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SUMMARY

The oomycete Albugo candida causes white rust of Brassicaceae, including vegetable and oilseed crops,

and wild relatives such as Arabidopsis thaliana. Novel White Rust Resistance (WRR) genes from Arabidopsis

enable new insights into plant/parasite co-evolution. WRR4A from Arabidopsis accession Columbia (Col-0)

provides resistance to many but not all white rust races, and encodes a nucleotide-binding, leucine-rich

repeat immune receptor. Col-0 WRR4A resistance is broken by AcEx1, an isolate of A. candida. We identified

an allele of WRR4A in Arabidopsis accession Øystese-0 (Oy-0) and other accessions that confers full resis-

tance to AcEx1. WRR4AOy-0 carries a C-terminal extension required for recognition of AcEx1, but reduces

recognition of several effectors recognized by the WRR4ACol-0 allele. WRR4AOy-0 confers full resistance to

AcEx1 when expressed in the oilseed crop Camelina sativa.

Keywords: immunity, resistance gene, NLR, natural variation, evolution, effector recognition, crop protec-

tion, Arabidopsis thaliana, camelina.

INTRODUCTION

Plants have evolved powerful defence mechanisms that

can arrest attempted colonization by microbial pathogens.

Timely defence activation requires perception of pathogen-

derived molecules by cell-surface pattern-recognition

receptors and intracellular nucleotide-binding (NB), leu-

cine-rich repeat (LRR) (NLR), immune receptors (Jones and

Dangl, 2006). Extensive NLR genetic diversity within plant

populations is associated with robustness of NLR-mediated

immunity (Baggs et al., 2017), and plant NLR sequences

reveal diversifying selection on NLR genes compared with

other genes (Kuang et al., 2004; Meyers et al., 1998; Mon-

teiro and Nishimura, 2018). To investigate NLR diversity,

next-generation sequencing technologies were combined

with sequence capture to develop Resistance (R)-gene

enrichment sequencing (RenSeq) (Jupe et al., 2013). This

method has shed new light on NLR repertoires in several

plant genomes, including tomato, potato and wheat

(Andolfo et al., 2014; Steuernagel et al., 2016; Witek et al.,

2016). A comparison of 64 Arabidopsis thaliana (Arabidop-

sis) accessions using RenSeq documented NLR sequence

diversity within a single species, revealing the Arabidopsis

“pan-NLRome” (Van de Weyer et al., 2019). Each Arabidop-

sis accession contains 150–200 NLR-encoding genes.

About 60% are found in clusters (within 200 kb from each

other) that show copy number variation (Lee and Chae,

2020). From all the NLRs of the 64 accessions, 10% are sin-

gletons and the rest are distributed among 464

orthogroups. Each accession contains a unique subset

comprising, on average, 25% of the orthogroups.

NLRs vary in their intramolecular architecture. Plant NLR

proteins usually display either ‘Toll, Interleukin-1, R-gene’

(TIR), or ‘Coiled-Coil’ (CC), or ‘Resistance to Powdery mil-

dew 8’ (RPW8) N-terminal domain, a central NB domain

and a C-terminal LRR domain. Some NLRs also comprise

additional C-terminal domains. For example, RRS1 is an
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Arabidopsis TIR-NLR with a WRKY domain required to

detect the effectors AvrRps4 (from the bacterium Pseu-

domonas syringae) and PopP2 (from the bacterium Ralsto-

nia solanacearum). The integrated WRKY is called a decoy

as it mimics the authentic AvrRps4 and PopP2 effector tar-

gets (Le Roux et al., 2015; Sarris et al., 2015). Several other

integrated decoy domains have been described (Cesari,

2017). The analysis of NLR-integrated domains can poten-

tially reveal novel effector targets (Kroj et al., 2016).

RPP1 and Roq1, two TIR-NLRs from Arabidopsis and

Nicotiana benthamiana respectively, form tetrameric resis-

tosomes upon activation (Ma et al., 2020; Martin et al.,

2020). In this structure, a C-terminal jelly-roll/Ig-like domain

(C-JID) physically binds the cognate effector, along with

the LRR domain. The C-JID corresponds to previously

described motifs found after the LRR of many TIR-NLRs,

called post-LRR motifs (Saucet et al., 2021; Van Ghelder

and Esmenjaud, 2016). We will refer to this domain as C-

JID in the rest of the text.

Albugo candida causes white blister rust in Brassi-

caceae and serious annual yield losses in brassica crops

such as oilseed mustard (Brassica juncea) in India (Gupta

et al., 2018). It comprises several host-specific groups,

which include race 2 from B. juncea, race 7 from Brassica

rapa, race 9 from Brassica oleracea and race 4 from wild

relatives (e.g. Capsella bursa-pastoris, Arabidopsis spp.

and Camelina sativa) (Table S1) (Jouet et al., 2018; Pound

and Williams, 1963). They have been proposed to evolve

by rare recombination events that occurred between the

races, followed by clonal propagation on susceptible

hosts (McMullan et al., 2015). The Arabidopsis Columbia

(Col-0) allele of WRR4A can confer resistance to isolates

of all four races (Borhan et al., 2008, 2010). The allele

encodes a canonical TIR-NLR and belongs to an

orthogroup of three genes in Col-0 at the same locus. The

accession Wassilewskija-2 (Ws-2; susceptible to A. candida

race 4) lacks WRR4A but contains the two other paralogs,

illustrating intraspecies copy number variation within clus-

ters. Interestingly, one of these paralogs, WRR4B, also

confers resistance to the Ac2V isolate of race 2 (Cevik

et al., 2019). In addition, the CC-NLR-encoding BjuWRR1,

which confers resistance to several A. candida isolates

collected on B. juncea, was mapped and cloned from the

European accession of B. juncea Donskaja-IV (Arora et al.,

2019).

Several Col-0-virulent isolates of A. candida race 4 have

been collected from naturally infected Arabidopsis plants.

They were used to identify an alternative source of broad-

spectrum white rust resistance. One of these isolates,

AcEx1, was used to reveal a source of resistance in Øys-

tese-0 (Oy-0) that mapped to the WRR4 locus (Castel, 2019;

Fairhead, 2016). We set out to clone the gene conferring

AcEx1 resistance in Oy-0, and characterize the correspond-

ing pathogen effector(s).

AcEx1 was collected from Arabidopsis halleri in Exeter,

UK. It is also virulent in C. sativa, an emerging oilseed crop

that has been engineered to provide an alternative source

of long chain omega-3 polyunsaturated fatty acids (Petrie

et al., 2014; Ruiz-Lopez et al., 2014). Transgenic camelina

oil is equivalent to fish oil for salmon feeding and for

human health benefits (Betancor et al., 2018; Napier et al.,

2015; West et al., 2019). Despite challenges to distribute a

product derived from a genetically modified crop (Napier

et al., 2019), an increase in camelina cultivation can be

expected in the near future. Fields of C. sativa will inevita-

bly be exposed to A. candida and early identification of R-

genes will enable crop protection. Furthermore, AcEx1 can

suppress Arabidopsis non-host resistance to the potato

late blight pathogen Phytophthora infestans (Belhaj et al.,

2017; Prince et al., 2017), and to downy mildews (Cooper

et al., 2008) emphasizing the importance of protecting

camelina fields from white rust.

In this study we identified two alleles of WRR4A confer-

ring full resistance to AcEx1 from Arabidopsis accessions

Oy-0 and HR-5. They both encode proteins with a C-termi-

nal extension compared with the Col-0 WRR4A allele. This

extension enables recognition of at least one effector from

AcEx1. We propose that WRR4AOy-0 is the ancestral state,

and that in the absence of AcEx1 selective pressure, an

early stop codon in WRR4A generated the Col-0-like allele,

enabling more robust recognition of other A. candida races

while losing recognition of AcEx1. Finally, we successfully

transferred WRR4AOy-0-mediated resistance to AcEx1 from

Oy-0 into C. sativa.

RESULTS

Resistance to AcEx1 is explained by WRR4A alleles of HR-5

and Oy-0

AcEx1 growth on Col-0 results in chlorosis that is not seen

in the fully susceptible accession Ws-2 (Figure 1a). As

WRR4A confers resistance to all other A. candida races

tested and Ws-2 lacks WRR4A, we tested if the chlorotic

response could be explained by WRR4A, by testing a

Col-0_wrr4a-6 mutant, and found that it shows green sus-

ceptibility to AcEx1. We also tested Ws-2 transgenic lines

carrying WRR4A from Col-0 and observed chlorotic suscep-

tibility (Figure 1b). Thus, WRR4A from Col-0 weakly recog-

nizes AcEx1 and provides partial resistance. However,

AcEx1 is still able to complete its life cycle on Col-0, which

is therefore considered susceptible.

In a search for more robust sources of AcEx1 resistance,

we tested 283 Arabidopsis accessions (Table S2). We iden-

tified 57 (20.1%) fully resistant lines, including Oy-0 and

HR-5. We phenotyped 278 recombinant inbred lines (RILs)

between Oy-0 (resistant) and Col-0 (susceptible) and con-

ducted a quantitative trait locus (QTL) analysis that

revealed one major QTL on chromosome 1 and two minor
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QTLs on chromosomes 3 and 5 (Figure S1a). All loci con-

tribute to resistance, with a predominant contribution of

the QTL on chromosome 1 (see figure 3.7 of Fairhead,

2016). We did not investigate the minor QTL on chromo-

some 5. Fine mapping on chromosome 1 and 3 QTLs

refined the QTL boundaries (Figures S2 and S3, see Experi-

mental procedures). Based on sequence identity between

the QTL in Col-0 and in an Oy-0 RenSeq dataset (Van de

Weyer et al., 2019), we identified four NLRs associated with

the QTLs in Oy-0: three TIR-NLR paralogs on chromosome

1 (WRR4A, WRR4B, and one absent in Col-0 that we called

WRR4D) and a CC-NLR absent in Col-0 on chromosome 3

(that we called Candidate to be WRR11 and CWR11) (Fig-

ure S1b,c).

We expressed these genes, with their own promoters

and terminators, in the fully susceptible accession Ws-2.

Only WRR4AOy-0 conferred full resistance (Figure 1b).

CWR11, the only NLR from the WRR11 locus, does not con-

fer AcEx1 resistance. The gene underlying WRR11 locus

resistance remains unknown.

We conducted a bulk segregant analysis using an F2

population between HR-5 (resistant) and Ws-2 (suscepti-

ble). RenSeq on bulked F2 susceptible segregants

revealed a single locus on chromosome 1, which maps to

the same position as the chromosome 1 QTL in Oy-0 (Fig-

ure S4a). As WRR4AOy-0 confers resistance to AcEx1, we

expressed its HR-5 ortholog, in genomic context, in the

fully susceptible accession Ws-2, and found that

WRR4AHR-5 also confers full resistance to AcEx1 (Fig-

ure 1b).

In conclusion, WRR4A from Col-0 can weakly recognize

AcEx1 but does not provide full resistance. We identified

two WRR4A alleles, in Oy-0 and HR-5, which confer full

AcEx1 resistance.

Figure 1. Oy-0 and HR-5 alleles of WRR4A confer full resistance to AcEx1.

5-week-old plants were sprayed inoculated with AcEx1. Plants were phenotyped 14 days after inoculation.

(a) AcEx1 response in nature Arabidopsis accessions and mutants. Indicated genotypes always display this phenotype in response to AcEx1.

(b) AcEx1 response in transgenic Ws-2 expressing WRR4AOy-0, WRR4BOy-0, WRR4DOy-0, WRR4ACol-0, or CWR11Oy-0. Numbers indicate the number of independent

transgenic lines showing similar phenotype out of the number of independent transgenic lines tested. Red arrows indicate a chlorotic response seen in suscepti-

ble lines containing WRR4ACol-0 (i.e. Col-0 wild type and Ws-2_WRR4ACol-0 transgenic). Adaxial picture of the leaves has been added to illustrate the chlorotic

response.
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WRR4ACol-0 carries an early stop codon compared with

WRR4AOy-0

To understand why the Oy-0 and HR-5 alleles of WRR4A

confer full resistance to AcEx1, while the Col-0 allele does

not, we compared the gene and protein sequences (Fig-

ure 2). First, we defined the cDNA sequence of WRR4AOy-0.

The splicing sites are identical between the two alleles.

There are 46 polymorphic amino acids among Col-0, HR-5,

and Oy-0. Col-0 shares 96.03% amino acid sequence iden-

tity with Oy-0 and 96.23% with HR-5, while Oy-0 and HR-5

share 97.15% amino acid sequence identity. WRR4ACol-0

carries a 156-nucleotide insertion in the first intron com-

pared with Oy-0 and HR-5. A more striking polymorphism

is a TGC->TGA mutation in WRR4ACol-0, resulting in an

early stop codon compared with WRR4AOy-0 and

WRR4AHR-5 (Figure 2), located 178 amino acids after the C-

JID, resulting in an 89 amino acid extension in WRR4AOy-0

and WRR4AHR-5. The nucleotide sequence for this exten-

sion is almost identical between HR-5, Oy-0, and Col-0

(two polymorphic sites). Thus, by mutating TGA to TGC in

Col-0, we could engineer an allele with the extension that

we called WRR4ACol-0_LONG (Figure 3a). By mutating TGC

to TGA in Oy-0, we could engineer an Oy-0 allele without

the extension that we called WRR4AOy-0_SHORT. We

expressed these alleles, as well as the wild-type Col-0 and

Oy-0 alleles, with their genomic context, in the AcEx1-com-

patible accession Ws-2. For unknown reasons, none of the

WRR4ACol-0_LONG and WRR4AOy-0_SHORT transgenic seeds

Figure 2. Allelic variation between Col-0, HR-5, and

Oy-0 alleles of WRR4A.

(a) Nucleotide sequence alignment of WRR4A alle-

les. Plain yellow areas represent exons. Yellow lines

represent introns. bp, base pair.

(b) Amino acid alignment. a.a., amino acid. The C-

terminal extension is framed in yellow for Col-0 to

indicate that an early stop codon avoids translation

of this sequence. (a,b) Cartoons made with CLC

Workbench Main. Green represents identity. Red

represents polymorphism. Figures are to scale.

Figure 3. Recognition of CCG effectors by wild-type (WT) and stop codon mutant alleles of WRR4A.

CCG effector candidates were transiently expressed in 4-week-old Nicotiana tabacum leaves, under the control of the 35S promoter and Ocs terminator, alone

or with WT or mutant alleles of WRR4A. Leaves were infiltrated with Agrobacterium tumefaciens strain GV3101 in infiltration buffer at OD600 = 0.4. Pictures were

taken at 4 dpi.

(a) cartoon of the WRR4A alleles: (a) Col-0 WT, (b) Oy-0 WT, (c) Col-0 with TGA-TGC mutation, causing an Oy-0 like C-terminal extension, (d) Oy-0 with a TGC-

TGA mutation causing a truncation of the C-terminal extension.

(b) AcEx1 CCG effector candidates alone (e) or with one of the four WRR4A alleles as shown in a [a–d]. MLA7 CC domain was used as an HR-positive control (f).

Numbers indicate the number of positive HR observed out of the number of infiltrations conducted.

(c) Eight CCGs from other races of Albugo candida known to be recognized by Col-0 allele of WRR4A were tested with the three others WRR4A alleles. CCG

effector candidates alone (e) or with one of the four WRR4A alleles as shown in a [a–d]. For CCG28, CCG30, CCG33 and the control leaf, WRR4AOy-0 (b) is infil-

trated on the top right of the leaf, instead of WRR4ACol-0_LONG. Numbers indicate the number of positive HR observed out of the number of infiltrations con-

ducted.

(d) Expression of CCG35 (68 kDa) and CCG39 (72 kDa) showed by Western blot with anti-V5 antibody. Expression of WRR4 alleles (not tagged) by reverse tran-

scription–polymerase chain reaction (197 bp), using NbActin as a control (143 bp).

(e) Summary of the CCG recognition by WRR4A alleles. Red nails: AcEx1 effectors, black nails: CCGs from other A. candida races.
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germinated. We tried to generate Arabidopsis Col-0 lines

with WRR4ACol-0-STOP using CRISPR adenine base editor

(see Experimental procedures). Of 24 transformed plants,

none displayed editing activity at all. Thus, we did not gen-

erate stable WRR4A stop codon mutants in Arabidopsis.

We therefore cloned these alleles under the control of the

© 2021 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,
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35S promoter and the Ocs terminator for transient overex-

pression in Nicotiana tabacum (Figure 3).

As many TIR-NLRs carry a C-JID, we conducted a Hidden

Markov Model search and found one in WRR4A [www.eb

i.ac.uk/Tools/hmmer/search/hmmsearch on A. thaliana

using the Hidden Markov Model previously reported (Ma

et al., 2020), e-value = 5.7e-14]. This C-JID is present in Oy-

0, HR-5, and Col-0 alleles (Figure 2b). The C-terminal exten-

sion in WRR4AOy-0 relative to WRR4ACol-0 does not show

homology with known protein domains.

Extension in WRR4A confers specific recognition of AcEx1

candidate effectors

To identify AcEx1 effectors specifically recognized by

WRR4AOy-0, we tested for a hypersensitive response (HR), a

typical phenotype upon NLR activation, after transient

expression of WRR4AOy-0 along with AcEx1 candidate effec-

tors in N. tabacum leaves. Secreted CxxCxxxxxG (CCG) pro-

teins are expanded in the genomes of Albugo species and

are effector candidates (Furzer et al., 2021; Kemen et al.,

2011). We identified 55 CCGs in the AcEx1 genome (Jouet

et al., 2018; Redkar et al., 2021), and polymerase chain reac-

tion (PCR)-amplified and cloned 21 of them, prioritizing

those that showed allelic variation with other races. From

them, CCG39 induces a WRR4AOy-0-dependent HR

(Figure 3) and explains AcEx1 resistance in Oy-0.

WRR4ACol-0_LONG can also recognize CCG39, but

WRR4AOy-0_SHORT cannot. Hence, the C-terminal extension

fully explains the acquisition of recognition of CCG39. In

addition, WRR4ACol-0_LONG recognizes CCG35 (Figure 3b).

Recognition of CCG35 is not explained solely by the

C-terminal extension (as WRR4AOy-0 does not recognize it)

or by the core region of the Col-0 allele (as WRR4ACol-0 does

not recognize it).

WRR4ACol-0 can recognize eight CCG effectors from

other races of A. candida (Redkar et al., 2021). We found

that WRR4AOy-0 is able to recognize CCG28, CCG40, and

CCG104, but not CCG30, CCG33, CCG67, CCG71, and

CCG79 (Figure 3c). WRR4ACol-0_LONG recognizes all the

CCGs indistinguishably from WRR4ACol-0, indicating no

influence of the C-terminal extension on their recognition.

In conclusion, we identified one AcEx1 effector specifi-

cally recognized by WRR4AOy-0. The C-terminal extension

is required and sufficient for its recognition. We also found

that WRR4AOy-0 does not recognize several of the Col-0-

recognized CCG from other races.

WRR4A alleles carrying a C-terminal extension are

associated with AcEx1 resistance

The NLR repertoire of 64 Arabidopsis accessions has been

determined using resistance gene enrichment sequencing

(RenSeq) (Van de Weyer et al., 2019). We found 20 suscepti-

ble and five resistant genotypes that belong to the 64 acces-

sions (Table S2). We retrieved WRR4A from these 25

accessions (http://ann-nblrrome.tuebingen.mpg.de/apollo/

jbrowse/). The read coverage was insufficient to resolve

WRR4A sequence in Bur-0 (susceptible) and Mt-0 (resis-

tant). WRR4A is absent from the WRR4 cluster in Ws-2, Edi-

0, and No-0. Consistently, these accessions are fully suscep-

tible to AcEx1. From the DNA sequence of the 20 other

accessions, we predicted the protein sequence, assuming

that the splicing sites correspond to those in Col-0 and Oy-0

(Figure 4 and Dataset S1). There are two well-defined

groups of WRR4A alleles. One includes WRR4ACol-0; the

other includes WRR4AOy-0. The Col-0-like and Oy-0-like

groups are also discriminated in a phylogeny constructed

based on predicted protein sequences (Figure S5 and Data-

set S2). All alleles from the Col-0 group carry TGA (apart

from ULL2-5, TGC, but WRR4A is pseudogenized in this

accession), while all alleles from the Oy-0 group carry TGC,

at the Col-0 stop codon position. Several alleles from both

groups, including Bay-0, ULL2-5, Wil-2, Ler-0, Ws-0, and Yo-

0, carry an early stop codon (i.e. upstream of the Col-0 stop

codon position), so the resulting proteins are likely not func-

tional. Consistently, all the accessions from the Col-0 group

and all the accessions carrying an early stop codon are sus-

ceptible to AcEx1. The only exception is Kn-0, which carries

an Oy-0-like allele of WRR4A but is susceptible to AcEx1.

Otherwise, the presence of an Oy-0-like C-terminal exten-

sion associates with resistance.

AcEx1 resistance can be transferred from Arabidopsis to

Camelina

AcEx1 can grow on C. sativa (Figure 5), which like Ara-

bidopsis, can be transformed using the floral dip method

(Liu et al., 2012). We generated a WRR4AOy-0-transgenic

camelina line. We obtained four independent transfor-

mants, including two with a single-locus T-DNA insertion

(Figure S6). From these lines we obtained five and four

lines showing no symptoms upon AcEx1 inoculation, from

which we obtained one bag of homozygous seeds (the

others giving either no seeds or segregating seeds). We

tested the single homozygous resistant line obtained for

stable resistance to AcEx1 (Figure 5). Of 12 individuals,

eight showed resistance without symptoms, three showed

resistance with a chlorotic response (probably WRR4A-me-

diated HR) and one showed susceptibility (white pustule

formation caused by sporulation of A. candida). All 12

wild-type camelina control plants showed mild to severe

white rust symptoms. This indicates that WRR4AOy-0 can

confer resistance to AcEx1 in C. sativa.

DISCUSSION

Col-0 and HR-5 WRR4A alleles recognize effectors from

AcEx1

A screen for novel sources of resistance to AcEx1 identified

accessions HR-5 and Oy-0 as worthy of further
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investigation. Positional cloning from Oy-0 and then allele

mining in HR-5 showed that this immunity is mediated by

alleles of WRR4A in HR-5 and Oy-0 with distinct recogni-

tion capacities compared with the Col-0 allele. In Oy-0, two

additional dominant loci, WRR11 on chromosome 3 and

WRR15 on chromosome 5 contribute resistance to AcEx1

but the molecular basis of these resistances was not

defined. Further investigation on WRR11 was conducted

but did not reveal the causal gene (Castel, 2019, Chapter

3).

WRR4AOy-0 recognizes at least one AcEx1 effector that is

not recognized by WRR4ACol-0 (Figure 3). Conceivably,

WRR4AOy-0 could be combined with WRR4ACol-0 and

WRR4BCol-0 to expand the effector recognition spectrum of

a stack of WRR genes that could be deployed in B. juncea

or C. sativa (Pedersen, 1988).

WRR4A alleles fall into two groups that can or cannot

confer AcEx1 resistance

Analysis of WRR4A allele diversity in Arabidopsis revealed

WRR4AOy-0-like and WRR4ACol-0-like alleles. As WRR4ACol-0-

like alleles show near-identity to WRR4AOy-0-like alleles in

nucleotide sequence after the premature stop codon, the

latter are likely to be ancestral, and the WRR4ACol-0-like

early stop codon occurred once, in the most recent com-

mon ancestor of Sf-2 and Col-0. Other early stop codons,

resulting in loss-of-function proteins, occurred randomly in

both Oy-0- and Col-0-containing groups. About one-third

of the investigated accessions contain another early stop

codon resulting in a likely non-functional allele (Figure 4).

The full-length Oy-0-like alleles are associated with resis-

tance to AcEx1, while the Col-0-like alleles are associated

with susceptibility (Figure 4). The only exception is Kn-0,

which displays a full-length Oy-0-like allele but is suscepti-

ble to AcEx1. Susceptibility in Kn-0 could be explained by

single nucleotide polymorphisms (SNPs), lack of expres-

sion or mis-splicing of WRR4AKn-0.

Col-0 allele C-terminal truncation correlates with gain of

recognition for some CCGs and loss of recognition for

others, suggesting an evolutionary trade-off

Albugo candida isolates that are identical or almost identi-

cal to AcEx1 are broadly distributed, at least across Europe

(Jouet et al., 2018). Similarly, the WRR4ACol-0 allele is not

associated with a geographic location, indicating that it is

maintained by a non-climatic factor (Figure S7). We

Figure 4. An early stop codon in WRR4A is associ-

ated with AcEx1 susceptibility.

WRR4A genomic sequence of 20 Arabidopsis acces-

sions were extracted from http://ann-nblrrome.tueb

ingen.mpg.de/apollo/jbrowse/ (Van de Weyer et al.,

2019). Nucleotide sequences corresponding from

ATG to TAA of the Oy-0 allele (including introns)

were aligned using MUSCLE (software: MEGA10, the

alignment is available as Dataset S1 on Supporting

materials). WRR4B from Col-0 was used as out-

group. A phylogenetic tree was generated using the

maximum likelihood method and a bootstrap (100

replicates) was calculated (software: MEGA10). The

tree is drawn to scale (apart the two broken

branches, whose length is indicated in parenthesis),

with branch lengths measured in the number of

substitutions per site. The resistance/susceptibility

phenotypes are indicated. Cartoons on the right

represent WRR4A predicted protein, on scale. TIR,

NB-ARC, LRR, and C-JID are indicated in the Col-0

allele. Dashed orange line represents the Col-0 stop

codon. Dashed blue line represents the Oy-0 stop

codon.
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propose that, in the absence of AcEx1 selection pressure,

the Col-0-like early stop codon occurred to provide a new

function, along with the loss of AcEx1 effector recognition.

This new function enables recognition of additional CCGs

from other A. candida races.

By combining the C-terminal extension on WRR4AOy-0

with the core region of WRR4A in Col-0 (Figure 3e), recog-

nition of additional AcEx1 CCGs was enabled. Furthermore,

Arabidopsis natural accessions carrying the core region of

the Col-0-like allele also lack the C-terminal extension (Fig-

ure 4; Figure S5, Dataset S1 and S2). This could be an

example of intramolecular genetic suppression (Brasseur

et al., 2001; Davis et al., 1999; Kondrashov et al., 2002;

Sch€ulein et al., 2001). The combination between the core

region of the Col-0 allele with the C-terminal extension

may form a hyperactive WRR4A allele with excessive fit-

ness cost for the plant, which may explain why no

transgenic Arabidopsis could be recovered that carry

WRR4ACol-0_LONG. The early stop codon may have occurred

in Col-0 to compensate for hyperactivation of an ancestral

WRR4A allele. Hyperactivation of the immune system is

deleterious, as shown for example by hybrid incompatibil-

ity caused by immune receptors (Wan et al., 2021).

Many TIR-NLRs contain conserved post-LRR motifs

(Meyers et al., 2002; Van Ghelder and Esmenjaud, 2016),

which cover a functional C-JID motif involved in effector

binding (Ma et al., 2020; Martin et al., 2020). We found that

WRR4A also contains this domain. Both WRR4ACol-0 and

WRR4AOy-0 carry the C-JID, so it does not explain the

unique CCG recognition of each allele. Instead, the poly-

morphism that explains AcEx1 recognition is a short

sequence, particularly enriched in negatively charged resi-

dues (Glu and Asp, Figure 2), located after the C-JID. Poly-

morphism within the C-JID between RPP1 and Roq1

Figure 5. WRR4A confers resistance to AcEx1 in camelina crop.

Five-week-old camelina (cultivar Celine) plants were sprayed inoculated with AcEx1 race of the white rust oomycete pathogen Albugo candida. Pictures were

taken 12 days postinoculation (dpi). Top row: 12 wild-type plants all show mild to severe white rust symptoms. Bottom row: 12 lines transformed with

WRR4AOy-0 were tested. One shows mild white rust symptoms, three show local chlorotic response and eight show complete green resistance. White dash line

indicates sporulation; red dash line indicates a chlorotic response with no pustule formation.
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contributes to effector recognition specificity (Ma et al.,

2020; Martin et al., 2020). In the case of WRR4A, it seems

that polymorphism after the C-JID also contributes to

specific effector recognition. Biochemical studies of

WRR4A should provide more insights into the mechanism

of CGG recognition.

Arabidopsis WRR4A resistance to AcEx1 can be

transferred to the crop camelina

Camelina sativa was recently engineered to produce long

chain omega-3 polyunsaturated fatty acids, an essential

component in the feed used in fish farming (Petrie et al.,

2014). Currently, fish farming uses wild fish-derived fish

oil. Fish oil-producing camelina offers a solution to reduce

the need for wild fish harvesting, potentially reducing pres-

sure on world marine fish stocks (Betancor et al., 2018).

There are challenges in delivering products derived from

transgenic crops but fish oil-producing crops could reduce

the environmental impact of fish farming. White rust

causes moderate symptoms on camelina. Moreover, A.

candida is capable of immunosuppression (Cooper et al.,

2008). Albugo candida-infected fields constitute a risk for

secondary infection of otherwise incompatible pathogens.

To safeguard camelina fields against white rust, both

chemical and genetic solutions are possible. Genetic resis-

tance offers the advantage of a lower cost for farmers and

reduces the need for fungicide release in the environment.

Since the first report of white rust on camelina in France in

1945, no genetic resistance has been characterized. All the

strains collected on camelina can grow equally irrespective

of camelina cultivars (S�eguin-Swartz et al., 2009). This

absence of phenotypic diversity precludes discovery of

resistance loci using classic genetic tools. We found that

WRR4AOy-0 confers resistance to AcEx1 in camelina (Fig-

ure 5). Arabidopsis WRR4A resistance is functional in B.

juncea and B. oleracea (Cevik et al., 2019), suggesting that

the mechanism of activation and the downstream sig-

nalling of WRR4A is conserved, at least in Brassicaceae.

In conclusion, we found a novel example of post-LRR

polymorphism within an NLR family, associated with diver-

sified effector recognition spectra. By investigating the

diversity of WRRA, we identified an allele that confers

white rust resistance in the camelina crop.

EXPERIMENTAL PROCEDURES

Plant material and growth conditions

Arabidopsis accessions used in this study are Oy-0 (NASC:
N1436), HR-5 (NASC: N76514), Ws-2 (NASC: N1601) and Columbia
(Col-0, NASC: N1092). Col-0_wrr4a-6 mutant is published (Borhan
et al., 2008). Seeds were sown directly on compost and plants
were grown at 21°C, with 10 h of light and 14 h of dark, at 75%
humidity. For seed collection, 5-week-old plants were transferred
under long-day conditions: 21°C, with 16 h of light and 8 h of
dark, at 75% humidity. For N. tabacum (cultivar Petit Gerard) and

C. sativa (cultivar Celine), seeds were sown directly on compost
and plants were grown at 21°C, with cycles of 16 h of light and
8 h of dark, at 55% humidity.

Albugo candida infection assay

For propagation of A. candida, zoospores from the infected leaf
inoculum were suspended in water (approximately 105 spores/ml)
and incubated on ice for 30 min. The spore suspension was then
sprayed on plants using a Humbrol� spray gun (approximately
700 ll per plant) and plants were incubated at 4˚C in the dark over-
night to promote spore germination. Infected plants were kept
under 10-h light (20˚C) and 14-h dark (16˚C) cycles. Phenotypes
were monitored 14–21 days after inoculation.

QTL analysis

QTL mapping of the bipartite F8 Oy-0 9 Col-0 population (470 RILs,
http://publiclines.versailles.inra.fr/page/27) (Simon et al., 2008) was
performed on a genetic map of 85 markers across the five linkage
groups that accompanied the population using R/qtl (Broman et al.,
2003). Standard interval mapping using a maximum likelihood esti-
mation under a mixture model (Lander and Botstein, 1989) was
applied for interval mapping. Analysis revealed two major QTLs:
on chromosome 1 and on chromosome 3.

Chromosome 1 QTL is located between 20 384 and 22 181 Mb
(Figure S2). It includes the TIR-NLR cluster WRR4 and the CC-NLR
cluster RPP7. Six RILs (three resistant and three susceptible)
recombine within the QTL and were used for fine mapping. We
designed a SNP (21 195 Mb, forward (F): TCAGATTGTAACT-
GATCTCGAAGG, reverse (R): CCATCAAGCACACTGTATTCC,
amplicon contains two SNPs, Oy-0: A and G, Col-0: G and C) and
an amplified fragment length polymorphism (21 691 Mb, F:
AAGGCAATCAGATTAAGCAGAA, R: GCGGGTTTCCTCAGTT-
GAAG, Oy-0: 389 bp, Col-0: 399 bp) markers between WRR4 and
RPP7. Four lines eliminate RPP7 from the QTL. The only NLR clus-
ter in chromosome 1 QTL is WRR4.

Chromosome 3 QTL is located between 17 283 and 19 628 Mb
(Figure S3). It includes the atypical resistance-gene cluster RPW8,
the CC-NLR ZAR1 and the paired TIR-NLRs At3g51560-At3g51570.
Six RILs (three resistant and three susceptible) recombine within
the QTL and were used for fine mapping. We designed an amplified
fragment length polymorphism (18 016 Mb, F: gctacgccactgcatt-
tagc, R: CCAATTCCGCAACAGCTTTA, Oy-0: 950 bp, Col-0: 1677 bp)
and a cleaved amplified polymorphic sequence (CAPS, 18 535 Mb,
F: TCAAGCCTGTTAAGAAGAAGAAGG, R: GCCCTCCACAAA-
GATTCTGAAGTA, enzyme: DdeI, Oy-0: uncleaved, Col-0: cleaved)
markers between the QTL border and RPW8. We designed a CAPS
marker (18 850 Mb, F: TCTCGGGGAAAATATGATTAGA, R:
GGTTGATTTTTATTGTGGTAGTCGT, enzyme: SwaI, Oy-0: cleaved,
Col-0: uncleaved) between RPW8 and ZAR1. We designed a SNP
(18 937 Mb, F: CCACAAGGTCGGAATCTGTAGC, R: TGCACA-
GAAGTAACCCACCAAC, Oy-0: C, Col-0: T) and a CAPS (19 122 Mb,
F: ACCACCACCTCGATGCATTTC, R: CCTTCCCTGCGAAAGA-
CACTC, enzyme: BsrI, Oy-0: uncleaved, Col-0: cleaved) markers
between ZAR1 and the TIR-NLR pair. Three recombinants eliminate
the TIR-NLR pair, two eliminate ZAR1 and one eliminates RPW8.
None of the Col-0 NLR clusters orthologs are present in the QTL.
The gene underlying chromosome three resistance is located
between the border of the QTL and RPW8.

Bulk segregant analysis and RenSeq

We generated an F2 population from a cross between HR-5 (resis-
tant) and Ws-2 (susceptible). We phenol/chloroform extracted
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DNA from 200 bulked F2 lines fully susceptible to AcEx1. The
bulked DNA sample was prepared as an Illumina library and
enriched using the Arabidopsis v1 RenSeq bait library (Arbor Bio-
science, MI, USA) (Table S3), as described by (Jupe et al., 2013).
The sample was sequenced in a pooled MiSeq run (data available
on request). First, reads were aligned with BWA mem (Li and Dur-
bin, 2009) to the Col-0 reference genome and SNPs called with
Samtools (Li et al., 2009). The genome was scanned for regions of
high linkage with the next generation mapping tools at http://bar.
utoronto.ca/ngm/ (Austin et al., 2011). Secondly, the reads were
mapped using BWA to the RenSeq PacBio assembly generated for
HR-5 (Van de Weyer et al., 2019). Highly linked regions were con-
firmed visually with the integrated genome viewer (Robinson
et al., 2017).

Gene cloning

Vectors were cloned with the USER method (NEB, Ipswich, MA,
USA) following the manufacturer’s recommendations. For expres-
sion of resistance gene candidates in Arabidopsis, genes were
cloned with their natural 50 and 30 regulatory sequences into
LBJJ233-OD (containing a FAST-Red selectable marker, pre-lin-
earized with PacI and Nt. BbvcI restriction enzymes). For overex-
pression in N. tabacum, genes were cloned into LBJJ234-OD
(containing a FAST-Red selectable marker and a 35S/Ocs expres-
sion cassette, pre-linearized with PacI and Nt. BbvcI restriction
enzymes). Primers, template and vectors are indicated in
(Table S4). WRR4ACol-0 is published (Cevik et al., 2019). CCGs rec-
ognized by WRR4ACol-0 are published (Redkar et al., 2021).

All the plasmids were prepared using a QIAPREP SPIN MINI-
PREP KIT on Escherichia coli DH10B thermo-competent cells
selected with appropriate antibiotics. Positive clones (confirmed
by size selection on electrophoresis gel and capillary sequencing)
were transformed in A. thaliana via Agrobacterium tumefaciens
strain GV3101. Transgenic seeds were selected under fluorescent
microscope for expression of the FAST-Red selectable marker
(Shimada et al., 2010).

CRISPR adenine base editor

An single guide (sg)RNA targeting WRR4A stop codon in Col-0
(TTCTGAgaagcattcgaaag[nGA]) was assembled by PCR to a
sgRNA backbone and 67 bp of the U6-26 terminator. It was then
assembled with the AtU6-26 promoter in the Golden Gate compat-
ible level 1 pICH47751 (Engler et al., 2014). We designed a mutant
allele of a plant codon optimized Cas9 with a potato intron
(Addgene: 117515) with D10A (nickase mutant) and R1335V/
L1111R/D1135V/G1218R/ E1219F/A1322R/T1337R, to change the
PAM recognition from NGG to NG (Nishimasu et al., 2018). We
assembled this Cas9 (golden gate compatible BpiI: GACA-GCTT)
along with a barley codon optimized TadA module (golden gate
compatible BpiI: AATG-GCTT) in a level 0 vector pICH41308. It was
then assembled with the YAO promoter (Addgene: 117513) and
the E9 terminator (Addgene: 117519) in a level 1 vector pICH47811
(with expression in reverse orientation compared with the other
level 1 modules). It was then assembled with a FAST-Red select-
able marker (Addgene: 117499) and the sgRNA level 1 cassette
into a level 2 vector pICSL4723, using the end-linker pICH41766.
Level 0 vector was cloned using BpiI enzyme and spectinomycin
resistance. Level 1 vectors were cloned using BsaI enzyme and
carbenicillin resistance. Level 2 vector was cloned using BpiI
enzyme and kanamycin resistance. It was expressed via A. tumefa-
ciens strain GV3101 in Arabidopsis Oy-0. In the first generation
after transformation, we did not detect any mutant from 24 inde-
pendent transformants. It indicates an absence of activity of the

construct. It can be explained by the Cas9 mutations that were not
tested before on this specific allele nor in combination with TadA.

Transient expression in Nicotiana tabacum leaves

Agrobacterium tumefaciens strains were streaked on selective
media and incubated at 28°C for 24 h. A single colony was trans-
ferred to liquid LB medium with appropriate antibiotic and incu-
bated at 28°C for 24 h in a shaking incubator (200 r.p.m.). The
resulting culture was centrifuged at 3000 g for 5 min and resus-
pended in infiltration buffer (10 mM MgCl2, 10 mM MES, pH 5.6) at
OD600 = 0.4 (2 9 108 cfu ml–1). For co-expression, each bacterial
suspension was adjusted to OD600 = 0.4 for infiltration. The abax-
ial surface of 4-week-old N. tabacum were infiltrated with 1 ml
needle-less syringe. Cell death was monitored 3 days after infiltra-
tion.

Resolution of WRR4AOy-0 cDNA sequence

RNA was extracted from Oy-0 using the RNeasy Plant Mini Kit
(Qiagen) and treated with RNase-Free DNase Set (Qiagen, Hilden,
Germany). Reverse transcription was carried out using the Super-
Script IV Reverse Transcriptase (Thermo Fisher, Waltham, MA,
USA). PCR was conducted using F: TCTGATGTCCGCAACCAAAC
(in the first exon) and R: GTCCTCTTCGGCCATATCTTC (in the last
exon) with the Taq polymerase enzyme (NEB) following the manu-
facturer’s protocol. The 2848 nt amplicon sequence, correspond-
ing to the cDNA sequence (i.e. with already spliced introns) was
resolved by capillary sequencing. It indicates that the splicing sites
are identical between WRR4AOy-0 and the splicing sites reported in
the database TAIR10 for WRR4ACol-0.

Gene expression by reverse transcription-PCR

RNA was extracted from leaf tissue using the RNeasy Plant Mini
Kit (Qiagen) and treated with RNase-Free DNase Set (Qiagen).
Reverse transcription was carried out using the SuperScript IV
Reverse Transcriptase (Thermo Fisher). PCR was conducted using
primers indicated in Table S4 with the Taq Polymerase enzyme
(NEB) following the manufacturer’s protocol.

Protein extraction and Western blot

Proteins were extracted from leaf tissue using TruPAGE LDS Sam-
ple Buffer (Sigma-Aldrich) following the manufacturer’s recom-
mendations. They were separated by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis and analysed by immunoblot-
ting. After electrophoresis, separated proteins were transferred to
Immunobilon-P PVDF (Merck Millipore) membranes for
immunoblotting. Membranes were blocked for 2 h in 5% non-fat
milk, probed with horseradish peroxidase-conjugated antibodies
overnight and imaged.

Generation of WRR4AOy-0 transgenic Camelina sativa line

We transformed a WRR4AOy-0 construct, under native promoter
and terminator transcriptional regulation and with a FAST-Red
selectable marker (Shimada et al., 2010) (see ‘Gene cloning’ sec-
tion) in C. sativa cv. Celine using the floral dip method (Liu et al.,
2012). We obtained four independent T1 lines (Figure S6). Trans-
genic expression was measured in T1 plants using reverse tran-
scription–quantitative (q)PCR for WRR4AOy-0, with EF1a as a
housekeeping reference gene. We extracted RNA using the
RNeasy Plant Mini Kit (Qiagen) and treated with RNase-Free
DNase Set (Qiagen). Reverse transcription was carried out using
SuperScript IV Reverse Transcriptase (Thermo Fisher). qPCR was
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performed using a CFX96 Touch Real-Time PCR Detection System.
Primers for qPCR analysis of WRR4AOy-0 are GCAAGATAGC-
GAGCTCCAGA and GCAAGAAACATACAAGTCCTCCA. Primers for
qPCR analysis of EF1a are CAGGCTGATTGTGCTGTTCTTA and
GTTGTATCCGACCTTCTTCAGG. Data were analysed using the
double delta Ct method (Livak and Schmittgen, 2001). We mea-
sured the segregation of FAST-Red in T2 seeds. Two lines are seg-
regating 15:1 indicating a dual loci T-DNA insertion and two are
segregating 3:1 indicating a single locus insertion. From the two
single-locus insertion lines, we obtained five and four AcEx1 resis-
tant lines, without any symptoms of infection. From these nine
lines, one produced a bag of homozygous T3 seeds (the others
producing no seeds or 3:1 segregating seeds). Twelve plants from
this line were tested with AcEx1, 11 showed resistance (eight with-
out symptoms and three with a chlorotic response) and one
showed susceptibility (Figure 5).
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