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Pricing vulnerable options in a hybrid credit risk

model driven by Heston-Nandi GARCH processes∗

GECHUN LIANG, XINGCHUN WANG†

Abstract

This paper proposes a hybrid credit risk model, in closed form, to price vulnerable options

with stochastic volatility. The distinctive features of the model are threefold. First, both the

underlying and the option issuer’s assets follow the Heston-Nandi GARCH model with their

conditional variance being readily estimated and implemented solely on the basis of the observ-

able prices in the market. Second, the model incorporates both idiosyncratic and systematic

risks into the asset dynamics of the underlying and the option issuer, as well as the intensity

process. Finally, the explicit pricing formula of vulnerable options enables us to undertake the

comparative statistics analysis.

Keywords: Vulnerable options; hybrid credit risk model; Heston-Nandi GARCH model; closed

form formula.

JEL classification : G13

1 Introduction

Vulnerable options refer to financial derivatives subject to default risk of the option’s issuers, and

they are widely traded in over-the-counter (OTC) markets. As of the first half of 2019, 3.9 trillion
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dollars (in terms of notional amounts) option contacts were traded in OTC markets1. The bespoke

nature and the flexibility in terms of product design have helped OTC markets to thrive. As

opposed to exchange-traded derivatives for which products are limited in tenor, size and strike

ranges, OTC derivatives facilitate tailoring of transactions to meet specific end-users’ needs. In

this paper, we study vulnerable options with stochastic volatility in a hybrid credit risk model

driven by GARCH processes.

In order to study default risk of options, two types of models are widely used: structural

models and reduced-form models. Johnson and Stulz (1987) first investigate vulnerable options

using the structural approach, where default happens when the value of the option at maturity

exceeds the value of the option issuer’s assets, resulting in the failure of the option issuer to honor

their obligation. This assumption is relaxed by Klein (1996), where the option issuer could hold

other liabilities having the same priority as the option. Vast majority of research focuses on the

structural framework by taking into account of more factors such as stochastic interest rate, jump

risk, stochastic volatility, stochastic default barriers, and multiple counterparties2. One attractive

feature of the structural approach is its ability to explain default events via the structural variables

such as asset dynamics.

As opposed to the structural approach, the reduced-form models are silent about why defaults

happen and, instead, the dynamics of default are exogenously given through a default rate, i.e.

the default intensity. The latter approach is also called intensity approach. In contrast to the

reduced-form approach for bond pricing where the payoff is a fixed income, the payoff of vulnerable

options is random, so it is more challenging in reduced-form models to obtain an explicit pricing

formula of vulnerable options. There are relatively few results in this direction. To name a few, Hull

and White (1995) impose an independence assumption to obtain a closed-form pricing formula of

vulnerable options; Fard (2015) obtains a closed-form price for vulnerable options by assuming that

the default intensity is captured by a mean-reverting Ornstein-Uhlenbeck process (so a negative

intensity is allowed); Antonelli et al. (2020) employ a correlation expansion approach to provide an

approximate evaluation of vulnerable option prices; and Wang (2017) obtains a closed-form solution

for vulnerable options in a discrete-time GARCH framework.

In this paper, we consider vulnerable options in a hybrid credit risk model. The model will

1Resource: BIS, OTC derivatives statistics, https://www.bis.org/statistics/derstats.htm
2A partial list of the studies on this topic includes Rich (1996), Klein and Inglis (1999), Klein and Inglis (2001),

Cao and Wei (2001), Hui et al. (2003), Liao and Huang (2005), Kao (2006), Liang and Ren (2007), Xu et al. (2012),

Tian et al. (2014), Yang et al. (2014), Lee et al. (2016), Wang (2016), Wang et al. (2017), and Wang (2018).
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incorporate the attractive features of both structural and reduced-form models. Hybrid credit risk

models were initiated by Madan and Unal (2000), who investigate the pricing issue of risky debt

in a hazard rate model with two factors being the values of the firm’s assets and the interest rate.

Bakshi et al. (2006) further work under a reduced-form model based on Vasicek-type state variables,

such as leverage, book-to-market and equity-volatility. Gu et al. (2014) consider a new type of

reduced-form model that incorporates the impacts of observable trigger events as well as economic

environment on corporate defaults. Boudreault et al. (2014) measure how contagion affects default

time and recovery rates in a hybrid model, where both the default probability and the recovery

rate are functions of the firm’s leverage ratio. However, the above mentioned studies mainly focus

on risky debt or credit derivatives. The aim of the current paper is to propose a hybrid credit risk

model for vulnerable options with the aforementioned reduced-form model as a special case of the

proposed hybrid credit risk model.

In our model, the dynamics of the underlying and the option issuer’s assets follow the Heston-

Nandi GARCH processes to incorporate stochastic volatility. As pointed out in Heston and Nandi

(2000) and Hsieh and Ritchken (2005), the continuous time stochastic volatility models are difficult

to implement and test, while GARCH models have inherent advantages that the volatility is readily

observable from the history of asset prices. We assume that the asset values of both underlying

and option issuer are exposed to idiosyncratic and systematic risks. Furthermore, we also allow

the intensity process to be driven by idiosyncratic shocks of the issuer and systematic shocks of

the market. Thus, the systematic risk factor correlates all the underlying processes in the proposed

hybrid model.

Under this framework, we obtain an explicit pricing formula of vulnerable options based on

the explicit expression of the joint generating function and the change of measure technique. The

joint generating function (see Proposition 2.1) generalizes the generating function for a single stock

case in Heston and Nandi (2000) to a multidimensional case including the underlying stock, the

issuer’s assets and the intensity process. Finally, we undertake comparative statistics analysis to

investigate the effects of default risk on the option prices, and compare them with the default-free

option prices and the ones obtained in the reduced-form model. One of the striking features is

that the option prices increase with the sensitivity of the issuer’s assets to systematic risk, albeit

a higher value of the sensitivity means that the issuer’s assets are more risky, resulting in a higher

possibility of default. This is because a larger value of sensitivity also means the underlying asset

and the issuer’s assets are more likely to be correlated, which in turn makes option issuers less

3



likely to default when call options end in the money, yielding a higher option price consequently.

The remainder of this paper is organized as follows. In the coming section, we focus on the

hybrid credit risk model and the derivation of the explicit pricing formulae. Section 3 is devoted

to numerical results. Finally, Section 4 summarizes and concludes the paper. The detailed proofs

are shown in the appendix.

2 The hybrid credit risk model

In this section, we propose a hybrid credit risk model to price vulnerable options. An explicit

pricing formula of vulnerable options is derived based on the change of measure technique and the

explicit expression of the joint characteristic function of underlying processes.

2.1 The market

Let Q be a risk neutral probability measure on a filtered probability space (Ω,F , (Ft)t≥0, Q).

Consider a market with the systematic risk factor modelled by the market index M(t), whose

dynamics follow the Heston-Nandi GARCH process, that is,

{

lnM(t) = lnM(t− 1) + r − 1
2hm(t) +

√

hm(t)Zm(t),

hm(t) = wm + bmhm(t− 1) + am

(

Zm(t− 1)− cm
√

hm(t− 1)
)2

,
(2.1)

where r is the continuously compounded interest rate for the time interval [t − 1, t], and Zm(t)

is a standard normal random variable. The conditional variance hm(t) of the log return between

t − 1 and t is known from the information set at time t − 1, so it can be readily estimated and

implemented solely on the basis of the observables. In the driving noise term of hm(t), the constant

am determines the kurtosis of the noise, and the constant cm results in asymmetric influence of the

noise Zm(t− 1).

It has been shown in Heston and Nandi (2000) that the continuous time limit of the conditional

variance hm(t) is a square-root diffusion process corresponding to the continuous time Heston

stochastic volatility model. On the other hand, it is clear that the discounted price of the market

index is a martingale under Q. Indeed, we have

Et−1

[

M(t)
]

= Et−1

[

M(t− 1)er−
1
2
hm(t)+

√
hm(t)Zm(t)

]

= M(t− 1)erEt−1

[

e−
1
2
hm(t)+

√
hm(t)Zm(t)

]

= M(t− 1)er,
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where in the last equality we have used the fact that hm(t) is known given the information at time

t− 1 and Zm(t) is a standard normal variable.

Consider a stock in this market. Its return is affected by not only the systematic risk factor

via Zm(t) but also the idiosyncratic risk factor via an independent normal random variable Zs(t).

Hence, the stock price S(t) under Q is driven by the process
{

lnS(t) = lnS(t− 1) + r − 1
2hs(t) +

√

hs(t)Zs(t)− 1
2β

2
shm(t) + βs

√

hm(t)Zm(t),

hs(t) = ws + bshs(t− 1) + as

(

Zs(t− 1)− cs
√

hs(t− 1)
)2

,
(2.2)

where the constant βs captures the sensitivity of the stock price to systematic risk. Since hm(t)

and hs(t) are known given the information at time t − 1, the independence assumption between

Zm(t) and Zs(t) implies that the discounted value of S(t) is also a martingale under Q,

Et−1

[ S(t)

S(t− 1)

]

= Et−1

[

er−
1
2
hs(t)+

√
hs(t)Zs(t)−

1
2
β2
shm(t)+βs

√
hm(t)Zm(t)

]

= erEt−1

[

e−
1
2
hs(t)+

√
hs(t)Zs(t)

]

Et−1

[

e−
1
2
β2
shm(t)+βs

√
hm(t)Zm(t)

]

= er.

We consider a European call option written on the stock with strike price K and maturity T , so

its risk neutral price is given by E[e−rT (S(T )−K)+] if the option issuer does not default during the

contract period and is able to honor their obligation. Note that under the above GARCH framework,

Heston and Nandi (2000) derived an explicit pricing formula for the European call option using the

characteristic function of S(t) (see section 2 therein).

2.2 The vulnerable option with credit value adjustment

When the options are traded in OTC markets, the holders may face the potential default risk that

the issuers are not able to deliver the promised payoff. We model the default risk in a hybrid model.

To this end, let N(t) be a doubly stochastic Poisson process (Cox process) with intensity Λ(t), and

τ be its first jump time which can be regarded as the arrival time of the default trigger event as in

Gu et al. (2014). A loss given default (LGD) will occur when the trigger event arrives, and it is

given by a constant L. Furthermore, assume that the option issuer would recover from the trigger

event if the value of the issuer’s assets is larger than the LGD L. Hence, default occurs only when

the trigger event occurs and the value of the issuer’s assets at the arrival time of the trigger event

falls below the LGD L.

Next, we model the option issuer’s assets V (t) and the Cox process’ intensity Λ(t). Assume

that the return of the issuer’s assets is also affected by both the systematic and idiosyncratic risks

5



and its dynamics follow

{

lnV (t) = lnV (t− 1) + r − 1
2hv(t) +

√

hv(t)Zv(t)− 1
2β

2
vhm(t) + βv

√

hm(t)Zm(t),

hv(t) = wv + bvhv(t− 1) + av

(

Zv(t− 1)− cv
√

hv(t− 1)
)2

,
(2.3)

where Zv(t) is a standard normal variable independent of Zs(t) and Zm(t). Note that Zm(t)

captures the systematic risk, and Zs(t) and Zv(t) represent the idiosyncratic risks of the underlying

asset and the issuer’s assets, respectively. Similarly to βs in (2.2), βv captures the sensitivity of the

issuer’s assets to the systematic risk. As for the intensity process Λ(t), we assume that it is driven

by Zv(t) and Zm(t), the driving noise faced by the issuer. Specifically, the dynamics of Λ(t) are

given by

Λ(t+ 1) = wλ + bλΛ(t) + aλ(Zm(t))2 + cλ(Zv(t))
2. (2.4)

All the parameters are non-negative to ensure that the intensity is non-negative.

We are now in a position to present the hybrid credit risk model for the valuation of vulnerable

options. To take account of the issuer’s default risk, we model the difference between the default-

free value and the true value of the European option as follows: When j−1 < τ ≤ j, V (j) < L, i.e.

the trigger event occurs between (j−1, j] and the issuer’s asset value falls below the LGD, suppose

the option holder will then only receive αV (j)/L proportion of the nominal payoff (S(T ) − K)+

at the maturity T , where the constant α ∈ [0, 1] represents the recovery rate and (1 − α)V (j)

represents the deadweight costs associated with the bankruptcy. Hence, the expected value of the

credit value adjustment (i.e. the difference between the default-free value and the true value) is

E

[

e−rT (1− αV (j)

L
)(S(T ) −K)+

]

.

conditional on the event {j − 1 < τ ≤ j, V (i) < L}.
The price of the vulnerable option at time 0 is therefore given by

C0 = E
[

e−rT (S(T )−K)+
]

−
T
∑

j=1

E
[

e−rT I(j − 1 < τ ≤ j, V (j) < L)(1− αV (j)

L
)(S(T )−K)+

]

= E
[

e−rT (S(T )−K)+
]

−
T
∑

j=1

E
[

e−rT I(j − 1 < τ ≤ j, V (j) < L)(S(T )−K)+
]

+

T
∑

j=1

E
[

e−rT I(j − 1 < τ ≤ j, V (j) < L)
αV (j)

L
(S(T )−K)+

]

, (2.5)

where I(·) is the indicator function. The first term in (2.5) is the default-free value, the second

term represents the costs when default occurs, and the last term is the recovery value from the
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default. Note that I(j − 1 < τ ≤ j) = I(j − 1 < τ) − I(j < τ), so the last two terms in (2.5)

simplify to

E
[

I(j − 1 < τ ≤ j, V (j) < L)(S(T )−K)+
]

= E
[

I(j − 1 < τ ≤ j)I(V (j) < L)(S(T )−K)+
]

= −E
[

I(j < τ)I(V (j) < L)(S(T )−K)+
]

+E
[

I(j − 1 < τ)I(V (j) < L)(S(T )−K)+
]

= −E
[

e−
∑j

k=1 Λ(k)I(V (j) < L)(S(T ) −K)+
]

+ E
[

e−
∑j−1

k=1 Λ(k)I(V (j) < L)(S(T )−K)+
]

,

and

E
[

I(j − 1 < τ ≤ j, V (j) < L)
αV (j)

L
(S(T )−K)+

]

= E
[

I(j − 1 < τ ≤ j)I(V (j) < L)
αV (j)

L
(S(T )−K)+

]

= −E
[

I(j < τ)I(V (j) < L)
αV (j)

L
(S(T )−K)+

]

+E
[

I(j − 1 < τ)I(V (j) < L)
αV (j)

L
(S(T )−K)+

]

= −E
[

e−
∑j

k=1 Λ(k)I(V (j) < L)
αV (j)

L
(S(T )−K)+

]

+E
[

e−
∑j−1

k=1 Λ(k)I(V (j) < L)
αV (j)

L
(S(T )−K)+

]

.

In turn, we have

C0 = e−rT
(

E
[

(S(T )−K)+
]

+

T
∑

j=1

E
[

e−
∑j

k=1 Λ(k)I(V (j) < L)(S(T )−K)+
]

−
T
∑

j=1

E
[

e−
∑j−1

k=1 Λ(k)I(V (j) < L)(S(T )−K)+
]

−
T
∑

j=1

E
[

e−
∑j

k=1 Λ(k)I(V (j) < L)
αV (j)

L
(S(T )−K)+

]

+

T
∑

j=1

E
[

e−
∑j−1

k=1 Λ(k)I(V (j) < L)
αV (j)

L
(S(T )−K)+

])

. (2.6)

Remark 2.1 In the proposed framework, the correlation coefficient between the underlying asset

and the issuer’s assets is given by

Covt(ln
S(t+1)
S(t) , ln V (t+1)

V (t) )
√

Vart(ln
S(t+1)
S(t) )

√

Vart(ln
V (t+1)
V (t) )

=
Covt(βs

√

hm(t+ 1)Zm(t+ 1), βv
√

hm(t+ 1)Zm(t+ 1))
√

hs(t+ 1) + β2
shm(t+ 1)

√

hv(t+ 1) + β2
vhm(t+ 1)
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=
βsβvhm(t+ 1)

√

hs(t+ 1) + β2
shm(t+ 1)

√

hv(t+ 1) + β2
vhm(t+ 1)

.

When βs = 0 or βv = 0, the underlying asset and the issuer’s assets are not correlated with each

other. On the other hand, when hs(t + 1) ≡ 0 (i.e. ws = bs = as = 0) and hv(t + 1) ≡ 0 (i.e.

wv = bv = av = 0), both the underlying asset and the issuer’s assets are only driven by Zm(t), and

the correlation coefficient becomes to be ±1. In this sense, we can view Zm(t) as a common risk

factor in the returns on the underlying asset and the issuer’s assets, and the issuer could hedge the

option position by directly trading the underlying asset. Thus, Zm(t) could represent not only the

systematic risk factor (though such an interpretation is the most typical example).

2.3 The explicit pricing formula

In order to obtain an explicit pricing formula for vulnerable options in the proposed framework, we

first derive the joint conditional generating function of the underlying processes. To this end, let

f(t;φ1, φ2, φ3, φ4) denote the conditional generating function given below,

f(t;φ1, φ2, φ3, φ4) = Et

[

exp
{

φ1 lnS(T ) + φ2 lnV (j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k)
}]

,

where j ≤ T and 0 ≤ t ≤ T . Specially, f(t;φ1, 0, 0, 0) is the conditional generating function of

the underlying asset and can be used to derive the default-free value of the European option as in

Heston and Nandi (2000). In addition, f(t;φ1, 0, φ3, φ4) can be employed to obtain the closed-form

pricing formula of vulnerable options in the reduced-form models, which is a special case of the

proposed hybrid credit risk model (see section 2.4).

In the proposed framework, the explicit expression of f(t;φ1, φ2, φ3, φ4) is available and given

in the following proposition.

Proposition 2.1 The conditional generating function has the following form3

f(t) = exp
{

φ2 lnV (j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k) + φ1 lnS(t) +A0(t)

+A1(t)hm(t+ 1) +A2(t)hs(t+ 1)
}

, (2.7)

for j ≤ t ≤ T , where A0(t), A1(t) and A2(t) (j ≤ t ≤ T ) are defined recursively with terminal

conditions A0(T ) = A1(T ) = A2(T ) = 0 by the following expressions

A0(t) =φ1r +A0(t+ 1) + wmA1(t+ 1) + wsA2(t+ 1)− 1

2
ln(1− 2amA1(t+ 1))

3For convenience, we use the more parsimonious notation f(t) to indicate f(t;φ1, φ2, φ3, φ4), and similarly for

Ai(t) and Bi(t).
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− 1

2
ln(1− 2asA2(t+ 1)),

A1(t) =bmA1(t+ 1)− 1

2
φ1β

2
s + φ1βscm − 1

2
c2m +

1
2(φ1βs − cm)2

1− 2amA1(t+ 1)
,

A2(t) =bsA2(t+ 1)− 1

2
φ1 + φ1cs −

1

2
c2s +

1
2(φ1 − cs)

2

1− 2asA2(t+ 1)
.

For t < j,

f(t) = exp
{

φ2 lnV (t) + φ4

t
∑

k=1

Λ(k) + φ1 lnS(t) +B0(t)

+B1(t)hm(t+ 1) +B2(t)hs(t+ 1) +B3(t)hv(t+ 1) +B4(t+ 1)Λ(t+ 1)
}

, (2.8)

where Bk(t), k = 0, 1, 2, 3, 4 (t < j) can be obtained recursively by the following expressions

B0(t) = B0(t+ 1) + (φ2 + φ1)r + wmB1(t+ 1) + wsB2(t+ 1) + wvB3(t+ 1) + wλB4(t+ 1)

−1

2
ln(1− 2(amB1(t+ 1) + aλB4(t+ 1)))− 1

2
ln(1− 2asB2(t+ 1)))

−1

2
ln(1− 2(avB3(t+ 1) + cλB4(t+ 1))),

B1(t) = bmB1(t+ 1)− 1

2
φ2β

2
v −

1

2
φ1β

2
s + amc2mB1(t+ 1)

+
2(amcmB1(t+ 1)− (φ2βv + φ1βs)/2)

2

1− 2(amB1(t+ 1) + aλB4(t+ 1))
,

B2(t) = bsB2(t+ 1)− 1

2
φ1 + asc

2
sB2(t+ 1) +

2(ascsB2(t+ 1)− φ1/2)
2

1− 2asB2(t+ 1)
,

B3(t) = bvB3(t+ 1)− 1

2
φ2 + avc

2
vB3(t+ 1) +

2(avcvB3(t+ 1)− φ2/2)
2

1− 2(avB3(t+ 1) + cλB4(t+ 1))
,

B4(t) = bλB4(t+ 1) + φ4.

Moreover, terminal conditions Bk(j−1), k = 0, 1, 2, 3, 4 are determined by A0(j), A1(j) and A2(j)

as follows:

B0(j − 1) = A0(j) + (φ2 + φ1)r + wmA1(j) + wsA2(j) −
1

2
ln(1− 2amA1(j)) −

1

2
ln(1 − 2asA2(j)),

B1(j − 1) = bmA1(j) −
1

2
φ2β

2
v −

1

2
φ1β

2
s + amc2mA1(j) +

2(amcmA1(j)− (φ2βv + φ1βs)/2)
2

1− 2amA1(j)
,

B2(j − 1) = bsA2(j) −
1

2
φ1 + asc

2
sA2(j) +

2(ascsA2(j) − φ1/2)
2

1− 2asA2(j)
,

B3(j − 1) = −1

2
φ2 +

1

2
φ2
2,

B4(j − 1) = φ3.

Proof. See the appendix.
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We are ready to obtain the closed form pricing formula of the vulnerable option price in (2.5).

Theorem 2.1 The price of the vulnerable European call option with strike price K and maturity

T is given by

C0 = e−rT
(1

2
f(0; 1, 0, 0, 0) +

1

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; 1 + iφ1, 0, 0, 0)

iφ1

]

dφ1

−K

2
− K

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 0, 0, 0)

iφ1

]

dφ1

+

T
∑

j=1

(

Π1,j −Π3,j −
α

L
Π5,j +

α

L
Π7,j −K(Π2,j −Π4,j −

α

L
Π6,j +

α

L
Π8,j)

))

,

where Πj,1-Πj,8 are given in (A.5)-(A.12).

Proof. See the appendix.

2.4 Comparison with reduced-form models

Reduced-form models can be seen as a special case of the proposed hybrid credit risk model. To

connect with the reduced-form model, we discard the LGD L and only check the default trigger

event τ . Hence, the price in the reduced-form model is given by

CR
0 = E

[

e−rT (S(T )−K)+
]

− (1− α)

T
∑

j=1

E
[

e−rT I(j − 1 < τ ≤ j)(S(T ) −K)+
]

. (2.9)

The vulnerable option price in (2.9) is given in the following theorem.

Theorem 2.2 In the reduced-form model, the price of the vulnerable European call option with

strike price K and maturity T is given by

CR
0 = e−rT

(1

2
f(0; 1, 0, 0, 0) +

1

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; 1 + iφ1, 0, 0, 0)

iφ1

]

dφ1

−K

2
− K

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 0, 0, 0)

iφ1

]

dφ1 − (1− α)
T
∑

j=1

(Π̄j,1 − Π̄j,2)
)

,

where

Π̄j,1 =
1

2
f(0; 1, 0, 0,−1) +

1

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; 1 + iφ1, 0, 0,−1)

iφ1

]

dφ1

−K

2
f(0; 0, 0, 0,−1) − K

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 0, 0,−1)

iφ1

]

dφ1,

Π̄j,2 =
1

2
f(0; 1, 0,−1,−1) +

1

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; 1 + iφ1, 0,−1,−1)

iφ1

]

dφ1

−K

2
f(0; 0, 0,−1,−1) − K

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 0,−1,−1)

iφ1

]

dφ1.
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The main difference between the proposed hybrid model and the above reduced-form model is

that we discard the LGD L (so we are silent about why the issuer defaults). In section 3, we will

compare the proposed hybrid model with the above reduced-form model numerically.

3 Numerical Results

In this section, we undertake comparative statistics analysis for the vulnerable option prices in

the proposed hybrid credit risk model. For comparison purpose, we also report the values of the

corresponding European options without default risk and vulnerable options in the reduced-form

model in section 2.4. In particular, the default premiums, i.e. the price differences between the

vanilla European options and the above two vulnerable option prices, are illustrated.

In order to calculate the prices, we use the values of the parameters listed in Table 1. These

parameter values in the dynamics of the market index and the underlying asset are also used in Su

and Wang (2019), and they are estimated based on the daily closing values of the S&P 500 index

and its five largest stocks for the period from January 3, 2000 to May 31, 2018. In addition, the

initial variance values are set to be squared stationary volatilities. The parameter values in the

intensity process can produce average cumulative default rates for corporate bonds with a credit

rating of B, i.e., 5.33%, 16.19%, 25.89% and 34.47% for 1.0, 3.0, 5.0 and 7.0 years, respectively (see,

e.g., Table 22.1 in Hull (2012)). For simplicity, the parameter values in the issuer’s asset dynamics

are set to be the same as those in the underlying asset.

Figure 1 displays the price difference with different maturities. The option prices obtained from

the proposed hybrid model are close to the option prices without default risk, especially when the

maturity is short. By contrast, default risk in the reduced-form model has a more pronounced

effect. This is because in the reduced-form model default happens when trigger events occur, while

in the hybrid model default happens only when trigger events occur and the values of the issuer’s

assets at the arrival time of the trigger events are less than the losses. In other words, default

happens more likely in the reduced-form model, thus reducing option prices more significantly.

Figure 2 illustrates the price difference against different strike prices. A higher strike price will

yield a cheaper option. Similar to Figure 1, the option has the lowest value in the reduced-form

model, as it is more likely to default compared to the hybrid model.

Figure 3 shows the option values against the sensitivity parameters βs and βv, and the cor-

responding price difference is shown in Figure 4. Recall that βs represents the sensitivity of the

11



Table 1: Parameter Values

Parameters in the market index dynamics

Initial price M(0) =1

Initial variance hm(0) =3.27E-02

Parameters governing variance processes wm = 7.10E-13 bm =7.67E-01

am =2.99E-06 cm =2.65E+02

Parameters in the underlying asset dynamics

Initial price S(0) =1

Initial variance hs(0) + β2
shm(0) =1.22E-01 βs =1.15

Parameters governing variance processes ws =9.79E-07 bs =9.55E-01

as =3.71E-06 cs =9.01E+01

Parameters in the default intensity

Initial intensity λ(0) =1.275E-06

Parameters governing default intensities wλ =8.637E-07 aλ =1.372E-10

bλ =9.949E-01 cλ =1.372E-10

Parameters in the value of the issuer’s assets

Initial price V (0) =1

Initial variance hv(0) + β2
vhm(0) =1.22E-01 βv =1.15

Parameters governing variance processes wv =9.79E-07 bv =9.55E-01

av =3.71E-06 cv =9.01E+01

Other parameters

Interest rate r = 0.05

Strike price K = 1

Maturity T = 2.0

Recovery rate α = 0.50

Caused loss L = 90

12
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Figure 1: Option price differences against maturities. The solid line corresponds to the price

difference between the default-free model and the proposed hybrid model, and the dot-dashed line

corresponds to the price difference between the default-free model and the reduced-form model.
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Figure 2: Option price differences against strike prices. The solid line corresponds to the price

difference between the default-free model and the proposed hybrid model, and the dot-dashed line

corresponds to the price difference between the default-free model and the reduced-form model.
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Figure 3: Option prices against the values of βs and βv . The solid, dotted and dot-dashed lines

correspond to default-free option prices, option prices in the proposed hybrid model and option

prices in the reduced-form model, respectively.
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Figure 4: Option price differences against the values of βs and βv. The solid line corresponds to the

price difference between the default-free model and the proposed hybrid model, and the dot-dashed

line corresponds to the price difference between the default-free model and the reduced-form model.
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Figure 5: Option price differences against recovery rates. The solid line corresponds to the price

difference between the default-free model and the proposed hybrid model, and the dot-dashed line

corresponds to the price difference between the default-free model and the reduced-form model.
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Figure 6: Option price differences against different caused losses. The solid line corresponds to the

price difference between the default-free model and the proposed hybrid model, and the dot-dashed

line corresponds to the price difference between the default-free model and the reduced-form model.
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stock price against systematic risk. The option prices will increase with larger βs, i.e. with larger

systematic risks. Intuitively, with a larger value of βs, the value of the underlying asset becomes

more volatile. Thus, it is more likely the option is in-the-money and, therefore, its price becomes

higher. On the other hand, since βv captures the sensitivity of the issuer’s assets to systematic risk,

larger βv means the issuer’s assets become more risky and, as a result, the issuer is more likely to

default. Therefore, one might expect the option prices in the hybrid model become smaller with

larger βv. However, this is not the case. We observe from Figure 3(b) a higher option price with

increasing βv. This is because larger βv also means the underlying assets and the issuer’s assets

are more likely to be correlated, which in turn makes option issuers less likely to default when call

options end in the money, yielding a higher option price consequently.

Figure 5 depicts the price difference with different recovery rates. Intuitively, a higher recovery

rate corresponds to a higher option price. However, the effects of recovery rates in the hybrid model

are not as significant as those in the reduced-form model. Figure 6 shows the price difference with

different losses (i.e. different values of LGD). The option prices without default risk and the values

of options in the reduced-form model are not affected by the caused losses. In the hybrid model,

it is more likely that default occurs with a higher value of losses, resulting in a lower option price

and a higher default premium.

4 Conclusion

In this paper, we contribute to the literature on vulnerable options by working under a hybrid credit

risk model. The proposed hybrid credit risk model incorporates the features of both structural and

reduced-form models. The dynamics of the market index, as well as the dynamics of the underlying

assets and option issuer’s assets are driven by Heston-Nandi GARCH processes. The underlying

intensity process is exposed to both systematic risk and idiosyncratic risk. In this way, all the

dynamics are correlated with each other through the systematic risk factor. Finally, we derive an

explicit pricing formula of vulnerable options and perform numerical analysis to illustrate option

prices.
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Appendix

Proof of Proposition 2.1:

We first focus on the case j ≤ t ≤ T . Note that given the information at time t, V (j), Λ(j) and
∑j−1

k=1Λ(k) are all known. Therefore, we obtain that

f(t) = Et

[

exp
{

φ1 lnS(T ) + φ2 lnV (j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k)
}]

= eφ2 lnV (j)+φ3Λ(j)+φ4
∑j−1

k=1 Λ(k)Et

[

exp
{

φ1 lnS(T )
}]

.

In addition, at time T , S(T ) is also known, it follows that

f(T ) = eφ2 lnV (j)+φ3Λ(j)+φ4
∑j−1

k=1 Λ(k)ET

[

exp
{

φ1 lnS(T )
}]

= eφ1 lnS(T )+φ2 lnV (j)+φ3Λ(j)+φ4
∑j−1

k=1 Λ(k),

which in turn implies that

A0(T ) = A1(T ) = A2(T ) = 0.

According to the law of iterated expectations, we have that

Et

[

exp
{

φ1 lnS(T )
}]

= Et

[

Et+1

[

exp
{

φ1 lnS(T )
}]]

= Et

[

exp
{

φ1 lnS(t+ 1) +A0(t+ 1) +A1(t+ 1)hm(t+ 2) +A2(t+ 1)hs(t+ 2)
}]

.

Substituting the dynamics of lnS(t+ 1), hm(t+ 2) and hs(t+ 2) yields that

Et

[

exp
{

φ1 lnS(T )
}]

= Et

[

exp
{

φ1 lnS(t+ 1) +A0(t+ 1) +A1(t+ 1)hm(t+ 2) +A2(t+ 1)hs(t+ 2)
}]

= Et

[

exp
{

φ1 lnS(t) + φ1r −
1

2
φ1hs(t+ 1) + φ1

√

hs(t+ 1)Zs(t+ 1)

−1

2
φ1β

2
shm(t+ 1) + φ1βs

√

hm(t+ 1)Zm(t+ 1) +A0(t+ 1)

+A1(t+ 1)
(

wm + bmhm(t+ 1) + am(Zm(t+ 1)− cm
√

hm(t+ 1))2
)

+A2(t+ 1)
(

ws + bshs(t+ 1) + as(Zs(t+ 1)− cs
√

hs(t+ 1))2
)}]

.
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Using the fact that Eea(Z+b)2 = e−
1
2
ln(1−2a)+ ab2

1−2a with Z being a standard normal variable and

some algebra shows that

A0(t) =φ1r +A0(t+ 1) + wmA1(t+ 1) + wsA2(t+ 1)− 1

2
ln(1− 2amA1(t+ 1))

− 1

2
ln(1− 2asA2(t+ 1)),

A1(t) =bmA1(t+ 1)− 1

2
φ1β

2
s + φ1βscm − 1

2
c2m +

1
2(φ1βs − cm)2

1− 2amA1(t+ 1)
,

A2(t) =bsA2(t+ 1)− 1

2
φ1 + φ1cs −

1

2
c2s +

1
2(φ1 − cs)

2

1− 2asA2(t+ 1)
.

Hence, A0(t), A1(t) and A2(t) (j ≤ t ≤ T ) can be obtained recursively with terminal conditions

A0(T ) = A1(T ) = A2(T ) = 0 and the above expressions.

In what follows, we turn to the case t < j. Applying the law of iterated expectations to f(t)

yields that

f(t) = Et

[

exp
{

φ1 lnS(T ) + φ2 lnV (j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k)
}]

= Et

[

Et+1

[

exp
{

φ1 lnS(T ) + φ2 lnV (j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k)
}]]

= Et

[

f(t+ 1)
]

= Et

[

exp
{

φ2 lnV (t+ 1) + φ4

t+1
∑

k=1

Λ(k) + φ1 lnS(t+ 1) +B0(t+ 1)

+B1(t+ 1)hm(t+ 2) +B2(t+ 1)hs(t+ 2) +B3(t+ 1)hv(t+ 2) +B4(t+ 1)Λ(t+ 2)
}]

.

Substituting the dynamics of lnV (t + 1), Λ(t + 2), lnS(t + 1), hm(t + 2), hs(t + 2) and hv(t + 2)

yields that

f(t) = Et

[

exp
{

φ2 lnV (t+ 1) + φ4

t+1
∑

k=1

Λ(k) + φ1 lnS(t+ 1) +B0(t+ 1)

+B1(t+ 1)hm(t+ 2) +B2(t+ 1)hs(t+ 2) +B3(t+ 1)hv(t+ 2) +B4(t+ 1)Λ(t+ 2)
}]

= Et

[

exp
{

φ2 lnV (t) + φ2r −
1

2
φ2hv(t+ 1) + φ2

√

hv(t+ 1)Zv(t+ 1)

−1

2
φ2β

2
vhm(t+ 1) + φ2βv

√

hm(t+ 1)Zm(t+ 1) + φ4

t+1
∑

k=1

Λ(k)

+φ1 lnS(t) + φ1r −
1

2
φ1hs(t+ 1) + φ1

√

hs(t+ 1)Zs(t+ 1)

−1

2
φ1β

2
shm(t+ 1) + φ1βs

√

hm(t+ 1)Zm(t+ 1) +B0(t+ 1)
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+B1(t+ 1)
(

wm + bmhm(t+ 1) + am(Zm(t+ 1)− cm
√

hm(t+ 1))2
)

+B2(t+ 1)
(

ws + bshs(t+ 1) + as(Zs(t+ 1)− cs
√

hs(t+ 1))2
)

+B3(t+ 1)
(

wv + bvhv(t+ 1) + av(Zv(t+ 1)− cv
√

hv(t+ 1))2
)

+B4(t+ 1)
(

wλ + bλΛ(t+ 1) + aλ(Zm(t+ 1))2 + cλ(Zv(t+ 1))2
)}]

.

Rearranging terms implies that

f(t) = Et

[

exp
{

φ2 lnV (t) + φ4

t
∑

k=1

Λ(k) + φ1 lnS(t) +B0(t+ 1) + (φ2 + φ1)r

+wmB1(t+ 1) + wsB2(t+ 1) + wvB3(t+ 1) + wλB4(t+ 1)

+(bmB1(t+ 1)− 1

2
φ2β

2
v −

1

2
φ1β

2
s )hm(t+ 1)

+(bvB3(t+ 1)− 1

2
φ2)hv(t+ 1) + (bsB2(t+ 1)− 1

2
φ1)hs(t+ 1)

+(bλB4(t+ 1) + φ4)Λ(t+ 1) + Φm +Φs +Φv

}]

,

where

Φs = φ1

√

hs(t+ 1)Zs(t+ 1) + asB2(t+ 1)(Zs(t+ 1)− cs
√

hs(t+ 1))2,

Φv = φ2

√

hv(t+ 1)Zv(t+ 1) + avB3(t+ 1)(Zv(t+ 1)− cv
√

hv(t+ 1))2

+cλB4(t+ 1)(Zv(t+ 1))2,

Φm = (φ2βv + φ1βs)
√

hm(t+ 1)Zm(t+ 1) + amB1(t+ 1)(Zm(t+ 1)− cm
√

hm(t+ 1))2

+aλB4(t+ 1)(Zm(t+ 1))2.

In order to obtain the explicit expression of f(t), we only need to calculate Et[e
Φm+Φs+Φv ] =

Et[e
Φm ]Et[e

Φs ]Et[e
Φv ]. Note that Φs, Φm and Φv have similar forms and all can be obtained based

on the following form,

E[exp{µ1

√
hZ + µ2(Z − µ3

√
h)2 + µ4Z

2}],

where µ1, µ2, µ3 and µ4 are all constants and Z is a standard normal variable. Using the fact that

Eea(Z+b)2 = e−
1
2
ln(1−2a)+ ab2

1−2a , we have that

E[exp{µ1

√
hZ + µ2(Z − µ3

√
h)2 + µ4Z

2}]

= E[exp{(µ2 + µ4)Z
2 − 2(µ2µ3 − µ1/2)Z

√
h+ µ2µ

2
3h}]

= E[exp{(µ2 + µ4)
(

Z − µ2µ3 − µ1/2

µ2 + µ4

√
h
)2

− (µ2µ3 − µ1/2)
2

µ2 + µ4
h+ µ2µ

2
3h}]
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= e
µ2µ2

3h−
(µ2µ3−µ1/2)

2

µ2+µ4
h
E[exp{(µ2 + µ4)

(

Z − µ2µ3 − µ1/2

µ2 + µ4

√
h
)2

}]

= exp{µ2µ
2
3h− (µ2µ3 − µ1/2)

2

µ2 + µ4
h− 1

2
ln(1− 2(µ2 + µ4)) +

(µ2 + µ4)(
µ2µ3−µ1/2

µ2+µ4
)2

1− 2(µ2 + µ4)
h}

= exp{−1

2
ln(1− 2(µ2 + µ4)) +

(

µ2µ
2
3 −

(µ2µ3 − µ1/2)
2

µ2 + µ4
+

(µ2 + µ4)(
µ2µ3−µ1/2

µ2+µ4
)2

1− 2(µ2 + µ4)

)

h}

= exp{−1

2
ln(1− 2(µ2 + µ4)) +

(

µ2µ
2
3 +

2(µ2µ3 − µ1/2)
2

1− 2(µ2 + µ4)

)

h}. (A.1)

Therefore, we can write f(t) in the following form

f(t) = exp
{

φ2 lnV (t) + φ4

t
∑

k=1

Λ(k) + φ1 lnS(t) +B0(t)

+B1(t)hm(t+ 1) +B2(t)hs(t+ 1) +B3(t)hv(t+ 1) +B4(t+ 1)Λ(t+ 1)
}

,

where

B0(t) = B0(t+ 1) + (φ2 + φ1)r + wmB1(t+ 1) + wsB2(t+ 1) + wvB3(t+ 1) + wλB4(t+ 1)

−1

2
ln(1− 2(amB1(t+ 1) + aλB4(t+ 1))) − 1

2
ln(1− 2asB2(t+ 1)))

−1

2
ln(1− 2(avB3(t+ 1) + cλB4(t+ 1))),

B1(t) = bmB1(t+ 1)− 1

2
φ2β

2
v −

1

2
φ1β

2
s + amc2mB1(t+ 1)

+
2(amcmB1(t+ 1)− (φ2βv + φ1βs)/2)

2

1− 2(amB1(t+ 1) + aλB4(t+ 1))
,

B2(t) = bsB2(t+ 1)− 1

2
φ1 + asc

2
sB2(t+ 1) +

2(ascsB2(t+ 1)− φ1/2)
2

1− 2asB2(t+ 1)
,

B3(t) = bvB3(t+ 1)− 1

2
φ2 + avc

2
vB3(t+ 1) +

2(avcvB3(t+ 1)− φ2/2)
2

1− 2(avB3(t+ 1) + cλB4(t+ 1))
,

B4(t) = bλB4(t+ 1) + φ4.

Now we need the terminal conditions of Bk(t), k = 0, 1, 2, 3, 4 (t < j). In other words, we need to

determine the values of Bk(j− 1), k = 0, 1, 2, 3, 4. Actually, we already have the expression of f(j)

from the case j ≤ t ≤ T we previously considered,

f(j) = exp
{

φ2 lnV (j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k) + φ1 lnS(j) +A0(j)

+A1(j)hm(j + 1) +A2(j)hs(j + 1)
}

.

According to the law of iterated expectations, we have that

f(j − 1) = Ej−1

[

f(j)
]
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= Ej−1

[

exp
{

φ2 lnV (j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k) + φ1 lnS(j) +A0(j)

+A1(j)hm(j + 1) +A2(j)hs(j + 1)
}]

.

Substituting the dynamics of lnV (j), lnS(j), hm(j + 1), and hs(j +1) and using (A.1) imply that

f(j − 1) = Ej−1

[

exp
{

φ2 lnV (j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k) + φ1 lnS(j) +A0(j)

+A1(j)hm(j + 1) +A2(j)hs(j + 1)
}]

= Et

[

exp
{

φ2 lnV (j − 1) + φ2r −
1

2
φ2hv(j) + φ2

√

hv(j)Zv(j)

−1

2
φ2β

2
vhm(j) + φ2βv

√

hm(j)Zm(j) + φ3Λ(j) + φ4

j−1
∑

k=1

Λ(k)

+φ1 lnS(j − 1) + φ1r −
1

2
φ1hs(j) + φ1

√

hs(j)Zs(j)

−1

2
φ1β

2
shm(j) + φ1βs

√

hm(j)Zm(j) +A0(j)

+A1(j)
(

wm + bmhm(j) + am(Zm(j)− cm
√

hm(j))2
)

+A2(j)
(

ws + bshs(j) + as(Zs(j)− cs
√

hs(j))
2
)}]

= exp
{

φ2 lnV (j − 1) + φ4

j−1
∑

k=1

Λ(k) + φ1 lnS(j − 1) +B0(j − 1)

+B1(j − 1)hm(j) +B2(j − 1)hs(j) +B3(j − 1)hv(j) +B4(j − 1)Λ(j)
}

,

where

B0(j − 1) = A0(j) + (φ2 + φ1)r + wmA1(j) + wsA2(j)

−1

2
ln(1− 2amA1(j)) −

1

2
ln(1− 2asA2(j)),

B1(j − 1) = bmA1(j) −
1

2
φ2β

2
v −

1

2
φ1β

2
s + amc2mA1(j) +

2(amcmA1(j)− (φ2βv + φ1βs)/2)
2

1− 2amA1(j)
,

B2(j − 1) = bsA2(j)−
1

2
φ1 + asc

2
sA2(j) +

2(ascsA2(j) − φ1/2)
2

1− 2asA2(j)
,

B3(j − 1) = −1

2
φ2 +

1

2
φ2
2,

B4(j − 1) = φ3.

This completes the proof of the proposition. ✷

Proof of Theorem 2.2:

First, we deal with the term E
[

(S(T )−K)+
]

. Recall the definition of f(t;φ1, φ2, φ3, φ4) and note
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that f(0; iφ1, 0, 0, 0) is the characteristic function of lnS(T ) under Q. From standard probability

theory (see, e.g., Kendall and Stuart (1977)), we can obtain the distribution function of lnS(T ),

that is,

Q(lnS(T ) ≤ x) =
1

2
− 1

π

∫ ∞

0
Re

[e−iφ1xf(0; iφ1, 0, 0, 0)

iφ1

]

dφ1,

which in turn implies that

Q(lnS(T ) ≥ x) = 1−Q(lnS(T ) ≤ x)

=
1

2
+

1

π

∫ ∞

0
Re

[e−iφ1xf(0; iφ1, 0, 0, 0)

iφ1

]

dφ1. (A.2)

The term E
[

(S(T )−K)+
]

can be derived after introducing a new probability measure Q1 defined

by

Q1(O) =
E
[

I(O)S(T )
]

E
[

S(T )
] ,

for any event O ∈ FT . Obviously, the characteristic function of lnS(T ) under Q1 is given by

EQ1

[

eiφ1 lnS(T )
]

=
f(0; 1 + iφ1, 0, 0, 0)

f(0; 1, 0, 0, 0)
.

In addition, under Q1, it holds that

Q1(lnS(T ) ≥ x) =
1

2
+

1

π

∫ ∞

0
Re

[e−iφ1xf(0; 1 + iφ1, 0, 0, 0)/f(0; 1, 0, 0, 0)

iφ1

]

dφ1. (A.3)

Hence, (A.2) and (A.3) imply that

E
[

(S(T )−K)+
]

= E
[

(S(T )−K)+
]

= E
[

(S(T )−K)I(lnS(T ) ≥ lnK)
]

= E
[

S(T )I(lnS(T ) ≥ lnK)
]

−KE
[

I(lnS(T ) ≥ lnK)
]

= E[S(T )]EQ1

[

I(lnS(T ) ≥ lnK)
]

−KE
[

I(lnS(T ) ≥ lnK)
]

= E[S(T )]Q1(lnS(T ) ≥ lnK)−KQ(lnS(T ) ≥ lnK)
)

=
1

2
f(0; 1, 0, 0, 0) +

1

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; 1 + iφ1, 0, 0, 0)

iφ1

]

dφ1

−K

2
− K

π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 0, 0, 0)

iφ1

]

dφ1, (A.4)

where in the last equality we used (A.2) and (A.3).

Next, we focus on the term E
[

e−
∑j

k=1 Λ(k)I(V (j) < L)(S(T )−K)+
]

. We rewrite it as follows:

E
[

e−
∑j

k=1 Λ(k)I(V (j) < L)(S(T ) −K)+
]
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= E
[

e−
∑j

k=1 Λ(k)+lnS(T )I(V (j) < L, lnS(T ) ≥ lnK)
]

−KE
[

e−
∑j

k=1 Λ(k)I(V (j) < L, lnS(T ) ≥ lnK)
]

= E
[

e−
∑j

k=1 Λ(k)+lnS(T )I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

−KE
[

e−
∑j

k=1 Λ(k)I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

.

In the following, we deal with the two parts in the above equality separately. To this end, we define

a new probability measure

Q2(O) =
E
[

I(O)e−
∑j

k=1 Λ(k)+lnS(T )
]

E
[

e−
∑j

k=1 Λ(k)+lnS(T )
] ,

for any event O ∈ FT . Under Q2, we have the joint characteristic function of − lnV (j) and lnS(T )

as follows:

EQ2

[

eiφ2(− lnV (j))+iφ1 lnS(T )
]

= E
[ e−

∑j
k=1 Λ(k)+lnS(T )

E
[

e−
∑j

k=1 Λ(k)+lnS(T )
]eiφ2(− lnV (j))+iφ1 lnS(T )

]

=
1

E
[

e−
∑j

k=1 Λ(k)+lnS(T )
]E

[

e(iφ1+1) lnS(T )−iφ2 lnV (j)−
∑j

k=1 Λ(k)
]

=
f(0; iφ1 + 1,−iφ2,−1,−1)

f(0; 1, 0,−1,−1)
.

By inverting the characteristic function, we have that

Πj,1 := E
[

e−
∑j

k=1 Λ(k)+lnS(T )I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

= E
[

e−
∑j

k=1 Λ(k)+lnS(T )
]

EQ2

[

I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

= f(0; 1, 0,−1,−1)Q2

(

− lnV (j) > − lnL, lnS(T ) ≥ lnK
)

=
1

4
f(0; 1, 0,−1,−1) +

1

2π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1 + 1, 0,−1,−1)

iφ1

]

dφ1

+
1

2π

∫ ∞

0
Re

[eiφ2 lnLf(0; 1,−iφ2,−1,−1)

iφ2

]

dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(

Re
[e−iφ1 lnK+iφ2 lnLf(0; iφ1 + 1,−iφ2,−1,−1)

φ1φ2

]

−Re
[e−iφ1 lnK−iφ2 lnLf(0; iφ1 + 1, iφ2,−1,−1)

φ1φ2

])

dφ1dφ2. (A.5)

Likewise, we work under Q̄2 defined by

Q̄2(O) =
E
[

I(O)e−
∑j

k=1 Λ(k)+lnS(T )
]

E
[

e−
∑j

k=1 Λ(k)+lnS(T )
] ,
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for any event O ∈ FT , and obtain that

Πj,2 := E
[

e−
∑j

k=1 Λ(k)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

= f(0; 0, 0,−1,−1)Q̄2

(

− lnV (j) > − lnL, lnS(T ) ≥ lnK
)

=
1

4
f(0; 0, 0,−1,−1) +

1

2π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 0,−1,−1)

iφ1

]

dφ1

+
1

2π

∫ ∞

0
Re

[eiφ2 lnLf(0; 0,−iφ2,−1,−1)

iφ2

]

dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(

Re
[e−iφ1 lnK+iφ2 lnLf(0; iφ1,−iφ2,−1,−1)

φ1φ2

]

−Re
[e−iφ1 lnK−iφ2 lnLf(0; iφ1, iφ2,−1,−1)

φ1φ2

])

dφ1dφ2. (A.6)

Hence, it holds that

E
[

e−
∑j

k=1 Λ(k)I(V (j) < L)(S(T ) −K)+
]

= E
[

e−
∑j

k=1 Λ(k)+lnS(T )I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

−KE
[

e−
∑j

k=1 Λ(k)I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

= Πj,1 −KΠj,2.

Similarly,

E
[

e−
∑j−1

k=1 Λ(k)I(V (j) < L)(S(T ) −K)+
]

= E
[

e−
∑j−1

k=1 Λ(k)+lnS(T )I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

−KE
[

e−
∑j−1

k=1 Λ(k)I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

= Πj,3 −KΠj,4,

where

Πj,3 :=
1

4
f(0; 1, 0, 0,−1) +

1

2π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1 + 1, 0, 0,−1)

iφ1

]

dφ1

+
1

2π

∫ ∞

0
Re

[eiφ2 lnLf(0; 1,−iφ2, 0,−1)

iφ2

]

dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(

Re
[e−iφ1 lnK+iφ2 lnLf(0; iφ1 + 1,−iφ2, 0,−1)

φ1φ2

]

−Re
[e−iφ1 lnK−iφ2 lnLf(0; iφ1 + 1, iφ2, 0,−1)

φ1φ2

])

dφ1dφ2, (A.7)

and

Πj,4 :=
1

4
f(0; 0, 0, 0,−1) +

1

2π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 0, 0,−1)

iφ1

]

dφ1
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+
1

2π

∫ ∞

0
Re

[eiφ2 lnLf(0; 0,−iφ2, 0,−1)

iφ2

]

dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(

Re
[e−iφ1 lnK+iφ2 lnLf(0; iφ1,−iφ2, 0,−1)

φ1φ2

]

−Re
[e−iφ1 lnK−iφ2 lnLf(0; iφ1, iφ2, 0,−1)

φ1φ2

])

dφ1dφ2. (A.8)

Note that Πj,3 and Πj,4 have similar forms as Πj,1 and Πj,2, and they can be obtained by replacing

f(0; ·, ·,−1, ·) in Πj,1 and Πj,2 with f(0; ·, ·, 0, ·), respectively.
We next calculate E

[

e−
∑j

k=1 Λ(k)I(V (j) < L)V (j)(S(T )−K)+
]

. Note that E
[

e−
∑j−1

k=1 Λ(k)I(V (j) <

L)V (j)(S(T ) −K)+
]

can be calculated in a similar way. To this end, define another probability

measure Q3 as follows:

Q3(O) =
E
[

I(O)e−
∑j

k=1 Λ(k)+lnS(T )+lnV (j)
]

E
[

e−
∑j

k=1 Λ(k)+lnS(T )+lnV (j)
] ,

for any event O ∈ FT . The joint characteristic function of − lnV (j) and lnS(T ) under Q3 is

EQ3

[

eiφ2(− lnV (j))+iφ1 lnS(T )
]

= E
[ e−

∑j
k=1 Λ(k)+lnS(T )+lnV (j)

E
[

e−
∑j

k=1 Λ(k)+lnS(T )+lnV (j)
]eiφ2(− lnV (j))+iφ1 lnS(T )

]

=
f(0; iφ1 + 1,−iφ2 + 1,−1,−1)

f(0; 1, 1,−1,−1)
.

By inverting the characteristic function, we obtain that

Πj,5 := E
[

e−
∑j

k=1 Λ(k)+lnS(T )V (j)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

= E
[

e−
∑j

k=1 Λ(k)+lnS(T )+lnV (j)
]

EQ3

[

I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

=
1

4
f(0; 1, 1,−1,−1) +

1

2π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1 + 1, 1,−1,−1)

iφ1

]

dφ1

+
1

2π

∫ ∞

0
Re

[eiφ2 lnLf(0; 1,−iφ2 + 1,−1,−1)

iφ2

]

dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(

Re
[e−iφ1 lnK+iφ2 lnLf(0; iφ1 + 1,−iφ2 + 1,−1,−1)

φ1φ2

]

−Re
[e−iφ1 lnK−iφ2 lnLf(0; iφ1 + 1, iφ2 + 1,−1,−1)

φ1φ2

])

dφ1dφ2,(A.9)

and

Πj,6 := E
[

e−
∑j

k=1 Λ(k)V (j)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

= E
[

e−
∑j

k=1 Λ(k)+lnV (j)
]

EQ̄3

[

I(− lnV (j) > − lnL, lnS(T ) ≥ lnK)
]

=
1

4
f(0; 0, 1,−1,−1) +

1

2π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 1,−1,−1)

iφ1

]

dφ1
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+
1

2π

∫ ∞

0
Re

[eiφ2 lnLf(0; 0,−iφ2 + 1,−1,−1)

iφ2

]

dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(

Re
[e−iφ1 lnK+iφ2 lnLf(0; iφ1,−iφ2 + 1,−1,−1)

φ1φ2

]

−Re
[e−iφ1 lnK−iφ2 lnLf(0; iφ1, iφ2 + 1,−1,−1)

φ1φ2

])

dφ1dφ2,(A.10)

where Q̄3(O) is defined by

Q̄3(O) =
E
[

I(O)e−
∑j

k=1 Λ(k)+lnV (j)
]

E
[

e−
∑j

k=1 Λ(k)+lnV (j)
] ,

for any event O ∈ FT . Therefore, we have that

E
[

e−
∑j

k=1 Λ(k)I(V (j) < L)V (j)(S(T ) −K)+
]

= E
[

e−
∑j

k=1 Λ(k)+lnS(T )V (j)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

−KE
[

e−
∑j

k=1 Λ(k)V (j)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

= Πj,5 −KΠj,6.

Finally, we calculate E
[

e−
∑j−1

k=1 Λ(k)I(V (j) < L)V (j)(S(T ) −K)+
]

under Q4 and Q̄4 defined by

Q4(O) =
E
[

I(O)e−
∑j−1

k=1 Λ(k)+lnS(T )+lnV (j)
]

E
[

e−
∑j

k=1 Λ(k)+lnS(T )+lnV (j)
] ,

Q̄4(O) =
E
[

I(O)e−
∑j−1

k=1 Λ(k)+lnV (j)
]

E
[

e−
∑j

k=1 Λ(k)+lnV (j)
] ,

for any event O ∈ FT . Following along similar arguments we obtain

E
[

e−
∑j−1

k=1 Λ(k)I(V (j) < L)V (j)(S(T ) −K)+
]

= E
[

e−
∑j−1

k=1 Λ(k)+lnS(T )V (j)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

−KE
[

e−
∑j−1

k=1 Λ(k)V (j)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

= Πj,7 −KΠj,8,

where

Πj,7 := E
[

e−
∑j−1

k=1 Λ(k)+lnS(T )V (j)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

=
1

4
f(0; 1, 1, 0,−1) +

1

2π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1 + 1, 1, 0,−1)

iφ1

]

dφ1
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+
1

2π

∫ ∞

0
Re

[eiφ2 lnLf(0; 1,−iφ2 + 1, 0,−1)

iφ2

]

dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(

Re
[e−iφ1 lnK+iφ2 lnLf(0; iφ1 + 1,−iφ2 + 1, 0,−1)

φ1φ2

]

−Re
[e−iφ1 lnK−iφ2 lnLf(0; iφ1 + 1, iφ2 + 1, 0,−1)

φ1φ2

])

dφ1dφ2.(A.11)

and

Πj,8 := E
[

e−
∑j−1

k=1 Λ(k)V (j)I(− ln V (j) > − lnL, lnS(T ) ≥ lnK)
]

=
1

4
f(0; 0, 1, 0,−1) +

1

2π

∫ ∞

0
Re

[e−iφ1 lnKf(0; iφ1, 1, 0,−1)

iφ1

]

dφ1

+
1

2π

∫ ∞

0
Re

[eiφ2 lnLf(0; 0,−iφ2 + 1, 0,−1)

iφ2

]

dφ2

− 1

2π2

∫ ∞

0

∫ ∞

0

(

Re
[e−iφ1 lnK+iφ2 lnLf(0; iφ1,−iφ2 + 1, 0,−1)

φ1φ2

]

−Re
[e−iφ1 lnK−iφ2 lnLf(0; iφ1, iφ2 + 1, 0,−1)

φ1φ2

])

dφ1dφ2. (A.12)

Note that Πj,7 and Πj,8 can be obtained by replacing f(0; ·, ·,−1, ·) in Πj,5 and Πj,6 with f(0; ·, ·, 0, ·),
respectively. This completes the proof of the theorem. ✷
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