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Abstract: Soft polymers have emerged as a vital type of material adopted in biomedical engineer-
ing to perform various biomechanical characterisations such as sensing cellular forces. Distinct
advantages of these materials used in cellular force sensing include maintaining normal functions of
cells, resembling in vivo mechanical characteristics, and adapting to the customised functionality
demanded in individual applications. A wide range of techniques has been developed with various
designs and fabrication processes for the desired soft polymeric structures, as well as measurement
methodologies in sensing cellular forces. This review highlights the merits and demerits of these soft
polymer-based techniques for measuring cellular contraction force with emphasis on their quantita-
tiveness and cell-friendliness. Moreover, how the viscoelastic properties of soft polymers influence
the force measurement is addressed. More importantly, the future trends and advancements of soft
polymer-based techniques, such as new designs and fabrication processes for cellular force sensing,
are also addressed in this review.

Keywords: soft polymer; hydrogel; force-sensing; cellular biomechanics; cell-friendly; 3D matrix;
tissue engineering

1. Introduction

Advancements in synthetic techniques have provided the possibilities for tailoring
the structural compositions and the material properties of polymeric materials. More-
over, accompanied by the improvements in the imaging resolutions and the accuracy in
the characterisations of mechanical properties, soft polymer-based materials have been
increasingly favoured in the studies of tissue engineering and cellular mechanics [1,2].
Such materials are prevalent in the studies aimed for cellular force sensing, as their highly
customisable mechanical properties and non-toxic nature can provide great versatility in
such applications. In addition to cytotoxicity, as reviewed by Mondschein et al. [3], the
consideration of factors, e.g., hydrolytic and enzymatic degradation properties, as well as
the mechanical properties of soft polymer-based material, are needed for their adoption
in biological studies. Various fabrication approaches for soft polymeric materials have
been developed regarding biological applications, including moulding [4,5], casting [6],
particulate leaching [7], electrospinning [8], gas foaming [9], and 3D printing [10,11]. Each
of these fabrication processes has unique advantages and limitations in various aspects
key to applying soft polymer-based materials in cellular force sensing, such as architecture,
dimension, porosity, permeability and diffusion capabilities.

During cellular activities, such as growth, proliferation, migration, and apoptosis, cells
not only sense and respond to biochemical signals, but also form mechanical interactions
with their living environment [12]. These interactions between cells and the structures
proximately surrounding them are expressed in the form of cell-generated mechanical
forces, e.g., contraction forces. At the tissue level, cell-generated forces govern tissue
developments through driving the repositioning of materials, as well as the bending and
stretching of structures. Meanwhile, the forces also influence cellular processes, such as
receptor signalling and transcription at the subcellular level [13]. As the properties of soft
polymer-based materials can be tuned based on the needs, they have unique advantages
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in the application of cellular force sensing. Hence, the sensing of cellular forces through
the adoption of soft polymers not only extends our understanding of the biophysical
properties of living cells, but also supports the development of novel techniques and
materials in the field of tissue engineering and biomedicine. Traditional techniques, such
as atomic force microscope-based force spectroscopy [14,15], optical tweezers [16,17],
magnetic tweezers [18], and force probes [19], have been extensively applied in measuring
cellular forces. These state-of-art techniques offer great measurement accuracy. However,
in comparison to the force-sensing technique utilising soft polymers, they have shortfalls
in cell-friendliness and the ability to measure cellular force in a 3D matrix.

Soft polymer-based materials adopted in sensing cellular force usually take the form
of hydrogels, where they can provide the cells with a physiologically relevant biomimetic
3D matrix. Hydrogels are water-swollen crosslinked polymeric networks that promotes cell
function. The soft polymeric hydrogels can be customised versatilely in terms of stiffness,
viscoelasticity, fluid content, oxygen permeability, and porosity. It can also be functionalised
with specific bioactive molecules in accommodating and promoting particular cell types
and cellular activities. In order for the soft polymer to be applicable in cellular force
sensing, it is crucial to match its mechanical properties to that of native tissues. Within the
human body, the stiffness of the extracellular matrix (ECM), where cells reside, can vary
by several orders of magnitude between the softest brain tissue to the hardest bone tissue.
However, cell types of interest in cellular force sensing are usually sourced from tissues
with Young’s modulus ranging upwards of hundreds of kilopascal (105 Pa), which falls
within the elasticity range of soft polymeric materials. Thus, soft polymer-based materials
shall serve as desirable materials for sensing cellular forces.

Over the year, both synthetic and natural soft polymers have been widely adopted for
sensing cellular force. Based on synthetic material, techniques, such as deformable mem-
brane (DM) [20,21], traction force microscopy (TFM) [22,23], and elastic-micropillar technique
(EMP) [24], were developed. Meanwhile, naturally sourced polymers, such as collagen, agarose,
and alginate, were also adopted with typical techniques of various collagen gel-based contrac-
tion assays (CGCA) [25–28] and culture force monitor (CFM) [29,30]. The working principles,
merits and demerits of these techniques are summarised in Table 1.

Table 1. Comparison of common soft polymer-based cellular force sensing techniques. (DM: deformable membrane; TFM:
traction force microscopy; EMP: elastic-micropillar technique; CGCA: collagen gel-based contraction assays; CFM: culture
force monitor; PEG: polyethene glycol; PDMS: polydimethylsiloxane; PMMA: polymethylmethacrylate).

Polymer Origin Polymer Type Principles Advantages/
Disadvantages

Synthetic

DM Silicon rubber
Length and patterns of
wrinkles on film shows

force generation

Simple and cheap/
Not cell-friendly; not

quantitative

2D TFM Poly-
acrylamide; PEG

Use fluorescent
microbeads to track

substrate deformation due
to cells seeded on the

surface

Highly quantitative/
Not 3D; not cell-friendly

3D TFM
Tracking of matrix
deformation due to

embedded cells in 3D

Highly quantitative, 3D/
Not mimicking in vivo

environment;
computationally extensive

EMP PDMS; PMMA
Optically measure the

deflection of micro-pillar
array

Highly quantitative/
Not 3D; not cell-friendly

Natural
CGCA Collagen gel

Measure the geometry of
cell-embedded collagen

hydrogel

Highly cell friendly; 3D/
Qualitative

CFM Collagen gel
Continuously measure the
force generated through
attached strain gauges

3D; qualitative/
Complex; disturbance to

cells
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Recently, a number of reviews have been undertaken considering the available tools in
sensing cellular forces [13,31,32]. These reviews provided detailed insights on the state-of-
the-art techniques for measuring cellular forces, emphasising the accurate determination of
forces generated by cells. In comparison, this review focuses mainly on how soft polymers
can be utilised and optimised in sensing the forces generated by various types of cells by
creating a cell-friendly environment in mimicking the biomechanical and physiological
conditions of the tissue matrix. The advantages and limitations of each technique in regard
to their quantitativeness and cell-friendliness will also be presented in the current review.
Moreover, assessments of the viscoelastic properties of soft polymer-based materials are
addressed and the prospects of the future application of these materials in the studies of
cellular force sensing are provided.

2. Soft Polymer-Based Cellular Force Sensing Technique

Human cells generate and reside in a complex bioactive hydrogel scaffold (i.e., ECM).
It comprises structural proteins such as collagen, fibronectin, and laminin, offering a
mechanically stable micro-environment. Hydrated proteoglycan fills up the pores created
by the structural proteins, acting as a storage and a medium for the diffusion of homeostasis-
critical soluble molecules [33]. Cells exert and transmit internal tension and forces to the
outside environment through cell-to-matrix adhesions. Such adhesions mainly occur at the
sites of focal adhesions (FA), where the extended ends of cytoskeletal proteins aggregate join
with FA proteins (e.g., talin, vinculin) through transmembrane receptors (i.e., integrins) [34].
Integrins will then bind to ligands present in the ECM, forming connections enabling the
transmission of mechanical signals. Similarly, such connections can be formed between
the cells and the soft polymeric material, where the force generated by the cells can be
translated into the deformation of the substrate, constituting the basis of soft polymer-
based techniques in cellular force sensing. In general, these techniques share a common
underlying methodology. The characterisation of the mechanical properties of the soft
polymeric substrate in conjunction with the assessment of the level of deformation of the
substrate due to cellular force exertion will yield the amount of force generated.

2.1. Synthetic Soft Polymer-Based Techniques

With the increasing knowledge of synthetic polymers, many soft polymers have been
applied to study cellular forces. The synthetic soft polymers in such applications share the
advantages of being relatively easy in terms of mechanical property characterisation and
substrate functionalisation in adapting for various cell types and application scenarios.

2.1.1. Deformable Membrane (DM)

Harris et al. [20] developed a soft silicon rubber film-based technique to measure forces
produced by cells. It was the first technique for assessing traction force produced by cells.
When cells are seeded onto a thin silicon rubber film, the forces exerted by the cells cause
visible wrinkles on the film. The length and patterns of the formed microscopic wrinkles
are used to locate and follow the areas where cells are under contraction and extension.
Moreover, the relative magnitude of force generated by different types of cells can be
estimated [21]. Although it laid the foundation for measuring cellular force through the
deformable substrate, this technique cannot quantitatively determine the magnitude and
directions of the force. Further, the inhomogeneity of the thin film, such as surface defects
and non-uniform thickness, can potentially introduce errors into the measurement [32].

2.1.2. Traction Force Microscopy (TFM)

By better quantifying the polymer substrate deformation with the displacement of
embedded microbeads, 2D TFM addressed the limitations of the DM technique. Pelham
et al. [22] used a soft collagen-coated polyacrylamide hydrogel to study the locomotion of
fluorescent-labelled cells seeded on the substrate surface. Based on this, Munevar et al. [23]
improved on the quantitation and introduced the TFM technique by embedding a large
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number of fluorescent microbeads for measuring substrate deformation through visualising
the bead displacements as shown in Figure 1. A typical TFM analysis involves optically
imaging the bead distribution at certain time frames during force being exerted onto the
polymer substrate. A computer algorithm maps the bead displacements and quantitatively
resolves the force by incorporating the characterised substrate stiffness.
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Over the years, TFM gained popularity as a versatile technique in sensing forces at
the cell–matrix interface. The application of the technique spans many cell types such as
osteoblasts [35], keratinocyte [36], smooth muscle cells [37,38], and HeLa cells [39]. As
the sizes of the embedded fluorescent beads (≤1 µm) are typically much smaller than
the scale of cells (tens of µm), it allows force distribution to be mapped with subcellular
resolution [13]. The high resolution can serve to determine the contribution of active
cytoskeletal contraction to traction force generation [40]. Moreover, the applications of
TFM can be extended to measuring forces at focal adhesions [41] and traction forces during
migration [23,42], as well as elucidate how pathological events influence the traction
force [43,44]. Recently, stemming from the traditional 2D TFM technique, a number
of techniques for visualising cell adhesive forces at greatly enhanced resolution have
been developed. The visualisation is achieved through functionalising the soft polymer
substrate surface by immobilising extracellular tension sensors, specifically targeting the
focal adhesion transmembrane receptors [45,46]. The tension sensors are fluorescently
labelled so that the variation of force is converted to the change of luminescence of the
tension sensors, which results in the significant improvement of force resolution compared
to the conventional TFM [47,48].

Despite the advancements, the 2D nature of the technique makes it far from ideal for
promoting the physiological behaviours of cells. The in vivo environment for most cells is
a 3D matrix instead of the surface of a 2D substrate. As a consequence of many cellular
processes, cells behave very differently in terms of their mechanical characteristics when
moved from an environment of a 3D matrix to the surface of a 2D substrate [49]. Thus,
3D TFM is developed to provide an additional dimension to address the limitations in
2D TFM, investigating traction fields and sensing cellular forces in more physiologically
relevant conditions (i.e., cells embedded in a fibrous matrix). In essence, 3D TFM provides
an additional dimension in the vertical direction over the 2D TFM through embedding
cells and tracker beads within the matrix and measuring its deformation with embedded
beads in all three dimensions.

The needs for tracking fiduciary markers in 3D constitute the majority of the added
difficulties to 3D TFM, yet so far, several approaches have been developed. Bloom et al. [50]
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tracked the displacements of embedded fluorescent beads along the z-axis (vertical direc-
tion) using the patterns of out-of-focus diffraction rings in the optical system generated
by beads. The tracking of the beads through this method can be accomplished through
ordinary microscopy techniques. This approach requires only 5 s to track the bead displace-
ments around the vicinity of a single cell, minimising measurement error by effectively
‘freezing’ the cellular motion during the measurement period. However, the spatial reso-
lution along the z-axis is relatively low, at around 120 nm [50]. Laser-scanning confocal
microscopy has become prevalent in the study of cell morphology due to its high-resolution
imaging capacity in 3D, which also makes it a viable tool for tracking beads in 3D TFM.
Legant et al. [51] first demonstrated 3D traction force measurement with polyethene glycol
(PEG) hydrogel and confocal microscopy. It offers excellent spatial resolution, yet the
acquisition process is slow. When optimised for resolution versus acquisition speed, the
acquisition time for an individual cell’s traction field is approximately 3 min [51]. During
the scan, changes to the matrix by cellular activities are beyond negligible, inevitably intro-
ducing uncertainty to the reliability of the results. Moreover, the reconstruction process of
confocal microscopy-based 3D TFM is often very computationally intense [52]. Moreover,
as observed by Maskarinec et al. [53], laser beams used in confocal microscopy are photo-
toxic to cells. Hence, a minimum of 30 min is required for acquisition interval, limiting its
potential in dynamic cellular force sensing. Optical coherence microscopy (OCM), a variant
of optical coherence tomography, can also be applied to track the movements of beads in
3D. The OCM offers rapid volumetric acquisition and utilises near-infrared wavelengths
to mitigate light scattering and phototoxicity. However, such a system has a lower spatial
resolution and is prone to introducing speckles [54].

Although many improvements in mimicking the in vivo environments have been made
in the transition from 2D to 3D TFM, it still does not adequately represent physiological
conditions. Firstly, cells are usually seeded at a very low density onto the polymer sub-
strates to avoid interference of traction fields surrounding individual cells and minimise matrix
remodelling [53,55]. As the generation of cellular forces is primarily regulated via mechanosens-
ing, very low cell density will unavoidably hinder such processes. Secondly, unlike that in
the 2D TFM, the soft polymer-based matrix serves both as a measuring device and a matrix
to sustain cellular activities. In such a configuration, the polymer matrix will inevitably be
subjected to local degradation, precludes the reconstruction of the matrix deformation and
resolving the cellular force generation [50]. Thirdly, as the cellular force is determined through
the measured elasticity of a homogenous, isotropic, and linearly elastic substrate, any errors in
the process can be carried on and cause discrepancies in the resolved force. Lastly, the tracking of
fluorescent markers is computationally demanding and often discrete [56,57]. This is especially
true in recently developed super-resolved TFM techniques [58,59] as the density of the fluores-
cent bead has been dramatically increased to achieve 50–100 nm spatial resolutions compared
to the 1–5 µm in the traditional TFM [60–62]. In the light of this, new techniques based on
particle image velocimetry (PIV) [63] and particle tracking [64] have been developed to reduce
computational costs in 3D TFM. Moreover, the solutions towards adding time dependency of
marker tracking have been developed by Barrasa-Fano et al. [65] based on MatLab.

Overall, as a synthetic soft polymer-based technique, the limitations of TFM techniques
primarily stem from its unsatisfactory cell-friendliness as a result of the type of polymer
material used (e.g., polyacrylamide, PEG). While offering favoured properties such as being
non-cytotoxic, isotropic, homogeneous, and time-invariant, there is a minimal resemblance
of the ECM in biochemical aspects [13]. Attempts to use more physiologically relevant
soft polymeric materials such as pericellular collagen have been made [50,55]. However,
the nonlinear fibrillar nature of the collagen matrix prevents the application of classical
mechanical approaches in resolving forces from local matrix deformations [13].
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2.1.3. Elastic Micro-Pillar Technique (EMP)

In 2003, Tan et al. [24] developed microfabricated soft polydimethylsiloxane (PDMS)
elastomeric arrays, i.e., microneedle-like posts, to spatially track the forces produced by cells
attached on their tips (Figure 2a). Such a technique was invented as an alternative to TFM,
as the beam deflections caused by cellular forces can be measured optically. The cellular
forces can be determined by applying elastic beam theory as described by Equation (1),
provided that Young’s modulus and dimensions of the micro-pillars are characterised.

F = (
3EI
L3 )δ (1)

where E, I, L, and δ are Young’s modulus, the moment of inertia, length, and the horizontal
deflection of the micro-pillar.
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The EMP technique has seen widespread applications on many different types of cells,
such as epithelial cells [66], endothelial cells [67], fibroblasts [68], various myocytes [69–73],
and dendritic cells [74]. Compared with the TFM technique, this technique excels in the
customisability of the micro-pillars while keeping the surface properties constant [24]. By
controlling the length and diameter of the pillars, alteration of pillar compliance can be
achieved. At the same time, the spacing between the micro-pillars can be adjusted for
different cells types (Figure 2b,c). Meanwhile, variation in the moment of inertia of the
pillars can be achieved for forces in different directions by changing the cross-sectional
profiles of the micro-pillar (Figure 2d). Furthermore, various designs of the micro-pillar
array will also affect how cells attach to, spread across, and deflect the micro-pillars. As
the pillars deflect independently upon force exertion, the deflections of the micro-pillars
directly reflect the subcellular distribution of traction forces [24]. Additionally, the micro-
pillar arrays can be fabricated cost-effectively through casting [32].

However, such a technique also has disadvantages. Firstly, the synthetic soft polymeric
nature and the array topology may stimulate undesired cellular responses. Secondly, as
the micro-pillar deflection is optically assessed, the material choices of polymer substrate
are limited to optically transparent materials, such as polydimethylsiloxane (PDMS) and
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polymethylmethacrylate (PMMA). Lastly, the casting process inevitably causes defects in
pillar fabrication [75].

2.2. Natural Soft Polymer-Based Techniques

The utilisation of natural soft polymer for cellular force sensing has a unique advantage
of best mimicking the physiological environment and promoting natural cellular behaviours.
However, unlike synthetic soft polymeric materials, the characterisation of the mechanical
properties of the natural soft polymer is not as straightforward and more prone to cellular
remodelling. Moreover, compared to synthetic soft polymeric materials, natural soft polymers
have limited potential to tailor the internal structure and alter mechanical properties.

2.2.1. Collagen Gel-Based Contraction Assay (CGCA)

Within the body, cells are populated in the ECM, a 3D network of proteins (e.g., colla-
gen, glycoproteins) and other biomolecules to provide structural and biochemical support
to the cells [76,77]. Hence, the synthetic soft polymer-based cellular force sensing tech-
niques lack cell-friendliness and may not truly reflect the in vivo cellular behaviours. As
collagen is the most abundant matrix protein within the ECM [78], it undoubtedly becomes
the prime candidate for designing hydrogel-based techniques for cellular force sensing.

In 1979, Bell et al. [79] introduced fibroblast-populated collagen lattice (FPCL) to
study the contraction force generated by fibroblasts. They seeded fibroblasts into collagen
hydrogel and measured cellular contraction force by observing gel shrinkage due to
the force exerted onto the 3D cell-embedded collagen matrix. It provides excellent cell-
friendliness over the synthetic polymer-based techniques in terms of sustaining three-
dimensional physiological cellular interactions. Briefly, cells will form focal adhesions
and exert traction force onto collagen fibrils during the spread within the collagen matrix.
Since the collagen fibrils within the matrix are linked and intertwined, forces exerted onto
individual fibrils will propagate and cumulate to cause global contraction of the collagen
matrix. To construct the contraction assay, cells are seeded into the collagen solution
with desired cell density and collagen concentration at 4 ◦C. The seeding is followed by
a polymerisation period of approximately 20 min, after which culture media is added to
provide nutrition to the embedded cells. The gel is often subsequently dislodged from the
bottom of the Petri-dish and allowed to contract without constraints while suspended in
media. The protocols regarding the construction of the assay are documented in detail by
Ngo et al. [80].

Cell contraction is detected by measuring the percentage reduction of gel area af-
ter a period of culturing with optical systems [79]. Since the first introduction, several
variations to the technique have been developed with varying timing of dislodgement
(shown in Figure 3). The most common method is to dislodge the cell-embedded gels
after polymerisation immediately (Figure 3a) and obtain measurements after a period of
contraction. Such a method will result in the vast majority of the gel shrinkage being along
the radial direction. Figure 3b demonstrates a variation of the methodology where no
gel dislodge occurs. As the gel remains in contact with the rigid Petri-dish, the resultant
tension within the gel will primarily reduce the gel thickness. In comparison, the former
method provides a more straightforward measurement with an optical system than the
latter. Figure 3c shows a combined method, where a period of culturing is allowed to
elapse before dislodging. Such a method was invented and widely used to study how
external stress affects cellular force generation, as internal stress accumulates due to the
force exerted on the polymeric gel matrix prior to the dislodgement [81,82].
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In the early 1990s, Moon et al. [26] developed a novel approach known as fibroblast-
populated collagen microspheres (FPCM) to sense cellular force by probing the interactions
between cells and collagen fibrils. In comparison, the FPCM is a spherical analogue of the
traditional FPCL proposed by Bell et al. Instead of a disk-shaped hydrogel, a gel sphere
is constructed by pipetting cell-containing gel solution into a silicone fluid at 37 ◦C. The
novel approach provides several advantages over the traditional approach. Firstly, the
spherical design offers a more straightforward way of assessing the forces exerted on the
collagen gel. The measurement will be one-dimensional (i.e., axisymmetrical) instead
of two-dimensional as required for the disk-shaped gel. The spherical geometry also
enables the contraction of FPCM to be mathematically simplified, enabling the model to be
described with only a spherically symmetric set of equations. Secondly, as Modis et al. [83]
reported, the methodology applied in constructing traditional disk-shaped gel can lead
to a significant local anisotropy in the collagen matrix. This is recognised to be a result of
fibrillogenesis in the presence of bounding surfaces. Whereas the collagen microsphere in
the FPCM technique is prepared by pipetting the gel solution into silicone fluid, the initial
collagen fibril orientation is relatively isotropic. Lastly, the diameter of the yielded soft
polymeric microspheres can be arbitrarily small with a typical value of 1 mm [26], allowing
a minimised diffusion gradient for mass transport.

Due to the relative ease of fabricating and the cell-friendliness resulting from its natural
soft polymer-based material, many studies have adopted CGCA for sensing cellular forces
of cells of different physiological origins. The technique has seen extensive usages among
the study of cellular forces in pathological states, such as cardiovascular disease [84],
respiratory disease [85,86], eye disease [87], as well as cells during physiological events,
such as ageing [88], and wound healing [89–91].

Despite its cell-friendly merit and the ability to simulate various physiological condi-
tions, conventional CGCA techniques can only provide a qualitative assessment of cellular
forces. The mechanical properties of the soft polymeric matrix, such as the elasticity of the
collagen matrix, are unknown. Recently Jin et al. [27] developed a new nano-biomechanical
technique on cell-embedded collagen hydrogels in combination with mathematical mod-
elling, which measures both elasticity and geometrical changes of the polymeric gel in
determining cellular forces (Figure 4). The new technique provides merits in quantitative-
ness without sacrificing cell-friendliness. With such a technique, the influences of matrix
stiffness [92], and ageing [28] on cellular force generation were quantitatively studied.
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Considering that cells constantly remodel their surrounding matrix, the capability of
characterising matrix stiffness carries even greater importance in the natural polymer-based
force sensing techniques. This is especially true for certain cell types, such as fibroblasts
and chondrocytes, as their functions are primarily dependent on matrix remodelling and
the dependency becomes pronounced during states such as ageing [93,94].

2.2.2. Culture Force Monitor (CFM)

As reviewed above, conventional CGCA techniques offer a cell-friendly and straight-
forward approach to assess cellular forces with 3D soft polymeric hydrogels. Apart from its
non-quantitative feature, it also lacks measuring sensitivity as it cannot effectively display
observable geometric change under small force output. To improve on the technique,
Delvoye et al. [29] developed a CFM system to achieve direct measurements of cellular
forces by attaching a force transducer on the edge of the cell-embedded collagen gel.

In a typical CFM system, the sample gel is fixed to two diametrically opposed plates
connected to a force transducer and translational stage, respectively. The stage is used
to pre-stretch the gel prior to the start of the measurement (Figure 5). The entire system
is placed within a standard culturing incubator and a wireless transducer acquires the
force measurements. Alternatively, needle-like force transducer probes can be attached
isometrically on the free-floating collagen hydrogel and differential measurements can be
taken between transducer pairs. Sensitivities up to 0.5 mm and 0.5 mN can be achieved
on the displacement and force, respectively [30,95]. The most prominent benefit of the
CFM technique is its ability to allow precise, high sensitivity measurements of multi-
cellular force directly in a physiologically relevant environment (i.e., in hydrogel matrix)
and continuously monitor the force changes throughout the culturing period. Moreover,
the system enables the easy application of external mechanical stimuli, providing the
ability for more complex experimental design [32]. Recently, significant progress has
been made by Campbell et al. [30] and Peperzak et al. [96] to increase the efficiency
of CFM. The multi-station dynamic CFM allows multiple gel samples to be measured
simultaneously, significantly reducing the measuring time and providing better variable
controls throughout the study. Many studies have adopted CFM to measure different cell
types, such as fibroblasts [97,98], endothelial cells [98], and cardiac myocytes [99].
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However, there are still several disadvantages associated with CFM. One of the main
disadvantages is system complexity. The setup will inevitably disturb the normal cellular
processes, adding uncertainties to the result and increasing infection in the measuring pro-
cess. Moreover, axially constrained cellular force measurements, such as CFM experiments,
often have a limited measurement time due to the eventual mechanical homeostasis [100].
Additionally, as the force is acquired from a discrete amount of force transducers, the
interpretation of the result is dependent mainly on the transducer placement. Lastly, the
setup for such a system is relatively complicated.

3. Dynamic Interactions between Cells and Soft Polymer-Based Matrix

Cells are continuously remodelling their surrounding matrix, altering the surround-
ing mechanical and chemical environment. These changes reciprocally regulate cellular
processes through mechanosensing. Such a process provides the basis of matrix elasticity
influencing cellular behaviours. It has been noticed that cell’s interactions with the ECM
can result in the display of a different phenotype in vivo compared to that defined oth-
erwise by their genotype [101]. Studies on glioma cells show that the interactions with
a stiffer polymer matrix can promote cell division, where the division rate increased by
five-fold compared with a softer matrix [102]. Moreover, the sudden changes in the stiffness
of the soft polymer-based matrix are an important factor in promoting malignant transfor-
mation, tumorigenesis, metastasis [103]. The stiffness changes of matrix are also related
to the changes of cytoskeletal tension in tumour cells [104]. Moreover, the behaviours of
specific cells on a soft polymer substrate with altered stiffness is characteristic of particular
phenotypes. For example, cancerous cells can be distinguished by their ability to grow on
substrates softer than their corresponding healthy tissues [105]. Such a discovery suggests
that a cell does not act as a solitary individual, and any cellular behaviour should be as-
sessed in the context of the surrounding cells and their matrix. It also presented a promising
perspective in applying soft polymer-based materials in the study of cellular behaviours
as the dynamic matrix will trigger intercellular signal transduction in the regulation of
cell behaviours.

The stiffness of a homogeneous soft polymeric material is dependent on the concen-
tration of the polymer and the crosslinking density. The influences of polymer matrix
stiffness can vary between different cell types. Marklein and Burdick [106] demonstrated
increased proliferation and migration of mesenchymal stem cells (MSC) on 3D hyaluronic
acid scaffolds with higher stiffness, while Banerjee et al. [107] concluded the opposite for
neuronal stem cells. In terms of the cellular force measured using a soft polymer-based
matrix, fibroblasts in stiffer collagen hydrogel have shown reduced contraction [92]. How-
ever, the influences of polymer matrix stiffness in cellular force sensing cannot be simply
assessed in isolation. As a dynamic system, cells embedded in the soft polymeric matrix
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constantly remodel their surroundings, changing the matrix stiffness. The remodelling rate
depends on the initial stiffness of the matrix, demonstrated separately by Zhu et al. [108]
and Ahearne et al. [109] on fibroblasts with lung and corneal origins. Based on the mech-
anism of cell-mediated matrix contraction, if the polymer fibrils buckle under the force
applied by the cells, they cannot reciprocally stimulate cellular force generation. The lack
of stimulation will result in decreased cellular force output. It suggests that polymer matrix
with low stiffness tends to reduce the cellular force generation as it is more likely for the
polymer fibrils to buckle under increased traction force due to reduced fibril density. More-
over, the difference in matrix stiffness can affect properties key to cellular activities such as
the number of focal adhesion sites, oxygen and nutrient permeability. Such a complication
also indicates the benefits of adopting soft polymer-based techniques in cellular force
sensing, where physiological cellular behaviours are preserved.

4. Viscoelastic Properties of the Soft Polymer Matrix

Viscoelasticity is essential for biological functioning as it plays an important role in the
storage, transmission, and dissipation of forces and energy within living tissues [110,111].
Soft polymer-based techniques in sensing cellular force often require the construction of
polymeric hydrogels. Polymeric hydrogels often contain a large amount of water, thus
exhibit viscoelastic behaviours. Moreover, based on the molecular structures of their
polymer chains, the viscoelastic properties vary. Collagen hydrogels are shown to be
significantly viscoelastic among few commonly used natural hydrogels (e.g., agarose and
alginate). How the viscoelasticity of the hydrogel affects the embedded cells remains
unclear [112], yet it has been shown to promote cellular behaviours not seen on purely
elastic matrix [113]. The effects of viscoelasticity on embedded cells have also been shown
to change alongside cellular force exertion and matrix remodelling [109]. The application of
soft polymer-based material in cellular force sensing requires accurate characterisation of
the mechanical properties of the polymer matrix. As a soft polymer, often, the viscoelastic
property manifests in its force-displacement response when applying such techniques.
Therefore, characterisation of the viscoelastic properties of soft polymer-based material is
essential when applying for sensing cellular forces.

Viscoelastic materials are materials that display both elastic and viscous characteristics
simultaneously at a considerable level when undergoing deformation [114]. Similar to
soft biological tissues, polymeric hydrogels are typical biphasic materials where a solid
network forms the scaffold of the structure with water filling up the porous cavities [115].
It is commonly believed that the solid polymer network is responsible for the elastic
characteristics of the hydrogel, whereas the network mobility and fluid flowing within
the network contributes to the viscous properties of a viscoelastic material [116]. Within
polymeric hydrogels, the interstitial fluid phase (e.g., water) can be categorised into two
groups: ‘free-flowing’ and ‘fixed’. The ‘free-flowing’ water can easily undergo material
exchanges and diffuse in and out of the hydrogel. The ‘trapped’ water (i.e., fixed phase) is
tightly bound to hydrophilic fibrils through hydrogen bonding. It has an important role
in stabilising the polymer matrix structure within the hydrogel and contributing greatly
to the viscous properties of the hydrogel. At the same time, the hierarchical structure of
polymer fibres provides the elastic strength of the hydrogel.

The major approaches for characterising viscoelastic behaviours are through mea-
suring stress relaxation and creep responses. The stress relaxation test applies a fixed
deformation to the sample and measures the stress-time response of the sample, while
the creep test applies a fixed force and records the strain-time curve. The time-dependent
stress and strain data from the tests is subsequently used to derive viscoelastic parameters
from constitutive models. Tensile stress relaxation tests are among the most popular in de-
termining the viscoelastic responses of materials, yet the nature of biomaterials, especially
hydrogels, does not necessarily permit such tests to be performed.

In the last decade, many alternative mechanical testing approaches have been devel-
oped to suit the specific needs in characterising hydrogels materials. Ahearne et al. [117]
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demonstrated the mechanical characterisation of viscoelastic properties of biomimetic
membranes through micro-shaft poking. They also proposed a novel method of dropping
a stainless steel ball onto a thin, soft polymeric hydrogel film [118]. Cheng et al. [119] and
Mattice et al. [120] demonstrated the technique for stress relaxation and creep tests with
spherical indentation, allowing samples to be placed in an aqueous medium. Although,
compared with other methods, the indentation methods are confined to measuring lo-
calised viscoelastic response rather than the entirety of the material, it offers the benefit of
causing minimal disturbance to the soft polymeric hydrogel.

Many constitutive models were developed for describing the viscoelastic behaviour of
materials. It has been well recognised that the Maxwell model [121] (Figure 6a) and Kelvin–
Voigt model [122] (Figure 6b) offer simplicity cannot yet achieve satisfactory predictions
on the stress relaxation behaviours on soft polymeric materials [123]. The standard linear
solid (SLS) model [124,125] (Figure 6c) addresses the limitations of both Maxwell and
Kelvin–Voigt models by combining the elements of the two. The application of the SLS
model is suitable for both creep and stress relaxation analysis, which made it one of
the most common viscoelastic models in studying highly hydrated soft polymer-based
materials [115]. Moreover, a more general form of the linear viscoelastic model [126]
(Figure 6d) is available by the addition of ‘Maxwell elements’ to the model. The addition
enables the distribution of relaxation times in the model to achieve more realistic relaxation
modelling. A study has shown that a generalised SLS model (i.e., Maxwell–Weichert
model) can provide a more accurate representation of the relaxation response than the SLS
model [117]. However, as extra calculations are required with more unknown parameters,
the added complexity outweighs the gain of accuracy in characterising the viscoelastic
properties of soft polymeric hydrogels.
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The viscoelastic behaviours of soft polymer-based materials post additional complex-
ities in characterising their mechanical properties to sense cellular force. This not only
requires additional considerations towards the process of mechanical characterisation, but
also demands a nonlinear mathematical model for the technique. A numerical simulation
study conducted by Yu et al. [28] based on the finite element methods on the soft collagen
gel suggests that with less than 10% strain in the deformation, the polymeric collagen
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hydrogel can be treated as a linear-elastic material. The methodology and findings pro-
vide a feasible route for tackling viscoelastic behaviours presented by soft polymer-based
materials during the application in cellular force sensing.

5. Intricate Problems in Cellular Force Sensing
5.1. 2D Substrate or 3D Matrix

A common approach for in vitro study of cellular behaviours is to adopt a 3D cell-
embedded polymeric hydrogels matrix. A difference can be found between the traditional
2D approach and the 3D hydrogel matrix in how cells sense the micro-environment. For
instance, cells are only partially in contact with the substrate and the neighbouring cells
on a 2D substrate, causing polarised mechano-transduction and unnatural behaviour
of the cells [127]. The rest of the cell surface that is not in contact with the substrate
and neighbouring cells directly contact the culturing media. Despite direct nutritional
and waste exchange with the media, the homogeneous culture media does not create a
concentration gradient of nutrients, growth factors, and cytokines as observed for in vivo
conditions. It is shown that the dynamic spatial concentration gradients of soluble factors
in the ECM have influences on cell migration, communication, and differentiation.

Thus, for the sensing of cellular forces, a 3D soft polymer-based culturing model
should be used to best recapitulate the mechanical and biochemical stimulation present
in native ECM. As natural soft polymers offer great cell-friendliness, the 3D scaffolds
constructed with such soft polymeric materials can best mimic native ECM, promoting
physiological behaviours of the cells. The benefits of using a 3D hydrogel-based technique
in sensing and differentiating cellular forces in different physio-pathological states (e.g.,
ageing fibroblasts, chondrocytes) are especially prominent, as the ageing of fibroblasts is a
complex process involving changes in many aspects which change its matrix remodelling
and mechanosensing abilities [128].

5.2. Measurement Accuracy

Usually, quantitative analysis involves measuring the displacement response of an
applied force to the soft polymer-based substrate, thus requiring measurement instruments
with resolutions in the scale of milli-newton (mN) and micro-meter (µm) for force and
displacement, respectively. At such a fine resolution, the instruments are inevitably prone
to environmental perturbations. Moreover, in macro-scale mechanics, it can be reasonably
assumed that materials are homogeneous and that the size and shape of the probe are
negligible. In the cellular force sensing techniques that utilise a soft polymer-based matrix,
the heterogeneity in the matrix caused by the cell remodelling and force exertion, as well as
the geometrical profiles of the probe, can no longer be ignored. However, both issues can
be addressed by applying a relatively simple mechanical model and making an appropriate
assumption based on the aim of the study.

6. Prospects

Soft polymer-based materials have been widely used in sensing cellular forces to
promote natural cellular behaviour by providing cells with physiological environments. As
the fabrication approach and mechanical characterisation of soft polymer-based materials
undergo further developments, the utilisation of soft polymer-based materials broadens. A
few trends regarding future applications which can be envisaged are reported here.

6.1. Extended Choice of Natural Materials

Natural soft polymer material has the unique advantage of mimicking the physiologi-
cal environment and promoting natural cellular behaviours. Conventionally, due to the
obtainability and easiness of handling, the choices of natural polymers for cellular force
sensing are limited to polymers such as collagen, agarose, and alginate. Recently, more
naturally sourced soft polymers, such as fibrin [129–131], hyaluronic acid (HA) [132–134],
and fibronectin [135], have been adopted in the construction of 3D soft scaffolds for tissue



Polymers 2021, 13, 2672 14 of 20

engineering. With the extended range of naturally sourced polymer materials, the potential
of using soft polymer-based techniques in cellular sensing can be increased.

6.2. Bioactive Modification of Synthetic Materials

Soft polymeric hydrogel is an attractive material for mimicking natural ECM. However,
the methodology can be further improved with bioactive modification to better address
the biochemical composition of various tissue at different physiological and pathological
states. Zhu et al. [136] reviewed that short peptide chains derived from ECM proteins such
as laminin and fibronectin, are among the popular choices for bioactive modification of
PEG hydrogels. Petrini et al. [137] have also reported the design and functionalisation of
polyurethane hydrogels for tissue engineering. A broad range of potential studies can be
conducted with the bioactive modification of the soft polymeric matrix. For example, the
cell-embedded hydrogel can be bioactively modified to change the state of crosslinking
based on the morphological or the physiological state of the embedded cells. The change
of crosslinking structure of the hydrogel will intrinsically alter the mechanical properties
of the hydrogel, which may trigger specific force response of the cells, adding diversity to
the force sensing techniques based on soft polymer-based materials.

6.3. 3D Printing of the Soft Polymer Scaffold

3D bioprinting techniques have emerged in the past decades, capable of producing
tailored structures within the biomimetic, complex, and cellularised 3D soft polymer
scaffold appropriate for desired cell populations [138]. As reviewed by Li et al. [139], 3D
printed soft polymer network can facilitate matrix remodelling, migration, and adhesion,
which are desirable in cellular force sensing applications. Compared with the current soft
polymeric assays, the 3D printed tissue-equivalent will be a significant leap in advancing
the technique. It will ultimately represent the conditions of native tissues and promote
cellular behaviours closest to in vivo conditions. Moreover, the customisability of 3D
bioprinting has the potential for replicating pathological tissues, which could be the next
advancement in polymeric material-based cellular force sensing

6.4. Improvements of Methodological Design on Soft Polymers

Several methodological approaches can be taken to improve the performance of soft
polymers in force sensing applications. Firstly, the polymer matrix density and cell seeding
density can be optimised to form a cell-friendly biomimetic 3D matrix. As shown in Figure
7, at both seeding densities of 50,000 cell ml−1 (low) and 100,000 cell ml−1 (medium), cells
had enough space to spread and separate from each other, while at 200,000 cell ml−1 (high),
they are generally aggregated and attached with neighbouring cells. A 26% reduction in
contraction force generation was observed on samples with high density due to the saturation
of adhesion sites on the collagen matrix [28]. The results show that the polymer matrix density
and cell seeding density adopted in the techniques need to be extensively designed to provide
cells with environments closest to in vivo conditions, improving their performance in cellular
force sensing.
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Secondly, as reviewed above, the viscoelasticity of the cellular matrix regulates funda-
mental cellular processes and promoting cellular behaviours otherwise not seen in both
2D and 3D cultures [113]. This offers a perspective in tuning the viscoelasticity of the soft
polymer matrix to improve the force-sensing capability. The viscoelasticity of a polymer is
primarily determined by the structure and level of crosslinking of the polymer network, as
well as the type of crosslink bonds. In an ideal covalently crosslinked polymer network,
the energy will only dissipate through the uncrosslinked loose ends of the polymer, while
the non-ideally crosslinked polymers will lead to creeping [140,141]. Altering the ratio
between monomer and crosslinker is a viable approach to change the crosslinking structure.
As Charrier et al. [142] demonstrated on polyacrylamide hydrogels, the variation of storage
and loss moduli can be tuned by this approach. Moreover, the strength of the crosslinking
bond can also determine the viscoelastic properties of the soft polymer matrix as shown
on PEG [143,144], alginate [145], and peptide-based hydrogels [146]. Crosslinking bond
strength can be controlled through modifications to polymer chains, such as changing
molecular weight, inserting inert molecules to control polymer section length and chang-
ing the affinity of weak bonds (e.g., hydrazine, boronate bond). By modifying polymer
structures, the viscoelastic properties of the soft polymer can be customised to suit the
needs of cellular force sensing better.

Lastly, soft polymers can be fabricated in conjunction with bioelectronics to convert the
matrix deformation to electric signals. As reviewed by Boys and Owens [31], bioelectronics has
great potential in cellular force sensing. Several innovative designs for the EMP technique have
seen the usage of magnetised pillars in exerting forces on culturing cells [147,148], which propose
a feasible methodology for using conducting soft polymers to sense substrate deformation in
the form of capacitance or impedance changes.

7. Conclusions

This review described the importance of force generation in cellular activities and
emphasised the necessity and importance of accurately determining cellular forces. We
highlighted the advantages of utilising soft polymer-based materials based on their benefits
in preserving dynamic cell–matrix interactions. We outlined the influences of the viscoelas-
tic behaviours of the soft polymeric matrix on embedded cells and provided common
approaches to characterising such behaviours. Lastly, we presented prospects on the future
trends and advancements of polymer-based cellular force techniques, as well as several
methodological designs for improving the performance of the soft polymers for cellular
force sensing.
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