Algorithmica
https://doi.org/10.1007/500453-021-00852-5

n

Check for
updates

Online Makespan Scheduling with Job Migration
on Uniform Machines

Matthias Englert’ - David Mezlaf? - Matthias Westermann?

Received: 26 May 2019 / Accepted: 26 June 2021
© The Author(s) 2021

Abstract

In the classic minimum makespan scheduling problem, we are given an input sequence
of n jobs with sizes. A scheduling algorithm has to assign the jobs to m parallel
machines. The objective is to minimize the makespan, which is the time it takes
until all jobs are processed. In this paper, we consider online scheduling algorithms
without preemption. However, we allow the online algorithm to change the assignment
of up to k jobs at the end for some limited number k. For m identical machines,
Albers and Hellwig (Algorithmica 79(2):598-623, 2017) give tight bounds on the
competitive ratio in this model. The precise ratio depends on, and increases with, m. It
lies between 4/3 and ~ 1.4659. They show that k = O(m) is sufficient to achieve this
bound and no k = o(n) can result in a better bound. We study m uniform machines,
i.e., machines with different speeds, and show that this setting is strictly harder. For
sufficiently large m, there is a § = @(1) such that, for m machines with only two
different machine speeds, no online algorithm can achieve a competitive ratio of less
than 1.4659 + § with k = o(n). We present a new algorithm for the uniform machine
setting. Depending on the speeds of the machines, our scheduling algorithm achieves
a competitive ratio that lies between 4/3 and ~ 1.7992 with k = O(m). We also show
that k = £2(m) is necessary to achieve a competitive ratio below 2. Our algorithm is
based on maintaining a specific imbalance with respect to the completion times of the
machines, complemented by a bicriteria approximation algorithm that minimizes the
makespan and maximizes the average completion time for certain sets of machines.

Keywords Online algorithms - Competitive analysis - Minimum makespan
scheduling - Job migration

A preliminary version appeared in Proceedings of the 26th European Symposium on Algorithms (ESA),
pages 26:1-26:14, 2018.

B Matthias Englert
m.englert@warwick.ac.uk

Extended author information available on the last page of the article

Published online: 19 August 2021 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00852-5&domain=pdf

Algorithmica

1 Introduction

In the classic minimum makespan scheduling problem, we are given an input sequence
of n jobs with sizes. A scheduling algorithm has to assign the jobs to m parallel
machines. The objective is to minimize the makespan, which is the time it takes until
all jobs are processed. This problem is NP-hard in the strong sense [20]. In this paper,
we consider online scheduling without preemption.

An online algorithm does not have knowledge about the input sequence in advance.
Instead, it gets to know the input sequence job by job without knowledge about the
future. An online algorithm is called c-competitive if the makespan of the algorithm
is at most ¢ times the makespan of an optimal offline solution.

Extensive work has been done to narrow the gap between lower and upper bounds on
the competitive ratio for online minimum makespan scheduling. Increasingly sophis-
ticated algorithms and complex analyses were developed. Nevertheless, even for the
most basic case of identical machines, in which each job has the same processing time,
i.e., its size, on every machine, there is still a gap between the best known lower and
upper bounds on the competitive ratio of 1.880 [30] and 1.9201 [18], respectively. In
the setting with uniform machines, in which different machines may run at different
speeds, the best known lower and upper bounds on the competitive ratio are 2.564
[13] and 5.828 [6], respectively.

In this work, we study to what extent the ability to migrate a limited number of jobs
can help an online algorithm in terms of the competitive ratio in the uniform machine
setting. In this model, the online algorithm has to assign jobs to machines as they
arrive. However, after all jobs have arrived, the algorithm may remove up to k jobs
from the machines and reassign them to different machines.

Job migration is a useful tool to balance loads and it is natural to study how many
jobs need to be migrated to achieve certain load guarantees. Indeed, job migration
in scheduling has been studied previously, see for example [8, 12, 27, 32-34], but in
particular, Albers and Hellwig [2] studied this problem for m identical machines' and
gave tight bounds on the competitive ratio for this case. Roughly speaking, k = ©&(m)
job migrations are sufficient and necessary to achieve this tight bound. Allowing more
job migrations does not result in further improvements as long as k = o(n), where n
denotes the total number of arriving jobs.

We provide related results for the more general setting of uniform machines, which
introduces new technical challenges. Our contribution also implies new results on a
different but related problem: online reordering for scheduling. In this model, a so-
called reordering buffer can be used to reorder the input sequence of jobs in a restricted
fashion. Arriving jobs are first stored in the reordering buffer which has capacity to
store up to k jobs. When the buffer is full, the online scheduling algorithm has to decide
which of the jobs to remove from the buffer and to assign (irrevocably) to a machine.
When no more jobs arrive, all jobs remaining in the buffer have to be assigned to
machines as well.

lTechnically, they allow job migration to be performed before all jobs have arrived as long as the total
number of migration is still bounded by k. However, performing all migrations at the end cannot increase
the competitive ratio.

@ Springer



Algorithmica

This model was introduced by Englert et al. [14] and the work by Albers and
Hellwig [2] generalizes their results for identical machines to the setting were no
buffer is used, but a limited number of job migrations are permitted. It is not known
what the relationship between the two models is in general. However, Albers and
Hellwig note that any online algorithm for the job migration model that satisfies a
certain monotonicity property can be transformed into an online algorithm for the
corresponding reordering buffer problem which has the same competitive ratio. If
the algorithm migrates k jobs, the transformed algorithm requires a buffer of size k.
The aforementioned monotonicity property is as follows: if the algorithm would not
migrate a job at time ¢ if we pretend that the input sequence ends at that time, then the
algorithm does not migrate the job at any later time either.

Both the algorithm by Albers and Hellwig and the algorithm we present in this
work satisfy the monotonicity property. Therefore, our results also directly imply an
improved upper bound for the online minimum makespan scheduling problem with a
reordering buffer on uniform machines.

1.1 The Model and Our Contribution

We present a lower bound on the competitive ratio showing that the problem is strictly
harder for uniform machines than for identical machines. We give the first online
algorithm for uniform machines with job migration. Depending on the speeds of the
m machines, our scheduling algorithm achieves a competitive ratio that lies between
4/3 and &~ 1.7992 and performs O(m) job migrations. In addition, we show that £2(m)
job migrations are necessary to achieve a competitive ratio of less than 2.

For the corresponding problem of online minimum makespan scheduling with a
reordering buffer, Englert et al. [14] present a greedy algorithm that achieves a com-
petitive ratio of 2 (or 2+¢ if the algorithm is supposed to be efficient) with a reordering
buffer of size m. Subsequently, Ding et al. [9] improved the competitive ratioto 2—1/m
with a buffer of size m + 1.2 Therefore, we also obtain a significant improvement over
these previously known results for the reordering buffer version of the problem, since
our upper bound translates to this model as well.

Before we explain our contribution in more detail, we define the model more for-
mally and introduce some useful notation and definitions. The m > 2 machines are
denoted by My, ..., M,,—1. For each 0 < i < m — 1, the speed of machine M;
is denoted by s;, with min{so,...,s,—1} = 1. Later, for our upper bounds, we
will assume that the machines are sorted in ascending order of their speeds, i.e.,
1 =s0 <...<spy_1,butin our lower bound construction this is not necessarily the
case. The sum of speeds is denoted by S = l’.":_ol s;. The size of a job J is denoted
by p(J). The load L(M;) of a machine M; is defined as the sum of the sizes of the
jobs assigned to machine M;. The completion time of a machine M; is defined as the

2Note that in this and several of the following papers, the model differs from the model in [14] in
that arriving jobs can bypass the buffer and may directly be assigned to a machine. This is equivalent to
increasing the buffer size in the model from [14] by 1. We express buffer sizes in terms of the model from
[14] here.

@ Springer



Algorithmica

load L(M;) of machine M; divided by the speed s; of machine M, . The objective is to
minimize the makespan, i.e., the maximum completion time.

Asin previous works of Englert et al. [ 14] and Albers and Hellwig [2], our algorithm
attempts to maintain a specific (and not balanced) load distribution on the machines.
The desired load on amachine M; is defined by the so-called wei ght w; of the machine.
The weight is defined as

{ r r—1 }

w; = min S,"—,S,"T

S Zl'_osj

s,-~§, 1fO<Z sjfu-S
11”1 S<Z_OSJ<S

Now, r is the smallest positive solution to Zf";ol w; = 1, i.e., we ensure that the
weights of all machines sum up to 1. Due to Corollary 16 in the “Appendix”, such a
solution always exists. It is important to note that » depends on the number of machines
m as well as the machine speeds sq, ..., syp—1. [f 5o = - -+ = s,,—1 = 1, the weights
match those in [2, 14] and r =: r,, is equal to the competitive ratio achieved in [2, 14]
for m identical machines.

Unfortunately, we do not know a closed-form formula for r, but the value can
be calculated for any given m and speeds sy, ..., S;;—1. Due to Corollary 16 in the
“Appendix”,

l<r <W_i(=1/e>)/(1 +W_(—1/e)) ~ 1.4659,

where W_ is the lower branch of the Lambert W function, i.e., W_1(—1 /62) is the
smallest real solution to x - e* = —1/e2. Note that, for the optimal competitive ratio
rm for m identical machines,

4/3 <rm < W_i(=1/e%) /(1 + W_1(—1/e?)).

Depending on the speeds of the machines, r can be significantly smaller than r,,.
Our results are as follows.

e We prove that a § = ©(1) exists such that, for m uniform machines with only
two different machine speeds, m sufficiently large, no online algorithm can achieve
a competitive ratio less than W_j(—1/e?)/(1 + W_1(—1/e?)) + 8 ~ 1.4659 + §
while migrating o(n) jobs. Recall that, for the optimal competitive ratio r,, for m
identical machines, r,, < W_1(—1/¢%)/(1 + W_1(—1/e?)) ~ 1.4659. Hence, the
more general problem of uniform machines is strictly harder than the special case
of identical machines. The lower bound construction differs from the previous ones
for identical machines in [2, 14]. The previous constructions used a very large
number (1/¢ many) of very small jobs (of size &), which the online algorithm has to
schedule on the machines. The adversary then identifies a machine with load of at
least w;, i.e., a machine with a load that is not below the “target load” and, roughly

@ Springer



Algorithmica

speaking, produces just enough large jobs so that one of them has to be assigned
to a machine with load w;. Migrating small jobs is ineffective and the large jobs
cannot all avoid a machine with load w;. This technique alone however is no longer
sufficient to obtain a lower bound that is strictly larger than the known one. Using
a larger number of possible continuations of the initial input, we can show that to
handle these additional continuations, the online algorithm would have to have a
significant number of machines with completion time strictly less than, and bounded
away from, w;. But then another machine must have completion time strictly above
w; (rather than just equal to w;). We remark that the same lower bound can be
constructed for the reordering buffer model with uniform machines.

e We show that, for m uniform machines, £2(m) migrations are necessary to achieve
a competitive ratio of less than 2. Specifically, forc = [—In(2 — r)/Inr] > 2, no
online algorithm can achieve a competitive ratio less than r € (1, 2) while migrating
at most (m — c)/(c2 + ¢) jobs. For example, r ~ 1.8393 > W,l(—l/ez)/(l +
W_1(—1/e%) + 1/3 if at most (m — 3)/12 job migrations are allowed. Again, we
remark that the same lower bound can be constructed for the reordering buffer model
with uniform machines.

e For m uniform machines with speeds 1 = 59 < ... < s;,—1, our online algorithm
achieves a competitive ratio of » + 1/3 with O(m) job migrations. If an efficient
algorithm is desired, there is an additional additive loss of ¢ in the competitive ratio
due to the use of a PTAS by Hochbaum and Shmoys [24] in a subroutine. Note
that 1 < r < W_1(=1/e2)/(1 + W_{(—1/e?)) ~ 1.4659, i.e., the competitive
ratio is at most an additive 1/3 larger than in the identical machines case. However,
depending on the speeds of the machines, » can also be significantly smaller than
rm in which case the difference between the competitive ratios can also be smaller
than 1/3. The basic structure of our algorithm is similar to the algorithm for the
special case of identical machines [2]: Jobs are classified into small and large jobs
according to their relative size compared to the total load on all machines. Ignoring
the contribution of large jobs, the small jobs are scheduled in such a way that an
imbalance with respect to the completion times of the machines is maintained.
Roughly speaking, faster machines are kept at lower completion times than slower
ones. After all jobs have arrived, some jobs are migrated. The rough intuition is
that the largest jobs should be reassigned to improve the solution. For this, we first
remove some jobs from machines. Then, we schedule the largest ones optimally
on m empty virtual machines My, ..., M, _, with L(M{)) <--- < L(M,,_,). For
m identical machines, this means that, for each 0 < i < m — 1, the completion
time of machine M is less than or equal to the average completion time of the

machines M/, ..., M, |, and this is a crucial property for achieving the optimal

competitive ratio for the identical machine case. In the more general case of uniform
machines, this property does not always hold. For example, if M has speed 1 and

Mj, ..., M, _, have speed 3/2, then m jobs of size 1 are optimally scheduled with

makespan 1, but the completion time of M is 1, which is strictly greater than

the average completion time of the machines M), ..., Mr’n_l. To address this new
complication, our algorithm contains a crucial additional balancing step in which
the average completion time for certain sets of virtual machines is increased at the
cost of a small increase in the maximum completion time (which is responsible

@ Springer



Algorithmica

for the additive loss of 1/3). Finally, the smaller jobs that were removed from their
machines are reassigned greedily one by one. The analysis of this step is also
more involved than the corresponding one for identical machines because a more
straightforward naive argument would introduce a factor of s;,—1 /¢ into the number
of job migrations. Obviously, once we determine which jobs to migrate, we could
just assign those jobs optimally to the existing machines. However, it is not clear
how to analyze such a procedure directly. We state a specific algorithm for the
reassignment step because it provides us with important properties that enable us
to analyze the competitive ratio.

1.2 Related Work

Minimum makespan scheduling has been extensively studied. See the survey by Pruhs,
Sgall, and Torng [29] for an overview. For m identical machines, the currently best
upper and lower bounds are 1.9201 [18] and 1.880 [30], respectively. These bounds
were the last ones in a long series of successive improvements for general or specific
values of m [1, 4, 5,7, 17, 21, 22, 25, 31].

For uniform machines, Aspnes et al. [3] present the first algorithm that achieves a
constant competitive ratio. Due to Berman, Charikar and Karpinski [6], the best known
upper bound on the competitive ratio is 5.828, and, due to Ebenlendr and Sgall [13],
the best known lower bound on the competitive ratio is 2.564.

In a semi-online variant of the problem the jobs arrive in decreasing order of their
size. The greedy LPT algorithm, which assigns each job to a machine on which it will
be completely processed as early as possible, was considered in this setting. For m
identical machines, Graham [23] shows that the LPT algorithm achieves a competitive
ratio of 4/3—1/(3m). For uniform machines, the LPT algorithm achieves a competitive
ratio of 1.66 and a lower bound of 1.52 on its competitive ratio is known [19]. A detailed
and tight analysis for two uniform machines is given by Mireault, Orlin, and Vohra
[28] and Epstein and Favrholdt [15].

For m identical machines, Albers and Hellwig [2] present an algorithm that is
rm-competitive, which is optimal as long as at most o(n) jobs can be migrated. For
m > 11, the algorithm migrates at most 7m jobs. For smaller m, 8m to 10m jobs may
be migrated. They further give some results on the trade-off between the number of job
migrations and the competitive ratio. For example, 2.5m job migrations are sufficient
to achieve a competitive ratio of 1.75.

Tan and Yu [33] study two identical machines. They give a tight bound of 4/3 on
the competitive ratio and this bound is achievable by migrating a single job. They also
explore two other models. One in which, at the end, for each machine, the last job that
was assigned to the machine may be migrated. And another in which, at the end, the
k jobs that arrived last in the input may be migrated.

Chen et al. [8] give an optimal algorithm for two uniform machines. Using inde-
pendent techniques and algorithms, Wang et al. [34] show bounds which are similar,
but not quite optimal for all machine speeds. Both improve upon work by Liu et al.
[27].

@ Springer



Algorithmica

Désa et al. [12] consider a variant in which up to k jobs can be migrated after every
job arrival, which is a relaxation of online scheduling with a reordering buffer of size
k. Sanders, Sivadasan, and Skutella [32] introduce another model in which, after every
job arrival, a number of jobs can be reassigned as long as the total size of the reassigned
jobs is bounded by some linear function of the size of the arriving job.

Numerous variants related to online minimum makespan scheduling with reorder-
ing buffers have been studied. Kellerer et al. [26] present, for two identical machines,
an algorithm that achieves an optimal competitive ratio of 4/3 with a reordering buffer
of size 2, i.e., the smallest buffer size allowing reordering.

For m identical machines, Englert et al. [14] present a tight and, in comparison to the
problem without reordering, improved bound on the competitive ratio for minimum
makespan scheduling with reordering buffers. Depending on m, their scheduling algo-
rithm achieves the optimal competitive ratio r,, with a buffer of size ®(m). Further,
they show that larger buffer sizes do not result in an additional advantage and that a
buffer of size §£2(m) is necessary to achieve this competitive ratio.

Ding et al. [9] give, for m identical machines, a 1.5-competitive algorithm with
a buffer of size 1.5m + 1 and, for three identical machines, a (15/11)-competitive
algorithm with a buffer of size 7.

Désa and Epstein [10] study minimum makespan scheduling on two uniform
machines with speed ratio s > 1. They show that, for any s > 1, a buffer of size
3 is sufficient to achieve an optimal competitive ratio (i.e. even a larger buffer cannot
result in a smaller competitive ratio) and, in the case s > 2, a buffer of size 2 already
allows to achieve an optimal ratio.

Doésa and Epstein [11] further study preemptive scheduling, as opposed to non-
preemptive scheduling, on m identical machines with a reordering buffer. They present
a tight bound on the competitive ratio for any m. This bound is 4/3 for even values
of m and slightly lower for odd values of m. They show that a buffer of size ®(m)
is sufficient to achieve this bound, but a buffer of size o(m) does not reduce the best
overall competitive ratio of e¢/(e — 1) that is known for the case without reordering.

Epstein, Levin, and van Stee [16] study the objective to maximize the minimum
completion time. For m identical machines, they present an upper bound on the com-
petitive ratio of H,,_1 + 1 for a buffer of size m and a lower bound of H,, for any fixed
buffer size. For m uniform machines, they show that a buffer of size m +2 is sufficient
to achieve the optimal competitive ratio m.

2 Lower Bounds

Theorem 1 A § = O(1) exists such that, for m uniform machines with only two
machine speeds, m sufficiently large, no online algorithm can achieve a competitive
ratio of less than W_1(—1/e*)/(1 + W_1(=1/e?)) + 8 ~ 1.4659 + § while migrating
o(n) jobs, where n denotes the total number of arriving jobs.

Proof Only two machine speeds 1 and 3/2 are used. Let m denote the number of slow
machines with speed 1 and m y = m — m; denote the number of fast machines with

@ Springer



Algorithmica

speed 3/2. Note that the sum of speeds S = m; +3/2 - m y. Define mg in such a way
that my = [(reo — 1)/Foo - ST, With reo = W_1(—1/€2)/(1 + W_1(—1/¢€?)) ~ 1.4659.

Consider an online algorithm A that uses at most k(n) = o(n) job migrations. We
start with the following initial input sequence: S/e small jobs of size ¢ > 0 arrive.
Depending on the actions of the online algorithm up to at most m additional larger jobs
arrive later on. Therefore, in total our input sequence will contain no more than S/ +m
jobs (i.e. S/e < n < S/e+m).Inthe remainder of the proof, we will frequently use that
limg_, o+ £-k(n) = 0 which is a simple consequence of this. Let My, ..., M,,—1 denote
the m uniform machines on which A has scheduled these jobs. Let sg, . . ., s;,,—1 denote
the respective speeds of these machines, with L(Mo)/so > -+ > L(M;—1)/Sm—1-
According to this order of the machine speeds, define the weight w; of a machine M;.

In the following, we show that the competitive ratio of A is at least 7 + 1/19 - (r —
1)*/r3. Due to Observation 17 in the “Appendix”, lim,,—oor = W_1(—1/€?)/(1 +
W_1(—1/€?)) = roo, as long as all machine speeds are upper bounded by some
constant which is independent of m. Hence, for m sufficiently large, 1/19-(r —1)*/r3 =
®(1). As a consequence, for m sufficiently large, there exists a § = @ (1) such that no
online algorithm can achieve a competitive ratio of less than ro, + 8.

Due to Corollary 16 in the “Appendix”, 1 < r < roo =~ 1.4659. This gives the
following observation.

Observation 2

-1 -1 1 1 -1 3
! feo <§ and r+—~(r ) d .

Assume for contradiction that A achieves a competitive ratio of r4 < r +1/19 -
(r — D*/r3.

The lower bound construction for the identical machines case, is based on the
following idea: there must exist a machine M, with load of at least wy - S after the
initial sequence, since otherwise, the total scheduled load would be strictly less than
Z;”;O] w; - S = S. Since at most k(n) of these jobs can be migrated at the end, at least
we - §/e — k(n) of them are guaranteed to stay on M, which is still almost all the load
for sufficiently small ¢ since lim,_, ¢+ & - k(n) = 0. The high load on M, can now be
exploited by continuing the input sequence in the right way.

However, for uniform machines we now want to get a larger lower bound than for
the identical machine case. Hence, a significant contribution is the following lemma
that gives an improved lower bound on the completion time. Specifically, it shows a
lower bound on the completion time that is larger than the original w; /sy - S by an
additive 1/19 - ( — 1)3/r2, resulting in an improved lower bound on the competitive
ratio of A.

Lemma 3 After the initial input sequence, a machine M, with completion time of at
least we/s¢ - S +1/19 - (r — 1)3/r? exists.

Proof We show that the lemma holds as otherwise a continuation of the input sequence
that leads to a contradiction to A being r 4 -competitive exists. We distinguish two cases.

@ Springer



Algorithmica

e The number of fast machines with weight w; = 3/2 - r/S is at least [2/11 - (r —
1)/r-87: Inaddition, m y — [1/11-(r — 1)/r - S large jobs of size 3/2-S/S, > 3/2
arrive, with

1 3 1 -1
_r°° s+>. .71 ¢
Too 2 11 r
25 r—1
>
- 22 r

An optimal offline algorithm can schedule each large job on a separate fast machine
and evenly distribute the small jobs among the remaining machines. These remain-
ing machines, among which the small jobs are distributed, consist of all m; slow
machines and the [1/11-(r — 1)/r - §7 fast machines that do not get assigned any of
the large jobs. Therefore, the sum of their speeds is exactly S.. Hence, the optimal
makespan is at most S/S; + €. If, in the final schedule after migrations, A sched-
ules one large job on a slow machine or two large jobs on the same fast machine,
the completion time of such a machine is at least 3/2 - S/S, and, therefore, the
competitive ratio of A is at least

3/2. /S,
S/Se+¢e’

which is strictly larger than ry4 if ¢ is sufficiently small. As a consequence, A sched-
ules each of the large jobs on a separate fast machine. Let I/ be the set of such
machines which have weight w; = 3/2 - r/S. Then for any machine M; € U, for
the load L (M;) on M; caused by small jobs,

137 (r — 1)?

(M) <w; - S 1219 , ,

since otherwise the completion time of M; is at least

S Ls(Mp) S w; 1 137 (r—1)?
— 4+ __+_.S__.—.
Se S Se s si 12-19 r
_S+3/2-r/S 1 137 (r—1)7?
S, Si si 12-19 r
S 2 137 (r—1)>?
= —+7r-—=- —-—:-
Se 3 12-19 r
oS5 .8 .25 r-1 S 2 137 (r—1)7?
=S S 22 r Se 3 12-19 r

@ Springer



Algorithmica

2 137 —1)?
:i. 1+_5.(r_1)_i.(r )
S, 22 18- 19 r
S 3 137 (r—1)?
=—|\lr+—=-r—10— .
S, 22 18-19 r
-1 1 —1)?
zi r+i.(r_1).3.r _ 37 .(r )
Se 22 r 18-19 r
S 3 137 r—1)7?
=— \r+(—=-3- .
Se 22 18-19 r
_ 2 _1\2
z£~ . 3.3_ 137 \ ¢ -1 .32.(r 1)
S, 22 18-19 r r2
4
>£. +i.(r_1) s
- S 19 r3

which is a contradiction to A being r 4 -competitive. For the fourth step, recall that

22 r
25 r—1

9

>£>1
=5 -

and for steps seven and nine, note that Observation 2 gives 3 - (r — 1)/r < 1. The
number of large jobs that are scheduled on a machine with weight 3/2 - r/S is

Ul> 2 r—1 S 1 r—1 S 2 142 r—1 s
— 11 r 11 r 11 11-137 r

for § = my +3/2 - my sufficiently large. We conclude that there must be a machine
M, ¢ U such that

LMy _we o 1 =1
Se Y 19 r2
as otherwise
D LM+ Y Le(M))
Mo¢U M;eU
1 @r—13
< Z (w( ~S+E 3 Sg)
MU
137 (r—1)2
> (w"S_ 2.19 r )
M;eUd
m—1 3 2
1 -1 137 -1
=S ) wi+ 1_9(r 2)’”_ ﬂ(r :
i=0 MegU r Med d

@ Springer



Algorithmica

1 (r—1)3 137 (r—1)2
<5 Fwe i

<,

which is a contradiction to the fact that the total size of all small jobs combined is
S.

e The number of fast machines with weight w; = 3/2 - r/S is at most [2/11 - (r —
1)/r - 81— 1:Inaddition, m y + [ 1/2 - mg] large jobs of size S/S, > 1 arrive, with

1 1 3 1 1 1 1 ree—1
Se=|z-ms|+zs-z-mp>=-S+—-mg>8-|s+—-
2 3 2 3 6 3 6 F'oo
- 1+1 r—1
- 3 6 r )

An optimal offline algorithm can schedule each large job on a separate machine of
the set of all fast and | 1/2 - m | slow machines. Now, the fast machines can process
additional jobs while the slow machines are working on large jobs. Therefore, the
small jobs can be distributed among the remaining slow machines and the fast
machines, which give a weighted sum of speeds of S,. Hence, the optimal makespan
is at most S/ S¢ +¢. If A schedules two large jobs on the same slow machine or three
large jobs on the same fast machine, the competitive ratio of A is at least

2.S/S,
S/Se+e’

which is strictly larger than r 4 if € is sufficiently small. As a consequence, A sched-
ules at most one large job on each slow machine and at most two large jobs on each
fast machine. Let U/ be the set of all slow machines that have weight w; = r/S and
receive one large job and all fast machines that receive two large jobs. Then for any
slow machine M; € U, for the load L.(M;) on M; caused by small jobs,

1 (r—1)?
Le(Mi) =w;i-S——- ,
4 r

since otherwise the completion time of M; is at least

S LMp) S w 1 1 (r—1)7?
_+—2_+_.S _____
Se S; Se s s; 4 r
_ _1)2
Zi 1+r 1+1.r ! _l(l" 1)
Se 3 6 r 4 r
11 —1)? 1 —1)?
Zi 1+7r- _+_.(r )3 __.(r )
Se 36 r2 4 r
12
zi 1+£+ 13_1 (I‘ 1)
Se 3 6 r

1

@ Springer



Algorithmica

v

S
Se 3
S 1 =1
_ r+ — - s
Se 19 r3
which is a contradiction to A being r 4-competitive. For the second step, recall that
11 r=1\"_s
— 4+ — > — > 1,
3.6 r - S T

and note that the last step follows form Observation 2. In addition, for any fast
machine M; € U, for the load L.(M;) on M; caused by small jobs,

v

1 (r=1)7?
Le(Mi) <w;i-S——-
4 r

)

since otherwise the completion time of M; is at least

4 .S LMy 4 S w0 11 =17
3 S S 3 8 s si 4 r
4 1 1 (r—=1)?
> —4@r—-1H-=.=.
3 S s; 4 r
S 1 1 r—1 2 1 —1)?
> 2 (i -+t _2. 1 =D
S\ 3 3 6 r 3 4 r
S r
=—(1+=
SE( 3)

S 1 =1
> —\r+—- ,
Se 19 r3

which is a contradiction to A being r4-competitive. For the second step, note that
by the definition of the weights, w; > s; - (r — 1)/ for all i. If the number of fast
machines with weight w; = 3/2-r/Sisatmost [2/11-(r—1)/r-S]—1 (asis the case
here), then their combined speed is at most3/2-[2/11-(r —1)/r- ST — 3/2. The sum
of the speeds of all machines with weight w; = 3/2.r/SisatleastS-(r —1)/r —3/2
by the definition of the weights. Then the number of slow machines with weight
3/2-r/Sisatleast S - (r — 1)/r —=3/2—-@3/2-[2/11-(r = 1)/r - §1—=3/2) =
S-r—1/r—=3/2-12/11-(r — 1)/r - S7.

We conclude that the number of slow machines with a weight different from 3/2-r /S
isatmostmy—S-(r—1)/r+3/2-[2/11-(r —1)/r - §1. Thus, for the |m; /2] +m s
large jobs, the number of large jobs that are scheduled on a slow machine with
weight 7 /S or together with another large job on a fast machine is

@ Springer



Algorithmica

~
|
—

5))
-
2 r—1
> . ] — . .S
[+ Bt
1 —1 —1 11 -1
> — ELS + r .S) - . _6.1" .S
209 Too 627 r
105 reo—1 r—1 46 r—1
=——. 9. — + | — . .9
209 Too r 209 r

2 46 r—1 4 r—1
>l——+— - S = - S.
209 209 r 19 r

=

|

S
IV
|
3
|
N
3
|
N
=
~
_
[
N———
+
N W

~
~
—
A
v
|
N W W

The second step holds for § = m; +3/2 - m s sufficiently large. For the fourth step,
note that, for m sufficiently large, (roo — 1)/roo — (r — 1)/r < 2/105-(r — 1)/r,
since (r — 1)/r < (roo — 1)/re0 and lim,;,— 5 ¥ = roo. We conclude that there must
be a machine M, ¢ U such that

Le(My) LW o i_(r—1)3
Ry Y 19 rz
as otherwise
> LMo+ Y Le(M))
Ml¢u Ml'GZ/l
1 (r—1)°
<Z<w5-S+E 2 Sg)
Mo¢U
1(r—1)7?
¢ 3 (535
M,‘EZ/{
m—1 3 2
1 r—1) 1(r—1)
=S wit ) g D
i=0 Me¢U M;eld
m—1 3 2
1 (-1 1(r—1)
<S.Zw,+E — S — U~
i=0
S S’

which is a contradiction to the fact that the total size of all small jobs combined is
S. |

Let M, denote a machine which, after the initial input sequence of jobs of size ¢,
has a completion time of at least we/s¢ - S+ 1/19 - (r — 1)3/r2. We distinguish two

cases.

@ Springer



Algorithmica

e wy=s7-1/S:
No more jobs arrive. An optimal offline algorithm can evenly distribute all jobs
among the machines. Hence, the optimal makespan is at most /S +¢ = 1 + ¢.
Finally, the competitive ratio of A is at least

rH1/19-0 =Y —e k) _r+1/19-¢ = DYr e k)

3

l1+¢ 1+¢ 1+¢

which is strictly larger than r4 if ¢ is sufficiently small.
=1 _ .
® Wy = Sy - (r — 1)/Zj:0Sj.

In addition, min{m ¢, [2/3 - (S — Y SZhspl) large 372 jobs of size 3/2 -
S/Z/ 0s, and max{0, |my — Z ,J} = max{0, |S — Z/ —08j —3/2-myl}
large 1-jobs of size S/ Zf;é s arrive. An optimal offline algorithm can sched-
ule each large x-job, with x € {1, 3/2}, on a separate machine with speed x and
evenly distribute the small jobs among the remaining machines. Hence, the optimal
makespan is at most S/ Zf;z) sj+e.

If A schedules one large 3/2-job on a slow machine or two large jobs on the same
machine, the competitive ratio of A is at least

3/2- S/Z, 05
S/Zj OSJ+8’

which is strictly larger than r 4 if ¢ is sufficiently small.

Iftmy > 12/3-(S— Zf;z) s7)], the number of 3/2-jobs that arrive is greater than
the number of fast machines M, which have an index of £’ > £. Since these jobs
can only be scheduled on fast machines, at least one of them has to be scheduled
on a machine with index ¢’ < €. If my < [2/3-(S — Zf_(l) s;)] the number
of 3/2-jobs that arrive is equal to the total number of fast machmes my. If there
exists a fast machine which has an index £’ < ¢, at least one of these jobs has to
be scheduled on such a machine. On the other hand, if all fast machines have an
index of £/ > ¢, then we observe that the total number of 1-jobs and 3/2-jobs is
mg+mg— Zi;%) sj = m—{. Hence, at least one of the jobs has to be scheduled on a
machine with index £’ < £ (and this machine is slow). We conclude that A schedules
at least one large x-job, with x € {1, 3/2}, on a machine with speed x that, after the
initial assignment of the jobs of size ¢, that, after the initial assignment of the jobs
of size ¢, already has a completion time of at least wy/s¢ - S+ 1/19 - (r — 1)3/r2.

By definition of wy, Z‘;;é sj/S = (r — 1)/r. Finally, the competitive ratio of A
is at least

(1+r—1)- S/Zj 08j +1/19-(r — 3 /r2 — & - k(n)

S/Z] Os]+£
. (r+1/19-(r—1)4/r) S/ Y 2o s ¢ - k(n)
N S/Z] Os/+£ S/Z] 0sj+(9
which is strictly larger than r4 if € is sufficiently small. (|

@ Springer



Algorithmica

Theorem 4 For ¢ = [—In(2 — r)/Inr] > 2, no online algorithm can achieve a
competitive ratio of less than r € (1, 2) while migrating at most (m — c)/(c? +¢) jobs.

Proof Letl <r <2andc = [—In(2—r)/Inr] > 2.Foreach0 < i < ¢—1, thereare
|m /c| machines with speed 7. Add machines of speed 1 such that there are m machines
in total. Consider an online algorithm A that migrates at most k = [(m — ¢)/ (*+ c)]
jobs.

The input sequence consists of at most ¢ consecutive phases. Inphase 0 <i < c—1,
Lm/c] jobs of size r' arrive. Let k; denote the number of jobs of size ' that are assigned
by A to machines with speed strictly less than 7°~! or to machines where at least one
job of size 7' is already scheduled. If k; > k, stop at the end of this phase. Otherwise,
if i < ¢ — 1, continue with phase i + 1.

If the input sequence stops at the end of phase 0 < i < ¢ — 1 due to the fact that
k; > k, the competitive ratio of A is at least

min{r’/r¢=2,2 -l /re71)
F et =

Otherwise, we focus on the |m/c| machines with speed r¢~!. In each phase i, at least
|m/c| — k of these machines are assigned a job of size r. This means that after the last
phase, there must be |m/c] — c - k such machines which each were assigned one job
from each phase. We can remove jobs from at most k& such machines in the migration
phase. Therefore, after the migration phase, at least

2] -tcomn= 2o 252 2] - 255 o

machines with speed r<=1 exist, to which, foreach 0 <i < ¢ — 1, A has assigned at
least one job of size r'. Hence, the competitive ratio of A is at least

Zic;é r! r¢—1

c—1 _ L pc—1 zr
r r—1-r

sincec > —In(2 —r)/Inr. O

3 Scheduling Algorithm

For m uniform machines with speeds 1 = sg < ... < s;,—1, our algorithm consists of
two phases: In the scheduling phase, arriving jobs are assigned to (or scheduled on)
machines online. In the migration phase, which starts after all jobs have arrived, some
jobs are removed from their machines and reassigned to other machines.

More specifically, the scheduling phase consists of steps 1, .. ., n, where n denotes
the total number of arriving jobs. In step ¢, the ¢-th job arrives and is assigned to a
machine. For # > 1, let T; denote the total size of the r — 1 jobs that have arrived up

@ Springer



Algorithmica

to and including step ¢ — 1. In addition, define 71 = 0. A job J is called small in step
t,if p(J) < T; /(b - m), where b is a constant that will be defined later. Otherwise, J is
called large in step t. Note that during the scheduling phase, a job that is large in step
t can become small in step ¢ + 1.

Further, let 7 denote the total size of the jobs that have arrived up to and including
step ¢+ — 1 and that are small in step ¢. Finally, let L,(M;) denote the total size of the
jobs that are scheduled on machine M; at the end of step ¢ — 1, i.e., after the (¢ — 1)-th
job is assigned to a machine, and let L;(M;) denote the total size of the jobs that are
scheduled on machine M; at the end of step # — 1 and that are small in step .

We use two different algorithms. The first algorithm, which is used when 5,1 >
3/4 - S, schedules every job on machine M,,_; and does not migrate any jobs. The
second algorithm, which is used when s, < 3/4 - S, is more interesting and works
as follows.

e Scheduling phase: The t-th arriving job J is scheduled in step ¢ as follows.

e If J is small in step #, J is assigned to a machine M; with Lj(M;) < w; - T*.
(Since Z;":o] w; = 1and Y7 ' L$(M;) = T}, such a machine always exists.)

e IfJislarge in step ¢, J is assigned to a machine M; that has minimum completion
time L,;(M;)/s; among all machines.

e Migration phase: Throughout the migration phase, we remove jobs from machines
and reassign them. At any point during this process, let L(M;) denote the load
of machine M; at that point, i.e., the L(M;) values are changing throughout the
migration phase.

At the start of the migration phase, after all n jobs have arrived, we have, for each
0<i<m-—1,LM;)= L,+1(M;). Then do the following. For each machine M;,
as long as L(M;) > w; - T} ; and L(M;) > (r — 1) - Tyy1 - 5;/S, remove the job of
largest size from M;.

The removed jobs can now be reassigned optimally to the machines, i.e., in such a
way that the resulting makespan is minimized. However, as stated before, it is difficult
to analyze the resulting makespan directly. In the following, we therefore present a
more specific procedure for this reassignment step which provides us with certain
properties that enable us to analyze the competitive ratio. The resulting bound is of
course also an upper bound on the competitive ratio achieved through an optimal
reassignment.

(1) Those removed jobs that are large at time n + 1 are scheduled on m empty virtual
machines M, ..., M, _, withspeeds 1 =50 < ... < sp_1:

(1la) The jobs are scheduled on the virtual machines optimally, i.e., to minimize
the makespan of the virtual machines.® Call the resulting makespan on the
virtual machines OPT’. We assume that the resulting loads of the virtual
machines are sorted, i.e., L(My) < ... < L(M,,_,), and that, for each
1 <i<m-—1,L(M))/s; > OPT'/2if L(M]_,) > 0. (See the following
Observation 5 items (1) and (2).)

31f computational efficiency is a concern, the PTAS by Hochbaum and Shmoys [24] may be used instead,
resulting in an additive loss of ¢ in the competitive ratio.

@ Springer



Algorithmica

@)

(1b) Each machine M/, withi € C where

1

)Xo}

j=0 ! j=i

m—1 !
' L(M]) OPT
C:{Os:fm—I:ZL(M})S< c- =

is called critical. If C # @, all jobs from the machines M|, ..., M., with

¢ =max(C) <m — 1, are reassigned to M/ |, .... M, _,.

Fori =0, ..., c do the following:

e Find the largest £ > ¢ + 1 such that (L(M}) + L(M}))/s¢ < 4/3 - OPT'.
(Due to the following Observation 5 item (3), such a machine always
exists.)

e Reassign all jobs from M; to My, i.e., L(M}) is increased by L(M) and
L(M))is set to 0.

e Re-sort the loads of the machines such that L(My) < ... < L(M,,_,)
again. (See the following Observation 5 item (1).)

Finally, for each 0 <i < m — 1, assign the jobs from Ml.’ to the real machine M;.
Those removed jobs that are small at time n + 1 are scheduled according to the
greedy algorithm that assigns a job to a machine finishing it first.

Observation 5 For the migration phase, the following observations can be made.

ey
@

3

Sorting according to the load does not increase the makespan.

We can assume that, foreach 1 <i <m —1, L(M])/s; > OPT'/2if L(M]_,) >
0.

If C # @, thenforeachO <i <c¢,{c+1<j<m-—1: (L(M{)+L(M}))/sq,~ <
4/3 . OPT'} # 0.

(4) ForeachO <i <m—1, L(M])/s; <4/3-OPT".
Proof
(1) Assume that L(M]) > L(M}), with0 <i < j <m—1.Sinces; < s;, swapping

@

3

the loads of M} and M ; does not increase the makespan.

While a 1 < i < m — 1 exists with L(M/)/s; < OPT'/2 and L(M/_,) > 0,
reassign the jobs from M/_, to M/, i.e., L(M)) is increased by L(M]_,) and
L(M!_,) is set to 0, and sort according to the load. This does not increase the
makespan, since L(M]_,) < L(M/) and due to item (1). Further, this process
terminates, since after each iteration there is one more machine with no load.
Assume for contradiction that, foreach c+1 < j < m — 1, L(M})/sj >

2/3 - OPT'. This yields the following contradiction to the fact that M. is critical:

@ Springer



Algorithmica

m—1

ZL(M) (L(M) O};T>.SC+Z§.OPT’-SJ~

Jj=c+1

m—1

L(M]) OPT
>
> ( - ) z

since L(M)/s. < OPT’.Then, thereexistsac+1 < j < m—1,with L(M;.)/sj <
2/3 - OPT'. Since L(M]) < L(M;.), (L(M}) + L(M}))/sj <4/3.-0PT.

(4) Clearly, at the beginning of step (1b), foreach0 < i <m —1, L(M])/s; < OPT'.
Then, after each reassignment in step (1b), foreach0 <i <m — 1, L(Ml.’)/si <
4/3 - OPT’ due to items (3) and (1). O

3.1 Analysis of the Algorithm

The analysis of the algorithm consists of two parts. The first part provides a bound on
the number of migrated jobs. The second part provides a bound on the competitive
ratio of the algorithm. These two parts together give the following theorem.

Theorem 6 For m uniform machines with speeds 1 = sy < ... < s;—1, our online
algorithm achieves a competitive ratio of r + 1/3 with O(m) job migrations.

3.1.1 Bounding the Number of Migrated Jobs

The following lemma gives an upper bound on the number of jobs removed from a
single machine.

Lemma?7 Foreach 0 <i < m — 1, in the migration phase, at mostr/(r —1)-b-m -
si/S + 1 jobs are removed from machine M;.

Proof If the final load of M; at the end of the scheduling phase satisfies L;11(M;) <
w; - T3, or Ly (M;) < (r — 1) - Tyyq - 5/S, 1o job is removed from M;. Otherwise,
let ¢ be the last time at which Lj(M;) < w; - TS, or L{(M;) < (r — 1) - Ty41 - 5;/S.
Such a time ¢ exists because the condition is met for ¢ = 1. Note that the condition is
slightly different than the negation of the condition for job removals in the migration
phase because we are using L] (M;) rather than L,(M;) in the first part. We do this so
that the first part of the condition aligns with the condition for the placement of small
jobs in the scheduling phase.

Itis sufficient to remove the following jobs from M; to guarantee L(M;) < w; - T},
or LM;) < (r — 1) Tyy1 - 5i/S.

(a) All jobs that are large at time ¢ and are scheduled on M; before the arrival of the
t-th job and
(b) all jobs assigned to M; in step t or after.

@ Springer



Algorithmica

At any time ¢’ (before the arrival of the ¢'-th job), there are at most b - m - s;/S
jobs that are large at time ¢’ scheduled on M;. Suppose this is not true and let ¢’
be the first time at which this is not true. Then there were b - m - 5; /S jobs of size
greater than Ty /(b - m) scheduled on M; at time ' — 1 and in step ' — 1 one more
such job J is assigned to M;. However, before the assignment of J, the load of M; is
Ly (M) > Ty -5i/S > Ty_1 - 5i/S. Then M; cannot be a machine with minimum
completion time among all machines in step 7’ and therefore a large job J would not
be assigned to it. We conclude that at most b - m - s; /S jobs are removed in (a).

To bound the number of jobs removed in (b), we observe thatinsteps¢t+1,...,n
our algorithm only allocates jobs to M; that are large at the time of allocation. This is
due to the fact that by definition of 7, for each t’ > ¢ +1, Lf/(Mi) > w; - Tl‘f. Therefore,
whenever a job J is assigned to M; in a step ¢’ > ¢ + 1, it is a large job, which is
assigned to a machine of minimum completion time. But then, foreach0 < j <m—1,
Ly(Mj) > (r —1)-Ty41-5;/S, because we also have Ly(M;) > (r — 1) - Ty41 - 5i/S.
Hence T, = ZT:_Ol Ly(M;) > (r — 1) - Tyy1. Since job J is large at the time of
assignment, its size has to be greater than (r — 1) - T,41/(b - m). After assigning
b-m-s;/(S-(r—1))suchjobs to M; in steps after ¢, the load of M; exceeds Ty+1-s;/S.
After that, no further such jobs are assigned to M;, because a machine with load greater
than 7,41 - 5i/S can never be a machine that has the smallest completion time among
all machines. We conclude that, at most b - m - s; /(S - (r — 1)) + 1 jobs are removed
in (b), where the additive 1 is due to the job that is assigned to machine M; in step ¢.

In total, it is sufficient to remove these b -m - s; /S+b -m -s; /(S-(r — 1))+ 1 =
r/(r —1)-b-m-s;/S + 1 many jobs, and, because the algorithm removes jobs from
M; in decreasing order of size, the number of jobs removed is bounded by the same
number. g

Due to Lemma 7, the total number of jobs migrated is bounded by

m—1
r S; r
Z cb-m-—+1)= -b+1)-m.
r—1 S r—1

i=0

Recall, that we only migrate jobs when s,,—; < 3/4 - S, as otherwise, we simply
schedule all jobs on machine M,,_1. If 5,1 < 3/4-§, according to Corollary 16 and
Observation 18 in the “Appendix”, 16/13 <r < W_(=1/e*)/(1 + W_{(—1/e?)) ~
1.4659. Hence, we number of migrated jobs is at most

(L-bn)-m:@(m).
r—1

3.1.2 Bounding the Competitive Ratio
If s;,,—1 > 3/4 - S, we assign all jobs to machine M,,_;. The resulting makespan is

Lyv1(My—1)/Sm—1 = Tus1/Sm—1 < 4/3 - Tys1/S < 4/3 - OPT, where OPT denotes
the optimal makespan. Hence the competitive ratio is bounded by 1 + 1/3.

@ Springer



Algorithmica

For the remainder of the paper, we consider the case s,,—1 < 3/4 - S. The following
lemma shows that, at the end of step (1b), there are no critical machines. In fact, it
gives a lower bound on Z L(M ).

Lemma 8 At the end of step (1b), for each0 < j <m — 1,

(M) OPT) m-l

Z“W : ( ST )
k=j
Proof Clearly we have

LM opr\ " LM opT\ "o
( 3 )'Zsk3< - ) Zsk’

Ly Py Ly

because OPT’ < OPT (optimally scheduling a subset of all jobs can only result in a
smaller makespan than optimally scheduling all jobs). Therefore, it only remains to
show

Z L(My) = ( Z k-

(M) OPT’) m-l

If C = ¢, the lemma is true by definition of C. In the following, we consider the case
C # . Atthe end of step (1b), foreach0 < j < ¢, L(M’) = 0 and, as a consequence,
the lemma is true for these machines. In the followmg, we show that the lemma is
true for M’ JIR TR M,/nf1 after each reassignment in step (1b), if it is true for these
machines before this reassignment.

Initially, at the beginning of step (1b), foreachc+1 < j <m—1, M ; is not critical
by definition of c, i.e., the lemma is true for M ;

Now, consider a reassignment in step (1b). Foreach0 < j <m — 1, let L(M;.) and

i(M ") denote the load of machine M; ’ before and after this reassignment, respectively.
Assume that the lemma is true for M é s M,’n_1 before this reassignment.

In this reassignment, all jobs from M, !, with 0 < i < c, are reassigned to M, with

LM)+L(M) 4
C=max{c+l<j<m—1:—""" I <2 OpPT}.
5j

(O8]

Then, re-sort the loads of the machines again. Specifically,
= max{z <jsm—1:L(M}) < L(M)+ L(Mé)],

i.e., after re-sorting, I:(M’) = L(M])+L(M,),and, foreach¢ < j <z—1, I:(M}) =
L(M’+1) In addition, foreach j € {c+1,...,m — 1}\ {¢, ..., z}, i(M}) = L(M}).

@ Springer



Algorithmica

Note that, foreachc+1 < j <m — 1, L(M;.) < I:(M}) and, if j+1 <m—1,
Lty < L)),

It remains to show that the lemma is true for My, ..., M. Consider machine M
with £ < x < z. If L(M/)/s, < OPT/, then

m—1 m—1 ~ m—1
. . L(M.) 2
§ L(M})EE L(M}) > ; s+ E §.OPT’-s,»
j=0 j=x * j=x+1
~ 1
L(My) OPT/ —
> E
_< Sx S],

since, by definition of £, foreach £ +1 < j < m — 1, i(M})/sj > L(M})/sj >
(L(M)) + L(M}))/(2s}) > 2/3 - OPT',
In the following, we consider the case LM ")/sx > OPT'.

Observation9 Foreachx+1 < j <m — 1, L(M})/sj >4/5-OPT'.

Proof Assume for contradiction that thereexistsax+1 < j < m—1with L(M ;.) /sj <
4/5 - OPT'. Then,

4 opT - L(M}) _ Loty L(M)) _ OPT' -5,
5 s Sj s Sj ’

i.e.,4/5-s; > sy > s¢. This yields the following contradiction to the fact that all jobs
from Ml.’ are reassigned to M;z: {<x+1<jand

/ / 2 / 4 /
L(M) + L(M}) < 5 - OPT .s@+§.0PT s

2.4 4 _4
< -OPT'-sj < = -OPT -5
3575 i=3
since, by definition of £, L(M))/s¢ < (L(M])+ L(M}))/(2s¢) < 2/3 - OPT'. O

Due to the fact that M/, is critical,

m—1 m—1

ZL(M)<ZL(M)<(L(l OPT) ZS]

As a consequence, by subtracting L(M))/s. > L(M])/s. — OPT'/3,

m—1 m—1 m—1
L(M!) OPT 2
’ c /
> L(Mj)§<s——T > sjfg-OPT-E s,
j=c+1 ¢ Jj=c+l1 Jj=c+1

@ Springer



Algorithmica

where the second step follows from L(M/)/s. < OPT'.
Due to Observation 5 item (2),

X

X
> L(M})z;OPT’. > s

Jj=c+1 Jj=c+l1

and, due to Observation 9,

m—1 4 m—1
> LMz < OPT'- 37 5.
Jj=x+1 Jj=x+1
Hence,
m—1 m—1
ZOPT - ) sz > L(M))
j=c+1 j=c+1
1 X m—1
> -+ OPT > sj+<-OPT - Y
j=c+1 j=x+1
As a consequence,
) by ) m—1 1 X 4 m—1
5' S]+§ ZS]'Z— Sj+ < ZS],
Jj=c+1 j=x+1 j=c+l1 j=x+1
ie.,
b 4 m—1
DSz S
Jj=c+1 5 Jj=x+1
Altogether,
x—1 m—1
ZL(M)> Z L(M))+ L(M}) + Z L(M%)
Jj=c+l j=x+1

1 OPT L(M!) OPT
=5 OPT" PR N 'S”( w3 )M

j=c+l1
m—1
+<-OPT' - > s,
j=x+1
1 al L(M.) OPT
2—~OPT"Zsj+ (M) _ - Sy
3 . Sy 3
Jj=c+1

@ Springer



Algorithmica

4 m—1
+§-OPT/~ > s

Jj=x+1
(M) OPT 1 4 4 m-!
> LMy sy+(=-=+=)-0OPT . Zs.
Sy 3 355 /
Jj=x+1
LM OPT’ m!
Z( sxx ZS”

where the second Step uses Observation 5 item (2) and Observation 9, the fourth step
uses Y i 1 8j = 4/5- Z;f'z_xlﬁ sj, and the fifth step uses L(M})/sx < 4/3 - OPT’
which holds due to Observation 5 item (4). O

Next, we give a bound on the makespan at the end of step (1) of the migration
phase. We distinguish two cases.

o L(M;) < (r—1)- T,y -s;/S after the removal of jobs:
Then, L(M;) < (r — 1) - Ty41 - 5i/S < (r — 1) - OPT - s;. The completion time of
machine M; at the end of step (1) of the migration phase is (L(M;) + L(le))/s,- <
(r—1)-OPT+4/3-OPT < (r+1/3)-OPT,since L(M/)/s; < 4/3-OPT" < 4/3.OPT
due to Observation 5 item (4).

o L(M;)> (r — 1) T,41 - si/S after the removal of jobs:
Then, L(M;) < w; - T}, after the removal of jobs. S - OPT is an upper bound on the
total size of all jobs in the input and the virtual machines only contain jobs which
are large at time n + 1. Therefore 7, < §-OPT — 3" ! L(M}). We distinguish
two sub-cases.

o w; =s;-1r/S: '
By definition of wy;, le;lo sj < ( —1)/r - § and, as a consequence,

m—1 1 S
e

ZSJ—S Zs]_

Then we can bound the completion time of machine M; at the end of step (1) of
the migration phase as follows:

LM) _ wi e L(M]
(M) _%i| g opr— 3 LMl 4 L)
i Si = i

L(M)) L(M))

Si

IA

L S~OPT—max{
S

OPT} ZS/ N

L(M)) OPT)|S +L(M,~’)
5; 3 _> s

IA

§<S . OPT — max{O,

r Si

1
<r- OPT+— OPT,

@ Springer



Algorithmica

where the second step uses Lemma 8.
o w, =s;-(r—1)/ le;]osj:
By definition of w;,

i—1
r—1 S<Z
. Si.
r — 4 J
j=0

Then we can bound the completion time of machine M; at the end of step (1) of
the migration phase as follows:

L(M; : i, L(M]
M) i (s opT— 3 Lou |+ 22
Si Si =0 Si

—1 L) opr) "
st S-OPT—max{O, M) _ }.Zsj
j=i

le_:l()sj Si 3
L(Ml./)
Si
1 L(M! OPT
Sri_—l-S-<OPT—max{O, ( l)——})
Z]:OS] Si 3
L(M! OPT L(M!
+(r—1)-max{0, (M) _ }+ (M)
Si 3 Si
L(Ml.’) OPT L(Ml.’)
<r-OPT — max{0, — +
Si 3 Si

1
§roOPT+§~OPT,

where the second step uses Lemma 8, the third step uses Z;":_ll sjp=38— Zij_:lo sj
and 4/3 - OPT — L(M))/s; > 4/3 - OPT' — L(M])/s; > 0 which holds due to
Observation 5 item (4), and the fourth step uses le_:}) si>=@—1/r-S.

In all cases, the makespan is at most (r + 1/3) - OPT at the end of step (1) of the
migration phase.

Finally, we analyze the makespan at the end of step (2) of the migration phase. We
start with the following observation.

Observation 10 There exists a machine M; with mp < i < m — 1 and completion
time of at most (\/E + 1)/\/5 - OPT, where

i
mp = min Ofifm—l:Zsj

= T Vb+1

\

@ Springer



Algorithmica

Proof Assume for contradiction that, foreachm;, < j <m — 1, L(M;)/s; > (\/E +
1)/+/b - OPT. This yields the following contradiction:

m—1 m—1
OPT- § > Z L(Mj) > Z ‘/_j’/gl

j=m, j=ms
b+l mp—1
_ VPl opr s Y5
Vb =

-OPT - 5,

since Z;"io_l sj < S/(~/b + 1) by the definition of . O

Consider a removed job J that is scheduled in step (2) of the migration phase.
Since J is small at time n + 1, p(J) < Ty41/(b - m) < OPT - §/(b - m). According to
Observation 10, there exists a machine M; withm;, < i < m — 1 and completion time
of at most (v/b+1)/+/b - OPT. Since Yo = S/(Vb+1),s5i = Y8/ +1) =
S/ ((«/E +1)-m). In step (2) of the migration phase, J is assigned to a machine finishing
it first. Then, we can bound the completion time of this machine after J is assigned to
it as follows:

L(M; 1 1)-
( l)+p<J>§JB+ OPT + OPT. S Wb+ m
Si Si Vb b-m S

b+l
_ (Y1) opr

N

At the end of the migration phase, the makespan is at most max{r+1/3, (1+1/ Vb)?}-
OPT. Recall that 1 < r < W_(—1/e?)/(1 + W_1(—1/e?)) ~ 1.4659. For example,
forb = 8.5827,(1+1/+/b)* < 1.4659+1/3, and, forb = 41.7847, (1+1/+/b)? < 4/3.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Algorithmica

Appendix: Properties of r

For y > 1, define

¥, ifx<2hes

— y
f(xvy)_{y] ,1.5.

—, ifx > —
x y

Further, foreachO <i <m — 1, define ¢c; = Zi;lo sj. Then, foreach0 <i <m—1,
wi =i - f(ci,r).

Observation 11 For any x < S, f(x, y) is continuous and monotonically increasing
in y.

Proof Forany fixedx < 0, f(x, y) = y/S is continuous and monotonically increasing
in y. For any fixed 0 < x < §, each of the branches is continuous and monotonically
increasing in y and for the limits at y = S/(S — x):

X

li ,y) = = = li , V).
oo T = S T T T T ey T

O

Observation 12 For any y > 1, f(x, y) is continuous and monotonically decreasing
in x.

Proof For any fixed y > 1, each of the branches is continuous and monotonically
decreasing in x and for the limits at x = (y — 1)/y - S:

im =" o fay.
x—>(y=1)/y-S~ =D  x=G-D/yst
O
Observation 13 For any constant ¢ > 0 and any y > 1,
S
S—t
f f(x—t,y)dx:X't+(y—1)~(1+ln< Y >+ln<—>>.
x=0 S y—1 S
Proof
S B =D/y S+ N y—1
fx —t,y)dx = Zdx + dx
x=0 x=0 S x=(y=1)/y-S41 X — 1
y y
== .t+@y—-D-(1+mn(S-1) —=——
st ( “<( ) <y—1>-S>>
S—t
Y - (1+m( =) +m(2=L)).
S y—1 S
O

@ Springer



Algorithmica

Corollary 14 For any constant t > 0,

N

S
lim f(x—t,y)dx:(y—1)~<1+1n< Y )):/ Fx, y)dx.
0 x=0

S—o0 Ji— y—1

Observation 15 (i) Forr > 1, Z:‘n:_ol w; is continuous in r.
(i) For r = 1, Y7  wi < 1.
(iii) For r = W_1(=1/e2)/(1 + W_1(=1/¢2)), X" wi > 1.

Proof (i) Due to Observation 11 and 0 = ¢y < -+ < 1 < S, Z:'n:_ol w; =
?”:_01 s; - f(ci, r)is continuous in r.
(ii) Forr =1, Z;":_Ol w; =wo=s59-7/S < 1,sincew; =+ =wy_; =0and
so < S.

(ii1) Due to Observation 12,

m—1 m—1 Cirl

m—1
Ywi=Y s s@nzy [ fwnds
i=0 =0 i=0 YX=Ci

S
=/ flx,r)dx,
x=0

since, foreach0 <i <m — 1, ¢j4] = ¢; +5;.
Due to Obs. 13, [ f(x,r)dx = 1 forr = W_1(—=1/e2)/(1 + W_(—1/e?)). O

The above observation and the intermediate value theorem gives the following
corollary.

Corollary 16 A solution r to sz:_ol w; = 1 exists, with

l<r< Wa1/eh) .
T 1+ W_(=1/e?)

The latter term is approximately 1.4659 and in particular less than 3/2.

Observation 17 For any constant t > 1, withs; <t forall0 <i <m — 1,

. W_i(=1/e%)
Iim r=——-"+.
m— o0 1+W_1(—1/e?)

Proof Due to Observation 12, forO <i <m — landx < ¢; +s; = ¢i+1, f(ci, 1) <
f(x —s;,r) < f(x —t,r). As a consequence,

@ Springer



Algorithmica

m—1

S m—1
/ fe,rdx <Y wi=Y s flci,r)
¥=0 i=0 i=0

Ci+l

m—1
< Z/ fx—t,r)dx
i=0 ¥

S
=/ fx —t,r)dx.
x=0

m—1

Now, due to Observation 14 and lim,, 00 S = 00, limy 00 ) i Wi = (r —
D) - (1 +In(/(r — 1))). Finally, lim,, oo ¥ = W_1(—1/€2)/(1 + W_1(—1/€?)) for
lim,;— oo Z:n:_()l w; = 1. O

Observation18 If sg < --- < s,,—1 and s, <3/4-S,r > 16/13.

Proof Pick the smallest £ such that 3¢, s; > 1/4-S. Then Y"'_} s; < 1/4- 5. Note
that, because s,,—1 < 3/4 - S, we know that £ < m — 2 and therefore sy + 5,1 < S.
Hence, because sy < s;,—1, s¢ < §/2. Thus, Zf:o S;i = 8¢ +Zf;é si <1/2-S+1/4-
S =3/4-S. To summarize, we have

m-! ¢ r r—1
IIZU)[SZS['E'F Si.F—l
i=0 i=0 i
¢ r r—1
e
i=0 i
¢ r ¢ r—1
:Zsi'§+(S—ZSi)'—e
i=0 j

which implies

r> )
S (S = Yi_gs)+(Xigsi)?

Together with 1/4 - § < Zf:o s;i <3/4 -8, this implies r > 16/13. O

@ Springer



Algorithmica

References

10.

11.

12.

14.

15.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459—473 (1999)

. Albers, S., Hellwig, M.: On the value of job migration in online makespan minimization. Algorithmica

79(2), 598-623 (2017)

Aspnes, J., Azar, Y., Fiat, A., Plotkin, S.A., Waarts, O.: On-line routing of virtual circuits with appli-
cations to load balancing and machine scheduling. J. ACM 44(3), 486504 (1997)

Bartal, Y., Fiat, A., Karloff, HJ., Vohra, R.: New algorithms for an ancient scheduling problem. J.
Comput. Syst. Sci. 51(3), 359-366 (1995)

. Bartal, Y., Karloff, H.J., Rabani, Y.: A better lower bound for on-line scheduling. Inf. Process. Lett.

50(3), 113-116 (1994)

Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related machines. J. Algorithms
35(1), 108-121 (2000)

Chen, B., van Vliet, A., Woeginger, G.J.: New lower and upper bounds for on-line scheduling. Oper.
Res. Lett. 16(4), 221-230 (1994)

Chen, X., Lan, Y., Benko, A., Désa, G., Han, X.: Optimal algorithms for online scheduling with
bounded rearrangement at the end. Theor. Comput. Sci. 412(45), 6269-6278 (2011)

Ding, N., Lan, Y., Chen, X., Désa, G., Guo, H., Han, X.: Online minimum makespan scheduling with
a buffer. Int. J. Found. Comput. Sci. 25(5), 525-536 (2014)

Désa, G., Epstein, L.: Online scheduling with a buffer on related machines. J. Combin. Optim. 20(2),
161-179 (2010)

Désa, G., Epstein, L.: Preemptive online scheduling with reordering. SIAM J. Discrete Math. 25(1),
21-49 (2011)

Désa, G., Wang, Y., Han, X., Guo, H.: Online scheduling with rearrangement on two related machines.
Theor. Comput. Sci. 412(8-10), 642-653 (2011)

. Ebenlendr, T., Sgall, J.: A lower bound on deterministic online algorithms for scheduling on related

machines without preemption. Theory Comput. Syst. 56(1), 73-81 (2015)

Englert, M., Ozmen, D., Westermann, M.: The power of reordering for online minimum makespan
scheduling. STAM J. Comput. 43(3), 1220-1237 (2014)

Epstein, L., Favrholdt, L.M.: Optimal preemptive semi-online scheduling to minimize makespan on
two related machines. Oper. Res. Lett. 30(4), 269-275 (2002)

Epstein, L., Levin, A., van Stee, R.: Max-min online allocations with a reordering buffer. SIAM J.
Discrete Math. 25(3), 1230-1250 (2011)

Faigle, U., Kern, W., Turdn, G.: On the performance of on-line algorithms for partition problems. Acta
Cybern. 9(2), 107-119 (1989)

Fleischer, R., Wahl, M.: On-line scheduling revisited. J. Schedul. 3(6), 343-353 (2000)

Friesen, D.K.: Tighter bounds for LPT scheduling on uniform processors. SIAM J. Comput. 16(3),
554-560 (1987)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman (1979)

Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games.
In: Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 564-565
(2000)

Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(1), 1563-1581
(1966)

Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17(2), 416-429
(1969)

Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for scheduling on uniform
processors: using the dual approximation approach. SIAM J. Comput. 17(3), 539-551 (1988)
Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling problem. J. Algo-
rithms 20(2), 400-430 (1996)

Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the partition problem.
Oper. Res. Lett. 21(5), 235-242 (1997)

Liu, M., Xu, Y., Chu, C., Zheng, F.: Online scheduling on two uniform machines to minimize the
makespan. Theor. Comput. Sci. 410(21-23), 2099-2109 (2009)

Mireault, P., Orlin, J.B., Vohra, R.V.: A parametric worst case analysis of the LPT heuristic for two
uniform machines. Oper. Res. 45(1), 116-125 (1997)

@ Springer



Algorithmica

29.
30.
31.
32.

33.
. Wang, Y., Benko, A., Chen, X., Désa, G., Guo, H., Han, X., Sik-Lanyi, C.: Online scheduling with

Pruhs, K., Sgall, J., Torng, E.: Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis, chap, Online Scheduling. CRC Press (2004)

Rudin, J.F,, III: Improved Bound for the Online Scheduling Problem. Ph.D. thesis, University of Texas
at Dallas (2001)

Rudin, J.F, III., Chandrasekaran, R.: Improved bound for the online scheduling problem. SIAM J.
Comput. 32(3), 717-735 (2003)

Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Math. Oper. Res.
34(2), 481-498 (2009)

Tan, Z., Yu, S.: Online scheduling with reassignment. Oper. Res. Lett. 36(2), 250-254 (2008)

one rearrangement at the end: revisited. Inf. Process. Lett. 112(16), 641-645 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Matthias Englert’ - David Mezlaf? - Matthias Westermann?

David Mezlaf
david.mezlaf @tu-dortmund.de

Matthias Westermann
matthias.westermann @cs.tu-dortmund.de
DIMAP and Department of Computer Science, University of Warwick, Coventry, UK

Department of Computer Science, TU Dortmund, Dortmund, Germany

@ Springer



	Online Makespan Scheduling with Job Migration on Uniform Machines
	Abstract
	1 Introduction
	1.1 The Model and Our Contribution
	1.2 Related Work

	2 Lower Bounds
	3 Scheduling Algorithm
	3.1 Analysis of the Algorithm
	3.1.1 Bounding the Number of Migrated Jobs
	3.1.2 Bounding the Competitive Ratio


	Appendix: Properties of r
	References




