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Contact tracing is an imperfect tool for controlling
COVID-19 transmission and relies on population
adherence
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Emerging evidence suggests that contact tracing has had limited success in the UK in

reducing the R number across the COVID-19 pandemic. We investigate potential pitfalls and

areas for improvement by extending an existing branching process contact tracing model,

adding diagnostic testing and refining parameter estimates. Our results demonstrate that

reporting and adherence are the most important predictors of programme impact but tracing

coverage and speed plus diagnostic sensitivity also play an important role. We conclude that

well-implemented contact tracing could bring small but potentially important benefits to

controlling and preventing outbreaks, providing up to a 15% reduction in R. We reaffirm that

contact tracing is not currently appropriate as the sole control measure.
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In December 2019, SARS-CoV-2, a novel coronavirus strain,
was detected in Hubei Province, China1. By 31 January 2020
the first UK cases of COVID-19, the disease caused by SARS-

CoV-2, were confirmed2. Initial modelling studies indicated that
fast and effective contact tracing could contain the UK outbreak
in most settings3,4. However, by 20 March there were almost 4000
confirmed cases nationwide5, at which point the UK Government
scaled up physical distancing measures, including the closure of
schools and social venues, extending to heightened restrictions on
non-essential travel, outdoor activities and between-household
social mixing6. Similar patterns occurred in other countries7,8.

Throughout the pandemic, it has become obvious that the UK’s
NHS Test and Trace programme has not been as effective at
reducing transmission as originally hoped, with a recent financial
report even suggesting it has made no “measurable difference” to
the course of the pandemic9. Results from the Department of
Health and Social Care (DHSC) are more flattering, but still only
conclude that contact tracing efforts reduced the R number by
2–5% in October 202010. Speed of testing and tracing, poor
integration with local authorities and adherence to isolation have
all been cited as possible reasons. The head of NHS Test and
Trace revealed in February 2021 that around 20,000 people a day
had ignored isolation rules, despite being contacted by them11.
This number is based on 80% adherence to isolation, which is
optimistic compared to estimates from other surveys12–14, and
hence may be a substantial underestimate.

The UK’s Test and Trace strategy has been continually updated
throughout the pandemic, but with minimal, if any, observed
improvement in results. A few elements have remained consistent
throughout, such as traced contacts only being allowed to access
tests once symptomatic and requiring a positive test result before
tracing an isolated individual’s contacts15. Current methods are
reliant on PCR testing, but there is growing discussion around
potential use of rapid lateral flow tests16, which are considered to
be substantially less sensitive17.

Imperfect adherence (encompassing both completely non-
adherent and partially-adherent individuals) to isolation and
reporting and the innate difficulties in identifying contacts will
pose challenges for contact tracing, particularly in crowded urban
settings18. Therefore, evaluating both the limitations of contact
tracing and how to maximise its effectiveness could be crucial in
preventing an exponential rise in cases, which might see contact
tracing capacity rapidly exceeded and stricter physical distancing
measures required19.

Extending Hellewell et al.’s3 UK-focused contact tracing study
with new insights could inform contact tracing strategy. Their key
conclusion was that highly effective contact tracing would be
sufficient to control an initial outbreak of COVID-19 in the UK,
however subsequent evidence supports much higher pre- and
asymptomatic transmission rates than had initially been con-
sidered. In particular, the original analysis only considered sce-
narios with 0–10% of cases as asymptomatic and 0–30% of
transmission from symptomatic individuals occurring pre-
symptoms, compared to more recent estimates of 31–42.5%20–22

and 44%23 respectively. The focus on speed in the UK contact
tracing programme also requires a detailed assessment of the
associated trade-offs through mechanistic modelling of the testing
process. Up-to-date modelling studies are therefore needed to
investigate the feasibility of contact tracing and the conditions
under which it is effective.

We use improved incubation period and serial interval
estimates23–25, consider a range of self-reporting, adherence and
tracing rates and simulate the use of diagnostic tests. We explore
trade-offs between testing speed and sensitivity, and investigate
the limitations of contact tracing. We conclude in which scenarios
these methods are likely to be most effective.

Results
The underlying assumptions around the contact tracing logistics
that have been modelled and presented here are described in
further detail in the Methods; see below for a detailed schematic
of the contact tracing process.

Efficacy of contact tracing. We used data from a UK-based
survey to consider three adherence scenarios12: a scenario with
low self-reporting and poor adherence to isolation (representative
of the small proportion of individuals who reported being fully
adherent to advice from Test and Trace); a scenario with good
reporting and adherence (representing those intending to be
adherent to advice); and a scenario with good reporting and
boosted adherence (where additional incentives to adhere to
isolation are introduced).

Self-reporting and adherence can have a moderate-to-
substantial impact on the efficacy of Test and Trace (Fig. 1). In
the poor reporting & adherence scenario, there is no observable
benefit of scaling up the coverage of contact tracing, or speeding
up tracing. Increasing adherence and reporting to intended
compliance levels shows a clear benefit to increasing contact
tracing, with reductions in the outbreak risk and effective
reproduction number R (dependent on the proportion of contacts
traced and the magnitude of delays in testing and/or tracing)
(Figs. 1 and 2).

However, even when Test and Trace is able to identify and
trace 80% of contacts and compliance is good (good self-
reporting, and adherence good or better), the associated reduction
in R is only 6–13%. If coverage is lower, at around 40% of
contacts, the reduction is 6% or below. This highlights the need
for Test and Trace to be used as a supplemental measure, not as
the sole control strategy.

Diagnostic trade-offs. Assuming good compliance to Test and
Trace, we can investigate the comparative impact of a highly
sensitive (95%) or poorly sensitive (65%) test (Fig. 3). There is a
clear benefit to having a test with high sensitivity, and the relative
benefit increases with contact tracing coverage.

Although there is an observable benefit to increasing the speed
of testing and tracing, a two-day decrease in time to trace and
obtain a test result, representing the use of a rapid test, appears
insufficient to make up for switching from a 95% sensitive to a
65% sensitive test. However, the difference in probability of a
large outbreak between instant testing with a 65% sensitive test
and a two-day delay with a 95% sensitive test is relatively small.
Hence conclusions around preferred test usage are likely to be
sensitive to small changes in testing delay or sensitivity.

Outbreak thresholds for contact tracing. By considering the
total number of observed and unobserved cases in an outbreak so
far (Fig. 4) we can evaluate the probability of a large outbreak for
a range of scenarios. It is hence possible to set thresholds for
contact tracing feasibility. For example, consider a scenario with
average reporting & adherence where 80% of contacts could be
successfully traced. Then if, for example, the desired outcome was
keeping the probability of a large outbreak below 50%, increasing
testing and tracing speed from 2 days to instantaneous would
raise the threshold number of cases from 166 to 357—an increase
of 115%.

Improving contact tracing coverage has a visible effect in all
scenarios presented, aside from those with poor reporting and
adherence (left column). In scenarios with average or boosted
adherence for a fixed number of total cases so far, speeding up
tracing reduces the probability of a large outbreak and increases
the relative benefit of higher contact tracing coverage.
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Discussion
Our results provide insights into why contact tracing imple-
mentation has not been as effective in reducing transmission as
initially hoped in the UK. We conclude that the largest likely
factor is adherence to the various stages of contact tracing and
isolation, which is believed to be relatively poor12. However, if
reasonable reporting and adherence can be achieved, then contact
tracing efficacy could be improved by increasing the speed of test
and tracing or increasing the proportion of contacts traced in the
majority of scenarios considered. There are substantial beha-
vioural challenges around improving adherence, requiring con-
sideration of why individuals do not, or cannot, adhere to
guidance. Isolation of traced contacts and positive-testing indi-
viduals is already legally required in England, so interventions
would need to be targeted around messaging, logistical support
and financial incentives. Even if good reporting and adherence,
fast testing and high coverage of contact tracing can be achieved,
our results demonstrate that the potential reduction in R is only
around 10–15%. This confirms the emerging conclusion in the
field that the UK contact tracing programme, in its current form,
is ill-suited as the sole control strategy. However, more targeted
investigative contact tracing could still be beneficial for identifi-
cation and monitoring of new virus strains.

At this stage of the pandemic, there are more diagnostic tools
available than in the initial months. In particular, use of rapid

lateral flow device (LFD) tests is growing due to increased speed
and reduced costs compared to PCR alternatives. However, our
results suggest that test sensitivity is still important, with a 2-day
95% sensitive test performing better than an instantaneous 65%
sensitive test in our model. This effect is seen under the
assumption that negatively-testing individuals are not immedi-
ately released from isolation, but if they were then we would
expect an even greater comparative loss of efficacy for the faster
lower-sensitivity test. It is therefore vital to carefully consider the
implications of changes in the testing methods employed in
contact tracing.

Our model assumes constant test sensitivity across an indivi-
dual’s infected period, whereas a previous study shows that
testing too early or late after exposure can dramatically increase
false negative rates26. While assuming a fixed incubation period
of 5 days, we have ignored temporal variation. Additionally, high
between-person variance has been observed in the natural his-
tory of infection23. It is therefore unclear what drives these
temporal changes in sensitivity or whether this temporal profile
makes sense on an individual basis. These simplifying assump-
tions mean we may be over-estimating operational test sensitivity
in some cases, leading to more optimistic results around the
impact of contact tracing. This reinforces the conclusion that
contact tracing is not currently appropriate as the sole control
measure.

Fig. 1 Probability of a large outbreak. Probability of a large outbreak (>2000 cases) for different TTI (Test, Trace and Isolate) compliance scenarios for
instant testing and tracing (dashed, green) and a 2-day delay (solid, orange), assuming 95% test sensitivity. Poor reporting & adherence (top): 11.9% self-
reporting; 18.2% isolation on symptoms; 10.9% isolation on tracing. Good reporting & adherence (middle): 50% self-reporting; 70% isolation on
symptoms; 65% isolation on tracing. Boosted adherence (bottom): 50% self-reporting; 70% isolation on symptoms; 90% isolation on tracing. Left:
Rs= 1.3. Right: Rs= 1.5. Error bars: 99% confidence intervals from output variation of 5000 simulations. TTI test, trace and isolate.
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Fig. 2 Contact tracing efficacy. Percentage reduction in the effective reproductive number, R, for different Test and Trace compliance scenarios. For TTI
(Test, Trace and Isolate) scenarios representing instant tracing (green) or a 2-day delay (orange). Assuming 95% test sensitivity. Poor reporting &
adherence (top): 11.9% self-reporting; 18.2% isolation on symptoms; 10.9% isolation on tracing. Good reporting & adherence (middle): 50% self-reporting;
70% isolation on symptoms; 65% isolation on tracing. Good reporting & high adherence (bottom): 50% self-reporting; 70% isolation on symptoms; 90%
isolation on tracing. Left: Rs= 1.3. Right: Rs= 1.5. Combined results of 5000 simulations. Negative values can occur due to stochastic fluctuation in the case
of very low percentage change but do not represent contact tracing having a negative impact on transmission.

Fig. 3 Diagnostic trade-offs. Probability of a large outbreak (>2000 cases), by contact tracing coverage, for TTI (Test, Trace and Isolate) scenarios
representing instant testing and tracing (green), a 1-day delay (orange) and a 2-day delay (red) with either 65% test sensitivity (dashed) or 95% (solid).
Left: Rs= 1.3. Right: Rs= 1.5. Assuming good compliance (50% self-reporting, 70% isolation on symptoms, 65% isolation on tracing). Error bars: 95%
confidence intervals from output variation of 5000 simulations.
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We also assume the Negative Binomial dispersion, k= 0.2327,
of secondary cases, does not vary with RS due to different social
distancing measures. This relationship is poorly characterised, but
it is believed that social distancing may increase k, leading to
decreased heterogeneity in number of contacts across the
majority of the population due to an overall reduction in mean
contacts, paradoxically making outbreak control harder, although
this effect is expected to be cancelled out by the reduction in the
mean28. Furthermore it is also possible that less heterogeneity in
contacts may make tracing of individual contacts more feasible,
allowing for a higher coverage.

The vaccine roll-out is currently in progress in the UK, with
over 50% now believed to have COVID-19 antibodies through
either vaccination or prior infection as of the end of March
202129. This will have the effect of reducing R and, eventually,
when antibodies are sufficiently high, contact tracing may become
viable as the sole control measure for keeping R below 1.

Contact tracing improvements could include secondary contact
tracing as seen in Vietnam, i.e. tracing the contacts of contacts of
known cases, to get ahead of the chain of transmission30. Back-
wards contact tracing, whilst highly labour intensive, could also
fill vital gaps where transmission links have been missed by
focusing on tracing back from known cases to identify parent
cases and potential super-spreaders31. As experience in contact
tracing develops, it may be possible to give contacts a prior
probability of infection (e.g. based on the contact duration and
setting) and combine this with test results to improve existing
isolation protocol. Testing of asymptomatic contacts would also
allow tracing of currently hidden chains of infection, further
reducing transmission.

Overall, we conclude that well-implemented contact tracing
could bring small but potentially important benefits to controlling
and preventing outbreaks, providing up to a 15% reduction in R.
Reporting and adherence are the most important predictors of
programme impact but tracing coverage and speed also play an
important role, as well as diagnostic sensitivity. In line with a
previous study8, we have demonstrated that contact tracing alone
is highly unlikely to prevent large outbreaks unless used in
combination with evidence-based physical distancing measures,
including restrictions on large gatherings.

Methods
In this extension of a previous COVID-19 branching process model3, the number
of potential secondary cases generated by a primary case is drawn from a Negative
Binomial distribution. The exposure time for each case, relative to infector onset, is
drawn from a shifted Gamma distribution that allows for pre-symptomatic
transmission and is left-truncated to ensure secondary case exposure time is after
the primary case exposure time. Secondary cases are averted if the primary case is
quarantined at the time of infection, assuming within household segregation is
possible. The probability of quarantine depends on whether the primary case was
traced, and adherence to self-isolation recommendations, irrespective of the test
result (Fig. 5). Each simulation was seeded with five index cases that are initially
undetected by the contact tracing system.

Secondary case distribution. A Negative Binomial distribution represented het-
erogeneity in onward transmission due to factors such as individual contact pat-
terns or infectiousness, with the mean relating to the effective reproduction
number under physical distancing RS (taking values 1.1, 1.3 or 1.5) with a constant
dispersion parameter k= 0.23, taken from a study that used genome sequencing to
investigate the clustering of secondary cases27. This also represents a mid-value
among estimates, which vary widely from 0.1 (range: 0.05–0.2)31 to 0.7 (range:
0.59–0.98)32. Here a smaller k represents greater heterogeneity in transmission and
results in the majority of index cases leading to no secondary infections, while a
small proportion of individuals infect a large number of secondary cases. All
parameter estimates and references can be found in Table 1.

Generation interval. The incubation period (time from exposure to symptoms) is
assumed to follow a Lognormal distribution with mean 1.43 and standard deviation
0.66 on the log scale24. Each new case is then infected at an exposure time drawn
from a Gamma-distributed infectivity profile (shape= 17.77, rate= 1.39 day−1,
shift=−13.0 days) relative to their infector’s symptom onset. If this time is before
the infector’s exposure then this value is rejected and re-sampled to prevent
negative generation intervals. This Gamma distribution has been fitted under these
sampling assumptions to serial interval data published by He et al.23 using the
fitdistr package in R and our resulting distributions qualitatively match those
presented in the original paper (see Supplementary Fig. S1 in Supplementary File
for more details). The exposure time is then compared to the isolation times of the
infector and cases are averted if the infector is in isolation when the infection event
would have happened. For non-averted cases, symptom onset times are then drawn
from the Lognormal incubation period distribution and the probability of a case
remaining asymptomatic throughout their infected period is fixed at 31%22.

Contact tracing. New cases are identified either through tracing contacts (like
persons B & D in Fig. 5) of known cases or symptomatic individuals self-reporting
to the system, which we model as a two-stage process. Firstly, if an individual is
symptomatic (i.e. has a fever and/or dry persistent cough) but untraced we assume
that a combination of reduced social activity due to illness, and awareness of
COVID-19 prevention measures, results in a probability, a1 of self-isolation one

Fig. 4 Outbreak thresholds. Probability of a large outbreak (>2000 cases) by total number of cases so far (observed and unobserved). Sensitivity= 95%,
self-reporting proportion= 50%, time to test from isolation= 1 day, with contact tracing coverage scenarios of 0 (blue, solid), 0.2 (pink, long-dashed), 0.4
(red, short-dashed), 0.6 (orange, dot-dashed) and 0.8 (green, dotted). Error windows: 95% confidence intervals from output variation of
5000 simulations.
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day after symptom onset. Secondly, individuals who self-isolate in this way then
have a probability, a2, of contacting the tracing programme and reporting their
symptoms as a potential case (like person A), which can be varied in the model.

Using data on UK adherence to the NHS Test and Trace programme from the
CORSAIR study12, we characterised three levels of population compliance. Firstly,

as a lower bound, we considered the proportion of individuals who reported
complete adherence to guidance: 18.2% reported adhering fully to isolation
following onset of symptoms; 11.9% of symptomatic individuals self-reported their
case to Test and Trace; and 10.9% of traced individuals isolated for the
recommended duration. These reported figures were substantially lower that the
intentional adherence reported by individuals who had not yet developed
symptoms or been traced, which was taken as a good compliance scenario: 70%
individuals said they would isolate following symptoms; 40–50% would self-report
following onset; and 65% would isolate for the full duration if contacted by Test
and Trace. We also considered a scenario with a boosted adherence to tracing
of 90%.

Contact tracing is initiated when an existing case has been identified, isolated
and returned a positive test (person A). The time taken to get a test result is either
instant, 1 day or 2 days. The contacts of that individual are then traced with
40%–100% coverage. If a contact is successfully traced they will isolate with
probability a3. This continues until either the outbreak exceeds 2000 cases, or there
are no further cases, resulting in disease extinction.

Testing. In simulations that include testing, we assume constant test sensitivities of
65% or 95%. The lower value aims to represent tests with poorer sensitivity, such as
the rapid lateral flow tests that are seeing increased usage in 2021, based on
estimates in the literature of 50.1–79.2% sensitivity33,34. The higher value repre-
sents the PCR tests that are available, with an estimated 94.8% sensitivity34,35. Due
to the nature of the branching process model, only infected individuals are mod-
elled so the impact of test specificity cannot be assessed under these methods,
although the implications would be related to programme feasibility rather than
efficacy. Current specificity estimates for both types of test are believed to be
reasonably high in comparison33,34,36–38, with some estimates of close to 100%, but
false positive tests could lead to unnecessary negative socioeconomic impact under
any scheme requiring quarantine of healthy individuals.

When testing is included in the model, all individuals that either self-report to
the contact tracing system (person A in Fig. 5), or are traced contacts (persons B &
D), are tested. From the moment a contact self-reports or is identified through
tracing, either a zero-, one- or two-day delay is simulated before the test result is
returned, chosen to be representative of UK programme targets. If a positive test is

Fig. 5 Contact tracing schematic. Overview of the contact tracing process implemented in our model. Person A isolates and self-reports to the contact
tracing programme with some delay after symptom onset, by which time they have infected Persons B, C and D. When Person A self-reports they isolate
and are tested, a positive result initiates contact tracing. Person B was infected by A prior to their symptom onset and is detected by tracing after some
delay. After isolating they are tested, with a false negative result. This leads to B either a) stopping isolation immediately or b) finishing a minimum 7 day
isolation period. Both may allow new onward transmission. Person C was infected by A but not traced as a contact. Person C does not develop symptoms
but is infectious, leading to missed transmission. Person D is traced and tested. The test for D returns positive, meaning that D remains isolated, halting this
chain of transmission.

Table 1 Model parameters values/ranges.

Parameter Values Refs.

Number of initial cases 5
Effective reproduction number under
physical distancing, RS

1.3, 1.5

Dispersion of RS, k 0.23 27

Proportion asymptomatic 31% 22

Delay: onset to isolation 1 day
Incubation period (Lognormal) Mean log: 1.43 23, 24

Incubation period (Lognormal) sd log: 0.66 23, 24

Infection time (Gamma) Shape: 17.77 23

Infection time (Gamma) Rate: 1.39 day−1 Fitted from23

Infection time shift −13.0 days 23

Untraced self-isolation prob. 18.2%, 70% Based on12

Self-reporting probability 11.9%, 50% Based on12

Traced isolation adherence prob. 10.9%,
65%, 90%

12

Contact tracing coverage 0–80%
Test sensitivity 65%, 95% 26, 35, 40, 41

Time to test result (days) 0, 2
Isolation duration if −ve test 7 days

Parameters taken from the literature are fixed and for other parameters a range of values are
explored.
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returned, the individual’s contacts are traced. If a negative test is returned, the
individual is asked to complete a precautionary quarantine period of 7 days from
the beginning of isolation.

Simulation process. Results presented are the combined output of 5000 simulations
for each parameter combination or scenario, and each simulation is run for a maximum
of 300 days. These results are used to derive the probability of a large outbreak given a
range of conditions. A large outbreak is defined as 2000 cases: this threshold was chosen
from experimental runs with a maximum of 5000 cases and noting which of the
simulated epidemics went extinct; 99% of extinctions occurred before reaching 2000
cases. The model was written in R with pair code review and unit tests39. The code is
available from a public GitHub repository (www.github.com/timcdlucas/ringbp).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in Zenodo via https://
doi.org/10.5281/zenodo.4752369.

Code availability
The code used in this study is available in Zenodo via https://doi.org/10.5281/
zenodo.4752369.
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