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Abstract

The main contribution of this paper is to provide a framework in which the
notion of farsighted stability for games, introduced by Chwe (1994), can be ap-
plied to directed networks. Then, using Chwe’s basic result on the nonemptiness
of farsightedly stable sets for games, we show that for any given collection of
directed networks and any given collection of rules governing network formation,
there exists a farsightedly stable directed network.

1 Introduction

We construct a framework in which the notion of farsighted stability for games, in-
troduced by Chwe (1994), can be applied to collections of directed networks. Our
construction proceeds in two steps. First, we extend the definition of a directed
network found in the literature (e.g., see Rockafellar (1984)). Second, our extended
definition allows us to introduce the notion a network formation network. We call
such a network, a supernetwork. All networks are composed of nodes and arcs. In
most economic applications, nodes represent economic agent, while arcs represent
connections or interactions between agents. In a supernetwork, nodes represent the
networks in a given collection, while arcs represent coalition moves and coalitional
preferences over the networks in the collection. Thus, given any profile of agent
preferences and any collection of directed networks, a supernetwork uniquely repre-
sents all the coalitional preferences and all the coalitional moves allowed by the rules
governing network formation (i.e., the rules governing movement from one network
to another) for the given collection of directed networks. By applying Chwe’s basic

*An earlier version of this paper was presented at the University of Warwick Summer Workshop
on Networks and Coalition Formation, July, 2001. The authors thank workshop participants for many
helpful comments.



result on the nonemptiness of farsightedly stable sets for games, we show that for
any supernetwork corresponding to a given collection of directed networks, the set
of farsightedly stable nodes is nonempty. Thus, we show that given any collection
of directed networks, any collection of rules governing network formation, and any
profile of agent preferences, there exists a farsightedly stable network.

In a directed network, each arc possesses an orientation or direction: arc j con-
necting nodes ¢ and ¢ must either go from node 7 to node 7' or must go from node
¢ to node <. In an undirected network, arc 7 would have no orientation and would
simply indicate a connection or link between nodes ¢ and #/. Under our extended
definition of directed networks, nodes are allowed to be connected by multiple arcs.
For example, nodes ¢ and ¢’ might be connected by arcs 7 and j’, with arc j' running
from node 4 to ¢ and arc j running in the opposite direction (i.e., from node i’ to
node 7). Thus, if node ¢ represents a buyer and node ' a seller, then arc j' might
represent a flow of money (from buyer to seller) while arc j might represent a flow of
goods or services (from seller to buyer). Also, under our extended definition arcs are
allowed to be used multiple times in a given network. For example, arc j might be
used to connect nodes ¢ and ' as well as nodes ¢’ and /. However, we do not allow arc
j to go from node ¢ to node 7' multiple times. By allowing arcs to possess direction
and be used multiple times and by allowing nodes to be connected by multiple arcs,
our extended definition makes possible the application of networks to a richer set
of economic environments. Until now, most of the economic literature on networks
has focused on linking networks (see for example, Jackson and Wolinsky (1996) and
Dutta and Mutuswami (1997)).

Given a particular directed network, an agent or a coalition of agents can change
the network to another network by simply adding or subtracting arcs from the existing
network, that is, by establishing or dissolving connections in accordance with certain
rules. For example, if the nodes in a network represent agents, then the rule for
adding an arc j from node i to node ¢’ might require that both agents ¢ and ¢’ agree
to add arc j. Whereas the rule for subtracting arc j, from node 7 to node ¢, might
require that only agent ¢ or agent ¢ agree to dissolve arc j. Given the rules governing
network formation (i.e., the rules governing the addition or subtraction of arcs), a
directed network is said to be farsightedly stable if no agent or coalition of agents is
willing to alter the network (via the addition or subtraction of arcs) for fear that such
an alteration might induce further network alterations by other agents or coalitions
which in the end leave the initially deviating agent or coalition no better off - and
possibly worse off.

A key step in our analysis of network formation and farsighted stability is the
construction of a supernetwork representing agents’ preferences and the rules govern-
ing network formation. Each node in a supernetwork represents a particular directed
network, while arcs represent various types of connections between the networks.
There are two broad categories of arcs in a supernetwork:(1) arcs representing coali-
tion moves from one node to another (m-arcs) - and therefore, coalitional moves from
one network to another; and (2) arcs representing pairwise coalitional preferences
over nodes (p-arcs) - and therefore pairwise coalitional preferences over networks.



Arcs in each category (m-arcs and p-arcs) are indexed by the coalitions responsible
for the arc. Thus, a supernetwork represents all the “coalitional moves” and all the
“coalitional preferences” between networks in the given collection of networks. Using
a result due to Chwe (1994), we show that the set of farsightedly stable nodes in any
finite supernetwork is nonempty. Each farsightedly stable node in the supernetwork,
in turn, represents a farsightedly stable network in the collection.

In current research, we are analyzing the efficiency properties of farsightedly stable
networks. While here we focus on directed networks, the same methodology can be
used to deduce the existence of farsightedly stable undirected networks (i.e., linking
networks - such as the networks considered by Jackson and Wolinsky (1996) and
Dutta and Mutuswami (1997)). An excellent paper on stability and efficiency in
undirected networks is Jackson (2001) (see also, Jackson and Watts (1998), Jackson
and van den Nouweland (2000), Skyrms and Pemantle (2000), Watts (2001), and
Slikker and van den Nouweland (2001)). In future research, we will focus on network
formation dynamics - along the lines of the seminal paper by Konishi and Ray (2001)
on coalition formation dynamics.

2 Directed Networks

We begin by giving a formal definition the class of directed networks we shall consider.
Let NV be a finite set of nodes with typical element denoted by ¢, and let A be a finite
set of arcs, with typical element denoted by j. Arcs represent potential connections
between nodes, and depending on the application, nodes can represent economic
agents or objects such as positions in an organization or locations within a market

area.l

Definition 1 (Directed Networks)

Given node set N and arc set A, a directed network, G, is a subset of A x (N x V).
We shall denote by N(IV, A) the collection of oll directed networks given N and A.

A directed network G € N(V, A) specifies how the nodes in N are connected
via the arcs in A. Note that in a directed network order matters. In particular, if
(7, (i,i/)) € G, this means that arc j goes from node i to node i . Also note that if
the set

GG) = {(ii) € Nx N (5, (1) € G

is empty, then arc j € A is not used in network G. If in our definition of a directed
network, we also require that G'(j) be nonempty and single-valued, then our definition
is the same as that given by Rockafellar (1984).

LOf course in a supernetwork, nodes represent networks.



Suppose that the node set N is given by N = {41,142, ...,45}, while the arc set A
is given by A = {41, j2, ..., J5, J6, j7} . Consider the network, (7, depicted in Figure 1.

Figure 1: Network ¢

In network GG, G(js) = {(44, i2)}. Thus, (Js, (i4, i2)) € G. Also, in network &7, arcs jg
and jr are not used. Thus, G(js) = 0 and G(j7) = 0. Finally, in network G, node i5
is isolated, that is, node i5 is not connected to any other nodes in the network by any
arc going to or coming from node 5.

Consider the new network, G’ € N(N, A) depicted in Figure 2.

Figure 2: Network G’

In network G', G'(j1) = {(i1, i2), (43,41)} . Thus, (j1, (i1,42)) € G’ and (ju, (is,71)) €
G’. Also, note that in network G’, node 5 is no longer isolated. In particular, arcs jg
and j7 are used to connect node i5 to other nodes in the network - and in particular,
G'(je) = {(ig,15)} and G'(j7) = {(i5,143)} . Finally, in Figure 2 note that nodes i» and
i4, as well as nodes 41 and 43 are connected by two arcs. Under our definition of a
directed network it is possible to alter network G’ by replacing arc js from ¢4 to 4o
with arc j4 from i4 to io. However, it is not possible under our definition to replace
arc js from i4 to io with arc j4 from 49 to i4 - because our definition does not allow
ja to go from io to i4 multiple times.



3 Supernetworks

Let N := N(V, 4) be a given collection of directed networks, with typical element
denoted by G, and let 2V denote the collection of all nonempty subsets (or coalitions)
of N with typical element denoted by S. In this section, it is useful to think of NV
as representing a finite set of economic agents and each directed network G € N as
representing a particular configuration of connections between the agents in [N via the
arcs in A. For example, suppose that under the rules governing network formation,
moving from network G (Figure 1) to network G’ (Figure 2) involves four agents:
agents i1 and i3 must agree to add arc j;, agents i3 and 75 must agree add arc j7, and
agents 75 and 44 must agree to add arc js. Thus, in order to move from network ¢
to network G’, the members of coalition {41, is, i4, i5} must agree to add connections
(i.e., arcs) j1, je and jr to network G. Whether or not this happens depends upon
the preferences of the individual agents, i1, i3, 74, and i5. We shall assume that
each agent’s preferences over networks are specified via each agent’s network payoff
function,
vi(+) N =R,

For each agent ¢ € IV and each directed network G € N, v;(G) is the payoff to agent
¢ in network (. Agent ¢ then prefers network GG in Figure 2 to network ¢ in Figure

1 if and only if
vi(G') > vi(G).

Moreover, coalition {i1, i3, 4, i5} € 2V prefers network G’ to network (' if and only if
vik(G’) > v, (G) for all agents iy in {1, 3, 44, i5} .

Given a collection of directed networks N and agents’ preferences over N, we can
give a very precise network representation of the rules governing network formation
as well as agents’ preferences. To begin, let

M .= {ms S € 2N} denote the set of m-arcs,
P .= {ps 15 € 2N} denote the set of p-arcs,

and
A =MUP.

Given networks G and G’ in N, denote by
G — G

mS/
(i.e., by an m-arc, belonging to coalition S’, going from node G to node G’) the fact
that coalition S’ € 2%V can change network G to network G’ by adding or subtracting
arcs to network (G. Moreover, denote by

G--»G
Pst

(i.e., by a p-arc, belonging to coalition S’, going from node G to node G’) the fact
that coalition S’ € 2V prefers network G’ to network G.



Definition 2 (Supernetworks)
Given node set N (o collection of directed networks, N(N, A)) and arc set A .= MUP,
a supernetwork corresponding to N is a subset G of A x (N x N),

Thus, for each S’ € 2V, mg € M, and pg € P
(ms, (G,G")) € Gif and only G — G’
msl
and

(p5’7 (G7 G/)) e G if and Only if ¢ —p——) G/7
5!

and thus, supernetwork G provides a network representation of all coalitional moves
and all coalitional preferences.
Note that the set

G(mg ) = {(G,G/) eNXN:(mg, (G,G/)) S G},

contains all ordered pairs of networks, (G, G’), such that network G can be changed
to network G’ by the agents in coalition S/, while the set

G(ps) = {(G,G") e NxN: (ps, (G,G") € G},

contains all ordered pairs of networks, (G, G’), such that network G’ is preferred
to network G by the agents in coalition S’. Also note that each agent’s preferences

over networks N, defined via the network payoff function v;(-), are automatically
irreflexive. Thus, if (ps, (G, G")) € G, then G # G'.

4 Farsightedly Stable Networks

Given supernetwork G, we say that network GG’ € N farsightedly dominants network
G € N if there is a finite sequence of networks,

G07G17"'7Gh7

with G = Go, G/ = Gp, and G, € Nfor k = 0,1, ..., h, and a corresponding sequence
of coalitions,
517527 o -7Sh7

such that for k=1,2,...,h
(ms,, (Gr1Gr)) € G,

and
(ps,, (Gr—1Gr)) € G.

We shall denote by G <1<t GG/ the fact that network G’ € N farsightedly dominates
network G € N. Figure 3 below provides a network representation of farsighted dom-



inance. In Figure 3, network (3 farsightedly dominates network Gy.

I'd
4 1
’ I
p ’
51 . pSz:
e ! <
Gp———p» G1—p» Gy
msl mSZ

Figure 3: (i3 farsightedly dominates G

Definition 3 (Farsightedly Stable Networks)

Let N := N(N, A) be a collection of directed networks and let G C A x (N x N) be
a corresponding supernetwork with node set N and arc set A .= M UP. A subset of
directed networks Fa is said to be farsightedly stable if

for all Gy € Fg and (mg,, (Go, G1)) € G,
there exists Go € Fg
with Go = G1 or G >> (1 such that,
(psy, (Go, G2)) € G.

Thus, a subset of directed networks F¢q is farsightedly stable if given any network
Go € Fg and any mg, - deviation to network (&1 € N by coalition S; (via the adding or
subtracting of arcs) there exists further deviations leading to some network G € Fg
where the initially deviating coalition S is not better off - and possibly worse off.

There can be many farsightedly stable sets. We shall denote by Fg the largest
farsightedly stable set. Thus, if Fg is a farsightedly stable set, then FgC F§.

We now have our main result on the uniqueness and nonemptiness of the largest
farsightedly stable set.

Theorem 1 (Fg # 0)

Let N .= N(N, A) be a collection of directed networks. Given any supernetwork G C
A x (N x N) corresponding to N, there exists a unique, nonempty, largest farsightedly
stable set Fg,. Moreover, Fg, is externally stable with respect to farsighted dominance,
that is, if network G is contained in N\F&, then there exists a network G’ contained
in Fg that farsightedly dominants G (i.e., G’ >> Q).

Proof. The existence of a unique, largest farsightedly stable set, ¢, follows from
Proposition 1 in Chwe (1994). Moreover, since the set of networks N := N(N, 4)
is finite and since the each agent’s preferences over networks are irreflexive (i.e.,
(pgiy» (G,G") € G implies G # ('), nonemptiness follows from the Corollary to
Proposition 2 in Chwe (1994).
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