor-Critic

methods, a entropy penalty function is applied to the policy search. Each of these

additional methods improves training time and the quality of the solutions. These

learning algorithms are implemented on a custom RL platform built to interface

with the PTV Vissim simulator. To this end, software has been designed on top

of the PTV Vissim COM (Component Object Model) API (Application Program-

ming Interface), so that the simulations and input data behave in a manner that is

similar to a multi-agent implementation of OpenAI Gym interface [11]. This assists

in simplifying and rationalizing the training loop for our algorithms. All the source

code is publicly accessible via a GitHub repository [12]. In Chapter 5, the perfor-

mance of these algorithms will be favourably compared against that obtained with

the MOVA, Surtrac and Balance commercial systems. The work there presented

took place in the context of a project in smart mobility between The Alan Turing

Institute and the Toyota Mobility Foundation.

In Chapter 6, different reward functions for Reinforcement Learning agents

operating Urban Traffic Controllers are compared in a simulation of a junction in

Greater Manchester, UK, across various demand profiles, subject to real world con-

straints: realistic sensor inputs, controllers, calibrated demand, intergreen times

and stage sequencing. Several authors have surveyed the reward functions used in

the literature of Reinforcement Learning for Traffic Signal Control, but attributing

outcome differences to reward function choice across works is problematic as there

are many uncontrolled differences, as well as different outcome metrics. The reward

metrics considered are based on the time spent stopped, lost time, change in lost

time, average speed, queue length, junction throughput and variations of these mag-

nitudes. The performance of these reward functions is compared in terms of total

waiting time. It is found that speed maximisation resulted in the lowest average

waiting times across all demand levels, displaying significantly better performance

than other rewards previously introduced in the literature. The work developed in

this and the following chapter took place in the context of an industrial collabora-

tion with Vivacity Labs, after which several of the agents presented there have been
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deployed to the real-world junction to control real traffic.

Chapter 7 extends the work of Chapter 6, shifting the focus to multi-objective

optimisation with the introduction of simulated pedestrian demand, in addition to

the vehicular one. Hence, the requirements of both classes, which are in opposition,

must be balanced by the agent to minimise global delay. The chapter presents a

robust comparison between 30 different Reinforcement Learning reward functions

for controlling intersections serving vehicles and pedestrians. A calibrated model in

terms of demand, sensors, green times and other operational constraints of a real

intersection in Greater Manchester is used. Sensor inputs are restricted to what can

be achieved with current vision-based sensors. The rewards can be broadly classified

in 5 groups depending on the quantities used: queues, waiting time, delay, average

speed and throughput in the junction. The performance of different agents, in terms

of waiting time, is compared across different demand levels ranging from normal op-

eration to saturation of traditional adaptive controllers. We find that those rewards

maximising the speed of the network obtain the lowest waiting time for vehicles and

pedestrians simultaneously, closely followed by queue minimisation, demonstrating

better performance than other methods proposed in the literature.

Finally, in Chapter 8 the main contributions of this thesis are summarised

and reviewed. Further, potential new avenues in which these contributions could be

extended and continued are explored.
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CHAPTER 2

Background

2.1 Time Travel Estimation and Forecasting

This section will introduce the most important ideas and the mathematical back-

ground that will constitute the framework from which different approaches to esti-

mation and forecasting of travel times in road traffic will be developed in following

chapters.

Within road traffic, the focus will be placed in travel times, understood as

the time needed to transverse a given section of road: how they vary in scales

ranging from minutes to weeks and how their baseline variation and behaviour can

be estimated, and this estimation, in turn, used for forecasting.

The main challenges encountered revolve about the noisy and bursty dy-

namics displayed in these time series. The majority of sites evaluated display both

recurring and non-recurrent congestion, affecting the higher quantiles of their travel

times distribution. Distinction between these two classes is not trivial and has a

high impact on the general accuracy of estimation and forecasting methods. In or-

der to better classify time series, estimate their baseline values, and forecast their

future behaviour, techniques introduced in this chapter that are traditionally used

for different purposes will later be combined in novel ways.

The first half of the chapter will proceed as follows: Section 2.1.1 will intro-

duce the road network object of the study. Section 2.1.2 will expand on travel times,

their calculation and basic characteristics. Section 2.1.3 will provide a brief history

of travel time estimation in science. Section 2.1.4 will introduce basic mathemati-

cal background relating to the tools that will be used in later time series analysis,

namely decision trees, seasonal estimation, spectral filtering and the wavelet trans-

form. Lastly, and not in this section, problem-specific literature that directly relates

to the time-series problems at hand are introduced in Sections 3.2 and 4.3, to better

highlight the place of the experiments here conducted amongst the wider literature.
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The progression in the second half will be: Section 2.2.1 will introduce cur-

rent Traffic Signal Control systems. Section 2.2.2 will introduce how these control

systems are simulated. Section 2.2.4 will provide a short historical introduction to

approaches taken in Urban Traffic Control, Reinforcement Learning and how the

latter became a feasible approach to tackle the former. Section 2.2.5 will introduce

the necessary mathematical concepts related to Markov Decision Processes, Rein-

forcement Learning and modern agents. Finally, and again not in this section, the

literature that contextualises the approaches here taken in terms of Reinforcement

Learning will be found in Sections 5.2, 6.2 and 7.2.

2.1.1 The Strategic Road Network

The Strategic Road Network (SRN) in England covers about 7080 km (4400 miles)

of highways and A roads, carrying over 30% of all traffic in the country, with an

average daily use of 4 million vehicles [13]. Highways England (HE), who manages

the SRN estimates that the traffic on motorways has grown by 50% since 1993, and

is forecasted to grow another 31% by 2041.

In this context, efficient operation of motorways is one key item that allows

for increased motorway capacity in absence of momentum to extend the network due

to economic, environmental and social reasons. The various subsystems composing

the Highways England Traffic Management Systems are connected to the National

Traffic Information System (NTIS), a subscription service providing access to in-

cidents, Variable Message Signs, Matrix Signal settings and induction loop data,

which provide real-time state information about the traffic flow in the network [14].

The most basic component of the SRN are the links, segments of road be-

tween 500 and 20000 metres in length. For the past 30 years, multitude of induction

loops, the most common sensor used worldwide for traffic control, have been rolled

out locations in those links managed by HE in order to gather real-time data of the

traffic flow and provide with elevated estimation, forecasting and control abilities

to the operators. Additional information about their configuration and set-up can

be found in technical reports by The Highways Agency [15]. These induction loops

operate by detecting disturbances to the electromagnetic field of a coil that is built

into the motorway. Their main drawback is the disruption to traffic during their

installation and their loss of performance during stop-and-go situations [16]. Indi-

vidual induction loops are able to detect the presence of vehicles passing above them,

being able to provide car counts from which flows can be extrapolated. Multiple

loops in a single site allow for the estimation of the speed of vehicles and overheads.

Multiple sites in a single road allow for the estimation of travel times in said road.
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Figure 2.1: Schematic map of the Strategic Road Network in England. Source:
Highways England [13] (edited).
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2.1.2 Travel Time Profiles

These travel time estimates for a section of road are defined as the expected amount

of time needed to travel through said section of a road and are currently obtained

by averaging the values of the past 5 minutes on a rolling basis. For each different

link, a travel time profile can be defined, understood as the typical expected time to

transverse said link at a given point in time. The main difference between these two

is that while travel time refers to a single data point for a specific site at a specific

time, a travel time profile will provide a series of such points over a period of time.

Traffic profiles for each link in the SRN are published to subscribers by NTIS

via the DATEX II service together with other information regarding speed, flow,

Variable Message Signs, incidents and other data with a minutely resolution [14].

These profiles act as the basic departure point from which all other compo-

nents of smart management build on, by providing baseline measures against which

deviations can be identified by using the sensors of the network to, in turn, build a

variety of metrics and performance indications. Furthermore, accurate estimates of

travel times profiles are extremely useful to both users and operators, since they al-

low for extended planning of departure, arrival and travel conditions, without which

the just-in-time supply chains cannot operate. Hence, accurate estimation and fore-

casting of expected travel times becomes necessity for advanced transportation and

manufacturing systems.

Direct forecasting of travel times is quirky since it is more usual to use speed

or flows as principal data source from which travel times are derived. Accurate travel

time modelling is important due to being one of the easiest measures to instinctively

understand, but also due to their ease to explode into extreme values, quickly and

heavily impacting the state of traffic and all associated magnitudes.

An initial challenge to generate these profiles is that the baseline travel times

will not be constant over time, depending heavily on a variety of factors affecting

both demand and capacity that can make them vary to several times their original

value.

A further, and more complex challenge revolves about the previously men-

tioned bursty nature of travel time series. Their value can stay stable for long

periods of time with quick excursions to extreme levels due to congestion. This gen-

erates issues with the detection, since it becomes difficult to identify what part of the

congestion is recurring and what parts are non-recurring congestion caused by spe-

cific unusual non-recurring situations on the road. Both of these situations generate

data points that can be found in the highest quantiles of the distribution of travel

times for a given location. Previously, approaches that involved removing or ignor-
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ing these points have been taken due to the difficulties in the classification between

these two components that display such a similar behaviour. However, achieving

higher accuracy in the prediction of those travel times in the higher quantiles of the

distribution can provide immediate benefits with respect to current estimation and

forecasting methods, since those are the sections in which more people are affected

by delays.

In terms of scientific approaches, seasonal methods tend to obtain good per-

formance on series following recurrent patterns of human activity (daily and weekly

oscillations), however they typically do not generate good results for prediction in

high quantiles or during large deviations. As mentioned earlier, these are precisely

the areas in which the most benefits of improved estimation can be delivered. Sea-

sonal methods and those based on averaging and smoothing methods are not useful

by themselves, as they will capture the non-recurrent component as if it were re-

curring and predict false traffic jams at times where none will be found. This effect

will be further explained in Sections 3.2 and 4.3. Some degree of smoothing, will

however be needed to dampen the high frequency and low amplitude oscillations

that can be observed in these series. Within the context of distinguishing between

recurrent and non-recurrent congestion, the use of decision trees will be useful to

classify different traffic regimes, which also can be done via the wavelet transform,

as it will be shown in upcoming sections.

In terms of quality quantification, there is no clear answer to the question of

what is an optimal traffic profile. For the rest of this document an optimal profile

will be defined as the profile that minimises a measure of error when compared to

the actual travel times that the link experienced. Further information about current

use and calculation of traffic profiles in England can be found in Sections 3.1 and

4.1.1.

2.1.3 Brief history of travel time estimation and forecasting

Prior to the introduction of sensors in the roads, the main methods for estimating

travel times were restricted to manual car counting at designated points, floating

car approaches in which a car drives with the traffic flow with the specific goal of

data collection, and later, inversely working from GPS data to estimate the state

of traffic. However all of these methods are suboptimal when compare with direct

data gathering by sensors on the road.

Historically, travel times estimated via induction loops in real networks have

followed a variety of approaches. Some of these use traffic theory-based models, such

as conservation laws [17] which, while providing with realistic theoretical relations,
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require close attention to entry and exit ramps since they low data quality has a great

impact for these approaches. Trajectory-based methods have gathered relevance due

to their simplicity and practicality. They require several sensors such that individual

vehicles’ trajectories can be retraced [18, 19]. An alternative to these are the vehicle

reidentification methods. These methods rely on vehicle-specific signatures that are

matched across different sites in order to identify said vehicle in different locations.

They can rely on vehicle length [20] or inductance patter recognition [21].

In this thesis, the focus will be placed on data-based methods, since they do

not require expertise in traffic theory, while providing very good results [22]. Their

main drawback is related to the high amounts of data required and the dependence

of the accuracy of the results on the granularity and precision of the data source.

However, a sufficiently large and dense dataset can heavily mitigate this effect.

Early methods of this kind [23] looked at seasonal approaches such as Au-

toRegressive Integrated Moving Average (ARIMA) and Box-Jenkins methods [24],

although Seasonal-Trend estimation based on LOESS (explained in following sec-

tions) is currently considered a more powerful alternative [25] and will be conse-

quently used for seasonal analysis.

For a deeper look into historical estimation of travel times, please check You

and Kim [26] and Mori et al. [22].

2.1.4 Mathematical Background

The main mathematical tools used while conducting the time series research pre-

sented in this thesis are introduced over the next sections.

2.1.4.1 Decision Trees

Decision trees are decision support tools that use a tree-like model of a sequence

of decisions, based on an if-else approach. In their most basic setting, they allow

classification of data into classes. They have been traditionally used in operations

research to support decision analysis in obtaining strategies that are most likely to

obtain a determined goal. Their use within the research here presented will be to

classify the state of the series between different regimes (congested or not) in order

to guide the combinations between different components of the signal.

A decision tree acts as an n-nary tree flowchart where each node splits into a

number of possibilities according to the value of some feature. Successive nodes are

traversed until a leaf (terminal node) is reached, which will provide the category of

the data that is being analysed.
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Figure 2.2: Example of a simple decision tree to sort 3 values A, B, C. Source:
Niculaescu [27]

Their strengths are that they are very easy to understand and can be easily

converted into a set of rules. They are versatile, managing different kinds of data, are

non-parametric (no assumptions about internal structure) and can handle missing

values. Their weaknesses are more relevant to traffic since the rules that determine

their operation need to be set by hand, and these would need to change with the

location and specific characteristics of a specific site. Hence, the use of decision

trees alone for profile estimation and forecasting for massive-scale deployments is

not feasible on its own, but can still be a useful component of other systems if the

rules governing the classification can be formulated in general terms as it will be

shown in the following chapters.

2.1.4.2 Seasonal Estimation Methods and STL

One of the most intuitive and straightforward correlations with road traffic demand

are the patterns of human activity, as it will be shown in later sections of this the-

sis. This correlation, that traduces into highly structured autocorrelation functions

for the time series of individual links’ travel times, indicates an underlying season-

ality. Hence, in this section different methods of calculating seasonality and their

applications to traffic estimation and forecasting will be reviewed.

Seasonal estimation methods are based on the idea that a given signal can be

decomposed into a number of component series that can be, additively or multiplica-
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tively, be reconstructed into the original series. Their use within the research here

presented is to approximate the difference seasonal patterns that we can observe in

the data and their evolution over time.

Time series can be typically decomposed into:

� A trend component T , indicating the long term progression of the series.

� A seasonal component S, representing the seasonal or periodic variation in the

series.

� A noise or residual component I, which comprises all the information that

cannot be explained in terms of trend or seasonality.

Hence, any point in the series xi can be understood as

xi = Tt + St + It, (2.1)

in the case of an additive decomposition, or as

xi = Tt × St × It (2.2)

if the decomposition is multiplicative.

Nonparametric regression is a category of regression in which the predictor

variable does not have a priori form, but is instead constructed according to infor-

mation stemming from the data. In general, it requires greater amounts of data

than parametric regression models since the model structure is also generated from

the data, instead of only generating model estimates.

Seasonal-Trend decomposition based on LOESS (LOcally Estimated Scat-

terplot Smoothing), also known as STL was first proposed by Cleveland et al. [28].

STL aims to decompose a time series signal into Trend, Seasonal and Noise compo-

nents. Unlike previous seasonal estimation methods such as ARIMA and TBATS,

STL can assume seasonalities of any period, or combination of periods.

The STL algorithm is composed of the LOESS smoother, and two recursive

procedures codified in an inner loop and an outer loop, and depends on the following

internal parameters: observations per cycle of the seasonal component n(p), number

of passes of the inner loop n(i), number of passes of the outer loop n(o), smoothing

parameter for low-pass filter n(l), smoothing parameter for trend component n(t)

and the smoothing parameter for the seasonal component n(s).
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LOESS smoother : Assuming xi, yi; i = 1, ..., n are measurements of an independent

and dependent variables, the LOESS regression curve ĝ(x) is a smoothing of y given

x. To calculate ĝ(x), an integer q assumed q ≤ n is used to choose the q nearest

neighbours of x, which are given weights based on their distance from x. With λq(x)

being the distance of the q-th farthest xi from x, and W being the weight function:

W (u) =

(1− u3)3 for 0 ≤ u < 1

0 for u ≥ 1
(2.3)

The neighbouring weights are:

vi(x) = W

(
|xi − x|
λq(x)

)
, (2.4)

meaning those xi closest to x will have the highest weights, becoming zero at the

location of the q − th farthest point. Then, a polynomial of degree d = 1 or 2 is fit

to the data, obtaining ĝ(x).

Now, assuming q > n, let λn(x) be the distance from x to the farthest xi, we

can define λq(x) as:

λq(x) = λn(x)
q

n
, (2.5)

which will be used as before in the definition of neighbouring weights.

Assuming each measurement (xi, yi) has a reliability weight ρi, this can be

incorporated into the LOESS smoothing by using ρivi(x) as the weights in the local

least-squares fitting.

Inner loop: In each pass through the inner loop, the seasonal and trend components

are updated once. This is repeated n(i) times. Let Ski and T ki , i = 1, ...n be the

seasonal and trend components at the end of the k-th pass. The steps to follow for

the next update are:

1. Detrending: detrended series xi − T ki .

2. Cycle-subseries smoothing: Each subseries cycle of the detrended series is

smoothed by LOESS with q = n(s) and d = 1, obtaining a temporary series

Ck+1
i .

3. Low-pass filter: The smoothed cycle-subseries are smoothed using 2 successive

moving averages of length n(p), then a moving average of length 3 and finally

a LOESS smoothing with d = 1 and q = n(l), obtaining an output Lk+1
i .
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4. Detrending of smoothed cycle-subseries: The seasonal component is updated

Sk+1
i = Ck+1

i −Lk+1
i . The role of Lk+1

i is preventing low-frequency power from

entering the seasonal component.

5. Deseasonalising: A deseasonalised series xi − Sk+1
i is calculated.

6. Trend smoothing: Smoothing of the deseasonalised series with LOESS using

q = n(l) and d = 1 generating T k+1
i .

Outer loop: Each pass of the outer loop requires a previous pass of the inner loop, but

not vice-versa. The outer loop executes a computation of robustness weights that are

used in the following run of the inner loop to reduce the effect of transient/aberrant

behaviour in the seasonal and trend components. After a pass of the inner loop,

estimates are generated for Sk+1
i and T k+1

i . Then the remainder is Ik+1
i = xi −

Sk+1
i − T k+1

i . The robustness weight for point i will be:

ρi = B

(
|Ii|
h

)
, (2.6)

where

B(u) =

(1− u2)2 for 0 ≤ u < 1

0 for u ≥ 1
(2.7)

and

h = 6 median(|Ii|). (2.8)

After this, the inner loop is repeated, but in the smoothing steps the neighbouring

weights are multiplied by the robustness weights.

Lastly, both weight functions W (u) and B(u) , with their quick decay, act as

filters for the STL algorithm, preventing the influence of points that are classified as

too far as per the function definition. Although these two functions are defined here

following the original design by Cleveland et al. [28], other functional forms can be

used in their place as long as they fulfil the same purpose of penalising input data

that is too far apart in time in the case of W (u), or that are greater than a certain

threshold multiplier of the median value of the remainder in the case of B(u).

2.1.4.3 Spectral Methods and Fast Fourier Transform

Spectral methods for time series revolve around the idea of representing a series

as a superposition of sinusoidal functions of different frequencies. Their use in the

research presented in this thesis will be limited to a transformation of the original
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series in the time domain into a complex-valued function in the frequency domain

by using the Fast Fourier Transform (FFT) [29] algorithm to then filter certain

frequencies before performing the inverse transformation.

The FFT is an algorithm such that the Discrete Fourier Transform of a

function can be calculated in O(N logN) operations instead of the O(N2) required

by simply evaluating the definition below.

A Discrete Fourier Transform of a series xi into a complex series Xk with

i = 0, ..., n− 1, k = 1, ...n, which, using j as the imaginary unit, is defined as:

Xk =
n−1∑
i=0

xi · e−
j2π
n
ki

=

n−1∑
i=0

xi ·
[
cos

(
2π

N
ki

)
− j · sin

(
2π

N
ki

)] (2.9)

The Discrete Fourier Transform, is an invertible linear transformation, in which the

inverse transform is formulated as

xi =
1

N

n−1∑
k=0

Xk · ej2πki/N , (2.10)

being necessary to bring the series back into the time domain after filtering.

The main limitation of the Fourier Transform variants is that it provides

no information about when the different frequencies in a signal are important in

non-stationary signals. This prevents the Fourier Transform from being used to

locate abrupt changes or beginnings and ends of events. In order to overcome this

limitation, the Windowed (Short-Time) Fourier Transform was introduced, divid-

ing a longer signal into segments of equal length and then computing the Fourier

Transform separately for each segment. This allows for a degree of time resolu-

tion, but still displays limits to the certainty of the calculations determined by the

Gabor limit or Fourier Uncertainty Principle, which in a manner not dissimilar to

the Heisenberg Uncertainty Principle states that it is impossible to simultaneously

localise a signal in both frequency and time in certain terms, as discussed by Hall

[30], establishing limitations in terms of frequency resolution and temporal resolu-

tion. Here, the classical Fourier Transform allows measurements with measuring all

frequencies, but in doing so, all information relative to the temporal component is

lost, making the time at which a specific frequency appeared unknown. By taking a

windowed approach, this is mitigated, but the underlying problem remains, as the

precision in both time and frequency is determined by the size of the window.
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A useful alternative to obtain both kinds of information is the Wavelet Trans-

form, which takes advantage of the intermediate cases before reaching the Gabor

limit, as will be explained in the following section.

2.1.4.4 Continuous Wavelet Transform

A wavelet can be thought of as a brief oscillation, with an amplitude that has

effectively limited duration, starting and ending at zero. The specific way in which

it varies over time depends on the specific choice of wavelet family. Wavelets are

localised in time and frequency, allowing for the identification of sparse events. Most

wavelets families are created to have specific qualities that make them suitable for

signal processing.

Examples of the components of a complex-valued Morlet wavelet are shown

in Fig 2.3.

Figure 2.3: Example of a complex-valued Morlet wavelet. Source: Karimi et al. [31].

The Continuous Wavelet Transform [32, 33] is a linear transformation that

results of the convolution of the input series with a set of functions derived from the

chosen wavelet family. This permits the localisation

Let L2(R) be the space of square integrable functions, let ψ be the com-

plex conjugate of ψ, and let ∗ represent a convolution. The Continuous Wavelet

Transform of a function f ∈ L2(R) is defined as:

Wf (sc, tr) =

∫ ∞
−∞

f(t)ψsc,tr(t)dt = f ∗ ψsc,tr ; (2.11)
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where ψ represents a complex-valued window function, also called mother wavelet

parametrised using a scale (dilation) parameter sc and a shift (translation) param-

eter tr into specific wavelets ψsc,tr .

ψsc,tr(x) =
1
√
sc
ψ

(
x− tr
sc

)
(2.12)

Full derivation details can be found in Kaiser [34]. To be classified as a wavelet, a

function ψ must satisfy three different criteria [35]:

1. It must have finite energy:

E =

∫ ∞
−∞
‖ψsc,tr(t)‖2dt <∞ (2.13)

2. Admissibility condition, the admissibility constant Cg must be finite, implying

the wavelet has no zero-frequency component. If Xfr
ψ is the Fourier Transform

of ψsc,tr(t), then:

Cg =

∫ ∞
0

‖Xfr
ψ ‖

2

fr
dfr <∞ (2.14)

3. For complex wavelets, the Fourier Transform must both be real and zero for

negative frequencies.

Then, the inverse CWT is defined as:

f(t) =
1

Cg

∫ ∞
−∞

∫ ∞
0
Wf (sc, tr)ψsc,tr(t)

dsc dtr
sc

2

(2.15)

The CWT discretises scale by fixing a base, typically of the form 21/v, v > 1,

where v is the number of voices per octave. This name is used because increasing

the scale by an octave (doubling the scale) requires v intermediate scales, providing

more granularity as v increases. In contrast, the Discrete Wavelet Transform (DWT)

only uses powers of 2 for the discretisation of the scale, hence the continuous nature

of the CWT refers to the progression across scales. To obtain said different scales,

this initial base is raised to positive integer powers, e.g. 2l/v, l = 1, 2, ..., n. The

translation parameter tr is discretised to integer values, spanning the length of the

series, and making the imposition of contour conditions necessary, which in turn

defines an uncertain area surrounding the margins of the series.

In a basic manner, the CWT functions as follows:

1. Generate initial wavelet ψsc,tr .
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2. Compare the wavelet against a section at the start of the signal, with its length

defined by sc and its center defined by tr, by calculating the complex-valued

Wf (sc, tr), representing how closely correlated f and ψsc,tr are in this section.

3. Shift the wavelet to the right by increasing tr and repeat 2 until the end of

the signal.

4. Scale (stretch) the wavelet by increasing sc to target lower frequencies, and

repeat steps 2-3 for the next voice.

This process produces a series of wavelet coefficients Wf (sc, tr), corresponding with

the different values of scale (including all octaves) and shift that represent the simil-

itude between the shifted and scaled versions of the mother wavelet and the original

signal. These coefficients given an indication of how influential are the oscillations

of a given frequency (scale) is at a given point in time (translation) and can be

represented in a scaleogram, usually expressed in terms of power P = ‖Wf (sc, tr)‖2.
Intuitively, in the cases where the sampling period of the signal equals a unit of time,

P (Wf (sc, tr)) will represent how influential for the dynamics of the signal during a

window of length sc centred at the temporal point tr.

Here, the Generalised Morse wavelets, a family of exactly analytical wavelets

will be used, based on its suitability for time-frequency analysis, and specifically for

their usefulness for analysing localised discontinuities. The CWT can be thought

of as the inner product of the source signal with the wavelets used as basis, where

the wavelet coefficients represent the level of similarity of the signal and the wavelet

at a given scale. If the basis wavelets were orthogonal, energy would be preserved

by the transformation, with the wavelet coefficient being the correlation coefficient

between signal and wavelet at that point, times the energy of the signal.

While the Fourier transform always projects the signal onto an orthogonal

set of components, making it energy preserving (making them useful in de-noising

applications), as it is the case with the Discrete Wavelet Transform (when using

orthogonal wavelets), in the case of the CWT this is only true in its integral form,

but not in the case of numerical computation [36]. When the CWT is computed

numerically, as it will be the case in this thesis, regardless of the normalisation used

to ensure that the transformed signal will have the same energy at every scale, the

CWT is not an orthonormal transformation, making it non-energy preserving when

taking the inner product of the function with the basis wavelets. L1 normalisation is

used in this case for a more accurate representation, ensuring that equal amplitude

oscillatory components in the data at different scales, will have equal magnitude in

the CWT [36].
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From a practical point of view, orthogonality is not required for time-frequency

analysis, its effect being limited to the generation of informational redundancies, be-

ing shown as highly correlated output data [37]. Beyond the choice of a family of

wavelets for a task (i.e. not using a discontinuous wavelet for continuous data), ”the

choice is largely one for the researcher, and is likely limited by the software being

used” [38].

The Wavelet Transform gives good time resolution for high frequency events,

and good frequency resolution for low frequency events, which is well suited for

analysing many real-world signals. It can be more useful than the Fourier Transform

to approximate signals with discontinuities, due to the time-localised behaviour.

Regarding the numerical implementation, which is not trivial, calculations presented

here use the MATLAB baseline implementation in the Wavelet Toolbox [36].

Their use within the research here presented is to identify and separate the

recurrent and non-recurring congestion of the travel time signal, making use of

its additive characteristics. Their advantage with respect to traditional spectral

methods is that instead of identifying the spectral power of a given frequency over

the length of a signal, the Wavelet Transform provides this power spectrum as a

function of time.

2.2 Reinforcement Learning for Traffic Signal Control

Although there is a growing research literature for Reinforcement Learning (RL),

arguably much less investment has been placed on application of these algorithmic

developments in Traffic Signal Control (TSC). Nonetheless, as we discuss in this

thesis, there is a potentially equally important role to be played by the development

of RL methods for traffic signal control.

TSC is essential to the smooth movement of traffic in towns and cities. Junc-

tions in dense urban areas often experience conflicting traffic movements. These are

movements where the path of a vehicle will cross the path of another vehicle if its

movement is not interrupted. When load traffic is relatively light or when there

is sufficient space, this can be managed with fixed road signs or by constructing

roundabouts. However, more complex junctions in dense urban areas are managed

by traffic signals. Here traffic lights are used to select phases which consist of several

non-conflicting movements. Urban Traffic Controllers (UTCs) are either fixed plan,

or adaptive.

The sequence of phases selected and their duration are managed by an UTC
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system, which coordinates these phases both within a junction and between junc-

tions. The simplest form of traffic control is to have a fixed timed cycle. Although

as we will discuss, this control strategy both in theory and in practice is less effi-

cient in adapting to changing traffic patterns. Adaptive traffic control systems have

been developed over a number of years. Adaptive traffic control systems sense the

present state of congestion at a junction through loop detectors and cameras, and

then choose phases with durations that reacts to current traffic demands.

A further ingredient that is an important consideration in the design of TSC

systems is simulation. Modern TSC systems are evaluated by simulating the move-

ment of vehicles through different junctions. In this way the performance of a traffic

signal control system can be evaluated and improved before it is released on the

roads. RL provides a systematic method for training and optimizing algorithms

using simulation, so it is only natural to attempt to combine the two. The research

presented in the last 3 chapters of this thesis aims to understand how we can bet-

ter utilize this process used by traffic engineers. Reinforcement learning has seen

a surge in interest in recent years due to several notable success stories in Deep

Reinforcement Learning (DRL). In it, a neural network approximates the optimal

value function and policy function of a Markov Decision Process. These algorithms

can perform at super-human level in ATARI games [39] and can beat professionals

in long-term games requiring advanced planning such as the game of Go [40] and

StarCraft 2 [41]. These approaches have existed for a number of decades prior, see

Tesauro [42] and Bertsekas and Tsitsiklis [43]. Although human performance is not

the benchmark in the study of TSC systems, it can be argued that similarly signif-

icant improvements may be possible when compared with existing TSC systems.

2.2.1 Current Traffic Signal Control Systems

Traffic signaling was originally used in rail transport.The first road traffic signal

was developed by John Peake Knight in 1868. Electric traffic lights were installed in

Cleveland USA in 1914. Automatic lights appeared in Wolverhampton UK in 1926.

Vehicle actuated traffic lights we installed in London in 1932. Since then the use of

traffic lights has grown dramatically, with modern cities having thousands of traffic

lights on their streets. A good history of TSC can be found in Hamilton et al. [44].

Regarding modern TSC, MOVA (Microprocessor Optimised Vehicle Actua-

tion) is an adaptive signal control systems for single intersections developed by the

Transport Research Laboratory [45]. MOVA is primarily used in the UK with thou-

sands of junctions using the system. BALANCE [46] is a proprietary UTC owned by

PTV Group. Balance is designed to coordinate a network of junctions. The method
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was proposed by Friedrich et al. [47] and uses Genetic Algorithms (GA) for the

optimization of signal timings. The BALANCE system is primarily implemented in

Poland and Germany.

TRANSYT and SCOOT (Split Cycle and Offset Optimisation Technique) are

two further variants of MOVA developed by the Transport Research Laboratory.

TRANSYT is a tool used for optimizing fixed time signals [48, 49, 50]. SCOOT

is a vehicle-actuated UTC from Transport Research Laboratory, which attempts

to optimize the Split and Offset of traffic signals for sets of junctions using loop

detector inputs [51, 52]. PTV EPICS is a signal control systems that optimizes

traffic signal timings using similar methods to the TRANSYT system [53].

SCATS [54] is a similar system to the SCOOT system, attempting to optimise

Split and Offset of traffic signals based on loop detector input. It is primarily used

in Australia.

Utopia, Rhodes and OPAC each apply hierarchical optimal control. Utopia

performs a closed loop control optimization of individual traffic lights using loop

detector information and then aggregates to a larger scale optimization [55, 56]. The

Rhodes system developed in Mirchandani and Head [57], providing a hierarchical

architecture for wide area traffic signal control. The local control used is described

in Head [58]. OPAC follows a two level dynamic programming approach to traffic

signal control [59], being trialed in Virginia and Arizona.

PRODYN and SurTrac both implement forward solving dynamic program-

ming to individual traffic junctions. These systems do not use cyclic phases. PRO-

DYN is a Dynamic Programming based traffic signal optimizer [60]. It uses forward

solving Dynamic Programming algorithm. It was trialed in France and implemented

in a number of countries. The SurTrac system was developed in Carnegie Mellon

University by Smith and Barlow [61]. The system solves a forwards implementation

of dynamic programming typically used to optimize computer CPU operations.

2.2.2 Simulation of Traffic Signal Control systems

Simulation data is required to train RL algorithms for TSC, since the deployment

of untrained systems to generate real-world data is unfeasible from a practical point

of view.

There are three main systems for simulating urban traffic control: SUMO,

Aimsun Next and PTV Vissim. Each of them offers a python API which allows for

the retrieval of different magnitudes in the simulation in real time(Other simulators

such as JCT LinSig and Systra Paramic are used for evaluation of UTC. However,

API access is not available). Aimsun and PTV Group were, respectively, purchased

22



by Siemens in 2018 and Porsche SE in 2017. This has been interpreted as part a

move from car and infrastructure providers into a broader mobility services space.

SUMO is an open source traffic simulation software originally developed by

the Deutsches Zentrum für Luft- und Raumfahrt (DLR, German Center for Air- and

Space-flight) in Berlin [62]. The system is coded in C++ and source can be accessed

on from its website.1 Because code is open source, it is easier to implement parallel

algorithms and thus reduce the time required to gain simulation results. This is

useful for the training of larger scale RL algorithms, such as Asynchronous Actor

Critic (A3C) [63] that require a central agent and a number of workers performing

parallel simulations.

Aimsun provides simulation software for microscopic, mesoscopic and macro-

scopic simulation of traffic. Aimsun Next is the current main incarnation of this soft-

ware which runs predominantly on desktop computers. Though products for live

traffic prediction are now available. Aimsun as increasing support for the simulation

of self-driving cars. It supports the connection with externally provided UTCs such

as SCATS, SCOOT, and UTOPIA.

PTV Vissim is a microscopic simulator from PTV group. Macrosimulation is

provided through its PTV Vissum software. It supports the connection with exter-

nally provided UTC algorithms such as SCATS, SCOOT, and UTOPIA. PTV are

developing cloud platform variants of their software which, again, will be important

for the training of RL algorithms for larger scale UTCs.

Aimsun and PTV Vissim offer similar functionalities. From our conversa-

tions with traffic modellers and controllers, Aimsun was primarily used for junction

design, where as Vissim was more frequently used for the evaluation and optimi-

sation of TSC. Large cities such as London use PTV Vissim for UTC modelling.

However, both systems offer a much broader and comparable set of uses, and their

use in traffic modelling will vary from region to region.

In the research presented in this thesis, Vissim was used for those projects in

collaboration with Transport for London and the Toyota Mobility Foundation, for

easier knowledge transfer with the transport authorities. SUMO was used on those

others done in collaboration with Vivacity Labs due to the focus on performance

and large-scale parallel simulations.

Finally, we note that unlike autonomous vehicles, where there are a multi-

tude of packages for the comparison and evaluation of the Reinforcement learning

algorithms [64, 65], there is very little software available for this purpose in TSC,

1https://www.eclipse.org/sumo/
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leading to the requirement of implementing or setting them up manually, hence

reducing the amount of feasible comparisons.

2.2.3 Description of Current Traffic Signal Control Systems

In this section, the TSCs that will be used for comparison against the controllers

proposed in this thesis will be introduced.

2.2.3.1 Maximum Occupancy

Maximum Occupancy (MO) is a heuristic approach to TSC. It is capable of obtaining

great performance, despite its simplicity. In an intersection being managed by a MO

controller, when a new green stage is to be selected, all queues (or lane occupancies)

are calculated, and the stage that would serve the greatest amount of aggregated

queuing vehicles is selected. To do this either induction loops, occupancy sensors,

or any other form of sensors able to provide these measures are required.

2.2.3.2 Vehicle Actuated - System D

According to the Traffic Advisory Leaflet of the UK’s Department for Transport,

”it is still probably the most common form of control for isolated junctions” [66]. It

can either use induction loops at specific distances upstream from the intersection

(12, 25, and 39 metres) or Above Ground Detectors to perceive incoming vehicles.

A vehicle that approaches a non-green signal will be detected and will register

a demand for green in the controller, which will follow a cyclic schedule, being able to

skip stages with no registered demand. Whenever two phases must follow, the first

will trigger a demand for the second one. After a stage reaches the maximum green

time, a demand is registered for that stage to be implemented once other demands

are met. If vehicles are detected moving towards a green signal, the duration of

the stage can be extended. ”On expiry of the last extension and with no more

vehicles detected, the controller will answer a demand for another stage, either at

the end of the minimum green period, or immediately if this has already expired. If

vehicles continue to extend the green period and a demand exists for another stage,

the green signal will be terminated on expiry of a preset maximum period after the

demand has been received. If there are no demands for another stage the signals

will normally not change. However, in the absence of demands, they can revert to

a pre-determined stage, say, the main road, or an all-red” [66].
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2.2.3.3 Microprocessor Optimised Vehicle Actuation (MOVA)

MOVA was developed by Transport Research Laboratory, and requires induction

loops placed about 40 (this being called the X-detector) and 100 metres (IN detector)

upstream from the intersection in all lanes. The detectors are connected directly to

the MOVA computer system, a self-contained, microprocessor-based module, which

interacts with the traffic controller. MOVA requires grouping lanes into links of 1-3

adjacent lanes that are on the same traffic phase (the displayed signal is set jointly

for them).

MOVA takes a sequential approach to its decision making, conditioned on

flow and queue information derived from the detectors, so a green stage is composed

of:

1. The minimum green time (7 seconds in the UK), plus a minimum per link green

to serve vehicles that have surpassed the closest detector to the junction.

2. A period when the queue on at least one link is deemed to be discharging at

saturation flow, based on the size of the ’gap’ between vehicles as measured per

the closest detector to the junction. This lasts until all relevant links’ (those

that will see their corresponding signal changed to red in the next phase)

discharge rate have at least one lane which has fallen below saturation flow.

3. A period when MOVA, according to an internal model that estimates vehicles’

positions from detector data every half second, weights the benefits of further

extending the green time based on estimations of vehicle counts and arrival

flows. This step considers different options, aiming to choose that which min-

imises the expected wait for vehicles in the affected links that would need to

wait and that of the remaining vehicles waiting in red stages.

This description covers the basic operation of MOVA. There are a series

of extra considerations in the case of oversaturated links, where MOVA seeks to

maximise capacity by allowing green signals to continue as long as possible, if the

rate of discharge is above a certain threshold. Extended details can be found in

Vincent and Peirce [67] and UK Department for Transport [68].

2.2.3.4 Split Cycle Offset Optimisation Technique (SCOOT)

SCOOT is not used, nor compared against at any point in this document, being

included exclusively for descriptive purposes.
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SCOOT makes intensive use of detectors upstream for any given controlled

junction or ”node”. One or more of these nodes can be run jointly as a ”region”.

SCOOT generates information about flow and occupancy based on this sensor data,

coding it in a ”link profile unit”, which are used to create ”cyclic flow profiles” of

these units for each link.

SCOOT uses three separate optimisation procedures:

1. Split Optimiser: at every stage change it assesses the current timings and

determines whether they should be advanced or retarded by 1 to 4 seconds

per stage, or whether they should stay the same.

2. Offset Optimiser: It uses the cyclic flow profiles for each link, to assess once

per cycle on each node, whether the current action times should be advanced,

retarded, or stay the same, using 4 second increments.

3. Cycle Time Optimiser: It operates per region, either every 2.5 or 5 minutes.

It identifies a critical node in the region and tries to adjusts cycle time to keep

it over 90% saturation rate. It can change cycle times by 4, 8, or 16 seconds.

Extra details regarding installation, components and other information can be found

in UK Department for Transport [69].

2.2.4 Academic Literature

In this section, previous academic literature is reviewed, focusing first of research and

optimisation methods applied to TSC systems, then on RL with a particular focus

on deep reinforcement learning, and finally on approaches using deep reinforcement

learning used to develop UTC.

2.2.4.1 Traffic Signal Control Research

The approaches here presented can be roughly categorised as follows: queueing

theoretic, heuristic optimization, mathematical programming, and optimal control.

Early research will be introduced first, to then focus on the indicated categories.

Early Work: Academic work on TSC systems first emerged in the late 1950s and

1960s. Here are variety of approaches and modelling solutions were proposed. An

interesting personal perspective on these developments is given in Newell [70]. The

paper of Wardrop and Whitehead [71] is seen as the seminal work on the modelling

of road traffic networks. Wardrop defines his famous notion of a user optimum and

system optimum and also studies traffic signal timing. Following this, important
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works on fixed signal timings include Webster [72] and Miller [73]. Both of which

are important in the development of the TRANSYT and MOVA systems. A number

of the calculations in these works are backed up by Newell [74]. The earliest work

applying a Markov Decision Processes (MDP) to traffic signal control appears to be

in 1967 by Martin-Löf [75].

Queueing Theory: A number of papers look into queueing theoretic models of traffic.

Here an emphasis is placed on understanding the stationary distribution of queue

sizes under different network configurations. This can provide useful insights into

performance, but is limited to idealized settings. Fixed cycle timings are certainly

tractable, see McNeil [76] for early analysis and Boon et al. [77] for a recent analysis.

Additional methods are required to then optimize these mathematical model. The

stability of queueing networks can be counter intuitive [78] and this feeds into the

work on TSC systems by Lämmer and Helbing [79].

Mathematical Programming: Mathematical programming approaches, cast the TSC

problem as the optimization of a function subject to constraints. This is useful

particularly for fixed time plans, focusing on the time splitting. However, such ap-

proaches are not best suited for forward planning over a time horizon. Linear pro-

gramming and mixed-integer programming approaches are given by Gartner et al.

[80, 81]. A multi-objective version is given by Dujardin et al. [82]. An formula-

tion as a Linear Complementary Problem is given by De Schutter [83]. Quadratic

programming approaches are given in Li et al. [84].

Heuristic Optimization: Heuristic algorithms are often used to find good solutions

large and combinatorial optimization problems. Numerous heuristics exist and have

been applied to TSC these include –but are not limited to– simulated annealing

[85], evolutionary and genetic algorithms [86, 87, 88], cross entropy method [89]

and neural networks [90]. Existing controllers such as PTV Balance use genetic

algorithms. Further, as we will discuss shortly, the cross entropy method and neural

networks can be applied in reinforcement learning to help optimize Markov decision

process.

Optimal Control: TSC can be framed as an optimal control problem. Here a dy-

namic program or MDP must be solved over time. To the best knowledge of the

author, the earliest paper advocating this approach is Martin-Löf [75]. There are a

number of UTCs using systems based around the solution of DP, see [91, 57]. Within

this there are a number of different approaches of which Reinforcement Learning is

just one. For instance, Model Predictive Control (MPC) where the optimal next

step is take for a model over a finite time horizon [92, 93, 94, 95, 96, 97, 98]. Forward
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Dynamic programming is used by the PRODYN and SurTrac UTC systems. Here

the task of processing batches of cars can be recast a shortest path problem which

can be solved using a forward Bellman recursion.

2.2.4.2 Reinforcement Learning

Reinforcement Learning combines the study of Markov Decision Processes with su-

pervised learning. Much of the theory of DP and MDP was laid-out by Richard

Bellman [99]. Here the task of an agent is to optimize the sum of a sequence of

rewards for the states reached by a process over time. On a high level the process is

as follows: the agent receives a representation of the state of the system, the agent

then selects an appropriate action. The system then advances to the next state,

and generates a reward based on the effect of the action chosen by the agent. This

process is repeated until the finalisation of the control problem. When the distri-

bution of dynamics and rewards are known then iterative solution of the Bellman

equation yields an optimal control. When the distribution of rewards and dynamics

are unknown then these must be estimated, either explicitly or implicitly.

This distinction, regarding the knowledge about the environment, sets apart

the DP and RL approaches. While DP algorithms require a model of the MDP (in

terms of transition dynamics and rewards) and normally work offline, RL algorithms

are model-free and can work both online or offline, estimating the distribution of

rewards from extended interaction with the environment.

When state spaces and action spaces are large, maintaining estimates for each

state and action becomes impractical. Instead the value of the estimated future re-

ward can be approximated through a function approximation. Whenever there is

an estimation or approximation of the reward or transitions of the environment,

these algorithms are referred to as Approximate DP and RL with Function Ap-

proximation. The main differences between the different variants of DP, including

Approximate DP and RL stem from the knowledge about the environment men-

tioned earlier.

DP algorithms are essentially ”planning” methods, that can iteratively com-

pute an optimal policy, and value function from their knowledge about the envi-

ronment. This is done by breaking the optimisation process into a series of simpler

sub problems at different points in time and ”going backwards in time” from the

best outcomes, although this can turn computationally expensive. In the case of

Approximate DP, optimisation and simulation are used in combination, generating

approximations of the optimal values of Bellman’s equations and optimal policies.

This is done by generating sample paths over states, ”stepping forwards in time”

28



for a number of iterations, using them to learn the value functions and allow for

generalisation over the space of states.

RL, in turn, requires a set of samples of actions in the environment, the tran-

sitions it generates and the corresponding rewards, which can be generated either

online or offline. RL uses these sampled experiences to update its estimates about

the reward that will be generated by a certain action by optimising the parameters

in its function approximator. This learning, unlike with DP, does not need to occur

at the end of an control episode, but can instead take place immediately after every

time step. Given that every transition generates a reward, in RL this reward can

be immediately used to generate a target, indicating how far the previous estimate

was from reality and allowing for immediate improvement.

The simplest function approximation is a linear function approximation, and

surprisingly, theoretical guarantees on performance are possible [100]. The policy

can also be directly estimated and improved in policy gradient methods [101] and

actor-critic methods [102], which map states to probability distributions over the

available actions.

More regression models are possible, the most popular of these is neural

networks. Success was achieved in this direction by Tresauo’s TD-Gammon [42],

which built on the work of Sutton [103]. More recently, efforts have been made to

improve training for deep neural networks. These include the use of replay memory

and fixing targets during training runs to make Deep Q-Networks [39] (DQN) more

stable, and the asynchronous implementation of actor-critic algorithms [63], double

Q-learning [104, 105], prioritized experience replay [106] and dueling architectures

[107].

Excellent treatment of RL and historical accounts can be found in [108] and

[43]. Important milestones in the development of reinforcement learning are Q-

Learning [109], SARSA [110] and Temporal difference methods [111]. These tabular

methods apply for moderately small state and action spaces.

These techniques are discussed in greater detail later in this document, but

essentially these methods have the effect of de-correlating Stochastic Gradient De-

scent (SGD) steps taken by the algorithm, and separating out the task of prediction

and estimation.

2.2.4.3 Reinforcement Learning in TSC

Early works applying reinforcement learning to traffic signal control emerged in the

late 70’s [112]. Though more tabular RL methods, such as SARSA and Q-learning,

above began to be applied in the mid-to-late 90’s, see [86, 113, 114, 115].
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Function approximation in RL was applied throughout the 2000’s. Bingham

[90] is the earliest work the author could find applying neural networks for rein-

forcement learning in UTC. However, RL approximations are applied to TSC before

these works, for instance, see Mikami and Kakazu [86]. A more developed applica-

tion of neuro-dynamic programming to traffic signal control is given by Srinivasan et

al. [116]. Multi-agent approaches to UTC are first considered by Wiering [117] and

Actor-Critic are employed by Richter et al. [118]. Linear function approximation

and TD methods used employed by Cai et al. [119] and a single layer neural network

for Q-function approximation is used by Arel et al. [120].

With the advent of deep learning, there has been a rapid growth in research

applying of DRL to generate UTCs in the 2010’s. The first DQN implementation

is in the Masters project of Rijken [121], quickly followed by others who make

incremental additions to the approach. In 2014, El-Tantawy et al. [122] review

previous early approaches and simulate five intersections with realistic geometry,

proposing a variety of state representations and rewards. In 2016, van der Pol and

Oliehoek [123] studied DQN applied to simple networks with 2 phases per junction.

In 2017, Gao et al. [124] introduces the target network and experience replay to the

problem and Mousavi et al. [125] produce states directly from raw pixels in a simple

intersection, using a Convolutional Neural Network (CNN) as function approximator

and finding value-based methods and policy gradient methods to have comparable

performance in this setting. In 2018, Liang et al. [126] uses a CNN approach, using

pseudo-pixels by partitioning the intersection into cells, the values of which represent

the presence or absence of vehicles.

The PhD work of Genders is a good example of a SUMO implementation

[127, 128, 129, 130], where it is shown that denser state representations do not nec-

essarily have an impact on the performance of a trained agent.

Relatively few modern works in the field compare results with fixed-time or

modern UTC systems (both centralised and distributed), thus it is hard to qualify

the quality of these techniques. Notable exceptions being Chu et al. [131] which

expands deep learning actor-critic methods to multiple junctions and compare with

fixed time plans using Aimsun, and Cai et al. (2009) [119], who compare results a

fixed time system optimized by TRANSYT 12.0.

We present further problem-specific literature review of reinforcement learn-

ing in TSC in Section 5.2, Section 6.2 and Section 7.2, aiming to better identify the

gaps in the literature that the research there presented attempts to cover.
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2.2.5 Deep Reinforcement Learning

We now give a brief mathematical description of the reinforcement learning problem,

function approximation and the algorithms that have been implemented. These

descriptions will be further covered in following chapters to link it to the problem

at hand.

2.2.5.1 Markov Decision Processes

A Markov Decision Process (MDP) is an optimization over time, looking for a map

between actions and states that maximises some measure of future returns. It is

defined in terms of the tuple < S,A, T , γ,R >. Here there are a set of possible

states s ∈ S that the system can take, and a set of actions a ∈ A allowed to an

agent. The selection of actions by the agent is modelled as a map which we will refer

to as policy (π) that specifies the action a = π(s) to be taken. When joining an

MDP with a policy in this way, the combination behaves as a Markov Chain since

the actions are only determined by the state s.

The state evolves according to the probabilistic transition function T , which

depends on the current state st and the agent’s action at, that is st+1 = T (st, at).

Further, the agent receives a reward r ∈ R, the value of which depends on the state

and action chosen r(st, at). Often rewards are discounted by a factor γ ∈ (0, 1),

which is used to ensure more recent rewards are more important and defines a

temporal horizon to the problem.

Given initial state s0, an MDP looks to maximize the expected discounted

return via the following optimization:

Vπ(s0) = Maximize E[Gt] t = 0, 1, 2, ... (2.16)

Where the return is defined as:

Gt =

∞∑
t=0

γtr(st, at) (2.17)

This represents the total expected discounted reward, starting from state s0 and

following policy π until the end of the control problem. The function Vπ(s0) in Eq.

2.16 is known as the value function of the MDP and satisfies the Bellman equation

0 = max
at∈A

r(st, at) + γEst,at [Vπ(st+1)]− Vπ(st) (2.18)

for all st, where st+1 is the next state after taking action at in state st as per the
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probabilistic transition function of the system T , and Est,at takes the expectation

over its probability distribution. This can be equivalently written as

0 = r(st, at) + γE
[

max
at+1∈A

Q(st+1, at+1)
]
−Q(st, at) (2.19)

where V (st) = maxat∈AQ(st, at). Here Q(st, at) is known as the Q-value and is the

expected return received after initially taking action at while in state st.

Further, if π is a probabilistic policy, here π(a|s) denotes the probability for

choosing action a in state s. Then the expected reward from that policy Vπ satisfies

0 = r(st, at) + Est,π[γVπ(st+1)]− Vπ(st) (2.20)

where Est,π denotes the expectation of the next state st+1 given st and the policy

π(a|s).

2.2.5.2 TD-methods and Q-learning

We now describe the basic RL methods, before diving into how they work in con-

junction with deep learning.

In RL typically we do not have a closed form for the distribution of the next

state st+1 given the current state and action, st and at. Instead it is evaluated by

simulation. Thus typically we must numerically evaluate Vπ and V to know the

reward of a policy and to calculate the optimal reward.

To evaluate a policy, for each simulated st+1 from state st and action at

generated from policy π(·|st), we perform the update

Vπ(st)← Vπ(st) + α (r(st, at) + γVπ(st+1)− Vπ(st)) (2.21)

Here and hereafter, the arrow refers to one update to V (st) by the algorithm.

The resulting algorithm is called TD(0) [108] and is a basic routine for evaluating

the value of policy π, Vπ. If the parameter α which we call the learning rate decreases

sufficiently slowly then convergence to Vπ is guaranteed.

If we wish to evaluate the optimal Q-values then we update

Q(st, at)← Q(st, at) + α
(
r(st, at) + γ max

at+1∈A
Q(st+1, at+1)−Q(st, at)

)
. (2.22)

This algorithm is known as Q-learning [109] and provided states and actions

are visited infinitely often and, again, α decreases suitably slowly then convergence

to the optimal Q-values and value function is guaranteed [132].
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2.2.5.3 Function Approximation and Neural Networks

Often it is not possible to maintain a table of all states and actions: first, because

not all states will be visited frequently enough to gain a reasonable prediction;

and second, because there may not be sufficient memory to store this information.

Hence instead it is natural to apply some form of approximation to summarize data

received so far and to generalise decisions for thus far unobserved states.

In particular, we represent the relationship between a vector of inputs s and a

real-valued (or vector-valued) output y through a parameterized function ŷ = fθ(s)

for a number p of parameters or weights θ ∈ Rp. Here ŷ serves as a estimation of y

from input s. The loss between output and the prediction is given by a loss function

L(y, ŷ), typical choices are quadratic function in the case of value-estimation, or the

relative entropy in the case of policy gradients. The objective is then to find weights

that minimize the loss between inputs and outputs

min
θ∈Rp

E
[
L(y, fθ(x))

]
. (2.23)

For the purposes of the research here presented it is sufficient to assume that

the function fθ(s) is differentiable in θ so that we can apply Stochastic Gradient

Descent [133] (SGD) on these parameters to minimize the above objective. To do

this each time we gain data (s, y) we calculate ŷ = fθ(s) and perform the update

θ ← θ − α∂L
∂ŷ

(y, ŷ)∇θfθ(s) . (2.24)

The algorithms used to train neural networks are essentially variants of this update

rule.

We consider the setting where the function fθ(s) is described by a neural

network. Here fθ(s) consists of the composition of a number of simpler functions.

Specifically we take a
(0)
j = sj for j = 1, ..., p and then recursively we take

a
(l)
k = g

(l)
k (z

(l)
k ) where z

(l)
k =

Kl−1∑
k=1

w
(l)
kj a

(l−1)
j for k = 1, ...,Kl (2.25)

where, finally, we define fθ(s) = a(L). We think of each pair (k, l), k = 1, ...,Kl, l =

1, ..., L as representing a neuron. Here each l represents a layer of our neural network

and k indexes each neuron at that layer. Each function g
(l)
k is called an activation

function. Typical activations are the logistic function, tanh, ReLU (Rectified Linear

Unit) and linear. Each weight represents the significance of an activation on a
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neuron. Some weights can be set to zero in order to reduce the complexity of the

model. Further a weight dependent functions can be added to the objective [134] in

order to reduce the complexity of the model. This is called regularization.

With state and target (s, y) data the weights of the neural network can be up-

dated with the SGD. The procedure required to calculate the derivatives in Eq.2.24

is called BackPropogation [135], and takes care of the book-keeping required to apply

chain rule to the composite function fθ(s). We note that in practice SGD is typically

not used to fit a neural network, instead a number of purpose built variants exist.

The research here presented uses ADAM (ADAptive Moment estimation) [136] for

the training processes, which has a more complex update rule when compared to

SGD.

The above description is sufficient for the purposes of describing the gen-

eral basis of our algorithms and network architectures. Further experiment-specific

details will be given in the methods sections of the following chapters.

2.2.5.4 Deep Q-Networks (DQN)

Although a significant number of neural network RL methods existed, the Deep

Q-Network (DQN) was amongst the first to show significant success during the

growth of deep learning. It is described originally by Mnih et al. [39] and further

implementation details are described in Roderick et al. [137]. Subsequently there

have been a number of extensions to this method which we will also discuss and

study. DQN is a variant of Q-learning whereas A2C and A3C, discussed in the

following sections, are a policy gradient methods.

DQN uses a neural network to estimate the action with the highest return

based on Qθ(s, a) and a different second network to maintain an estimate of the Q-

values, Qθ′(s, a), where as before θ and θ′ denotes the weights of our neural networks.

Over a number of update simulation episodes, the weights in the target network θ′

are fixed and new weights are trained θ. The basic step of DQN takes a 4-tuple

(st, at, rt, st+1) where st is a state, at is the action taken at = fθ(st), rt is the reward

received and st+1 is the next state reached, and performs the following update

θ ← θ + α

(
r + max

at+1

Qθ′(st+1, at+1)−Qθ(st, at)
)
∇wQ(st, at) . (2.26)

Note that this is the SGD step, with input (s, a), output y = r+maxat+1 Qθ′(st+1, at+1)

provided by the target network, and L(y, ŷ) = (y− ŷ)2. This approach is called fixed

Q-targets, and it stabilises learning, avoiding the rapid changes of target that would

be obtained when updating our objective estimation weights every time step. How
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often the update θ′ ← θ is performed will be an important hyperparameter of the

system.

The next main feature of the algorithm is how the 4-tuples (st, at, rt, st+1)

are selected for learning. Each individual 4-tuple is taken from a simulation and is

stored in memory, called the replay memory, the capacity M of which is another of

the hyperparameters of the system. These memories are in principle sampled from

the replay memory at random (although more sophisticated sampling methods have

been developed which we will discuss shortly). The policy implemented by the DQN

agents often is an ε-greedy policy. Here when, in state st with probability ε action

at is selected at random with probability ε and with probability 1−ε the action that

maximizes the Q-function Qw(st, at) is selected. The parameter ε is decreased over

a number of simulation runs. This is called the cooling schedule of the algorithm.

There are a number of extra hyperparameters that must be selected prior to

training. These include learning rate α, the cooling schedule for ε, the number or

layers and activation functions of the neural network. We will discuss each of these

when presenting the experiments.

Below, some simple variants and additions to the basic DQN problem are

introduced. Each of these add some (marginal) improvement to the basic algorithm.

Prioritized Experience Replay [106]: The idea here is to rank all the 4-tuples (st, at, rt, st+1)

in the replay memory. This is done by recording the absolute value of the TD er-

ror of each (st, at, rt, st+1) in memory and then forming a ranking from highest to

lowest. The TD error is given by

δ = r + γmax
at+1

Qθ′(st+1, at+1)−Qθ(st, at) (2.27)

There are two basic variants: first, the highest ranked error in memory is selected;

second and most common, the n-th highest ranked memory is sampled according to

a probability depending on a parameter η:

Pn =
n−η∑M

m=1m
−η

n = 1, 2, ...,M (2.28)

A value of η = 0 corresponds to uniform sampling and η = ∞ corresponds

to highest ranked. Both these rules introduce bias to our estimates. To correct for

this we apply importance sampling to get an unbiased gradient update that is the
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same as uniformly sampling. The weights wn are:

wn =
( 1

M
· 1

P (n)

)β
(2.29)

So the basic Q-learning step becomes:

θ ← θ + η

(
1

MPn

)β
δ∇θQ(s, a) . (2.30)

Note that if β = 1 then this is the correct (unbiased) importance sampling, however,

it could be argued that earlier in training the gradient updates for TDs with large

(and probably previously unseen) experience are more important. So taking β ≈ 0

initially and linearly increasing to β = 1 is recommended. Another strategy is to set

β = 0, as training with ultimately be most effected by large TD errors and by bi-

asing towards these it can be attempted to deal with these errors as best as possible.

Dueling Architectures [107]: Given a value function and a Q-function, the advantage

of a state action pair is given by

Aθ(s, a) = Vθ(s)−Qθ(s, a), s ∈ S, a ∈ A. (2.31)

Figure 2.4: Duelling architecture in Deep Q-Networks. Note that it only refers to
the last layers indicated in red. Source: Wang et al. [107]

Recalling from Eq. 2.16 and Eq. 2.17, Vπ represents the value of a state, without

accounting for the choice of action; and from 2.2.5.1, Q(s, a) represents the value of
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choosing a specific action while in a state. Hence, the advantage function calculates

how beneficial is to take a specific action relative to all other actions available

given a current state. Dueling architectures split the problem of approximating Q-

values into the problem of approximation the optimal value function and the optimal

advantage function.

Here the penultimate layer of the neural network is split with one neuron

corresponding to the value function V (x) and a further A neurons acting to esti-

mate the advantage functions A(s, a), a ∈ A. These are then recombine using the

definition above to give an estimate to the Q-values.

Often the size of V (s) and A(s, a) are different orders of magnitude. For

some states all actions can be of comparable value if the optimal policy is followed

thereafter. So A(s, a) tends to be small while the value function can be large. By

applying a dueling architecture, the problem of finding A(s, a) and the problem

of finding V (s) are separated, which is good for ensuring stability during training.

Further V (s) is updated in every update in a dueling architecture while only one

Q(s, a) is updated in the traditional DQN setting.

Double Q-learning [104, 105]: Q-learning and Deep Q-learning tend to over esti-

mate Q-values due to the maximisation step over the estimated state-action values.

Double Q-learning is a way of rectifying this and instead underestimating Q-values.

This is more desirable, since it promotes higher degree of exploration than in the

case in which the values are overestimated. In addition, overestimates tend to be

large while underestimates tend to be more controlled. The original 2010 version

did this by maintaining two Q-values and applying two sets of weights θ(A), θ(B)

which are updated as follows:

θ(A) ← θ(A) + α
(
r +Qθ′(A)(st+1, a

(B)
t+1)−Qθ(A)(st, at)

)
∇θQθ(A)(st, at) (2.32)

θ(B) ← θ(B) + α
(
r +Qθ′(B)(st+1, a

(A)
t+1)−Qθ(B)(st, at)

)
∇θQθ(B)(st, at) (2.33)

where:

a
(A)
t ∈ argmaxa∈AQθ(A)(st, at) and a

(B)
t ∈ argmaxa∈AQθ(B)(st, at) . (2.34)

The second version from 2016, which is implemented in later chapters, we have a

model network parametrised by its weights θ, and a target network θ′. The target

network θ′ is used to select the action and θ is responsible for state-action value
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evaluation, with the estimated target being:

ŷt ≡ r + γQθ′(st+1, argmaxaQθ(st+1, a)) (2.35)

and addressing the problem of overestimation, and in general providing the agents

with more stable and reliable learning.

2.2.5.5 Policy Gradients and Actor-Critic Algorithms

DQN and its variants seek to parametrise and then estimate the values of different

states and action. We then use these estimate to derive policies. In contrast, policy

gradient algorithms estimate policies directly from states without attempting to

learn a value structure.

Following the notation previous introduced, πθ(a|s) is the probability of

choosing action a in state s with a neural network defined by its weights vector

θ. Let J be a measure of the performance of the agent, defined as the the total

accumulated reward over an episode (one execution of the control problem):

J =
∑
a

[Q(s0, a)π(a|s)] (2.36)

The update rule will be of the general form

θ ← θ + α∇J(θ). (2.37)

The next step will be to calculate the gradient of J (for full derivation details, please

refer to Sutton and Barto [108]), resulting in:

∇J(θt) = Gt · ∇θ lnπθ(at|st) (2.38)

resulting in an update rule:

θ ← θ + α(Gt · ∇θ lnπθ(at|st)). (2.39)

Actor Critic (AC) [102] methods arise from the combination of update rules

as the one just described with the specific state-action value knowledge from Q-

Learning. AC is composed of two different sub-agents operating in unison. The first

one learns the policy and is known as the Actor. The second learns the Q-Values

of state-action pairs and is known as the Critic. This results in a modified update
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rule to our neural network weights vector:

θ ← θ + α(Q(st, at) · ∇θ lnπθ(at|st)) (2.40)

Advantage Actor Critic (A2C): A2C is a synchronous evolution of the Asynchronous

Advantage Actor Critic (A3C) introduced in Mnih et al. [63]. The main difference

between them is that A3C uses multiple independent agents, each using their own

weights and operating on their own copies of the environment in parallel. A2C

does not use multiple agents. The improvements allow the agent to compute the

advantage of selecting a specific action a ∈ A. To this end, the Q-Value in the

previous update rule can be substituted with the advantage of an action as defined

previously in Eq. 2.31.

This would typically require two different approximators, one for Q(s, a)

and another for V (s), but taking into account their relation as per the Bellman

optimality equation:

Q(st, at) = E[rt+1 + γV (st+1)] (2.41)

Then it can results in the advantage:

A(st, at) + rt+1 + γV (st+1)− V (st), (2.42)

which only requires one estimator for V (s), but needs to be evaluated from the

simulation via Monte Carlo policy evaluation:

V (st) ≈
∑
t

r(st, at). (2.43)

From here, it follows that, in the case of A2C, the gradient that will be finally

required for weight updates is:

∇J(θ) ≈
∑
t

∇ lnπθ(at|st)A(st, at) (2.44)
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CHAPTER 3

Estimating Traffic Profiles in

the Strategic Road Network

3.1 Introduction

The UK collects and processes data from its Strategic Road Network (SRN) in real

time and makes it available through the National Traffic Information Service (NTIS)

[14]. NTIS collects speed, flow and travel time data using sensors on the road and in

vehicles. Parts of this information come from the MIDAS system, system samples

from the distribution of speeds over time. The basic building blocks of the SRN are

called links - segments of motorway between 500 and 20000 metres in length. NTIS

data is used to assign a travel time profile to each link. Profiles should represent

the typical time to traverse a link at a given time of day on a given day of the week

and are the topic of study of this paper.

Profiles clearly vary with day of the week and time of the day but should be

relatively stable from one week to the next. This stability over time means calcu-

lating profiles is different from the problem of short-term forecasting. While there

is no a-priori mathematical definition of a typical travel time, we take it to mean

the value that minimises the mean absolute relative error (MARE) with respect to

subsequently measured travel times. NTIS publishes profile values alongside mea-

sured travel times although the methodology used to calculate them is proprietary,

and hence not in the public domain, so it will not be discussed in this piece of

research. In this paper, we present a novel method for generating profiles for a

complete week. Our approach is based on statistical analysis of previous data and

does not require any a-priori segmentation of days into classes. Rather patterns of

intra- and inter-day variability are learned directly from the data.

The available literature on travel times is extensive but most recent research

focuses on short-term forecasting and with fewer studies looking into the long term
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[138, 139]. From a methodological point of view statistical methods and machine

learning take most of the attention [140]. Within the last group, neural networks

are getting a level of relevance [141, 142] . Others take closer approaches to this

paper: using historical data [143, 144], differentiating between peak and non-peak

[145], performing spectral analysis [146] or Locally Weighted Regressions [147, 148,

149, 150, 151, 152]. Comparisons between some of these studies and others can be

found in Mori et al. [22], Nikovski et al. [153], Van Hinsbergen et al. [154] and Lana

et al. [155]. Most of these methods have been specifically tuned for the conditions

on which they have been developed and transferability to other sites is often not

evaluated. To assess the transferability of our method, it is tested on three different

motorways. The method here presented, uses a combination of spectral analysis,

tree decisions and Locally Weighted Regression (LWR).

3.2 Examples of travel times

The most direct variable for measuring the state of traffic over a length of road is

the vehicles’ travel times. The instantaneous travel time for a given segment of road

is the average time that the vehicles currently in it are taking since they enter the

segment until they exit it.

Figure 3.1: Travel times on link 117007401 in the M6 over three weeks

As it can be seen in Figure 3.1 the travel time remains within a vaguely pre-

dictable pattern most of the days, with bounded minima during nights corresponding

with the free flow time and with some outliers below this value corresponding to

speeding drivers. Travel time will meaningfully rise as people leave to work and
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add load to the motorways. This collective behaviour will create the morning traf-

fic jams, which in our data, are partially replicated during the evening rush hour,

normally finding a plateau in between. After this, the travel times slowly decay

towards the night period of free-flow regime. In Figure 3.1, it can also be seen that

there are a series of excursions out of this oscillating yet bounded typical behaviour.

In these, the travel time can increase several times fold the usual values. These

extreme oscillations are much less predictable both in intensity and inter-oscillation

period than the recurrent congestion described previously.

3.3 Basic methods for profile estimation

3.3.1 Use of Exponentially Weighted Moving Average (EWMA)

The most basic approach to profile estimation is to apply an EWMA on the same

minute of every day, with the implicit assumption that similar behaviour is expected

at the same time of the day. In this approach, the estimated profile x̂(i, d + 1) on

the i − th minute of a given day d, for a memory parameter α ∈ [0, 1] and with

measured travel time xdi , will be:

x̂d+1
i = α ∗ xdi + (1− α) ∗ x̂di (3.1)

The main problem with EWMA is the manner in which the memory decays. Recent

measurements are weighted more heavily than events in the past. Thus if an extreme

fluctuation occurs, the following profile estimates will be biased, partially replicating

this event and over-estimating the travel times until enough new measurements

arrive to dissipate this effect.

3.3.2 Segmentation

In addition, to acknowledge the specific differences between some special dates in the

year, and the difference between days of the week, this family of methods requires

the use of heavy date based segmentation. The EWMA will be applied across dates

which fall in the same category (i.e. Mondays, weekends, Christmas Day, ...). If this

is combined with the shortcomings presented in Section 3.3.1, some long reaching

effects are generated, which can propagate for weeks into the future predictions,

but do not have any reflection on the observed travel times. A possible instance

of this effect can be seen in Figure 3.2. Furthermore, in order to generate a valid

segmentation, an experienced team is necessary, since the needs of the process can

geographically vary, given that the EWMA approach tends to better approximate
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Figure 3.2: A single large random spike in travel time can lead to over-estimation
of subsequent profile estimates

endemic congestion. This dependence can lead to the creation of legacy systems

which may not be well understood after a few years, decreasing their usability over

time unless extra effort is put into transmitting this knowledge and continually train

new staff.

3.4 Data

3.4.1 Data Gathering and Selection

Data was gathered from 3 different Motorways in England. The M6 and M11 were

selected due to their high usage and combination of recurrent and non-recurrent

congestion. The M25 was selected on the base that it is the most used Motorway in

England on a daily basis, suffering from chronic congestion.

� The dataset for M6 comprises 90 days (12 complete weeks) of data (07/03/2016-

05/06/2016) across 14 links.

� The dataset for d M11 comprises 90 days (12 complete weeks) of data (07/03/2016-

05/06/2016) across 25 links.

� The dataset for M25 comprises 75 days (10 complete weeks) of data (07/04/2017-

20/06/2017) across 61 links.

� Links were discarded if they had more than 10% of missing data, if they

contained any large incidents logged (e.g. accidents) or if they contained any

entry or exit ramps.
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� Whenever missing data was detected for 10 or less minutes, it was linearly

interpolated.

� Whenever missing data was detected for over 10 minutes, it was left as missing

values.

The only occasion where data imputation has taken place is in the previously men-

tioned periods of up to 10 minutes. Given their extremely small scale when compared

with the prediction horizon (10080 minutes), resulting in lengths of a maximum of

0.1% of said horizon, the effects of imputation of missing data were considered very

minimal.

In the case of the M6 and the M11 the first 8 weeks are used to predict one

complete week ahead. One week later, the process is repeated, deleting the oldest

week of training data and incorporating measurements of the week predicted in the

previous step. This is performed 4 times. In the case of the M25, 6 weeks of data

were used for training and the process as described above is performed 3 times.

3.4.2 Data Contents

For each link on a specific date, the required input data consists of one entry per

minute, containing:

� Measured travel time

� Profile (expected) travel time

3.5 Travel Time Prediction Algorithm

Given the cyclic nature of traffic, the aim was a prediction algorithm that could

account for the periodic variations and endemic congestion while being resilient to

fluctuations and rare events. This algorithm also should:

� Be robust, mitigating the propagation of isolated events into future forecasts,

unlike methods using EWMA.

� Not require the use of time segmentation and be valid for regular and ”special”

dates.

� Be location agnostic, the internal parameters should be set algorithmically

based on the data.

� Have Gaussian, mean 0, uncorrelated residuals.
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Figure 3.3: Autocorrelation function of a link in the M6 over a period of 4 weeks,
showing seasonal patterns on the daily and weekly periods.

� Near flat Trend term, given the different time scales between seasonal cycles

and changes in the general motorway flow.

While there is a clear spatial and temporal dependency in the data (cars

advancing through successive links over time) that could be exploited with certain

types of models and analysis; after several conversations with our partner company,

Thales UK, it was decided to steer away from such approaches, opting instead for an

approach based exclusively on local per-link data aiming to obtain location-agnostic

methodologies for long-term estimation, as the current method is, and capable of

potentially being a successor to said method based on EWMA. Incidentally, this

also has a positive effect for the availability of data, since such spatial-temporal

modelling require of upstream data to calculate. Given the low quality of the real-

world data available and how many links had to be discarded during the initial data

analysis, taking such an approach would have meant that links downstream from

those discarded, up to the limit of the spatial dependency inbuilt in such a model,

would have needed to be discarded too, thus reducing the overall amount of available

data.

Regarding the stationarity of the time-series, often it is assumed that pro-

cesses including seasonality are non-stationary. However, in the case of stable sea-

sonal patters, they can fit within the class of cyclostationary series. Cyclostationary

series are non-stationary in the sense that their statistical properties will change

over time, however it can be expected for these properties to be the same within the

same section of the seasonal pattern across different periods of said pattern. These

processes are characterised by a periodic mean and autocorrelation functions [156],
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fitting with the time series at hand based on the information shown in Figs. 3.1 and

3.3. Regarding its suitability for analysis given its characteristics, for tools such as

ARIMA, it is possible to make the series stationary by taking differences as required,

and for other tools such as STL no such considerations are needed, since the model

is meant to be used with this or even more complex data including heavily changing

trends.

3.5.1 Naive Segmentation

To obtain an accurate comparison of the performance of the algorithm developed

in the following subsections, an example of basic segmentation was coded. This

involved a weighted combination of the training data points using uniform weights.

In this way, for the i − th minute of a week and using a training set composed of

the previous of n weeks, the Naive Segmentation (NS) profile is:

x̂(i, n) =

n∑
week=1

xin
n

(3.2)

3.5.2 Double Seasonal ARIMA

AutoRegresive Integrated Moving Average (ARIMA) [24] models are a generalisa-

tion of ARMA [157] models which have been extremely successful for forecasting

time series in a wide range of fields and applications. Further extensions to ARIMA

include the ability to model series including seasonal terms, resulting in Seasonal

ARIMA (SARIMA) models.

To obtain reliable comparisons with the profile calculation methodology pre-

sented in the following section, a SARIMA model using two seasonal terms was fit

to the travel time data and used for forecasting:

model = SARIMA(P1, D1, Q1)1 x (P2, D2, Q2)1440 x (P3, D3, Q3)10080. (3.3)

Here, (P,D,Q)i will refer to the P number of lag observations in the model,

the number of times D that the source data was differenced, and the size Q of the

moving average of the model for a seasonal length of i. Hence, the part using the

sub-index 1440 will deal with daily seasonality, and the part using the sub-index

10080 will deal with the weekly seasonality.

Most common implementations of SARIMA in R and their related tools are

however not suitable for this type of modelling. Firstly, ”ARIMA models don’t work

well for very long time series”, and in these cases non-parametric models can be more
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suitable [158]. Secondly, standard SARIMA implementations in R, such as those

in the ”Stats” or ”Forecast” packages ”will allow a seasonal period up to m = 350

(lags) but in practice will usually run out of memory whenever the seasonal period is

more than about 200” [159] [160] [161]. Thirdly, said packages do not have support

for multiple seasonal terms [160] [161] [162] (R. Hyndman, personal communication,

March 24, 2021), which are necessary in this case based on what the seasonal periods

observed in Fig. 3.3, with the daily seasonality covering 1440 lags and the weekly

seasonality covering 10080 lags respectively. Based on the three points above and

after expert consultations (R. Hyndman, personal communication, March 24, 2021),

the most adequate tool was deemed to be the ”msarima” model class from the R

package ”smooth” [163], although its user manual does not recommend usage for

series having extremely long seasonal periods in terms of lags [164] such as the series

currently at hand.

Standard modern-day compatible methods for parameter estimation in the

model [165] based on information criteria proved ineffective due to excessive memory

consumption, forcing computing systems crashes due to the excessive length of the

time series and the elevated number of ARIMA parameters over which the algorithm

must optimise. An additional challenge was found regarding computation times,

since computation times for a single SARIMA model using 4 weeks of travel time

data to forecast a week ahead, as required to be in close conditions to those of

the other profiles here presented, takes approximately 2 hours and 8 minutes to

calculate on a current-day desktop computer, and approximately 1.5 GB of memory

to digitally store.

Based on these limitations that will hamper any optimisation procedure,

an alternative strategy was devised, in which a sequential approach was taken to

estimate the 9 parameters indicated in Eq. 3.3. An initial selection of the data

was performed, and a sub-series covering the morning plateau of a typical Tuesday

with no congestion events was isolated from the original series of one link of the

M6 displaying both recurrent and non-recurrent congestion. In this manner, it is

possible to obtain a sub-series that is much shorter than our seasonal terms, to

attempt to approximate the behaviour of the time series in absence of any season-

ality. Following this, the Sventunkov-Boylan algorithm [165] was applied, obtaining

the best fit for an ARIMA(0, 1, 4) based on lowest Bayesian Information Crite-

rion (BIC), which also happened to obtain the lowest Mean Absolute Percentage

Error. Next, a sub-series covering 3 days (Tuesday, Wednesday, Thursday), was

isolated and the process was repeated, this time using a SARIMA model with a

daily seasonality term. After an optimisation process within a reduced parameter
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Figure 3.4: Histogram of the residuals from SARIMA model across prediction weeks.

search space using the same algorithm, the best fit to the data was achieved for

a SARIMA(0, 1, 4)1 x (0, 0, 3)1440 based on the same criteria. It’s important here

to remark that while in absence of seasonality the Sventunkov-Boylan algorithm

estimates 3 parameters, during the second step of the search all 6 parameters were

jointly estimated, obtaining the same values as in the first case as the best fit for

the non seasonal part of the model. While this does not provide a guarantee that

said estimated parameter values will be the best choice for a model including both

seasonal terms, it gives an indication that these values can provide a reasonable ap-

proximation to the underlying process. Lastly, the parameters for the non-seasonal

and daily seasonal components were fixed, and the Sventunkov-Boylan algorithm

was used to estimate the parameters for weekly seasonality modelling, obtaining a

SARIMA(0, 1, 4)1 x (0, 0, 3)1440 x (0, 1, 0)10080 model. The overall process required

of 2 differences terms, one for non-seasonal and another for weekly seasonality in

order to make the series stationary.

The histogram for the residuals of the full SARIMA model can be found

in Fig. 3.4, and the autocorrelation function (ACF) can be observed in Fig. 3.5.

The distribution of residuals was compared with Normal and Laplace distributions

via Kolmogorov-Smirnov test, where in the one sample case the test statistic D

quantifies a distance between the empirical distribution and the cumulative distri-

bution function of the reference distribution, with lower values representing closer

resemblance. The test for Normal distributions obtained the closest match with

a N(µ = 0, σ = 4.2) (statistic D = 0.02993), and for Laplace distributions with
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Figure 3.5: Autocorrelation of the residuals from SARIMA model across prediction
weeks.

a Laplace(µ = 0, σ = 4) (statistic D = 0.04904), leading to a Normal distribution

being shown to be a better approximation. While the residuals are close to normally

distributed, the ACF of the residuals shows that while there is no pattern consis-

tently emerging over time, a Light positive spike in week 1 and negative spike in

week 2 (10080 and 20160 lags) point at potential seasonality information being left

in the data, although the correlations are weak. Based on the information presented

on Section 3.6.3, regarding computational cost and general performance, in addition

to those presented earlier in this section regarding the adjustments to the standard

process needed to estimate the parameters of the model, it was decided against re-

fitting the model, and its improvement and generalisation to entire motorways is

left as future work.

3.5.3 Decomposition in Background and Spikes

During exploratory data analysis we found that, from the point of view of travel

times, traffic operates in two differentiated regimes that we denominated Back-

ground and Spikes.

� Background:

– Stable around a mean value.

– Oscillates with small amplitude and high frequency.

– Suitable for spectral filtering.
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� Spikes:

– Zero most of the time. Quickly go to extreme values.

– Oscillates with great amplitude and low inter-oscillation frequency, cre-

ating far reaching effects.

– Suitable for seasonal decomposition.

Figure 3.6: Schematic of data streams in the algorithm.

In this context, assuming Gaussian noise ξ, and that the components operate

in an additive way, generated a signal of the form:

Travel Timet = Backgroundt + Spikest + ξ (3.4)

The objective was to separate them in such a way that the moments of smooth

and normal operation are captured as part of the Background and used for spectral

analysis, attempting to mitigate the prediction error induced by the high frequency

oscillations and obtaining a basic view of what can be daily observed. Meanwhile,
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the spikes, including the recurring and non-recurring congestion, were treated sep-

arately searching for seasonality in larger time scales than those in which the travel

time signal oscillates, as suggested by Fig. 3.3. Ideally, after this final step of the

decomposition, the remainder should only contain isolated large rare events deviat-

ing from the profile and white noise.

To prevent the differing lengths of the links from affecting this decomposi-

tion, for this step, all travel times were normalized according to their corresponding

link’s free flow time, defined as the time to transverse the length of the link at

the maximum legal speed allowed by the motorway. However, this step only miti-

gates the non-regularity of the time series, since there are drivers who do not follow

these limits. A threshold was heuristically set, as seen in Table 3.1, to separate

the two components in the different regimes from the normalised travel times on a

per-motorway basis by using a 1 level decision tree as introduced in Section 2.1.4.1,

although better results can be obtained by setting each link individually. Intuitively,

this threshold scales with the amount of recurring congestion in a link. Whenever

a data point was above the threshold, it was flagged as belonging to a spike.

Table 3.1: Travel Time Normalisation Thresholds

Motorway Threshold

M6 1.1

M11 1.2

M25 1.4

For this purpose, an indicator function was defined, taking for every minute

the value:

δspiket =

1, if xt > Threshold

0, otherwise
(3.5)

3.5.4 Spectral Component

The main difficulty when dealing with the Background signal is the low amplitude,

high frequency fluctuations that can be found almost ubiquitously. Signal smoothing

can be performed by completely removing a range of frequencies while the informa-

tion bearing bands are retained. For this task, the Fast Fourier Transform (FFT)

[29] introduced in Section 2.1.4.3 was used as follows:

1. Calculate Background Power Spectrum using FFT
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Figure 3.7: Decomposition time series in background and spikes

2. Remove frequencies corresponding to periods under 4 hours and over 1 week

3. Repeat for all n weeks in training set

4. Apply EWMA to the modified weekly Power Spectra

5. Compute the Inverse Transform

3.5.5 Seasonality Component

Seasonal-Trend Decomposition based on LOESS (STL) [28], as previously intro-

duced in Section 2.1.4.2, was the chosen algorithm for the seasonality analysis since

it can handle any type of seasonality, allowing the user to control how it changes

over time as well as the smoothness of the trend-cycle while being robust to outliers

[25].

Below, the sequence of steps taken to extract the Seasonality Components

that can be observed in Fig. 3.3 is described in line with the schematic data streams

represented in Fig. 3.6. Note that this should be applied to the n training weeks as

a single time series.

1. Decomposition of Background for daily seasonality

2. Extract and sum the series corresponding Trend and Remainder from Step 1

3. Decomposition of output from 2 for weekly seasonality

4. Add daily and weekly Seasonal components from Step 1 and Step 3 to obtain

global seasonality
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5. Average seasonality across training weeks

6. Linearise Trend term from output of Step 3

7. Add linearised trend to seasonality obtained in Step 6

8. STL Decomposition of Spikes for weekly seasonality

9. Extract Spike’s Seasonality corresponding to the number of weeks for forecast-

ing

10. Add Spike’s Seasonal component to the output of 8

To ensure a successful decomposition, after Step 3 Background’s Remainder should

ideally be zero mean, Gaussian distributed, although this is not a requirement of

STL. After checking the distribution of the remainders for Link 1 of the M6, it

was found that their mean equals 0.8 seconds, and that upon examination under a

two-sided Kolmogorov-Smirnov test, it results in a p-value=2.2E-16, rejecting the

hypothesis that the residuals are normally distributed. However, the data being used

comes from the real world, with the model directly attempting to filter out large

deviations, which is then reflected in the distribution of the residuals in the form

of a heavy tail. This development will not necessarily subtract from the predictive

power of the model, since the filtering of these large events precludes the existence of

the mentioned heavy tail, and the actual distribution of residuals from the finished

profile is characterised, as it will be seen in following sections, by uncorrelated

residuals with close to zero mean.

Background’s Trend should have a near zero slope. These outcomes should

also hold if performed again after Step 8, with the addition that the trend should

also be close to zero in absolute value, since the time scales in which such a global

trend can meaningfully vary should be much greater than the prediction scope of

this algorithm.

The decomposition performed by STL as defined above is additive. In order

to check for potential suitability of a multiplicative approach to the decomposition,

an alternative decomposition was performed after applying a logarithmic transfor-

mation to the travel time series. An alternative seasonal series is created this way,

which will be referred to using the suffix ”Log”. The only difference between the two

profiles is the previously mentioned logarithmic transformation to background and

spikes series prior to the seasonal-trend decomposition and transformations in the

frequency space, paired with an inverse transformation prior to the recombination

step, creating the new HybridLog profile as described in the next section.
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3.5.6 Seasonal-Spectral Hybrid Profiles

In order to create the final Seasonal-Spectral Hybrid profile (Hybrid), one of the

two forecasts generated in the previous points is taken, depending on what is the

identified regime:

Hybrid = Seasonal ∗ δspike + Spectral ∗ (1− δspike) (3.6)

Similarly, the Seasonal-Spectral HybridLog profile (HybridLog), will be:

HybridLog = SeasonalLog ∗ δspike + SpectralLog ∗ (1− δspike) (3.7)

3.6 Accuracy Results

In this section the accuracy of the algorithm described above is compared against

the Published Profiles and the NS Model. For each temporal point i, the Mean

Average Relative Error (MARE) is defined below:

MARE =

(∑n
i=1

‖xi−x̂i‖
xi

)
n

(3.8)

The MARE is the same as the Mean Absolute Percentage Error (MAPE), but instead

of reporting it as a percentage, it is reported as a fraction of a unit. Both of them are

measures of prediction accuracy when producing forecasts in time series. In order to

calculate it, it is necessary to average the deviation from the individual forecasted

points with respect to the actual measurement. For complete Motorways, the Root

Mean Squared Error (RMSE) has been calculated for each temporal point i as:

RMSE =

√∑n
i=1(xi − x̂i)2

n
(3.9)

In both cases the error for a Link is defined as the average MARE or RMSE

Table 3.2: Hybrid Profile, MARE Distribution Per Motorway

% rel.
error

<-25% -25% to
-15%

-15% to
-5%

-5% to
5%

5% to
15%

15 % to
25%

>25%

M6 1.58 0.60 3.77 88.01 5.97 0.06 0.01

M11 0.80 0.35 4.07 86.15 7.97 0.49 0.15

M25 3.85 2.73 10.42 75.12 7.29 0.33 0.28
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across all prediction points. The error for a Motorway is defined as the average of

the error across all its links.

3.6.1 Accuracy by Quantile

Figure 3.8: Average accuracy results in M6 across percentiles of travel time.

Here, the accuracy of the algorithm is compared against the Published Pro-

files, HybridLog and the NS Profile across all percentiles of travel time, with the

goal of assessing the prediction quality as the actual measurements of the predicted

quantities increase. For this goal, Figs. 3.8-3.10, present the same results as shown

in Figs. 3.11-3.13, but instead of grouping the measurements by the time of the day

in which they are taken, 100 bins are generated, and travel times are placed in the

bins according to a quantile function Q : f(R → [0, 1]). Then, for the bin corre-

sponding to each quantile q of travel time, containing n travel time measurements,

the MARE will be calculated as:

MAREq =

(∑n
i=1

‖xqi−x̂
q
i ‖

xqi

)
n

. (3.10)

As it can be seen in Figs. 3.8, 3.9 and 3.10, the Hybrid Profile has a higher

accuracy than the Published Profiles, HybridLog Profile and the NS Profile for all

percentiles of travel time except for the most extreme values where they all perform

poorly.
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Figure 3.9: Link average accuracy results in M11 across percentiles of travel time.

Figure 3.10: Link average accuracy results in M25 across percentiles of travel time.
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The most meaningful difference occurs between percentiles [50 − 95], where the

Published Profile starts to suffer from higher inaccuracy.

3.6.2 Daytime Error

Figure 3.11: Link average accuracy results in M6 across times of the day.

Here, the accuracy of the algorithm is compared against the Published Pro-

files, HybridLog Profile and the NS Profile across the times of the day. As it can

be seen in Figures 3.11, 3.12 and 3.13, the Hybrid Profile clearly displays a higher

accuracy than the Published Profiles and the NS Profile for all times of the day, for

all locations and training lengths, except for brief windows at 7 AM and 11PM (this

last one only in the case of M11) in where the NS Profile performs slightly better,

and a very brief period at 8 AM in the M25 where all three profiles obtain similar

performance. The HybridLog Profile displays a similar performance when compared

to the Hybrid Profile in the case of the M6 and M11, its predictions suffer higher

errors during the morning and evening peaks, where both models differ. While the

performance of the HybridLog profile is slightly superior than that of the Hybrid

profile for a period of a few minutes in the M11 around 6:30PM and 7:30PM, for all

other locations and times the Hybrid profile scores equal or better. In the case of

the M25, the performance of the HybridLog Profile is found to be worse, performing
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Figure 3.12: Link average accuracy results in M11 across times of the day.

Figure 3.13: Link average accuracy results in M25 across times of the day.
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in a comparable level to the Published Profile.

The greatest improvement in prediction, with respect to the Published Pro-

file, occurs during the morning and evening peak hours, where the Hybrid Profile

presented in this paper does not suffer a meaningful worsening in its performance

relative to the morning plateau when compared with the other two profiles.

In the case of the M6 and M11, where the training set is richer, the error at peak

times is reduced by at least 50% in all cases, reaching as much as 68.7% in the case

of the M6 morning rush. In the case of the M25, which is congested on a regular

basis, the errors in the Published Profile during peak times are slightly lower than

on the other cases, indicating that, given the use of EWMA for its calculation, recur-

rent congestion is better captured by it. Even in this case, the proposed algorithm

performs significantly better than any of the other two, except for a brief window

between 6-7AM when it is outperformed by the NS Model.

3.6.3 SARIMA Results

Figure 3.14: Average forecast accuracy across times of the day in Link 1 of the M6

In Fig. 3.14, it can be observed that while the accuracy of the SARIMA

profile when calculated for link 1 of the M6, is superior to that of the Published

Profile for a section of the day, it falls short of the accuracy provided by the other

reference profile, Naive Segmentation, as well as the Hybrid and HybridLog profiles

introduced in this paper for all times of the day.

Furthermore, the computational time required to calculate the SARIMA pro-

file is between 3 and 4 orders of magnitude greater than that used to calculate the
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other profiles. Assuming a constant calculation speed of 2.12 hours of wall-time per

week of forecast (8.48 hours per link), as previously obtained experimentally, and

taking into account the number of links for which data is available (14 for the M6, 25

for the M11 and 61 for the M25, for a total of 100), as well as the fact that 4 rolling

forecasts are produced (for a total of 400 forecasting iterations), it is estimated that

approximately 35.40 days of CPU time are required to perform equivalent forecasts

to those of the Hybrid profile when using SARIMA. While this is far from ideal, once

it was additionally taken into account that the corresponding time to calculate said

Hybrid forecasts has been measured at 9.16 minutes of CPU time (approximately

5.5 seconds per link), and given the lower (albeit still acceptable) performance of the

SARIMA profile, it seemed reasonable to discontinue its calculation for other links

in order to prevent assigning an extreme amount of the limited available computing

resources to an under-performing method and focus on the development of those

models with increased predictive power and lower computation times.

3.6.4 Hybrid Profile Residuals

Figures 3.15-3.18 show the expected and measured travel times for Links 1 and 3

in the M6, as well as the residuals of the Hybrid profile over the evaluation hori-

zon. These residuals also include those measurements in moments of non-recurring

congestion that the algorithm does not try to estimate or forecast, aiming to leave

them out. Hence, a long tail of such events can be observed in their distribution.

Figure 3.15: Observed Travel Times and Hybrid Profile Prediction for M6 Link 1.

Usually, in time series analysis the general aim is to have such residuals

being as close as possible to normally distributed. However, in this case due to the

initial aims, as stated in previous sections, of being resilient to the extreme non-
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Figure 3.16: Residuals of Hybrid Profile over time for M6 Link 1.

linearities associated with the often more extreme non-recurring congestion events,

as well as the fact that the extreme length of the series and its density, as it was

seen during the SARIMA approximation attempt, led to higher weight being placed

in the empirical performance of the model, both in terms of its accuracy, and the

residuals being close to zero and stable over time. As it can be observed in Figs.

3.15-3.18, the residuals oscillate around zero, with little to no drift over the course

of each estimated week for Links 1 and 3 of the M6. Furthermore, when looking at

the paired Travel Times plots, it can be seen that excursions far from zero occur

whenever there is a large ongoing event associated with non-recurring congestion

that the model was purposely built so it was filtered out. These links were chosen

based on each of them providing a good representation of links showing high and

low levels of recurring and non-recurring congestion respectively.

3.6.5 Model Noise Assumptions

The analysis of the residuals of the SARIMA reference profile, shown in Sec. 3.5.2,

hints at the existence of a more complex noise source in the data than purely nor-

mally distributed.

In the initial problem formulation in Eq.3.4 a single noise source was assumed.

In some items of previous traffic research, travel time noise has been estimated

using linear mixtures of normal distributions [166, 167] with varying numbers of

components depending on the assumptions of the underlying model being used.

Since the model here proposed assumes two different traffic regimes, it is

reasonable to wonder if each regime will operate under its own noise distribution. In

order to assess this assumption, an alternative formulation for the model is proposed,
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Figure 3.17: Observed Travel Times and Hybrid Profile Prediction for M6 Link 3.

Figure 3.18: Residuals of Hybrid Profile over time for M6 Link 3.
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Figure 3.19: Mixed Distribution Estimation of residuals in M6 Link 1

in which background and spikes have their own sources of noise, resulting on an

overall noise that will be observed as a linear mixture of Gaussian distributions:

Travel Timet = Backgroundt + Spikest + ξBackground + ξSpikes (3.11)

To examine this hypothesis, the residuals of the Hybrid profile in the M6

were analysed, and the noise components were estimated by obtaining a feasible

parametrisation via Expectation Maximisation. In Figs.3.15-3.22 we can observe:

the mixture distribution estimation for residuals, empirical distribution of residuals

showing the logarithm of the densities for the theoretical and empirical distribu-

tions for Links 1 and 3 of the M6. These figures associated with these two are

representative examples of the two classes we can find in the remaining links of the

motorway, in terms of the amount of recurrent congestion they suffer. Among the

class suffering more congestion, it was found that the in resulting mixture distribu-

tion, the component modelling the noise for spikes had a weight of 4.6%, while the

estimated spike prevalence as per the delta function in the Hybrid Profile is 3.3%.

While this estimation provides a reasonable fit to the source data, albeit using the

second distribution to fit the heavy tail of the distribution, it comes with its own

additional set of problems.

The first issue comes from the choice of the number of noise terms, the

definition of two distinct source noises has been made a priori, but other number

of noise terms could be proposed (e.g. a noise term for the congestion onset and

a different one for congestion clearing), in line with different existing assumptions

regarding traffic flow that are beyond the scope of this work. In this way, while every

addition and parameter estimation for an additional noise source would improve the
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Figure 3.20: Logarithm of density for theoretical and empirical distributions of
residuals of travel times for M6 Link1.

Figure 3.21: Mixed Distribution Estimation of residuals in M6 Link 3

Figure 3.22: Logarithm of density for theoretical and empirical distributions of
residuals of travel times for M6 Link3.
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fit to the data, it could easily lead to overfitting, especially in this case where the

parametrisation is done per-link. In the limit, this would allow the addition of an

arbitrary number of components with quasi-zero weight, that while perfectly fitting

our source data, would fail to generalise to entire motorways, which is the ultimate

goal. This is a relevant concern in this case, since the average weight of the second

distribution was estimated at 4% of the mixture distribution.

Second, the Expectation-Maximisation algorithm used [168] for estimation is

susceptible to initial conditions, reaching slightly different parametrisations for the

model depending on the initialisation, light identifiability issues arise commonly in

the form of label switching, although these tend to not pose serious issues when han-

dled with care. However, small variations in the estimated parameters due to ran-

dom initialisations can lead to the creation of a series of closely related distributions

that are equally good for explaining the data, now creating serious identifiability

issues.

Furthermore, the residual distributions will change over time, first and on

shorter timescales, based on the natural occurrences of non-recurring congestion

(which our model does not attempt to approximate, consequently being sent to

the residuals) and the noise of the system on a week-to-week basis, and on longer

timescales, based on the change over time of global traffic flows. This can lead

to further issues regarding the parametrisation of the estimated distribution, even

leading to potential changes in the class of a given link.

Lastly, incorporating information about these per-link distributions into the

forecasting algorithm would violate the third requirement for the algorithm (as

stated in 3.5) regarding the lack of specific per-link parametrisation, while the pro-

posed approach is centred around generalisation for entire motorways.

While a more detailed study of the noise would allow for a better a priori

characterisation of the uncertainties in the model, under the current formulation

this would have no effect in the forecasts, given that the Hybrid profile estimates

the baseline dynamics of the process and deterministically project them forward in

time as expected travel times. Based on the issues and considerations covered in

this section, it was decided to keep the initial assumption of a single noise source

for the next chapter.

3.7 Conclusion and Future Work

This chapter has introduced an algorithm for estimation of baseline travel times

in UK highways, capable of accurately forecasting travel times up to 4 weeks in
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advance. Said algorithm obtains lower forecasting error than the currently Published

Profiles and a reference naive approach. The increase in performance is consistent

across the three motorways testes, being able to adapt to each of the motorways’

dynamics: morning and evening rush hours in the case of the M6 links, evening

rush hour in the case of the M11 and high recurrent congestion in the case of the

M25, which may explain why this is the only motorway in which the Segmentation

Profile is the worst performing one. The reduction in the forecasting error is most

noticeable during the previously mentioned rush hours, during which the Hybrid

profile produces similar errors to that of the Published Profile during low demand

regimes. The algorithm presented above meets the requirements described in Section

3.5 except for the need of an heuristically set threshold.

The implementation of an alternative Hybrid Profile using a multiplica-

tive decomposition (HybridLog) by performing a logarithmic transformation on the

travel time data has not shown to improve the performance of the model and hence,

will not be used in the following chapter, continuing research with an additive ap-

proach to the seasonal-trend decomposition.

One potential way of reaching compliance with these requirements is to per-

form the decomposition by applying a Wavelet Transform and separating back-

ground from spikes based on statistical analysis of the transformed time series in

terms of how their Wavelet coefficients fluctuate over time within a scale level. An-

other potential extension is the performance of a sensitivity analysis explore the

limits of the algorithm in terms of minimum training data set (although during

testing, acceptable performance was not found under 4 weeks), as well as maximum

performance with increased training, for which additional data should be gathered.
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CHAPTER 4

Wavelet Augmented Regression

Profiling (WARP)

4.1 Introduction

4.1.1 Background

In this chapter, we follow up on and expand upon the work introduced in Chapter

3, presenting more elaborate and suitable solutions to the problematic of handling

spikes in motorway travel time series. Chapter 3 introduced an approach to clas-

sify data points in travel time series into two differentiated regimes. While the

utility and information carried by the background is straightforward, the fact that

the spikes contain both recurrent and non-recurrent congestion makes extracting

valuable information from them more troublesome. In the previous chapter, the

information-bearing subset of the spikes component is extracted in a quasi-black

box approach, searching for any seasonality that can be extracted with a seasonal-

trend approach, similarly as it is done with the background, but without going into

the temporal structure of the spikes.

This chapter aims to dig deeper, defining a clear method to identify what

part of the spikes is indeed due to recurrent congestion, based on the variation of the

time travel signal across different timescales, using spectral and statistical analysis

of recent historical data, while relying on pattern discovery for intra- and inter-day

variability which it computes directly from input data.

This is done while still providing an alternative approach for generating one

week of expected travel times, using a single parameter and using only publicly

available data from NTIS, and also removing the requirement of any prior form of

segmentation of times and days into different classes.
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4.1.2 Previous Work

There is an extensive literature on travel times, although recent research is more

focused on shorter term forecasting, with far fewer long term estimation studies

[138, 139]. Machine learning and statistical analysis methods receive the most at-

tention [140]. In machine learning, neural networks are recently attracting a lot of

interest [141, 142]. Other approaches are closer to the methods presented here: mak-

ing use of historical data [143, 144], differentiating between rush and non-rush hour

[145], using spectral methods [146] or Locally Weighted Regressions [147, 148, 149,

150, 151, 152]. The Wavelet Transform has been previously found to be useful in

combination with Kalman filters [169], neural networks [170, 171, 172, 173] and sta-

tistical analysis [174, 175]; but these either cover short predictions, use the Wavelet

analysis of travel times for other purposes such as incident detection, or do not

focus on the spectral properties across timescales or are not real-world data based.

Comparisons involving some of these studies are performed in [22, 153, 154, 155],

but they either focus on short-term prediction or do not produce an overall best-

performer. The method presented here is distinct from the previous work mentioned,

since it does not use a sample of individual trips, but all conducted over 12 weeks

in multiple sites. The aggregation period is 5 minutes, the prediction resolution is 1

minute (since the aggregation step is rolling), and the prediction horizon is larger.

Among these methods, the transferability to other locations is not often evaluated,

being tuned for a specific location with its own specific conditions. In order to en-

sure transferability, our method is examined on 39 individual locations across two

motorways and independently scored for each site. The work presented here makes

use of a combination of Continuous Wavelet Transform [33], tree decisions, spectral

analysis, and Locally Weighted Regression (LWR).

4.2 Travel times on Motorways

As introduced in Section 3.2, from a user perspective, vehicle travel times are the

most relevant measure of the state of the traffic flow on a road link. The average

travel time in a given minute of the day on a given link will be the average time to

travel from the entry to the exit loop sensor for all vehicles that passed through.

From Figure 4.1, it can be observed that most of the time, the travel time on a

link follows a repeating pattern with minima located at night matching the bounded

free flow time (except for speeding drivers). As the morning rush starts, travel time

will rise as traffic jams are generated from the collective drivers’ behaviour. More

effects of these collective dynamics can be observed in the afternoon during the
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Figure 4.1: Link 1170079, M6. Travel Time over 28 days of minutely data between
07/Mar/2016 and 04/Apr/2016.

evening rush, normally being possible to find a plateau between these two peaks.

Finally, travel times progressively decay towards the night’s free-flow regime. In

Figure 4.1, we observe a series of spikes found outside of this normally bounded

yet oscillating behaviour. Travel time in these events can climb up to several times

the normal amount. The predictability in terms of duration and amplitude of these

spikes is much lower than the periodic component described above.

Lastly, looking back to the Autocorrelation Function of the Travel Time

series, which was plotted in Figure 3.3, we can observe a double seasonal pattern

with periods of 1 day and 1 week. This regularity seen in time travel time series

can and is often used by modellers to approximate and forecast travel times as is

explored over the next sections.

4.3 Basic methods for profile estimation

4.3.1 Exponentially Weighted Moving Average for Profiles

As explained in [1] and reviewed in the previous chapter, a basic approach to esti-

mating profiles is to apply an Exponentially Weighted Moving Average (EWMA)

across a given minute of the available days, assuming that similar behaviour is to be
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expected at similar times on different days. Then, the profile estimation x̂(i, d+ 1)

for the i-th minute of a date d, controlling our memory parameter α ∈ [0, 1] to

balance the memory of the process and with measured travel time xdi , will be:

x̂d+1
i = αxdi + (1− α)x̂di

= αxdi + α2xd−1i + (1− α− α2)x̂d−1i

= ...

(4.1)

EWMA-based profiles have a main issue: the way in which the memory decays. If

a large non-recurrent deviation from the baseline patter occurs, subsequent estima-

tions will have a bias towards partially replicating the deviation and consistently

predicting over-estimates until newer data is included and the effect dissipates.

This, when put together with the extra limitations introduced by time-based

segmentation, as explained in Section 3.3.2, introduce long lasting perturbations to

the series, as it was shown in Figure 3.2.

Consequently, significant operational and geographical expertise about spe-

cific roads is needed to create a valid segmentation, given that the EWMA approach

is effective exclusively for recurrent congestion. These requirements often lead to

the generation of legacy systems which become increasingly difficult to maintain as

time passes, their usefulness declining over time or requiring additional efforts for

continually training new staff to maintain the system. These modelling and oper-

ational limitations may make segmentation and EWMA based profiles suboptimal

both in performance and operation.

4.4 Data Selection and Contents

The M6 and M11 motorways in England are chosen due to their high use and

their display of both recurrent and unusual congestion, being key in several heavily

used commuting routes. The dataset shares the contents of M6 and M11 with that

introduced in Chapter 3.

� The dataset aggregates 90 days (12 complete weeks) minutely entries (07/03/2016-

05/06/2016).

� Links with over 10% of data missing or containing access ramps were discarded.

� The previous condition left 14 different links in the M6 and 25 links in the

case of the M11.

� Entries missing for 10 minutes or less were linearly interpolated.
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� Entries missing for over 10 minutes were left as missing values.

The algorithm uses 8 weeks of data to predict one entire week ahead. After a week,

the oldest week is deleted, and the most recent one is incorporated, producing a new

estimate for the subsequent week. This procedure is simulated 4 times. For each

link-date pair, the data comprises minutely data, containing:

� Average vehicle travel time in seconds

� Profile (expected) travel time in seconds

� Traffic Flow in cars/hour

� Vehicle headway in metres

4.5 Background and Spikes

4.5.1 Characteristics

As described in [1], if we look at the travel times, we find they operate in two dif-

ferent regimes that we call background and spikes. The background is stable with

small high-frequency fluctuations about a time-varying mean value. This makes it

suitable for seasonal analysis and spectral filtering (smoothing). In contrast, the

spikes are zero most of the time but can quickly climb to extreme values. They have

much greater amplitude and much lower frequency, creating long reaching effects.

Although they are non periodic in the time domain, a non-harmonic seasonality con-

tribution associated with recurrent congestion can be extracted via non-parametric

regression, as it will be shown shortly.

In this context, if we assume Gaussian noise ξ, and given the additive prop-

erties of wavelet decomposition, the decomposition for every minute t of the day,

will be of the form:

Travel Timet = Backgroundt + Spikest + ξ (4.2)

The objective is to separate the signals such that the times of smooth non-congested

operation, together with the recurring congestion, are captured in the background

and passed through spectral smoothing, mitigating the estimation errors created by

the high frequency oscillations and achieving a view of what can be daily observed,

so seasonal patterns can be extracted in the shorter and longer periods shown in

Fig. 3.3. Meanwhile, the spikes, containing the non-recurring congestion, can be

searched for any seasonality left on time scales larger than the period in which the
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travel times oscillate, as also suggested by Fig. 3.3. If performed correctly, the

remainder after this seasonal extraction step of the decomposition should contain

only isolated events with large deviations from the profile and white noise.

4.5.2 Wavelet Time Series Decomposition

To perform the decomposition, we will take advantage of the additive properties of

the wavelet transform, as introduced in Section 2.1.4.4. First the time series ~xt of

length t, and elements xi with i ∈ [0, t] is turned into a zero mean series ~xt−mean(~xt)

and used as input for a Continuous Wavelet Transform (CWT) [176, 177] using a

Morse wavelet [178] and 140 timescales levels, as introduced in Section 2.1.4.4. The

output of this first transform is a complex matrix ~W of dimensions (levels, t), for the

elements of which we calculate their modulus ρ, phase φ and power P . A heatmap

of P 2 for the original time series can be seen in the first subplot in Figure 4.2. In

the figure we can observe that the most influential dynamics occurring during the

series length (x axis) happen at the timescales (y axis) where it was expected based

on Figure 3.3, namely 1 day (1440 minutes) and 1 week (10080 minutes). In the

figure, we also observe that surges in power across different wavelet timescales occur

at the same time as the non-recurring congestion, since in order to approximate this

signal, the CWT algorithm needs to combine several wavelets with smaller periods

than those dominating the recurring part of the series.

In order to isolate this non-recurring component, the series is sequentially

assessed over all the time domain by taking a horizontal slice for a single timescale

level l, and generating a series ~xt
l. After fixing l, we calculate the Median and Inter

Quantile Range of ~xt
l to search for outliers. A maximum threshold value is set

equal to T = median(~xt) + α ∗ IQR(~xt
l), with α ∈ [0, inf) being a parameter that

defines how aggressively we target spikes. Then, the individual elements of ~xt
l, xli

are individually evaluated: if found below the limit, they are stored in a background

container Bl
i = xli; otherwise, the fraction below the threshold will be nonetheless

passed on to the background ~Bi
l

= median(~xt
l) +α ∗ IQR(~xt

l), with the remaining

part going into the spikes storage ~Si
l

= xli −Bl
i.

In the extremes, for α = 0 we would find that any deviation from the median

is taken into the spikes signal, and with α = ∞ only points infinitely distant from

the mean would be taken into the spikes. This parameter could be optimised per-

link to obtain the best results, with relatively low calibration effort when starting

from a plausible baseline. However a per-link optimisation step would go against

the initial goals stated in Sec. 3.5, regarding the algorithm being location agnostic

in its parametrisation. For this reason, a heuristic optimisation was performed via
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Figure 4.2: Top: Power of CWT of the original Travel Time series for Link 1170079
of the M6. Bottom: Power of CWT of the extracted Background ~Bt series, as
detailed in Section 4.5.2, for Link 1170079 of the M6
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grid search, aiming to obtain the value of α that minimises forecasting error when

evaluating via rolling forecasts for all motorways jointly. Best results were obtained

for α = 1, hence this will be the value used for the results presented over the

following sections.

Once all levels have been processed in this manner, we use the previous

information about φ to reconvert the two series from being characterised in terms of

(ρ, φ) to the complex components of the DWT. After this step, we apply the Inverse

DWT to ~Bt and ~St, obtaining the two series that can be observed in Figure 4.3.

4.5.3 Series recombination and analysis of background

The results of the separation of the background can be seen in Fig. 4.2. Here it

can be observed that the separated background is still characterised by seasonality

dominating the weekly (10080 minutes) and daily (1440 minutes) timescales, and

keeping a very similar structure in the regions occupied by the faster dynamics (<

120 minutes) to that of the original series. Simultaneously, the surges in power across

timescales of the original DWT-transformed series (left), which are associated with

congestion events, have been greatly reduced or eliminated altogether in the second

subplot.

This demonstrates the ability to process a time series showing multiple sea-

sonalities and punctuated by large deviations from the normal dynamics of the

process into two separate series, one of which will exclusively contain the baseline

dynamics of the process, respecting its structure and natural variability, and the

other, which will only contain those large events that occur outside of the smooth

operational region.

To reduce noise introduction during the inverse transform, a threshold is

applied to ~St, where elements representing spikes less than 3 seconds in amplitude

are set to zero when looking at future estimation.

For future prediction steps, an indicator function is defined for every entry

in the series, taking value:

δspikei =

1, if xi > Threshold

0, otherwise.
(4.3)

4.6 WARP Travel Time Prediction Algorithm

The objective now is, given the seasonality and separation of the original signal pro-

vided above, to generate a time travel prediction model that accounts for the cyclic
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Figure 4.3: Recombination post Inverse Wavelet Transform

variations and recurrent congestion but remains resilient to unexpected deviations

and rare events.

We aim to provide a robust algorithm that mitigates the propagation of

extreme events into the future (unlike EWMA). It must work for all locations and

not require the use of time segmentation. The trend term must be nearly flat, based

on the difference in timescales for the growth of demand on a motorway level and the

seasonalities concerning this chapter. Finally, it must have uncorrelated residuals,

Gaussian distributed with mean 0. Following these requirements, we introduce the

WARP algorithm (Wavelet Augmented Regression Profiling) from section 4.6.1.

4.6.1 WARP: Spectral Component

The background signal shows oscillations of high frequency (order of minutes) and

low amplitude (usually a few seconds) almost ubiquitously. It can be smoothed by

discarding, in the frequency domain, the frequencies that in which the oscillations

occur and those outside the scope of this study (over 4 weeks and under 4 hours),

while keeping those in the information bearing bands by using the Fast Fourier

Transform (FFT) [29]. Once this step is performed, the modified power spectra

can be passed through the Inverse FFT Transform and, since large events have

been removed previously, now an EWMA can be safely applied to the series in the

time-domain in order to obtain the background prediction.

75



Background

Fourier Analysis

Seasonal Weekly 
Analysis

+

Wavelet Analysis

Travel Time 

Clean Data

Spikes

Seasonal Daily 
Analysis

Seasonal Weekly 
Analysis

Spectral 

Background

WARP Model

Seasonal 

Congestion

Indicator Function

Figure 4.4: Flowchart of the data streams in the algorithm

4.6.2 WARP: Seasonal Component

The seasonal component is computed via Seasonal-Trend Decomposition based on

LOESS (STL) [28]. STL is resilient to outliers and can manage any combination of

seasonalities, allowing to control their change over time as well as the smoothness

of the trend [25]. We begin by isolating the daily seasonality Sd from the entire

background training series using STL. Trend and remainder are summed and re-

analysed for weekly seasonality Sw. This step also produces a trend series Tr and

a remainder which should be Gaussian distributed, zero mean. Global seasonality

is calculated as Sg = Sd + Sw. We then average the seasonality over the training

weeks to obtain a value for each minute of the week we are to estimate. Then, Tr,

which is nearly flat after the decomposition, is linearised to obtain a baseline series

Bt, and the Baseline prediction is Bp = Bt + Gs. Finally, the spikes are searched

for any seasonality left on the weekly level Spw, discarding the trend and remainder

terms, and obtaining the final seasonal component as SEASONAL = Bt + Spw.

4.6.3 WARP Hybrid Profile

The final WARP profile, containing the spectral and seasonal components, depends

on the regime as per Eq. (4.4):

WARP = Seasonal ∗ δspike + Spectral ∗ (1− δspike) (4.4)
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Table 4.1: MARE Distribution in M6 prediction

Profile / MARE (> −25%] (−25%,−15%] (−15%,−5%] (−5%, 5%) [5%, 15%) [15%, 25%) [> 25%)

Published 1.58 0.54 5.69 56.21 30.79 3.17 2.02
Wavelet 1.57 0.51 3.22 81.73 12.14 0.70 0.13

Table 4.2: MARE Distribution in M11 prediction

Profile / MARE (> −25%] (−25%,−15%] (−15%,−5%] (−5%, 5%) [5%, 15%) [15%, 25%) [> 25%)

Published 0.85 1.15 19.21 62.83 13.21 1.65 1.10
Wavelet 0.78 0.32 3.29 81.33 12.47 1.09 0.73

4.7 WARP model predictive accuracy

In this section we assess the performance of the WARP model in out-of-sample

validation and compare it against a null model based on simple segmentation and

against the published NTIS profiles (the details of which are not in the public

domain.)

4.7.1 Simple Segmentation - null model

Our null model for assessment of the performance of the WARP model is a basic

segmentation model that applies uniform weights to the training data in a given

time interval from previous weeks. On the i-th minute of a week and using the

previous n weeks (here n = 8) as training, the simple segmentation (SS) profile is:

x̂(i, n) =
n∑

week=1

xin
n

(4.5)

4.7.2 Rolling forecast evaluation

Standard cross-validation procedures applied to Machine Learning (defining test and

train datasets) cannot be directly translated to time series. For time series, standard

cross-validation is based on forecasts with a rolling origin, using variable amounts of

training data, given that the same model is used for prediction at different points in

time [25]. The model here proposed differs from most traditional time-series models

in that, the way that it achieves variation of the seasonal component and remains

responsive to new data is by being recalculated from zero for every forecasting week.
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Figure 4.5: MARE over the times of the day for the M6

In this sense, each ”predicted” week of data is obtained by using a new iteration of

the model, having identical parametrisation to its predecessors but different training

data (discarding one week of measurements to incorporate a new one), that generates

a deterministic estimation for baseline travel times a single time, and this baseline

is then projected forward in time as a forecast. The main evaluation criteria for the

model is the predictive performance in the very long term, hence, rolling forecast

evaluation tests have been performed to compare the WARP profile values against

the subsequently measured travel time.

We choose to use the Mean Absolute Relative Error (MARE), as defined in

Eq. (3.8) to quantify performance since it allows for a fair comparison of links of

different lengths. The Root Mean Square Error (RMSE), as defined in Eq. (3.9)

has also been calculated on a motorway level as the average of the RMSE across its

links.

As shown in Figures 4.5 and 4.6, and supported by Tables 4.1 and 4.2, WARP

shows lower predictive error than the published profiles and the SS Model for all

times and motorways. This is most relevant for morning and evening rush hours,

where the others’ predictive error soars, WARP suffers no meaningful performance

worsening relative to the plateau in the middle of the day. The error at rush hours is
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Figure 4.6: MARE over the times of the day for the M11
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Figure 4.7: MARE across percentiles of travel time for the M6.
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Figure 4.8: MARE across percentiles of travel time for the M11.

reduced by a minimum of 50% across all cases, reaching as high as 63.4% in the case

of the M6 morning rush. In Figs. 4.7 and 4.8 it can be observed that the accuracy

of the WARP profile is significantly higher than that of the published profiles or the

SS Model across nearly all percentiles of travel time. WARP is most competitive in

the upper percentiles of the travel time distribution since it explicitly accounts for

the predictable contribution of recurrent congestion to travel time spikes. All three

models eventually suffer similar errors under the most extreme deviations since these

are true outliers and are not amenable to data-driven forecasting.

4.7.3 Conclusion and Future Work

This chapter has tackled the problem uncovered in Chapter 3 of additively splitting

a travel time signal showing multiple seasonalities and interspersed with large devi-

ations into a baseline signal, capturing most of its recurrent dynamics, and a spike

signal, containing the developments occurring outside the baseline regime. This is

done by performing an statistical analysis of the time travel signal after performing

a CWT. The separated components can be recombined and processed to generate

long term estimations in similar ways of those presented in Chapter 3 to produce

estimates of baseline travel times in the motorway and to generate long term fore-
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Table 4.3: Average MARE per Link on M6 and M11

Links M6 MARE

117007401 0.0290

117007501 0.0680

117007601 0.0293

117007801 0.0826

117007901 0.0435

117008401 0.0484

117009102 0.0338

117011901 0.0295

117012001 0.0584

117012101 0.0370

117012201 0.0605

117012301 0.0379

117016001 0.0496

123025901 0.0427

Links M11 MARE

199048301 0.0510

199048701 0.0279

199048801 0.1053

199048901 0.0239

199049002 0.0306

199049101 0.0213

199049402 0.0223

199049501 0.0181

199049702 0.0297

199049801 0.0408

199050002 0.0445

199050101 0.0272

199050202 0.0288

199050901 0.0433

199063301 0.1203

199063701 0.0500

199063801 0.0265

199064203 0.0230

199065202 0.0259

200021668 0.0280

200024801 0.0233

200028639 0.0241

200028641 0.0188

200028645 0.0435

200028648 0.0499

Table 4.4: Average MARE & RMSE per Motorway

Motorway MARE RMSE [s]

M6 0.0385 3.90

M11 0.0379 4.42
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casts which prove more accurate than the currently used Published Profiles. This

is done in a fast and computational inexpensive manner.

Regarding the accuracy results, forecasts result marginally more accurate in

the case of the M6, even if the results for the M11 are very similar. The algorithm

does not seem affected by the fact that the gathered M6 data suffers morning and

evening travel time peaks, while the data from the M11, which was gathered in a

single direction, sees only one peak a day. The algorithm shows worst performance

during said peaks, but still obtains very significant prediction error reductions when

compared to the Published Profiles.

There are relatively simple approaches that could a priori be used to fine-tune

the algorithm, such as automatic tuning of the parameter α based on the distribution

of travel times on a per-link basis. However, these should be formulated carefully,

given that travel time distributions on motorways often display bimodal distribution,

and aggressively targeting the data points around in the second mode will make all

congested regime, part of which can indeed belong into the baseline dynamics of the

motorway, into the spike signal and hence being treated as non-recurrent.
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CHAPTER 5

Agent Architectures in

Reinforcement Learning for

Traffic Signal Control

5.1 Introduction

Traffic Signal Control (TSC) can be used to ensure the safe and efficient utilisation of

the road network at junctions, where traffic can change directions and merge, having

to manage conflicting individual priorities with the global needs of the network.

Sub-optimal TSC can cause numerous problems in ever-growing cities such

as the increase of delays, congestion, waste of energy and air pollution. Traffic

congestion has a major financial impact. A study by Inrix [179] shows that traffic

congestion in 2019 cost £6.9 billion in the UK alone, with an average of 115 hours

wasted per driver, resulting on an average cost of £894 per driver. Similar patterns

are observed in other developed countries, with traffic causing Germany a loss of

¿2.8 billion and 46 hours lost per driver, and a cost for the US of $88 billion and 99

hours lost per driver. That number could reach $3400 billion yearly worldwide by

2030. Other studies [180] suggest a more modest cost, around $29 billions dollars

for the United State each year.

In order to improve their traffic conditions, populous cities around the globe

are exploring the deployment of smart Urban Traffic Controllers (UTCs) that use

real time data to adjust their stage schedule and green time duration. Tradition-

ally, fixed time plans have been used. Those fixed time plans can be optimised by

systems that try to optimise the green time splits in a deterministic manner such

as TRANSYT [48]. These types of systems require site-specific knowledge of the

traffic lights placement and typical demand profiles to be able to provide effective
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control. These methods are not easily scalable and deteriorate over the years as the

traffic demand changes [181].

With the development of induction loops that can detect the presence and

estimate the speed of vehicles at a given position, real time (actuated) UTCs were

created in two variants: those that optimise single isolated intersections with systems

such as MOVA (Microprocessor Optimised Vehicle Actuation) [45], and those that

cover multiple intersections such as SCOOT (Split Cycle and Offset Optimisation

Technique) [51]. The latter group of systems uses data provided by induction loops

around a partitioned area or set of intersections, an inability to overlap these areas

makes it not easily scalable.

To remedy the scalability problem, other systems based on the varying state

of the managed intersections and those neighbouring it were developed. These

methods are based on local rules that generate a self-organising area traffic con-

trollers. One such method is SurTrac [61], which solves a forwards implementation

of Dynamic Programming. Other systems are based on physics, such as the differ-

ent versions building on the concept of BackPressure [182, 183, 184] to maximise

junctions’ throughput.

With the recent breakthrough of Deep Reinforcement Learning (DRL) on

high complexity problems such as Atari games or Go [185, 186, 187], attention has

been turned towards the adaptation of these approaches to generate industry-grade

controllers for traditionally noisy and difficult to control systems such as TSC.

The purpose of this chapter is to reproduce some of the results of the main

and most successful RL approaches on intersections and networks of increasing com-

plexity. A secondary objective is to compare different architectures of DRL TSC

agents, since, given the complexity of their implementation, most available literature

only deals with a single class.

The chapter is organised as follow: Section 5.2 contains an introduction of

the reinforcement learning framework , Section 5.3 introduces the basic necessary

mathematical background, in Section 5.4 basic reinforcement learning algorithms

are presented, in Section 5.4.6 the process to implement an modular RL environ-

ment on the traffic simulator Vissim is presented, then the experimental results and

comparisons between the different reinforcement learning agents (DQNs and A2C)

with MOVA and SurTrac are presented on different junction and network configura-

tions. Sections 5.5 through 5.8 present different configurations tested and show the

results obtained. Lastly, Sections 5.9 and 5.10 introduce the conclusions, limitations

and set out the future work.
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5.2 State of the Art

5.2.1 Reinforcement Learning Methods

As introduced in Section 2.2.5, Reinforcement Learning is an area of Machine Learn-

ing that tries to imitate how biological entities learn. In it, an independent agent

evolves in an unknown environment and learns how to perform a task for which no

prior information is given based on its interactions said environment via a set of

allowed actions. The goal of the agent is to maximise the total reward signal that

it receives as a feedback for each of its actions.

RL methods have already successfully been applied to TSC in experimental

setups. A good review of early methods can be found here [188] (without recent deep

learning function approximations). More recent works [126, 130, 189] use neural net-

works as function approximators to avoid the limitations regarding dimensionality

and computing time of table based methods in large state-action spaces, and they

show that DRL TSC can indeed be more efficient then previous actuated methods.

While there is a variety of approaches in the literature that craft successful

RL-based TSC systems, most of them do no present direct comparisons against

commercial systems that are the concern of this chapter.

Gao et al. [124] used a CNN and discrete cell encoding with a Target Network

for a value-based agent. The results were compared against a fixed time and a

heuristic system (longest queue first), finding RL to perform better.

In Mousavi et al. [125], raw pixels were used as input for a CNN that

parametrises two agents: a policy-gradient agent and a value-based agent. The

variation in the delay between actions was used as reward, and while both agents

were found to have near-identical performance, they were not compared against any

reference system.

Later, in Wan and Hwang [190] a DQN using discrete cell encoding as state

was implemented. It used a CNN architecture and a delay-based reward. It was

compared against a fixed time system, obtaining better performance.

Liang et al. [126], used the same approach and included speed information

in the state, using a reward based on variations on aggregated wait time for all

vehicles. It compared against two different fixed-time systems, ranking better than

both and providing some evidence of the benefits of using Double DQN, Duelling

architecture and Prioritised Experience Replay.

In Genders and Razavi [128] different state spaces were evaluated using a

policy-gradient algorithm, including: occupancy and speed for each incoming road,
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queue and a measure of density of incoming roads, and Discrete Cell Encoding,

partitioning the incoming roads into cells of fixed lengths, in this case 2.5 metres.

Genders found little difference in the performance of the agents as a result of the

change in the magnitudes observed, but it could be argued that a discrete cell encod-

ing would greatly benefit from a Convolutional Neural Network (CNN) architecture

in the agent, which is not used.

Regarding comparisons with established systems, in Stevanovic and Martin

[191] the authors compare SCOOT with a Genetic Algorithm-based control method.

It is shown that SCOOT’s performance can be surpassed by more adaptive Genetic

Algorithms that, in turn, tend to be less effective at learning than RL methods.

Despite of the amount of previous work, most results are hard or impossible

to reproduce given the lack of industry standards in terms of simulators, perfor-

mance metrics, test-bench suites, the lack of availability of commercial algorithms

for comparison, given the fierce protection of their internal workings and the lack of

open-source code of proposed RL models. The objective of the chapter henceforth is

to provide a reliable comparison in a variety of setups that can be used as a baseline

reference for future improvements in the field.

5.2.2 Commercial Traffic Signal Control Optimisers

5.2.2.1 MOVA

MOVA (Microprocessor Optimised Vehicle Actuation) [45] is a traffic control soft-

ware designed by TRL Software. It purpose is to reduce delay on isolated intersec-

tions and junctions. The basic functioning of MOVA involves two induction loop

detectors estimating the flow of vehicles in each lane of the intersection. The system

makes a virtual cell representation of the lanes within MOVA as that shown in Fig.

5.1, and then it computes a performance index based on the delays calculated. If

the index results lower than a certain threshold, the signal is changed to the next

stage, otherwise the stage it is extended.

5.2.2.2 SURTRAC

Scalable URban TRaffic Control (SURTRAC) [61] is an adaptive TSC system pub-

lished in 2013. A real-world deployment on 20 intersections in Pennsylvania showed

an improvement of 20-40%. Surtrac operates in a decentralised manner, with each

intersection allocating its green time independently and asynchronously based on

incoming flows. Each intersection is controlled by a local scheduler and communi-
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Figure 5.1: Internal cell partitioning of a lane within MOVA. Source: TRL[45].

cates projected outflows to the to downstream neighbouring junctions, modelling

vehicles as a sequence of clusters or platoons in which the vehicle order must be

preserved. This communication allows for locally balancing competing flows while

creating larger ”green corridors”. The scheduling problem is to find an optimal se-

quence such that the input jobs (ordered clusters) are cleared while minimising the

joint waiting time of all vehicles. These schedules are recomputed once per second.

5.3 Traffic Control as a Markov Decision Process

The control of a traffic intersection can be formulated as a Markov Decision Process

(MDP). As seen in Section 2.2.5.1, the MDP is defined in terms of a 5-tuple:

� A set of possible environment states s ∈ S.

� A set of actions of the agent a ∈ A.

� A stochastic transition function ∀a ∈ A, T as,s′ , P(st+1 = s′|st = s, at = a).

� A scalar real valued reward function R(st, st+1, at) that provides a performance

measure to the transition generated by progressing into the state st+1 after

taking action at while in state st

� A discount factor γ that will provide the balance between immediate exploita-

tion and approaches that aim to maximise returns over time.
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Figure 5.2: Schematic agent-environment interaction in a Markov Decision Process.
Source: Sutton and Barto [108].

Each time an action is required, the agent will receive a state vector st from

the environment. Based on this state, the agent will produce an action at, which will

be implemented in the simulator. The environment will then advance time until a

next action is required, according to its dynamics represented by T as,s′ . At this point,

the next state st+1 will be observable. Both states will be used to generate a reward

rt to serve as feedback to the agent. The agent will receive the state observation

st+1 and the cycle will start again.

The transition function of an MDP can be deterministic (e.g. Go, chess),

known (e.g. backgammon) or unknown (e.g. finance, traffic). The observability of

the system by the agent can be complete, knowing all relevant variables of the envi-

ronment (e.g. Go, chess) or partially observable (e.g. Starcraft, traffic). Arguably,

with modern sensors, self-driving cars to eliminate the human factor, and adap-

tive TSC systems, traffic could become completely observable in the near future.

However, for the purpose of this research, we will treat urban traffic as a partially

observable process being guided by an unknown stochastic transition function.

From here on, it is assumed that the traffic environment displays the Markov

property, i.e. the process is memoryless, with the next state only depending on the

current state and the action taken. This assumption does not hold when we look

at the state of an urban intersection over a period of days to weeks, since patterns

tend to arise on these timescales, as indicated in previous chapters, displaying similar

states at similar times of the day. However, this assumption holds when the temporal

horizon of the control problem is very small when compared with the temporal

dimension of the seasonality with the smallest period, such as the case of traffic

where seasonality is measured in days to weeks and timespan of an action is a few

seconds.
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5.4 Methods

5.4.1 Reinforcement Learning

Within this frame, the goal of the agents will be to maximise their future discounted

return, as defined in Eq. (2.17) Gt =
∑+∞

t=0 γ
tr(st, at) with γ ∈ [0, 1]. This is

done by learning a policy π, parametrised by the weights θ of the neural network

performing the approximation of the reward function (to partially avoid the curse of

dimensionality associated with table-based methods) and mapping states to actions:

π : f1(s) → a. The reward function provides the agent with feedback about its

performance, mapping an action given a state to a scalar value: r : f2(s, a)→ R.

The value function of a state is Vπ(s) = Eπ[Gt|st = s]. It describes how good

a state is under a policy, the higher the value is the better the state.

The action-value function or Q-value is Qπ(s, a) = Eπ[Gt|st = s, at = a]. It

represents the total episodic return by following policy π after being in state s and

taking action a.

5.4.2 Value-based Reinforcement Learning Methods

Tabular value-based methods, such as Q-Learning, attempt to learn an optimal

policy Q∗π = maxπ E[rt|st = s, at = a] by iteratively performing Bellman updates on

the Q-values of the individual state-action pairs:

Qπ(st, at)← Qπ(st, at) + α
(
yt −Qπ(st+1, at+1)

)
(5.1)

where α is the learning rate and yt is the Temporal Difference (TD) target for the

value function:

yt = rt + γmax
at+1

Qπ(st+1, at+1) (5.2)

5.4.3 Deep Q-Network Agents

The Deep Q-Network method is an evolution of Q-Learning, popularised in Mnih

et al. [39] by successfully playing Atari games from raw pixels, some of them at

super-human level. The purpose of the agent is to find an approximation of Qπ∗ by

tuning the weights θ of a neural network. The agent keeps a second neural network

parametrised by θ′ to generate the TD targets, that will be:

yt = rt + γmax
at+1

Qπ(st+1, at+1, θ
′) (5.3)
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To do so it requires:

� For a state s, an action a is taken following an ε-greedy policy on Qθ. Repeat

until the end of the episode.

� The transitions (st, at, rt, st+1) are stored in a replay memoryM with capacity

m.

� A mini batch of size b of (s, a, r, s′) is randomly sampled from M

� Perform a step of Stochastic Gradient Descent of θ.

� Every N learning steps, copy the weights to the target network: θ′ ← θ.

The experience replay memory is used to increase the stability of the training,

obtaining samples that cover a wider amount of situations. It can also increases

the data efficiency since the same transition can be used several times for gradient

descent.

There are two additions that have been used as extensions to the basic agent

that generally improve performance, Prioritised Experience Replay, and Dueling

Architecture, as defined in Section 2.2.5.4. The difference between a baseline DQN,

the DuelingDQN (also known as DDQN) agent and the DuelingDoubleDQN (also

known as DDDQN or D3QN) agent is the use of the Dueling and Double Q Learning

modules as described in Section 2.2.5.4.

5.4.3.1 DQN Agents Implementation Hyperparameters

Two variants of the DQN agent have been implemented, one uses the improvements

described above and is described in Algorithm 1, the second uses additional Double

Q-Learning and is described in Algorithm 2. The agents implemented used the

parameters described in Table 5.1.

Fully connected layers 2
Activation Function ReLU

L2 kernel regularisation 0.001
Copy weight frequency 20

α 0.005
γ 0.95

PER η 0.6
PER β 0.4

Table 5.1: Hyperparameters of DQN-based agents
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Algorithm 1 Operation of the implemented Dueling DQN Agent with PER

Initialise agent network with random parameters θ
Initialise target network with random parameters θ’
Initialise memory M with capacity m
Define frequency N for copying weights to target network
for each episode do

measure initial state s0
while episode not done do

choose at = π(st) according to ε-greedy policy
implement at and advance until next action needed
measure st+1, and calculate rt
store transition (st, at, rt, st+1) in M
calculate TD error δ = r + γmaxat+1 Qθ′(st+1, at+1)−Qθ(st, at)
calculate priority sampling weight and store in M
s← st+1

end
b← sample batch of transitions from M according to priority weights
for each memory mi = (si, ai, ri, si+1) in b do

ŷi = ri + γmaxaQθ′(si+1, a
′)

end
Stochastic Gradient Descent on θ over all (xi, yi) ∈ b
if number of episode is multiple of N then

θ′ ← θ
end

end
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Algorithm 2 Operation of the implemented Dueling Double DQN Agent with PER

Initialise agent network with random parameters θ
Initialise target network with random parameters θ’
Initialise memory M with capacity m
Define frequency N for copying weights to target network
for each episode do

measure initial state s0
while episode not done do

choose at = π(st) according to ε-greedy policy
implement at and advance until next action needed
measure st+1, and calculate rt
store transition (st, at, rt, st+1) in M
calculate TD error δ = r + γmaxat+1 Qθ′(st+1, at+1)−Qθ(st, at)
calculate priority sampling weight and store in M
s← st+1

end
b← sample batch of transitions from M according to priority weights
for each memory mi = (si, ai, ri, si+1) in b do

ŷt = rt + γQθ′(st+1, argmaxaQθ(st+1, a))

end
Stochastic Gradient Descent on θ over all (xi, yi) ∈ b
if number of episode is multiple of N then

θ′ ← θ
end

end
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5.4.4 Policy Gradient Reinforcement Learning Methods

Policy Gradient in RL is based on the idea that sometimes obtaining a direct policy

π(s) mapping states to action is easier than estimating the value function V (s)

or the state-action values q(s, a). It has an added benefit in the fact that, unlike

DQN, it can learn stochastic policies, generating a probability distribution over the

potential actions.

The goal is to find the policy that increases the amount of reward. To do so

one has to perform gradient ascent on the performance measure J =
∑

a[Q(s0, a)π(a|s)]
introduced in Eq. (2.36).

5.4.5 Advantage Actor Critic Agent

The Advantage Actor Critic (A2C) method tries to reduce the variance in the pol-

icy method by combining the direct mapping from actions with the value-based

approximation method. The goal is to learn an actor

πθ = Pθ[at = a|st = s] (5.4)

and a critic

V θ
π (s) = Eθ[Gt|st = s], (5.5)

both of which are parametrised by the neural network weights vector θ.

Figure 5.3: Internal architecture of Actor Critic. Source: Sutton and Barto [108].

93



5.4.5.1 Actor Critic Agents Implementation and Hyperparameters

The implementation of the A2C agent is presented in the pseudocode in Algorithm

3 and the parameters used for the implementation of the A2C agent are summarised

in Table 5.2.

Fully Connected layers for value 2

Size of neural network layers 48

Fully Connected layers for policy 2

Activation Function ReLU

n-return steps 16

Cross-entropy loss 0.5

Value loss coefficient 0.5

γ 0.95

α 10−5

Table 5.2: Hyperparameters of AC-based agents

Algorithm 3 Operation of the implemented Advantage Actor Critic Agent

Initialise actor network with random parameters θa,
Initialise critic network with random parameters θc,
for each episode do

reset gradients dθc = dθa = 0 measure initial state s0
choose action at = π(st) according to πθ(at|st),
while episode not done do

implement action at,
advance simulator until next action needed,
measure new state st+1, and calculate reward rt = Vθc(st),
choose action at+1 = π(st+1) according to πθa(at+1|st+1),
update actor θa = θa + α∇θa lnπθa(ai|si)Qθc(si, ai),
calculate TD error δ ← rt +Qθc(st+1, at+1)−Qθc(st, at),
update critic θc = θc + αδ∇θcQθc(s, a),

end

end

5.4.6 Simulation Interface

In this section, more detail will be given on the simulation setup that was used.

All the experiments presented in this chapter were simulated using the com-

mercial traffic simulator PTV Vissim [192]. The main interface between Vissim
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and python is the COM (Component Object Model) interface. However, there are

many functionalities that are not provided and so it was needed to add additional

code to collate information and distribute control in order to allow for multi-agent

training. A virtual server was set up using the Windows COM interface, allowing

the connections from different RL UTCs implemented in Python. These UTCs can

execute all different stages of control allowed for a given map, allowing controllers to

interact and correspond to multiple intersections. The interface has to handle these

updates of the different signals, gathering the state space and the reward for the re-

inforcement learning process and signal changes and state update have to managed

asynchronously.

To this end the interface is partitioned in two different blocks (environment

and agent), with 2 levels each.

The first block is the one acting on the simulator side (indicated in red

in Fig. 5.4). The lowest level is what has been called the Environment. The

Environment itself consists of several Signal Control Units and several functions

over the whole simulator such as resetting the simulator or varying the aggregate

flow of vehicles. It is responsible for dispatching and maintaining the COM server,

scanning and identifying different components and intersections in the network, and

passing information between the simulation and the Signal Control Units.

Next are the Signal Control Units (SCUs). The SCUs act as an abstraction

of a junction, which accounts for the region of control and monitoring of an agent.

When initiated, the signal control unit is provided with a dictionary that informs

the signal control unit of which signals and phases it is responsible for, how long

each stage should last for safe operation, which state and reward information it

should gather during this time. When information is gathered and new action is

required, the control unit makes a request from the environment for new a new

stage to implement. This request contains all relevant information to the agent in

terms of simulator state. Once a new stage is given by the agent, the control unit

send this information to the simulator. In terms of practical traffic control, they are

analogous of the micro-controllers on the traffic lights.

On the second block we have an Agent (indicated in blue in Fig. 5.4),

which receives a representation of the state of the simulator from the SCU and

uses its internal neural networks to select which action is to be implemented by

the SCUs. Other than this, the agent is only responsible for storing the memory

tuples and performing updates on the weights of its neural networks. A level above

the agent there is what came to be called the Master Agent. The Master Agent

can contain one or more individual agents, is responsible for saving, loading and
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Figure 5.4: The simulation interface.

keeping track of the metrics of the agents. Furthermore, all training, testing and

memory population are originated in the Master Agent, which was written similar

to the OpenAI gym interface, acting as the modern standard for RL training. The

agents are allowed to prepopulate memories, train, test (run without training and

gathering more simulation data) and demo (run with grapical interface).

This set up is quite natural and similar to the way modern UTC systems for

isolated junctions operate as well as modern AI training environments. We note that

our implementation of a control unit significantly increased the speed of training by

a several orders of magnitude and further allowed for more distributed training and

updating. The OpenAI style of interface simplifies the interaction between agents

and the environment. Further, our multi-agent environment allows us to flexibly

test and train a variety of different agents.

5.4.6.1 State, Action and Rewards of the agents

The experiments presented in the following sections all use the same descriptions

for simulator state and reward calculation, although they differ in the number of

actions available to them.

The state of an intersection of l lanes will be presented to the agents as a

state vector s ∈ Rl+1. While it could be interesting to use the incoming flows as state

variables, this was experimentally tested not to be feasible while using Vissim due

to an great worsening of computation times. As per Allsop [193], as cited in Hey-
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decker [194]:”The number of vehicles in the vertical queue associated with a stream

of traffic can be interpreted as the mean rate of delay in that stream and provides an

objective that bears direct economic interpretation”. Hence, each component will

contain the length of the queue of vehicles measured upstream from the traffic light

in metres. The last component will be the numeric ID of the current stage that the

agent is implementing. Given the lack of sharp turns or other elements that can

force a vehicle to decelerate for a different reason than having another vehicle stop-

ping in front of it, a vehicle will be considered in queue once its speed drops below

20 km/h and will be considered no longer in queue once its speed surpasses 30 km/h.

As per the statement of Heydecker [194], as reported in the previous para-

graph, queues are reasonable choice of measure both for states and rewards, being

able to transmit useful information to the agent relative to the mean rate of delay

of the system. Based on this, the reward after an action will be calculated as the

negative sum of the length of the queues of all lanes immediately upstream from the

intersection:

rt = −
∑
l

ql. (5.6)

There were also initial attempts to set the reward function to either the stop

delay or the delay of the vehicles (which are the direct evaluation metrics), but it

was found that using this configuration hampered agent convergence and greatly

increased the computational requirements without providing an advantage in the

few occasions it worked. Consequently the research line was dropped.

The agent has a set of actions A that varies depending on the intersection

to control. Once the agent chooses an action a, the stage corresponding with the

ID of a is implemented. The green time is set to a minimum of 6 seconds. Once

this time has passed, the agent is requested a new action. If the agent chooses the

same action again, the current stage is extended for a further 3 seconds. There are

no inbuilt limitations as to how many times an agent can extend a stage, leaving

it for the agents to learn. If the agent chooses a different action than the currently

active one, a 3 seconds amber stage is implemented in the lights that were green,

after which, the new stage is implemented.

5.4.6.2 Saturation Rates and Benchmarking

Saturation flows in Vissim are determined based on the values of the parameters

given to the Wiedemann’s Car Following Model [195] which it uses internally. The

default parameters, which were used (bxAdd = 2m, bxMult = 3m) result in a satu-
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Figure 5.5: Daily profile demand created using the Hybrid Profiling Algorithm [1].
Demand values for the intersections are derived from this shape between 6AM and
10PM.

ration rate of 2144.13 vehicles * lane / hour of green time, obtained experimentally

while averaging over 1800 seconds of simulated traffic. Given that the saturation

flow in Vissim is defined by these parameters, the saturation flow obtained in this

experiment can be extrapolated to all models used throughout this chapter by mul-

tiplying the saturation rate per lane by the number of lanes feeding into any given

junction.

Regarding benchmarking, in order to compare each signal controller policy

and agent, we need to define a specific testing framework. For each model except the

last, a demand profile will be created. This will follow the shape found in a typical

day as described in previous chapters. The profile will be split on 10 segments of

length 6 minutes. Each of these segments will correspond with a level of demand.

The levels of demand are obtained by setting out what will be the maximum demand

the intersection will suffer, setting that magnitude to coincide with the peaks of the

distribution that could be found on a typical day obtained by using the algorithms

presented in the previous chapters and adjusting all other values proportionally.

The general shape can be observed in Fig. 5.5, and the specific demand levels will

be specified in each experiment.

Random seeds are changed and updated after every simulation episode, train-
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ing or testing.

There are metrics that have been traditionally used in traffic management

to quantify the performance of UTC systems, some of the main ones include reserve

capacity and the mean rate of delay [193, 194, 196]. However, these measures and

their calculation originate from the basis of delay estimation [193], since at the time

these measures were defined, delay could not be directly and accurately measured.

In the research presented in this thesis, traffic simulators are used on all instances

where traffic signals are being optimised. These simulators are able to produce

extremely granular and accurate measures of delay, even on a per-vehicle basis

if required. Hence, it seems reasonable to use measurements directly extracted

from the simulator (such as average delay per vehicle) as a direct representation of

the performance of the network instead of turning to secondary measures that are

derived based on prior impossibility to obtain accurate and complete observations.

Furthermore, based on the statements of Allsop [193], as cited in Heydecker [194], as

seen in Section 5.4.6.1, it appears reasonable to also take queue lengths (also directly

measurable from the simulator with great granularity) as a secondary alternative

performance measure.

The main quantitative metrics on which the system will be evaluated are the

Global Cumulative Delay and the Global Cumulative Stop Delay generated by all

vehicles during the execution of the evaluation. The first one considers as delay any

deviation from the maximum speed allowed in the link in which it is placed. The

second one account for the number of seconds spent in a queue. Queues over time

will be shown in those models in which they are informative, since as the number and

size of the intersection grows, this quickly becomes untractable and its usefulness

diminishes.

5.5 Single Cross Straight

The first test is conducted on the simplest junction configuration. This is given in

Fig 5.6. The junction referred to as Single Cross Straight is composed on 4 lanes

distributed in 4 arms coinciding with the cardinal directions of the model. These

will be referred to as North, East, South and West, matching the direction from

where the vehicles are inserted in the model upstream from the intersection. The

controller for the junction has two stages, a north-south stages and an east-west

stages, and the vehicles are not allowed to turn. The testing aim was to perform an

initial performance comparison of deep reinforcement learning algorithms against

MOVA from the Transport Research Laboratory and SUTRAC from RapidFlow
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Figure 5.6: The Single Cross Straight model

Technologies in a setup that was as simple as possible and was required to exert fine

adaptive timing control, rather than using complicated transitions between stages

that would rarely, if ever, appear in sequence in cyclic control.

For the configuration of PC MOVA, loop detectors were placed at 30 and

90 metres upstream from the intersection, which corresponded to distances recom-

mending in the MOVA Traffic Control Manual. A minimum 5 second green time

was set with one second amber, which again is a standard recommended timing.

The implementation of SURTRAC used in this chapter is based on the work of Xie

et al. [197].

A Duelling Deep Q-Network with PER, a Dueling Double Deep Q-network

with Prioritized Experience Replay as described in Section 2.2.5.4, and an Actor-
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Critic algorithm as detailed in Section 2.2.5.5 and using the same parameters.

5.5.1 Scenario Description and Experimental Setup

In each timestep when an action is required, the queue sizes at the lanes are con-

catenated with the current action of the junction, and this was passed to the agents

as input. The optimization objective of all learning algorithms was to minimize the

queue between control decisions.

In order to train the models, they were ran using a fixed vehicle demand of

400 vehicles per hour on each of the incoming lanes, for a total aggregated demand

(the flow of vehicles the UTC is meant to serve) of 1600 vehicles/hour. Both variants

of the DQN agent were trained for 400 episodes of one hour of simulated demand,

using an ε geometrically annealed from 1 to 0.001. The average reward of each

training episode was recorded, and the best agents were selected using the best

performing agents at their best performance during their training runs. The A2C

agents were trained for 100 episodes until they converged, with the best performing

A2C agents being found around episode 40.

The agents were then evaluated in scenarios lasting one hour, in which full

data regarding queues, stops, stop delay and global delay are recorded on a per-

second basis. This evaluation run is partitioned in 10 periods of 6 minutes each,

with stochastic demand within the intervals centred around a mean value (see Table

5.3). According to Vissim’s Manual, when using the Stochastic arrivals setting

”stochastic fluctuations of the traffic volume may occur” [192]. While this can create

some irregularities in specific instances of evaluation of quantities such as queues or

per-lane throughput, especially so in the case of fixed-cycle controllers which could

see moments of asymmetric demand, adding a level of stochasticity in the demand

is expected to have a positive effect in the training of RL agents by increasing the

variety of states that they will see. During evaluation, an average of 2120 vehicles are

inserted in the model, with 2 peaks of demand of 3000 vehicles/hour for 6 minutes

each.

The main evaluation metrics that will be used will be:

� Global Cumulative Delay: Understood as the deviation from the theoretical

time in seconds a vehicle would take to cover the distance given by its route

(model entrance→ model exit) by circulating at the maximum allowed speed,

aggregated for all vehicles.

� Global Cumulative Stop Delay: Understood as the total aggregated time in

seconds that all vehicles have spent stopped.
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Table 5.3: Demand in vehicles/hour per cardinal direction over the benchmark.

Time period [min] North East South West

0-6 200 200 200 200

6-12 400 400 400 400

12-18 900 500 900 500

18-24 1000 500 1000 500

24-30 700 500 700 500

30-36 500 700 500 700

36-42 500 1000 500 1000

42-48 500 900 500 900

48-54 400 400 400 400

54-60 200 200 200 200

� Queue length: Length in metres of the queues detected by the simulator sen-

sors. If the queue overflows the lane in which it originates, the sensor will

show a saturated value matching the length of the lane.

5.5.2 Experiment 1: Single Cross Straight

The first step was to determine the optimum cycle length for the fixed controller,

imposing the condition of cycle times being fixed and equal for both stages, following

the way in which the demand varies over the course of the scenario as show in Table

5.3. The optimum cycle length was determined to be 56 seconds, following the

methodology shown in Salter [198]. This cycle length will be used for comparison

with the adaptive controllers in this experiment, and henceforth be referred to simply

as Cyclic Controller.

Figures 5.7 and 5.8 show the Global Cumulative Delay and the Global Cu-

mulative Stop Delay for the network while being controlled by a trained Actor-Critic

agent (A2C), a Dueling Deep Q-Network (DuelingDQN), a Dueling Double Deep

Q-Network (DuelingDDQN), SURTRAC, MOVA, and the previously mentioned ref-

erence cyclic controller on a 56 seconds cycle respectively. Figures 5.9 and 5.10

present the same information without the cyclic controller for clarity. Each was

tested against a range of loads on each lane as per the section above. As it can

be seen, the cyclic solution is clearly beaten by adaptive UTCs such as MOVA,

Surtrac and RL. The different UTCs are on a par with a slight advantage for the

DuelingDDQN which saves the community 3000 sec compared to MOVA on this

hour of simulation, which represents on average 1 or 2 sec for each car. The RL
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Figure 5.7: Global Cumulative Delay in Single Cross Straight.

agent also seems slightly more robust against changes in demand, producing lower

slopes in the delay graphs in sections of extreme demand.

Table 5.4: Cumulative Delay and Cumulative Stop Delay in seconds across Con-
trollers on Single Cross Straight.

Controller Cumulative Delay [s] Cumulative Stop Delay [s]

Cyclic 143660.50 76538.66

MOVA 27187.53 14361.43

SURTRAC 29008.36 15023.25

A2C 26382.14 11018.80

DDQN 28303.94 11211.24

DDDQN 21286.86 8847.86

Figures 5.11 - 5.16 display the queue lengths in each lane as a result of the

different UTCs in operation. Given the symmetric demand described in Table 5.3,

the asymmetries in the measured queues originate in the extra stochasticity intro-

duced into the arrival rates by the stochastic arrival parameter in Vissim based on

the choice of random seed. It has been experimentally tested that these fluctua-
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Figure 5.8: Global Cumulative Stop Delay in Single Cross Straight.

Figure 5.9: Global Cumulative Delay in Single Cross Straight without Cyclic Con-
troller.
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Figure 5.10: Global Cumulative Stop Delay in Single Cross Straight without Cyclic
Controller.

tions, and the potential induced asymmetries in measures are entirely dependent on

the choice of random seeds, meaning that while it will still be possible to observe

them in results that only involve use of a single random seed (such as the graphs

mentioned earlier in this paragraph), they will not have meaningful effects in the

training of agents spanning several hundred episodes using different seeds.

Saturation on the sensors occurs when the queue reaches approximately 250

metres, coinciding with the end of the lane. In the figures it can be seen how all

non-RL controllers are incapable of dealing with the two peaks in demand. The

cyclic UTC results in saturated lanes during both peaks and queues in excess of

100 metres during a great part of the simulation. The UTC using MOVA suffered

two moments in which at least a sensor was saturated coinciding with the peaks in

demand, however the queues were close to lengths of around 50 metres during the

most part of the simulator.

The UTC using Surtrac follows a similar pattern that only has a single lane

saturated coinciding with the second peak in demand. The queue distribution is

more irregular than in the previous case, but with similar average values. None of

the experiments using RL agents as UTCs suffered of saturation in any of their lanes
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Table 5.5: Average global queue length in metres across controllers in Single Cross
Straight.

Controller Average Queue Size [m]

Cyclic 132.37

MOVA 60.59

SURTRAC 72.41

A2C 56.07

DDQN 50.11

DDDQN 49.42

during the length of the evaluation. They all managed a more balanced distribution

of queues in their respective lanes, displaying a higher ability to balance loads even

during peak times.

The results of the custom implementation of Surtrac are quite impressive

considering that it has not had any kind of parameter optimisation. Furthermore

Surtrac is designed to work on clusters and because this is a single intersection

model, clusters are less likely to form. Because of the simplicity of this 2 actions

intersection, there is not a lot of delay difference between adaptive UTCs. As it will

be appreciated shortly, these results will change when we consider more complex

junctions.

Given the level of difference in performance between the adaptive and cyclic

controllers, how this is more accentuated on more complex intersections and the

increasing difficulty in properly setting them in big intersections (which incidentally

motivated this research), the cyclic controller will be omitted for the next examples.

Given that the A2C agent has been clearly outperformed in this experiment by

those based on the DQN architecture, the following experiments will focus on the

performance of this architecture compared with commercial systems.

5.6 Single Cross Triple

The intersection referred to as Single Cross Triple, as shown in Fig. 5.17 displays a

much higher complexity than the intersection presented in the previous section. It

is composed of 4 incoming links of 3 lanes each.

The links will be identified, as North, East, South and West, following the

approach seen in Section 5.5. The individual lanes in a link will be identified as

Left, Centre and Right, as they would be seen by a vehicle that was travelling by
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Figure 5.11: Queues over time in upstream directions from the intersection over an
evaluation run using the Cyclic UTC

said link.

In each incoming link, the left lane serves a dedicated nearside turning lane,

the central allows for forward travel and the right lane allows for both offside turning

and going straight.

5.6.1 Scenario Description and Experimental Setup

The models were trained on a fixed demand of 300 vehicles per hours on each in-

coming link. The DQNs were trained for 400 episodes of one hour of simulated time,

with ε annealed geometrically between 1 and 0.001. The A2C agents were trained for

100 episodes until they converged, and the A2C agents were found around episode

40. During the hour of evaluation, the demand profile from the last experiment was

used with a scaling factor of 1.5, an average of 3180 vehicles were introduced to the

model, with 2 peaks of demand of 4500 vehicles/hour for 6 minutes each.

5.6.2 Experiment 2: Single Cross Triple - 4 actions

Due to limitations in how Vissim internally treats the queues, it is not possible to

obtain a straightforward measurement of the lane queues in links that have more

than one lane. In these cases, the system returns the length of the longest queue.

107



Figure 5.12: Queues over time in upstream directions from the intersection over an
evaluation run using the MOVA UTC

To mitigate this, the first experiment was run with agents that would take 4 queue

inputs, plus the state of the traffic signal as state input.

Due to the limitations in how the agents perceive the state of the intersection,

the action set was limited to 4 different actions, being allowed only those that set

to green the 3 traffic lights serving the lanes of the same incoming link. This

allows for the vehicles to perform turns, but prevents more sophisticated stages

from happening.

Table 5.6: Cumulative Delay and Cumulative Stop Delay in seconds across Con-
trollers on Single Cross Triple - 4 actions.

Controller Cumulative Delay [s] Cumulative Stop Delay [s]

MOVA 260257.65 215527.96

DDQN 135220.91 104521.26

DDDQN 155563.22 122184.40

As it can be seen in Figures 5.18 and 5.19, the UTC using MOVA performs

poorly compared to the RL agents DuellingDQN and DuellingDDQN. During this

hour of simulation RL agents halve the cumulative delay, which saves over 100000
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Figure 5.13: Queues length over time in upstream directions from the intersection
over an evaluation run using the Surtrac UTC

seconds for all vehicles involved, which is over 27 hours, meaning an average of over

32 seconds of travel time saved per vehicle.

Table 5.7: Average of longest global queue length in metres across controllers in
Single Cross Triple - 4 actions.

Controller Average Queue Size [m]

MOVA 179.27

DDQN 128.20

DDDQN 153.58

The Figures 5.20, 5.21 and 5.22 present the queue length per cardinal direc-

tion as seen by the agent during evaluation. Here again the length of the queues

in those intersections controlled by RL agents during the test scenario were lower

than the ones controlled by MOVA. Additionally it can be seen that the agent us-

ing Dueling Double Q-Learning has a more stable performance than that Dueling

Q-Learning.
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Figure 5.14: Queues length over time in upstream directions from the intersection
over an evaluation run using the A2C UTC

5.6.3 Experiment 3: Single Cross Triple - 8 actions

A series of workarounds were explored to overcome the limitation in queue length

measurements, including external measurement and attempting to interface with the

simulator’s internal variables. These were only partially successful, correct measure-

ments were obtained but with a subsequent general slowing down of the simulation

to levels in which the generation of the raw amounts of data necessary for RL was

no longer feasible.

As an alternative, the map was reworked. All original lanes were partitioned

into their own independent links, and new links with a length of 100 metres were

added, as shown in Fig. 5.23. This allows the vehicles to change lanes according to

their routes after being places in the edges of the network but before reaching the

point in which lanes are split into independent links, since lane changing after this

split is no longer possible for the vehicles.

Given this setup and aiming to provide the RL agents with the greatest

amount of room to act, 8 different stages are available as represented in Fig. 5.24.

No specific stage order is enforced, and the agents are free to change between any

combination of stages.

While these modifications allowed using information from all lanes in an
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Figure 5.15: Queues length over time in upstream directions from the intersection
over an evaluation run using the Dueling DQN UTC

akin manner to what modern sensors would achieve, the following results can not be

directly compared with those of the previous sections. Both models share name and

rough geometry, but the layout of lanes is changed and so are the routing possibilities

open to the vehicles.

The results presented below, use DQN agents taking 12 queue length inputs

plus the state of the signal.

Table 5.8: Cumulative Delay and Cumulative Stop Delay in seconds across Con-
trollers on Single Cross Triple - 8 actions.

Controller Cumulative Delay [s] Cumulative Stop Delay [s]

MOVA 165456.44 139929.55

DDQN 72642.59 56233.30

DDDQN 71245.61 53855.98

The RL agents display a similar gap in performance with MOVA as in the

previous experiment. RL agents manage to generate about a third of the delay

produced by MOVA, following the same trend as in the previous experiments.

While this appears to be a great success, these results have to be put into
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Figure 5.16: Queues length over time in upstream directions from the intersection
over an evaluation run using the Dueling DDQN UTC

context. On one hand, MOVA is not designed to control so many phases and lanes.

MOVA has a lot of internal parameters meant to be fine tuned by a traffic engineer.

In this experiment, MOVA was configured in its most basic operation method, with

many of its parameters set to their default values, since the values that a traffic

engineer would assign them were unknown. The configuration regarding detectors,

speed limits, priorities and phases compatibility was implemented carefully following

the MOVA manuals that are made available with the software. These parameters did

produce a successful control loop, operating in line with what was expected of the

configuration process. On the other hand, none of the RL agents has been fine tuned

to the level that would be expected during commercial operations. The distribution

of layers and neurons was not optimised, nor were the activation functions, learning

rate or discount factor, meaning that the RL agents can still be improved upon.

5.7 Scaling up to Five Intersections

The Five Intersection model is the first one with multiple junctions. It is composed

of 5 concatenated copies of the Single Cross Triple map in a cross configuration, as

it can be seen in Fig. 5.27. This model does not include inter-agent communication

of any kind, hence the focus of this test is the generalisation abilities of pre-trained
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Figure 5.17: The Single Cross Triple model
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Figure 5.18: Global Cumulative Delay in Single Cross Triple - 4 actions.

Figure 5.19: Global Cumulative Stop Delay in Single Cross Triple - 4 actions.

114



Figure 5.20: Aggregated queues over time in the upstream direction from the inter-
section using the MOVA UTC.

agents in more complex situations.

Here, the fluctuations in neighbouring junctions will create variations over

time in the amount of vehicles that arrive to the traffic lights. Further, all the

previous models had cars inserted to the model in the same link that they would

be once they reach the intersection. This implies that the arrival times of the

vehicles followed exactly the same distribution of the input methods, in this case

a Poisson Point Process with variable (over time) mean arrival rates. In this case,

those intersections in the fringes of the map will still see vehicles arriving following

the same distribution as above, however, the central intersection will have to deal

vehicles arriving in platoons and with a variable arrival rates, since these will be

dictated by the operation and efficiency of those UTCs located upstream from the

central intersection.

5.7.1 Experiment 4: Five Intersections - 8 actions

The test conducted on the Five Intersection map focused on how easily learning

can be transferred and extrapolated by RL agents in the context of TSC and on

measuring the benefits of previous not fully adequate learning, when compared with
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Figure 5.21: Aggregated queues over time in the upstream direction from the inter-
section using the DuelingDQN UTC.

learning directly on the job. To this end, a zone controller composed of 5 copies of

the DuelingDDQN agent used in the Experiment 3 of this chapter was configured.

No further training was performed in this configuration prior to the evaluation.

A second controller, composed of 5 DuelingDDQN agents was trained directly on

the intersection. Their performance is compared against that of the corresponding

MOVA UTC.

The mean arrivals over time follow a distribution with the same shape as in

the previous experiments, using a scaled demand to account for the increased size of

the network. The test is conducted with an average demand of 5920 vehicles/hour

(roughly 5 times the demand of the previous model), including 2 peaks with arrival

rates of 8000 vehicles/hour, lasting 6 minutes each. A detailed description of the

demand per input point and time period can be found in Table 5.9.

The turning ratios were set such that upon arriving at each intersection, 20%

of vehicles will perform an offside turn while being in the corresponding lane, 20% of

vehicles will use the nearside turn lane to perform said turn, 20% of vehicles will go

straight while sharing the nearside lane with the turning vehicles, and the remaining

40% will go straight while using the central lane.
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Figure 5.22: Aggregated queues over time in the upstream direction from the inter-
section using the DuelingDDQN UTC.

Table 5.9: Demand in vehicles/hour inserted in the model for each input ID.

Period / Input 1 2 3 4 5 6 7 8 9 10 11 12

min 0-6 200 200 200 200 200 200 200 200 200 200 200 200
min 6-12 400 400 400 400 400 400 400 400 400 400 400 400
min 12-18 500 900 500 500 900 500 500 900 500 500 900 500
min 18-24 500 1000 500 500 1000 500 500 1000 500 500 1000 500
min 24-30 500 700 500 500 700 500 500 700 500 500 700 500
min 30-36 500 700 500 500 700 500 500 700 500 500 700 500
min 36-42 500 1000 500 500 1000 500 500 1000 500 500 1000 500
min 42-48 500 900 500 500 900 500 500 900 500 500 900 500
min 48-54 400 400 400 400 400 400 400 400 400 400 400 400
min 54-60 200 200 200 200 200 200 200 200 200 200 200 200
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Figure 5.23: Modified Single Cross Triple for 8 actions.

Figure 5.24: Allowed stages of the Single Cross Triple model and allowed transitions
between stages.
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Figure 5.25: Global Cumulative Delay in Single Cross Triple - 8 actions.
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Figure 5.26: Global Cumulative Stop Delay in Single Cross Triple - 8 actions.
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Figure 5.27: The Five Intersection model with IDs for vehicle input points.
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Figure 5.28: Global Cumulative Delay in Five Intersections - 8 actions

During training, it was observed that the RL agents would have been able to

handle more demand (over 12000 vehicles/hour), but the level tested was near the

saturation levels of MOVA, so testing on higher loads was not feasible.

Table 5.10: Cumulative Delay and Cumulative Stop Delay in seconds across Con-
trollers on Five Intersections map.

Controller Cumulative Delay Cumulative Stop Delay

MOVA 224687.90 159965.86

DDDQN TL 151306.23 86958.68

DDDQN 158206.40 94800.08

In the results presented in Figs. 5.28 and 5.29 we can observe that the DQN

agents still have better performance, generating lower cumulative delay and cumu-

lative stop delay than MOVA. The difference in performance between both methods

is reduced when compared to the prior experiments and taking into account the

extra size of the network, it can be argued that the lower performance of RL agents

is due especially to the middle intersection. Since the flows observed by this middle

intersection depend on the performance of the neighbouring intersections (traffic will
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Figure 5.29: Global Cumulative Stop Delay in Five Intersections - 8 actions

only reach it after being given way by one of the other controllers), both the state

variables observed, as well as the expected reward response to the agent’s actions

will not stabilise until the provided demand profiles by the surrounding controllers

stabilise too. In turn, this will only occur when said surrounding controllers are

sufficiently trained. Based on this, it can be argued that since both DQN-based

controllers received the same amount of training, but having the agents control-

ling the surrounding intersections fully trained will have a beneficial effect on that

training of the central agent, the 5 controllers trained on site could benefit of more

extended training.

Less surprisingly that it would appear at first, it is found that the agent

previously trained on a single intersection obtains marginally better results than

the agent that learnt on the job. While theoretically it will always be best for an

agent to have at least part of its training period spent on the task it will have to

perform, the value of pre-training an algorithm is widely accepted in the ML and RL

communities. However, pre-training on close to operational conditions will have, in

principle and disregarding the effects of randomness in the training, more utility to

the learning process of the agent, since it is an equal task to what the agent needs

to carry out rather than close to it.
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While these results underline the utility of pre-training RL TSC agents in

problems that encapsulate only part of the challenges that they will face in the final

problem, it can be argued that a pre-trained agent that later received some final

fine-tuning on the complete model could achieve even better performance, based on

the exposition over the previous two paragraphs. In this sense, both DQN-based

agents here presented can be considered under trained with respect to an optimally

trained agent: the transfer learning agent due to lack of on-the-job experience, and

the agent trained on site due to a lack of extended training to offset the disrupted

flows experienced by the central agent while the surrounding agents train. As it will

be seen in the following section, the use of pre-training has limits, and the noise and

oscillations that pre-trained agents can induce in a sufficiently complex system, are

enough to steer the system towards catastrophic failure.

Lastly, and regarding robustness, RL UTCs are inherently robust to lanes

being closed, since a well-trained agent will not serve a lane for which no demand

is perceived. Beyond this, and while well trained DRL agents are great at extrap-

olating in situations outside of their training envelope, before any deployment in

the real world, the agents should still go through an entire robustness assessment

process. While the description and detailing of such process is beyond the scope

of the research here presented, it should cover good operation under all edge-cases,

and ensure the safety limitations as defined by the competent authorities.

5.8 Balance Network

The last experiment was conducted in the Balance Network, which is the testbed that

PTV uses to showcase the power of their network-wide adaptive timing optimiser

called Balance [46]. Data on its internal workings is not widely available, it is

based on a two-layer approach, the first of which uses a microscopic simulation to

derive densities for each available route, a second mesoscopic simulation evaluates

the performance of the network and further optimises the green time splits.

The network, a model of a real urban network, is composed of 14 intersections

of various configurations, using between 3 and 14 managed lanes.

5.8.1 Scenario Description and Experimental Setup

Due to the issues introduced above regarding obtaining queues from individual lanes,

the model was reworked in a similar fashion of that in Experiments 3 and 4. Links

with more than one lane were allowed space for merging and changing lanes, and

were then partitioned in individual links of a single lane, so data could be retrieved.
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Figure 5.30: The Balance model

The demand profile on the network has been set by the traffic engineers in

PTV to accurately represent the traffic situation at the real-world location of the

network. The simulation covers 2.5 hours during the morning rush. It starts with

a total average demand of of 4009.4 vehicles/hour distributed between all edges in

the boundaries of the simulation. On the peak of demand, the simulation operates

for 1 hour attempting to serve a demand of 7978.1 vehicles/hour.

There was an initial attempt at training either all, or part of the RL agents

directly on the network. This quickly turned unfeasible, as the amount of data that

the agents and the simulator exchange is increased to a point that the simulation

grinds to a halt, obtaining simulating speeds of 1− 2× real time. Since the agents

require around 400 hours of simulated training time to learn the task, and there are

no a priori guarantees of convergence, an alternative solution was searched.

5.8.2 Experiment 5: Balance Network

As an alternative, all intersections were pre-trained in an isolated setting. This

involved manually recalculating all possible routes in the simulation (combination

between all entry links with all exit links including alternatives through longer but

less used routes), in order to obtain the demand that each individual intersection

goes through during the simulation and the turning ratios in every link.
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Junction 1 Junction 2 Junction 3

Junction 4 Junction 5 Junction 6

Junction 7 Junction 8 Junction 9

Junction 10 Junction 11 Junction 12

Junction 13 Junction 14

Figure 5.31: Partitioning of the Balance Network and individual junction status
after rework.
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While individual agents on isolated junctions were able to converge without

issue to policies providing good local control, once the agents were recombined in an

adapted version of the complete network, they suffered the same earlier issues as the

agents managing the UTCs in the Five Intersections map, regarding the instabilities

in their performance.

Instabilities, backed-up queues, and disrupted flows and demand profiles

propagated to the network over time, easily triggering catastrophic breakdowns,

especially on the links between junctions 2, 3 and 14, as it can be observed in Fig.

5.32, that was beyond the RL agents’ ability to recover.

This was aggravated by the discrepancies of inter-junction distances in the

models of individual intersections when re-integrated into the network map. When

the network was initially partitioned into independent intersections, and the links

directly upstream from the intersections were partitioned in independent links (cov-

ering a lane each to allow for retrieval of per-lane state representations), the links

directly upstream of those were stretched to allow space for vehicle inputs into the

model and lane changing. This extra space was meant to offset the fact that once a

link has been partitioned into their own per-lane links, lane changing between them

is not possible. Due to this extra space, these problems did not arise until the agents

were reintegrated into the network map for joint control.

Figure 5.32: Example of irrecoverable catastrophic failure in the area of junctions 2
(left), 3 (right) and 14 (centre)

This collapse in performance is mainly attributable to a few clustered con-

trollers, although all of them will provide suboptimal responses given the previously
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mentioned disruptions to the demand profiles. Here, only a few failing controllers

are enough to prevent the system from exerting effective control. The main reasons

for the catastrophic failure can be observed in Fig. 5.32, in which we can see that the

vehicles approximating junctions 3 and 14 from the West and South are attempting

to change lanes in a situation where there is no space for this (the blinkers can be

seen activated in the vehicle models indicating an intention to change lanes). This

lack of space caused individual drivers to stop and block traffic, rather than take

an undesired route, causing traffic to back up and overflow into the junctions up-

stream, creating a cascading effect that could not be recovered from. This is clearly

an effect of the modifications that were necessary to perform on the original map,

as mentioned earlier, in order to make feasible the introduction of RL controllers

that were capable of using all the available traffic stages by using per-lane variables

instead of per-link variables, while running at high speeds.

The catastrophic jam around junction 14 is further explained by the fact

that the main part of the state representation available to these agents is a vector

of queue lengths, and the reward is the negative sum of queues. Given the lack of

an inbuilt mechanism to force the agents to serve each line at least once per some

predefined period, these representations can cause agents to disregard sustained

queues in a single short lane to serve lanes with lower waiting times overall, but

longer queues. While this is generally not an issue on junctions with balanced

lengths for their incoming links, as in all the previous examples in this chapter, it

becomes important in the case of junctions 3 and 14, where it can be seen how the

lanes causing the breakdown are all among the shorter ones of those being served.

An example of this can also be observed in Fig. 5.32, where the short incoming inside

lane to junction 14 is saturated, while any other lanes that would be served with

it (remaining West lanes and all West lanes) are empty, while there is a significant

demand, in comparison, present in the North-South direction covering the lanes

that cross the junction without turning. As a mitigation strategy, it was attempted

to change the reward function of the offending agents to one that penalised more

longer queues, by using the negative sum of squared queues as a reward function,

however this was proven to heavily impact agent convergence rates during training

and had to be abandoned due to lack of results and high computational demands of

re-training.

Although it can be argued that different state representations could give

the agents better quality or less myopic observations about the traffic flow, this

alone would not solve the problem as the agents have been able, while using their

current state representation, of dealing with all of the previously tested junctions
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Figure 5.33: Global Cumulative Delay over time and Global Stop Delay for Duel-
ingDDQN Agents and Balance UTCs.

in an isolated manner, showing that this representation can generate agents that

exert reasonable control and indicating that while this can be one of the issues

present, it is not inherently causing the collapse. There is another argument about

how creating inbuilt limitations about regarding minimum frequencies with which

to serve each group of lanes could be beneficial. While this is true in this specific

failure case, and would be required by transport authorities in the case of a live

deployment to address some robustness concerns, taking RL TSC closer to earlier

methods, it would also fail to solve the problem regarding lane-changing that is the

main root of issues in this case. Other options involving further modifying the map

geometry, would be taking the map even further away from its original counterpart

and further degrading the ability to perform accurate comparisons.

Figure 5.33 shows the aggregated performance of all the agents during the

whole simulation in terms of delay and stop delay. In it, it can be observed that

during approximately the first hour if simulation, RL agents outperform the Balance

controller in terms of stop delay. This means that while RL agents were assigning

the available green time in a more effective manner than the Balance controller, they

were under performing in terms of inter-junction coordination and green wave gener-
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ation, leading to higher delay overall. This behaviour and their under-performance

in terms of coordination was expected, since Balance specifically optimises to obtain

this coordination, and experimentation was halted due to the issues here described

regarding map geometry before the RL agents were extended to allow for inter-agent

communication.

In Figure 5.34 it can be seen how, in this specific case, the agents 1, 2,

3, and 14 were not able to prevent collapse from happening in their junctions.

The agents have been found to be highly dependent on the performance of their

neighbours. This makes the most intuitive solution, re-training those agents under

performing and testing again, less useful than it would seem, since they often cause

a third controller that was operating fine to fail and require further retraining. This

approach did not cause any performance improvement in the area of agents 2-14-3,

always leading to a collapse due to an overflow caused by the vehicles attempting

to access the innermost lane in the West link of junction 3. After several such

cycles, this approach was abandoned due to its high computational demands and

diminishing returns.

Some of the issues here presented could be overcome, such as preventing the

collapse of the agent 1 by training it jointly with agent 2, or by successfully training

while using a non-linear combination of queues that penalise more heavily those

that are longer with respect to their capacity. However, this would only involve

a mitigation of the main issue: the required modifications to the map due to the

inability of the simulator to provide per-lane information to the agents while running

at speeds that are acceptable for DRL. The solution to this main issue would be to

integrate the agents with a different microscopic traffic simulator that can provide

the required measurements, such as SUMO, which is left for future work.

5.9 Results and Discussion

In this chapter, several network architectures for RL UTCs were tested. It was found

that agents do not require extensive or complex neural networks to be able to exert

adequate control over traffic junctions. In terms of training, it was most effective

to carefully tune learning rate, exploration rate, minibatch sizes and frequency and

amount of learning performed. More training episodes were not necessarily bet-

ter, having a heavy dependence on hyperparameter values. This in not surprising

given the range of prior application areas, but still is an important point for future

development of these algorithms. The Reinforcement Learning agents also showed

great stability and robustness to control situations outside of their training envelope.
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Agent 1 Agent 2 Agent 3

Agent 4 Agent 5 Agent 6

Agent 7 Agent 8 Agent 9

Agent 10 Agent 11 Agent 12

Agent 13 Agent 14

Figure 5.34: Queues over time in the 14 DuelingDDQN agents running simultane-
ously in the Balance network.
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They also show an ability to extrapolate to deal with situation never seen during

training. Additionally, it is rather impressive that agents trained on relatively low

uniform demand can perform better than commercial systems during evaluation

tests that included variable demand several times higher than anything experienced

before (e.g. the Single Cross Triple agents were trained on a 300 vehicles/hour per

link, while it successfully handled a demand of 4500 cars/hour during evaluation).

Experiment 1 provided evidence that fixed time systems perform worse than

adaptive and RL UTCs in simple junctions. In this case, MOVA and the RL agent

following a DuelingDDQN architecture obtained very similar results, with a slight

advantage for the RL agent.

Experiment 2 provided similar evidence about a smaller number of con-

trollers, in a situation where queues were measured on a per-link basis rather than

per-lane. This implies less granularity in the data and makes the control task more

challenging. The results followed the same pattern with a DuelingDDQN agent

obtaining the best performance, despite the lower quality of the input data.

Experiment 3 required modifications of the map in order to obtain said per-

lane queues. This model saw the introduction of a much more complex junction,

with a multitude of actions available to the agent, some of them serving the same

lanes in different ways, and letting the agent decide on the sequence. Once again RL

agents obtained better results than MOVA, with the DuelingDDQN agent obtaining

the lowest global and stop delay. The gap between the performance of MOVA and

RL agents is increased here with respect to the last experiment. Most likely reasons

are higher granularity in the data and extra actions being available to the agent,

allowing it to display more complex sequences of actions.

Experiment 4 saw the introduction of a multi-intersection and tested UTCs

that were trained on the job and others that were transferring the knowledge that

they had acquired while performing a similar task. The gap in performance between

MOVA and DQN agents was once again reduced, but RL methods still obtained the

best performance. The results from this experiment illustrates well how difficult it

is to train sequences of agents that will influence each other. While the agents on

the fringes were able to exert reasonable control, performance towards the middle

intersection, where the traffic conditions are different. The fact that the middle

intersection will not receive a normal demand profile until the intersections upstream

from it have been sufficiently trained, and thus the general principle that learning for

agents acting in series cannot effectively happen until those agents upstream from it

have sufficient knowledge to provide with accurate and stable learning environments,

both stem from here.
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Experiment 5 saw an attempt to individually train and then integrate a

multitude of agents that had been initially pre-trained individually. The approach

was a failure, precisely due to the knock-on-effects indicated about Experiment 4,

together with the modifications that were required for the map. The experiment

resulted a failure in which the RL agents were displaying a joint performance much

lower than what would be expected given their individual records. Given the general

performance of the model, such an approach would require further joint training of

all the agents, which is currently not technically feasible within the scope of this

project.

Reinforcement Learning applied to UTC could be a real life solution to im-

prove traffic conditions in urban environments, even though the sensors needed are

a bit more sophisticated than simple induction loop and there is still work to find

measures against unlawful cars and to find solutions for more fairness in green time

allocation. Nevertheless, UTC is not the only solution to traffic congestion, better

road networks can be designed as the capacity (veh/hour) is limited regardless of

how good is the UTC. The future urban transportation could be personal car-less

with the development of public transportation and self driving cars. But meanwhile,

these experiments show that Reinforcement Learning based UTC could be the next

generation solution for reducing traffic congestion.

5.10 Limitations and Future Work

The results presented in this chapter suffer from several limitations. It was not

possible during research to find a suitable parametrisation of the A2C UTC such

that complex junctions could be controlled, although there exists evidence that this

is indeed possible. The hyperparameters for the agents were not exhaustively fine

tuned, and more work into learning, exploration and discount rates could easily

improve the performance of all the agents. While different architectures for the

neural network have been tested, this is limited to great changes in what the different

layers are supposed to do. This testing did not include an optimisation step over

the size, depth and width of the neural network used as approximator, while recent

research suggests that neural topology greatly affects task performance.

Further than this, only one state and reward have been tested. Although

there exists evidence that much more complex state representations yield diminish-

ing returns, the state space used here is rather limited, and could be improved to

give the agent with marginally better representations of the system it is trying to

control. Exploration of the effect of potential different reward functions is left as
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future work.

This piece of research has clearly underlined the current limitations of agents

that will produce decisions in series over a continuous object, and how partially

trained agents create disturbances in the state variables that propagate upstream

from them through the network. These disruption waves can be extremely dam-

aging and entirely prevent learning from happening, leading to a blockage of the

simulation. Agents trained in such manner should have extended training phases

once integrated to ensure harmonious joint operation. Private companies addressing

similar issues for the same problem have found this approach to partially or entirely

remove this issue.

The multi-agent networks could benefit from either local communication with

neighbours so state information can be exchanged, or a reformulation of the reward

functions, making them based on local and neighbouring information that is rele-

vant to the performance of the entire network, searching for a more bottom-to-top

approach in which local clearance rules can provide emerging control for a wider

network than any of the parts receives information from.

In addition, the capabilities and limitations of a given simulator need to

be assessed in full before undertaking such lengthy projects. In this chapter, as

the junctions tested became more complex, the maps required progressively heavier

adaptations in order to perform the required experimentation. This process ended

with the conclusion that it would not be possible to train the Balance Network

without heavy changes that, in themselves, prevented the experimentation from

being feasible as it was discovered later. In this sense, and including Vissim up to

version 20, its use is not recommended for situations in which per-lane measurements

are needed, where other simulators should be used (e.g. SUMO).

Lastly, other baselines such as SCOOT or TRANSYT should be compared in

this setting, especially in the case of multiple junctions, as MOVA is not designed to

coordinate the traffic lights. Nevertheless, those multiple junctions systems require

great configuration efforts, specifically designed databases, and a great amount of

specialist knowledge that is not openly available.
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CHAPTER 6

Assessment of Reward Function

Choices for Reinforcement

Learning Agents in Real-World

Isolated Intersections

6.1 Introduction

Reinforcement learning (RL) has been investigated as a potential next step in urban

traffic control (UTC) systems, demonstrating the potential to outperform even well-

calibrated systems currently in use [199], such as ’Microprocessor Optimised Vehicle

Actuation’ (MOVA) for isolated junctions, and ’Split, Cycle and Offset Optimisation

technique’ (SCOOT) for regions of up to 30 signalised junctions. However, most of

the work to date is not intended to be directly applied to the real world. As such, all

observed works in the literature overlook operational limitations of this application

of RL. Further, there is a gap in the literature regarding the choice of reward function

for such an RL system, which is a critical aspect. This chapter provides a robust

comparison of reward functions for RL, in the context of a junction in Greater

Manchester, UK, a simulation of which has been calibrated using extensive data

from Vivacity Labs vision-based sensors. This research is directly translatable to

real-world applications of the technology, and has since been deployed to manage

real traffic.

The chapter is structured as follows: Section 6.2 reviews earlier work in the

field and enumerates different reward functions used in the literature. Section 6.3

states the mathematical problem and the Reinforcement Learning theoretical back-

ground. Section 6.4 describes the implementation and characteristics of the agents
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and environment. Section 6.5 describes and provides the analytic expressions of the

different reward functions being tested. Section 6.6 gives detail on the training, se-

lection and evaluation of the agents. Section 6.7 shows the results of the experiments

in terms of average waiting time of the vehicles.

6.2 Related Work

Previous studies have considered RL for UTC without focusing specifically on the

choice of reward functions. Initial research was centered around proof-of-concept,

with studies such as Wiering [117] and Abdulhai et al. [200] advocating for its

potential use, and the ability of Q-Learning to perform better [201, 202] than tra-

ditional UTC methods such as MOVA [45], SCOOT [51] and SCATS [54]. Later

research looked into neural networks as a function approximator to estimate the

value of state-action pairs whilst addressing discretisation issues raised previously

[118, 203]. Recent research makes use of deep RL to estimate the state-action values

for each state [188, 123, 127, 124, 190, 126, 204] or to learn a policy directly that

maps states to actions [118, 125, 128, 130, 205].

A number of publications have listed available RL methods for TSC. In

[122], early table based methods are summarised; in [188] reward functions in a

multi-junction network (delay between actions, difference in delay between actions,

minimisation and balancing of queues, and minimising stops) are compared, and in

[128] three different state representations are compared, finding similar performance

with each. As the outcome was found not to be sensitive to state representation,

the present work keeps the state representation constant. More recent studies, such

as Yau, K. L. A., Qadir, J., Khoo, H. L., Ling, M. H., & Komisarczuk [206] focus

on different RL approaches to this problem, while Wei et al. [207] consider state

representation, reward function, action definition and model specific distinctions

(online-offline, policy-value, tabular-function approximation) in a survey across the

field, but without performing comparisons. Previous work typically approximates

in terms of road geometry, traffic demand, and operational constraints, creating

models of intersections that preclude real-world applicability.

This points to a gap in the literature of directly comparing a broad range

of reward functions, in a well-calibrated, geometrically-accurate simulation which

accounts for real-world limitations (e.g. safety constraints): this is the topic of this

chapter.
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6.3 Problem Background and Definition

6.3.1 Reinforcement Learning

An intelligent agent is an entity which acts towards a goal based on observations

and a decision making process. RL is an area of Machine Learning which focuses on

how agents can learn a policy π based on extended interaction with an environment.

This approach treats the problem as a Markov Decision Process (MDP), defined in

terms of the < S,A, T ,R, γ > tuple (States, Actions, Transition Function, Rewards,

Discount Factor), in accordance to what is shown in Fig. 6.1.

Figure 6.1: Schematic representation of information flows between Environment and
agent in a Reinforcement Learning framework.

The goal of the agent is to learn an optimal policy π∗ that maximises the

expected future reward. The discounted future reward at time t, Rt, is defined in

equation (6.1).

Rt = E
[ ∞∑
i=0

γirt+i

]
(6.1)

6.3.2 Q-Learning and Deep Q-Learning

Q-Learning [109] defines the value of a state action pair as the Q-Value Q(s, a),

which represents the value of taking a certain action a while in state s, resulting

in a transition to a new state st+1. Q(s, a) is approximated by successive Bellman
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updates:

Q(s, a)← Qt(s, a) + α[r + γmax
a′

Qt(st+1, at+1)] (6.2)

If Q(s, a) is known, Eq. (6.2) can be solved to obtain π∗ however its value is

usually unknown, and so, estimating it is the task of Q-learning. Deep Q-Learning

[39], thereby, uses a deep neural network as this function estimator.

6.4 Methods

6.4.1 Agent

The agent uses a Deep Q Network (DQN) implemented in PyTorch [208] with 2

fully connected hidden layers of 500 and 1000 neurons respectively, and an output

layer of 2 neurons, one per allowed action. All layers use ReLU as an activation

function. The network weights are optimised using Stochastic Gradient Descent

[133], using ADAptive Moment Estimation (ADAM) [136] as the optimizer with a

learning rate of α = 10−5. The discount factor was set to γ = 0.8 for all experiments.

The discount factor has dimensions T−1, affecting how much the agent cares about

rewards far in the future when compared with those in the very close future. An

agent with γ = 0 will be myopic, aiming to produce the best immediate rewards.

An agent with γ close to the unit will seek for the greater rewards over time. The

determination of an optimal discount factor in RL for TSC is still an open problem.

In traffic control, the temporal horizon for the task is infinite, so it makes no sense

to tune the discount factor to the expected duration of the training episode, since

this episodic manner in which the training proceeds will not be encountered during

real operation. While this points towards discount factors close to the unit, it can

be argued that this concern for rewards in the far future should not go to such

lengths that the agent is caring for actions that are well beyond the point where its

own influence would matter (e.g. a controller taking actions for a busy intersection

at noon, which are being conditioned on maximisation over the actions that will

take place around midnight when the traffic would be extremely low and in no real

need of active optimisation). Based on the above, a grid search was performed for

different values of γ, obtaining the best results for γ = 0.8, which was consequently

chosen to be the value used by all agents.

6.4.2 Environment

Our environment is a real four-arm junction located in Greater Manchester, UK.

This junction is modelled using the microscopic traffic simulator SUMO [62] and
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Algorithm 4 Vivacity DQN agent

Initialise agent network with random parameters θ,
Initialise target network with random parameters θ’,
Initialise memory M with capacity L,
Define frequency F for copying weights to target network,
for each episode do

measure s0,
while episode not done do

choose at according to ε-greedy policy,
implement action at,
advance simulator until next action needed,
measure st+1, and calculate rt,
store transition tuple (st, at, rt, st+1) in M ,
s← st+1,

end
b← sample batch of transitions tuples from M ,
for each transition xi = (si, ai, ri, si+1) in b do

yi = ri+1 + γmaxaQ(si+1, a
′, θ′)

end
Stochastic Gradient Descent on θ over all (xi, yi) ∈ b,
if number of episode is multiple of F then

θ′ ← θ
end

end
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calibrated using 3.5 months of flow and journey time data collected by vision-based

sensors. Specific details of the model tuning, such as saturation rates, turning ratios

and vehicle mixture are proprietary information of Vivacity Labs and Immense.AI

and are, at the time this document is to be made public, covered by an Non-

Disclosure Agreement. A stage is defined as a group of non-conflicting green lights

(phases) in a junction. The agent decides which stage to select next and requests

this from an emulated traffic signal controller, which moves to that stage subject to

its limitations. These limitations are primarily safety-related and examples include

enforcing minimum green times, minimum intergreen times, and stage transitions

that match reality, including stopping ambers of 3 seconds and starting ambers

lasting 2 seconds [209]. The site features four vision-based sensors which can provide

flow, queue length and speed data. The data available to the agent is restricted to

what can be obtained from these sensors, so approaches such as taking average

approaching flows are not feasible within this scope.

Figure 6.2: Intersection model in SUMO.

This chapter does not consider pedestrians, thus promoting comparability

with prior work; pedestrians will be considered in Chapter 7.

6.4.3 State Representation

The input to the agent is a combination of two parts: sensor data and traffic con-

troller state. The sensor data is the occupancy of each lane area detector, while the
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Figure 6.3: Allowed stages in the intersection (Stage 3 only serves pedestrians so
isn’t used). Stage 1 is an intermediate stage required to reach stage 2. This is known
as a late start.
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controller state is a one-hot (binary valued vector) representation of which stage is

active. A 12-second buffer at 0.6s resolution of both parts is provided to the agent.

While there are other state representations provided in the literature which

are more information dense, many features of these cannot practically be obtained

in the real world by the available sensors. Moreover, recent findings [128] indicate

that the gain from more information-dense states is marginal, meaning an agent

can manage an isolated intersection with relatively simple state inputs. The state

representation has been kept constant across the different experiments presented in

this chapter.

6.4.4 Action Set

The junction is configured to have 4 available stages. The agent is able to choose

Stage 2 or Stage 4, yielding an action space size of 2. Stage 1 serves a leading offside

turn phase from the main road, and was excluded by suggestion of the transport

authority, since it is an intermediary stage that the controller will go through in

order to reach Stage 2, which serves the main road. Stage 3 only serves pedestrians,

which are not considered here, so was also excluded. Stage 4 serves the side roads,

which do experience significant demand. In each timestep when a stage has been

active longer than the minimum green time, the agent generates state-action values

for each potential stage and the highest value is chosen according to an ε-greedy

policy [108]. If the agent chooses the same stage, that stage is extended by 0.6s,

otherwise the controller begins the transition to the other stage. The extension can

be chosen indefinitely, as long as the agent identifies it as the best action. The

length of the minimum green times for each phase, as enumerated in Fig. 6.3 are

listed in Table 6.1.

Table 6.1: Minimum green phase lengths in seconds.

Phase Minimum length

A 4s

B, C, D, E 7s

The complexity in the decision-making stems from the combination of using

Stage 1 as an intermediate state and the extensions to the stage duration. Tradi-

tional RL for UTC regards each Stage as an action for the agent to take, based

on the instantaneous state of the system. However, in the case of the intermediate

Stage 1, the agent has to choose when to start the transition without knowledge of
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the future state when Stage 2 begins. Regarding the extensions, given that their

length is smaller than that of the initial phase, their impact on the state will be

smaller, generating a distribution of reward and state-action value outcomes that

the agent needs to approximate.

6.5 Reward Functions

In this section the individually tested reward functions are introduced.

Let N be the set of lane queue sensors present in the intersection, with

individual lanes identified by n. Let Vt be the set of vehicles on incoming lanes in

the intersection at time t, with v ∈ Vt representing individual vehicles. Let sv be

their individual speeds, τv their waiting times, and ρv the flow of vehicles across the

intersection over the length of the action. Let tp be the time at which the previous

action was taken and tpp the time of the action before that.

6.5.1 Queue Length based Rewards

6.5.1.1 Queue Length

The reward will be the negative sum over all n sensors of the queues (q) at time

step t. The punishment signal will grow proportionally to the growth of the queues

in the junction, being a linear combination in which all items have equal weight.

Similar to the reward introduced in [202] but without the need for thresholding the

queue values, and used in [205].

rt = −
∑
n∈N

qnt (6.3)

One of the first published in the field of Q-Learning, this reward function has low

sensor requirements and although is implementable using just induction loops, as

shown in Prashanth and Bhatnagar [202], these would provide only coarse grain

congestion levels based on thresholding, making more advanced sensors desirable,

such as those used in this piece of research.

6.5.1.2 Queue Squared

Introduced in [130], this function squares the result of adding all queues. This

generates a reward that is a non-linear combination of the queues, in which all have
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the same weight. This increasingly penalises actions that lead to longer queues.

rt = −
(∑
n∈N

qnt

)2

(6.4)

6.5.1.3 Delta Queue

The reward will be the difference between the previous and current sum of queues,

turning positive for those action that decrease the queue size and negative when

it increases. Similar approach to the rewards which are shown in Eqs. (6.7) and

(6.10).

rt =
∑
n∈N

qntp −
∑
n∈N

qnt (6.5)

6.5.2 Waiting Time based Rewards

6.5.2.1 Wait Time

The reward will be the negative aggregated time in queue (with τ representing

the individual vehicle’s time in queue) that the vehicles at the intersection have

accumulated since the last action.

rt = −
∑
v∈Vt

τvt (6.6)

This function is more information-dense than queues, scaling with individual wait-

ing times, but requires more advanced hardware for individual vehicle recognition.

Additionally, this function is aligned with the evaluation objective.

6.5.2.2 Delta Wait Time

Similar to Eq. (6.5), used in [126]. The reward will be the difference between the

aggregated waiting time of all vehicles in the junction τ between the current time

and the previous action.

rt =
∑
v∈Vt

τvtp −
∑
v∈Vt

τvt (6.7)

6.5.2.3 Waiting Time Adjusted by Demand

The reward will be the negative aggregated waiting time as above, but in this case

it is divided by an estimate of the current demand (d̂) or arrival rate, implicitly
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accepting that given a wait time as a result of an action, the penalty should scale

with the difficulty of the task.

rt = −1

d̂

∑
v∈Vt

τvt (6.8)

6.5.3 Time Lost based Rewards

6.5.3.1 Time Lost

Used in [190], the reward will be the negative aggregated delay accumulated by all

vehicles upstream from the intersection, understanding the delay as deviations from

the vehicle’s maximum allowed speed (smax). Assuming a simulator time step of

length δ:

rt = −
∑
v∈Vt

t∑
tp

δ
(
1− sv

smax

)
(6.9)

This reward provides a more accurate representation of the total delay caused, since

it also accounts for all deceleration happening around the intersection.

6.5.3.2 Delta Time Lost

Introduced in [201] and used in [188, 127, 124, 125, 128]. Similar to Eq. (6.7). The

reward will be the change of global delay in the vehicles around the intersection

since the last action was taken.

rt =
∑
v∈Vt

tp∑
tpp

δ
(
1− sv

smax

)
−
∑
v∈Vt

t∑
tp

δ
(
1− sv

smax

)
(6.10)

This reward function provides both punishment and reward centered around zero.

6.5.3.3 Delay Adjusted by Demand

The reward will be the same as in the point above, but divided by an estimate of

the demand level (d̂).

rt = −1

d̂

∑
v∈Vt

t∑
tp

δ
(
1− sv

smax

)
(6.11)
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6.5.4 Average Speed based Rewards

6.5.4.1 Average Speed

This reward seeks to maximise the average joint speed of all vehicles around an area

of influence around the intersection.

rt =
1

|Vt|
∑
v∈Vt

( sv
smax

)
(6.12)

6.5.4.2 Average Speed Adjusted by Demand

The reward will be, as in the previous section, but multiplied by an estimation of

the demand (d̂). This function scales the reward with the difficulty of the task.

rt =
d̂

|Vt|
∑
v∈Vt

( sv
smax

)
(6.13)

6.5.5 Throughput based Rewards

6.5.5.1 Throughput

The reward will be the total number of vehicles that cleared the intersection between

the last time that an action was taken and now. As previously introduced in Section

6.5, ρv represents the flow of vehicles through the intersection over the length of the

action.

rt =

t∑
tp

ρv (6.14)

6.5.6 Other reward functions

There are several other reward functions which were not considered. For example

minimising the frequency of signal change [123, 210], and accident avoidance [123]:

both of these concerns are already addressed by traffic signal controllers. Also,

pressure, ”defined as the difference of vehicle density between the incoming lane

and the outgoing lane”[199] has been used as a reward function in the control of a

large network [199, 206, 207, 211, 210, 212] and achieved good results; however, this

requires data from upstream and downstream of the target junction, so is beyond the

current scope. Lastly, while the mean-rate of delay [213] could potentially be used

as a reward metric which to minimise, its calculation is dependent on estimation of

the current flow levels at the instant the decision is taken. The demand estimation
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proposed for use in previous subsections is only used here as a constant value through

each training episode and not offered by sensors nor dynamically updated. Should

this measure be being used to calculate the mean-rate of delay, it would produce

static cycles in the best case scenario, and completely random behaviour in the worst,

as all actions could be perceived as having the same value. This behaviour places

it in a different category from typical RL controllers which are meant to update

their knowledge about the system each time a decision is needed, and more akin

to traditional adaptive controllers that change their cycles over longer timescales.

Furthermore, the need to know a priori the length of the proposed cycle to estimate

said rate of delay, would make it incompatible with the current implementation of

industry-grade controllers being tested, that do not have this knowledge, since for

them a stage extension is considered a new decision, taken using updated data, that

extends the current cycle.

6.6 Experimental Setup

6.6.1 Training Process

In each training run, the agent is subject to a training curriculum including a va-

riety of scenarios, including sub-saturated, near-saturated, and over-saturated situ-

ations. The agent is first shown sub-saturated episodes, before the difficulty level

is increased. Each episode runs for 3000 steps of length 0.6 seconds, for a total

simulated time of 30 minutes (1800 seconds).

Ten training runs were conducted for each of the reward functions described

in the following section, to capture variance in training run outcome.

6.6.2 Evaluation and Scoring

After each training run is complete, the agent’s performance is evaluated and com-

pared to that of reference agents in terms of average waiting time as defined by

Vivacity Labs. While the rate of loss of time to the community at a junction can

be calculated as the excess amount of traffic in the vicinity (also known as the rate

of delay) [213], the expression used for the calculation assumes that a constant pro-

portion of the cycle will be effectively green, which is not the case in the case of

RL agents since their cycle times can have great variation. Instead, delay measures

provided by the simulator were used as evaluation metric, following approaches of

recent RL literature in the topic [122, 125, 126, 128]. The approach here described

will be carried over into the next chapter.
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Table 6.2: Average waiting time in seconds across demand scenarios

Reward Function Low Medium High

Queues 6.59± 0.46 8.97± 1.27 16.21± 5.07
Queues Squared 6.35± 0.53 8.56± 1.26 16.22± 5.08
Delta Queues 6.47± 0.41 8.96± 1.59 18.87± 5.07

Stopped Time 6.64± 0.52 11.88± 3.39 26.27± 4.61
Stopped Time AD 6.70± 0.46 9.60± 1.66 17.68± 4.95
Delta Stopped Time 7.15± 0.81 16.59± 4.95 29.21± 3.67

Time Lost 6.79± 0.42 9.23± 1.15 15.84± 4.36
Time Lost AD 6.59± 0.46 8.97± 1.27 16.21± 5.07
Delta Time Lost 8.27± 1.48 13.48± 4.04 22.54± 5.54

Average Speed 6.24± 0.39 8.61± 1.07 14.95± 3.40
Average Speed AD 6.13± 0.44 8.22± 1.24 14.33± 4.97

Throughput 28.02± 9.36 51.16± 7.23 55.72± 7.02

Vehicle Actuated 8.70± 0.62 14.76± 1.69 27.9± 6.05
Maximum Occupancy 6.32± 0.51 9.51± 1.87 21.33± 5.77

Two reference agents have been implemented to give context to the RL per-

formance: Maximum Occupancy (longest queue first) and a Vehicle Actuated Con-

troller. The Vehicle Actuated algorithm was an implementation of System D [214],

a common algorithm in the UK. For each training run, the RL and reference agents

are each tested on 300 scenarios: this is 100 scenarios at each of 3 demand levels. In

each repetition the average waiting (stopped) time for all vehicles was computed.

The first scenario involves a demand of 1714 vehicles/hour (1 vehicle/2.1

seconds), and will be referred as Low Demand scenario. The second scenario uses

a demand of 2117 vehicles/hour (1 vehicle/1.7 seconds), and will be referred as

Medium Demand scenario, although this level of demand is around the observed

peak and the saturation level for the junction. The third scenario test a demand

level slightly above what the junction can currently serve. It uses a demand of 2400

vehicles/hour (1 vehicle/1.5 seconds) and will be referred as High Demand scenario.

For each reward function, the best result of the 10 training runs was selected,

based on the evaluation method stated in the previous two paragraphs.

6.7 Results

In this section, the distribution of average waiting times per vehicle across the

different scenarios is presented for each reward function.

Figures 6.4 - 6.6 show for each agent, the distribution of average waiting times
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per vehicle across 100 repetitions of each scenario as described in the section above.

In the plot, the box encompasses the two intermediate quartiles, with a dashed line

indicating the mean and a solid line indicating the median. The whiskers show the

range of the data, with the remaining data outside them being represented as flier

points. The throughput reward function is not shown to improve graph readability,

as it performed poorly by all metrics. Complete corresponding results are reported

in Table I.

Figure 6.4: Distribution and medians of average waiting time in seconds across
agents in Low Demand scenario. Sub-saturation demand of 1714 vehicles/hour (1
vehicle/2.1 seconds).

Reward functions optimising the average speed around the intersection were

found to be best performing across all three scenarios and consistently outperformed

the reference agents. Adjusting the average speed by an estimate of the demand level

shows to improve the performance of this reward function in all cases. From those

rewards using queues, Queues Squared performed best, except for the High Demand

scenario in which the sum of Queues obtains marginally lower waiting times. The

results from agents using reward functions based on either Wait Time or Time Lost

are inconsistent across different demand levels. While sum of Time Lost is the third

best-performing agent at High Demand, it is sixth in Medium Demand and Tenth in

Low Demand. Sum of Wait Time follows an inverse, yet less extreme trajectory as

the demand is lowered, from worse to better performance. Throughput was found
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Figure 6.5: Distribution and medians of average waiting time in seconds across
agents in Medium Demand scenario. Near-saturation demand of 2117 vehicles/hour
(1 vehicle/1.7 seconds).

Figure 6.6: Distribution and medians of average waiting time in seconds across
agents in High Demand scenario. Over-saturation demand of 2400 vehicles/hour (1
vehicle/1.5 seconds).
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Figure 6.7: Stacked bar chart of Average Waiting Time across scenarios.

to be consistently the worst-performing of the reward functions tested. The rewards

based on difference in delay (Delta Wait Time and Delta Time Lost), which were

used in seven previous items of research as a most desirable reward function, were

amongst the worst performers.

Lastly, Figure 6.7 presents the aggregate results for the different demand

levels as a general performance guide from the perspective of individual drivers and

not as a community, since the total community waiting time is proportional to the

number of vehicles as well as their mean delay.

6.8 Discussion and Conclusion

This chapter has explored the performance of several reward functions for deep

Q-learning agents in the context of Urban Traffic Control. The chapter reaffirms

earlier findings that RL outperforms deterministic baseline algorithms. Overall,

the proposed reward functions based on maximisation of the average speed of the

vehicles in the network resulted in the lowest waiting times across demand levels,

including both baseline algorithms. The performance of queue length and stopped

time rewards was comparable, but when reliability is taken into account, average

speed is clearly preferred since it produces a smaller variation in waiting times.
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In sub-saturated conditions, a simple approach of always serving the largest

queue probably suffices, although rewarding based on queue length had similar per-

formance, and rewarding for average speed yielded slight improvements. In busier

conditions, which are more important to transport authorities, RL provides signif-

icant improvements in waiting time, with speed-based rewards again performing

best, followed by queue-based rewards in near-saturation conditions, and followed

by penalising for lost time in saturated conditions.

Rewarding based on delay minimisation or stopped time may perform worse

than speed-based rewards as they encode information about previous timesteps,

whereas queue lengths and vehicle speeds are snapshots at a single timestep, which

better suits the underpinning Markov Decision Process framing of the problem.

Speed maximisation may have yielded better results than queue minimisation under

high demand as it penalises the agent for vehicles which are moving slowly forward

in congested conditions, which would not have been penalised by the queue length

reward. This would also not have been captured by the stopped time reward, which

may explain its worse performance overall. One key finding is that whilst rewards

based on difference in delay were found to perform well in earlier works, this was

found to perform poorly in the present work. The Maximum Occupancy reference

agent performs well at low demand, but mediocre at medium demand and poorly at

high demand. It does not extend stage durations in busy traffic when the amount

of vehicles of vehicles using the active stage is slightly lower than that of stationary

queuing traffic. This results in shorter than optimal stage lengths and so too much

time is wasted in interstage transitions. However, it did consistently perform better

than the Vehicle Actuated reference agent. The Vehicle Actuated algorithm extends

stages until the related loops have been unoccupied for 1.5s, hence extending stages

in congested traffic. However, its performance suggests that this standard extension

length, coupled with the maximum stage durations found empirically to perform

relatively well, is overly eager to extend stages. From a visual inspection via the

simulator of the best RL agent’s behaviour, it appears to learn an ’adaptive stage

extension’ behaviour: learning when to prioritise a large queue waiting to be served

and when to prioritise avoiding the cost of transitioning stages. A key benefit to

the DQN approach is that it can learn how eagerly it should extend stages under

varying conditions at a specific site, rather than requiring manual calibration. This

automated calibration can be repeated regularly so that the site continues to perform

well long-term without manual intervention.

Regarding robustness against previously unseen situations, at the core of the

agents we find neural networks which are specially well suited for extrapolation, this
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being a characteristic that has driven their growth in usage over the previous years.

Based on this, slightly differing state variables from those previously observed during

training should not pose any kind of risk for the robustness of operation of such an

agent. Moving onto major disruptions and incidents, the main great change that

an agent could find while in real operation, not previously seen in training relates

to one or more of the lanes feeding into the intersection being closed. The agents

here presented obtain the environment states based on lane occupancy, used as a

proxy for the level of demand. In such a situation, the measured occupancy for the

affected lanes would be zero, indicating to the agent that there is no demand for

said lanes. This in turn, will lead the agent not to serve said lanes, meaning that

the agent would be completely robust against lane closures, performing normally

for the remaining lanes. If the focus is placed instead into driver-caused accidents

in the middle of the intersection, blocking it; unless there are were some sensors

covering said area, and proper routines in place for this eventuality, there would be

no immediate adaptation as the controllers, similarly as with current day systems.

Should said sensors and emergency routines be in place, there is no reason why an

initial alert to the competent authorities, paired with a cautionary closure of the

entire junction cannot be executed by the agent itself, instead of depending on alerts

given by the affected drivers or other nearby people. When this is paired by the fact

that during RL agent deployments for traffic control, the previous control system

is not overwritten and it is possible to switch back to it with a few keystrokes, it

can be stated that a priori there are no reasons why RL agents for TSC should

be less robust nor secure that their traditional counterparts, and that there are

several reasons pointing to these agents potentially being able to offer higher levels

of robustness and security for road users without the need of further expenditure

than that required for their standard deployment.

6.8.1 Limitations and Future Work

One limitation of the study is that the results presented only relate to the training of

a deep Q-learning agent as specified in Section 6.4, and are not necessarily represen-

tative of the performance in other type of architectures such as those representing

the state as an image and processing it with Convolutional Neural Networks, or

Policy Gradient methods. Another limitation is that most intersections found in an

urban setting do not exclusively serve vehicles, this will be tackled in the following

chapter.

RL for TSC, as it is treated by most literature, has some deep differences

with the set of problems that the seminal version of these algorithms were created to
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solve, which hamper their performance and progression. While the intention of this

chapter is not to assess the theoretical suitability of the reward functions introduced,

but to gather previously proposed reward functions and others recently proposed

by industry and empirically compare their performance for the first time, there are

open points regarding reward shaping in RL for TSC that are worth covering.

One such issue is that DQN agents assume an episodic nature of finite length

of the task at hand, while traffic control in practice behaves as an infinite hori-

zon control task. For this reason, most RL TSC literature assumes that the best

parametrisations for the discount factor is to take values close to the unit. As this

chapter shows, often better results can be obtained by setting it to lower values,

with the implicit assumption that the temporal scales for which there exists a cor-

respondence between actions and states over which to optimise action choices are

indeed finite (i.e when an intersection is empty, the choice of action does not mat-

ter, breaking the continuity of the need for optimisation over time). However, the

linkage between some measure of temporal structure in the state variables (which

ultimately condition the action choice) and the specific value of the discount factor

has not been solved yet. Hence, the specific choice of discount factor is, as stated

earlier, still an open problem in RL for TSC. Even so, often reasonable estimates of

the best performing discount factor for a given task can be obtained, although at a

high computational cost, by performing grid searches.

A second problem relates to the lack of temporal correspondence between

the passage of time in the environment and how the agent perceives this temporal

evolution. In most RL applications, it is found beneficial for the general performance

of the agents that these are able to act with as high of a frequency as it is possible to

obtain updated data for them (e.g. Go, Atari games, self-driving vehicles, electrical

grid control, etc.), so they can fine-tune their actions with improved information. In

these cases, one time step for the environment equals one state estimation-action-

reward cycle for the agent, with the implicit assumption that every action lasts a

single time step. This is not the case in RL for TSC, where normally actions have, at

least, a minimum length, and the possibility of being extended for a longer time (with

the minimum extension time not needing to be equal to the minimum stage times).

This means that once an action is chosen, the agent is committed to maintain it as its

chosen action for the duration, regardless of the evolution of the environment during

this process. The fact that actions are fixed after being chosen, creates uncertainty

as to how to approach the experience management of the agent over time, being

able to either only record the transitions in terms of the initial state that led to the

action being taken and the end state at the end of the action, or to record every
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intermediate time step, keeping the action fixed for the duration and calculating

a reward value for every temporal increment in the simulator while disregarding

the choices of action of the agent. There are arguments supporting the first choice

based on the idea that it would produce experience transitions that better represent

the effects of a given action at the cost of some granularity. Opposing arguments

adduce that recording every transition multiplies the experience available by a factor

located between the minimum stage extension length and minimum phase length,

at the cost of a degree of global view from the agent. Ultimately, the question as to

which approach produces superior results remains open and is left for future work.

The first design philosophy of the two here presented has been followed through the

RL-focused chapters in this thesis, matching the most extended choice in the field’s

literature. An analogous discussion can be made for whether extensions should be

treated together with the initial action as a whole, or whether they should be treated

as a separate action. This discussion is also currently open in RL for TSC.

Further, the changes in the state of the environment will not occur uniformly

during the lifespan of an action: a traffic light that just turned green will have

minimal effect on the queue length of its corresponding lane during the first second,

since only those vehicles at its front will be accelerating from an initially stopped

position. Equally, if an action is such that the related queues are cleared before

the end of the stage, the impact of said action on the affected lanes will be non-

existing since the moment of clearing, while the likely arrival of further vehicles in

other lanes will make this part of the action look detrimental to performance from

a reward point of view.

These facts, when paired with the design methodology chosen for this work,

mean that from the point of view of the simulator the agent will provide actions

with variable frequency, while from the point of the agent it will result in the ob-

served distributions of rewards having, in general, a higher variance that what would

be observed if the time-lines for agent and environment were shared. While it is

undeniable that a wider distribution of stored rewards for a given action will have

make training more difficult, there is a large amount of evidence available both in

the literature, as well as in products being deployed in the real-world that successful

learning and successful control are in no way impeded by this.

All the rewards presented in this chapter, except for those based on aver-

age speeds, are affected by the lack of correspondence between agent’s and envi-

ronment’s accounting of time to some degree. This is one possible reason for the

dominance shown by average speed based rewards. This effect will increase the

observed variance of the distributions of rewards within a class, compared to what
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would be observed under fixed action lengths. The reward functions that will be

more severely affected are those based on delay, stopped time and throughput. In

the first two cases, this is be due to the fact that their variation in a single time step

will be roughly proportional to the number of vehicles below maximum speed and

stopped respectively, and while any extensions will reduce the amount of stopped

vehicles, the remaining vehicles will keep accumulating delay during said extension.

In the last case, the variation in the observed reward will be approximately propor-

tional to the total extension length, since these will occur at a moment when cars

are discharging their link at close to the saturation rate. Given that the agent is not

aware of this lack of correspondence in the passage of time between itself and its

environment, and that extensions are treated as longer single actions, this equates

telling a throughput based agent that the saturation rate is effectively unknown,

variable and unpredictable within a range. This is one potential reason for the bad

performance in these experiments of throughput based agents. Queue based rewards

will be affected to a lesser degree, since the number of vehicles discharged from a

queue will raise with the length of the extension, but the number of vehicles arriving

at the back of the remaining queues will partially offset this.

In terms of functional forms, those estimating the variation between actions,

and specifically those based on time lost and delay could see the errors in their

estimation affect the sign of the reward, since they are the only rewards can can

take both positive and negative values. This will, in turn generate more suboptimal

choices of actions leading to greater variance in the agent’s performance.

One potential solution to this issue is to modify the reward calculation pro-

cedure to include a multiplicative term inversely proportional to the length of the

corresponding stage plus any extensions, effectively having the agent try to approx-

imate the rate of reward in reward units per second. This approach will be tested

in the next chapter, but ultimately this is a research question that remains open.

One last concern can be raised about the use of a fixed pre-calculated factor

(estimation of demand) being applied to the calculation of any given reward function.

The first consideration here is that the choice of action itself is not critically affected

by this factor most of the time, as the factor in the experiments here presented varied

between 1.5 and 2.1 (matching the number of vehicles inserted into the model per

second), creating a maximum deviation in the expected value of an action that is

usually well below the difference in reward between a ”good” choice of action and

a ”bad” one (i.e. in the best case scenario, assuming the estimated state-action

value is the underlying truth, after a changing the demand from one extreme to

the opposite, will generate an estimation error of 2.1 − 1.5 = 0.6 times the true
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value). By introducing such a factor, if we increase the demand by said 60%, the

agent using queues will receive the same reward value for a queue that is 60%

longer than it was under low demand. While an statement such as ”60% lower

demand means 60% lower queues/delays/stopped times” does not acknowledge the

non-linearities in traffic and would not hold when experimentally checked, adding

such an approximation to the agents has, in general, helped reduce the variance

of the reward distribution to estimate, and improved agent performance, especially

in high demand situations. This was initially a highly experimental approach that

has not been previously shown in the literature, and it was kept since the empirical

results showed that in a great majority of cases, it helped reduce the variance in the

performance of the agents when compared to those using the same measures but

not including this factor. As such experimental addition, there are characteristics

of it that could be the subject of further study. Additionally, there is room to

expand and improve it, searching for ways to calculate reward levels relative to the

level of demand that would help stabilise the learning and behaviour of RL TSC

agents while increasing their robustness. This too is outside the scope of this piece

of research and left for future work.

Overall, the ability of RL agents to effectively deal with ambiguities such as

those introduced in this section, plus those regarding their required ability to ex-

trapolate when in complex state-action spaces is the reason that they are displaying

such a success, leading to their popularisation over the past few years. While these

issues remain open, valid and relevant, just as well as other current concerns about

neural-networks (e.g. explainability), neither of them ultimately prevent RL agents

from having the ability to exert control over highly complex systems.
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CHAPTER 7

Assessment of Reward

Functions in Reinforcement

Learning Agents for Real-World

Multi-Modal Isolated

Intersections

7.1 Introduction

Reinforcement Learning (RL) approaches have been showing promising results in

the field of Traffic Signal Control. However, most of the existing works do not try

to jointly optimise vehicular and pedestrian travel times, even though pedestrians

are allowed and present in the great majority of urban intersections.

This chapter compares the performance of RL agents using 30 different re-

ward functions split into 5 different classes based on the inputs they use, when

controlling a simulation of a real-world junction in Greater Manchester (UK) that

has been calibrated using 3.5 months of data gathered from s Labs vision-based

sensors.

The chapter is structured as follows: Section 7.2 reviews previous literature

in the field. Section 7.3 states the mathematical framework used and provides some

theoretical background. Section 7.4 reviews the environment, the agents and their

implementation. Section 7.5 introduces the reward functions tested in this chapter

and provides their analytical expressions. Section 7.6 contains details about the

training and evaluation of the agents. Lastly, Section 7.7 provides the experimental

results and discusses them.
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7.2 Related Work

RL for UTC has been previously explored and discussed in a variety of research, aim-

ing to eventually substitute existing adaptive control methods such as SCOOT[51],

MOVA[45] and SCATS[54]. The field has evolved from early inquiries about its

theoretical potential use [117, 200, 202, 201, 215], to progressively more applied and

realistic scenarios that look towards real-world use and deployment. Recent works

use different inputs for the reward function of the controlling agents (delay, queues,

waiting time, throughput, ...), however, it is not clear what benefits are provided

from choosing which. The different inputs used as reward are thoroughly indexed in

Yau, K. L. A., Qadir, J., Khoo, H. L., Ling, M. H., & Komisarczuk [206], Haydari

and Yilmaz [216], and Wei et al. [207], although no direct performance comparisons

are made. Different methods are taken regarding inputs, such as pixel-based vectors

passed to a CNN [217, 124, 125], per-lane state signals using fully connected neu-

ral networks [122, 205, 129], or hybrid approaches [127, 130, 190]. Recent research

suggests that more complex state representations only provide marginal gains, if

any[128], so in this paper the second approach is taken.

A common thread in most previous works is the need for approximations

about the network being studied and the lack of pedestrian modelling and joint op-

timisation for vehicles and pedestrians travel times. As indicated in [216], pedestrian

implementation has a high impact on learning performance, being often discarded

as unimportant or left for future work save for two exceptions [88, 189], the first

of which uses a genetic algorithm instead of RL, and the second explores a sin-

gle reward function. In this paper we attempt to cover this gap in the literature,

providing a robust performance assessment of RL agents serving both vehicles and

pedestrians, using a variety of rewards, both novel and from the literature, attempt-

ing to uncover what state variables should be used in the reward to obtain the best

performance. These are applied to a RL agent in a calibrated model of a real-world

junction, using real geometry, calibrated demand, realistic sensor inputs and emu-

lated traffic light controllers, to which some of these agents have been deployed to

control real traffic in it since these experiments took place. This paper delivers the

future work deferred from [6] in terms of shifting the focus towards pedestrians and

multi-objective optimisation, while keeping the problem grounded in the real world.

7.3 Problem Definition
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7.3.1 Markov Decision Processes and Reinforcement Learning

The problem is framed as a Markov Decision Process (MDP) as introduced in Section

2.2.5.1, satisfying the Markov property: given a current state st, the next state st+1

is independent of the succession of previous states {st−1, st−2, ..., s0}. An MDP is

defined by the 5-element tuple < S,A, T , R, γ >.

The objective of an MDP optimisation is to find an optimal policy π∗, map-

ping states to actions, that maximises the sum of the expected discounted reward,

Rt = E
[ ∞∑
i=0

γirt+i

]
. (7.1)

As stated before, in the case of RL for UTC, T is unknown, making it necessary to

approach it from a model-free RL perspective.

7.3.2 Q Learning and Value-Based RL

As introduced in Section 2.2.5.2, Q-Learning [109] is an off-policy model-free value-

based RL algorithm. For any finite MDP, it can find an optimal policy which

maximises expected total discounted reward, starting from any state [132]. Q-

Learning aims to learn an optimal action-value function Q∗(s, a), defined as the

total return after being in state s, taking action a and then following policy π∗.

Q∗(s, a) = max
π

Eπ∗
[
Rt|s = st, a = at

]
(7.2)

Traditional table-based Q-Learning approximates Q∗(s, a) recursively through suc-

cessive Bellman updates,

Qπ(st, at)← Qπ(st, at) + α
(
yt −Q(st+1, a)

)
(7.3)

with α the learning rate and yt the Temporal Difference (TD) target for the Q-

function:

yt = rt + γ max
at+1

Qπ(st+1, at+1) (7.4)

This table representation is not useful for high dimensional cases, since the

size of our table would increase exponentially, nor for continuous cases, since every

distinct s ∈ S would require an entry.
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7.3.3 Deep Q Network

One way of addressing the issues of Q-Learning in high dimensional spaces is to use

neural networks as function approximators. This approach is called Deep Q-Network

(DQN) [39], and it was previously introduced in Section 2.2.5.4. The Q-function

approximation is denoted then in terms of the parameters θ of the DQN as Qθ(s, a).

DQN stabilises the learning process by introducing a Target Network that works

alongside the main network. The main network with parameters θ, approximates

the Q-function, and the target network with parameters θ′ provides the TD targets

for the DQN updates. The target network is updated every number of episodes by

copying the weights θ− ← θ. With Qθ′(st+1, at+1) representing the target network,

it results in a TD target to approximate:

yt = rt + γ max
at+1

Qθ(st+1, at+1). (7.5)

7.4 Methods

7.4.1 Reinforcement Learning Agent

The agent used to obtain these results is a standard implementation of a DQN in

PyTorch [208], optimising its weights via Stochastic Gradient Descent [133] with

ADAM [136] used as optimizer. The learning rate is α = 10−5 and the discount

factor is γ = 0.8 for all simulations. The Neural Network in the agent uses 2 hidden,

fully connected layers of sizes 500 and 1000 respectively, using ReLU as an activation

function.

7.4.2 Reinforcement Learning Environment

The environment is modelled in the microscopic traffic simulator SUMO [62], rep-

resenting the same real-world intersection in Greater Manchester that was used in

the previous Chapter. The junction consists of four arms, with 6 incoming lanes

(two each in the north-south orientation, and one each in the east-west orientation)

and 4 pedestrian crossings. The real-world site also contains 4 vision-based sensors,

able to supply occupancy, queue length, waiting time, speed and flow data. The

demand and turning ratios at the junction have been calibrated using 3.5 months of

journey time and flow data collected by these sensors. Specific details of the model

tuning, such as saturation rates, turning ratios and vehicle mixture are proprietary

information of Vivacity Labs and Immense.AI and are, at the time this document

is to be made public, covered by an Non-Disclosure Agreement.
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Figure 7.1: Aerial view of Study Junction from Google Earth.

The environment includes an emulated traffic signal controller, responsible

for changing between the different stages in the intersection and enforcing the op-

erational limitations, which are focused on safety. This includes enforcing green

times, intergreen times, as well as determining allowed stages. Stopping ambers are

3 seconds and starting ambers last 2 seconds. A stage is defined as a group of non-

conflicting green lights (phases) in a junction which change at the same time. The

agent decides which stage to select next and requests this from an emulated traffic

signal controller, which moves to that stage subject to its limitations, which are

primarily safety-related. The data available to the agent is restricted to what can

be obtained from these sensors, as explained in the previous chapter, so approaches

such as taking average approaching flows are not feasible within this scope.

7.4.3 State Representation

The agent receives an observation of the simulator state as input, using the same

state information across all experiments here presented. Each observation is a com-

bination of the state of the traffic controller (which stage is active) and data from

the sensors. The data from the sensors is comprised of the occupancy in each lane

area detector and a binary signal representing whether the pedestrian crossing but-

ton has been pushed. Given that this is the only representation of the state of the
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pedestrians, it is not possible to treat them as one of the streams of traffic. The

agent receives a concatenation of the last 20 measurements at a time, covering the

previous 12 seconds at a resolution of 0.6 seconds.

7.4.4 Actions of the Agent

The junction is configured to have 4 available stages. The agent is able to choose

Stage 2, Stage 3 or Stage 4, yielding an action space size of 3. The action space

has an extra action available when compared with that presented in Chapter 6,

since now pedestrians are fully simulated. Stage 1 services a protected offside turn

coming from the north. It is used by the traffic light controller, as a transitional

step for reaching Stage 2, as defined by the transport authority. Stage 2 deals with

the traffic in the north-south orientation. Stage 3 is the pedestrian stage, setting

all pedestrian crossings to green, and all other phases to red. Stage 4 services the

roads in the east-west orientation, which have considerable demand.

Once the controller has had a stage active for the minimum green time dura-

tion, the agent is requested to compute the value of all potential state-action pairs

(i.e. the value of other stages given the current state) once per time-step. From

these, the action with the highest expected value is selected following an ε-greedy

policy [108]. Should the agent choose the same action, the current stage will be

extended for a further time-step (0.6 seconds). There is no built-in limit to the

maximum number of said extensions, leaving it for the agent to learn the optimal

green time for any given situation. If a different stage is chosen, then the controller

will proceed to the intergreen transition between them. The length of the minimum

green times for each phase, as enumerated in Fig. 7.2 are listed in Table 7.1.

Table 7.1: Minimum green phase lengths in seconds.

Phase Minimum length

A 4s

G 5s

B, C, D, E, F, H, I 7s

There are 2 situations that further add to the complexity of this control

process:

1. Variable number of extensions, and hence length of the stages, creates a distri-

bution of values over the state-action pairs in most rewards, which the agent
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Figure 7.2: Allowed stages and the phases that compose them. Stage 1 is an inter-
mediate Stage, which is necessary to go through to reach Stage 2.

must approximate. The variance of this distribution will be higher than the

variance that would be obtained using constant stage length.

2. The requirement that Stage 1 must be used as an intermediate step to reach

Stage 2 implies less certainty in the control process than in other stages, since

there is an unaccounted dilated temporal horizon between the state that trig-

gered the action, and the effects of said action over the state variables.

7.4.5 Modal Prioritisation and Adjusting by Demand

The agent serves vehicles and pedestrians arriving at the intersection, seeking to

jointly optimise the intersection for both modes of transport.

All the reward functions presented in this chapter follow the same structure.

The reward, as seen by the agent controlling the intersection, will be a linear com-

bination of an independently calculated reward for the vehicles and another for the

agents, as it can be seen in Eq. (7.6).

rt = a ∗Rvt + b ∗Rpt ; a+ b = 1 (7.6)

In this way, a and b are the Modal Prioritisation coefficients for our rewards, with
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Rv, Rp being respectively the vehicular and pedestrian rewards.

This is a simple yet effective way of accounting for different opposed objec-

tives during the control process. Due to the configuration of the intersection, there

is no phase that serves simultaneously both vehicles and pedestrians. For this rea-

son, a reward of the form presented in Eq. (7.6) can provide an effective learning

environment for agents, since different components of it will capture the state met-

rics of the different modes of transportation. There is no reason why this approach

cannot be reasonably extended to encompass a few classes. This can lead to inter-

esting takes from the traffic light operators in which bikes or public transportation

vehicles can have weights that benefit their travel times, giving them priority over

individual cars, and creating extra incentives to use these modes of transportation.

Of the rewards presented in the following section, those that were more

sensitive towards the relative ratio of the demand between pedestrian and vehicles

require manual tuning of the modal prioritisation parameters. While undesirable

from a modeller and operator point of view since it partially counters the benefits

that RL provides in terms of self-adjustment, they are provided so potential users

and researchers can evaluate the trade-offs between potential increased performance

and increased configuration effort. The mentioned series will be identified by the

weight applied to the pedestrians. As such, series identified as P80 and P95 represent

those in which the weights were a = 0.2, b = 0.8, and a = 0.05, b = 0.95 respectively.

Those series without an identifier do not require tuning the modal prioritisation

weights (a = b = 0.5).

The need for specific prioritisation coefficients is closely related to the choice

of inputs for the reward function and the lack of balance between pedestrian and

vehicular demand, with the vehicular demand being greater. Rewards such as those

based on queues do not require of a specific choice of prioritisation weights in order

to converge to effective policies. In this case, it occurs because the agent will learn

to serve each phase before certain levels of unacceptable queues are reached for a

certain lane or pedestrian area, and the queues measures grow by a unit each time

a vehicle or pedestrian joins one. A similar reasoning can be made for, for example,

average speed based rewards. However, those rewards based on input quantities that

inherently grow over time are more susceptible of being unbalanced in this scenario.

For example, if we look at those based on waiting time under the assumption of

greater volume of vehicle demand than pedestrian demand, we find that it is likely

that the amount of delay jointly accumulated by all vehicles in the intersection

while they are stopped during the pedestrian phase, is much greater than what can

be obtained during any other phase in which pedestrians will be waiting and at
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least some of the vehicles will be moving. Following this reasoning, it is easy to

see how certain rewards can find convergence for all classes more easily when the

relative importance for the agent of one mode of transportation is boosted through

prioritisation weights.

One last addition that can be made to the rewards is to add a term scaling the

difficulty with the demand level, implicitly accepting that higher demand typically

worsens the performance of a network, independent of the actions of the controlling

agent. These series are identified with the suffix AD (Adjusted by Demand).

7.5 Reward Functions

All reward functions tested are presented in this section with their analytical ex-

pressions.

Let N be the set of lane queue sensors present in the intersection. Let M be

the set of pedestrian occupancy sensors in the junction. Let Vt and Pt be respectively

the set of vehicles in incoming lanes, and the set of pedestrians waiting to cross in the

intersection at time t, with individual vehicles and pedestrians identified by v and

p. Let svt be the individual speed of vehicle v at time t, τvt and τpt the waiting times

of vehicles and pedestrians at time t, respectively. Let ρv and ρp be the vehicular

and pedestrian flows across the junction over the length of the action. Let tp be the

time at which the previous action was taken and tpp the time of the action before

that. Lastly, let tve and tpe be the entry times of vehicles and pedestrians to the area

covered by sensors.

7.5.1 Queue Length based Rewards

7.5.1.1 Queue Length

Similar to [202], used in [205], the reward is the negative sum at t of queues (q) over

all (n,m) sensors.

rt = −
∑
n∈N

qvt −
∑
m∈M

qpt (7.7)

7.5.1.2 Queue Squared

Seen in [130], this function squares the result of adding all queues.

rt = −
(∑
n∈N

qvt

)2

−
( ∑
m∈M

qpt

)2

(7.8)
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7.5.1.3 Queues Phase Length Normalisation

As Queue length, but dividing the sum by the phase length (Phase Length Normal-

isation), approximating the reward that the action generates by unit of time it is

active.

rt = − 1

t− tp
∑
n∈N

qvt −
∑
m∈M

qpt (7.9)

7.5.1.4 Delta Queue

The reward is the variation of the sum of queues between actions. Similar to Eqs.

(7.13) and (7.16).

rt =

(∑
n∈N

qvtp −
∑
n∈N

qvt

)
+

( ∑
m∈M

qptp −
∑
m∈M

qpt

)
(7.10)

7.5.1.5 Delta Queue PLN

As Delta Queue, but dividing the sum by the phase length (Phase Length Normal-

isation).

rt = − 1

t− tp

((∑
n∈N

qvtp −
∑
n∈N

qvt
)
−
( ∑
m∈M

qptp −
∑
m∈M

qpt
))

(7.11)

7.5.2 Waiting Time based Rewards

These rewards require Modal Prioritisation weights.

7.5.2.1 Wait Time

The reward is the negative sum of time in queue accumulated since the last action

by all vehicles. This function is aligned with the evaluation objective.

rt = −
(
a
∑
v∈Vt

τvt + b
∑
p∈Pt

τpt

)
(7.12)

7.5.2.2 Delta Wait Time

Seen in [126], similar to Eq. (7.10). The reward is the variation in queueing time

between actions.

rt = a

(∑
v∈Vt

τvtp −
∑
v∈Vt

τvt

)
+ b

(∑
p∈Pt

τptp −
∑
p∈Pt

τpt

)
(7.13)
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7.5.2.3 Waiting Time Adjusted by Demand

Negative sum of waiting time, adding a factor to scale it accordingly with an estimate

of the demand (d̂).

rt = −1

d̂

(
a
∑
v∈Vt

τvt + b
∑
p∈Pt

τpt

)
(7.14)

7.5.3 Delay based Rewards

These rewards require Modal Prioritisation weights.

7.5.3.1 Delay

Seen in [190]. Negative weighted sum of the delay by all entities. Delay is understood

as deviation from the maximum allowed speed. For the pedestrians, the time in

queue is used given that, from the point of view of the sensors, pedestrian presence

is binary. Assuming a simulator time step of length δ:

rt = −
(
a
∑
v∈Vt

t∑
tve

δ
(
1− svt

smax

)
+ b

∑
p∈Pt

τpt

)
(7.15)

7.5.3.2 Delta Delay

First seen in [201] and used in [188, 127, 124, 125, 128]. The reward is the variation

between actions, as calculated in Eq. (7.13) but using the delay instead of the

waiting time.

rt = a

(∑
v∈Vt

tp∑
tve

δ
(
1− svt

smax

)
−
∑
v∈Vt

t∑
max(tve ,t

p)

δ
(
1− svt

smax

))

+ b

(∑
p∈Pt

τptp −
∑
p∈Pt

τpt

) (7.16)

7.5.3.3 Delay Adjusted by Demand

Same as in Eq. (7.15), introducing a scaling demand term.

rt = −1

d̂

(
a
∑
v∈Vt

t∑
tp

δ
(
1− svt

smax

)
+ b

∑
p∈Pt

τpt

)
(7.17)
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7.5.4 Average Speed based Rewards

7.5.4.1 Average Speed, Wait Time Variant

The vehicle reward is the average speed of vehicles in the area covered by sensors

and normalised by the maximum speed. The pedestrian reward is the minimum

between the sum of the waiting time of the pedestrian divided by a theoretical

desirable maximum waiting time τmax and 1. This produces two components of the

reward Rp, Rv ∈ [0, 1].

rt =

∑
v∈Vt

svt
smax

|Vt|
+ min

( ∑
p∈Pt

τpt
τmax

, 1
)

(7.18)

7.5.4.2 Average Speed, Occupancy Variant

Vehicle reward as in the previous entry. Pedestrian reward is the minimum between

the sum of pedestrians waiting divided by a theoretical maximum desirable capacity

pmax and 1.

rt =

∑
v∈Vt

svt
smax

|Vt|
+ min

(∑
Pt

p

pmax
, 1
)

(7.19)

7.5.4.3 Average Speed Adjusted by Demand, Demand and Occupancy

Variants

As in the previous two entries, adding a multiplicative factor equal to the historical

estimation of the demand for the current time of the day d̂, scaling the reward with

the difficulty of the task.

7.5.5 Throughput based Rewards

These rewards require Modal Prioritisation weights.

7.5.5.1 Throughput

The reward is the sum of the pedestrians and vehicles that cleared the intersection

since the last action.

rt = a
t∑
tp

ρv + b
t∑
tp

ρp (7.20)
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Figure 7.3: Vehicular, pedestrian and aggregated waiting times in seconds for the
fifteen best performing agents in the Normal Scenario.
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Figure 7.4: Vehicular, pedestrian and aggregated waiting times in seconds for the
fifteen best performing agents in the Peak Scenario.
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Figure 7.5: Vehicular, pedestrian and aggregated waiting times in seconds for the
fifteen best performing agents in the Oversaturated Scenario.
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Table 7.2: Average waiting time in seconds across demand scenarios

Normal Scenario Peak Scenario Oversaturated Scenario
Scenario Vehicles Pedestrians Vehicles Pedestrians Vehicles Pedestrians

Queues 7.87± 0.83 16.47± 3.95 10.68± 2.06 17.73± 3.64 19.80± 6.01 17.94± 3.48
Queues Sq. 7.79± 0.93 18.55± 4.47 10.92± 2.41 18.60± 4.81 20.80± 6.88 19.02± 4.38
Queues PLN 14.57± 4.91 20.31± 4.94 32.90± 6.36 19.59± 4.78 38.04± 3.93 19.28± 4.87
∆ Queues 8.34± 1.04 18.37± 3.94 11.63± 3.09 19.45± 3.75 24.40± 7.20 19.70± 3.80
∆ Queues PLN 10.37± 1.10 17.45± 3.59 16.11± 4.38 18.44± 4.45 30.64± 5.00 19.49± 4.32

Avg. Speed - Wait 7.61± 0.84 16.31± 3.82 10.94± 2.19 17.05± 4.67 10.62± 1.17 38.36± 12.66
Avg. Speed - Occ 7.86± 0.94 14.79± 3.97 12.34± 3.44 15.43± 3.84 24.84± 7.31 15.56± 4.49
Avg. Speed AD - Wait 8.20± 0.80 15.37± 3.48 10.85± 2.11 15.55± 3.84 17.89± 5.68 14.95± 3.80
Avg. Speed AD - Occ 7.85± 0.88 16.68± 4.83 11.10± 2.44 17.20± 4.93 20.93± 6.83 17.66± 5.01

Wait Time 7.80± 0.90 41.05± 19.40 14.65± 4.73 110.34± 59.56 28.82± 4.83 228.46± 159.81
Wait Time P80 8.20± 1.26 28.80± 9.05 14.94± 4.81 54.29± 35.00 30.01± 4.84 113.68± 52.00
Wait Time P95 8.26± 1.15 19.00± 4.67 16.51± 5.94 19.24± 4.44 31.02± 5.26 20.14± 4.16

Wait Time AD 7.83± 0.99 56.00± 30.22 14.84± 4.84 169.11± 92.44 27.52± 5.01 324.12± 212.37
Wait Time AD P80 8.25± 1.13 23.52± 5.73 17.05± 5.91 27.35± 6.29 31.43± 4.95 32.69± 9.67
Wait Time AD P95 8.48± 1.19 18.07± 4.75 17.88± 6.25 18.30± 5.02 32.67± 5.28 18.78± 4.37

∆ Wait Time 9.12± 1.23 82.57± 36.55 15.28± 5.09 326.07± 175.84 24.16± 6.77 594.03± 273.64
∆ Wait Time P80 8.94± 1.38 33.35± 17.34 16.68± 4.65 81.64± 49.48 30.38± 4.50 149.79± 105.07
∆ Wait Time P95 10.02± 1.66 42.36± 16.59 16.27± 5.33 72.27± 44.89 26.88± 6.22 174.85± 109.01

Delay 6.39± 0.40 849.52± 318.33 8.59± 0.89 849.52± 318.33 14.43± 3.16 849.52± 318.33
Delay P80 8.39± 1.10 46.78± 16.52 11.52± 2.36 78.91± 35.73 20.93± 7.02 143.27± 72.39
Delay P95 7.92± 0.89 26.21± 4.86 11.38± 2.42 30.30± 7.64 20.99± 6.29 47.34± 23.27

Delay AD 6.71± 0.43 811.38± 352.38 8.79± 0.96 811.38± 352.38 14.08± 3.31 811.38± 352.38
Delay AD P80 7.74± 0.81 44.55± 17.51 10.68± 1.95 122.05± 112.18 18.92± 6.46 404.54± 252.47
Delay AD P95 7.83± 0.84 48.76± 24.28 11.62± 3.02 180.59± 123.18 21.77± 6.82 425.35± 234.33

∆ Delay 11.18± 2.93 211.41± 116.86 26.98± 6.75 546.51± 263.71 34.97± 3.45 393.81± 267.95
∆ Delay P80 10.62± 2.34 66.46± 30.32 20.51± 6.04 180.64± 107.80 29.70± 4.97 307.76± 218.11
∆ Delay P95 8.23± 1.29 99.40± 59.76 15.22± 4.97 221.92± 133.24 25.35± 6.43 398.13± 240.03

Throughput 18.71± 4.79 23.60± 6.88 35.28± 5.60 26.26± 8.14 39.24± 3.72 34.86± 28.54
Throughput P80 35.53± 10.87 51.96± 31.20 47.60± 5.99 65.91± 37.86 47.85± 5.15 84.93± 49.08
Throughput P95 26.28± 8.81 101.07± 65.21 56.39± 10.72 130.98± 84.11 74.10± 13.94 74.46± 57.96

VA-System D 10.62± 1.17 38.36± 12.66 18.73± 2.92 51.62± 16.50 38.10± 8.26 56.32± 19.58
Max. Occupancy 6.92± 0.54 196.09± 130.04 10.02± 1.75 397.20± 213.06 21.57± 5.10 596.32± 253.80

172



7.6 Experiments

7.6.1 DQN Agents Training

The training process covers 1500 episodes running for 3000 steps of length δ = 0.6

seconds for a simulated time of 30 minutes (1800 seconds). The traffic demand is

increased as the training advances, with the agent progressively facing sub-saturated,

near-saturated and over-saturated scenarios, with a minimum of 1 vehicle / 3 seconds

(1200 vehicles/h) and a maximum of 1 vehicle / 1.4 seconds (2571 vehicles/h).

For each reward function, 10 copies of the agent are trained, and their per-

formance was compared against two reference systems. These are Maximum Occu-

pancy (MO, longest queue first) and Vehicle Actuated System D (VA-System D)

[214] (vehicle-triggered green time extensions), which is commonly used in the UK.

The agent performing best against the reference systems in each class is selected for

detailed scoring.

7.6.2 Evaluation and Scoring

Each selected agent is tested and its performance scored over 100 copies of 3 different

scenarios with different demand levels. Each evaluation is the same length as the

training episodes, with the demand kept constant during each run. These three

scenarios are aimed to test the agents during normal operation, peak times and

over-saturated conditions, and will be henceforth referred to as Normal, Peak and

Over-saturated Scenarios. Peak Scenario uses the level of demand observed in the

junction that results in saturated traffic conditions under traditional controllers.

The Normal Scenario uses an arrival rate of 1 vehicle / 2.1 seconds (1714

vehicles/h). Peak Scenario uses an arrival rate of 1 vehicle / 1.7 seconds (2117

vehicles/h). Over-saturated Scenario uses an arrival rate of 1 vehicle / 1.4 seconds

(2400 vehicles/h)

7.7 Results and Discussion

The results from the simulations of the different reward functions are summarised

in Figs. 7.3, 7.4 and 7.5, including the performance of the 15 rewards found to have

lower waiting times and seeming most desirable in practice. They are detailed for

all 30 rewards in Table 7.2. In Figs. 7.3-7.5, the distribution of pedestrian and

vehicle waiting times, and the combination of mean performances for both modes

of transportation across 100 repetitions of each demand level are presented. Table
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7.2 shows the mean waiting time for each distribution and their standard deviation,

also calculated across all three demand levels.

The results display further evidence that RL agents can reach better per-

formance than reference adaptive methods, more evidently so when pedestrians are

added. In the case of MO, the bad performance can be framed within the need of

having more pedestrians queued than vehicles in any sensor in order to start the

pedestrian stage. VA suffers due to its predisposition towards extending green times

by 1.5s in the presence of any vehicle, making it more difficult to reach a state in

which the pedestrian stage can be started. Both of these characteristics make the

vanilla reference methods less suited for intersections including pedestrians than the

RL methods presented in Figs. 7.3-7.5, especially in situations of high demand.

At a global level, methods based on maximisation of the average network

speed show the lowest global waiting times for pedestrians and vehicles combined

across all demand levels, while also obtaining some of the lowest spreads, as shown

in the case with no pedestrians [6]. Their performance is closely followed by Queue

minimisation, which obtains the lowest average waiting times for vehicles in the

Normal and Peak Scenarios, but falls behind in Over-saturated conditions and when

dealing with pedestrians. Queue Squared minimisation has a comparable yet slightly

worse performance, followed by Delta Queues and Delta Queues PLN. This last

reward has been shown to obtain better performance with higher demand, which

is consistent with it generating less variance in the reward distribution, since it

is approximating the arrival rate minus the exit rate of the intersection given an

action, making it an option that could be further explored for permanently congested

intersections.

Prioritised rewards based on Waiting Time show acceptable performance, but

also a high sensitivity to the changes in the modal prioritisation weights. This is

similar to the behaviour shown by the Delay-based rewards, which overall perform

worse, potentially due to the need to use Wait Time for pedestrians, mixing the

state variables, although this does not seem to be an issue for average speed based

rewards. Without a weight configuration heavily favouring the pedestrians, these

reward functions were found to converge for vehicles only, obtaining the lowest

vehicle waiting times overall in the case of the Delay functions, at the expense

of rarely, if ever, serving pedestrians. The suitability of a given choice of modal

prioritisation weights is further affected by the functional form of the reward. In

the results, it can be observed that while in general the choice (a = 5, b = 95)

obtains better results (e.g. Wait Time and Delay), for certain functional choices the

prioritisation (a = 20, b = 80) is the one producing the best results, which would not
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Table 7.3: Results of independent two-sample t-tests for failed prioritisations.

Series Scenario Mean P80 SD P80 Mean P90 SD P90 t-statistic p-value

Delta Wait Time
Normal 33.35 17.34 42.36 16.59 -3.7352 0.0002*
Peak 81.64 49.48 72.27 44.89 1.3959 0.1643
Oversaturated 149.79 105.07 174.85 109.01 -1.6468 0.1012

Delay AD
Normal 44.55 17.51 48.76 24.28 -1.3991 0.1635
Peak 122.05 112.18 180.59 123.18 -3.4934 0.0006*
Oversaturated 404.54 252.47 425.35 234.33 -0.601 0.5485

Delta Delay
Normal 66.46 30.32 99.40 59.76 -4.8907 2.60E-6*
Peak 180.64 107.80 221.92 133.24 -2.394 0.0175
Oversaturated 307.76 218.11 398.13 240.03 -2.7724 0.0061*

Throughput
Normal 51.56 31.24 101.07 65.21 -6.7593 3.31E-10*
Peak 45.91 37.86 130.94 84.11 -7.0197 9.28E-11*
Oversaturated 84.93 49.08 74.46 57.96 1.3719 0.1717

be the case if the suitability of the weights was only affected by the relative demand

ratios between vehicles and pedestrians. This is the case with Throughput based

functions, which, unlike the Wait and Delay functions, obtained lower waiting times

with equal modal weights, and a general wait time increase as the weights become

more skewed towards the pedestrians.

Rewards using Differences in Delay or Wait Time, having good performance

in the literature, were found either not to converge for pedestrians or to produce

mediocre results.

The addition of a demand scaling term generates, in general, a slight improve-

ment in waiting times across the rewards using Wait Time and Delay, particularly

at higher demand levels.

The subset of the proposed reward functions for which prioritisation weights

seemed ineffective includes: Delta Wait Time, Delay AD, Delta Delay, and Through-

put. This can raise questions regarding whether these results actually mean that an

increase in the evaluative weight of pedestrians can actually have a negative impact

over the performance of the agents.

To check this, a series of two-tailed independent sample Welch’s t-tests, which

do not assume equal variance, were carried out between the two pedestrian prioritisa-

tions for each scenario of the affected reward functions. In them the null hypothesis

is that their distributions of waiting times have equal means, meaning that the pri-

oritisation caused no significant observable effect in terms of average waiting times.

In all cases, both samples were of size 100, implying df=198, and the significance

level is set at 0.01. Statistical significance of the results is indicated with an asterisk

(*).

The results are displayed on Table 7.3, where it can be observed that in 50%

of the cases, a higher weight being allocated to pedestrian generated a statistically

significant increase in waiting times. However, there is no discernible pattern re-

garding in which cases this is true, given the lack of consistency in the differences

being significant across reward functions or scenarios.
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Given these results, there is no definitive evidence to state that in the case of

the referred reward functions, the changes to the modal prioritisation weights had a

consistent statistically significant effect neither positive nor negative in the general

case. This, when taking into account that these same agents did achieve reasonable

levels of control for one of the tasks, points in the direction of the training of the

agents, in these cases, not having achieved convergence to a policy capable of simul-

taneously managing both tasks.

Overall, the dominance shown by speed maximisation methods could be at-

tributed to several factors. Average Speed based functions, as Queue based func-

tions, obtain an instantaneous snapshot of a quantity that does not intrinsically grow

over time, as opposed to Delay, Wait and Throughput, so it exclusively encodes in-

formation about the moment the action is requested. It can also be argued that

speed maximisation rewards are not affected by the correspondence between agent

actions and time-steps in the environment . In the specific case of RL for UTC,

the values of the reward received by the agent using a reward based on Queues,

Delay, Wait or Throughput are a function of the length of the phase that generated

them, making them theoretically less suitable for the underlying MDP than speed

maximisation.

Lastly, speed maximisation and queue minimisation have an extra benefit

that makes them into serious candidates for expansive real-world use: the lack of

need for modal prioritisation tuning. One of the main selling points of ML and RL

methods stems from their ability to perform equal or better than traditional systems

at a lower cost in a variety of situations. However, a lengthy manual tuning process in

order to find the exact weights for a given junction is not only untranslatable to any

other intersection, but may also not result in reduced planning and execution times

compared with traditional control. The lack of need for manual tuning, especially

in the case of Average Speed functions, which are specifically crafted to avoid this,

make them in our view more applicable in a wider and faster manner than any of

the other reward functions here presented.

Regarding robustness, given that the agents used in this chapter do not differ

significantly from those presented in the previous chapter, other than the inclusion

of pedestrians, the same considerations regarding robustness and security apply here

as they did in Section 6.8.

One limitation of the research presented in this chapter is that the results

are only relevant in the case of value-based DQN agents as introduced in Section 7.3

and Section 7.4, and not for CNN or Policy Gradient architectures. This work could
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be extended to account for other modes of transportation, performing a similar

optimisation based on different vehicle classes (buses, cyclists, personal vehicles,

trucks, etc.). The optimisation could seek to prioritise them based on different

criteria (e.g. priority to cyclists and public transport during rush hours or weighting

vehicles according to the expected number of passengers).
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CHAPTER 8

Conclusions

Modern Intelligent Transportation Systems generate and allow for the logging of

vast amounts of data, which can in turn be used to further improve and optimise

these systems. This is of direct interest for users, operators and stakeholders of

any industry that requires transportation of goods at any level, and those that

provide transportation as a service. Throughout this thesis we have studied different

applications of Data Science to improve modern Intelligent Transportation Systems

in both motorway and urban settings.

This has involved investigating the characteristics of the different regimes of

motorway traffic, looking for ways in which these can be identified and isolated into

components from initial series of travel times, and how we can treat said components

in order to extract valuable information for estimation and forecasting.

In Chapter 3 we attempted this separation by normalising the travel times per

section of motorway and then defining a threshold over which points were classified

as spikes. We then used a combination of non-parametric regression and spectral

methods to estimate the underlying behaviour of the different motorway sections

and generate traffic profiles. These generated profiles, demonstrated a higher fore-

casting power than similar methods currently used in the motorways in the United

Kingdom. During this chapter, it was uncovered that this separation mechanism,

while effective, failed to extract some valuable information into the spikes signal.

This fact was latter addressed in Chapter 4, where we looked at how Wavelets

can be used to perform the separation of the travel times signal into components

looking at the statistical structure of the signal in the frequency-time space. Here,

we defined certain data points as outliers with respect to the baseline dynamics of

the section of road, classifying them as spikes in a more sophisticated way than in the

previous chapter. This decomposition was seamlessly integrated into the previously
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introduced forecasting algorithm to generate predictions with higher accuracy than

the currently published profiles even in the absence of granular per-site tuning.

This proposed method could benefit of further optimisation on a per-link level

by performing a more sophisticated analysis of the distribution of frequencies needed

to approximate points suffering recurrent or non-recurring congestion. Further,

given that the prediction frequency and resolution of modern short-term forecasting

methods is similar, it would be interesting to compare them in equal footing, since

the proposed model achieving over 80% of predictions within 5% of the ground truth

could make it competitive also in this setting.

Overall, Chapters 3 and 4 aimed at producing new purpose-built estimation

and forecasting methods that could substitute one specific, currently used method

for travel time profile estimation in UK motorways. The methods here developed

discard the complex time based segmentation requirements of the current method

that they try to improve upon, instead making a more sophisticated analysis of

traffic regimes and their cyclic variation over time. On a global view, they clearly

obtain better performance scores, which was the main goal and metric, than the

current method and other baseline approaches considered.

In Chapter 5 the focus was moved to an urban setting, in which different ar-

chitectures for value-based and policy-based reinforcement learning agents are com-

pared for the task of controlling the signalled intersections in several maps. Here

we observed how various reinforcement learning configurations have the ability to

outperform even well tuned commercial traffic optimisation algorithms currently in

use, providing effective adaptive real-time control. In this chapter, we also tested

the limits of training uncoordinated agents trying to control entire networks, observ-

ing how simultaneously training all agents in a network can generate instabilities in

the demand received by agents downstream preventing effective learning. We also

experimentally checked that for very regular networks, copies of the same agent can

be deployed in neighbouring intersections achieving satisfactory control that can

beat commercial systems. Some of these experiments would benefit from replication

in a different simulator that allows per-lane metrics retrieval. Most of the agents

presented there could also benefit from recently developed extension modules for

reinforcement learning agent, increasing their convergence ability and control per-

formance. Lastly, it would be very interesting to explore different avenues to include

inter-agent communication in extended networks, investigating what information ex-

changes provide the highest utility to neworked agents. This could also be compared

with recently developed self-organising methods that provide a different paradigm
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than what was used in traditional controllers.

Lastly, Chapter 6 and Chapter 7 focused on how to obtain the pers per-

formance when controlling a real-world intersection in Manchester, UK via rein-

forcement learning. These two chapters explored the performance of agents using

different reward functions for the intersection modelled without and with pedes-

trians respectively. In both cases we found that reward functions that encourage

higher average speeds throughout an area of interest in the junction provide the

lowest waiting times for both vehicles and pedestrians. We also found that reward

functions previously indicated in the literature as great options, performed sub-

optimally in our tests. While the scope for modification of the agent was limited

due to its origin in commercial applications, it would be interesting to further modify

the inputs that the agents receive to make them simpler, hopefully obtaining better

convergence properties. This same approach, maximising speed, could be applied

to wider networks providing area control, steering the agents towards the discovery

of the creation and use of green waves.

Some of the agents developed in Chapter 7 have been since deployed to

control real traffic for extended periods of time, in the order of hours, which is a

great success in bringing research into the real world.

Regarding the relationship of this work on RL for TSC with prior art, the

work here presented does not aim to provide a complete approach to building com-

plete UTCs, but to contribute to the exploration of a new paradigm of control that

has been developing over the past few years, both in terms of suitability of theoreti-

cal approaches in the field (Chapter 5), and in terms of the practical considerations

needed to move it to the real-world (Chapters 6 and 7). From the different results

and discussions we can conclude that RL for TSC is showing great capacity for

improvement over previous isolated systems, both in terms of delay minimisation

and simplicity of operation and configuration. Similarly, it shows potential to also

outperform distributed systems once the issues encountered in the last experiment

of Chapter 5 are overcome. Further, the agents obtaining the best performance

in Chapter 7, have since been deployed in the real world, obtaining improvements

over previous systems and demonstrating their potential to be replacement for the

current generation of methods for urban traffic control at intersections.
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