
Quantitative Finance, 2021
https://doi.org/10.1080/14697688.2021.1882686

Heterogeneity and clustering of defaults

A. K. KARLIS†, G. GALANIS‡, S. TEROVITIS *§ and M. S. TURNER¶

†Department of Accounting, Economics and Finance, University of the West of England, Bristol, UK
‡Institute of Management Studies, Goldsmiths, University of London, London, UK

§Amsterdam Business School, University of Amsterdam, Amsterdam, The Netherlands
¶Department of Physics and Centre for Complexity Science, University of Warwick, Coventry, UK

(Received 10 April 2019; accepted 8 January 2021; published online 30 March 2021 )

This paper studies how the degree of heterogeneity among hedge funds’ demand orders for a risky
asset affects the possibility of their defaults being clustered. We find that fire-sales caused by mar-
gin calls is a necessary, yet not a sufficient condition for defaults to be clustered. We show that
when the degree of heterogeneity is sufficiently high, poorly performing HFs are able to obtain a
higher than usual market share, which leads to an improvement of their performance. Consequently,
their survival time is prolonged, increasing the probability of them remaining in operation until the
downturn of the next leverage cycle. This leads to an increase in the probability of poorly and high-
performing hedge funds to default in sync at a later time, and thus also in the probability of collective
defaults. Our analytical results establish a connection between the nontrivial aggregate statistics and
the presence of infinite memory in the process governing the hedge funds’ defaults.
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1. Introduction

The hedge fund (HF) industry has experienced an explosive
growth in recent years. The total size of the assets managed by
HFs in 2018 was estimated at US$2.9 trillion (Statista 2019).
Due to the increasing weight of HFs in the financial mar-
ket, failures of HFs can pose a major threat to the stability of
the global financial system. The default of a number of high
profile HFs, such as LTCM and HFs owned by Bear Stearns
(Haghani 2014), testifies to this.

At the same time, poor performance of HFs—the prelude
to the failure of a HF—is empirically found to be strongly
correlated across HFs (Boyson et al. 2010), a phenomenon
known as ‘contagion’. Moreover, Boyson et al. (2010) point
out that the correlation between HFs’ worst returns—falling
in the bottom 10% of a HF style’s monthly returns—remains
high, even after taking into account that HF returns are auto-
correlated, and the effect of the exposure of HFs to commonly
known risk factors. The findings of Boyson et al. (2010)
support the theoretical predictions of Brunnermeier and Ped-
ersen (2009), who provide a mechanism revealing how liq-
uidity shocks can lead to downward liquidity spirals and
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thus to contagion.† The mechanism that leads to contagion
is closely related to the theory of the ‘leverage cycle’, i.e.
the pro-cyclical increase and decrease of leverage, due to the
interplay between equity volatility and leverage, put forward
by Geanakoplos (1997).‡

The combination of the dominant role of HFs in the finan-
cial system with the possibility of transmission of the risk, not
only to other financial organisations but also to the real econ-
omy, has placed the operation of HFs under close scrutiny and
has highlighted the significance of regulation of the industry.
Regulating the HF industry is a challenging task; designing
the appropriate regulation requires a good understanding of
many aspects such as the mechanism which generates defaults
at the individual level, the mechanism behind contagion, and
finally the parameters which determine the persistency of
the effect of a default of an individual HF on the indus-
try. Although Brunnermeier and Pedersen (2009) provide the
mechanism behind contagion, they overlook the persistency

† Other works which study the causes of contagion in financial mar-
kets include Kyle and Xiong (2001) and Kodres and Pritsker (2002).
‡ In fact the theory of leverage cycle, in contrast to other models
that endogenise leverage Brunnermeier and Pedersen 2009, Brun-
nermeier and Sannikov 2014, Vayanos and Wang 2012 has the addi-
tional merit of making the endogenous determination of collateral
possible.
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of the impact of a default of an individual HF. Our paper
aims to fill this gap. In particular, we characterise the con-
ditions under which the correlation between HF’s defaults is
persistent, i.e. defaults are clustered.

We study an economy with heterogeneous interacting
agents (HIA)—HFs in our case—in the tradition of Day
and Huang (1990), Brock and LeBaron (1996), Brock and
Hommes (1997, 1998), Chiarella and He (2002), Thurner
et al. (2012) and Poledna et al. (2014) among others.† We
find that the feedback between market volatility and margin
requirements (downward liquidity spiral) is a necessary yet
not sufficient condition for clustering of defaults to occur, as
has been suggested by Boyson et al. (2010). In this work, we
show that heterogeneity plays a pivotal role in the emergence
of clustered defaults: defaults are clustered only if the degree
of heterogeneity is sufficiently high.

We develop a simple dynamic model with a finite num-
ber of HF managers and a representative mean-reverting noise
trader trading a risky asset. We allow for a setup where het-
erogeneity regarding the demand of the risky asset may be
due to different preferences towards risk, disagreement on the
expected price of the asset, or disagreement on the volatil-
ity of the market. Also, we allow for the HFs to have access
to credit, by using their existing assets as collateral. Finally,
we endogenise the probability of default by assuming that an
HF is forced to default when its portfolio value falls below a
threshold.

In this environment, we show that when the degree of het-
erogeneity is sufficiently high, poorly performing HFs are
able to absorb shocks caused by fire sales. As a result, they
obtain a larger than usual market share and improve their per-
formance. In this fashion, a default due to exactly their poor
performance is delayed, allowing them to remain in operation
until the downturn of the next leverage cycle. This leads to
an increase in the probability of poorly and high-performing
hedge funds to default in sync at a later time, and thus the
probability of collective defaults. Formally, we show that for
high degree of heterogeneity the default time-sequence shows
infinite memory.

Using the definition of Andersen and Bollerslev (1997),
clustering is determined by the divergence of the sum (or
integral in continuous time) of the autocorrelation function
(ACF) of the default time sequence. Therefore, the underly-
ing stochastic process describing the occurrence of defaults
exhibits long memory. We establish a quantitative connec-
tion between non-trivial aggregate statistics and the presence
of infinite memory in the underlying stochastic process gov-
erning defaults of the HFs. The comparison between the
theoretical prediction of the asymptotic behaviour of the auto-
correlation function (ACF) of defaults and the numerical
findings, reveals that our theoretical predictions are valid even
in a market with a finite number of HFs and the clustering of
defaults is confirmed. In this way, our model provides a novel
insight into the empirical findings of Boyson et al. (2010),
which highlight the role of heterogeneity.

Our paper makes also a methodological contribution to
the related literature as our analysis combines analytic and
numerical methods in a novel way.

† For a detailed relevant literature review, see Hommes 2006,
LeBaron 2006 and Chiarella et al. 2009.

The structure of the rest of the paper is as follows.
Section 2 discusses the relevant literature. Section 3 presents
the economic framework that we use. Section 4 discusses the
numerical findings and also provides analytical results linking
the heavy-tailed aggregate density to the observed statistical
character of defaults at a microscopic level, and the power-law
decay of the ACF of the default time-series. Finally, section 5
provides a short summary with concluding remarks.

2. Relevant literature

Our paper is related methodologically to the HIA literature;
and in terms of content, to the literature which studies the
effects of leverage on financial stability.‡ While the vast
majority of the papers in the HIA literature rely mainly in
computational methods, the present paper combines compu-
tational methods with analytical results in a novel way which
allows for better economic insights. Even though our analysis
is methodologically original, the recent papers of Chiarella
and Di Guilmi (2011), Di Guilmi and Carvalho (2017) and He
et al. (2017) are also good examples where analytical tools are
used in combination to computational methods.

Models with HIA can give rise to emergent properties
of systems that are able to replicate the empirical trends
seen in asset prices, asset returns and their distributions
(Lux 1995, 1998, Lux and Marchesi 1999, Iori 2002, He and
Li 2007, Chiarella et al. 2014). In Levy (2008), spontaneous
crashes are a natural property of a market with heterogeneous
investors who are inclined to conform to their peers, under the
condition that the strength of the conformity effects is large
compared to the degree of heterogeneity of the investors. In
other papers, such as Chiarella (1992), Lux (1995) and Di
Guilmi et al. (2014) heterogeneity has to do with the differ-
ent beliefs and trading rules of the agents (fundamentalists
and chartists) which can result to asset price fluctuations and
market instability.

The set up of our model is similar to Thurner et al. (2012)
and Poledna et al. (2014) which study the effects of leverage
in an economy with heterogeneous HFs. Thurner et al. (2012)
show that leverage causes fat tails and clustered volatility.
Under benign market conditions, HFs become more leveraged
as this is then more profitable. High levels of leverage are
correlated with increased asset price fluctuations that become
heavy-tailed. The heavy tails are caused by the fact that when
an HF reaches its maximum leverage limit then it has to
repay part of its loan by selling some of its assets. Poledna
et al. (2014) use a very similar framework to test three regu-
latory policies: (i) imposing limits on the maximum leverage,
(ii) similar to the Basle II regulations, and (iii) a hypothetical
perfect hedging scheme, in which the banks hedge against the
leverage-induced risk using options. They find that the effec-
tiveness of the policies depends on the levels of leverage, and
that even though the perfect hedging scheme reduces volatility
in comparison to the Basle II scheme, none of these are able
to make the system considerably safer on a systemic level.

‡ The present paper focuses on the role of leverage on a microe-
conomic level and does not discuss the feedback effects with the
Macroeconomy. For the latter, see Chiarella and Di Guilmi 2011,
Ryoo 2010 and references therein.
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Our model extends this framework in two directions. First,
in our model the behaviour of HFs is not given by heuris-
tics but it is derived from first principles. In both Thurner et
al. (2012) and Poledna et al. (2014), HFs are risk neutral and
have different demand of the asset given the same information
and the same wealth. The characteristic which makes them
heterogeneous is called ‘aggression’ and aims to capture dif-
ferent responses of the agents to a mispricing signal. Given the
risk neutrality assumption, it is impossible to provide a rigor-
ous explanation for the difference in aggression. Furthermore,
deriving the HFs demand functions from first principles: (i)
we bridge the gap between Thurner et al. (2012) and Poledna
et al. (2014); and the rest of the leverage cycle literature dis-
cussed below and (ii) we provide a framework which allows
the study of different types of heterogeneity.

The leverage cycle models start with the collateral equi-
librium models of Geanakoplos (1997) and Geanakoplos and
Zame (1997), who provide a general equilibrium model of
collateral. The key idea behind these models is that lenders
require a collateral from the borrowers in order to lend
them funds. This borrowing and lending is agreed through
a contract of a promise of paying back the loan in future
states, where the investor who sells the contract is borrow-
ing money—using a collateral to back the promise—from the
agent who buys the contract. Each contract is chosen from a
menu of contracts with different loan to value (LTV) ratio.
In Geanakoplos (1997), scarcity of collateral leads to only
a few contracts being traded, which makes leverage (LTV)
endogenous. Finally, the investors default when the value of
the collateral is less than the value of the contract that borrow-
ers and lenders have agreed. Geanakoplos (2003) considers
a continuum of risk neutral agents with different priors in a
binomial economy with two or three states of the world. He
shows how changes in volatility lead to changes in equilib-
rium leverage which in turn have a bigger effect in asset prices
than what agents believe to be the effect of news. Geanako-
plos (2003, 1997) show that in some cases all agents will
choose the same contract from the contract menu. This result
has been recently extended by Fostel and Geanakoplos (2015)
who study in more detail the relationship between leverage
and default and prove that in all binomial economies with
financial assets, exactly one contract is chosen.

Fostel and Geanakoplos (2008) extend the economy of
Geanakoplos (2003) to an economy with multiple assets and
two risk averse agents instead of a continuum of risk neutral
ones and develop an asset pricing theory which links collateral
and liquidity to asset prices. Geanakoplos (2010) combines
the insights from Geanakoplos (1997) where the collateral is
based on non financial assets and Geanakoplos (2003) where
the collateral is based on financial assets; and shows that the
introduction of CDS contracts reduces the asset prices. By
doing this he puts forward a model of a double leverage cycle,
in housing and securities, which contributes in the explanation
of the 2007–08 crisis. Fostel and Geanakoplos (2012) provide
a further analysis of CDS contracts and show: (i) why trench-
ing and leverage initially raised asset prices and (ii) why CDSs
lowered them later. Simsek (2013a) considers a continuum of
states and two types of agents beliefs, namely optimist and
pessimist. He shows that the type of disagreement between
agents has more important effects on asset prices than the

degree of disagreement between optimists and pessimists.† To
our knowledge, this is the only paper in this literature which
considers the effect of different degrees of heterogeneity.‡

Along similar lines the effects of leverage have been
studied by Gromb and Vayanos (2002), Acharya and
Viswanathan (2011), Brunnermeier and Pedersen (2009),
Brunnermeier and Sannikov (2014) and Adrian and Shin
(2010), among others. These approaches differ from the mod-
els mentioned in the previous paragraphs in two key aspects.
The models of Acharya and Viswanathan (2011), Adrian and
Shin (2010), Brunnermeier and Sannikov (2014) and Gromb
and Vayanos (2002) focus on the ratio of an agent’s total asset
value to his total wealth (investor based leverage) while the
leverage cycle models of Geanakoplos and coauthors§ focus
on LTV. The second aspect has to do with the fact that in
the models of Brunnermeier and Pedersen (2009) and Gromb
and Vayanos (2002) the leverage ratio is exogenously given,
where in the former is given by a VaR rule, whereas in the
latter it is given by a maximin rule used to prevent defaults.
In the cases of Brunnermeier and Sannikov (2014), Acharya
and Viswanathan (2011) and Adrian and Shin (2010) leverage
is endogenous but is not determined by collateral capaci-
ties. In Acharya and Viswanathan (2011) and Adrian and
Shin (2010) leverage is determined by asymmetric informa-
tion between borrowers and lenders, while in Brunnermeier
and Sannikov (2014) it is determined by agents’ risk aversion.

3. Model

3.1. Environment

We study an economy with two types of assets: a riskless
asset, which can be interpreted as cash C, and a risky asset.
As opposed to the riskless asset, which is in infinite supply,
the supply of the risky asset is fixed and equal to N. The
price of the riskless asset is normalised to 1, whereas the price
of the risky asset at time t, pt, is determined endogenously.
Both types of assets are traded by the portfolio managers of
each of the K hedge funds (HFs), and by a representative,
mean-reverting noise trader. Finally, the model consists of an
infinitely liquid bank, whose role is to provide credit to HFs,
by using their assets as collateral.

Hedge Fund Managers. Each HF j ∈ {1, . . . , K} is run by a
portfolio manager whose task is to submit the trading orders
for the risky and the riskless asset, where Dj

t (Cj
t ) denotes the

units of the risky (riskless) asset the manager of HF j is will-
ing to trade at time t. We assume that the compensation of
the manager in period t is a fixed fraction γ of the HF’s net

† Other works in the leverage cycle literature include Geanakoplos
and Zame (2014), Geanakoplos (2014) and Fostel and Geanakop-
los (2016). For a recent review of this literature, see Fostel and
Geanakoplos (2014).
‡ In a different context, Simsek (2013b) shows that the level of belief
disagreement affects the average consumption risks of individuals in
a model which studies the effect of financial innovation on portfolio
risks.
§ Also the models of Brunnermeier and Pedersen (2009) and Sim-
sek (2013a) use the same ratio.
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asset value (NAV) at t, Wt, regardless of a HF’s performance.†
Moreover, we assume that the managers are myopic, thus,
the objective of the manager of HF j is to maximise the next
period’s expected utility,

E

[
U(γ Wj

t+1)|Ij
]

,

where Ij denotes the information set of the manager of HF j.
We focus on the case where managers have Constant Relative
Risk Aversion (CRRA) preferences, i.e.

U
(
γ Wj

t+1

)
= γ Wj

t+1

1−a
/ (1 − a) , (1)

where a> 0 is the measure of relative risk aversion. Given
the manager’s compensation method, only part (1 − γ ) of the
wealth of the HF is available for re-investment in the next
period. This feature also excludes unrealistic cases where the
wealth of HFs explodes and default never occurs.‡ Taking this
into account, the wealth of an HF evolves according to:

Wj
t+1 = (1 − γ )

[
Wj

t + (pt+1 − pt)D
j
t

]
, (2)

where the first term of the RHS captures the value of the port-
folio held in the previous period and the second term captures
the change in the value of the risky assets.

Hedge Funds’ access to credit. A fundamental component
of the Hedge Fund industry is the use of leverage. To cap-
ture this aspect, we allow HF to have access to credit. As a
result, the amount of cash required to complement the trading
order for a risky asset, i.e.Dj

tpt, may exceed the cash which
is available at the beginning of each trading period. However,
the access to credit is not unbounded: the HF cannot become
more leveraged than λmax. Thus λmax, which can be subject to
regulation, is a highest feasible ratio of the market value of
the risky asset held as collateral by the bank to the net wealth
of the risky asset, i.e.

Dj
tpt/Wj

t ≤ λmax.

Consequently, the maximum demand for the risky asset is
given by

Dt,max = λmaxWj
t /pt, ∀j ∈ {1, . . . , K}. (3)

Furthermore, we allow the HFs to take only long positions,
i.e. to be active only when the asset is underpriced.§

Hedge Funds’ default. The main objective of this paper is
to study both the individual (HF) and collective (systemic)

† The management fee is typically around 2% of a HF’s net asset
value Stowell (2010, p. 199).
‡ Considering only the management fee which is a time-independent
fraction γ of an HF’s NAV and ignoring the performance fee that has
a more complicated structure allows us to develop a more tractable
model. However, the critical component for our main findings pre-
sented below is the existence of a mechanism that prohibits the
consistent (on average) flow of capital from the NTs to the HFs. The
latter ensures that statistical averages in time are well-defined.
§ We do this in order to highlight that, even with the HFs taking
only long positions, a strategy inherently less risky than short-selling,
the clustering of defaults, and thus systemic risk, is still present if
heterogeneity among the prior beliefs is sufficiently large.

default probabilities over time. To this end, we endogenise
the probability of default of each HF, by requiring that an HF
is forced to default when its wealth falls below Wmin � W0,
where W0 denotes the initial endowment of each HF upon
entrance in the market. In order to maintain the character
of the market (at a statistical level), Tr ∼ U[b, c] time-steps
after the default, the bankrupt HF is replaced by an HF with
identical characteristics.

Noise traders. The second type of traders is noise-traders,
who are supposed to trade for liquidity reasons. In order
to be consistent with related literature, we assume that the
demand dnt of the representative noise-trader for the risky
asset, in terms of cash value, is assumed to follow a first-
order autoregressive [AR(1)] process (Xiong 2001, Thurner
et al. 2012, Poledna et al. 2014).

log dnt
t = ρ log dnt

t−1 + (1 − ρ) log(VN) + χt, (4)

where ρ ∈ (0, 1) is a parameter controlling the rate of revert-
ing to the mean. Given that the expected value of χt and the
auto-covariance function are time independent, the stochastic
process is wide-sense stationary, χt ∼ N (0, σ 2

nt), and V is the
fundamental value of the risky asset.¶

Equilibrium Condition. Finally, the price of the risky asset
is determined endogenously by the market clearing condition
[together with equations (2), (4), and (7)].‖

Dnt
t+1(pt+1) +

K∑
j=1

Dj
t+1(pt+1) = N , (5)

where Dnt
t+1(pt+1) = dnt

t+1/pt+1 stands for the demand of the

noise traders whereas Dj
t+1(pt+1) stands for the demand of the

HF j. Both values are in number of shares.
Timing. Each period t consists of four sub-periods.

(i) The managers set their demand orders for the risky
asset.

(ii) The price of the risky asset is determined, and the
return of each portfolio is realised.

(iii) The managers receive their compensation.
(iv) The next-period’s wealth is determined.

3.2. Optimal demand

The manager of the HF j maximises her expected utility, given
her beliefs Ij about the asset’s fundamental value and the
volatility of the market, and subject to the constraint that the
demand cannot exceed Dj

t,max.

Dj
t = argmaxDj

t∈[0,Dt,max]

{
E

[
U(γ Wj

t+1)|Ij
]}

(6)

¶ The demand of the noise traders in terms of the number of shares
of the risky asset Dnt and the price of the risky asset pt at period t
is dnt

t = Dnt
t pt. Hence, in the absence of the HFs, from equation (4),

and equation (5) we have E[log pt+1] = log V .
‖ This system of equations is highly non-linear, and thus, can only be
solved numerically.
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Solving the optimisation problem we obtain†

Dj
t = min

{
1

a

(
sj log (V/pt) + 1

2

)
, λmax

}
Wj

t

pt
, (7)

where sj = 1/Var[log pt+1|Ij]. Therefore, the demand of the
HFs is proportional to the expected logarithmic return and
their wealth, and inversely proportional to the conditional
variance of the logarithm of the price, given their beliefs.

3.3. Source of heterogeneity

A critical component, which lies at the heart of our analysis,
is heterogeneity across HFs. We allow for a setup where dif-
ferent HFs respond differently when facing the same price. In
particular, we develop a model where, for a give price pt, dif-
ferent HFs will find it optimal to post different demand orders
for the risky asset, i.e. Di

t �= Dj
t for i �= j. One can think of

many reasons which could justify heterogeneity across HFs.
One explanation could be that HFs have different beliefs
about the fundamental value V of the asset. Another rea-
son which could justify this heterogeneity could be that HFs
agree on the mean, but the disagree on the variance, i.e.
Var[log pt+1|Ij]. Finally, HFs’ heterogeneity might be driven
by different degrees of risk aversion, i.e. a. The main findings
are qualitatively equivalent independently of which of the pre-
vious possible interpretations is implemented. Throughout the
paper, we assume that HFs disagree on the market volatility.

The rationale behind the assumption that the managers
agree on the fundamental value of the asset, but disagree on
price volatility, relies on the fact that the fundamental value,
as opposed to price volatility, is not affected by the behaviour
of HFs. In other words, the fundamental value of the asset is
exogenously determined, whereas the volatility of the market
is endogenously determined, with its value depending on the
HFs’ trading strategy, which in turn, depends on their private
information set. Hence, it is not feasible for the managers to
reach an agreement on the market volatility, because they have
access to different information sets, and the market volatility
is affected by the information each manager has access to.

Our main goal is to study the relationship between the
degree of heterogeneity κ and clustering of defaults, where
κ is identified with the difference between the maximum and
minimum values of sj in the demand order (7). The question
arises as to whether the leverage cycle‡ is a sufficient condi-
tion for the defaults to be clustered, or rather whether there
exists a critical value for the degree of heterogeneity above
which the mechanism of the leverage cycle leads to clustering
of defaults.

3.4. Clustering of defaults

The clustering of HFs’ defaults is determined by the decay
rate of the default time-sequence autocorrelation function
(ACF) C(t′), with t′ being the time-lag variable. If defaults are

† For details, see Appendix 1.
‡ Recall that leverage cycle is defined as the pro-cyclical increase and
decrease of leverage, due to the interplay between equity volatility
and leverage.

clustered, then C(t′) decays in such a way that the sum of the
ACF over the lag variable diverges (Baillie 1996, Samorod-
nitsky 2007).

Definition 1 Let C(t′) denote the autocorrelation of the time
series of defaults, with t′ being the lag variable. Defaults are
clustered if and only if

∞∑
t′=0

C(t′) → ∞. (8)

Given that the ACF is bounded in [−1, 1], it follows that
the convergence of the infinite sum is in turn determined by
the asymptotic behaviour t′ � 1 of the ACF. In this limit,
the sum can be approximated by an integral. In the follow-
ing we assume that the ACF of the default time sequence can
be approximated by a continuous function for t′ � 1. Then it
follows that,

Remark 1 Defaults are clustered if the ACF asymptotically
approaches zero not faster than C(t′) ∼ 1/t′. In this case,
defaults are interrelated (statistically dependent) for all times.

Remark 2 If the decay of the ACF is faster than algebraic,
then defaults are not clustered. The effect of the shock caused
by the default of a HF on the market is only transient, and the
defaults are in the long-run statistically independent.

In the next section, we present the results of the model.
The first subsection presents the numerical results obtained
by iterating the model defined above. We present the ACFs
for various values of κ and interpret these in light of Remarks
1 and 2. Section 4.2 provides an analytical insight into the
numerical results.

3.5. Discussion of the main assumptions

Before we explore which assumptions are essential, it is
important to present the underlying mechanism behind the
main findings. As it becomes clear in the next section, our
work shows that when the degree of heterogeneity is suffi-
ciently high, poorly performing HFs are able to absorb shocks
caused by fire sales. As a result, they obtain a larger than usual
market share and improve their performance. In this fashion,
a default due to exactly their poor performance is delayed,
allowing them to remain in operation until the downturn of
the next leverage cycle. This leads to an increase in the prob-
ability of poorly and high-performing hedge funds to default
in sync at a later time, and thus the probability of collective
defaults.

The mechanism described in the previous paragraph
implies that the key components of our model are: (i) the
leverage cycle; (ii) heterogeneity in the managers’ action, and
(iii) risk aversion. In fact, the risk aversion assumption is not
essential to generate the main findings. All that matters is
there is some heterogeneity in the way managers invest, i.e.
given the price of the asset, different managers post different
trading orders. However, allowing for risk aversion enables us
to provide micro-foundations of the managers’ heterogeneity;
when the managers observe different private signals about the
fundamental value of the asset, their optimal demand order
will differ.
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Simulating a model which (i) allows the managers to opti-
mally determine their demand orders and (ii) adopts prefer-
ences and economic parameters which find strong empirical
support, enables us to shed light on why and when we would
expect to observe clustering of defaults. Knowing why and
when the defaults will be clustered has important implica-
tions for (i) the design of the optimal portfolio by investors
and (ii) the design of policies by a regulator whose objective
is to minimise the incidents of clustered defaults.

Both the analytical and the numerical part requires us
to adopt a set of assumptions about the functional form of
the managers’ preferences. To this end, we assume CRRA
preferences, which is a standard assumption in the portfolio
allocation (see Danthine and Donaldson 2005 for a discus-
sion of preferences), and it is also supported by the empirical
evidence by Szpiro (1986) and Szpiro and Outreville (1988).
Focusing on CRRA preferences (compared to, for instance,
Constant Absolute Risk Aversion (CARA) preferences) has
two desirable properties. First, CRRA preferences imply that
the lower the HF’s wealth, the higher the degree of risk
aversion. This property is consistent with the idea that HF
managers are relatively more cautious/conservative when the
HF’s wealth is low. The second useful property of CRRA is
that, as opposed to CARA, the fraction of wealth invested in
the risky asset under the optimal portfolio is independent of
the level of initial wealth. Shutting down the wealth effects
allows us to isolate the impact of HF managers’ heterogeneity
that goes above and beyond the income heterogeneity. Thus
focusing on CRRA instead of CARA preferences allows us
not only to develop a more realistic but also a more parsimo-
nious model, that, in turn, enables us to isolate the impact of
heterogeneity, which is the main scope of this paper.

4. Results

4.1. Numerical results

4.1.1. Choice of parameter values. In all simulations, we
consider a market with K = 10 HFs. In the following, we
assume homogeneous preferences towards risk across HFs,
and set aj = 3.2 ∀j ∈ {1, . . . , 10}, this being a typical value
for HFs (Gregoriou et al. 2005, p. 417). From equation (4)
we have σ̃ 2

nt = σ 2
nt/(1 − ρ2), where ρ is the mean reversion

parameter. The inverse of the expected volatility given the
HF’s prior beliefs, i.e. sj = 1/Var[log pt+1|Ij] determines the
responsiveness of the HFs to the observed mispricing. In our
numerical simulations sj is sampled from a uniform distri-
bution in [1, δ], and δ ∈ [1.2, 10]. Moreover, the maximum
allowed leverage λmax is set to 5. This particular value is
representative of the mean leverage across HFs employing
different strategies (Ang et al. 2011). In order to be con-
sistent with the findings of Poledna et al. (2014), we adopt
the same parameters values, i.e. σ 2

nt = 0.035, V = 1, N =
109, W0 = 2 × 106, Wmin = W0/10, ρ = 0.99 (Poledna et
al. 2014), and γ = 5 × 10−4.† Bankrupt HFs are reintroduced

† The specific choice of γ maps 40 time-periods to a year considering
that HF managers receive about 2% of the HF’s net asset value under
their management per annum. Given the set of values considered for

after Tr periods, randomly chosen according to a uniform dis-
tribution in [10, 200].‡§ Furthermore, the HFs anticipate that
their actions—buying when the risky asset is undervalued—
will help moderate the fluctuations realised in the market. In
other words, all HFs correctly believe that the volatility of
the market will be reduced when they enter the market, in
comparison to the volatility observed when only the noise
traders are active. However, they are uncertain about their col-
lective market power, and therefore the extent to which they
will affect the realised volatility. Thus, all HFs believe that
E[Var(log pt+1)|Ij] < σ 2

nt/(1 − ρ2).¶

4.1.2. Simulations. As aforementioned, the leverage cycle
consists of the interplay between the variability of prices of
the assets put as collateral, and margin requirements. When
prices are high, assets used as collateral are overpriced, and
creditors are willing to lend. In the face of an abrupt fall of the
market price of the assets used as collateral, creditors force the
lenders to repay part of the loan, such that the margin require-
ments are met. Consequently, the lenders are forced to sell in
a falling market, accelerating and reinforcing the fall of the
price of the collateral, creating thus a vicious cycle. In our
model, a fall in the price of the risky asset used as collateral
is caused by a sudden drop of the demand of the noise traders
dnt

t . This results into a sudden increase of the leverage ratio
of the jth HF, λ

j
t. In case λ

j
t exceeds the margin requirement

λ
j
t ≤ λ

j
max HFs are forced to sell, pushing the price even lower.

Case with a low degree of heterogeneity.We start by pre-
senting the case with a low degree of heterogeneity (κ = δ −
1 = 0.5), which is illustrated in figure 1. Figure 1 presents:
(a) the wealth of three HFs (under, moderately, and highly
responsive to mispricings, j = 2, 6, 10), (b) the correspond-
ing leverage ratio, (c) the demand of the noise traders, and
(d) the price of the risky asset at equilibrium as a function of
time. At time t = 738 [marked by a blue triangle in panel (c)]
a drop in the demand of the noise-traders causes an underpric-
ing of the risky asset backing up the loans of HFs [panel (d)].

all other parameters, this calibration of the model leads to an average
rate of return of the HFs after the payment of the fees ∼ 6% p.a. for
a moderate degree of heterogeneity κ , which is a reasonable value.
‡ This corresponds to an average time of an HF manager being rein-
troduced into the market ∼ 2.6 years after a default event given
the calibration of the model, which seems a reasonable period of
time. Furthermore, setting the minimum time b until an HF man-
ager becomes active again to a positive value that maps to a quarter
(in physical time) rules out the unrealistic possibility of a HF man-
ager reappearing in the market immediately after the default of the
HF under her management.
§ As this paragraph indicates, the set of parameter values are not cho-
sen arbitrarily. All parameter values are chosen either according to
estimations found in empirical studies Ait-Sahalia et al. 2004, Gre-
goriou et al. 2005, Stowell 2010, Ang et al. 2011 [for the parameters
that can be estimated using empirical data] or in consonance with
the relevant theoretical literature Poledna et al. 2014 [for those that
cannot be directly estimated on data].
¶ A complete robustness analysis is not feasible because of (a) the
large dimensionality of the parameter space and (b) most of the
parameters are not mutually independent. For example, the param-
eters V, W0, K, and N together determine the collective market
power of the HFs compared to the NTs when they are introduced
into the market. Therefore, none of these parameters can be set
independently.



Heterogeneity and clustering of defaults 7

Figure 1. (a) The wealth normalised by the endowment W0, (b) the leverage ratio λ
j
t, (c) the demand of the noise traders in terms of

money-value, normalised also by W0, and (d) the equilibrium price of the risky asset, as a function of time, in the case of κ = 0.5.

In turn, the leverage ratio of all the HFs depicted in figure 1(b)
λt=738 increases abruptly [panel (b)], and the margin require-
ment λmax = 5 becomes binding for the most responsive of
the HFs depicted (j = 6, 10). At this point, the HFs are forced
to deleverage pushing the price of the collateral further down,
leading all HFs depicted to default [panel (a)]. The pressure
on the price of the risky asset due to the synchronous delever-
aging of the highly responsive HFs can clearly be recognised
if we compare the lowest price reached around the down-
turn of the leverage cycle at about t = 738 [marked by a the
dashed red line in panel (d)], with the equilibrium price at
t = 7153 [blue filled circle], where the demand of the noise
trader becomes virtually the same to that at t = 738 [marked
by a blue triangle], but the price remains at a considerably
higher level. This is because the wealth of all HFs in this case,
is such that the leverage ratio stays well below the maximum
threshold [see panel (b)], and the leverage cycle mechanism
remains inactive.

Another observation worth commenting on is the fact that
after the HFs have been reintroduced in the market, we notice
that the least responsive HF (j = 2), defaults another 2 times,
by the end of the time-series depicted in figure 1, namely
at t = 3976 and t = 9161 [also marked by blue triangles in
panel (a)]. not because of the presence of a shock in the
demand of the risky asset, but rather, due to its poor per-
formance. This is because time is costly in our model (HFs
pay managerial fees), and if the profitability of an HF is

low, then it will inevitably be led to bankruptcy, even in
the absence of a shock on the demand of the risky asset.
These defaults happen at random times, i.e. when the observed
mispricings happen to be small, or when the asset is over-
priced, for a period of time, and the profits made are also
small, or null, respectively. This also explains the second
default of the sixth HF, at t = 6618 (red triangle in figure 1
a), when all the HFs are well below the maximum leverage
constraint.

Case with a high degree of heterogeneity. We now explain
the case with a higher degree of heterogeneity (κ = 3), which
is illustrated in figure 2. Figure 2 presents the wealth Wj

t (panel
a), the leverage ratio λ

j
t (panel b) of three representative HFs

[j = 2, 6, 10], as well as the logarithmic returns (panel c) as a
function of time. At t = 493 (marked by a red circle in panels
a and c) the leverage cycle becomes active, causing an under-
pricing of the risky asset. However, the least responsive to
mispricings hedge fund (j = 2) of the three depicted, manages
to absorb the shock, as it stays below the maximum leverage
λmax = 5 (see panel b, blue line), and never receives a margin
call. However, the bankruptcy of the more responsive HFs,
offers the HF that has survived the shock (j = 2), the oppor-
tunity to seize a larger market share and, as a result, to perform
better in the short-run, restoring its wealth to a level similar to
the one before the shock occurred. In this way, the most poorly
performing HF is given the opportunity to continue operating
until the next downturn of the leverage cycle, at which point it
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Figure 2. (a) The wealth normalised by the endowment W0, (b) the leverage ratio λ
j
t, and (c) the logarithmic returns on the risky asset, as a

function of time, with κ = 3.

defaults along with the rest of the HFs at t = 2371 (red disc).
After the second crash of the market we observe the end of
yet another leverage cycle, at which point all the depicted HFs
default again in sync at t = 3044 (black disc). The narrative
is repeated once more at t = 3684 (blue circle), when again
the least responsive HF after absorbing the shock gets a larger
market share, increasing shortly its profitability.

Low versus high degree of heterogeneity. In conclusion,
the study of time-series in the case of low (κ = 0.5) and
high heterogeneity (κ = 3) reveals that increased hetero-
geneity leads to the increase of collective defaults. Even
more, the synchronous default of highly responsive HFs,
gives the opportunity to the less responsive ones to increase
their market share, and thus, their profitability, even for a
short-period of time. Still, this increases the chance of the
poor-performing HFs to survive until the next downturn of
the leverage cycle, suppressing defaults occurring at random
times due to their poor performance, and thus increasing
even more the probability of synchronous defaults. There-
fore, this analysis hints that the degree of heterogeneity is
intimately connected to the level of systemic risk in the
market.

To assess quantitatively the effect of the degree of het-
erogeneity, explained above, on the systemic risk, we study
the persistence of the correlation between defaults (see
Definition 1). In figure 3(a) we compare the numerically com-
puted ACF of the default time-sequence† as observed on the

† The time-sequence considered is constructed by mapping defaults
to 1s, irrespective of which HF defaulted, and to 0 otherwise.

aggregate level for 11 different degrees of heterogeneity κ ,
determined by the support of the distribution of sj. The results
were obtained by iterating the model described in section 3
for up to 3 × 108 periods, and averaging over 40 realisa-
tions of the responsiveness sj; namely, sj ∼ U[1, δ], with δ =
{1.2, 1.4, 1.7, 2, 3, 5, 6, . . . , 10}. Clearly, when the degree of
heterogeneity κ ≤ 1, the ACF decays far more rapidly in com-
parison with larger values of heterogeneity. In fact, as it can be
observed in the figure, the ACF for κ ≤ 1 decays faster than
a power-law with exponent equal to −1 (black dashed line),
which is the largest exponent (in absolute terms) leading to a
non-integrable ACF (see Remark 1). On the other hand, the
converse is true for large degrees of heterogeneity (κ > 2),
in which case the ACF decays asymptotically—t′ � 1—as
a power-law with exponent less than 1 in absolute value.
Consequently,

Result 1 For κ ≤ 1, the ACF decays faster than a power-law
with exponent –1. Hence, the mechanism of the leverage cycle
does not result into sufficiently high long-range correlations
for defaults to be clustered.

Figure 3(a) also shows that for increasing heterogeneity
the ACF converges to a limiting form as the heterogeneity is
increased, which is reflected in the coalescence of the ACFs
corresponding to κ ≥ 5. The latter is more clearly demon-
strated in figure 3(b), where a blow-up of the area within the
rectangle shown in panel (a) is presented. Therefore,

Result 2 For sufficiently large values of the degree of het-
erogeneity κ , namely for κ ≥ 5, the ACF converges to a
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Figure 3. (a) The ACF of the binary sequence of defaults corresponding to 11 different values of κ . The dashed black line corresponds
to a power-law with exponent –1, which is the largest exponent that leads to clustering (see remark 1). (b) A blow-up of the rectangular
area shown in panel (a) illustrating the coalescence of C(t′) for large values of the degree of heterogeneity, κ = {6, 7, 8, 9}. (c) The ACF
corresponding to κ = 9, averaged over 5 × 102 different realisations of sj (red upright triangles). The blue dot-dashed line is the result of
fitting C(t′) with a power-law model C(t′) ∝ t′−η, η = 0.887 ± 0.003 (R2 = 0.9927). The power-law with exponent −1 is also shown for
the sake of comparison (black dashed line).

limiting form exhibiting a power-law trend with an exponent
less than 1 (in absolute value).

To gain some insight into the qualitative difference with
respect to the persistence of correlations between defaults as a
function of the degree of heterogeneity κ , let us turn our atten-
tion to the default statistics. In figure 4, we present the aggre-
gate PDF of waiting times between defaults† using a logarith-
mic scale on both axes for 6 different values of κ . We observe
that for small degrees of heterogeneity κ = {0.2, 0.4, 0.7} the

† The PDF of waiting-times between default is also known as the
failure function in survival analysis theory.

density function asymptotically decays approximately expo-
nentially. This is better demonstrated in the inset where we
use semi-logarithmic axes.‡ On the contrary, for sufficiently
large heterogeneity—such that the corresponding ACFs have
converged to the limiting form—the PDFs exhibit a constant
decay rate in the doubly logarithmic plot (power-law tail). Fit-
ting the aggregate density for κ = 9,§ corresponding to the

‡ The use of a logarithmic scale for the vertical axis transforms an
exponential function to a linear one.
§ To increase the accuracy of the fit, we increase the number of
realisations of sj to 103.
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Figure 4. The aggregate PDF of waiting times between defaults
for six different degrees of heterogeneity using double logarith-
mic scale. For large heterogeneity κ = {7, 8, 9}, we observe that the
PDF is decaying approximately linearly, corresponding to a pow-
er-law decay. Performing a fit with the model P̃(τ ) ∼ τ−ζ we obtain
ζ = 2.84 ± 0.03 (R2 = 0.9947). To illustrate the approximate expo-
nential asymptotic decay of the aggregate PDF for κ = {0.2, 0.4, 0.7}
we also show the corresponding aggregate densities using a logarith-
mic scale on the vertical axis (inset).

highest degree of heterogeneity considered, with the model
P̃(τ ) ∼ τ−ζ we obtain ζ = 2.84 ± 0.03 (red dashed line).

Default statistics on an individual level. Let us now turn
our attention to the statistical properties of HFs on a micro-
scopic scale, i.e. study each HF default statistics individually.
In figure 5, we show as an example the density function
Pj(τ ), of waiting times τ between defaults, for a number
of HFs corresponding to high heterogeneity, κ = 9, with
sj = {2, 4, 6, 8, 10} on a log-linear scale. The results were
obtained by iterating the model for 3 × 108 periods and aver-
aging over 100 different initial conditions,† holding sj fixed
at {1, 2, . . . 10}. We observe that Pj(τ ) for τ � 1 decays
linearly, and thus it can be well described by an expo-
nential function. Consequently, all HFs on a microscopic
level—individually—are characterised by exponential PDFs
of waiting-times, and therefore the default events approxi-
mately follow a Poisson process. The stability of each HF,
quantified by the probability of default per time-step μj, is
different for each HF, and depends on its responsiveness sj.
This is reflected by the different slopes of the approximately
straight lines shown in figure 5 for the different values of sj.

Thus the default statistics on an aggregate level are qual-
itatively different for large values of κ compared to the
corresponding ones observed when each HF is studied indi-
vidually. Moreover, we have already established that for such
high values of the degree of heterogeneity the defaults are
clustered. In the following, we will investigate how the emer-
gence of a fat-tail in the aggregate statistics is connected with
the observed clustering of defaults.

† We are averaging using different seeds for the pseudo-random
number generator used in equation (4).

Figure 5. The PDF of waiting times between defaults τ for specific
HFs, having different responsiveness sj = {2, 4, 6, 8, 10} (black diag-
onal crosses, downright triangles, red upright crosses, magenta dia-
monds and cyan upright triangles, respectively). Note the log-linear
scale.

4.2. Analytical results

The goal of this section is to show that when the default
statistics of HFs are individually described by (different) Pois-
son processes (due to the heterogeneity among the HFs), we
obtain a qualitatively different result after aggregation: the
aggregate PDF of the waiting-times between defaults exhibits
a power-law tail for long waiting-times. Also, if the rela-
tive proportion of very stable HFs approaches 0 sufficiently
slowly, then defaults will form clusters.

We start by utilising a key observation arising from our
numerical results, namely the observation that Pj(τ ), for τ �
1 decays linearly (in log-linear scale) and thus it can be
well described by an exponential function. Therefore we can
assume that

Pj(τ ; τ � 1) ∼ μj exp(−μjτ), ∀j ∈ {1, . . . , 10}. (9)

Conditional on the above, we know that for sufficiently long
waiting times between defaults, default events of individ-
ual HFs have the following statistical properties: (i) they are
approximately independent and (ii) occur with a well-defined
mean probability per unit time step. From this we derive that
the probability Pj(T = τ), τ ∈ N+, is given by a geometric
probability mass function (PMF)

Pj(τ ) = pj(1 − pj)
τ−1, (10)

where pj denotes the probability of default of the jth HF.
Given that our focus is in the asymptotic properties of

the PDFs, T can be treated as a continuous variable. In this
limit, the renewal process given in equation (10) becomes
a Poisson process; and the geometric PMF tends to an
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exponential PDF.† Thus equation (9) can be approximated by
equation (10).

The question then arises as to how the aggregation of these
very simple stochastic processes can lead to the non-trivial
fat-tailed statistics we observed in figure 4 for a sufficiently
high degree of heterogeneity. Note that the aggregate PDF
P̃(τ ) we seek to obtain is a result of the mixing of the Pois-
son processes governing each of the HFs. In the limit of a
continuum of HFs the aggregate distribution is

P̃(τ ) =
∫ ∞

0
μ exp(−μτ)ρ(μ) dμ, (11)

where ρ(μ) stands for the PDF of µ given the responsiveness
sj.‡

Assumption 1 ρ(μ) in a neighbourhood of 0 can be
expanded in a power series of the form ρ(μ) = μν

∑n
k=0 ckμ

k

+ Rn+1(μ), with ν > −1.§

This assumption is quite general and only excludes func-
tions that behave pathologically in a neighbourhood around
0. Then from equation (9) and assumption 1 we can show
that the aggregation of the exponential densities determin-
ing the default statistic for each HF individually leads to a
qualitatively different heavy-tailed PDF.

Let μj ∈ R
+ be the mean default rate of the jth HF, con-

tributing at the aggregate level with a statistical weight ρ(μ),
which is determined by the interactions between the agents in
the market and the distribution of the responsiveness s.

Proposition 1 Consider the exponential density function
P(τ ; μ) describing the individual default statistics of an HF. It
follows then from assumption 1, that the aggregate PDF P̃(τ )

exhibits a power-law tail.

Proof The aggregate density can be viewed as the Laplace
transform L[.] of the function φ(μ) ≡ μρ(μ), with respect to
µ . Hence,

P̃(T = τ) ≡ L [φ(μ)] (τ ) =
∫ ∞

0
φ(μ) exp(−μτ) dμ. (12)

To complete the proof we apply Watson’s Lemma (Debnath
and Bhatta 2007, p. 171) to the function φ(μ), according to
which the asymptotic expansion of the Laplace transform of
a function f (μ) that admits a power-series expansion in a
neighbourhood of 0 (see assumption 1) of the form f (μ) =
μν

∑n
k=0 bkμ

k + Rn+1(μ), with ν > −1 is

Lμ [f (μ)] (τ ) ∼
n∑

k=0

bk
�(ν + k + 1)

τ ν+k+1
+ O

(
1

τ ν+n+2

)
. (13)

† This limit is valid for τ � 1 and pj � 1 such that τpj = μj,
where μj is the parameter of the exponential PDF (see equation 9)
(Nelson 1995).
‡ The distribution function of the random parameter µ is also known
as the structure or mixing distribution (Beichelt 2006).
§ Since ρ(μ) is a PDF it must be normalisable and thus, a singularity
at μ = 0 must be integrable.

Given that φ(μ) for μ → 0+ is

φ(μ) = μν+1
n∑

k=0

ckμ
k + Rn+1(μ), (14)

we conclude that

P̃(τ ) ∝ 1

τ k+ν+2
+ O

(
1

τ k+ν+3

)
. (15)

�

Corollary 1 If 0 < k + ν ≤ 1, then the variance of the
aggregate density diverges (shows a fat tail). However, the
expected value of τ remains finite.

An important aspect of the emergent heavy-tailed statis-
tics stemming from the heterogeneous behaviour of the HFs,
is the absence of a characteristic time-scale for the occur-
rence of defaults (scale-free asymptotic behaviour¶). Thus
even if each HF defaults according to a Poisson process with
intensity μ(s)—which has the intrinsic characteristic time-
scale 1/μ(s)—after aggregation this property is lost due to
the mixing of all the individual time-scales. Therefore, on a
macroscopic level, there is no characteristic time-scale, and
all time-scales, short and long, become relevant.

This characteristic becomes even more prominent if the
density function ρ(μ) is such that the resulting aggregate
density becomes fat-tailed, i.e. the variance of the aggregate
distribution diverges. In this case, extreme values of wait-
ing times between defaults will be occasionally observed,
deviating far from the mean. This will leave a particular ‘geo-
metrical’ imprint on the sequence of default times. Defaults
occurring close together in time (short waiting times τ )
will be clearly separated due to the non-negligible probabil-
ity assigned to long waiting times. Consequently, defaults,
macroscopically, will have a ‘bursty’ or intermittent, charac-
ter, with long quiescent periods of time without the occurrence
of defaults and ‘violent’ periods during which many defaults
are observed close together in time. Hence, infinite variance of
the aggregate density will result in the clustering of defaults.

In order to show this analytically, we construct a binary
sequence by mapping time-steps when no default events occur
to 0 and 1 otherwise. As we show below, if the variance
of the aggregate distribution is infinite, then the autocor-
relation function of the binary sequence generated in this
manner, exhibits a power-law asymptotic behaviour with an
exponent β < 1. Therefore, the ACF is non-summable and
consequently, according to definition 1 defaults are clustered.

Let Ti, i ∈ N+, be a sequence of times when one or
more HFs default and assume that the PDF of waiting times
between defaults P̃(τ ), for τ → ∞, behaves (to leading
order) as P̃(τ ) ∝ τ−a. Consider now the renewal process

¶ If a function f (x) is a power-law, i.e. f (x) = cxa, then a rescal-
ing of the independent variable of the form x → bx leaves the
functional form invariant (f (x) remains a power-law). In fact, a
power-law functional form is a necessary and sufficient condition
for scale invariance (Farmer and Geanakoplos 2008). This scale-free
behaviour of power-laws is intimately linked with concepts such as
self-similarity and fractals (Mandelbrot 1983).
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Sm = ∑m
i=0 Ti. Let Y (t) = 1[0,t](Sm), where 1A : R → {0, 1}

denotes the indicator function, satisfying

1A =
{

1 : x ∈ A

0 : x /∈ A

Theorem 1 If the variance of the density function P̃(τ )

diverges, i.e. 2 < a ≤ 3, then the ACF of Y (t),

C(t′) = E
[
Yt0Yt0+t′

] − E
[
Yt0

]
E

[
Yt0+t′

]
σ 2

Y

,

where t0, t′ ∈ R and σ 2
Y is the variance of Y (t), for t → ∞

decays as

C(t′) ∝ t′2−α (16)

The proof can be found in Appendix 2.
Turning back to the numerical results shown in figure

4, the aggregate PDF as already discussed converges to a
limiting form, characterised by a fat-tail with an exponent
equal −2.84 ± 0.03. Therefore, from equation (16) we deduce
that the ACF should show a power-law trend with exponent
−0.84 ± 0.03. The result of the regression of the ACF for
κ = 9 was −0.887 ± 0.003 (blue dashed-dotted line in figure
3 c), in good agreement with the analytical result.

In this section, we have shown that when the default
statistics of HFs are individually described by (different) Pois-
son processes (due to the heterogeneity in the prior beliefs
among the HFs) we obtain a qualitatively different result after
aggregation: the aggregate PDF of the waiting-times between
defaults exhibits a power-law tail for long waiting-times. As
shown in proposition 1, if the relative proportion of very sta-
ble HFs approaches 0 sufficiently slowly (at most linearly
with respect to the individual default rate µ , as μ → 0), then
long waiting-times between defaults become probable, and as
a result, defaults which occur closely in time will be separated
by long quiescent time periods and defaults will form clusters.
The latter is quantified by the non-integrability of the ACF of
the sequence of default times, signifying infinite memory of
the underlying stochastic process describing defaults on the
aggregate level. It is worth commenting on the fact that the
most stable (in terms of defaults) HFs are responsible for the
appearance of a fat-tail in the aggregate PDF.

4.3. Link with empirical evidence

A clear message of the paper is that when the degree of
heterogeneity is sufficiently large, the default of HFs would
be clustered. The clustering of default is supported by the
empirical findings of Boyson et al. (2010), who find a posi-
tive correlation between the default of hedge funds upon and
beyond the one related to the autocorrelation of stock returns.

Also, our study sheds light on why and when clustering
in the defaults would arise. Therefore, our work opens the
doors to future empirical work that revisits the findings of
Boyson et al. (2010), in an attempt to verify the channels
driving the positive correlation between the default of HFs. In
addition, an empirical prediction of our study is that the clus-
tering of default is more likely for HFs that invest in complex

assets. The underlying rationale is that for complex assets,
there is limited consensus among financial analysts about
the assetâs fundamental value, or equivalently, the degree of
heterogeneity is larger.

5. Concluding remarks

This paper studied the role of the heterogeneity in available
information among different HFs in the emergence of clus-
tering of defaults. The economic mechanism leading to the
clustering of defaults is related to the leverage cycle put for-
ward by Geanakoplos and coauthors. In these models, the
presence of leverage in a market leads to the overpricing of
the collateral used to back-up loans during a boom, whereas
during a recession, collateral becomes depreciated due to
a synchronous de-leveraging compelled by the creditors. In
the present work, we have shown that this feedback effect
between market volatility and margin requirements is a neces-
sary, yet not a sufficient condition for the clustering of defaults
and, in this sense, the emergence of systemic risk.

We have shown that a large difference in the expectations of
the HFs is an essential ingredient for defaults to be clustered.
We show that when the degree of heterogeneity (realised in
our model in terms of the beliefs across HFs about the volatil-
ity of the market) is sufficiently high, poorly performing HFs
are able to absorb shocks caused by fire-sales. As a result,
they obtain a larger than usual market share and improve their
performance. In this fashion, a default due to their poor per-
formance is delayed, allowing them to remain in operation
until the downturn of the next leverage cycle. This leads to
an increase in the probability of poorly and high-performing
hedge funds to default in sync at a later time, and thus the
probability of collective defaults.

This manifests itself in the emergence of heavy-tailed
(scale-free) statistics on the aggregate level. We show that this
scale-free character of the aggregate survival statistics, when
combined with large fluctuations of the observed waiting-
times between defaults, i.e. infinite variance of the corre-
sponding aggregate PDF, leads to the presence of infinite
memory in the default time sequence. Consequently, the prob-
ability of observing a default of an HF in the future is much
higher if one (or more) is observed in the past, and as such,
defaults are clustered.

Interestingly, a slow-decaying PDF of waiting-times, which
inherently signifies a non-negligible measure of extremely
stable HFs, is shown to be directly connected with the pres-
ence of infinite memory. Therefore, our work shows that
individual stability can lead to market-wide risk.

The leverage cycle theory correctly emphasises the impor-
tance of collateral, in contrast to the conventional view,
according to which the interest rate completely determines the
demand and supply of credit. However, the feedback loop cre-
ated by the volatility of asset prices and margin constraints
poses a systemic risk only if the market is sufficiently het-
erogeneous so that ‘pessimistic’ players, who individually are
very stable, exceed a critical mass.

This work raises several interesting questions, which we
aim to address in the future. In this paper, we have assumed
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that the difference in beliefs is due to disagreement about the
long-run volatility of the risky asset, and remains constant
over time, i.e. the agents do not update their beliefs given
their observations. This assumption is crucial in order to be
able to analyse the effects of different degrees of heterogene-
ity. Regarding this issue, future work can take two different
directions: on the one hand, this assumption can be relaxed,
allowing agents to update their beliefs on market volatility.
However, given that market volatility is endogenous, it is not
guaranteed that agents’ beliefs will converge. On the other
hand, we can study the effects of heterogeneity stemming
from different aversion to risk among the HFs, while retain-
ing the common prior assumption. Furthermore, these two
approaches can be combined by assuming both different aver-
sion to risk, and different beliefs about price volatility. Finally,
our work can also be extended in two further directions. The
first being to give a more active role to the bank which pro-
vides the loans, while the second is to study the effects of
different regulations on credit supply.
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Appendices

Appendix 1. Optimal Demand

We seek to determine the optimal demand for each of the HFs
given their beliefs about price volatility Ij. This translates into the
optimisation problem, assuming log-normal returns on the risky asset

argmax
Dj

t∈[0,Dt,max]

{
E

[
U(γ Wj

t+1)|Ij
]}

, (A1)

where U(γ Wj
t+1) = γ Wj

t+1
1−a

/(1 − a) ∼ Wj
t+1

1−a
, and Wj

t+1 is
the wealth of the jth HF at the next period. To simplify the notation,
in the following we will assume that the expected value, and vari-
ance are always conditioned on HF’s prior beliefs, and moreover, we
will drop the superscript j. Equation (A1) is equivalent to the max-
imisation of the logarithm of the expected utility. Furthermore, given
that returns are log-normally distributed, it follows that Campbell
and Viceira (2002, pp. 17-21)

log E

[
Wt+1

1−a
]

= E

[
log Wt+1

1−a
]

+ Var
[
log Wt+1

1−a
]

2
(A2)

Consequently, the problem becomes

argmax
Dt∈[0,Dt,max]

{
(1 − a) E [log Wt+1]

+(1 − a)2 Var [log Wt+1]

2

}
. (A3)

The wealth of the jth HF at the next period is

Wt+1 = (1 − γ )(1 + xtRt+1)Wt, (A4)

where x is the fraction of its wealth invested into the risky
asset, and R the (arithmetic) return of the portfolio. Re-expressing
equation (A4) in terms of the logarithmic returns r we get

log (Wt+1) = log Wt + log [1 + xt (exp(rt+1) − 1)] + log(1 − γ ),
(A5)

albeit a transcendental equation with respect to r. An approxima-
tive solution can be obtained by performing a Taylor expansion of
equation (A5) with respect to r to obtain

log(Wt+1) = log(Wt) + xtrt+1

(
1 + rt+1

2

)

− xt
2

2
r2
t+1 + log(1 − γ ) + O

(
r3

)
. (A6)

Substituting equation (A6) into equation (A3), and furthermore
approximating E(r2

t+1) with Var(rt+1) we obtain

argmax
Dt∈[0,λmax]

{
log Wt + xtE(rt+1) + xt

2
(1 − xt)Var(rt+1)

+ log(1 − γ ) + (1 − a)x2
t Var(rt+1)

}
. (A7)

Finally the first-order condition yields

xt = min

[
E(rt+1) + 1

2 Var(rt+1)

aVar(rt+1)
, λmax

]
. (A8)

Consequently, ignoring autocorrelation in prices, the optimal
demand for HF j in terms of the number of shares of the risky asset
given the price at the current period is

Dt = min

{
log(V/pt) + 1

2 Var
[
log pt+1|Ij

]
aVar

[
log pt+1|Ij

] , λmax

}
Wt

pt
. (A9)
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Appendix 2. Proof of theorem 1

As already stated in section 4.2, theorem 1, assuming that the process
defined by Y (t) = 1[0,t](Sm) is ergodic, the auto-correlation function
can be expressed as a time-average

C(t′) ∝ lim
K→∞

1

K

K∑
t=0

YtYt+t′ . (A10)

Given that Y (t) is by definition a binary variable, the only non-
zero terms contributing to the sum appearing on the right-hand side
(RHS) of equation (A10) correspond to default events (mapped to
1) that occur with a time difference equal to t′. Therefore, the RHS
of equation (A10) is proportional to the conditional probability of
observing a default at time t′, given that a default has occurred at
time t = 0. Therefore, we can express C(t′) in terms of the aggregate
probability P̃(τ = t′), i.e. the probability of a default event being
observed after t′ time-steps, given that one has just been observed.
Moreover, we must take into account all possible combinations of
defaults happening at times t < t′. For example, let us assume that
we want to calculate C(t′ = 2). In this case, there are exactly two
possible set of events that would give a non-zero contribution. Either
a default happening exactly two time-steps after the last one (at
t = 0), or two subsequent defaults happening at t = 1, and t = 2.
In this fashion, we can express the correlation function in terms of
the probability the waiting-times between defaults as Procaccia and
Schuster (1983),

C(1) = P̃(1), (A11)

C(2) = P̃(2) + P̃(1)P̃(1)

= P̃(2) + P̃(1)C(1), (A12)

...

C(t′) = P̃(t′) + P̃(t′ − 1)C(1) + . . . P̃(1)C(t′ − 1). (A13)

If we further define C(0) = 1 and P̃(0) = 0, then equation (A13) can
be written more compactly as

C(t′) =
t′∑

τ=0

C(t′ − τ)P̃(τ ) + δt′,0, (A14)

where δt′,0 is the Kronecker delta.
We are interested only in the long time limit of the ACF.

Hence, we can treat time as a continuous variable and solve
equation (A14) by applying the Laplace transform L{f (τ )}(s) =∫ ∞

0 f (τ ) exp(−sτ)dτ , utilising also the convolution theorem.Taking
these steps, we obtain

C(s) = 1

1 − P̃(s)
, (A15)

where P̃(s) = L{P̃(τ )}(s) = ∫ ∞
0 P̃(τ ) exp(−sτ)dτ . We will assume

that P̃(τ ) ∝ τ−a for any τ ∈ [1, ∞), i.e. the asymptotic power-law
behaviour (τ � 1) will be assumed to remain accurate for all values
of τ . Under this assumption,

P̃(τ ) =
{

Aτ−a, τ ∈ [1, ∞),
0, τ ∈ [0, 1).

, (A16)

where A = 1/
∫ ∞

1 τ−a dτ = a − 1. The Laplace transform of
equation (A16) is,

P̃(s) = (a − 1)Ea(s), (A17)

where Ea(s) denotes the exponential integral function defined as

Ea(s) =
∫ ∞

1
exp (−st) t−adt/; Re(s) > 0. (A18)

The inversion of the Laplace transform after the substitution of
equation (A17) in equation (A15) is not possible analytically. How-
ever, we can easily derive the correlation function in the Fourier

space (known as the power spectral density function) F{C(t′)}(f ) =√
2
π

∫ ∞
0 C(t′) cos(2π f )dt′ by the use of the identity (Jeffrey and

Zwillinger 2007, p. 1129),

F{C(t′)} = 1√
2π

[C(s → 2π if ) + C(s → −2π if )] , (A19)

relating the Fourier cosine transform F{g(t)}(f ), of a function g(t),
to its Laplace transform g(s), to obtain,

C(f ) = 1√
2π

(
1

1 − (a − 1)Ea(2if π)
+ 1

1 − (a − 1)Ea(−2if π)

)
(A20)

From equation (A20), we can readily see that as f → 0+ (equiva-
lently t′ → ∞), C(f ) → ∞. To derive the asymptotic behaviour of
C(f ) we expand about f → 0+ (up to linear order) using

Ea(2if π) = aia+1(2π)a−1f a−1�(−a) − 2iπ f

a − 2
+ 1

a − 1
+ O(f 2)

(A21)
to obtain

C(f )

= − i
√

2π(a − 2)f

4π2(a − 1)f 2 + (
2a+1πa(if )a − a(2iπ)af a

)
�(2 − a)

+ i
√

2π(a − 2)f

4π2(a − 1)f 2 + (
2a+1πa(−if )a − a(−2iπ)af a

)
�(2 − a)

.

(A22)

After some algebraic manipulation, for f → 0 equation (A22) yields

C(f ) = Af a−3, (A23)

where

A = −2a+ 1
2 (a − 2)2πa− 3

2 sin
(

πa
2

)
�(1 − a)

(a − 1)
. (A24)

Therefore, for 2 < a < 3 we see that the Fourier transform of the
correlation function behaves as

C(f ) ∝ f a−3. (A25)

If a = 3, then the instances of the Gamma function appearing on the
RHS of equation (A22) diverge. Therefore, for a = 3 we need to use
a different series expansion around f → 0+. Namely,

E3(2π if ) = 1

2
− 2iπ f + π2f 2(2 log(2iπ f ) + 2γ − 3) + O

(
f 5

)
,

(A26)
where γ stands for the Euler’s constant. The substitution of
equation (A26) into equation (A20) leads to

C(f ) = −Re
{[

2 log(π f ) − 2γ + 3 − log(4)
]/[√

2π(2iπ f log(π f )

+ π f (2iγ + π + i(log(4) − 3)) − 2)

×(π(3i − 2iγ + π)f − 2iπ f log(2π f ) − 2)
] }, (A27)

and thus

C(f ) =
(

− 8γ 3π2f 2 − 2π2f (f (−6 log(π)(log
(

16π3
)

− 2γ log
(

4π f 2
)
) +

(
12γ 2 + π2

)
log(π f )

+ 9(3 − 4γ ) log(2π f ))

+ 4f log3(f ) + 6f (2γ − 3 + log(4) + 2 log(π)) log2(f )

+ 6f
(
γ log(16) + (log(2π) − 3) log

(
4π2

))
log(f )

+ 4f log(2π)((log(2) − 3) log(2)
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+ log(π) log(4π)) − 4 log(2π f ))

− 4γ 2π2f 2(log(64) − 9)

− 2γ (π2f (f
(
π2 + 27 + 12 log2(2)

)
− 4) + 4) + π2f

(
f
(

27 − π2(log(4) − 3)

+ log(8) log(16)) − 12) − 8 log(2π f ) + 12

)
/(√

2π(4π2f 2 log(π f )(log(4π f ) + 2γ − 3)

+ π2f (f (4γ 2 + π2 + (log(4) − 3)2

+ 4γ (log(4) − 3)) − 4) + 4)2
)

. (A28)

As f → 0 we have

C(f ) ∼ |log(f )| (A29)

Finally, if a > 3, then equation (A20) for f → 0 tends to a constant,
and thus, Yt behaves as white noise. Consequently, if the variance of
P̃(τ ) is finite, then Yt is for large values of t′ is uncorrelated.

To summarise, the spectral density function for f � 1 is,

C(f )
f �1∝

⎧⎪⎨
⎪⎩

f a−3, 2 < a < 3
| log(f )|, a = 3
const., a > 3

. (A30)

The inversion of the Fourier (cosine) transform in equation (A30)
yields

C(t′) ∝ t′2−a
/; 2 < a ≤ 3 ∧ t′ � 1. (A31)

Appendix 3. Short Selling

In the following, we show that the results presented in section 4.1
remain robust when short-selling is allowed.

To include short selling we allow the demand of the HFs to
become negative. However, due to the leverage constraint λ

j
t ≤ λmax

the minimum demand cannot be less than Poledna et al. (2014)

Dt,min = (1 − λmax)W
j
t /pt. (A32)

Taking the same steps outlined in Appendix B, we solve the optimi-
sation problem

argmax
Dj

t∈[Dt,min,Dt,max]

{
E

[
U(γ Wj

t+1)|Ij
]}

, (A33)

to obtain the following expression for the optimal demand of the jth
HF at time t

Dj
t = min

{
max

[
1 − λmax,

log(V/pt) + 1
2 Var

[
log pt+1|Ij

]
aVar

[
log pt+1|Ij

]
]

, λmax

}

Wj
t

pt
. (A34)

Figure A1. The autocorrelation function of the default symbolic
sequence when short-selling is allowed for low (κ = 0.7) and
high (κ = 9) heterogeneity. The result of fitting the autocorrela-
tion function for κ = 9 with a power-law model C(t′) ∝ t′−η yields
η = 0.88 ± 0.04. For the sake of comparison a power-law with expo-
nent −1 (the maximum in absolute terms exponent for defaults to be
clustered) is also plotted (black dashed line).

In section 4.1, we showed that for sufficiently high heterogeneity
HFs’ defaults, as observed on the aggregate level, are clustered. In
quantitative terms, this corresponds to the autocorrelation function C
of the default sequence being non-summable over the time-lags t′,
i.e. decaying at most as fast as C(t′) ∝ t′−1.

In figure A1, we present the numerically computed autocorrela-
tion function of the default sequence for two values of κ = 0.7, 9
corresponding to low and high heterogeneity, respectively. The
results were obtained by iterating the model described in section 3
[replacing equation (7) with equation (A34) to take into account short
selling] for 3 × 107 time steps, and averaging over an ensemble of
200 (random) realisations of the heterogeneity. As can be seen the
ACF corresponding to a high degree of heterogeneity decays approx-
imately linearly when plotted on double logarithmic scale. Therefore,
the ACF for κ = 9 decays algebraically, i.e. C(t′) ∝ t′−η. Fitting the
ACF with a power-law model yields η = 0.88 ± 0.04 [R2 = 0.9929],
hence the defaults are clustered. In contrast, for lower heterogeneity
κ = 0.6 the decay of the ACF is faster than C(t′) ∝ 1/t′ as can be
readily seen by comparing the corresponding ACF (red open circles)
with the black dashed line.

Let us now turn our attention to the default statistics. As explained
in section 4.2, the clustering of defaults can be linked to an aggregate
PDF of waiting times between defaults characterised by infinite vari-
ance. In figure A2, we present the corresponding PDFs for κ = 0.7, 9
in double logarithmic scale. As can be seen, for high heterogeneity
(blue line), the PDF asymptotically (τ � 1) decays as a power law.
Fitting the tail of the distribution with a power-law model P̃(τ ) ∝
τ−ζ we find ζ = 2.88 ± 0.04 (R2 = 0.9968) (dashed magenta line).
Therefore, the sample variance indeed diverges, i.e. ζ < 3. It is worth
noting that the exponents characterising the decay of the ACF and the
PDF are in line with the prediction of theorem 1, i.e. η = ζ − 2.
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Figure A2. The aggregate PDF of waiting times between defaults for low [κ = 0.7] and high [κ = 9] heterogeneity on a double logarithmic
scale. Fit with the model P̃(τ ) ∼ τ−ζ we obtain ζ = 2.88 ± 0.04 (R2 = 0.9968). To illustrate the approximate exponential asymptotic decay
of the aggregate PDF for κ = 0.7 we also show the corresponding aggregate densities using a logarithmic scale on the vertical axis (inset).
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