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EDWARDS-WILKINSON FLUCTUATIONS FOR THE DIRECTED
POLYMER IN THE FULL L?-REGIME FOR DIMENSIONS d > 3

DIMITRIS LYGKONIS, NIKOS ZYGOURAS

ABSTRACT. We prove that in the full L?-regime the partition function of the directed polymer
model in dimensions d > 3, if centered, scaled and averaged with respect to a test function
¢ € C.(R%), converges in distribution to a Gaussian random variable with explicit variance.
Introducing a new idea in this context of a martingale difference representation, we also prove
that the log-partition function, which can be viewed as a discretisation of the KPZ equation,
exhibits the same fluctuations, when centered and averaged with respect to a test function.
Thus, the two models fall within the Edwards-Wilkinson universality class in the full L?-regime,
a result that was only established, so far, for a strict subset of this regime in d > 3.

REsuME. Nous démontrons que dans tout le régime L?, la fonction de partition du modéle
de polymeéres dirigés en dimension d > 3, si elle est centrée, normalisée et moyennée par
rapport & une fonction de test ¢ € CC(Rd), converge en distribution vers une variable aléatoire
gaussienne dont la variance est explicite. En introduisant une nouvelle idée dans ce contexte de
la représentation de différence de martingale, nous démontrons également que le logarithme de
la fonction de partition, qui peut étre vu comme une discrétisation de I’équation KPZ, posséde
les mémes fluctuations, lorsqu’il est centré et moyenné par rapport a une fonction de test. En
conséquence, tous les deux modéles se trouvent dans la classe d’universalité d’Edwards-Wilkinson
dans tout le régime L2, un résultat qui a seulement été établi jusque-la dans un sous-ensemble
strict de ce régime en dimension d > 3.
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1. INTRODUCTION AND RESULTS

In this paper, we study the directed polymer in dimensions d > 3. The directed polymer
model is defined as a coupling of the simple random walk with a random environment given by
i.i.d. random variables, whose strength is tuned by a parameter 3, corresponding to the inverse
temperature. In particular, let (wy, ;) (n z)enxze be a collection of i.i.d. random variables with law
P such that

E[w] =0, E[w?] =1, AB) :=logE[e?] < o0, VB e (0,00).

We also consider a simple random walk, whose distribution we denote by P, when starting from
z € Z% When starting from 0 we will refrain from using the subscript and just write P. We
will use the notation g, (x) := P(S,, = z) for the transition kernel of the random walk. The
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directed polymer measure on polymer paths of length IV, starting from position x and at inverse
temperature 3 € (0,00) is defined as

dPy g«

1 N
P8 = 7y o (2 (Bens, = A3)). (1)

xz

where

N
Znp(@) =By exp (] (Bwns, = AB))]. (1.2)
n=1
is a random normalising constant which makes the polymer measure a probability measure. This
is the so-called partition function of the model and will be the object of our main interest in
this paper. When the starting point of the random walk is the origin we will simply write Zy 3
instead of Zy 5(0).

The directed polymer model has, by now, a long history starting with the works of Imbrie-
Spencer [34] and Bolthausen [6], who showed the existence of a weak disorder regime in dimension
d > 3 and when g is small enough. It was then shown that paths weighted by the polymer
measure exhibit diffusive behaviour. The regime of § that was considered in these works was
what we name here the “L2-regime”, which is characterised by the boundedness of the L?(P)
norm of the partition function Zy g. This regime can be explicitly characterised: if we denote
by Ay (8) := A(28) — 2A(B) and by m; the probability that a d-dimensional simple random walk,
starting from the origin, will return to the origin, then

Bre := Bra(d) := sup {B: \p(B) <log (1) }-

This characterisation is achieved via the simple and standard computation
E(Zy, (2] = B2 [ 5 515t ] — p[een], (13

where S}, 52 are two independent copies of the simple random walk, starting from the origin,
with joint law denoted by P®2. Moreover, £y := ZN 1g, —o denotes the number of times that
a d-dimensional simple random walk returns to zero and for the second equality we made use

of the equality in law Z 11s1_g2 fa 27]2[:1 1g, —o- Since the simple random walk is transient
in dimensions d > 3, one can see that Ly converges almost surely to a random variable £,
as N — oo and the limiting random variable L., follows a geometric distribution with success

probability equal to m; < 1. In particular, we have that E[(Zy g(z))?] N=oo, Ele 2(5)&@] and
1—m .
E[(PEx] = {1_”@‘3@ if Ay(B) < log(5,)

) (1.4)
0 , otherwise.

The weak disorder regime was subsequently characterised as the regime 8 < f,.(d) where Zy 5
converges almost surely to a strictly positive random variable. Clearly §.(d) = Br2(d) but a
concrete characterisation of (5, is still missing and in fact it took some time to resolve the
nontriviality of the interval (82(d), ﬁc(d)) for d >3, [4, 5, 1, 3]. The formulation of the weak
disorder regime as the regime where Zy g 25, Zopp > 0is largely due to the works of Comets,
Shiga, Yoshida [20, 21, 22], see also the recent monograph [16] for a more detailed bibliographical
account with respect to these issues.

The above works (as well as several other relevant ones e.g. [23, 24, 39] etc.) have focused
on studying the partition function at a fixed starting point. Here, on the other hand, we are
interested in the spatial fluctuations of the field of partition functions (Z N,ﬂ(x))mezd’ when
then initial point varies, and we will show it exhibits Edwards-Wilkinson (EW) fluctuations in
the L?-regime. Let us recall that the Edwards-Wilkinson fluctuations are determined as the
fluctuations of the field that arises as the solution to the additive stochastic heat equation

8tv(c)(t,$) = %Av(c)(t,x) +c&(t, x) (1.5)

09(0,2) =0
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where c¢ is a model related constant and £ denotes space-time white noise, that is the Gaussian
process with covariance structure E[£(t,2)€(s,y)] = d(t — s)d(x —y) for t,s > 0 and z,y € R%.
Our first result is the following theorem:

Theorem 1.1. Let d > 3, B € (0,812(d)) and consider the field of partition functions of the
d-dimensional directed polymer (Zy 5(x)) If o € C.(RY) is a test function, denote by

reZd"

T

Zn (o)=Y, (ZN,g@)E[ZN,g(a:)])w(N@) - > (ZN,5<x>~1)¢5VW), (1.6)

d
2 2
xeZd xeZd

the averaged partition function over p. Then the rescaled sequence (N%ZN’Q(QD))N>1 converges
in distribution to a centered Gaussian random variable Z3(yp) with variance given by

1
VarlZ5(0)] = C [ dt [ dady plalay (2 = )ota). (1.7

where g(-) is the d-dimensional heat kernel, C5 = o*(f3) E[e*2)fx] and o2(8) = 2B — 1.

Besides the interest stemming from understanding spatial correlations in the polymer model,
the above result is motivated by intense recent activity in the field of singular stochastic PDEs.
The field of partition functions (ZNﬁ(:E))xezd of the directed polymer model can be seen as a
discretisation (via the stochastic Feynman-Kac formula [2]) of the stochastic heat equation (SHE)
with multiplicative noise:

Oyt = %Au + BE(t, z)u, t>0,2€eR% (1.8)

with flat «(0,-) = 1 initial condition. Contrary to the case of dimension d = 1, where one can
make sense of (1.8) by using classical Ito theory, in dimensions d > 2 this is not possible due to
the lack of regularity of the space-time white noise, which makes the product u - £ ill defined.
Recent works [39, 30, 17] have shown that a meaning to (1.8) for d = 3 can be provided when S
is small (a strict subset of the L2?-regime) by smoothing out the noise via spatial mollification
with a smooth density j(-) as &.(t,z) := ¢4 {5, £(t, ) j(x/e)dz and solving first the regularised
equation

1 d—2
Opu, = iAu6 + e 2 £ (t,x)u,, t>0,2eR% (1.9)

As ¢ tends to zero, the solution u.(t,-), when centered and scaled, converges (as a field), for
small, to the solution of the additive stochastic heat equation, whose statistics determine the
Edwards-Wilkinson class. Our result, Theorem 1.1, viewed as a different type of approximation
to the SHE, provides the extension of the meaning of (1.8) to the whole L? regime. We also
establish a similar result for the field of log-partition functions. In this case we will additionally
require that the disorder satisfies a (mild) concentration property (4.1). More precisely,

Theorem 1.2. Let d = 3, 8 € (0,012(d)) and consider the fields of log-partition functions of
the d-dimensional directed polymer (log ZN,ﬁ(m))xezd’ with disorder that satisfies concentration

property (4.1). If p € C.(R?) is a test function, we have that

zeZd

converges in distribution to the centered Gaussian random variable Z5(p) defined in Theorem
1.1.

Given that h(t, x) := logu(t, z), with u(¢, ) the solution to the SHE, is formally the solution
to the KPZ equation

1 1
oh = 5Ah + §|Vh|2 + BE, (1.11)
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the field of log-partition functions can be viewed as a discretization of the KPZ equation.
Dimensions d > 3 are known in the recent theory of SPDEs as supercritical dimensions and thus
the theories of regularity structures [33], paracontrolled distributions [32], energy solutions [28]
do not apply. Alternatively, Edwards-Wilkinson limiting fluctuations for the regularised KPZ

1 1 a-2 L o 9.
Oche = 5 AR + S |Vhe|? + fz 2 & — S ] 7ara) (1.12)

were recently established in [30, 27| through Malliavin calculus techniques, for small 5. Moreover,
in [38] renormalisation and perturbation arguments were used to establish Edwards-Wilkinson
fluctuations for small 3, when the mollification is performed in both space and time. [18] also
studied the one-point limit fluctuations of (1.12) in a subset of the L? regime.

Before closing this introduction we mention that analogous results to Theorems 1.1 and 1.2,
for regularisations of SHE and KPZ as in (1.9), (1.12) were simultaneously and independently
established by Cosco-Nakajima-Nakashima [25] via quite different methods than ours, based on
stochastic calculus and local limit theorems for polymers inspired by earlier works of Comets-
Neveu [19] and of Sinai [43] (see also [45, 24, 18]). Our methods, as we will explain in more detail
in the next section, are based on analysis of chaos expansions inspired by works on scaling limits
of disordered systems [9, 8] and two dimensional polymers, SHE and KPZ [10, 12| (alternative
methods to the two dimensional case, which however do not cover the whole L? - in this case also
subcritical - regime, are those of [15, 29]). A very interesting, open problem is to go beyond the
L? regimes. Currently the only works in this direction are [11, 13, 31| on the moments of polymers
and SHE on the critical temperature in dimension two. However, these moment estimates are not
enough to determine the distribution.

2. OUTLINE, MAIN IDEAS AND COMPARISON TO THE LITERATURE

We will describe in this section the method we follow as well as the new ideas required. The
basis of our analysis is the chaos expansion of the polymer partition function as

N k k
ZN,ﬁ(x) =1+ Z Uk Z in (21 - 1’) HQni—ni,l (Zi - Zi—l) Hnni,zi ) (21)
k=1 I<ny<..<np<N 1=2 i=1
20,2, €Z%

where g, (z) = P(S, = 2), 0 = ¢(B) := Ve2®) — 1 and 5, , 1= 0* (eﬁwn&’)‘(ﬁ) — 1), see (3.1)
for the details of this derivation. s

To prove the central limit theorem for (N2~ Zy 5(¢)) y>1 we make use of the so called Fourth
Moment Theorem [26, 40, 41, 10], which states that a sequence of random variables in a fixed
Wiener chaos, normalised to have mean zero and variance one, converges to a standard normal
random variable if its fourth moment converges to 3. Of course, in order to be able to reduce
ourselves to a fixed chaos, we need to perform truncation and for this, the assumption of bounded
second moments (L? regime) plays an important role. This approach of analysing chaos expansions
of partition functions was first used in [10] in a framework that also included the analysis of
the two dimensional directed polymer and SHE. The work, which is needed to carry out this
approach in d > 3, is actually easier than the d = 2 case in [10]. The reason for this is that the
variance of Zy g is a functional of the local time Ly, see (1.3), which stays bounded in d > 3 but
grows logarithmically in d = 2, introducing, in the latter case, a certain multiscale structure. Still,
a careful combinatorial accounting and analytical estimates, which actually deviate from those
in [10], are needed to handle the d > 3 case. The detailed analysis of such expansion is what
allows to go all the way to the L? critical temperature, as compared to the previous works [30],
[38]. The work [30] established the central limit theorem via a “linearisation” through Malliavin
calculus (Clark-Ocone formula) and homogenisation / mixing estimates only for sufficiently small
B. On the other hand, the renormalisation methods employed in [38] are necessarily restricted to
a perturbative (small 3) regime.

For the Edwards-Wilkinson fluctuations of the log-partition function, namely Theorem 1.2,
we also adapt the approach of “linearisation” via chaos expansion proposed in [12]. However,
the analysis in d > 3, required to achieve the goal of going all the way to fr2(d), is rather
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more subtle. The reason is that the power law prefactor N i (1.10) (as opposed to the
corresponding log N prefactor in [12]) does not allow for any “soft” (or even more intricate)
bounds a la Cauchy-Schwarz or triangle inequalities in the approximations. Instead, we have to
look carefully at the correlation structure that will cancel the N “T* | This correlation structure is
rather obvious in the case of the partition function and can be already understood by looking at

the first term of the chaos expansion of N 7z ~,5() as derived from (2.1), which is

Z Qn(z - x)nn,z )

2€Z4 1<n<N

and whose variance is easily computed as

Nd Qn(z - x)qn(z - y)
x,y€eZd 2z€Z4 1<n<N
a2 p(F)e(f5)
ey AR ey
x,y€eZd 1<n<N

The factor N“Z° is then absorbed by the sum )} ¢o,(z —y) in a Riemann sum approximation.
What underlies the above computation is that correlations are captured by two independent
copies of the random walk, one starting at x and another at y, meeting at some point by time N.
The probability of such a coincidence event compensates for the NV =

When considering the log-partition functions, the above described mechanism is not obvious,
as log Zy g does not admit an equally nice and tractable chaos expansion. Nevertheless, it is
necessary (which was not the case in [12]) to tease out the aforementioned correlation structure,

in order to absorb N“T° and carry out the approximation. The way we do this is by writing
log Zy 5 (or more accurately a certain approximation, which we call log Z]‘é,ﬁ, see (4.9)) as a
martingale difference:

log Zx 5 — E[log Zw 5] = Y, (E[log Zy 5| F;] ~ E[log Zw 5 | Fy1]) .

j=1

where {F;:j = 1}, Fy = {J,Q} is a filtration generated as F; = o(w,,: 7 = 1,...,j) with
{ay,asy, ...} an enumeration of N x Z%. By adding the information from the disorder at a single
additional site at each time, we keep track of how the polymer explores the disorder and this
allows (after a certain “resampling” procedure) to keep track of the correlations. The martingale
difference approach we introduce has in some sense some similarity to the Clark-Ocone formula,
which was used in the work of [30, 27]. However, our approach of exploring a single new site
disorder at a time seems to be necessary for the precise estimates that we need, in order to reach
the whole L? regime. Along the way, a fine use of concentration and negative tail estimates of
the log-partition function (e.g. Proposition 4.1) is made.

Once all the necessary approximations to the log-partition function are completed, the task is
then reduced to a central limit theorem for a partition function of certain sorts, thus bringing us
back to the context of Theorem 1.1. The previous work of [27] seems to be necessarily restricted
to a small sub-region of (0, 8;2), as a consequence of both the linearisation approach employed
but also more importantly (as far as we can tell) due to the use of the so-called “second order
Poincaré inequality” for the central limit theorem, which requires higher moment estimates that
lead outside the L? regime, if 3 is not restricted to be small enough.

The parallel work of Cosco-Nakajima-Nakashima [25] achieves the Edwards-Wilkinson fluctua-
tions for the SHE and the KPZ by quite different methods than ours, by making use of clever
applications of stochastic calculus and the local limit theorem for polymers [43, 45, 24].
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3. THE CENTRAL LIMIT THEOREM FOR Zy 5(¢)

This section is devoted to the proof of Theorem 1.1. Throughout the paper we rely on
polynomial chaos expansions of the partition function. Specifically, consider the partition function
of a polymer chain of length N starting from z at time zero. We can write

Znp(r) = Ex[ H 6(5“”’2_’\(6))1571—2}

1<n<N, zeZ4

E [ [T (@ () —1)15n_2)]

<N, zeZ4

1<n
N
Z Z in HQn —n;_ 1 — Zi-1 Hnnl,z : (31>

1<ny<..<np <N
21 ey 2, €Z2%

For (n,z) € N x Z% we have denoted by 7, ., the centered random variables

eﬁwn,zfA(B) — 1

Nppi= ——————. (3.2)
g

The number ¢ = o(/3) is chosen so that for (n,z) € N x Z? the centered random variables M,z

have unit variance. A simple calculation shows that o = 1/e>28)~=2X(8) — 1. Also, the last equality
in (3.1) comes from expanding the product in the second line of (3.1) and interchanging the
expectation with the summation. By using the expansion (3.1) we can derive an expression
for the averaged partition function. Let us fix a test function ¢ € C,(R?). For the sake of the
presentation, we will adopt the following notation:

on(T1, ..., ) 1= H SO(W) , k

2
ue{Tq,..., T}

\Y
—

(3.3)

[ISY

We have
Znglp) = ), (Zng(x) — 1) py(2)
reZd
N k
S ( S @) )nqn G T
k=1 I<ng<..<np<N \ gezd i=1
2152 €29
N
k
= Zz(vfg(@), (3.4)
k=1
where

ZI(\IIC,?B(QP) i=o" 2 (2 SON in )HQn —n;_ 1 — Zi—1 Hnnl,z .

1<ni<..<np<N \ zezd
21 ey 2, €20

The first step towards the proof of Theorem 1.1 is the following proposition which identifies
d—
the limiting variance of the sequence (NT2 ZNa(0))N1-

Proposition 3.1. Let d >3, B € (0, 812) and fix p € C.(R?) to be a test function. Consider the
sequence (N%ZNﬁ(cp))NZl, where Zy 5(p) is defined in (1.6). Then, one has that

d—2 . 1
Var [N Zy ()] 25 0 | e[ dady pla)gy (- n)e(0).

where Cg = o2(B) E[e*2(Pfx], 62(8) = e28) —1 and g denotes the d-dimensional heat kernel.
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For the proof of Proposition 3.1, we will need the following standard consequence of the local
limit theorem, which we prove for completeness.

Lemma 3.2. For any test function ¢ € C,(R?) we have that

N 1
a_ N—
N2t N on(@, y)gan (e —y) — | di dady @()g2 (z — y)p(y)
0 Rd xRd d

n=1 g yezd
Proof. Recall that by the local limit theorem for the d-dimensional simple random walk, see
[35] one has that qzn(x) = 2(927” (x) + o(n_%»lxezgven, uniformly in z € Zd’ as n — o0, where

Z% on = {x = (21,..,zg) € Z: 21 + ... + 14 € 2Z}. The factor 2 comes from the periodicity
of the random walk. The kernel gon (z) appears instead of g, (z), because after n steps the

d-dimensional simple random walk S,, has covariance matrix 5I. Let us fix 0 € (0,1). Let us also
use the notation

9N
a_
Tyn:=N2' Y0 Y on(@,y) gonle — y)

n=1g yezd

N
a_
Soni=N278 Y0 N on(z,y) qan(z —y) -
n>9N .’L‘,yEZd

Observe that if we bound go(ﬁ) in ¢ (x,y) by its supremum norm and use that Y}, 4 g9, (2) = 1
we obtain that

e 5 5 ) 3 -9 < L2 ST o) < il il 0

n=1gezd yeZd n=1gezd

On the other hand, by using the local limit theorem and Riemann approximation one obtains
that

1
N—
Sy N ——> dtf dady o(z)g2: (z — y)e(y) .
Rd xR d

By combining those two facts and letting 19 — 0, one obtains the desired result. U
We are now ready to present the proof of Proposition 3.1.

Proof of Proposition 3.1. Recalling (3.4), one arrives into the following expression for the
variance of Zy g(¢), by using also the fact that terms of different degree in the chaos expansion
are orthogonal in L?(P):

N
Var [Zyg(9)] = D o™ > D en(@y) qon, (@ = 0) | [ dom,—n,)(0) -

k=1 1S7L1<...<7LkSN I7yezd 1=2

We can factor out the k = 1 term and change variables to obtain the expression:

k
2 S ol g) o~ v <1+20 5 nqm_ziﬂ(m), (3.6

= x,yeZd 1<l <. <l <N—ni=1
where by convention if n = N the sum on the rightmost parenthesis is equal to 1. Furthermore,
one can observe that the right parenthesis is exactly equal to E[e)‘Z(B)EN*n], where we recall

that Ly := Z{Ll 1g, —o denotes the number of times a random walk returns to 0 up to time N.
Thus,

Var [N'F Zy (p)] = N5~ Z Y, en(zy) don(e — B[] (37)
n=1 ,yGZd

The heuristic idea here is that, if in the expression (3.7) we ignore n in the expectation, then
the sum would factorise. Then, by noticing that E[e’\2(5)£N ] converges and by using also Lemma
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3.2, we obtain the conclusion of Proposition 3.1. Let us justify this heuristic idea rigorously. We
have that

E[e)‘Q(/B)EN—n] _ E[e/\z(ﬁ) ] + E[( 2(B)LN—n _ e)\Q(IB)ﬂN)lL"N>£N7n] ) (3.8)
Also,

‘E[(6A2<ﬁ>cN_n _ MO <2B[er N1, ., (3.9)

1£N>£N7n]
by triangle inequality and because L, is non-decreasing. Using Hélder inequality we can further
bound the error in (3.8) as follows: We choose p > 1 very close to 1, such that pAy(5) < log(ﬂid),

thus E[ep)‘Q(ﬁ)cN] < o0, for every N € N. This is only possible when 3 is in the L?-regime. Then,
by Hélder:

Q|

E[eAQ(B)ENlﬁN%N_n] < E[epAg(ﬁ)z:N]%P(gN > Ly p)

Hence,

ESE

‘E[<6A2(6)LN77L1 - 6A2(5)£N>15N>£N7n:” < vaﬁp(ﬁN > EN—TZ) 5

1
where ¢, g 1= QE[ePAQ(B)E ]5 < 0.

Now, we split the sum in (3.7) into two parts. Let 9 € (0,1). We distinguish two cases:
o If n <YN, then N —n > (1 —9)N. Thus,

‘E[(e)\Z(B)ﬁan _ 6)\2(5)£N)1£N>£N_n] < e, sP(Ly > 5(1—19)1\/)% 7

since Ly is non-decreasing in /N. We also have that

o0
n>(1—-9)N

since Zle G2, (0) < 00, because d = 3. Therefore, in this case we obtain that,

Nz Z D on(@,y) qon( — y)E[et2Pen—n]
= x,yeZd

g
= N2 Z > en(@,y) gon(z —y) (E[ MBENT 1 0(1)).
= x,yeZ4d
e If n > YN, we have that:

d_
Nz 2 o2 Z SpN(;(;? y) q2n(g; _ y)E[e)‘Q(/B)EN—n]
n>yN zyeZd

NE! Z Z oN(2,) Gan (@ — y)E[e2DFe]

n>9N x yEZd
By combining the two cases above we get that, for every ¢ € (0,1)

0
lim supVar[N% Zy 5(0)] < 02 J dtf dzdy <p(x)g%(:v — y)(y)E[e*2Dfx] 4 k(9),
Rd xRd

N—o0

where

1
k(V) < E[e*2(P)F] 02] dtf dady @(2)g2: (z — y)o(y)
Rd xRd d



and

B 9
i Ver N 2y ()] 2 0 [ Tt | dady p(@lgg - B O%).
N—o ’ 0 Rd xRd d

It is clear that k() — 0 as ¥ — 1, hence we obtain the desired result. O

We proceed towards the proof of the Central Limit Theorem for the sequence (Z N3 (gp)) N>1 of
the averaged partition functions. In order to determine the limiting distribution of the sequence
(N% ZNNB(QO))NZI, we use the Fourth Moment Theorem, see [26, 40, 41, 10]. The strategy we
deploy is the following: First, we show that it suffices to consider a large M € N and work with a

truncated version of the partition function, namely

M k
) 1= Z o Z ( Z on(T) gn, (2 ) an —ni—1\Fi T Z"—l)Hnnivzi'
Pt i=1

1<ny<...<np<N \ gezd
21500y 2, €28

(3.10)

To do this it is enough to show that for any € > 0 we can choose a large M = M (e) such that
N Z5'5(p) and N Zn () are e-close in L?(P), uniformly for N € N large. Then, by using

the Fourth Moment Theorem and the Cramer-Wold device, we show that the random vector

N (Z](\})ﬂ(gp) Z](VA/Q (¢)) converges in distribution to a centered Gaussian random vector. This

allows us to conclude that the limiting distribution of N Z N ( ) is a centered Gaussian. After

removing the truncation in M, we obtain the desired result for N 7 ~.5(¢), namely Theorem 1.1.

We begin by proving that we can approximate Zy () in L?(P), uniformly for large enough
N, by Z55(p) for some large M € N.

Lemma 3.3. For every € > 0, there exists My € N, such that for all M > M,

I HN%Z (@) — N T2 Z2M )‘ <e
imsu — N <e.
N_mp N,B\P N,B\¥ L2(P)
Proof. Consider € > 0. One has that
Znple) — Z¥%5(9)
N k
= Z Uk Z ( Z SON( qnl ) an —n;_ 1 - zi—l)Hnni,zi :
2152 €L
By an analogous computation as in Proposition 3.1 we have that
d—2 -2 __ 2
e
LN N—n k
<N Yo% Y pn(@y) qon(z — y)( > o > qu(z,._z,.,l)(o))
n=1 x,ycZd k=M 1<l <. <l ,<N—ni=1
. N k
N 2 > e nan@-n( Y o Y [lew-rn,)0)
x,ycZd k=M 1<l <. <, <N i=1

By Lemma 3.2 we have that

. 1

N&- Z 2. v y) gon(r —y) —— dtLd ., drdy e@)gz (@ = )e().
X

n=1 g yezd
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The sum in the rightmost parenthesis can be bounded by

N k N N 0

2k 2k pk 2k pk 2k pk
(30" % Tl 0)< S o™mi< 3 o< 3 ot
k=M 1< <..<C<Ni=1 k=M k=M k=M

where Ry = fo:l g2, (0) is the expected number of visits to zero before time N of the simple
random walk and R, = limy_, By = Dy ¢2,,(0). Since B is in the L%-regime, the series
Yner 0(8)?FRE, is convergent. Therefore, we have that

Z O,QkRk:
gy MHOO

Therefore, we conclude that if we take M to be sufficiently large we have that
a2 a-2 <M
HN T Znplp) - N7 Zm;(w)‘ ey <
uniformly for all large enough NV € N, hence there exists M, € N, so that for M > M,:
. d—2 =2 M
hmsupHN T Znp(p) — N2 ZKW(SD)HL?(P) <e.

N—w0

€,

O

We proceed by showing that for any M € N, the random vector N (Z](\})ﬁ(go), s Z](V]V[/B)(cp))

converges in distribution to a Gaussian vector. To do this we employ the Cramér-Wold device.
Namely, we prove that for any M-tuple of real numbers (¢y,...,t);) the linear combination

EY 224:1 th](\’fBB(gp) converges in distribution to a Gaussian random variable.

Proposition 3.4. For all M € N and (t,...,ty;) € RM, N Z,iwzl th](é)B(go) converges in
distribution to a Gaussian random variable with mean zero and variance equal to

Ztkd’“ f dtf da dy (2)g21 (x — 1) ()

where Cék) =o(B)* 2 H 4a(¢,—¢, 1)(0) for k> 1 and C( )= a(B8)*.

1<l <. <l _q 1=1
£y:=0

Proof. We start by introducing some shorthand notation that is going to be useful for a concise
presentation of the rest of the proof. For any u € Z¢, 7’ will denote a time-increasing sequence
of (k + 1) space-time points (n;, 2;)o<i<k = N x Z4 Wlth a starting point (ng, zg) := (0,u). We
will use the convention that for two sequences 70— (n;, 2)o<i<k and T:[SZ) = (m;, w;)o<i<s, the

equality 7 (k) Ty( ) means that k = ¢ and (ng, z;) = (my,w;) for i = 1,.... k, that is for all points

(k) (£)

in the sequences 7’ and 7,
Given a sequence 7" =

except the starting ones.
= (ng, 2 )1<i<k, we will use the following notation

k
Q( (k)) = in 1_[ Qn,—n,;_ 1 - Zi—l) and 77(7—1(Lk)) = 1_[ Mz, -
i=1
Furthermore, we recall from (3.3), that for a finite set {z,...,2;,} = Z% we use the notation
(75
ON(T1y .y xy) = H VN7 (3.11)

NS

ue{zlv azk:}

We start by deriving the limiting variance of N Zk 1tk Z(k) 5(¢). We have that

M
Var(NdZQ 3 th§\?)6(¢)> = tiN%—lE[(Z](\'Z)ﬁ(cp))Q],
k=1 k=1
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because for every k > 1, E[Zz(f)ﬁ(go)] =0 and if 1 < k < ¢, we have that E[Z](\]Z)B(cp) Z%’)ﬁ(tp)] =0,

see (3.5). One can follow the steps of the proof of Proposition 3.1, to see that

1
lim N2-! E[(Z](&(w))Q] = Cék) fo dt Jde dzdy p(z)g2 (z = y)e(y) ,

N—o0

k—1
k 1
where Cé )= a(B)?* Z H @2(¢,—¢,_,)(0) for k > 1 and Cé )= a(B)2.
1<l <. <lp_q 1=1
£y:=0
In order to show that N“T° Z,]y: 1t Z](\’,C)ﬁ(gp) converges in distribution to a Gaussian limit we
will employ the Fourth Moment Theorem, which states that a sequence of random variables in a
fixed Wiener chaos or multilinear polynomials of finite degree converge to a Gaussian random
variable if the 4th moment converges to three times the square of the variance, see [26, 40, 41, 10]
for more details. Namely, we will show that as N — o0,

M 4 M 2
E[<Nd42 3 th](V’f)ﬁ(go)> ] — 3Var [Nd42 3 th](\]i)ﬁ(go)] +o(1).
k=1 k=1

d—
that is, the fourth moment of N =y 224: 1 th](\];)ﬁ(go) converges to 3 times its variance, squared.
In view of the chaos expansion (3.5) we have that

M 4

d—2 _ a c

E[(zw Ztkz%ig(@)) ]:Nd 2N bt E| 28020500 2855(0) 23 5(¢)
k=1 1<a,b,c,d<M

:Nd_2 2 tatbtctd Ua+b+c+d Z YN (:L', Y, z, w)

1<a,b,c,d<M x,y,z,weZ
Y [T a=El  TT  a)
7 1) 7 7D (ws) ef(.2),(y.b), (us) {(x.2),(4.b),

(2,),(w,d)} (2,),(wd)}
(3.12)

Since M is finite, we can fix a quadruple (a, b, c,d) and deal with the rest of the sum which
varies as N — o0. Thus, we will focus on the sum

N2 N gl gz w) ot Y [T awel T a0

x,Y,2,wEZ% 782 7)) D) (u,5) {(x,a),(y,b), (u,s) €{(x,a),(y;b),
! (2,¢),(w,d)} (2,0),(w,d)}
(3.13)

instead of (3.12). We note that the expectation

E[ 11 U(T}i’)] , (3.14)
(u,s) €{(x,a),(y,b),
(2,0),(w,d)}

is non-zero only if the random variables 1 appearing in the product, are matched to each other.
This is because, if a random variable n stands alone in the expectation (3.14), then due to
independence and the fact that every n has mean zero, the expectation is trivially zero. The
possible matchings among the n variables can be double, triple or quadruple. We cannot have
more than quadruple matchings, because points in a sequence 7 are strictly increasing in time,
thus they cannot match with each other.

We will show that when N — oo, only one type of matchings contributes to (3.13) and
hence also to (3.12). Specifically, the only configuration that contributes, asymptotically, is the
one where four random walk paths meet in pairs without switching their pair. In terms of the
sequences 7.7, Tl(,b), 719, 74, this condition translates to that T;éa),ngb), 79, 78 must be pairwise
equal to two sequences which do not share any common points. For the rest of the proof, when
we say pairwise equal we will always mean pairwise equal to two distinct sequences which do not
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(0,2)

0,y) (0, ) .
LIRS

s .

(0,2) 0,2 e T T e
o

p- -~

(0, w) (0, w)
Zd, Zd

(a) (b)

FIGURE 1. (a) A sample T; configuration. The walks start matching in pairs (z < y,z <> w), but
then switch pair at (f;_,h; ). (b) The same configuration after summation of all the possible values of
the points (f;, h;);>;, , of the initial positions (0, 2), (0, w) and of all the points (f;, h;)1<i<p-

share any common points. We will first focus on sequences 7, Téw, 79, 78 which do not satisfy

this condition and show that their contribution is negligible.

Consider sequences 77,7, 727,75 and let 7 := 72 U 7)Y U T U Y = ( fis hi)1<i<r|
with fi < fy < -+ < fi;- Let 1 < i, < |7| be the first index, so that for all (u,s) €

{(x,a), (y,b), (z,¢), (w,d)}, the sequences 7’ N ([1, fi,) x Zd) are pairwise equal, but this fails
to hold for 77 N ([1, fi] x Zd), see figures 1, 2.
If there does not exist such index 1 < i, < |7|, then the four random walks meet pairwise

without switching their pair. For this kind of sequences 7., 7'39’), 79 7 for which i, does not

exist, we have that 73, Tg(,b), 719, 75" have to be pairwise equal. Their contribution to (3.12) is

N2 Y B P N pn(@yzw) Y (@) a(n?)a(r) a(r) .
1<a7b<M %y;Z,wezd Téa) :nga>,T1S,b> :Tz(b)
nga)m’rz(b)=®

(3.15)

The factor 3 accounts for the number of ways we can pair the sequences 74, Téb), 79, 78 The

2
sum in (3.15) equals 3N92 E[(nyz1 th](\]f)B(go))Q] + o(1) as N — . The o(1) factor is a

consequence of the restriction 7 N 75 # @ in (3.15), which excludes configurations of the four

random walk paths such that four walks meet simultaneously at a single point. It is part of the
proof below to show that the contribution of these configurations is negligible in the large N
limit.

Hence, for now we can focus on the cases for which such a point (f;,, 2
their contribution is negligible for (3.12).
We distinguish the following cases for such sequences 7, Téb)7Téc),TS )

;,) exists and show that

e Type 1 (T;). For all (u,s) € {(z,a), (y,b), (z,¢), (w,d)}, we have 73’ n ([1,fi*) X Zd) #* .

e Type 2 (T,). For exactly two of the points (u,s) € {(z,a), (y,b), (z,¢), (w,d)}, we have
that 7’ N ([1, f;,) x Z%) # @.

e Type 3 (T3). For all (u,s) € {(z,a), (y,b), (2,¢), (w,d)} we have that 7"  ([1, f;,) x Z%) =
.

Note that we have not included the case that three of the sets 7o) N ([1, fi) x Zd) are non-empty.

This is because, in this case, by the definition of i,, we have that 73 N ([1, fi.) % Zd) have to be
pairwise equal, therefore all four of them are non-empty. Thus, this is the case of T; sequences.
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(T, sequences). We begin with the case of T sequences &, T?j ) 7l 7 In this case, the four

random walks meet pairwise without switching their pair before time f; . Let us suppose at first
that the walk starting from (0, x) is paired to the walk starting from (0,y) and the walk starting
from (0, z) is paired to the walk starting from (0, w) that is

"o ([ f) <2 =70 A ([ f,) x 29
and
9 A ([1, i) X Zd) =79 ([, fi) % Zd) )

We shall refer to this type of sequences as T7”". Analogously, we define T{~* and T{~*. By
symmetry it only suffices to consider T{™¥. We will first show how we can perform the summation

N2 ST on(a g,z w) ot Y [T a=El  TT ).

z,y,2,w€Z4 Tz(a),ﬁgb)ﬁéc),ﬂ(d) TIHy (u,s) €{(z,a),(y,b), (u,s) €{(z,a),(y,b),
(2,0),(w,d)} (2,0),(w,d)}
(3.16)
Since the 7 variables have to be paired to each other, we can bound the expectation in (3.16) as
E[ I1 n(ﬁﬁ)] < CM C = max {1,E[1*], E[5"]} . (3.17)

(u.s) €{(,a),(y,b),
(2,0),(w,d)}

Moreover, since M is fixed and 1 < a,b,c,d < M we have that 0®*°+<+d < (5 v 1)M| Therefore,

N2 py(a,y,zw) ottt Y [T awel T )]

Z,Y,2,w ezd ;a) (b), Z(C) (D ET:CHU (’U,,S) E{(xva)r(yzb)v (U,S) E{(z,a),(y,b),
(2,¢),(w,d)} (2,0),(w,d)}
<CM(ov DMNT2 N oy (Y, 2,w) > 11 a(r).  (3.18)
y,zweZd 7 2 0) 10 @ cproy (us) €{(z.a),(y.b),
(2,¢),(w,d)}

By the definition of T, sequences, we have that for a given T{”" sequence &, T{,b), 9 7, with
r=rPurPurfury = (fih )1<z<p and p = ||, we can decompose the sequence (f;, h;)1<i<i,

into two disjoint subsequences (fi,hy), ..., (fas he) and (f1, hy), ..., (fy, hy), see Figure 1, so that

[T o) =gz —2)g5, (R qu 5y =hiy)
(u,s) €{(z,a),(y,b),

(2,¢),(w,d)}

b

xqp, (b — 2)ap, (b —w) [ [ () (B = hicy)
=2

A ha) q(fi*—fb)(’%; — Iy

m;, +1 m
" nl;ll qu +17 fr( +1>( i, +1 T 1—:[ ) (3 9)
For every i, +1 < j < p, the number m; ranges from 2 to 4 and indicates whether (f;,h;)

is a double, triple or quadruple matching. Furthermore, for every i, + 1 < j < p and 1 <
m < mj, ( £27h7(“2) is some space-time point which belongs to the sequence (f;,h;);, <i<p U
{(fas ha), (f5, )}, such that fgn) < f;. Also, the exponents v,, 1}, in (3.19) can take values in
{1,2} and indicate whether the matching in (f; ,h; ) was double, triple or quadruple. In any
case the product above is bounded by the corresponding expression for v,, v, = 1, since we have
qp(z) < 1.

In order to perform the summation in (3.16) for T{~" sequences we make the following
observation. We can start by summing the last point (f,, h,) as follows: We use the fact that
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¢n(x) < 1 and Cauchy-Schwarz to obtain that

mp
(fpshy) m=1 fp ») :
1 1
<( X %, (o -n)) (X %, A
(forhp) 0 7 (forhp) °F
1
2 2
=( By, ) ) (Ltags, ()
fo »
<(v/Ry)? = Ry < Ry, 17Td7r <1. (3.20)
- d

For the last inequality, we used that the range of f, — ,Ep ) is contained in {1,2,..., N} and the
fact that, my < 1 for d > 3, since m3 ~ 0.34, see [44], and 74, < 74 for d > 3, see [42]. We can
successively iterate this estimate for all values of (f;, h;) as long as i > i,. Therefore, by recalling
(3.16), (3.18) and (3.19) we deduce that

(o v YMEPMNT2 T oy (a,y,2,w) > [I e
vy, 2w ezt o229 2O 1 e () €{(2,0),(ub),
(2.0, (w,d)}

<CM (U Vv 1)4M CzMNd_2 Z @N(xaywsz)
x,y,z,weZ
2M

x ) ( > 45, = 2)g (h quz i = BH))

a’b:1 (f B )1<1<a

b
qfl (1 qfl quz —fi- 1) hi_l))
1=2

X

X

fl7h )1<1<b
( (,—F) (i, = ha)ags, 1) (i, = bb)) : (3.21)
fl 7

where ¢;; is a constant combinatorial factor which bounds the number of different ways that
the points of T{™" can be mapped to a fixed sequence (f;, h;)1<;<p, for all p < w < 2M.
Therefore, the last step for showing that the sum (3.16) has negligible contribution in (3.12) is
to show that for all fixed a, b the following sum vanishes when N goes to infinity:

CN’M N2 Z on (T, y, z,w)( Z C]fl(ﬁl - fL’)Qfl(ﬁ1 k) HQ(Qﬂ_ﬁil)(ﬁi - Bifl))

z,y,z,weZd (firhi)1<iza =2

(N anh -2 Hq(fz oo (i = i)

(fishi)1<i<o

X( Z q(fi**fa)(hi* - Ba)q(fi*__fb)(hi* o hb)) ) (3.22)
(fi*vhi*)

where Cy; = ¢py (0 v 1)*M C2M | Let us describe how this can be done. Recall that

(P(L)
SDN(Ivyvzuw): H ]\\[/5 .
2

ue{m7y’z7w}
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In (3.22), we can bound ¢ (T) (%) by |2 and sum out z,w using that 3 4 g, (u) = 1 so
that we bound (3.22) by

1. _ _ L
5 ||<PHOC Z ( Z qfl(hl - fL‘)Qfl(hl - ) Q(Qg_ﬁil)(hi - hiﬂ))
zyezd (fishi)i<i<a 1=2
b

(0 Tlathesy b —hin)
(f'u z) bli2

x ( Z qfi,~Fa) (i, — Ba)q(fi* *fb)(hi* - hb)) : (3.23)
(fi*vhi*)

We sum out all points (f; 1, h; 1)2<i<p successively, starting from (f;, hy) and moving forward.
The contribution of each of these summations is bounded by Ry < 1, since for each 2 <7 < b,

(f’i—17b”i—l)

because the range of f; — f;_; is contained in {1,..., N}. Therefore, we are left with estimating

C - - a -
M ||<p||00 Dl ( D1 g (b —2)qg, (hy — y) HQ(Qﬂ_ﬁ._l)(hi - hi—l))
i=2

z,yezd (fish; i)i<i<a

>0 20 g iy, — ha)ag, g (i, — ’lb)) :
N

(fi, i) (fo.h)

The contribution of the sums over (fy, hy,) and (f; , h;,) is

2 a5, 7 (hi, = ha) D0 g, g (i, = hy) < N2 (3.25)
(fi,sha,) (fo.h)

by summing first over space, using that D uezd @n(uw) = 1 and then summing over time using that
the range of f; — f, and f; — f, is contained in {1, ..., N}. Therefore, it remains to show that
the following sum vanishes as N — co:

éM ||90H§o 2 en(z, y)( Z Qfl(ﬁl - x)Qfl(l_h —y) HQ(in_ﬁ,il)(ﬁi - Bz‘q)) .
z,yezd (fishi)1<i<a i=2
We perform the summation over (f;, h;) for 2 < i < a starting from (f,, h,) and moving backward.

The contribution of each of these summations is bounded by Ry < 1. Consequently, we need to
show that

Cullell D5 ent@y) 3 a5,(h = 2)a (h —y) —— 0.
xvyezd (fllvill)

By summing out the points h; € Z% it suffices to show that

~ 2
Curllelle D) ene,9) Yo, (¢ —y) ———0.
x,yeZd fl

But it follows from Lemma 3.2 that the last sum is O(N'~ ) hence vanishes as N — o0, since
d = 3. Therefore, we have proved that the sum (3.16) vanishes as N — co. It is exactly the same
to prove the analoguous sums for T{~* and T{~" sequences vanish as N — 0.

(T, sequences) Recall that by the definition of T, sequences we have that for exactly two of the
points (u,s) € {(z,a), (y,b), (z,¢), (w,d)}, it holds for the corresponding sets 7y’ N ([1, f; ) xZ%) #
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(0,2) 0, z)

0,y) 0,v)

. (0, 2)
(0, w) (0, w)T' ...............
zd !

(2) (b)

FIGURE 2. (a) A sample T, configuration. (b) The same configuration after summation of all possible
values of the points (f;, h;);>;, and of the initial positions (0, 2), (0, w).

@ that

T:ga) N ([sz*) X Zd) = ngb) N ([sz*) X Zd) 79
and

00 (1L £i) x 2% =70 o (L, £,) x 2%) = 2.

We will refer to this type of Ty sequences as T57?. Analogously, we can define T5<* and T5~".
We will show that the sum

N2 ST on(a g,z w) ot Y [T a=El T«

z,y,2,w€Z4 7_SI)’TE(Jb)ﬂ_Z(c)’7_1551) eT;Hy (u,s) €{(z,a),(y,b), (u,s) €{(z,a),(y,b),
(3.26)

vanishes as N — oo. By using (3.17) and the bound o®*P+<*4 < (¢ v 1)*M we obtain that

N2 py(a,y,zw) ottt Y [T awhel T )]

Z,Y,2,w ezd Tz(a),TZSb),TZ(Q,Tz(Ud) eT;Hy (u,s) E{(m,a),(y,b), (’LL,S) e{(£73)7(y7b)»
(2,0),(w,d)} (2,9),(w,d)}
<(ovDMEMNTZ Y oyl y, 2 w) > [T ). G20
z,Y,2,w ezd Taga) ,ngb) ,TZ(C) ,T1(Ud) eT;Hy (U,S) E{(x,a),(y,b),

(2,0),(w,d)}

By the definition of (f; ,h; ) we have that (f; ,h; ) is the first point of at least one of the

sequences 7.7, 7. Let us assume that it is the first point of exactly one of them. We will refer

to this type of sequences, T;ﬁa),rljb),réc),ﬂf ) as T5.Y sequences, see figure 2. Without loss of
generality, we may assume that (f; ,h; ) is the first point of 7.9, In that case, ( fi,»hi,) can

be a double or triple matching. Let (f; ,h; ) be the first point of 7. We have that fi, < fi,-
Therefore, we first show that

(0 v 1M 2M -2 2 on (@, Y, 2,w) Z H q(t) — 0.
z,y,2,w €Z4 79(03)7Tg(lb)’7.;c)’7.75jd) eTI oY (u,s) €{(z,a),(y,b),
’ (2,0),(w,d)}
(3.28)

Similarly to the case of T; sequences, for given T57." sequences Tm(a>,7'§b),7'z(vc),7'$>

) ur U Uy = (fi, hi)1<i<p and p = |7|, the cardinality of 7, we have that (see Figure 2)

with 7 =
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() = Qfl(ﬁl - x)Qfl (h1 — ) q?_i*ﬁ—l)(ﬁi —hiq)

(u,s) €{(x,a),(y,b), i=2
(2,¢),(w,d)}
mi*+1 m; -1
+1 2
* H qu +17 fr(Z +1)(hz o Z ) 1_[ qfZ (zo) - hv(jm))
m=1 m=1
mi +1 m,
1
X H a4 e fT(z o (P 11 — hv(«Zer )) H a Q (hy — hgi), (3.29)
m=1 ° m=1
where, for every i, +1 < j < p, the number m; ranges from 2 to 4 and indicates whether (f;, h;)

was a double, triple or quadruple matching. Also, for every i, +1 < j<pand1<m<m;

(f,q r ) is some space-time point which belongs to the sequence (f;,h;);, <i<p U {(f,, BQ)},
such that f,gfn) < f;. However, note that in the third line of (3.29), the product for (f; ,h; ) runs
from m =1 to m; —1, since gy, (hi<> — w) appears in the second line. The exponent v, in the

second line of (3.29) can take values 1 or 2 and indicates whether (f; ,h; ) is a double or triple

(c)

matching; it cannot be a quadruple matching since we assumed that it is contained only in 7
and not in 7). In any case, we can bound q(f*—fa)(hi* h,) by a9, —7y(hi, — ).

We first make some observations so that the presentation is more concise. By iterating (3.20)
we obtain that

M +1 m,
i1
Z q (g +1)(hi<>+1 — hngr )) Z H q, (p)(hp — hq(}:rz) <1. (3.30)
figv1=Fr,? Jo=1r))
(fiy+1hi 1) m=1 (fpohp) m=1
We also have that
2 en(w)ay, (hi, —w) = 1d > () ap, (s, —w) < ”SOHdOO D% ay, (i, —w) = HSO'LOO,
weZd N2 wezZd ° N2 wezd ¢ N2
(3.31)
and then we can sum
Z qu s (i, = Bi) Z 4 oo, —H) <N, (33)

(fiovh‘i ) m=1 (fz ) o
Having summed out the points (f;, h;);>; , we can iterate estimate (3.20) again to obtain that

mi, +1 m; _
i +1 1
Z qfi +1*fr(i*+1)(hi*"’_l N hg" )) Z qfi 1 ﬁioil)(hio_l - h7("lm )) <1.
(i +hi 1) m=1 = " (fi,—1hi,—1) m=1 7 m

(3.33)
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Therefore, in view of (3.29), (3.28) and by using (3.30), (3.31), (3.32) and (3.33) in their respective
order, we get that

(o v )™MCPMNG2 N oy (e, y, 2,w) > [T o)

%yuszezd Taga),Ty(b),Tz(c)7T1S]d>ETzHy (u S)e{(mﬂ )7( 7b)7
(2,0),(w,d)}

a_
< @l eare (0 v M CPMNZTE M pon(a,y, 2)
z,y,2 €Z4

XZ( P TAGEEI A quz USSR

a=1 J‘T E’)l<1<a

X( D0 g, - (s, — ha) ag, (b, ~ z)) ,

(fi, hi,)
where ¢/, is a constant combinatorial factor which bounds the number of possible assignments
of T35 sequences, 2 T 1) to (fishi)i<icy. We set (NZ’M<> = cppo (0 v )M C2M Ty
order to establish (3.28), we need to show that for all fixed a < 2M
Il Crre N30 (D) g, (b — @)ay, quz f (= hio)
( lvﬁi)lézga
X ( a5, 5 (P, = ha) ay, (hi, — Z)) ~ 0
(fi*vhi*)

In analogy to (3.31), we have that

el

d
2

Y en(R)ay, (b, —2) <
zeZd N

Furthermore, by summing over (f; , h;, ) we deduce that

2 4, (i, —ha) <N,
(fi*vhi*)

since the spatial sum is equal to 1 and f; — f. e {1,..., N}. Therefore, the last step in order to
establish (3.28) is to show that

éM,o ||90”2m Z QON(.TC,Z/) Z Qfl(ﬁ Qfl HQ(f —fi1 h _h 1)___—_’0

4 o N—0
z,yeZ (fishi)1<i<a

By summing over the points (f;, h;)a<i<q, this amounts to proving that

~ 2
Cue lels Y on(@y) Y tp, (@ —y) ——0,
z,yeZd f1
which is true by Lemma 3.2. The same procedure can be followed for sequences of type T5*
and T52". So, this concludes the estimate for T3 sequences in the case that (f; ,h; ) is the

first pomt of only one of the sequences 7.7, 7 and by symmetry also for the analogous cases for

T57% and T5v.

Let us treat the case where (f; , h;_ ) is the first point of both sequences 719,78 Then, ( fishi,)
is a triple or quadruple matching, i.e. either (f; ,h; )€ .79 79 or (fi., Z*) ey, Téc), T
or (fi, hs,)€ &, Téb), 719, 75", Both cases can be treated as we did for T} sequences. Namely,
we can first restrict ourselves to the sequence (f;, h;)1<i<;, by using the bound we used in (3.20).
After following the procedure we described for T, sequences We get that the sum in this case
is either O(N_g) if (f;,,h;,) is a triple matching and O(N '~ ) when (f; , i*) is a quadruple

matching. Thus, in total the contribution of T, sequences to (3.12), is O(N'~2 )
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(T3 sequences). For all (u,s) € {(z,a), (y,b), (2, ¢), (w,d)} we have that 7 n ([1, f; ) x Z9) = @.
This implies that i, = 1 and (f; , h; ) is a triple or quadruple matching. It is easy to see, using

the technique for T; and T, sequences, that the contribution of T3 sequences to (3.12) is O(N 7%)

Therefore, we have showed that the part of the sum (3.12) which is over sequences of Type 1
(Ty), Type 2 (T,) or Type 3 (T3) is negligible in the N — oo limit. Thus, the proof is complete.
O

Proof of Theorem 1.1. By Proposition 3.4 we obtain that Zf,“é(go) converges in distribution
to a centered Gaussian random variable G,; as N — oo, with variance equal to

M 1
k
Var [Gy] = D) €} )L dt fde dz dy ()92 (x — y)e(y)-
k=1
We also have that

© 1
: _ (k) o — _
J\/lllgloo Var [Gy/] = kz_:l Cs J(; dt fde dz dy cp(x)g% (x —y)p(y) = Var Z3(p) ,

where Z3(¢) is the random variable defined by Theorem 1.1, since

0 o0 k—1
e =3 Y 0@ % [Taar,)(0) = a2 (B)E[*OEe].
k=1 k=1 1<by<..<ly_q i=1

ZO::()

d
Combining this with Lemma 3.3, we obtain the conclusion of Theorem 1.1, that is Zy 3(¢) E(—)_)
—00

Z3(p). O

4. EDWARDS-WILKINSON FLUCTUATIONS FOR THE LOG-PARTITION FUNCTION

In this section we prove Theorem 1.2, namely, the Edwards-Wilkinson fluctuations for the
log-partition function.

We will need to impose one more condition to the random environment for technical reasons.
Specifically, we require that the law of the random environment satisfies a concentration inequality.
In particular, we assume that there exists an exponent v > 1 and constants C, Cy > 0, such that
for every n € N, 1-Lipschitz function f : R™ — R and i.i.d. random variables wy, ..., w,, having law
P, we have that

tY

P(’f(wl,...,wn)—Mf‘ Zt) <C16Xp<_62>7 (4.1)

where M denotes a median of f(wy, ...,w,). One can replace the median by E[f(wy,...,w,)], by
changing the constants C, Cy appropriately. Condition (4.1) is satisfied if w has a density of the
form exp(—V'(-) + U(+)), where V' is uniformly strictly convex and U is bounded, see [37]. It also
enables us to formulate the following left-tail estimate. For A € N x Z4, let Z4 () denote the
partition function which contains disorder only from A, that is ’

ZJQf,ﬁ($> = Ez[exp ( Z (IBwn,z - )‘(ﬁ))lsn:z)] :
(n,2)eA
Then, we have the following Proposition:

Proposition 4.1 (Left-tail estimate). For every (€ (0, 312) there exists a constant cg > 0,
such that: for every N € N, A = N x Z¢, one has that ¥t > 0

A ¢
P(logZNﬁ(:I:) < —t) < cg exp < - —> ,
bl cﬁ

where 7y, is the exponent in (4.1).
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Proposition 4.1 provides an additional advantage to our analysis and that is the existence of
all negative moments for the partition function and all positive moments for the log-partition
function. In particular, the following is in our disposal,

Proposition 4.2. For every 8 € (0,572), A € N x Z% and p > 0 one has that there exist

constants C;e%, C’;’gﬁ such that

sup E[(Zﬁ,ﬂ(x))_p] <Crh,

NeN
sup E[’ log Z]/\\,ﬂ(a:)}p] < C’;”gﬁ.
NeN

We refer to [12] for the proofs of Propositions 4.1, 4.2, as the method presented there can be
followed exactly to give those results in our case. For Proposition 4.1 see also [14], where this
method appeared in the context of pinning models.

We will also need the existence of 2 + § moments for the partition function. This can be
established with the use of hypercontractivity, for which we refer to Section 3 of [12] for a detailed
exposition. In particular, we have the following proposition:

Proposition 4.3. For every B € (0, 812), there evists p = pg € (2,0), such that
sup E[ Znglx p] < 0.
sup (Zn,5(x))

Let us proceed to the sketch of the proof for the Edwards-Wilkinson fluctuations for the
log-partition function. For every x € Z% we define a space-time window around z as follows

§={(2) 1<n <N o — s < NEv), 42

for e € (0,1) and a € (0, §), much smaller than §. These scale parameters are going to be

determined later in the proofs. We decompose the partition function as:
Zn (@) = Zij p(@) + 2 (),
where
Z]Iéf,ﬁ(aj) = Ex[exp ( Z (ﬁwn,z - )‘(B))lsn:z)] )
(n,2)eA%,

is the partition function which contains disorder only from the set A%;, while the remainder,
Zjé,,ﬁ(:n) = Zyg(x) — Zji‘,ﬂ(ac), necessarily contains disorder from points outside of A%, in its
chaos decomposition, see also [12], Section 2, for analoguous definitions. The chaos expansions of
Z]‘é,’ﬁ(:v),wa(x) are

k k
Zjéf,ﬁ(x) =1+ Z Uk Z dn, (Zl - .T) HQni—ni_l (Zi - Zi—l) Hnni,zi ) (43>
=2 i=1

k=1 (n,2:)1<i<kSA%

and
R k k
Z]éf,ﬁ(x) = Z Uk Z qnl (Zl - CE) H Qni—ni_l(zi - Zi—l) H nni,zi . (44)
k=1 (ng,2:)1<i<kN(AR)°#2 i=2 i=1
We can then write, for every x € Z¢,
Z4 (x
log Zy 5(x) = log Zjé,ﬁ(:v) + log <1 + JX’B()> . (4.5)
ZNﬂ(ZE)

The first step we take is to show that the contribution of the term log Z f\‘, B(ac) to the fluctuations
of log Zyy 3(x) is negligible, when averaged over z, in the following sense
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Proposition 4.4. Let ¢ € C.(RY) be a test function. Then, we have that

Y enla) (log 2 (@) — E[log Z4 ()] )

xeZd

L*(P)

N—o

0. (4.6)

7 A
Nﬁ(z)) by Zivp(@) In particular, if

2@ 78 @)

A x 4 x
we define Oy (x) := log (1 + Z%ZEI;) - ggégw;, then we will show that

The second step is to prove that we can replace log <1 +

Proposition 4.5. Let ¢ € C,(RY) be a test function. Then, we have that

P Y onte) (Onle) — E[Ox()]) =20

N—o
reZd

Zjé/,ﬁ(w)
Zfé/,ﬁ(ﬂf)
has mean zero since each term in the chaos expansion of Z ]‘3 ﬁ(x) contains disorder outside A%,
Zy ﬂ(x)
Nﬁ( z)
B3 = (N2, N]nN) x z¢, (4.7)
and show, employing the local limit theorem for random walks, that the asymptotic factorisation
Z]‘\‘,B(gz) ~ Zj(x) (Z}\B]%B(x) — 1) takes place when we average over z, namely

Therefore, we need to identify the fluctuations of the quotient Note that this quantity

see (4.4). To study the fluctuations of we define, for a suitable g € (g,1), the set

Proposition 4.6. Let ¢ € C.(RY) be a test function. Then, we have that

0 5 oo (L2 - 220

N—o
reZd

The last step is to show that the fluctuations of Z ﬁz(x) —1 when averaged over z, are Gaussian
with variance equal to that of Theorem 1.1, namely

Proposition 4.7. Let p € C.(R%) be a test function. Then, we have the following convergence
i distribution,

Y on(@) (ZFs() — 1) =2 Z4(0)

N—w0
xeZd
where Zg(p) is the centered normal random variable appearing in Theorem 1.1.

We begin with the proof of Proposition 4.4.

Proof of Proposition 4.4. It suffices to restrict the summation and show that

d_
Ny ew(ay) Cov (log Zy g(x), log Z 5(y) —— 0, (4.8)

|le—y|<2NE+e

because, by the definition of the sets A%, if [z —y| > 2N27%, then log Zf\‘w(x) and log Z]‘é,ﬁ(y)
are independent, so the covariance vanishes. The proof will be divided in four steps.

(Step 1) - Martingale decomposition. We will expand the covariance appearing in (4.8)
by using a martingale difference decomposition. Let {wal,wa2, ...} be an arbitrary enumeration
of the disorder indexed by N x Z¢. We can then define a filtration (F;);s;, such that F; =

J
o(w wg, ). We define also Fy = {@, 2}, where (2 is the underlying sample space where the

ays s
random variables (W, .)(n,2)enxz4, are defined. Using this filtration we can write the difference

log Zj(‘,ﬁ(a:) — E[log Zﬁ,ﬁ(a@)] as a telescoping sum, namely
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log Z3}5(x) — E[log Z} 5(2)] = 3, (Ellog 23} 5(2) 7] — Ellog Zi 5 (@) Fja]) . (49)

j=1
Then, using the shorthand notation D;(z) = E[log wa(:nﬂ]:j] — E[log Z]‘?[,B(x)\]:j,l] we have
that:

Cov (log Z3 5(x),log Z 5(y)) = D E[Di(x)D;(y)] = Y E[D;(2)D;(y)],

k,j=1 j=1

where we used the fact that if j < &, conditioning on F; shows that D;(z), Dy (y) are orthogonal
in L?(P). Therefore, we are able to rewrite the sum in (4.8) as
d_
N2t Y en(ay) Y E[D;(@)D;(y)]- (4.10)
|$7y‘<2N%+a jZI
One has to make an important observation at this point. If a; is not contained in A%, then
D;(x) = 0. Hence, the rightmost sum in (4.10) is non-zero only for j > 1, such that a; € A% nAY,.

(Step 2) - Resampling. Let us now look more closely to the martingale differences D;(x). We
will rewrite them in a closed form using a local resampling scheme. Fix j such that a; € A% A%
We can write

AT, AT,
log Z]’\q,,ﬂ(x) =log Zy 57 () + (longéw(x) —logZy 5"’ (),

where we used the notation T, w to denote the disorder environment, where the Wa, disorder
variable has been replaced by an independent copy (Daj. We also have

AT, Zj:} (z)
log Zﬁ’ﬁ(x) = E;,[logZNﬁ T(x)] + E;,[log <A'ri ,

ZNﬁ ()

where Eg[-] denotes the expectation with respect to the resampled noise (which in the expression
above reduces to just integration of Cjaj), since the left hand side of the above equation does not
depend on @. We note that the following equality is true:

E[Eg,[log Z?,:;aj (@)] ‘fj] - E[log Zjeﬁ(g:)’}"j_l] . (4.11)

One can see this by rewriting both sides of the equation, using the fact that, given a random
function f(w), where w = (wy)r>1 is a sequence of i.i.d. random variables, then E[f(w)|F;] =

Sf(UJ) Hk>j P(dwk)'

In conclusion, we have managed to rewrite the difference D;(x) as
" AT,
D,(x) = E Ew[log Z4 4(x) —log Zy 4 (x)”}"j . (4.12)
The next step shows how we can remove the logarithms.

(Step 3) - Removing the logarithms. We fix a positive number h € (0, 15%) and for z € Z4,
we define

By(2) = {28 5(2). Zy " (2) 2 N} (4.13)

We then decompose D;(x) as follows
AT,
Di(x) = E[E;)[(log Z4t () —log Zyy " (m))lEj(m)] ‘;EJ]

+E [E@ [ ( log Z3# 5(x) — log Z]ﬁ:;“f (x)) 1 E;(@] )fj] .
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We hereafter use the notation

DY (z) = E [E@Klog 2 5(w) —log Zyy 5" (#)) 15, ’fa] 7

AT,.
DY(z) := E[ [(log Z4t () —log Zy 5" (:c)) 1E§(x)”fj} .
for the two summands of this decomposition. We then have that
Y. E[p@pw|- Y E[DP@DpY )
j:ajeAj”\,mAlj\, j:ajeAf\,nAlj\,

+ Z E[D<b)( )D<S (y )] + E[D;.S)(x)D;b)(y>:| + E[D;-S>(.CI})DJ(-S)(y)] _

jia;e A% nAY

(4.14)
We will first prove that
N LY vy Y, E[DP@DY )| —— 0. (4.15)
|e—y|<2NE*e J:a;eARNAY
Note that
® A AT
DY ()] <E|Ex| [log 24 5(x) — log Zy " (2)] 1, ) ||
h A AT,
<N"E|Ex| 1Z85(0) — 235" (@) 15,00 ||
h A AT,
<N"E|Es| 128 ,5(0) — Zy 5" @) || 7 (4.16)

where we used the fact that if z,y € [t, 00) for some positive ¢ > 0, then |logz —logy| < %|z —yl,
for the second inequality. For the sake of the presentation, we shall adopt the notation
A A,Taj
E Egj[ |23 5(2) — Zy 5" ()] ] ‘fj = W,(z), (4.17)

by omitting the dependence in N. By using the estimate (4.16) and summing over j : a; €
A% n AY; we deduce that

3 [|D<b> (x) D (y )|] <N Y E[vvj(x)wj(y)]. (4.18)
jra;eA% nAY jra;e A% nAY

If we denote by S” the path of a random walk starting at = we have

A A7Taj ~ Hi\a-
ZN,ﬁ(x) - ZN,ﬁ (.CC) = 0(5)(77% - naj)Em [6 J lajeSz] ) (419)
where
u:c4\aj (w) = Z [Bwa - A(B)]]‘(JLESz ) (420)
ac A%,
a;éaj
and recall from (3.2) that
eﬁwaj _)‘(B) _ 1 d - eﬁwa’j _A(B) _ 1
e — n -
e o(58) ey o(8)

At this point, we will bound W;(z). By (4.17) and (4.19) we have that

f}‘[ P(dw, J 4, ) |28 5(2) — Zn " (@)

k>j

fHP (dw, J a;) 0(8) 11a; = Tla;| Ex e Mina; )1%,6590].

k>j
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H%
We will perform this integration in steps. The expectation, E,, [e Ay (w)lajesx], does not depend

on J)aj by (4.20), and we have by triangle inequality

| Pta,) o3, ) <o) (1,1 +1) (4.21)
Furthermore, by exchanging the integral and the expectation we deduce that
HI
JH P(dwg B¢ ™1, o] = Byfe 0@ ], (4.22)

k>j

where

Hilm{al,...,aj_l}(w> = Z [6wak - A(ﬂ)]lakesz :

1<k<j—1
(lkEA:]L‘V

If 7 =1, we set the corresponding energy to be equal to 0. Hence, combining (4.21) and (4.22)
we obtain that

Hzf-\ a vy (UJ)

W, (2) < o(8) (I, | + 1)By[e teren®1, ]

Therefore, by Fubini we get that
2 Hintagay ) A ey e, @)
W, () W) < 02(8) (I, + 1) By e Anenmeg )™t 0™y o, 0],

which after taking the expectation E[ - | leads to

E|W;(2) W, ()| < 402 (BB, [=PExten1, o] (4.23)
Therefore, by summing over j : a; € A% N AY; we deduce that

> E[Wi@)W,)] < 403 (DB, [P D Ly (2, )] (4.24)

jraje A% nAY

Note that the rightmost overlap, Ly-(z,y), goes up to time N€, since by (4.2), for every
j : a; € A% 0 AY;, a; has time index t < N® therefore,

NE
Z 1ajeswm5y < Z lsz—sy = Ly=(z,y).
jia;e A% nAY n=1

Recalling (4.18) we get that
> E[|D;.b> (z) DY (y)|] < NP4 (B) B, [P £ (2, y)].
jiaje A% nAY
So far, we have shown that

NELOY en(my) Y E[DY@DR )]

lz—y|<2N 5t jrajeA%nAY,
a_
<4?(B)N2TIE N on(a,y) By, [ DENEN Ly (2, y)]. (4.25)
|lz—y|<2N 3 e

Therefore, to establish (4.15), we derive an estimate for E, [eAQ(B)EN(m’y)CNE (z,y)]. Let us
denote by 7, , the first meeting time of two independent random walks starting from z,y € z4,

respectively. By conditioning on 7, , we obtain

EW[ 2OLNEY £ () ] Z E, [ MNBEN@Y) L ()| n]P(Tx,y —n).
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Using the Markov property we obtain

N¢©
2 B, [ ON @ Ly (2, g7, = n|P(r, =2 B0 Evn) (14 Lye ) [P(r,, = n).

For every 1 < n < N¢, we can bound the expectation
E[e)\z(ﬁ)(l-‘rﬁN—n) (1 + ENE—’N,)] < 6)\2(5) (E[e)\z(ﬁ)ﬁao] + E[e/\z(/@)ﬁooﬁoc]> = C(I@) < 0,
because (€ (0, 8r2), see (1.4). Moreover, we have that

P(Tm,y = n) < Z Qn(z - x)qn(z - y) = QQn(x - y) :

zeZd

Therefore,

Exy[ MNBLN @Y L (2, y ] 2 Gon (T — (4.26)

)

Recalling (4.15), (4.25) and (4.26), in order to conclude Step 3, we need to show that

NE-L+2h Z (x,y) 2 Gon(x —y) —— 0.

. N~>OO
Ix—y\<2N7+a

We bound ¢( f) by its supremum norm and use the fact that ;. -4 ¢9,(2) = 1, to obtain that

d_ _
NETEE Y (z,y) Z gon(@ =) < |lollos N1 Y on(@) < el lolly N2t
\:c_y|§2N%+°‘ zeZd
(4.27)
Since h € (0, %), we have that 2h + e < 1, hence the last bound vanishes as N — o0, which

concludes the proof of (4.15).

(Step 4) - Events of small partition functions. Let us see how one can treat the rest of the
terms in the expansion (4.14), which involve the complementary events Ef(z), E(y), recall their
definition from (4.13). We need to show that

Nzt Z en(z,y) 2 E| D (2) D} (y) ~= 0
lz—y|<2N 5+ jra;eA%nAY .
Nz > on(z,y) > E| D (2) D} (y) ~ 0
e—y|<2NE+e jra;eA%nAY - T
d_ [ s s i
N2t Y on(aLy) > E|DY(x)DY(y) ~=0-
z—y|<2N 3T jra;eA%nAY .

It suffices to show one of the these results, since all of them can be treated with similar arguments.
Let us present for example the proof that

d_ s
Nzt Y on(ay) > E[D](-b)(l“)D](-)(y)] ~= 0
lz—y|<2N T+ jra;eA%nAY

Recall that
D (z) =E|E log Z4 (z) — log Z 27 (z) )1 F
g (z) a[( og N,,B( ) — log N5 ( )) Ej(x)” AR

and

D;;) (y) =E E&[(log Zf\‘w(y) —log Zﬁ:;% (y)>1E;(y)”]:j
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By Cauchy-Schwarz one has that

E[D}”) (x)Df)(y)] < E[(D;.” (gc))Q]é E[(DJ(.” (y))2]

N[

Note that,

E[(D;.")(x))Q] <E Eg[(log Zjéf’ﬁ(x> — log Zﬁ:;aj (x>>1Ej(x):|2:| )

and similarly

© 9 [ A AT, 2
E|(DY(1)*] < E|Ea| (Tog Za 5 () — 1og Zy 5" () ) L | |
since it is true that E[E[X|G]?] < E[X?] for a random variable X : (€2, F,P) — R and a o-algebra
G < F. We note here that we will use the notation E_ ;[ -] to denote the expectation with respect

to w and @, i.e. the resampled disorder. We use Jensen inequality for the expectation Eg[-] and
bound the indicator 1Ej(l,) < 1 to obtain that

e[ (0 )] <[ s (108 28500~ 108 237 () 16,0 ||
el (ot e 7 )
“E,. [(log Zjé,,g(él?) — log Z;:‘[:;aj (3?))2]

<4 E[(log Zj\qw(x))z] < .

N

AT,
by using the inequality (a + b)? < 2(a® + b%) and the fact that log Z]‘:‘,ﬁ(w) and log Zyy 5 7 ()
have the same distribution. Also, E[(log Z]‘é,ﬁ(a?))ﬂ < o0 by Proposition 4.2.

For E[(D;S) (y))z], we have that

E[(05 ()’

N

e Es[ (1o 23b) ~ 08 2, ) 155 ||

[
ng’aKlogZﬁ,ﬁ(y)—logzﬁi; (y )> Lesy >]
(

< 45[( log va‘ﬁ(y))‘l] P, (Eo(y))?

Last, by a union bound we have that P (E;(y)) < 2P(Z]<‘]ﬁ(y) <N M= 2P(Z]<‘,,3(O) < N~h).
Therefore, there exists a constant 6’ﬂ, such that for all j > 1,

E| DY (@)DP ()] < CsP(Z3 5(0) < NN
Hence, we have that

NN (@)Y, E[DY@DY ()]

|x—y\<2N%+°‘ jrajeA% nAY
~ d_q A —hy1
<Cg Nz Z en(z,y) Z P(Zn(0) < N7")a.
lz—y|<2N T+ jra;eA%nAY

From the definition (4.2), we can bound |A% n A% < N5+ < N(5+D_ We also have that
the probability P(Z jé,’ B(O) < N~") decays super-polynomially by Proposition 4.1 and so does
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P(Zjéw(O) < N_h)%. Indeed, by Proposition 4.1, we have that

i 1 (hlog N)Y
P(ZA N*h>4< 1 _ e )Y 1,
Nﬁ(:z:) < cj exp ics v >

Thus, we have that

d_ s
NI enmy) Y E[DP@)DY )]
lz—y|<2N 3T jra;eA% nAY,
& ardl NG
CoN> AR A A% D, en(my)P(Zy5(0) < N7
|z—y|<2N T+
N Al Chy 1
CyN2 'NUL N on(2,y) P(Zy 5(0) < N7M)a

jo—y|<2N 3T

~ d —hy 1L
<Cy ll]? N5HP(Z3 5(0) < NM)i = O(N*) exp(— o(1ogN)7) .

N

N

Since v > 1, the last bound vanishes and therefore we conclude that

NI (@) Y, E[DY@DY )| —— 0.

- ) - v N—
lz—y|<2NZ T Jia;eAyNAY
O

We now proceed to the proof of Proposition 4.5. We will need the following lemma which
provides a bound on the rate of decay of E[(Z]‘é,ﬁ(x)f]

Lemma 4.8. For every 3 € (0,82), there exists a constant Cg, such that for every X € (0,¢)we
have that E[(Z]‘éfﬂ(x)f] < CﬁN*A(%*l).

Proof. Let us fix a positive A € (0,e). We then have that

N k
E[(ZAJG,B@))Q] = Z o* Z Hqgrni,l(zi —zi_1) -

k=1 1<ni<..<np<N i=1
Ti=20,21 .2, €%
Jie{l,...,k}: (n;,z;) €A%,

Since the rightmost summation is over sequences of k space-time points (n;, 2;)1<;<k, such that
at least one of the points (n;, z;)1<;<k 1S not in A%, for every such sequence, there exists at least
one index i € {1,..., k}, such that |n; —n; ;| > 1 N® or |z, — z;_;| > %N%J“O‘; recall the definition
of A% from (4.2). Thus, by changing variables w; := z; — z;_1, {; :== n; —n;_; and extending the
range of summation from 1 < ¢y + ... + £, < N to {q,....¢;, € {1,..., N}, we obtain that

N k
A 2 ok 2
E[(ZN,ﬁ(aj)) ] < Z o Z Z (1{€j>%N5} + 1{€j<%N5’|w]“>%N%+O‘}) qul(wl) .
k=1 l1yeli€{1,....N} j=1 i
w17~.-,wkezd

k
=1

By changing the order of summation, for each i # j we have that Zé\j _1 Dw,ezd a? (w;) =
ZZ:l q2¢,(0) = Ry Thus, we have

N

E[(Z]eﬁ(:c))z] <M o*R Y (Lo 1vey + 1{€<%N57‘w‘>%N%+a})qg(w). (4.28)
k=1 le{1,...,N}
weZ4
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Let us consider the contribution of the two indicator functions separately. For the first one, by
summing w € Z¢, one obtains, for N large enough,

N stk N
Do RETE YT q(0)< Y o™RETE Y g(0)+ D) o™ REk
k=1 INe<t<N k=1 L Ne<t<N k>Ne—2X
Ns—)\ N
< > o*RER(Ry — R+ Y o™ Rk
k=1 k>Ne—A
oo 0]
< (Ry —Ry») Y, ka(B)F + ), ka(B)F, (4.29)
k=1 k>Ne—A

where a(8) := 02(B) Ry, and Ry, = Y.~ go0(0). Note that, since 3 lies in the L*-region, we have
that a(8) < 1. Therefore, the sum > ;- , ka” is finite. Using the local limit theorem one obtains
that

o0
Ry - Ryr <C Y — = O(N-MED),

d
esn b2
for some C' > 0. Moreover, since a(f) < 1, there exists p > 1 very close to 1, so that pa < 1 and
for every k > kg, for some ky € N, we have that ka* < (pa)®. Therefore,

e} o0}
Z ka® < Z (pa)* < C(pa)N" " =0 (N_’\(%_l)) .
k>Ne—X k>Ne—X

As a consequence, the rate at which the sum (4.29) decays, is at least Nf)‘(%fl), for any A € (0, ¢).
For the contribution of the second indicator function in (4.28), namely the sum

N
2k pk—1 Z 2
Z o RN k 1{€$%N5,\w\>%N%+a}q€(w)’
=1 te(l,...N}
wez?

one can see using moderate deviation estimates for the simple random walk and following the
proof of equation (3.4) in [12], that it can be bounded by CN'B(nﬁ)Na =0 (N_’\(%_l)), for some
ng < 1 and some constant CN'B > 0 (we remind that the exponent « is defined in (4.2)). Therefore,
one obtains that there exists a constant Cz > 0 such that E[(Zﬁﬁ(m)y] < CBN*A(gfl). O

Proof of Proposition 4.5. It suffices to prove that:
N%E[\ON(M] —0,

as N — 0.

As in [12] this is a careful Taylor estimate. We define

24 (@ 24 (w
D% ::{i Z’ﬂ( ) >N—p} and Dy := DEUDZ—Vz{‘ Zﬂ( ) N—p},
ZN,ﬁ(x) ZN,B(x)

for p = %p*, with 0 < p* < 1 to be defined later. For ¢ = %q* with 0 < ¢* < 1, also to be
specified later, we have that

P(Dy) < P(Dy 0 {2 s(2) = N71}) + P(Dy 0 {23 (2) < N79})

<P(|Z8p(@)| > N~00) 4 (23 5(w) < N71)

< N2(p+‘J)E[(Zj§‘,’5(:U))2] + P(Z;eﬁ(x) < N—q> . (4.30)
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For the last inequality we used Chebyshev inequality. By Lemma 4.8 we have that E [(Z ]‘:‘,7 8 (1‘))2] <

Cng’\(%fl) for some constant C'z and for every A € (0,¢). By Proposition 4.1 we have that
P<Zjé, slz) < N_q> vanishes super-polynomially i.e.

—¢"(log N
P(Zl‘éfﬁ(x) < N_q> < cgexp (q(;;g)) , v>1.
Therefore, by plugging those estimates into (4.30) we get that for a constant C’B > Cg,
P(Dy) < CpN?@Ho-A5-1) (4.31)

For a constant C < o0, it is true that,

1+y
[log(L+y) —y| < C- {2 if —l<y<?i-
|y if0<y<ow
Hence,
Z4 (2)\?2 Z4 (x
E[\ON(x)}] <EK JX’B( >> 1%] +EH ]Xﬁ( ) (4.32)
ZNﬁ(x) ZN,B(l’)
Let us deal with each term separately. We have that
Z3 4(x)\ 2
E[(ZJX”B( )> 1va] <N, (4.33)
Nﬂ(l')

by the definition of Dp. We split the second term as follows:

el|Z8@y ] _g[|Z8s@), [ Z8s@) |,
Z3 (@) | P T |28 )[Rz @z | E| 78 PP s <N |

(4.34)

For the first summand of (4.33) we have that
73 5
EH Ns(@)

1
Zf\lf,ﬁ(fﬁ)

[15A
Df\,m{Zf\‘,’B(z)ZNq}} <NV E_‘ZNﬂ(x)lle(,m{Zf,,ﬂ(x)ZN*q}]

< NE[|Z3 5(o)[1¢ |

1

< NE[ (2 5(0))*| *P(D)*

by Cauchy-Schwarz. By Lemma 4.8, we get that E[(Zf\‘,ﬂ(x))Q] < CﬂN*/\(gfl) and P(Dy) <
CA’ﬁN2(p+q)_>‘(g_1) by (4.31). Hence,
HZJf\‘/,g(fL’)
E A
ZN,5<$)

92) Npra-A(42)

e Y
1DEm{Z;§‘,’B($)>N‘1}:| < CgNIN~N
— (NP2 225

For the second summand of (4.33) we use Holder inequality with exponents a = %, b=c= i to
obtain that

. 1 1 1 L
A 2|2 4 A —q\
1D$m{Zﬁ,g(I)<N—Q}} < E[<ZN,B(95)) ] E[W] P(Zp(x) < N79)i.
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The term P(Z4 glz) <N _q)% vanishes super-polynomially therefore, recalling (4.34) we conclude
that

a—2
4

1D$} < C) 5 NPFP2a72250) (4.35)

[

for some constant Cy g > 0. The second summand of (4.32) can be treated similarly. In particular,
we split it as follows

1 1 1
Z4 5(2) |2 74 (z)]? 74 ()12
E %() 1. | =E %() _ = ~5() _ ol
ZNB(J}) Dy ZNB(x) Dyn{Zypg(x)=N—9} ZN,ﬂ(x) Dyr{Zy g(x)<N—2}
(4.36)
For the first term we have that
. 1
ij\lf (‘r) : [ 5 1
75 g A s
EHZNB(:U) 1DNH{ZN’5($)>N_”] <N2E7|ZN76(33)|21D;V]
<NEE[|Z3 5(0)|31p, |
- 1
<NIE _(Zjé,ﬁ(m))Q] P(Dy). (4.37)

d
2

by Hélder inequality. By Lemma 4.8 we have that E[(ZA]@]’B(:L“)P] < CBN_)‘( D for e (0,¢)
and by bound (4.31) we have that P(Dy) < C'ﬁNQ(p+q)_A(%_1). Combining these two estimates
we get that
1 .
N%E[(Zﬁﬂ(x)ﬁ] P(Dy)T <CNEN 2T N3 Pra-ATR)
= (NP2 2T (4.38)
where we used Holder inequality for the last inequality as well as bound (4.31) and Lemma 4.8.
For the second term in (4.36) we can proceed as before, namely
ZAJjéf (x) 5 i 1 1
8 A 2[4 4 —q\ 2
E| |2 1, ) <E[Z ]E[i]PZ < N-9)3
[ Dyr{Zy g(z)<N ‘1}] ( Nﬂ(x)) (Zj(‘w(ﬂ:))‘l ( Nﬁ(x) )
(4.39)

Zyp(x)
by Hélder inequality. The super-polynomial decay of P(Zy g(x) < N~9) together with the bounds
(4.31), (4.37), (4.38),(4.39) and Proposition 4.1, allows us to conclude that

EH Zf\‘f,/a(ﬂf)
Zy ()
for some constant Cy g5 > 0. Recall now that we wanted to prove that N%EUON(.’E)” — 0 as

N — . By the estimates (4.33), (4.35) and (4.40) respectively, we see that it suffices to find
exponents p*, ¢* and A, so that

1
2

1

1
2

1Dz_v

} < Oy gN3PH2- 22T (4.40)

3
1—2p* <0, 1—2\+p* +2¢* <0, 1—2)\+§p*+2q*<0.

Since we can consider \ € (0,¢) arbitrarily close to € and also because the second inequality is
implied by the third, it suffices to find exponents p*, ¢* and ¢, so that

3
1—2p* <0, 1—2€+§p*—|—2q*<0.

This would lead to ¢ > (1 + %p* + 2¢*) and since we can take p* > % arbitrarily close to &

2 2
and ¢* > 0 arbitrarily small, it suffices to choose ¢ > % in the definition of the sets A%, recall
(4.2). O

We proceed now to the proof of Proposition 4.6.
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Proof of Proposition 4.6. We need to prove that

42 Z5@) e ) 20
" xédw( )<Zj3,g(m) (Zn5(@) 1)> ~ U (4.41)

We remind the reader that By, := ((N¢, N] A N) x Z? for some g € (¢, 1), the choice of which is
specified by (4.65). We also define the sets

By = ((N°,N]nN) x 2%,
Cy = {(n,z)eN x Z% 1<n<N® |z—2 2]\7%*0‘}_
We decompose Z jé,’ B(CII) into two parts
5 A,B AC
ij\lf,ﬁ(x) = ZNﬁ (z) + ZN,ﬁ (),
where

A,B T T
Zyg (@) = Z ol"lg O™ (r)n(7)
TCARUBN: TNBNy#9D
AC T T
Zys (@) = > aTlg @) (F)n(r). (4.42)
7c{L,...,N}xZ4: 7nC% #2

and if 7 = (n;, Zi)1<i<k7

<

k
q(O,z) (1) = ap, (21 — ) H (Inrni_l(zz‘ —Zzi_1)-
i=2
The proof will consist of three steps.

(Step 1) The first task will be to show that Zﬁg(m) has a negligible contribution to (4.41).
The proof of this is based on the fact that Zf\‘,g(x) consists of random walk paths which are

super-diffusive: the walk will have to travel at distance greater than N 39 from 2 within time
N¢. Therefore, by standard moderate deviation estimates one can show that

N Y on(@) Zy§ (@) 12
4 en(T) -7
= Z]‘\Afﬁ(x) N—w

super-polynomially. The proof follows the same lines of the proof of Prop. 2.3. in [12] and for this
reason we omit the details.

(Step 2) The second step will be to show that in the chaos expansion of Zﬁ:g(x), the
contribution from sampling disorder 7, ,, with » < N¢ is negligible, for every ¢ € (¢,1). In

particular, let us denote by B]s\t,rip the set Bjs\t,rip = {(n, z) € (N%, N?9| x Zd}. We can decompose

Z]‘?,iBB(ac) into two parts Z]‘?,iﬁB(a?) = Zﬁ:§< (x) + Z]‘?,:I?Z (z) such that

N k
A,B< . k
ZN,ﬁ (‘T) = Z g Z ani—ni_l (zi - Zi—l)nni,zi . (443)
=1 O:=ng<n,<..<np<N 1=1
x::zo,zl,,..,zke_zd
(”mzi)lsiskﬁB?/”P?é@

o

and

N k
A,B>
ZNﬁ (.1‘) = Z Uk Z ani—ni,l (Zz - Zi—l)nni,zi . (4'44)

k=1 0:=ng<ng<..<np<N i=1
x:=ZO,zl,...,zk€Zd
strip
(nis2i)1<isk "By T =9
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In this step we will show that

N2 Z (z) ij\qf§<($) L%(P)
4 YN T 7 ;
= Z]‘\Afﬁ (1’) N—w

or equivalently

798 () Z38°
NETUN on(ay) E| 2 @) Zg W) 0. (4.45)

Zis@) 2 | v

Let us denote by S, 5Y the paths of two independent random walks starting from x, y respectively.
Let us also use the following notation

Fy(@,y) = B, [(e"@ 1)@ — 1)1, e ol (4.46)
where
H @)= ), (Bwnz— A(B)Lsg=s,
(n,2)eNxzd
and
FR(2,y) o= By () — 1)) — 1)1, o, pwin ], (4.47)
where

H?\Cs(w) = 2 (/Bwn,z - )‘(6))15%=z

(n,2)e(By ™)

is the energy which does not contain disorder indexed by space-time points in the region Bsmp.

Note that, even though in the definition (4.46) of Fi(z,y), the energies HZ% (w), His(w) do not
contain disorder indexed by B St”p , there is still the constraint that the two random walks 5%, SY

strip
meet at some point in By .
We will control (4.45), by showing that

A,B< A,B<
ZN,,B (2) ‘ ZN,ﬁ (y) _
Z]é,ﬂ(x) Z]A’é/,ﬁ(y)

and then showing that when the right-hand side is inserted into (4.45), then it leads to vanishing
contribution. Let us check first the equality (4.48). The chaos expansion of Fi(z,y) is

Fy(a,y) =E,,[("©) = 1)("@ —1)1

1”7y

Fy(z,y) — Fy(2,y)

- Zy () Zy50y) |

(4.48)

S’CmSUmBS“i”#@]
— k+¢
= Z g Z Eacy H 15‘1‘ =z, 151’/ —w 1SzﬁsyﬂBStnp7ﬁ®]

1<k, E<N (n4:2) 1<i<k I<isk

<1<
(mjwi)i<i<e st

< T sz o,

1<i<k
1<yt

Similarly,
n ¥(w
FNS(.I', ) E y[(eHns( w) _ 1)(€Hn5( ) _ 1)lSmmSyﬁBStrip7é®]

Z Z . By H 15”” =2 1Sy =w; 1SImSymBSt”P;é®]
(nivzi)lgigkﬁBi\t{'ng 1<ikgk

strip 1<~7<£
(mjwi)i<j<enBy =2
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. strip strip
The constraints (n;, z;)1<i<kx N By © = @ and (mj,w;)1<j<¢ N By~ = @ come from the fact

that the energies H%(w), Hps(w) do not sample points from B}S\t,rip. The chaos expansion of the
difference, Fiy(x,y) — F§(z,y), is then

FN(wv y) - FJQ]S(ZE?y) =

k+¢ )
o Z E%y[ H 1S£i=zi15%1j =w; 1SZmSymBj\t,”p7&®] H nniazinmjij :
ISk t<N (”ivzihsiskﬁB;tan#@ %232@ %ézilz

or )
strip
(mjwi)i<j<enBy " #@

Therefore, the expansion of E

Fy(z.y) = F(x, y)] N

Zy 5() 25 5(y)
Fn(z,y) — F(x,y) _E 1 . Z
Z3y (1) 23y 5(y) Zy5() 25 5() | Ty

strip
(n4,2i)1<i<k "By " #9
or )
strip
(mjwi)i<j<enBy " #2

XE%ZJ[ H 1Sﬁi:zi 15ng =w; 1SImSymB§\t,rip;é®] H nnivzinmjij
1<i<k 1<i<k
1<j<t 1<j<t

(4.49)

Note that if for example (n;, 2;)1<i<k O Bj‘\t,rip # &, the expectation E[-] will impose that also
(M, 2;)1<j<0 O B;t,r'p # @ and in particular, (n;,z;)1<j<p O B]s\t[rlp = (mj,w;)1<j<0 N B;’\t,”p, due
to the fact that the n variables indexed by space-time points with time index ¢ > N€ appearing
in the expansion of Fiy(z,y) — Fi(z,y) have to match pairwise, because they are independent
of Zj(‘,’ 5(2), Z jé,’ 5(y), and so if a disorder variable 7, .. or T, w,; is unmatched, their mean zero
property will lead to vanishing of the whole expectation E[-]. Thus, the indicator 1 §%SYABP 40
will always be equal to 1 for every summand of the last expansion, since we are summing space-

time sequences, such that (n;, 2;)1<;<k O (M, 2j)1<j<0 N Bjs\t,rip # &. Therefore, the expansion of
Fy(z,y) — Fy(z,y)

is actually equal to

Zféf”g(l‘)zf\‘/,ﬁ(y)
Fi(e,y) — FRy) | I gty
Z3 5(2) 235 5(v) 73 8@ 25 50) iy

stri
(ni,z)1<ick "By T #AD
strip
(mjwj)i1<j<enBy " #9

XEz,y[ H lSﬁi:zilS?nj:wj] H nni,zinmj,wj

1<i<k 1<i<k
1<j<t 1<j<t
Recalling (4.43), we have that
A,B< A,B<
E 2N (2) ZN,B (y) _E 1 fett
74 ' 74 - 74 74 o 2
() Ns(W) Na@Z8 5 W) 1 cigen

strip
’ (n4,2:)1<i<k "By T #9
(mjw;)1<;4 ABSP g
JrPiIIs<j<e N

XEI,y[ H 15'%7;:21_15?”]_:1”].] H nni,zinmj,wj

1<i<k 1<i<k
1<j<t 1<5<t
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Therefore, we conclude that

A,B< A,B<
ZN,B (2) ' ZN,g (y)] _

E
Zi @) Zisy)

Fy(z,y) — FR(z, y)]
Z3k () Z3% 5(y)

Having established this equality, to finish the proof of (4.45), we will prove that

4 Fy(z,y)
Nzt on(z,y)E N ] 0, (4.50)
P R0 2,0 | 7
and
4 FR(z,y)
N2t on(z,y) E N > 0. (4.51)
wgzd Zy 5(2)Zy gy) | N—oo

We start by showing the validity of (4.50), since (4.51) can be treated with the same arguments.
In view of (4.46) we have that

FN<$7y) :E:v,y [(eHI(W) - 1)(6Hy(w) - 1)1SzmsymB§\t]fiP¢®]

_ HE (w) +HY _ He ,
=B, [e ) (W)lS”ﬁSyr\B%hp;ég] —Egyle (W)lswmsymBiﬁ”p#z]
—E;y [eHy(w)lsmeymBif,”p;é@] +Pyy (Sz nSYn B?\t/”p # g) . (4.52)

We begin by showing that

0.

a_
Nzt Y on(z,y)E

x,yeZd

H? (w)+HY (w .
By y[e ) UlsmeymB?@””;é@]
N—o0

Z3y 5(®) 23y 5(y)

The main point here will be to remove the denominators. Consider the set Ey := {Zat 5(2), VA 5(y) =
N~"} for some h € (0, %) We have that

HE () +HY (w) 1 HE (@) HHY ()1

E

[Ew [e

SZmSymBj\t,"P;e@]] * [Ex,y[

SzmsymBj\t,”p;éQ] ]
FE
Zfefﬁ(x)sz,ﬁ(y) N

Z]’é,ﬁ(x)Zﬁﬂ(y)

H* HY
+E{Ex,y[e (w)+ (W)lsxmsyﬁB%ﬁp#g]
Z35 5(0) 23 ()

We can bound the first summand using the definition of the sets Fy, as follows

E[EM[

1%] . (4.53)

H? (w)+HY (w) )
€ 1SzmSymB§f,"p;é®]

Zfé/,ﬁ(x)zféfﬁ(y)

1EN:| < N2h E|:E1-7y [eHx(W)‘FHy(W)1SzmsymBstr|p¢g]:|
N

2h A Ly (z, :
— N E, [¢*®) N<xy>1szmsy03§3.p Lp) (4.54)

We condition on the first time, 7, ,, that the two random walk paths meet, to obtain that

T,
Ne

Ex,y[em(ﬁ)ﬁN(I’y)1smmsymBj\t;‘P¢@] _ Z E., [eAZ(B)EN($1y)lSmmSymBi\t]ﬁp#g|7-I7y = TL]P(Tx’y =n)
i

< N E, [P0,

n=1

= n]P(T
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By the Markov property
Ne
Z Ex,y[ekz(ﬁ)ﬁN(I,y)h-w’y _ n]Pz,y(Tz,y _ n) E[6>\2(5)(5N7n+1)]13x7y(Tx’y - n)
n=1

Z er2(8) E[6A2(6)£N7n]Px,y(Tx,y =n)

n=1

Ne
< e)xz(ﬂ) E[e)‘Q(B)['OO] Z Q2n($ — y) . (4.55)
n=1

We set CN'ﬁ = e E e’\2(6)£00] and remind the reader that E[e’\2(5)£00] < o because f € (0, 5r2).
Therefore, if we combine (4.54),(4.55), we deduce the estimate

H® (w)+HY
)E[Ew[e rr (W)lSInSyﬁBi\trrip#@]

1,
23 5@ 23 50) »

d_
N2 ! Z @N(xay
x,yeZd

Ne
~ d
<CyNe 20 N on(@,y) D gonly — 2).
x,ycZ n=1
1-0) 'see (4.27) for the derivation of this fact.

The last bound vanishes because h € (0, =
We now deal with the complementary event EYf; in (4.53). Recall that

Ef = {Z{p(x) < N""} U {Z sly) < N 7"}
By Proposition 4.1 and a union bound we obtain that
—hY(log N )Y
P(ES) < 2P(Z3 4(x) < N™") < 2czexp ((Og)> . (4.56)
b Cﬁ

Recall that we need to show that

E [eHx(w)JrHy(w)l
a:"y
|

SmeymBg”"#@]

a_
N2 1 Z QON<HZ',y 1EJCV] N 0.

x,yeZ

Z]‘?,ﬂ(x)wa(y)

We have that

HT (w)+HY (w) ' % (w w
E[Ex’y[e 1Szr\SyﬁB§\tfnp;ﬁ®:| E]CV] <E[ [CH ( )+Hy( )]

By 1pe
Z]é],g(x)zjéf,g(y) N

_g| &) Znply),
Zféf,g(x) Zfér,g(y) Pl

Z]é]ﬁ(x)zljéfﬁ(y)

In order to bound the last expectation, we use Holder inequality with exponents p, p,q > 1, so
that 2 + 1 = 1, with p € (2,00) sufficiently close to 2 so that E[(Zy 4(x))?] < oo, thanks to

Proposition 4.3. In particular, we obtain that
Zngle) Z Zng(0)\P
E JX,B( ) Z,ﬁ(y)l% <E < ZX,ﬁ( )>
ZN,g(x) ZN,B(W ZN,ﬁ(O)
We apply Holder inequality again on the first term, with exponents r;s > 1, so that % + % =1

pr
and r > 1 is sufficiently close to 1 so that we have E[(ZN75(0)> ] < o0, by Proposition 4.3.

2
p

Q=

P(EY)

This way, we obtain that
2

e[z |

kSEIN)

<E [ (ZN,B(O)YT] "E { (Zf\‘r,/a(o)) ps] "
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By Proposition 4.2, we also have that E[(Zjéw(()))ps} < 0. Therefore, we have showed that

there exists a constant C’ﬂ, such that

Q|

< C3P(EY)

HE (w)+H?
By y [ ) 15%5%1??3"’;&@]
E Lpe

Z35 5(2)Z3 5(y)

for some ¢ > 1. Thus,

H® (w)+HY _
N%—l Z SO (x y) E ECE,y [6 (w)+ (UJ) 1SxﬁsyﬁB§\t]np7é®:| 1
N Y FEc¢

vyezd Z]‘é,ﬁ(a:)Z]‘:‘,ﬁ(y) o

A d_ —h7(log N)”
<CgegN2~1 , 0,
8¢s Zyze]Zd e (2,y) eXp< acs T

because v > 1. Recall now decomposition (4.52). We have shown that

E [eHz(w)+Hy(w)1 strip ]
da_ .Y STASYNB; P #D
N2~1 on(z,y) E X 0. (4.57)
1,7;2(1 Z35 5(2)Z3 5(y) N—o0
Similarly, we can show that
_E [eHx(w)l strip ] i
a_ x,y STASYnB #&
Nzt ¢n(z,y) E N 0,
x,ygzd Z35 5(2)Z3 5(y) | Now
_E [eHy(w)l strip ]_
d_ x,y STASYnB )
N2 ! SON (x7 y) E - O Y
Iyygzd Z3 6(2) 23 5(y) | Now
a_ [ 1 .
N7 Y pn(ay) E ZAB(x)ZAﬂ(y)]Px,y(S” nSYn BY'P # 2) ——0. (4.58)
x,yeZd L “N, N,

The steps to do that are quite similar to the steps we followed to prove (4.57). Therefore, the
proof of (4.50) has been completed. Then, the proof of (4.51) follows exactly the same lines,
since F?(z,y) admits a similar decomposition to (4.52).

(Step 3) Recall from (4.41) that we have to show that

d—2 74 (z - 1
N Y ont) (e — () - 1)) £ %0

A
:L"EZd ZN:ﬁ (;U) N—o©

In Steps 1 and 2 we showed that if one decomposes ZAjé,ﬁ(a:) as Zjé,ﬂ(a:) = Zf\‘,g(a:) + Zf\‘,’g< (x) +

Zﬁ:gg (x) (recall their definitions from (4.42),(4.43),(4.44)) then one has that

V5 @) L2

d—2 ZNB
N © on(r) = 0.
erZ:d Zﬁﬁ(:p) N—ow
and
N Z ( )Zf\l/g () r2p)
4 enlz ’
= Zﬁﬁ(:p) N—-w

Therefore, this last step will be devoted to showing that

N2 T on )(Zzé’ﬁisc) (28 1)> ve
i eNE)\ a7 r)=1) ) >0
=, Z3 () N.B N
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We can rewrite the expansion of Z]’?,’BBZ (x), according to the last point that the polymer samples

inside A%, and the first point that it samples in B 2 where we recall the definition of Bﬁ, from
(4.7). In particular,

A B>
ZN’ﬁ (ZL‘) = Z Z(I)L,‘t,,@(xaw) ' QT‘—t(Z - w) O My ZT,N,B(Z) . (459>
(t,w)eA%,, (T,Z)EBI%]
where Zétﬁ(x, w) is the point-to-point partition function from (0,x) to (t,w), defined by
Zé“tﬁ(x,w) = 11if (t,w) = (0,x) and by
Zétﬁ(m, w) = Z J'T‘q(o’x) ()n(1). (4.60)
TC A% N ([0,t] xZ):m3(t,w)
We will show that if we replace ¢,_,(z — w) by ¢,(z — ) in the expansion of
Z ZA B> (2)
on(T)  —F
xeZd foﬁ( )

via (4.59), then the corresponding error vanishes in L!(P), as N — c0. Note that if we perform
this replacement, then the right hand side of (4.59) becomes exactly equal to Z4 ﬂ(x)(Zﬁz (r)-1)
and this will lead to the cancellation of the corresponding denominator. We define the set

1
Bi(2) :={(r,z) € B}: |z —a| <r2**}.

where « is defined in (4.2). Then by first restricting to (r,z) € Bx(z), we want to show that the
LY(P) norm of

= L) (e )) o 7ol
2 onte) (t,w%% S (et =) =0 =) s Zsl), (46

(r,2)eBZ ()

vanishes as N — o0. We note that the rightmost sum in (4.61) is essentially over points (¢, w) € A%,
so that ¢,(z — w) # 0, because otherwise the point to point partition function Z(ftﬂ(x,w) is
zero. In that case, we observe that if due to the periodicity of the random walk, ¢, _,(z —w) =0
then we also have that g,.(z —x) = 0, since ¢;(z — w) # 0. Therefore, we shall assume that
¢r—i(z—w), q,(2—x) # 0 from now on. By Theorem 2.3.11 in [35], we have that for (r, z) € Bx(z),

q’r(z - :U) :29

s

(z —x)exp (O( + L=zl x' ) 1y (z—2)#0
(z —x)exp (O(T*HM)) 1y (z—2)#0 - (4.62)

Furthermore, for (¢, w) € A%, we have that

r
d

Gr_i(z2 —w) =2g:—t (z —w)exp <O(r -+ ‘(Z w)‘ )) 1y L (2—w)#0
:29% (z —w) exp (0(7"_1+4°‘)) Ly —w)20 s (4.63)
because we have that |z — w| < |z —z| + |z — w| < 7"2+0‘ + N3t < 27379 for large N since

€ (N%,N?). Also, we have that for large N, |r —¢| > 57", since t < N€. It is a matter of simple
computations to see that

sup {

95(2—90)

Tam Ty
gr—2(2 —w)

e 1
cr >N t< N Jw—x| < N2t |2 — 1 <7‘2+a} = O<N6(5_9)>,

(4.64)
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for some positive constant ¢ > 0, by choosing « sufficiently small. By Cauchy-Schwarz we obtain
the following estimate for the L'-norm of (4.61),

NG Y rsoNcc)rE[l

A
wezd Zn p(x)

| 2 pew) (0 - o) - gz w)) -om,z~zr,N,6<z>\]
(t,w)eAR,
(r,z)eBﬁ(r)

d—2 1 1/2
<N'T Y lon(@)|E| ]

291/2
x E[( Z Z(I)%t,ﬂ(x7w) (qr(z - 1’) - %‘—t(z - ’LU)) “O My ZT,N,,B(Z)> ] :
(

taw)eA3,
(r,z)eBﬁ(m)
By the negative moment estimate, i.e. Proposition 4.2 we have that E[(Zjé,ﬁ(a:))_Q] < 0. By
expanding the square in the second expectation we have that it is equal to
2
A
S E[Zsrw)?] (40— ) — gz~ w)) 0 E[Z, 5]

(t,w)eAZ,
(r,z)eBﬁ (z)

2
= ) E[Zgs(,w)’] {1 - W_m))} g7z = w)o? E[Z, n 5(2)* ]

(tw)eAL, G-tz —w
(r,2)eBZ ()
SON*E=0) X0 E[Zgy p(w,w)*] 4oz — w)o* E[Z, v 5(2)° ]
(t,w)eAZ,
(r,2)eB3 ()
by using estimate (4.64) and (4.62),(4.63). The last sum is bounded by E[(Z]’?,’ﬁB2 (0))2] By

adapting the proof of Lemma 4.8, one can show that E[(Z]’?,’[BB2 (0))2] = O(N’ﬂ(%’l)), for every

¥ < o. Therefore,

NG Y rgoN@:)rE[ !

A
xeZd ZNvﬁ (I‘)

X ‘ Z Z(I]?t,,@(wi) {1 - qr(z_x)} QT—t(Z - w) O Ny ZT,N,B(Z)‘ ]

(r,2)eBZ ()
d—2

1
<Clelly E[(Zjérﬁ(x))_2] 2 NI Nele—o) NI

In order for the last bound to vanish we need that
d—2
(1—19)T+c(5—g) <0.
Since, ¥ € (0, 0) can be chosen arbitrarily close to p, it suffices that
d—2

(l—g)T+c(s—g)<0.

Rearranging this inequality, we need that
ce+ %

<o. 4.65
c+d4;2 ( )
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This is possible since, given a choice of € € (0,1), we proved in Step 2 that (4.45) is valid for any

€ (g,1), therefore we can choose p, large enough, so that (4.65) is satisfied. To complete Step 3,
one needs to show that we can lift the restriction (r, z) € By (), that is, allow (r, 2) € By, such
that |z — x| > > 727 but this follows by standard moderate deviation estimates and is quite to
similar to the proof of [12], thus we omit the details. O

In order to complete the steps needed to prove Theorem 1.2, one has to show that also
Proposition 4.7 is valid. But, this is a corollary of Theorem 1.1. Since we are using the diffusive
scaling, the fact that Z ﬁ%(m) is the partition function of a polymer which starts sampling noise
after time N? for some p € (0,1), does not change the asymptotic distribution.

Proof of Proposition 4.7. This Proposition is a corollary of Theorem 1.1, since one can see
that the difference of

=S Z on(2) (Zyp(z)—1) and N Z on(x Nﬁ(x)—l).
zezZd zezd

vanishes in L?(P). More specifically, we have that

2
d—2 d—2
HN T en(@) (Zypl@) —1) = NT Y pn() (Z75(x) - 1)
xeZd zeZd L2(P)
NEL Z > en(@,y) qon(x — y)E[er2DEv-n].
= x,yeZd
by recalling expression (3.7). We can bound the last quantity as follows
- Z > en(@,y) qon (@ — y)E[er2DFv-n]
n=1 g yezd
<E[eM N21Z Y. en(,y) qon(z —y).
n=1 g yezd
By Lemma 3.2 the main contribution to the sum
12 D1 on(@,y) gonlz —y).
n=1 z,ycZd
comes from n € [N, N] for 9 small, therefore it converges to 0 as N — 0. O
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