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the lateral, forward and vertical component, respectively. . . . . . . 104

x



5.7 Time histories of the altitude, lateral displacement and forwared ve-

locity responses with the data-driven and H∞ control systems in the

presence of wind turbulence. . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Time histories of the pitch, roll, bending moment, left wingtip and

right wingtip responses with the data-driven and the H∞ control sys-

tems in the presence of wind turbulence. . . . . . . . . . . . . . . . . 106

5.9 Time histories of the control inputs with the data-driven and the H∞

control systems in the presence of wind turbulence. . . . . . . . . . . 107

5.10 Time histories of the altitude, lateral displacement, forward velocity

and pitch response with the data-driven and the H∞ control systems

in turbulence, based on two very flexible configurations with varying

bending stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.11 Time histories of the roll angle, bending moment, left wingtip and

right wingtip response with the data-driven and the H∞ control sys-

tems in turbulence, based on two very flexible configurations with

varying bending stiffness. . . . . . . . . . . . . . . . . . . . . . . . . 110

5.12 Time histories of control inputs with the data-driven and the H∞ con-

trol systems in turbulence, based on two very flexible configurations

with varying bending stiffness. . . . . . . . . . . . . . . . . . . . . . 111

5.13 Time histories of the responses with the data-driven control system

for path-following in the presence of wind turbulence. . . . . . . . . 112

5.14 Time histories of the control actions with the data-driven control

system for path-following in the presence of wind turbulence. . . . . 113

5.15 Modal amplitudes of the rigid-body modes with the data-driven con-

trol systems for path-following in presence of wind turbulence. . . . 114

5.16 Modal amplitudes of the first five dominant flexible modes with the

data-driven control systems for path-following in presence of wind

turbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

1 Illustration of the waypoint tracking. . . . . . . . . . . . . . . . . . . 125

xi



Acknowledgments

I would like to express my sincere gratitude and great respect to my supervisor Prof.

Xiaowei Zhao for his guidance and encouragement throughout my four-year Ph.D

study. He is not only a supervisor on academic research but also an excellent friend

sharing wisdoms in all aspects of life. I would also like to thank Dr. Yinan Wang

for his selfishless help and advice.

xii



Declarations

This thesis is submitted to the University of Warwick in support of my application

for the degree of Doctor of Philosophy. It has been composed by myself and has not

been submitted in any previous application for any degree.

Parts of this thesis have been published by the author:

Journal (Peer Reviewed)

1. P. Qi, X. Zhao, Y. Wang, R. Palacios and A. Wynn, Aeroelastic and trajectory

control of High Altitude Long Endurance aircraft, IEEE Transactions on Aerospace

and Electronic systems, vol. 54, no. 6, pp. 2992-3003, 2018.

2. P. Qi, X. Zhao, and R. Palacios, Autonomous landing control of highly flexible

aircraft based on Lidar preview in the presence of wind turbulence, IEEE Transac-

tions on Aerospace and Electronic systems, vol. 55, no. 5, pp. 2543-2555, 2019.

3. P. Qi, and X. Zhao, Flight control for very flexible aircraft using Model Free

Adaptive Control, Journal of Guidance, Control, and Dynamics, vol. 43, no. 3, pp.

608-619, 2020.

Conference (Peer Reviewed)

1. P. Qi, Y. Wang, X. Zhao, R. Palacios, and A. Wynn, Trajectory control of a very

flexible flying wing, 2017 American Control Conference, Seattle, USA, May 2017.

2. P. Qi, X. Zhao, Y. Wang, R. Palacios, and A. Wynn, Automatic landing control

of a very flexible flying wing, 2018 American Control Conference, Milwaukee, USA,

June 2018.

xiii



3. P. Qi, X. Zhao, and R. Palacios, Preview-based altitude control for a very flex-

ible flying wing, 2018 IEEE Conference on Decision and Control, Miami, USA,

December 2018.

xiv



Abstract

This thesis aims to investigate the flight control of a very flexible flying wing

model already developed in the literature. The model was derived from geometri-

cally nonlinear beam theory using intrinsic degrees of freedom and linear unsteady

aerodynamics, which resulted in a coupled structural dynamics, aerodynamics, and

flight dynamics description. The scenarios of trajectory tracking and autonomous

landing in the presence of wind disturbance are considered in control designs.

Firstly, the aeroelastic and trajectory control of this very flexible flying wing

model is studied. The control design employs a two-loop PI/LADRC (proportional-

integral/linear active disturbance rejection control) and H∞ control scheme, based

on a reduced-order linear model. The outer loop employs the PI/LADRC technique

to track the desired flight paths and generate attitude commands to the inner loop,

while the inner loop uses H∞ control to track the attitude command and computes

the corresponding control inputs. The particle swarm optimization algorithm is em-

ployed for parameter optimization in the H∞ control design to enhance the control

effectiveness and robustness. Simulation tests conducted on the full-order nonlinear

model show that the designed aeroelastic and trajectory control system achieves

good performance in aspects of tracking effectiveness and robustness against distur-

bance rejection.

Secondly, the preview-based autonomous landing control of the very flexible

flying wing model using light detection and ranging (Lidar) wind measurements is

studied. The preview control system follows the above two-loop control structure

and is also designed based on the reduced-order linear model. The outer loop em-

xv



ploys the same LADRC and PI algorithms to track the reference landing trajectory

and vertical speed, respectively. But the inner loop is extended to introduce Lidar

wind measurements at a distance in front of the aircraft, employing H∞ preview

control to improve disturbance rejection performance during landing. Simulation

results based on the full-order nonlinear model show that the preview-based landing

control system is able to land the aircraft safely and effectively, which also achieves

better control performance than a baseline landing control system (without preview)

with respect to landing effectiveness and disturbance rejection.

Finally, the data-driven flight control of the very flexible flying wing model

using Model-Free Adaptive Control (MFAC) scheme to reduce the dependence of

control design on system modeling is studied. A cascaded proportional-derivative

MFAC (PD-MFAC) approach is proposed to accommodate the MFAC scheme in

a flight control problem, which shows better control performance over the original

MFAC algorithm. Based on the PD-MFAC approach, the data-driven flight con-

trol system is developed to achieve gust load alleviation and trajectory tracking.

Simulation results based on the full-order nonlinear model show that the proposed

data-driven flight control system is able to properly regulate all the rigid-body and

flexible modes with better effectiveness and robustness (against disturbance rejec-

tion and modeling uncertainties), compared to a baseline H∞ flight control system.

xvi
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Chapter 1

Introduction

1.1 Background

Unmanned Aerial Vehicle (UAV) is a type of aircraft without human pilot on board

and can fly with different levels of autonomy, operated either remotely by a human

pilot through the ground control system or autonomously by the airborne flight

control system. With rapid advances in relevant technology in the disciplines of

materials science, control engineering, communication, computer science, etc., the

performance of UAVs has seen a significant development over the past few decades,

which enables them with better capability to be applied in various fields [1, 2]. In

the military field, UAVs have been deployed to carry out multiple types of missions,

such as intelligence, electronic attack, strike missions and so forth, making them

a vital tactical weapon on modern battlefields. While in the civilian field, UAVs

can replace human in dangerous or repeated labour tasks, for example, industrial

inspection, surveying and mapping, search and rescue, agricultural monitoring, etc.,

in which UAVs have shown their capacities to improve industrial efficiency and boost

economic growth.

Flight endurance is one of the many key specifications to evaluate an air-

craft’s performance. It is defined as the amount of time an aircraft can continuously

fly in the air without landing. Longer endurance typically means longer continu-

ous mission time. In general, the flight endurance ranges from dozens of minutes

to dozens of hours depending on the categories of the aircraft (without consider-

ing in-flight refuelling). It has long been a challenging research target to pursue

significantly extended flight endurance. At the moment, the electric solar-powered

platforms are very promising candidates. A well-known solar-powered aircraft is the

Solar Impulse 2 as shown in Fig. 1.1, which successfully completed its circumnav-
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igation of the globe in July 2016 using only solar energy. During this journey, the

longest flight duration was 117 hours 52 minutes in its travel from Japan to Hawaii.

The Solar-powered aircraft gather solar energy during the day to power the whole

system and simultaneously save extra energy into the batteries, on which the aircraft

rely to continue flying during the night. In this manner, the flight endurance can be

significantly increased. Given an appropriate design, endurance of months or years,

even perpetual flight might be achieved [3–5]. However, the design of such solar-

powered aircraft is not a simple replacement of relevant systems on a conventional

aircraft, but requires careful and comprehensive consideration. In order to achieve

the endurance target, the solar-powered aircraft need to be designed with extreme

aerodynamic efficiency, which is usually done by employing light-weight materials

to reduce the structural weight, as well as high aspect-ratio wings to increase the

lift-to-drag ratio [6, 7].

Figure 1.1: The Solar Impulse 2 aircraft.

On the other hand, the service ceiling, namely the maximum altitude at

which an aircraft can maintain a specified climb rate, is another important spec-

ification to reflect an aircraft’s performance. Generally, flying at high altitudes

provides a large mission coverage area and reduces the disrupts from other airborne

traffic or threats from hostile air vehicles. Since the air gets thinner and smoother at

high altitudes, the aircraft can travel more efficiently because of less air resistance,

and can also face less safety concerns caused by wind disturbance. Particularly for

solar-powered aircraft, solar cells can absorb and convert more energy because of

the clear weather condition at high altitudes. Combining the aforementioned factors

eventually lead to the concept of High Altitude Long Endurance (HALE) UAVs.

The HALE UAVs are designed to optimally operate at high altitudes (typ-

ically 15∼30 km) with considerable endurance. Due to their advantages of long
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endurance, low cost and easy maintenance, the HALE UAVs have huge potential in

undertaking a wide range of military and civilian missions [8–10], such as long-range

telecommunication relay, aerial surveillance, internet beaming, storm tracking stud-

ies, etc., offering an alternative to the satellite technology that is currently used in

these fields. In the past few decades, several experimental prototype HALE UAVs

have been built to demonstrate their performance. Among them, some well-known

examples include the Helios (see Fig. 1.2a) developed by AeroVironment under

NASA’s ERAST programme, the Zephyr (see Fig. 1.2b) developed by QinetiQ

which holds the current endurance record of two weeks for solar-powered UAVs [11],

the Aquila (see Fig. 1.2c) developed by Ascenta (now acquired by Facebook), and

the Rainbow Solar UAV (see Fig. 1.2d) developed by CASTC which successfully

completed its maiden flight and reached the near space in 2017. At the time of

writing (November 2019), other HALE UAVs are also reported to be under develop-

ment. For example, the BAE Systems and Prismatic are collaborating to build the

PHASA-35 UAV which aims to stay airborne for one year and offer persistent low-

cost service. The main properties of these mentioned HALE UAVs are summarized

in Table 1.1.

(a) Helios (b) Zephyr

(c) Aquila (d) Rainbow Solar UAV

Figure 1.2: Examples of prototype HALE UAVs
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Table 1.1: Key properties of example prototype HALE UAVs.

Wing span (m) Weight (kg) Aspect ratio Configuration

Helios 75 1052 ≈ 31 flying wing

Zephyr 22.5 53 > 20 wing-body-tail

Aquila 42 400 > 35 flying wing

Rainbow 45 -1 - wing-body-tail

PHASA-35 35 150 - wing-body-tail

Among them, the Helios prototype series are considered to have laid the

foundations of this research area. The Helios has a wing-span of 75 m (the aspect-

ratio is around 31) which is larger than the wing-span of a Boeing 747 (68 m), but

only weighs approximately 1052 kg while Boeing 747 has a weight of over 320 tonnes.

The aircraft employs a flying wing configuration, the control surfaces mounted on

the airframe consist of 14 electric motors and 72 trailing-edge elevators providing

necessary thrust and control torque. The aircraft was designed to have a endurance

of more than 24 hours and reached the altitude of 29,524 m in 2001, which is still the

world record ever made by winged aircraft [12]. Unfortunately, the Helios prototype

crashed in a mission in 2003, due to the encountered turbulence forced the aircraft

into a persistent high-dihedral configuration which caused unstable dynamics in a

very divergent pitch mode, the airspeed then exceeded its design value and eventu-

ally led to substantial structure failure, as indicated in Figure 1.3. It is afterwards

recognized that conventional linear methodologies are not capable of analysing the

complex interactions on the aircraft’s characteristics [13]. Therefore, one of the key

recommendations in the investigation report to this accident [13] emphasized the

need to: “Develop more advanced, multidisciplinary (structures, aeroelastic, aero-

dynamics, atmospheric, materials, propulsion, controls, etc.) time-domain analysis

methods appropriate to highly flexible, morphing vehicles.”, which is still very con-

structive to the development of this research area nowadays.

Another prototype whose progress does not go smoothly is the Facebook

Aquila, which was intended to act as relay stations to beam internet to rural areas.

The Aquila has a wing span of 42 m (the aspect-ratio is around 35) and weighs

only around 400 kg. The aircraft employs a swept-wing configuration and is de-

signed to operate at altitudes between 18∼27 km with the endurance of up to three

months. In June 2016, Aquila took its first flight and completed a 96-minute flight

1The symbol ”-” indicates the specific data is not avaliable.
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Figure 1.3: Structure failure of the Helios.

successfully, but was reported to experience a crash upon landing [14], as a result

of the unexpected strong gust wind lifted the aircraft above its flight path right

before touchdown, causing the control system reacted to lower the nose, the aircraft

then speeded up to hit the ground and ended with substantial damage in its right

wing [15].

In brief, despite the progress made by experimental designs of various pro-

totypes, the lack of a comprehensive understanding into the complex dynamics ex-

hibited in HALE aircraft has ultimately led to these disastrous accidents. It is

therefore imperative to promote research into the coupled nonlinear aeroelastic and

flight dynamic behaviours of HALE aircraft. Essentially, the use of light-weight

high-aspect-ratio wings (to meet the efficiency targets) significantly reduces struc-

ture stiffness and leads to a very flexible aircraft (VFA), of which the dynamic

responses are very different from those of rigid ones. Due to the inherent high flexi-

bility of the airframe, the aerodynamic load will considerably deform the wing shape

during flight and affect the stability of the aircraft. Furthermore, considering the

fact that the aeroelastic effect can be slow enough to excite rigid-body instabilities,

there exists an overlap in the lowest elastic mode frequencies and the rigid-body

flight dynamic frequencies [16], resulting in strong couplings between the structural
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dynamics, aerodynamics and flight dynamics. These aspects not only imply the

demand for advanced analysis methods, but also pose great challenges in terms of

airframe modelling and dynamic control [16–25] of VFA.

To be specific, for airframe modelling, since the dynamics associated with

large structural deformations are geometrically nonlinear, standard linear theories

and analysis tools are no longer adequate to accurately capture these effects [26,27].

It is necessary to develop a nonlinear simulation framework to account for the

geometrically-nonlinear structural behaviours, coupled with proper aerodynamic

descriptions. Moreover, such aeroelastic formulations typically incorporate thou-

sands of degrees-of-freedom (DOF) and have to be reduced to manageable size for

the purpose of control design and time-domain simulations, which further requires

nonlinear model reduction on both the structural and aerodynamic models. With

regards to dynamic control, since VFA are very sensitive to atmospheric disturbance,

one of the major challenges focuses on the design of flight control strategies for dy-

namic stabilization, gust load alleviation (GLA) and trajectory tracking, subject to

the coupled aeroelastic response and flight dynamics. The designed control system

must be able to properly regulate the rigid-body modes as well as the flexible modes,

especially in the presence of wind disturbance. In addition, it is crucial to ensure

the flight control system with sufficient robustness against modelling uncertainties

and unmodelled dynamics for them to serve in practice.

These are the main challenges that have motivated relevant research in this

field. Developing efficient methods to address these challenges are beneficial to

other research areas as well, such as the modelling and control of flapping wing

aircraft [28–32], helicopter and wind turbine with large slender blades [33–37], where

the geometrically-nonlinear aeroelastic effect also constitutes the key challenges.

1.2 Review of Aeroelastic Modelling and Control

Aeroelasticity in aeronautics concerns the interactions between structural dynamics,

unsteady aerodynamics and flight dynamics. To study the nonlinear aeroelastic

characteristics of very flexible aircraft (VFA), considerable efforts have been devoted

into the research area of aeroelastic modelling and dynamic control during the past

few decades. In this section, we will try to provide a brief overview of the recent

developments in these two aspects. First, we will review the aeroelastic modelling

methods which are relevant to those used in this work, specifically, the geometrically

nonlinear structural modelling methods and the unsteady aerodynamics modelling

methods. The existing aeroelastic formulation frameworks will also be reviewed.
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Subsequently, we will review the studies on the active aeroelastic control for VFA.

1.2.1 Aeroelastic Modelling

The earliest example of work to study the aeroelasticity of slender wings was con-

ducted by Goland [38]. In this work, linear structural model and unsteady aerody-

namic theory were used to model the pure aeroelastic behaviour of a low-aspect-ratio

wing in cantilever configuration, the flight dynamics were assumed to be neglected.

This work studied the predictions of flutter speed and frequency and has been widely

used as benchmark test case for aeroelastic analysis.

Tang et. al. [39] studied the limit cycle oscillations and flutter response of

a high-aspect-ratio cantilevered wing, in which the structural model was developed

using nonlinear beam models and the aerodynamics was described by the combi-

nation of ONERA aerofoil model and strip theory. Experiment tests were carried

out in a wind tunnel to validate the theoretical model. Through comparisons with

collected experiment data, the static deflections predicted by the nonlinear beam

model were observed to be more consistent than those predicted by the linear model,

which demonstrated the necessity of using nonlinear beam models for the structural

modeling of slender wings. In particular, the modeling of VFA requires the in-

corporation of coupled structural dynamics, aerodynamics and flight dynamics to

describe the aeroelastic response. Due to the high flexibility of the airframe, VFA

typically exhibit large structural deformations during flight, the aircraft’s dynamics

are significantly affected by the resulting geometrical nonlinearities. Since standard

linear solutions are based on the assumption of small structural deformations, the

nonlinear structural modelling of VFA should be able to capture such nonlinear

interactions.

Very high-fidelity approaches based on nonlinear 3-D finite element method

[40–42] and nonlinear plate model [43] have been investigated. However, it is gener-

ally acknowledged that such methods require very high computational costs for full

aircraft dynamics analysis and suffer from numerical problems. As structures under-

going large deformations by nature have dominant dimensions, a fidelity reduction

is possible using geometrically-nonlinear composite beam or shell theory [44, 45],

which is developed based on the original Euler-Bernoulli beam theory and extends

to include geometrical nonlinearities by solving the beam kinematics in the presence

of finite rotations. The 3-D structural dynamics are described as the dynamics of

a reference line in the beam model, in which the full 3-D degrees-of-freedom are

reduced into a smaller number of variables (e.g. sectional stress and strains) with

equivalent cross-sectional properties. The process to obtain such cross-sectional
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properties, called homogenisation, were discussed in [46, 47]. As a result of the re-

duction in fidelity, the geometrically-nonlinear beam and shell theories require less

computational costs. It should be emphasized that despite being geometrically non-

linear, the beam and shell theories are developed under the assumption of linear

elasticity, which means that although the displacement and rotation due to struc-

tural deformation can be large, the internal strains remain small and are within the

range of linear material behaviour. Please refer to [45, 48] for a detailed review on

the geometrically-nonlinear composite beam theory.

The geometrically-nonlinear beam equations to model the structural dynam-

ics of VFA associated with large deformations have been formulated by using dif-

ferent variables to describe the displacement field and the beam reference line’s

rotation. A common approach is the displacement-based formulation. Simpson et

al. [49] formulated the beam equations using nodal displacement described in the

body-fixed frame and nodal orientation in the form of Cartesian rotation vector

described in each node’s local frame, as primary state variables, based on which

the flexible-body equations of motion were derived using Hamilton’s principle. The

displacement-based formulation was also used in the works of [22, 50, 51] for the

structural modelling of VFA. This type of formulation facilitates the advantage of

the nodal displacement and rotation information being directly available, however,

the order of the description of geometrical nonlinearities is high, which results in

complexity of the formulation and moderate computational cost.

In contrast, the strain-based formulation is developed to provide a compu-

tationally effective approach. The beam’s internal strains are used as primary state

variables to describe the beam deformation. Example works can be found in [52–54].

In the strain-based formulation, the internal forces and moments can be easily de-

rived form strain variables, without requiring differentiation operations as in the

displacement-based formulation. The strain-based formulation features a constant

stiffness matrix that does not need update, which can reduce the computation cost

to derive the solution. The displacement and rotation variables can be retrieved via

an additional post-processing step. An alternative approach to effectively solve the

geometrically nonlinear beam problems is the mixed-form formulation [55, 56], in

which the internal velocities, strains and rotations are used as primary state vari-

ables. Such formulation requires a larger number of state variables but leads to

more simplified equations.

Another type of formulation is the intrinsic formulation. Hodges [44] de-

veloped a two-field intrinsic formulation using the internal velocities and stresses,

and demonstrated the unique advantage of formulating the geometrical nonlineari-
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ties by second-order terms in the equation. Palacios et al. [20] provided detailed a

comparison between the above different types of formulation in terms of numerical

efficiency and simplicity of integration, which concluded that the intrinsic formu-

lation and strain-based formulation are more computationally effective. Wang et

al. [19, 27] developed an intrinsic modal framework to describe the geometrically-

nonlinear structural dynamics. The framework is developed initially based on the

intrinsic formulation using the sectional inertial linear and angular velocities, and

the resultant sectional forces and moments as primary state variables. The intrinsic

degrees of freedom are then projected onto a set of linear structural normal modes

and the quadratic nonlinearity terms are retained. The formulation can be easily

reduced to obtain a reduced-order description to benefit the control synthesis.

On the other hand, the aerodynamics modelling of VFA has been subject to

much research. The aerodynamic model calculates the aerodynamic forces and mo-

ments applied on the aircraft. Very high-fidelity aerodynamics modelling approaches

using computational fluid dynamics (CFD) techniques have been investigated in nu-

merous works [57–59]. The major issue of using CFD methods lies in the expensive

computational cost required for the dynamic simulations for VFA which operate at

relatively low Reynolds number. In addition, when large wing deformations hap-

pen, re-meshing of the aerodynamic surfaces to adapt the fluid domain discretization

are also very expensive operations. Despite the advances in computing power and

available acceleration algorithms, CFD is still impractical for full-vehicle dynamic

simulations for VFA. Hence, research on the aerodynamic modelling of VFA has

instead focused on developing aerodynamic models with reduced fidelities.

The potential flow methods are very good candidates in this capacity and

have been studied extensively for low-speed aerodynamics modelling [60]. The gov-

erning equations of potential flow methods can be formulated as a boundary-value

problem and solved by finding a superposition of singularities that satisfies the

boundary condition, instead of solving the entire field through discretization of the

entire volume. In this manner, the computational cost can be largely reduced com-

pared to CFD methods. As a standard formulation of the potential flow methods,

the doublet lattice method (DLM) which uses doublet panels gives a frequency-

domain formulation with the assumption of flat wake, and is commonly used in the

aircraft industry. However, it is known that DLM is difficult to model the in-plane

motions of the aerodynamic surfaces. In contrast, the vortex lattice method (VLM)

which uses vortex panels is able to solve this problem. A very popular extension

to VLM is the unsteady VLM (UVLM) and has been used to capture the three-

dimensional aerodynamics of VFA in a number of works [20,51,61–63]. The UVLM
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is described in the time-domain with the assumption of free wake and enables the

prediction of wing-tip effects [20], as well as the modelling of the aerodynamic inter-

ference between wakes and lifting surfaces [51]. However, in the UVLM formulation,

the number of wake panels increases as the simulation time rises, which brings com-

putational burdens for long simulations.

To further reduce the computational cost of panel methods, the 2-D unsteady

strip theory has been developed and formulated in both time-domain (Wagner’s

function) and frequency-domain (Theodorsen’s function). The unsteady strip theory

models the response of each aerofoil section separately and integrates 2-D loads to

estimate the 3-D aerodynamics. Palacios et al. compared the 2-D unsteady strip

theory with 3-D UVLM in [20] and found that the 3-D models give more accurate

predictions for low-aspect-ratio cases with high frequency oscillations while the 2-D

models are justifiable to predict the critical behaviours of high-aspect-ratio wings

with low frequency oscillations. Compared with potential flow methods, the 2-D

aerofoil models have an additional advantage of being easier to apply aerodynamic

coefficients of the practical aerofoil. The use of 2-D unsteady strip theory for the

aerodynamics modelling of VFA has been investigated in various works such as

[8, 19, 21, 39, 42, 64]. It is necessary to mention that the 2-D aerodynamic models

cannot capture the lift loss due to the wing tip effects for a finite wing. However, as

the aspect-ratio increases, the wing tip effect decreases [60]. Hence, it is acceptable

to ignore such effect for the aerodynamics modelling of VFA with high-aspect-ratio

configuration [17, 19]. Alternatively, a correction factor can be applied in the wing

tip region to compensate the 3-D aerodynamics as did in the works of [6, 20].

Based on the above structural and aerodynamic modelling techniques, a num-

ber of simulation frameworks have been developed to investigate the coupled aeroe-

lastic and flight dynamic responses of very flexible aircraft. Patil et al. [8, 17, 56]

developed a simulation framework called NATASHA, using the mixed variational

beam formulation and 2-D aerodynamics model. The modelling framework was

applied to a free-flying high-aspect-ratio wing [56] and a HALE aircraft [8], respec-

tively. An additional stall model was included to account for the stall effects at high

angles-of-attack cased by wing deformations. The authors studied the phenomenon

of limit-cycle oscillation in the presence of large displacements and rotations, and

the impact of airframe flexibility on rigid-body flight dynamics. Subsequently, the

authors used this framework on a Helios-like very flexible flying wing model and

studied its trim, stability and nonlinear flight dynamics [17], which provided a good

benchmark for following aeroelastic studies.

Cesnik et al. developed an integrated modelling framework using the strain-
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based beam formulation and 2-D aerodynamics model, called UM/NAST, which has

been applied to a range of VFA configurations [16, 65–69]. Shearer and Cesnik [65]

focused on the analysis of the flight dynamics of a twin-tailed HALE aircraft with

conventional wing/body/tail configuration. The strain-based geometrically nonlin-

ear beam formulation and the unsteady aerodynamic model are integrated using an

implicit modified Newmark method. Through simulations conducted on the non-

linear rigid-body case, nonlinear rigid-body coupled with linear structural model

and nonlinear rigid-body coupled with nonlinear structural model, respectively, this

work demonstrated the importance of incorporating nonlinear structural solutions

for the dynamics analysis of VFA. In a subsequent work [66], the authors investigated

the trajectory control of the same HALE aircraft, and the control design was facil-

itated by the modelling framework to allow for a low-order nonlinear formulation.

Su and Cesnik employed this modelling framework to study the coupled nonlinear

flight dynamics and aeroelastic responses of a very flexible blended-wing-body air-

craft [67] and a very flexible flying wing [16], respectively. Discrete gust models

were integrated into the framework to study the gust responses. In [16], the authors

also analysed the flight dynamic stability of the very flexible flying wing at trimmed

conditions subject to different payloads. Numerical simulations showed that the

phugoid mode became unstable soon after the payload reached to 50% full-paylaod.

Dillsaver et al. [69] studied the impact of structural stiffness on the gust response of

VFA based on the same very flexible flying wing model in [16,17]. Simulations were

conducted on thirteen aircraft configurations with different stiffness parameters sub-

ject to spatially and temporally distributed gusts. The simulation results revealed

the change of the maximum pitch angle excursion/root curvature with respect to

bending/torsional stiffness. Dillsaver et al. [68] also studied the gust load allevia-

tion control of a small-scale very flexible aircraft, called X-HALE (see Fig. 1.4),

formulated by UM/NAST modelling framework. This was subsequently followed

by an experimental project [70] to validate the UM/NAST modelling framework

against experimental data. The preliminary results in [71] showed that the designed

prototype aircraft did exhibit obvious aeroelastic behaviours with large wing-tip dis-

placement. However, the experiment data collected from initial flight tests were yet

to support validation of the framework, due to a limited sensor payload and poor

quality of data.

Palacios et al. [22, 49, 50, 72] developed the SHARPy modelling framework

based on the displacement-based beam formulation and 3-D UVLM aerodynamic

model. The SHARPy modelling framework is coded in Python and has been used

to study the nonlinear trim, stability and flight dynamics of VFA. Through lin-
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Figure 1.4: The XHALE very flexible aircraft.

earisation of the aeroelastic and flight dynamic equations of motion around a trim

equilibrium, the framework can provide linearised state-space models suitable for

model reduction and control synthesis. The implementation of UVLM aerodynamic

model facilitates the framework with capability to model wake-tail interactions and

wake roll-up effects. The SHARPy framework can also be employed to study the

aeroelastic dynamics for large wind turbines [73]. Wang et al. [18] developed the

NANSI modelling framework also using 3-D UVLM aerodynamic model but intrinsic

beam formulation in the structural modelling. A stall model was integrated in the

framework to account for stall effects. The modelling framework has been verified

against the very flexible flying wing model developed in [17].

Wang et al. [19,37,74] developed a nonlinear modal framework based on the

intrinsic beam formulation coupled with 2-D unsteady aerodynamics. The intrinsic

beam equations are projected onto a set of modal basis and use the structural normal

modes as primary state variables. The developed framework can well capture the

nonlinear aeroelastic dynamics of VFA and formulate the geometrical nonlinearities

in the form of second-order terms. It can also provide a more simplified way to

perform model reduction and identify the contributions of each structural mode.

The modelling framework has been verified against the Goland cantilever wing model
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in [38] and the very flexible flying wing model in [17], and will be used as a basis

for the control synthesis and numerical studies in this work.

1.2.2 Aeroelastic control

Since very flexible aircraft (VFA) are very sensitive to external atmospheric distur-

bance, active aeroelastic control is typically required for disturbance rejection or

gust load alleviation [68, 75–79], which constitutes a crucial control loop for VFA.

Before we dive into the details of aeroelastic control design, it is worth noting that

the structural and aerodynamic models mentioned above are generally developed

with a large number of states, rendering high orders of the nonlinear systems. For

the purpose of control design, model order reduction is usually applied on the full

nonlinear system to obtain a reduced-order representation that is suitable for control

synthesis but preserves the dynamics of interest. A widely-used reduction technique

on linear aeroelastic systems is the balanced model reduction method [80–82]. The

method retains the modes with most significant contributions to the system’s input-

output behaviour (measured by the Hankel singular values), eventually leading to

a reduced-order description with manageable size but very similar input-output be-

haviour to the original system. By contrast, nonlinear model reduction is more

problem-dependent [19, 22, 42, 83]. In addition to using general model reduction

techniques, methods taking advantage of the particular form of the nonlinearities

are utilized to facilitate this process. For example, in [19], the use of linear structural

normal modes as primary state variables enables the geometrical nonlinearities being

formulated in quadratic terms and facilitates a direct and easier model reduction.

Linear control methods have been widely used for the aeroelastic control of

VFA. Among them, the robust H∞ control is very attractive due to its capability to

guarantee the control system’s robustness with respect to modelling uncertainties.

Silvestre and Paglione [84] employed H∞ control to design the control augmenta-

tion system for a flexible aircraft based on the approximated rigid-body motion,

taking elastic deformations as disturbance. Cook et al. [79] investigated the gust

load alleviation (GLA) and stabilization of a HALE aircraft which has a design of

conventional wing-body-tail configuration and low structural stiffness in the wings.

The robust H∞ controller was designed based on a linearised reduced-order model of

169 states. Simulation studies showed that the controller was able to reduce the root

bending moment under different gust excitations. Wang et al. [19] designed the GLA

control system for the very flexible flying wing model [17] using H∞ control. Due

to the advantage of the modal intrinsic modelling framework, a 20-state linearised

reduced-order model was derived to benefit the control synthesis. Similarly, the
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closed-loop responses under different gust excitations were studied to demonstrate

the performance of the H∞ control system.

Besides, H2 control methods have been used in the literature. Aouf et al. [85]

designed H2 and H∞ controllers to regulate the body acceleration for a simple flexi-

ble aircraft model, which was augmented from a linear rigid aircraft model and five

most influential flexible modes, without considering unsteady aerodynamics. Sim-

ulation results showed that the H∞ controller outperformed the H2 controller in

reducing the body accelerations through wind gust. Alazard [86] designed a lat-

eral controller using H2 control for a flexible carrier aircraft, the model used in this

work was a linearised one around an equilibrium point. For the applications of

H2 control methods on very flexible aircraft model which considers geometrically

nonlinearities and unsteady aerodynamics, Dillsaver et al. [68] designed a LQG con-

troller to reduce the effect of wind gust for the X-HALE aircraft model developed

in [70], with an integrator added to enable pitch angle tracking. Only longitudinal

dynamics were considered in this work, assuming symmetric wind gust. The LQG

controller was shown to achieve good gust load alleviation performance in mini-

mizing the wing curvature. The authors [69] further investigated the GLA for the

very flexible flying wing model developed in [17] using the same LQG controller.

The controller’s performance was examined via simulations on thirteen aircraft con-

figurations with different structural stiffness parameters subject to spatially and

temporally distributed gusts. However, from the perspective of control theory, it is

known that LQG is essentially lack of robustness to system uncertainties. Thus, the

loop transfer recovery (LTR) technique is developed and combined with LQG to en-

sure guaranteed stability margin of the closed-loop system, leading to the LQG/LTR

approach. Gibson et al. [87] designed a linear LQG/LTR controller and an adaptive

LQG/LTR controller to stabilize the VFA at large dihedral excursions, respectively.

Simulation results demonstrated that the adaptive LQG/LTR controller achieved

better control performance over the linear one.

Apart from the above linear approaches, nonlinear control methods have also

been applied for the aeroelastic control of VFA. The model predictive control (MPC)

is mostly used in the literature. The essence of MPC is to online update the control

inputs by solving an optimization problem over a finite horizon at each time step and

allows to take account of nonlinear effects in the internal model [88,89]. Haghighat

et al. [90] employed MPC to achieve dynamic stabilization and gust load alleviation

for a very flexible aircraft. An additional prediction enhancement feedback loop was

added in this work to improve future state predictions, thereby improving the per-

formance and robustness of the conventional MPC formulation. The designed MPC
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controller showed better control performance than a linear quadratic controller at

regulating the maximum stress and rigid-body variables. Similar conclusions can

be drawn from the work of Simpson et al. [91], which investigated the gust load

alleviation control subject to input constraints for a cantilever wing model. Wang

et al. [27] applied MPC control to suppress wing oscillations of the very flexible

flying wing model in response to wind gusts. By taking advantage of quadratic

nonlinear couplings, a computationally-efficient MPC controller was designed based

on rapid online re-linearisation of the nonlinear reduced-order model. The control

design assumes full-state feedback and no control saturation constraints were ap-

plied. Simulation results demonstrated that significant improvements in stability

boundary of the nonlinear MPC controller against wind disturbances were achieved.

Moreover, Giesseler et al. [92] and Liu et al. [93] investigated the gust load alle-

viation for a flexible aircraft using MPC control and light detection and ranging

(Lidar) technique. Wind measurement of the incoming gust disturbance by Lidar

was used by the MPC controller to improve disturbance rejection performance. In

addition, adaptive control methods have been studied for gust load alleviation of

VFA in [94, 95], but the control systems were all designed based on linear aircraft

models.

1.3 Motivations and Research Contributions

From the previous section, we can see that most studies in this problem area have

been focused on the aeroelastic modelling and aeroelastic control of very flexible

aircraft (VFA). A few modelling frameworks have been developed to formulate the

dominant nonlinear aeroelastic dynamics of VFA and provide the foundation for

flight control synthesis and numerical simulations. However, the flight control of

VFA should not only achieve a desirable aeroelastic response (aeroelastic control)

but is able to drive the aircraft to effectively follow desired flight paths (trajectory

control). Currently, there has been limited research on the aspect of trajectory

control. Hence, it is of great necessity to investigate the combined aeroelastic and

trajectory control of VFA, especially in the presence of wind disturbance. The

contribution of this work is threefold:

(1) We investigate the aeroelastic and trajectory control for VFA in the pres-

ence of wind disturbance, using robust control methods and parameter optimization

scheme to enhance robustness and effectiveness. The very flexible flying wing model

formulated by the modal modelling framework developed in [19] is used as numerical

test case. As introduced earlier, the modal modelling framework is developed based
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on geometrically nonlinear beam theory using intrinsic degrees of freedom coupled

with 2-D unsteady aerodynamics. The structural, aerodynamic and flight dynamic

models are projected onto a set of structural normal modes, which largely facili-

tates the process of model reduction to obtain a reduced-order model suitable for

control synthesis and the identification of modal contributions. Since VFA exhibit

highly complex dynamics and are very sensitive to wind disturbance, it is crucial to

design a flight control system with sufficient robustness against modelling uncertain-

ties/unmodelled dynamics and disturbance rejection. For this purpose, we propose

a two-loop PI/LADRC (linear active disturbance rejection control) and H∞ robust

control scheme to achieve the combined aeroelastic and trajectory control. We em-

ploy the particle swarm optimization (PSO) algorithm for parameter optimization

in the H∞ control design to enhance robustness and effectiveness. The performance

of the designed aeroelastic and trajectory control system is tested by simulations

conducted on the nonlinear aeroservoelastic model of the flying wing under wind

gust and turbulence excitations. Simulations results demonstrate that good per-

formance of the control system with respect to trajectory tracking and disturbance

rejection are achieved.

(2) Furthermore, we investigate the autonomous landing control for VFA us-

ing Lidar (light detection and ranging) preview to improve control performance and

ensure safe landing in the presence of wind turbulence. As a critical flight phase,

landing determines whether an aircraft can be safely recovered. Current research on

landing control is mostly devoted to rigid-body aircraft and has rarely touched flex-

ible ones. Moreover, as mentioned earlier, the HALE UAV Aquila was substantially

damaged in a crash due to wind gusts during landing [15], which implies that the

autonomous landing control remains one of the current bottlenecks in large UAV

development. We propose to design a preview-based autonomous landing control

system for the same very flexible flying wing model as in (1) using H∞ preview

method with short-range Lidar wind measurement. The Lidar system is used to

measure the velocity of the approaching wind disturbance at a distance in front

of the aircraft. These wind measurements are provided to the landing control sys-

tem as preview knowledge, which enables the control system to act before the wind

disturbance actually affect the aircraft. In this manner, the preview-based land-

ing control system achieves improved control performance and can largely benefit

the autonomous landing scenario for VFA. The landing control system follows the

same two-loop structure for the aeroelastic and trajectory control system as in (1)

but extends the inner-loop H∞ controller to incorporate Lidar preview wind mea-

surements. Simulation tests are again conducted on the nonlinear aeroservoelastic
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model, which show that the preview-based landing control system is able to land the

aircraft safely and effectively, and also achieves better effectiveness and disturbance

rejection performance than a baseline landing control system (without preview).

(3) At latst, we investigate the aeroelastic and trajectory control for VFA

using data-driven control methods to reduce the dependence of control design on

system modelling. By far, almost all the flight control systems for VFA, including

the control designs discussed above, are using various types of conventional linear

or nonlinear model-based control methods. The conventional model-based control

design is typically based on a mathematical model with the faith that it represents

the practical system. However, it is well-known that the issues of modelling un-

certainties and unmodelled dynamics are inevitable in the modelling process, and

the situation is more severe for VFA due to their complex system dynamics. More-

over, the mathematical model of VFA usually contains a large number of states and

is unsuitable for direct control synthesis, thus, model order reduction is required

which further introduces modelling uncertainties. The performance and reliability

of the control system designed based on such inaccurate model may lead to de-

graded performance or even unstable closed-loop response. Hence, it is of great

significance to design a flight control system which can overcome the above issues

of conventional model-based control methods. We propose to design a data-driven

flight control system for the same very flexible flying wing model as in (1) using the

data-driven Model-Free Adaptive Control (MFAC) scheme to reduce the dependence

of control design on explicit system modelling. A cascaded proportional-derivative

MFAC (PD-MFAC) scheme is proposed to accommodate the MFAC scheme in a

flight control problem, based on which the data-driven control system is designed

to achieve gust load alleviation and trajectory tracking. By running simulations on

the nonlinear aeroservoelastic model, we compare the performance of the developed

data-driven flight control system with a baseline H∞ flight control system. The sim-

ulation results demonstrate that the data-driven control system is able to properly

regulate all the rigid-body and flexible modes, and achieves better effectiveness and

robustness against disturbance rejection and modelling uncertainties.

1.4 Outline of Thesis

The structure of this thesis is organized as follows: Chapter 2 briefly presents the

aeroelastic modelling of a very flexible flying wing using intrinsic description and

the nonlinear model reduction to obtain the reduced-order design model. Chapter

3 designs the aeroelastic and trajectory control system for the very flexible flying
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wing model employing a two-loop PI/LADRC and H∞ control scheme. The parti-

cle swarm optimization algorithm is employed to enhance control effectiveness and

robustness. Chapter 4 investigates the preview-based autonomous landing control

of the very flexible flying wing in the presence of wind turbulence. The H∞ preview

control is employed to incorporate Lidar preview wind measurements to improve

control performance. Chapter 5 designs the data-driven flight control system using

the proposed PD-MFAC approach to reduce the dependence of control design on

modelling. Its performance is compared with the model-based control system using

H∞ control. Finally, Chapter 6 concludes this thesis and lists a couple of interesting

future research areas.
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Chapter 2

Modelling of the very flexible

flying wing

In this thesis, we use the very flexible flying wing model developed in [19] to inves-

tigate flight control design in the Chapters 3-5. The modelling of the very flexible

flying wing presented in this chapter has been investigated in the work of [19]. For

ease of reference, we summarize the aeroelastic modelling of the aircraft in [19] and

briefly introduce the key results of the aeroelastic formulations and the nonlinear

model reduction to obtain a system model of appropriate order for control synthesis.

We refer to [19] and the references therein for more details.

2.1 Intrinsic Beam Equations

Consider a very flexible high-aspect-ratio airframe with control surfaces and variable

engine thrust. As shown in Fig. 2.1, the airframe is modelled as a collection of

geometrically-nonlinear composite beams, of which the equations of motion (EOM)

are described using the intrinsic beam theory. On the basis of Hamilton’s principle

[96], the strong form of the beam equations is derived with additional compatibility

relations and constitutive relations as

Mẋ1 − x
′
2 −Ex2 + L1(x1)Mx1 + L2(x2)Cx2 = fE,

Cẋ2 − x
′
1 + E>x1 − L>1 (x1)Cx2 = 0,

(2.1)

where •̇ denotes derivative with respect to time while •′ denotes derivative with

respect to length along the beam. x1 = [v> w>]> and x2 = [f> m>]> are the

state variables, with v ∈R3 and ω ∈R3 being the sectional linear and angular ve-

locities, and f ∈R3 and m∈R3 being the resultant sectional forces and moments,
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respectively. These intrinsic variables are all defined in the local (deformed) refer-

ence frame at location l ∈ [0, La] along the beam reference axis, where La is the

total length of the beam structure. M and C are the mass matrix and compliance

matrix of the material properties, respectively. The variable fE denotes the force

and moment applied externally, the matrix E describes the initial beam curvature,

and the operators L are linear transformations defined to operate on vectors in [97].

w

T
f

m

v

l

r

Figure 2.1: Illustration of the very flexible flying wing.

The aerodynamic force and moment fE applied on the airframe are formu-

lated using the two-dimensional (2-D) linear unsteady aerofoil theory in the aero-

dynamic model. The formulation starts from standard inviscid analysis on a flat

2-D aerofoil via the Theodorsen’s solution, and then modifies the solution to fit

actual parameters of the wing shape. The aerodynamic model is first described in

the local aerodynamic reference frame at each point, but subsequently coupled into

the intrinsic beam equations (2.1) expressed by the state variables x1 and x2 in the

local structural reference frame at that point (please refer to Appendix A for the

explicit formulations of fE), using the method described by Palacios et al. [98]. The

effects of control surfaces are modelled by modifying the local aerodynamic coeffi-

cients of the lifting surfaces while the engine thrusts are modelled by point forces.

Furthermore, the effect of gravity and external wind gusts are also considered in the

flight dynamics model. The displacement r ∈ R3 and rotation matrix T ∈ R3×3 at
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location l along the beam structure are obtained by integrating the intrinsic velocity

variables in time from a initial reference shape and are given by [74]

Ṫ(l, t) = T(l, t)ω̃(l, t), (2.2a)

ṙ(l, t) = T(l, t)v(l, t), (2.2b)

where the •̃ symbol indicates the cross-product operator acting on three-element

vectors, such that for vectors a ∈ R3 and b ∈ R3, ãb = a× b.

2.2 Modal Aeroservoelastic Description

This section describes the projection of the beam equations (2.1) onto a set of modal

basis to obtain a modal formulation, which converts the nonlinear partial differential

equations into ordinary differential equations that can be easily solved in time, and

also largely simplifies the process of model order reduction [74]. In the structural

model, Galerkin projection [99, 100] is used to express the intrinsic state variables

as

x1 =
∑
j

ψ1j(l)q1j(t),

x2 =
∑
j

ψ2j(l)q2j(t),
(2.3)

where the pairs
(
ψ1j ,ψ2j

)
: [0, L] → R6 are the structural normal modes used as

basis functions, q1 and q2 are the modal amplitudes in the sectional linear/angular

velocities and the force/moment resultants, respectively. By subsequently project-

ing the aerodynamic model and the flight dynamics model onto modal basis, the

dynamic equations of the full modal aeroservoelastic system are

q̇s =Asqs + Γ(qs)qs

+ (H1(q∗s) + V∞H2(qa) + H3,d(q
∗
s)δd) q∗s

+ Hg(qs)T0 + HT fT, (2.4a)

q̇a =P1q
∗
s − V∞P2qa, (2.4b)

Ṫ0 =T0N1(qs), (2.4c)

ṙ0 =T0N2(qs), (2.4d)
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where the full set of primary states consist of the structural states qs = [q1, q2]T ,

the aerodynamic states qa, and the orientation T0 and displacement vector r0 of

a chosen reference point along the beam in the inertial frame of reference. The

orientation T0 and displacement r0 are derived from (2.2) and tracked as additional

states to provide rigid-body displacement and rotation information.

In equation (2.4a), the structural dynamic response is described by the ma-

trix As and operator Γ, corresponding to the linear and geometrically nonlinear

terms, respectively. Linear operators H1 and H2 describe the influence of the in-

stantaneous and time-dependent (lift history) aerodynamic forces on the structure

respectively. The influence of aerodynamic forces caused by control surfaces is de-

scribed by H3 with δd being the vector of control surface deflection angles. While

the effect of thrust is described by HT with fT being the vector of engine thrust

settings. Hg describes the effect of gravity. Equation (2.4b) describes the lift his-

tory associated with each structural mode from a rational-function approximation

to Theodorsen’s theory. The aerodynamic states qa are introduced to track the

unsteady lift history projected onto the modal basis and V∞ is computed as the

magnitude of the current free stream velocity at the reference point. Equations

(2.4c) and (2.4d) describe the time-integration of the rotation matrix and displace-

ment vector in modal forms by linear operators N1 and N2. Since the aerodynamic

model assumes the aerofoil moves through still air, the influence of external gust

(defined as a spatial distribution of gust velocities in the global frame) are modelled

as causing an additional downwash as local gust velocity, and thus can be trans-

lated into the model by modifying the velocity states used in the aerodynamic force

computations as

q∗s = qs + qsg, (2.5)

where qsg is the gust velocity distribution (a function of r and T) projected onto

the velocity modal basis [19]. Note that the aeroservoelastic system (2.4) will be

used as a basis for the numerical simulation of the dynamic responses of the very

flexible flying wing.

2.3 Model Order Reduction

Even with a description on modal basis, the above aeroservoelastic formulation (2.4)

requires a large number of states (of order 103) for convergence in time-domain

simulations [19]. To obtain a model of appropriate size for the purpose of control

design, the full-order description (2.4) is first linearised around a trim equilibrium

and then reduced by applying balanced truncation methods. The trim equilibrium
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is defined as the solution to (2.4) such that

q̇s = 0, q̇a = 0, Ṫ0 = 0, ṙ01,3 = 0, (2.6)

given a specific operating point which in our case is determined by the expected

airspeed and altitude. The equation (2.6) in fact defines a steady forward level

flight, assuming y-axis as the direction of flight. The corresponding trim equilibrium

states are denoted as qse, qae, T0e and r0e, respectively. The orientation of the

reference node T0 is then expressed by its relative rotation from the trim equilibrium

orientation T0e in terms of Euler angles (ψz, ψy, ψx) as T0 = Tr(ψz, ψy, ψx)T0e with

Tr = I at trim.

For model order reduction, the system will be expanded around this trim

equilibrium where we now define the new states qn=[(qs−qse)
>, (qa−qae)

>, ψy, ψx]>

and the control input vector uc = [∆δ>,∆f>T ]> which is the collection of flap de-

flection and thrust actions relative to trim. Expanding the aeroelastic system with

respect to new state variables qn and uc around the trim equilibrium and retaining

quadratic terms give rise to

q̇n = (SA + Q(qn))qn + SB1wd + SB2uc, (2.7)

where SA is the linearised state dynamics, Q(qn) describes the quadratic nonlinear-

ities, SB1 and SB2 denote the influence of gust strength wd and control actions uc,

respectively. Additionally, sensor measurements can be defined as a linear combina-

tion of the state variables based on (2.3), which results in the measurement matrix

SC and the output vector y and

y = SCqn. (2.8)

Equations (2.7) and (2.8) together form the state space model of the aeroe-

lastic system (2.4) with quadratic nonlinearities. If we rewrite SB = [ SB1 SB2 ]

and u = [ w>d u>c ]>, we obtain

(
q̇n

y

)
=

(
SA + Q(qn) SB

SC 0

)(
qn

u

)
. (2.9)

The state space system (2.9) is then reduced by applying balanced truncation

[80,81] to retain the modes with the greatest contribution, based on the linear part

of the system (the part without Q(qn)). The resulting similarity transformation is
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written as x = Rqn, where x ∈ RNr is the reduced state vector, with qn ∈ RNq and

Nr � Nq. The projection matrix R is obtained from balanced truncation, with an

associated pseudo-inverse transformation R† defined from the reduction such that

RR† = I holds. This results in the reduced-order nonlinear system(
ẋ

y

)
=

(
RSAR† + RQ(R†x)R†x RSB

SCR† 0

)(
x

u

)

=

(
A + Qr(x)x B

C 0

)(
x

u

)
,

(2.10)

where B = [ Bw Bu ] conforms with the definition of SB. Setting the Qr terms to

be zero results in the reduced-order linear system(
ẋ

y

)
=

(
A B

C 0

)(
x

u

)
. (2.11)

which will be used as the basis for control synthesis in Chapter 3.

For a timestep ∆t, the discrete-time equivalence of the reduced-order system

(2.11) can be approximated as(
x(k + 1)

y(k)

)
=

(
eA∆t A−1(eA∆t − I)B

C 0

)(
x(k)

u(k)

)

=

(
Af Bf

Cf 0

)(
x(k)

u(k)

)
,

(2.12)

where Bf = [ Bfw Bfu ] conforms with the definition of B. The discrete-time

reduced-order description (2.12) will be used as the basis for control synthesis in

Chapter 4.

2.4 Test Case

For the remainder of this thesis, we consider the 72m-span highly flexible flying wing

model used in [16–19] as the numerical test case, of which the geometric configuration

is depicted in Fig. 2.2 and the main properties can be found in [17]. The airframe

has a flat, straight midsection and an outer-section with 10◦ dihedral. Three vertical

fins are placed below the midsection with a varying payload between 0kg (0%) and

227kg (100%) at the central pod. Five propellers are mounted forward of the wing
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providing thrust while flaps are mounted in the trailing edge of the wing. The rigid-

body dynamics are approximated at the centre of the wing to control the rigid-body

degrees of freedom. These information can be measured through the GPS and IMU

sensors installed at the centre node. The root bending moment is utilized as feedback

to control the first symmetric bending degree of freedom, which plays a significant

role in shaping the elastic mode. We assume the root bending moment is directly

available (from the model), without considering the optimisation of sensor types or

locations to obtain such information. The measurement outputs are summarized in

Table 2.1. A fairly conventional set of flap and thrust control actions are defined (see

Fig. 2.2) to control the rigid-body degrees of freedom and the structural bending

degrees of freedom, following the definition in [19]. We mention that the selection

of these control inputs and sensor measurement outputs satisfies the controllability

and observability requirements. The level flight trim condition is at sea level with

the speed of Vtrim = 12.2m/s, and the corresponding control input settings are

δ1trim = −0.19◦, T1trim = 37N (all others are zero).1N1N2N -1N1  -1  �1
fT1�2
�3°

fT2
fT3

Figure 2.2: Geometric configuration and control surfaces on the aircraft: simultane-
ous flaps (δ1), symmetric (δ2) and antisymmetric (δ3) differential flaps, simultaneous
thrust (fT1), and symmetric (fT2) and antisymmetric (fT3) differential thrust.
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Table 2.1: Definition of measurement outputs

.

No. Definition Symbol

1 root bending moment bm

2 longitudinal velocity v2

3 normal velocity v3

4 pitch rate w1

5 pitch angle θ

6 twist momoent tw

7 lateral velocity v1

8 roll rate w2

9 yaw rate w3

10 roll angle φ

Following the formulations in Section 2.2, the full-order modal aeroservoe-

lastic system (2.4) contains 1962 states, which includes 6 rigid body velocity states,

588 structural velocity and force states, 600 aerodynamic states, and 768 rotation

and displacement states (12 states for each of the 64 nodes along the wing span).

The natural frequencies of the first several structural modes are summarized in Ta-

ble 2.2. It is clear that the frequencies of these structural modes are close to that

of the rigid-body modes, which indicates the coupled characteristics of the struc-

tural dynamics and the rigid-body dynamics of the aircraft. The wind disturbance

and control inputs will excite these low-frequency modes and influence the aircrafts

3-dimensional dynamics, which are reflected via Equation (2.4).

Table 2.2: Natural frequencies of the first few structural modes. The number of the
first structural mode starts from seven as modes 1∼6 are the rigid-body ones.

Mode No. Mode Type Frequency (Hz)

7 1st sym. out-of-plane bending 0.187

8 1st asym. out-of-plane bending 0.615

9 1st sym. in-plane bending (Type 1) 0.843

10 1st asym. in-plane bending (Type 1) 0.886

11 2nd sym. out-of-plane bending 0.984

12 1st sym. in-plane bending (Type 2) 1.592

13 2nd asym. out-of-plane bending 1.861

14 3rd sym. out-of-plane bending 2.495

15 1st asym. in-plane bending (Type 2) 2.545
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After model order reduction, as minimum as Nr = 15 states in the reduced-

order nonlinear system (2.10) is found necessary to capture the key nonlinearities of

the aeroservoelastic system (2.4). Please refer to [27] for details on the comparison

between the obtained full-order and reduced-order systems.

2.5 Conclusions

In this chapter, we briefly introduced the aeroservoelastic modelling of the very

flexible flying wing and its reduced-order descriptions. The model was derived from

geometrically-nonlinear beam theory using intrinsic degrees of freedom and linear

unsteady aerodynamics, which results in a coupled structural dynamics, aerodynam-

ics and flight dynamics description. Nonlinear model reduction were applied on the

full-order nonlinear aeroservoelastic system to obtain the corresponding reduced-

order nonlinear and linear descriptions for the purpose of control synthesis.
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Chapter 3

Aeroelastic and Trajectory

Control

This chapter investigates the aeroelastic and trajectory control for the very flexi-

ble flying wing model developed in Chapter 2. The aeroelastic control of this very

flexible flying wing has been previously studied in [19], we now further enhance

its performance in conjunction with the design of trajectory control. The control

system is designed based on the reduced-order linear model (2.11), employing a two-

loop control scheme in both the longitudinal and lateral channels. In each channel,

the outer loop acts as the trajectory control loop to track the desired flight path

and generates attitude angle command to the inner loop, while the inner loop tracks

this attitude angle command from the outer loop and simultaneously serves as the

aeroelastic control loop for dynamic stabilization and disturbance rejection, by gen-

erating control inputs to the corresponding control surfaces (flaps and thrust). The

particle swarm optimization (PSO) algorithm is employed to optimize the param-

eters of the inner-loop controllers to enhance control effectiveness and robustness,

by taking account of the quadratic nonlinearity information in the reduced-order

nonlinear model (2.10). Simulation tests are then conducted on the full-order non-

linear aeroservoelastic model (2.4) to demonstrate the performance of the designed

aeroelastic and trajectory control system.

3.1 Introduction

The flight control of very flexible aircraft (VFA) mainly includes two aspects, i.e.

the aeroelastic control and the trajectory control. Since the slender airframe is very

sensitive to external disturbance, active aeroelastic control is typically required for
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gust load alleviation and disturbance rejection. Most research on the flight control of

VFA so far focuses on the aeroelastic control, we refer to Section 1.2.2 for a detailed

review on this problem area. On the other hand, the trajectory motion of VFA is

normally affected by the airframe deformations due to manoeuvre loads. This poses

great challenges to the design of a flight control system which can not only achieve a

desirable aeroelastic response, but is able to drive the aircraft to track desired flight

path (trajectory control), especially in the presence of wind disturbance.

Currently, there has been limited research on trajectory control of VFA. In

the few existing works, the trajectory tracking problem is usually addressed by us-

ing the time-scale separation principles between a fast inner stabilization loop and

a slow outer position control loop. Shearer and Cesnik [66] studied the trajectory

control of a very flexible wing-body configuration. They separated the control prob-

lem into two loops: a linear quadratic regulator (LQR) controller and a dynamic

inversion controller were employed in the lateral and longitudinal channels, respec-

tively, to track the linear and angular velocities in the inner loop; while a nonlinear

transformation together with a PID controller were employed in the outer loop to

control the flight path angle, roll angle and their corresponding rates to achieve

trajectory tracking. Raghavan and Patil [101] employed a multi-step nonlinear dy-

namic inversion controller coupled with a nonlinear guidance law for path following,

based on the reduced-order model of a 72m-span very flexible flying wing configu-

ration. The proposed controller was able to provide acceptable performance after

an abrupt change in payload mass. However, these works focused on trajectory

tracking in calm wind conditions, without considering gust load alleviation or, more

generally, disturbance rejection. To address this, Dillsaver et. al. [102] investigated

the trajectory control of a 6m-span very flexible flying wing in gust disturbance

using the dynamic inversion and LQR control in the longitudinal inner loop, as

in [66]. A higher gain PID controller and a sliding mode controller were also tested

respectively in the outer loop. The authors also designed an LQG controller with

a constant pre-compensator in the lateral outer loop to track roll/yaw angle com-

mands. Although gust disturbance were taken into account in their simulation tests,

the dynamic inversion control relies on accurate modelling of the plant and generally

lacks robustness. It is well known that LQG control is also lack of robustness in

certain cases.

The contribution of this chapter is to investigate the aeroelastic and tra-

jectory control of very flexible aircraft in the presence of wind disturbance, using

robust control methods and parameter optimization scheme to enhance robustness

and effectiveness. For numerical investigation, we consider the very flexible flying
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wing developed in Chapter 2, in which the nonlinear aeroservoelastic model and its

reduced-order nonlinear and linear versions were derived. The aeroelastic and tra-

jectory control system is designed based on the reduced-order linear model (2.11),

therefore, it is crucial to guarantee robustness with respect to modelling errors and

wind disturbance in the control design. It is well acknowledged that robust control

methods are very good candidates to meet these requirements. Hence, we propose a

two-loop PI/LADRC (proportional-integral/linear active disturbance rejection con-

trol) and H∞ control scheme in both the longitudinal and lateral channels. In each

channel, the outer loop employs a PI/LADRC controller to track the desired flight

path and generate attitude command to the inner loop, while the inner loop uses H∞

control to track the attitude command generated from the outer loop and computes

the control inputs to the corresponding control surfaces (flaps and thrust). It is nec-

essary to mention that both H∞ control and ADRC approach have shown superior

robust performance in the aerospace area [103–110]. We employ the particle swarm

optimization (PSO) algorithm for parameter optimization of the weighting matrices

in the inner-loop H∞ control design, which takes advantage of the quadratic nonlin-

earity information in the reduced-order nonlinear model (2.10) to enhance control

effectiveness and robustness. The simulation tests conducted on the full-order non-

linear model (2.4) show that the aeroelastic and trajectory control system achieves

good performance with respect to trajectory tracking and disturbance rejection.

The structure of this chapter is organized as follows: Section 3.2 develops

the two-loop PI/LADRC and H∞ controllers to achieve aeroelastic and trajectory

control for the very flexible flying wing model. Section 3.3 conducts simulation tests

to demonstrate the dynamic tracking performance and the disturbance rejection

performance of the developed aeroelastic and trajectory control system. Section 3.4

finally concludes this chapter.

3.2 Control System Design

In this section, we design the aeroelastic and trajectory control system for the very

flexible flying wing based on its reduced-order linear model (2.11). It is important,

however, to note that simulation tests will be based on the full-order nonlinear model

(2.4) and will be described in Section 3.3. For control design, the assumption of no

coupling between the aircraft’s longitudinal and lateral dynamics is used hereinafter,

which leads to a decoupled reduced-order linear model (2.11). Hence, the design of

the control system can be divided into two channels, the longitudinal channel and

the lateral channel. But note that the nonlinear models (2.4) and (2.10) are able
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Figure 3.1: Control structure of the aeroelastic and trajectory control system. H,
S, θ, V , φ, bm and tw denote the altitude, lateral displacement, pitch angle, forward
velocity, roll angle, symmetric root bending measurement and anti-symmetric twist
measurement respectively. The subscript r denotes the reference command, while •̇
denotes time derivative. Klon and Klat are the H∞ controllers. ESOH and ESOS are
the extended state observers (ESO) in LADRC. Khp, Khd, Ksp, Ksd, Kvp and Kvi

are the controller parameters.

to capture the couplings between these two channels. As shown in the control

structure in Fig. 3.1, a two-loop control scheme is proposed for each channel, which

is explained below. Note that we choose the center of the aircraft as reference point

to track the aircraft’s flight dynamics, thus all the variables used in this section are

defined at this reference point.

Because of the low speeds under consideration, tracking the desired position

requires the flying wing to simultaneously maintain the forward velocity. This means

that, in the longitudinal channel, both the altitude and forward velocity need to be

controlled. This is achieved through pitch control and velocity control, respectively,

by adjusting the corresponding longitudinal control flaps and thrust. In this channel,

to handle an altitude tracking command, the outer-loop controller is first switched

to S1 “climb/descend control” to drive the flying wing to climb/descend. After

climbing/descending to a suitable altitude, the outer-loop controller is then switched
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to S2 “altitude control” to activate the LADRC controller to precisely position

and maintain the flying wing at the desired altitude. The “climb/descend control”

generates a pitch angle command for the inner loop, which is regulated through

a PI controller using the climb rate as feedback. The LADRC controller is also

designed towards the same purpose, but using both the altitude and climb rate as

feedback. An inner-loop H∞ controller is employed to serve as the aeroelastic control

loop (with the objective of dynamic stabilisation and gust load alleviation), while

simultaneously tracking the pitch angle command from the outer loop and stabilizing

velocity, by generating longitudinal control inputs (to the corresponding flaps and

thrust) with symmetric root bending measurement, pitch angle and forward velocity

as feedback. Note that the usage of root bending measurement as feedback helps to

maintain the aircraft at the trimmed shape during manoeuvre. We mention that to

reduce the impact of gains during switch in the longitudinal channel, a ”soft switch”

is employed to switch the reference command smoothly,

ϑr = kSϑr1 + (1− kS)ϑr2

kS =

{
1− 0.5t (t < 2s)

0 (t ≥ 2s)

,

where θr1 is the pitch angle command generated by ”climb/descend control”, θr2 is

the pitch angle command generated by ”altitude control”, θr is the final pitch angle

command to the inner loop.

In the lateral channel, only lateral displacement needs to be controlled, which

is achieved through roll control. In this channel, a second outer-loop LADRC con-

troller is used to generate a roll angle command for the inner loop, using the lateral

position and the lateral speed as feedback. And an inner-loop H∞ controller is em-

ployed to generate lateral control inputs (to the corresponding flaps and thrust) to

track the roll angle command from the outer loop, using the anti-symmetric twist

measurement and the roll angle as feedback.

As shown in Fig. 3.1, the reference commands to the control system include

the commands of altitude, climb rate, forward velocity, root bending moment, lat-

eral displacement and twist moment. In the vertical plane, the forward velocity

command Vr and the root bending moment command bmr are set to be their trim

value, respectively. The altitude command Hr and the climb rate command Ḣr is

specified as needed. In the horizontal plane, the twist moment command twr is also

set to be its trim value while the lateral displacement command Sr is always set to

be zero which aims to keep the aircraft aligned with the desired flight path.
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3.2.1 Inner-Loop H∞ Control Design

We first design the inner-loop H∞ controller in the longitudinal channel. As de-

scribed above, it serves as an aeroelastic control loop for dynamic stabilisation and

gust load alleviation, and also acts to track the pitch angle command received from

the outer loop for trajectory tracking. In this manner, the control design is treated

as an H∞ tracking problem.
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Figure 3.2: Standard H∞ tracking problem. d, r, uc, e, z denote the external
disturbance, reference command, control input, error signal, and weighted output,
respectively. ym is the measurement output. G and C are the transfer functions of
the plant and the H∞ controller.

As shown in Fig. 3.2, the mixed sensitivity H∞ synthesis method is employed,

introducing weighting matrices to achieve both good disturbance rejection perfor-

mance and tracking effectiveness. The objective is to find an optimal controller C

which minimizes the H∞-norm of the transfer function from the disturbance d and

reference input r to the weighted performance output z. To pose the H∞ synthesis

problem, considering both reference tracking and disturbance rejection, we augment

the original plant G with weighting matrices W1, W2 and W3 which is given in the

form of

Wi(s) = α1i ·
α2is+ 1

α3is+ 1
,

where s is the Laplace variable and αji are non-zero scalers. The augmented plant
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P is then expressed in the state-space description

ẋap = Aapxap + Bapuap,

yap = Capxap + Dapuap.
(3.1)

where yap = [z> y>m]> and yap = [d> r> u>c ]>. For simplicity, we rewrite (3.1) in a

partitioned structure, which is denoted as

P =

 Aap Bap

Cap Dap

 .
To be specific, we obtain the realization of the augmented plant

P =



A1 0 0 −B1C 0 B1 0

0 A2 0 0 0 0 B2

0 0 A3 B3C 0 0 0

0 0 0 A Bw 0 Bu

C1 0 0 −D1C 0 D1 0

0 C2 0 0 0 0 D2

0 0 C3 D3C 0 0 0

0 0 0 −C 0 Ir 0



,

where A, Bw, Bu and C are the linear state space matrices of the flying wing as

defined in (2.11), (Ai, Bi, Ci, Di) are the state space matrices of the weighting

matrix Wi=1,2,3, Ir is an identity matrix with dimension equal to the dimension

of the reference command. Normally, W1 should be selected as low pass filter to

achieve good reference tracking performance while W2 and W3 should be selected as

high pass filter to achieve good robustness [111]. By selecting appropriate weighting

parameters (a typical bandwidth range is set to be [0.01-100] rad/s), the command

hinfsyn in Matlabr is used to compute the optimal H∞ controller in the longitudinal

channel, denoted by Klon.

In order to enhance the robust performance and simultaneously achieve good

tracking effectiveness, tuning the parameters of the weighting matrices is crucial.
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However, in the longitudinal channel of our case, there are 24 parameters to tune,

which includes 9 for W1 (3 parameters for each of the 3 error signals), 6 for W2

(the same 3 parameters for the two types of flap actions and the other same 3

parameters for the two types of thrust actions defined in Section 2.4) and another 9

for W3. Obviously, it is impractical to effectively tune these 24 parameters manually.

Therefore, we employ the particle swarm optimization (PSO) algorithm [112, 113]

to optimize the parameters of the weighting matrices based on simulations. Given

an initial range, the parameters are optimized automatically to seek a minimum of

the cost function which is defined to balance the trade-off between robustness and

tracking effectiveness of the control system.

We define the cost function of the PSO algorithm as

J =

∫ t

0
k1 |e(τ)|dτ + k2γh∞, (3.2)

where ki=1,2 is the penalty factor, e(t) is the error between the desired step response

(pre-defined) and the actual step response, γh∞ is the H∞ norm of the controller.

The first term is introduced to penalize the tracking error, which aims to ensure

both dynamic and static performance of the reference tracking response. The sec-

ond is introduced to penalize the robustness of the controller. A minimum cost

value Jmin (also called the fitness value) is sought through PSO algorithm, which

gives the optimal parameters of the weighting matrices. Note that the iterative

simulation-based parameter optimization is based on the reduced-order nonlinear

model (2.10) taking advantage of the quadratic nonlinearity information Qr, which

improves the tracking effectiveness and robustness of the inner-loop H∞ controller.

The implementation of the PSO algorithm is briefly summarized as below.

Implementation of the PSO Algorithm

The implementation of the PSO algorithm [114] includes the following steps:

(1) Initialize the number of particles, the maximum number of iterations,

the given fitness value εpso, the learning factors cpso1, cpso2, and the weight factor

wpso. Initialize each particle’s position xpso (i.e. the value of the parameters of the

weighting matrices) and velocity vpso (i.e. the change rate of the parameters during

optimization).

(2) Run simulations based on the reduced-order nonlinear model (2.10) to

obtain simulation data, using each particle’s position value.

(3) Calculate the fitness value J for each particle, if the current fitness value

is smaller than its history minimum (called the local minimum), set this value as
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the new local minimum which represents the best solution of each particle.

(4) Choose the minimum value (called the global minimum) of all the local

minimums in each iteration, if the current value is smaller than the history global

minimum, set this value as the new global minimum which represents the best

solution of all the particles.

(5) Update the position and velocity values of each particle for the next

iteration according to the following equation

vpsoj(i+ 1) =ωpso(i)vpsoj(i) + cpso1rpso1(plocalpsoj (i)− xpsoj(i))

+ cpso2rpso2(pglobalpsoj (i)− xpsoj(i)),

xpsoj(i+ 1) =xpsoj(i) + vpsoj(i+ 1),

(3.3)

where rpso1 and rpso2 are random numbers in (0, 1], plocalpsoj is the position value corre-

sponding to a particle’s local minimum and pglobalpsoj is the position value corresponding

to the global minimum. i is the iteration number and j is the particle number.

(6) Go to step (2) until the global minimum is smaller than the given fitness

value εpso or the maximum number of iterations is reached.

In this manner, by seeking a minimum fitness value Jmin via the PSO algo-

rithm, we obtain the corresponding optimal parameters of the weighting matrices

and derive the longitudinal inner-loop H∞ controller Klon. Figure 3.3 illustrates an

example of the convergence process of the PSO algorithm during optimization, in

which the algorithm converges after about 25 iterations.

The design of the inner-loop H∞ controller Klat in the lateral channel (as

shown in Fig. 3.1) is similar to the case in the longitudinal channel, thus it is

omitted here.

3.2.2 Outer-Loop LADRC Control Design

As described earlier, the longitudinal outer loop of the control system is comprised

of two parts, the PI climb rate controller and the LADRC position controller. The

PI controller is simply given in the form of

GPI(s) = Kvp +
Kvi

s
, (3.4)

to achieve climb rate control, where s is the Laplace variable. The gain and integral

parameters Kvp and Kvi can be simply obtained through tuning. The integral term

is introduced to eliminate the steady error of the climb rate.
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Figure 3.3: Convergence of the PSO algorithm. The algorithm converges after about
25 iterations in this case.

Regarding the LADRC position controller, a distinct feature of the ADRC

theory is to estimate all the internal and external disturbance of the system plant

using an extended state observer (ESO), and then take this estimated value as

compensation for the original control inputs computed by corresponding nonlin-

ear control law. Such estimation-compensation scheme can help to achieve better

disturbance rejection performance. However, tuning too many control parameters

makes the design of the nonlinear ADRC very difficult. Hence, the LADRC ap-

proach is proposed [115] which replaces the nonlinear control law with a linear one.

as shown in Fig. 3.4. Note that the LADRC approach has much fewer parameters

to tune compared to the nonlinear version. We next design the outer-loop LADRC

controllers in the longitudinal and lateral channels.
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LADRC Design in the Longitudinal Channel

In the longitudinal channel, the altitude motion of the flying wing is approximately

modelled as a first-order differential equation with pitch angle θ as input and altitude

H as output (assuming small flight path angle), i.e.

Ḣ = V sin(−α+ θ) ≈ −V α+ V θ,

where the variable V is the forward velocity, while α is the angle of attack which

is treated as a disturbance in the LADRC control design. The principle of the

LADRC approach is to construct a second-order ESO with states p1h and p2h,

where p1h estimates the altitude H, and the extended state p2h estimates all the

possible disturbance that might affect H. With the extended state p2h, the control

compensator derives a compensation value uh∗ to the control input uh0. The actual

control input θr2 (i.e. the pitch angle command to the inner loop, see Fig. 3.1) is

equal to the computed control input uh0 (by the linear control law) subtracted by

uh∗. The dynamic equations of the longitudinal LADRC control system are
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eh = p1h −H

ṗ1h = p2h − β1heh + V θr2

ṗ2h = −β2heh

uh∗ =
p2h

V

β1h = 2ωh

β2h = ωh
2

uh0 = Khp · (Hr −H) +KhdḢ

θr2 = uh0 − uh∗,

(3.5)

where the variable eh is the error between the estimated altitude p1h and the actual

altitude H. The variables V , Hr and Ḣ are the forward velocity, altitude command

and climb rate, respectively. The parameters β1h and β2h are the coefficients of

longitudinal ESO. Khp and Khd are the parameters of the linear control law. By

tuning the parameters ωh, Khp and Khd, good robustness and dynamic tracking

performance in the longitudinal outer loop can be achieved.

LADRC Design in the Lateral Channel

In the lateral channel, as shown in Fig. 3.5, when the aircraft is making a coordinated

bank turn with small heading angle η, we have

V η̇ ≈ L

m
φ, (3.6)

where L and m are the lift force and mass of the aircraft, respectively, while V and

φ are its forward velocity and roll angle, respectively.

Under the assumption of level flight, we have L = mg, where g is the accel-

eration of gravity. Furthermore, since the time-scale of roll angle is much shorter

than that of position, the dynamic characteristics of roll motion can be neglected,

which leads to the equation

S̈ = V η̇. (3.7)

Thus, by combining the equations (3.6) and (3.7), we have

S̈ ≈ gφ, (3.8)
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Figure 3.5: Simplified model of the lateral motion. The dashed line denotes the
desired flight path and the solid line denotes the actual flight path. The lateral
displacement is defined as the lateral deviation of the aircraft’s current position to
the desired flight path.

which indicates an approximately linear relation between the lateral displacement

S and the roll angle φ. Then, following a similar synthesis as in the longitudinal

channel, the dynamic equations of the lateral LADRC control system are obtained,

es = p1s − S

ṗ1s = p2s − β1ses

ṗ2s = p3s − β2ses + gφr

ṗ3s = −β3ses

us∗ =
p3s

g

β1s = 3ωs

β2s = 3ωs
2

β3s = ωs
3

us0 = Ksp · (Sr − S)−KsdṠ

φr = us0 − us∗,

(3.9)

where p1s, p2s, p3s are the estimations of the lateral displacement, lateral speed,
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and all the disturbance to the lateral displacement, respectively. The variable es

is the error between the estimated lateral displacement p1s and the actual lateral

displacement S. g is the acceleration of gravity. Sr is the lateral displacement

command. The variables us0, us∗ and φr are the original control input computed by

linear control law, the compensation value and the roll angle command, respectively.

The parameters β1s, β2s and β3s are the coefficients of the lateral ESO. Ksp and Ksd

are the parameters of the linear control law. By tuning the parameters ωs, Ksp and

Ksd, good robustness and dynamic tracking performance in the lateral outer loop

can be achieved.

3.3 Simulation Study

Following the design procedure in Section 3.2, the inner-loop H∞ controllers and

the outer-loop PI/LADRC controllers in both the longitudinal and lateral channels

are obtained. This section tests the performance of this aeroelastic and trajectory

control system through stability analysis and numerical simulations. Note that the

simulations are conducted based on the full-order nonlinear model (2.4) using the

4th-order Runge-Kutta solver ode45 in Matlabr, and control inputs are updated

at the frequency of 20Hz. All the control actuators are modelled as first-order lag

systems with time constants of 0.3 seconds and the operating range of 0N∼200N for

thrust and ±20◦ for flap deflections. We refer to Section 2.4 for more details on the

configurations of the very flexible flying wing model.

3.3.1 Stability Analysis

With the full-payload configuration, the open-loop system is unstable with two poles

in the right half-plane, as shown in Fig. 3.6. After applying the designed inner-loop

controller, the unstable poles are shifted to the left half-plane, indicating closed-loop

stability. Based on the linear model, the open-loop bode diagrams of the altitude

control system and the lateral displacement control system (each having an outer-

loop controller and an inner-loop controller) are shown in Fig. 3.7. The gain margin

and phase margin of the altitude control system are 15.1 dB and 78.9◦ respectively,

while the corresponding stability margins of the lateral displacement control system

are 12.6 dB and 65.3◦, respectively. These stability margin figures show that good

robustness is obtained in the closed-loop control system.
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Figure 3.6: Low frequency poles in the test case. The poles are obtained based on
the linear reduced-order model.
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Figure 3.7: Bode diagram of the altitude control system and the lateral displacement
control system. The left pair is the Bode diagram of altitude control system while
the right pair is that of the lateral displacement control system.

3.3.2 Step Response

To demonstrate the dynamic tracking performance of the designed controllers, step

responses of the altitude control system and the lateral displacement control system

are shown in Fig. 3.8 and Fig. 3.9, respectively, along with the corresponding

responses of other output measurements and control inputs. Fig. 3.8 shows that

the rise time of the step response of the altitude control system is approximately 18

seconds and it has no steady error, indicating good dynamic tracking performance

of the altitude control system. The pitch angle, forward velocity and root bending

measurement are all maintained at their original values after the altitdue reaches

the desired value, respectively. The four control inputs are all in appropriate range.

As shown in Fig. 3.9, similar good dynamic tracking performance is obtained by

the lateral displacement control system.
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Figure 3.8: Step response of the altitude. δ1, δ2, fT1, fT2 are the control actions of the
simultaneous flap, symmetric differential flap, simultaneous thrust and symmetric
differential thrust, respectively, as defined in Fig. 2.2.
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Figure 3.9: Step response of the lateral displacement. δ3 and fT3 are the control ac-
tions of the antisymmetric differential flap and the antisymmetric differential thrust
respectively, as defined in Fig. 2.2.
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3.3.3 Trajectory Tracking Performance

We now demonstrate the trajectory tracking performance of the designed control

system. Five waypoints A to E are defined by actual geographic positions (in lon-

gitude, latitude, and altitude) forming the desired flight path. The coordinates of

each waypoint are summarized in Table 3.1. We use the waypoint tracking algo-

rithm proposed in [116] (Please see Appendix B for more details) to guide the

flying wing to track this desired flight path.

Table 3.1: Coordinates of the waypoints.

Watpoint Longitude (West) Latitude (North) Altitude

A 1.54◦ 52.195◦ 0m

B 1.54◦ 52.235◦ 100m

C 1.60◦ 52.255◦ 100m

D 1.66◦ 52.235◦ 100m

E 1.72◦ 52.255◦ 200m

Fig. 3.10 shows the actual flight path of the flying wing compared with

the desired one. Note that in the vertical plane (see the middle diagram in Fig.

3.10), during flying from A to B, the climb rate controller (3.4) is first switched on

to control the aircraft climb up to 95% of the altitude command at a climb rate

of 0.432m/s (the same as the one the Helios had in its mishap flight [13]), then

the altitude controller (3.5) is switched on to precisely position and maintain the

aircraft at the desired altitude. Same rule also applies when the aircraft flies from D

to E. While in the horizontal plane (see the top diagram in Fig. 3.10), the aircraft

succeeds to follow the straight line between the departure and destination waypoint.

A three-dimensional view of the aircraft’s actual trajectory is plotted in the bottom

diagram in Fig. 3.10. It is clear that the aircraft is able to track well the desired

flight path, which indicates good trajectory tracking performance of the designed

control system.

3.3.4 Gust Response

This section investigates the robust performance of the control system against wind

gusts. The trajectory control system aims to maintain the flying wing at Hr = 0m

and Sr = 0m under an spanwise-varying DARPA discrete gust, which is defined as

ug =
Uref

2
(
La

2Ltur
)
1
3 · 1

2
(1− cos(2πt/tg)) cos(2π(l − lmid)/Ltur),
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Figure 3.10: Trajectory tracking performance. The red solid line indicates the
desired flight path, which are defined by the actual geographic longitude, latitude
and altitudes, the blue dot-dashed line indicates the actual flight path. The red
asterisks denote the defined multiple waypoints A to E.
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where ug is the strength of the discrete gust and tg is the gust duration. The

variable Uref = 5m/s is the reference gust amplitude, La = 72m is the wing span,

Ltur = 762m is the turbulence scale length, l is the location along the airframe and

lmid is the reference location point defined as the wing’s mid point. The profile of

the applied wind gust is depicted in Fig. 3.11.

Figure 3.11: DARPA discrete gust velocity distribution with respect to position and
time. The gust duration is tg = 1s in this figure.

The wind gust with different gust durations is first applied in the vertical

direction, the corresponding responses of the flying wing are plotted in Fig. 3.12.

It is clear that as the duration increases, the maximum deviation of the longitu-

dinal variables becomes larger and the nonlinear effects become more significant.

Correspondingly, the control system requires larger control actions to stabilize the

aircraft. In all the three simulation cases, the altitude control system succeeds to

maintain the flying wing at its desired altitude, indicating good disturbance rejection

performance with respect to gust wind.
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Figure 3.12: Gust wind response with gust applied in the vertical direction.

49



0 20 40 60 80Time (s)-2024Lateral Displacement (m) tg=1stg=3stg=5s 0 20 40 60 80Time (s)-202 Roll (deg)0 20 40 60 80Time (s)-101Lateral Speed (m/s) 0 20 40 60 80Time (s)-2023 (deg) 0 20 40 60 80Time (s)-2002040f T3 (N) 0 20 40 60 80Time (s)-1000100Twist moment (Nm)
Figure 3.13: Gust wind response of lateral variables with gust applied in the lateral
direction.

Gust responses of the aircraft with the same gust configurations as above but

applied in the lateral direction are plotted in Fig. 3.13 and Fig. 3.14, respectively, in

which similar behaviour can be observed. The lateral displacement control system

succeeds to maintain the lateral deviations caused by the gust disturbance at zero. It

is worth noting that due to the inherent couplings between the longitudinal channel

and the lateral channel, the longitudinal variables are slightly disturbed when gust

is applied in the lateral direction, as can be observed from Fig. 3.14.
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Figure 3.14: Gust wind response of longitudinal variables with gust applied in the
lateral direction.
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To demonstrate the advantages of the outer-loop LADRC approach, we now

compare the performance of the LADRC controller with a PID controller. Tak-

ing altitude control in the longitudinal channel as an example, a PID controller

is designed to serve the same purpose and tuned to have similar step response as

the LADRC controller. The altitude responses of the aircraft to vertical gust wind

(tg = 1s, Uref = 5m/s) with these two outer-loop controllers are shown in Fig.

3.15. While both controllers can eventually stabilize the aircraft at Hr = 0m, the

LADRC controller (see the blue solid line) has smaller overshoot and much faster

converge rate than the PID controller (see the red dashed line), indicating better

disturbance rejection performance against gust wind.
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Figure 3.15: Altitude responses of a flying wing with two different types of controller
(LADRC vs PID) in the longitudinal outer loop.

3.3.5 Continuous turbulence response

In this subsection, we investigate the robustness of the designed control system with

respect to wind turbulence. We use the von Kármán turbulence model in Matlabr

to generate the three-dimensional turbulence in the lateral, forward and vertical

direction, respectively. The corresponding time history in each direction is shown in

Fig. 3.16. Note that the Von Kármán turbulence is simply used here to provide a

simulated turbulent environment and test the disturbance rejection performance of

the designed control system. The three-dimensional turbulence velocity components
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are applied to the model by modifying the corresponding local velocity component

as explained in Chapter 2.
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Figure 3.16: Time history of the wind turbulence used in simulations. From top to
bottom are the lateral, forward and vertical components, respectively.

The flying wing has an initial S = 10m lateral deviation and is given a

Hr = 20m altitude command. The responses of the flying wing are depicted in Fig.

3.17 and the corresponding control inputs are depicted in Fig. 3.18. Recall that we

choose the center of the wing (cw) as reference point to approximate the rigid-body

motions. To justify such approximation, the trajectory of the center of gravity (cg)

of the aircraft is calculated and plotted together with those of cw. It is clear that

the aeroelastic and trajectory control system is able to track the desired flight path

in the presence of wind turbulence, while all other variables are within reasonable

bounds. The trajectory of the center of gravity (cg) is consistent with that of the

center of the wing (cw), as shown in the top two diagrams of Fig. 3.17, which

indicates the external turbulence does not excite any vibration mode that would

affect the reference point measurements. We mention that similar conclusions can

be drawn in the gust wind cases in Section 3.3.4.
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Figure 3.17: Responses with 3D turbulence applied. In the upper two subfigures,
the trajectories of the center of gravity and the center of the flying wing are plotted.
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Figure 3.18: Control inputs of the responses with 3D turbulence applied.
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Figure 3.19: Instantaneous shape of the flying wing during flight in the presence of
von Kármán turbulence. The upper, middle and lower subfigures are the side view,
front view and 3D view, respectively.

56



Finally, we illustrate the actual shape of the flying wing in the above simula-

tions (first 200 seconds) in Fig. 3.19. As introduced in Chapter 2, by performing a

post-processing step on the modal state variables, we are able to retrieve the respec-

tive displacement and rotation orientation of each node along the airframe, which

provides the geometrical information of the flying wing during flight. Fig. 3.19

shows consistent responses with those in Fig. 3.17, both indicating good robust and

tracking performance of the developed aeroelastic and trajectory control system.

3.4 Conclusions

In this chapter, a two-loop control scheme based on PI/LADRC and H∞ control

technique for the aeroelastic and trajectory control of a very flexible flying wing

model has been proposed. The control design was based on a reduced-order linear

model (2.11) which was obtained from a full-order nonlinear model (2.4) using modal

descriptions. The particle swarm optimization (PSO) algorithm was employed in

the inner-loop H∞ control design to enhance robustness and tracking effectiveness,

which takes advantage of the quadratic nonlinearity information in the iterative

simulation-based optimization on the reduced-order nonlinear model (2.10). Sim-

ulation tests were conducted under the full-order nonlinear aeroservoelastic model

(2.4), which showed that the aeroelastic and trajectory control system achieved good

performance in tracking effectiveness and robustness against disturbance rejection.

Note that in these simulations, the root bending moment was assumed directly

available to the control system, without considering sensor allocation to obtain such

information. Therefore, it is necessary to investigate the optimisation of sensor con-

figuration (e.g. type, number, location) in future studies to reconstruct the actual

shape of the wing. Consideration of the actuator configuration for this particular

flying wing model is also necessary, for example, to determine the number of flaps

or thrust, the size and location of the flap surfaces, etc. Currently, the control sys-

tem largely relies on normal operation of sensors/actuators, and will fail to stabilize

the aircraft if loss of sensor/actuator happens. Upon considering the optimisation

of sensor/actuator configurations, the fault tolerant control regarding the loss or

malfunction of sensors/actuators is also necessary to investigate.
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Chapter 4

Autonomous Landing Control

using Lidar Preview

This chapter investigates the preview-based autonomous landing control for the very

flexible flying wing model developed in Chapter 2, using short-range light detection

and ranging (Lidar) wind measurements in the presence of wind turbulence. The

preview-based landing control system follows the two-loop control structure as pro-

posed in Section 3.2 and is designed based on the reduced-order linear model (2.12).

The outer loop employs the same LADRC (linear active disturbance rejection con-

trol) and PI algorithms to track the reference landing trajectory and vertical speed,

respectively. But the inner loop is extended to introduce Lidar wind measurements

at a distance in front of the aircraft, employing H∞ preview control to improve

the disturbance rejection performance, which is crucial in the autonomous land-

ing scenario for very flexible aircraft (VFA). Simulation tests are conducted based

on the full-order nonlinear aeroservoelastic model (2.4) to demonstrate the landing

effectiveness and disturbance rejection performance of the designed preview-based

landing control system, compared to a baseline landing control system without pre-

view. The control system’s robustness to measurement errors in the Lidar system

is also demonstrated.

4.1 Introduction

As a critical flight phase, landing determines whether an aircraft can be safely

recovered. Statistics show that nearly half of the aircraft accidents occur during

landing [117], and the autonomous landing in the presence of atmospheric distur-

bance (such as windshears, crosswinds, etc.) is still one of the current bottlenecks
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in large UAV development. For example, the HALE UAV Aquila developed by

Facebook was reported to be substantially damaged in a crash due to sudden wind

gusts during landing [15]. These imply the demand to develop effective methods

in aspect of autonomous landing control of VFA. Current research on autonomous

landing control is mostly devoted to rigid-body aircraft [118–126] and has rarely

touched flexible ones. Hoseini et al. [127] developed a landing control system for a

simple flexible aircraft based on LQR/integral/feedforward control. They employed

LQR control to track the landing commands with an integrator to eliminate the

steady-state error and a feedforward controller to reduce the effects of disturbance

(which were assumed to be measurable). The control system could steer the air-

craft through the landing path successfully in the presence of constant crosswinds.

However, the controller required full state feedback and did not consider turbulent

wind situations. Their nonlinear aircraft model was also relatively stiff.

The contribution of this chapter is to investigate the autonomous landing

control of VFA using Lidar preview to improve control performance in the presence

of wind turbulence. Lidar can be used to measure the line-of-sight (LOS) component

of the approaching wind disturbance at a distance ahead of the aircraft by detecting

the Doppler shift in atmospheric backscatter [128–130]. With specific scanning pat-

tern, one is able to retrieve the three-dimensional velocity components [131], which

can be provided to the control system as preview knowledge. In this manner, the pre-

view controller has access to the time-advanced measurement of wind disturbance in

addition to the feedback signals on the aircraft state [132]. This enables the preview

control system to act before the wind disturbances actually affect the aircraft, there-

fore improves the control performance, which can largely benefit the autonomous

landing control of VFA. Preview control with Lidar wind measurements have been

widely used in wind turbine control [133–137]. For their applications in flight con-

trol, Rabadan et al. [138] developed and flight-tested an airborne forward-looking

Lidar system on an Airbus A340-300 testbed. Flight test measurements showed that

the designed Lidar system was potential for future implementation in a real-time

feedforward flight control system. The work of [139–141] investigated the gust load

alleviation problem using Lidar preview measurements of the incoming gust, based

on model predictive control, gain-scheduled linear parameter-varying control and

adaptive feedforward control, respectively. Their simulation results showed that the

wing root bending moments or average vertical acceleration were largely reduced, in-

dicating better load alleviation performance and disturbance rejection performance

by the aid of preview control scheme. In addition to Lidar wind measurements,

Hesse and Palacios [72] investigated the gust load alleviation problem for flexible
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aircraft in wake vortex encounters, where the gust is assumed to be measured at the

aircraft nose via a 5-hole probe and used as prior information. Simulation results

showed that the combined feedforward/feedback H∞ controller and the use of direct

lift control surfaces obtained significant load reductions.

As mentioned earlier, we aim to investigate the autonomous landing control

using Lidar preview for the very flexible flying wing model developed in Chapter

2. Its aeroelastic and trajectory control (without preview) was previously studied

in Chapter 3, which employed a two-loop control structure in each of the longitu-

dinal and lateral channels to realize efficient trajectory tracking. The outer loop

employed PI/LADRC algorithms to track the desired trajectory and generate at-

titude angle command to the inner loop, based on which the inner loop used H∞

control to compute the control inputs to the corresponding control actuators. To

achieve preview-based landing control, we use the same outer-loop controllers but

extend the inner-loop H∞ control structure developed in Section 3.2 by introducing

Lidar preview wind measurements as prior information. We design a Lidar simulator

to measure the incoming wind disturbance in the wind field, and then augment the

plant model with this preview measurement through a discrete-time delay chain. We

obtain the preview controllers through discrete-time mixed sensitivity H∞ synthe-

sis [142] with the augmented plant model. A landing trajectory generator (guidance

system) is also developed to generate real-time reference commands for the landing

control system. The control design is again based on a reduced-order linear model

(2.12) (thus robustness of the controller is very important) while simulation tests are

conducted based on the full-order nonlinear model (2.4). Simulation results show

that the preview-based landing control system has achieved better landing effective-

ness and disturbance rejection performance compared to a baseline landing control

system (without preview) which is adapted from the aeroelastic and trajectory con-

trol system designed in Chapter 3, indicating more efficient and safer autonomous

landing. The control system’s robustness against measurement noise in Lidar wind

measurements is also demonstrated.

The structure of this chapter is organized as follows: Section 4.2 develops

the landing trajectory generator to generate real-time reference commands for the

landing control system. Section 4.3 develops the Lidar simulator to measure the

three-dimensional velocity components of the incoming wind disturbance in the

wind field. Section 4.4 designs the preview-based landing control system based on

a two-loop PI/LADRC and H∞ preview control scheme for the very flexible flying

wing and Section 4.5 conducts simulation studies to test the performance of the

control system. Section 4.6 concludes this chapter.
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4.2 Landing Trajectory Design

This work assumes the wheeled landing recovery method. This means that the

aircraft tracks a pre-defined descent trajectory precisely and touches down near

the desired touchdown point with appropriate vertical speed and attitude angle.

Normally, the landing process consists of three main phases, the final approach

phase, the flare phase and the taxi phase. As illustrated in Fig. 4.1, when the aircraft

descends to a pre-defined altitude H0 and is commanded to land, it enters the final

approach phase where it glides down quickly in uniform linear motion at constant

flight path angle γL. Then as the aircraft further glides down to the pre-defined

altitude H1, it enters the flare phase where it descends slowly at a gradual trajectory

and simultaneously adjusts its vertical speed and attitude angle to guarantee safe

touchdown at point O. The aircraft enters the taxi phase from point O, where it

keeps slowing down and taxiing on the runway till stopping.

0H

1H

g

Flare phase start point

Touchdown point

0R

Final approach phase

Flare phase

A
P

B
P

Final approach phase start point

O Taxi phaseL

Figure 4.1: Illustration of the landing process. R0 is the projected distance from
the final approach phase start point PA to the desired touchdown point O. PB is
the flare phase start point and O is the desired touchdown point. γL is the descent
flight path angle in the final approach phase.

The aircraft is expected to effectively follow this landing trajectory during

landing. Poor tracking effectiveness of the desired descent path during the final ap-

proach phase may result in the aircraft entering the flare phase with large deviations

of the flare phase start point, which may subsequently cause large deviations of the

touchdown point O, eventually leading to a possible failed landing. Therefore, an
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efficient and robust autonomous landing control system is required. In this work,

we only focus on the in-air final approach and flare phases which are of crucial

importance in autonomous landing. Note that the midpoint of the flying wing is

selected as reference point to track the altitude H and the flight path angle γL of

the aircraft.

In the longitudinal channel of the final approach phase, the landing trajectory

of the aircraft is a straight line whose slope is determined by the descent flight path

angle γL. The flying wing is desired to track this straight line, we thus define the

altitude command for the final approach phase as

Hr(R) = H0 + (R0 −R) tan γL +H∆. (4.1)

where R is the projected travelling distance since entering the final approach phase,

H∆ = kγL + b is a pre-compensator (depending on the flight path angle γL only)

introduced to compensate the slow altitude response of the control system when

tracking a time-dependent altitude command, such that the flying wing can follow

the desired descent trajectory effectively in the final approach phase. The parame-

ters k and b can be obtained via simple tuning with a designed longitudinal control

system.

While in the longitudinal channel of the flare phase, the altitude is expected

to be reduced exponentially. As employing altitude tracking in this phase may cause

large pitch angle motion when approaching the touchdown point in the presence of

wind disturbance which increase the risk of structural impair, we employ vertical

speed control instead of altitude tracking to ensure the aircraft achieves appropriate

touch down speed and pitch angle for safe landing. Although this may result in the

loss of touch down effectiveness in disturbance, the situation can be improved by the

preview-based landing control system which will be demonstrated later in Section

4.5.3. Therefore, we define the vertical speed command for the flare phase as

Ḣr(R) = vzr +
(vz0 − vzr)

H1
H, (4.2)

where vz0 is the instantaneous vertical speed at the flare phase starting point and

vzr is the desired vertical speed at the touchdown point. Furthermore, the forward

velocity is required to maintain at its trim value (i.e. Vr = Vtrim) in both phases.

In the lateral channel, the trajectory of the flying wing is expected to align

with the center of runway in both the final approach and flare phases. Hence, the

reference command for the lateral displacement (defined as the lateral deviation

from current position to the center of runway) is simply given as Sr = 0. Combining
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all the reference commands above, a landing trajectory generator is designed to

generate the corresponding real-time reference commands for the landing control

system, as shown in Fig. 4.2. The first three of the four commands are fed into the

landing control system in the final approach phase while the last three of the four

commands are utilised in the flare phase.
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Figure 4.2: Structure of the landing trajectory generator. Pre-defined parameters
include the projected travelling distance since entering the final approach phase (R),
the projected distance from the final approach phase starting point to the desired
touchdown point (R0), altitude of the final approach phase starting point (H0) and
the flare phase starting point (H1), the descent flight path angle (γL) and the desired
vertical speed at the touchdown point (vzr). H is the aircraft’s current altitude.

4.3 Lidar Simulator Design

In this section, we design the Lidar simulator to measure the wind disturbance at a

distance in front of the aircraft, which will be used as prior knowledge for preview

control design. We extend the Lidar simulator based on the work of [143, 144] to

measure the three-dimensional velocity components of the wind disturbance using

Velocity Azimuth Display (VAD) technique [131].

4.3.1 Line-of-Sight Wind Measurement

Assuming that in the inertial reference frame, the coordinates of the Lidar system

which is fixed at the center of the flying wing are [xa, ya, za]
> and the coordinates of

the measurement point i at a distance ri in front of the Lidar system are [xi, yi, zi]
>.
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Given the actual wind velocity [ui, vi, wi]
> at point i, we calculate its line-of-sight

(LOS) component of the wind as

vlos,i =

∫ ∞
−∞

(xn,i(ui − ẋa) + yn,i(vi − ẏa) + zn,i(wi − ża))frw(a)da, (4.3)

where [xn,i, yn,i, zn,i]
> is the normalized laser beam vector from the Lidar system

to the measurement point i (i.e. the focus of the laser beam), and [ẋa, ẏa, ża]
> is

the velocity of the Lidar system. frw is a normalized spatial weighting function to

consider the fact that Lidar measures within the probe volume the beam intersects,

as shown in Fig. 4.3. Essentially, the lidar wind measurement is not simply a point

measurement but a weighted average of wind speeds in a certain volume of air.Spatial weightingfunction Measurement point iLidar ri aL

Figure 4.3: Illustration of the line-of-sight measurement.

The spatial weighing function is given in the form of [143]
frw(aL) =

1

ηL
√

2π
exp(−

a2
L

2η2
L

),

ηL =
WL

2
√

2 ln 2
,

(4.4)

where aL is the distance from focus point along the laser beam and WL is the size of

sampling volume. The spatial weighting function effectively acts as a low-pass filter

to the wind disturbance measurements. We assume WL = 10m and ri = 24.4m,

which corresponds to a two-second preview time with respect to the aircraft’s speed

12.2m/s.
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4.3.2 Three-dimensional Wind Measurement

We now employ the Velocity Azimuth Display (VAD) technique [131] to retrieve

the three-dimensional velocity components of the wind disturbance, assuming the

spatial velocity fluctuations of wind turbulence along the airframe is small. The

Lidar system is designed to scan conically towards the forward direction at a fixed

elevation angle ϕL, measuring the LOS wind velocity at a certain number of points

with different azimuth angle λLi, as depicted in Fig. 4.4. In this manner, we obtain

a set of LOS wind measurements.

j

,los i
v

Lidar sys tem Measurement  point i
i
r

il

Figure 4.4: Illustration of the Lidar scanning pattern. wu,wv,ww are the respective
mean value of the three-dimensional velocity components of the wind disturbance
in the measurement plane. The number of measurement points is assumed to be 12
in this work.

It is obvious that the wind velocity of these LOS measurement data can fit

into a sinusoidal or cosine function with respect to azimuth angle, for which we have

vfit(λL) = mL + nL cos(λL − λLmax). (4.5)

where λLmax is the azimuth angle which corresponds to the peak of the fitted wave,

mL is the mean value and nL is the peak deviation to the mean value, respectively.

Please see Fig. 4.5 for illustration of these variables.

On the other hand, the actual velocity of the LOS wind measurements at

different azimuth angle λL is derived as

vactual(λL) = ul sinϕL + vl cosϕL sinλL − wl cosϕL cosλL, (4.6)
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Figure 4.5: Illustration of the measurement data fitting. The asterisks denote the
set of LOS measurement data during a scanning cycle, the solid line is the fitted
function.

where [ul, vl, wl]
> is the resultant velocity of the average wind velocity and the

aircraft velocity. By setting vactual(λL) = vfit(λL), we get the respective mean

value of the three-dimensional components of this resultant velocity as

ul =
mL

sinϕL
,

vl =
nL sinλLmax

cosϕL
,

wl =
−nL cosλLmax

cosϕL
.

(4.7)

Assuming the wind disturbance travel with mean speed from the measure-

ment location to the aircraft using the Taylor’s Hypothesis of Frozen Turbulence

[145], we obtain the mean value of the velocity of wind disturbance as
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w̃u = ul − ẋa,

w̃v = vl − ẏa,

w̃w = wl − ża,

(4.8)

where [ẋa, ẏa, ża]
> is the velocity of the Lidar system, i.e. the velocity of the aircraft

which can be measured by airborne sensors. The Lidar wind measurements d̃ =

[w̃u, w̃v, w̃w]> will be used in the preview control design in the following chapter.

4.4 Control Design

In this section, we design the preview-based landing control system for the very

flexbile flying wing. As mentioned earlier, the aeroelastic and trajectory control

system has been designed in Chapter 3 for this model to achieve efficient trajectory

tracking in the presence of turbulence. We now adapt the control system to realize

autonomous landing. The control structure of the landing control system is illus-

trated in Fig. 4.6, which follows the the two-loop control scheme as proposed in

Section 3.2 but the inner-loop control design is extended to include the Lidar pre-

view wind measurements to benefit the landing scenario. The introduction of such

preview knowledge enables the control system to act before the wind disturbance

impact the aircraft, thus improves landing effectiveness and disturbance rejection

performance. Here, we mention again that we choose the midpoint of the flying

wing as reference point to track the aircraft flight dynamics, thus all the variables

in the following context are defined/measured at this point.

In the longitudinal channel during landing, when the flying wing descends

to the altitude of the final approach phase starting point H0 (see Fig. 4.1), the

outer-loop controller is connected to SG “glide control” (see Fig. 4.6), driving the

aircraft to glide down in uniform linear motion at constant flight path angle, which

is achieved by LADRC altitude control to track the desired altitude command. Once

the flying wing descends to the altitude of the flare phase starting point H1, the

outer-loop controller is then switched to SF “flare control”, driving the aircraft to

gradually adjust its vertical speed and pitch angle to the desired range to guaran-

tee safe touchdown, which is achieved by PI vertical speed control. The outer-loop

LADRC controller (using altitude and vertical speed as feedback) and PI controller

(using vertical speed as feedback) generate pitch angle command to the inner loop.

We mention that to reduce the impact of gains during switch, the pitch angle com-

mand θr2 at switch is used as the initial value of the integral term in the PI con-
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Figure 4.6: Structure of the preview-based landing control system: the upper part is
for the longitudinal channel while the lower part is for the lateral channel. Output
feedback signals are altitude H, lateral displacement S, forward velocity V , pitch
angle θ, roll angle φ, root bending moment bm and twist moment tw. R is the
travelling distance since entering the final approach phase. ESOlon and ESOlat

are the extended state observers (ESO) in the outer-loop LADRC controller. d̂ is
the actual wind disturbance at a distance in front of the aircraft, d̃i is the Lidar
wind measurements with the subscript i = 1, 2, 3 denotes the lateral, forward and
vertical component, respectively. d is the wind disturbance that actually impact the
aircraft, and Φ is the delay chain. Klonp and Klatp are the H∞ preview controllers in
the longitudinal and lateral channel, respectively. The subscript symbol r denotes
the reference command, while the •̇ symbol denotes time derivative. Khp, Khd, Ksp,
Ksd, Kvp and Kvi are the corresponding controller parameters.

troller. The H∞ preview controller is designed in the inner loop to generate control

inputs (to the corresponding longitudinal flaps and thrust) to track this pitch angle

command and maintain the forward velocity at its trim value simultaneously, using

pitch angle, forward velocity and root bending moment as feedback. In addition,

the forward and vertical components of the Lidar wind measurements are used by

the H∞ preview controller as prior knowledge to improve control performance in the

longitudinal channel.

In the lateral channel, we need to control the flying wing to align with the

center of the runway in both the final approach and flare phases, this is accomplished

by zero lateral displacement control. Similarly, an outer-loop LADRC controller is

used to generate roll angle command for the inner loop, using lateral displacement
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and lateral speed as feedback. And an inner-loop H∞ preview controller is employed

to generate control inputs (to the corresponding lateral flaps and thrust) with roll

angle and twist moment as feedback. Similarly, the lateral component of the Lidar

wind measurements is used by the H∞ preview controller as prior knowledge to

improve control performance in the lateral channel.

4.4.1 Inner-Loop H∞ Preview Control Design

We now design the inner-loop H∞ preview controller. Different from conventional

H∞ control design, the preview control design requires augmenting the system plant

with the preview information, which is the Lidar wind measurement in this work.

We use a N -step delay chain to describe the time delay between the measurement

of wind and its action on the aircraft. As the wind disturbance is assumed to travel

with mean speed [145] from the measurement location to the aircraft, the N -step

delay chain Φ for the three-dimensional wind disturbance is modelled as pure delay

in the discrete-time state space description,

xd(k + 1) = Adxd(k) + Bdd̂(k),

d(k) = Cdxd(k),
(4.9)

where

Ad =



0 Ild · · · 0
...

...
...

...

0 0 · · · Ild

0 0 · · · 0


Nld×Nld

, Bd =

 0

Ild

 ,

Cd =
[

Ild 0

]
.

Here d̂ is the wind disturbance at the measurement location while d is the wind

disturbance that actually act on the aircraft. Ild is an identity matrix with dimension

ld that of the previewable disturbance, and N is the preview length. We choose

N = 40 in this paper, as a result of the two-second preview time with the controller

sample rate of 0.05 seconds.

We then augment the discrete-time flying wing model (2.12) with the delay

chain model (4.9) to incorporate the time delay between measurement of wind and
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its action, which is expressed as x(k + 1)

xd(k + 1)

 = Aa

 x(k)

xd(k)

+ Ba

 d̂(k)

uc(k)

 ,
 y(k)

d̂(k)

 = Ca

 x(k)

xd(k)

+ Da

 d̂(k)

uc(k)

 ,
(4.10)

where

Aa =

 Af BfwCd

0 Ad

 ,Ba =

 0 Bfu

Bd 0

 ,
Ca =

 Cf 0

0 0

 ,Da =

 0 0

Ild 0

 .
Here Af , Bfu, Bfw and Cf are the discrete-time linear state space matrices of the

flying wing model as stated in Chapter 2. Note that the wind disturbance d̂(k) now

can be regarded as an additional ”system output” and be fed into the controller as

preview (feedforward) information, which is essentially treated the same as other

feedback signals in the H∞ preview control design process.GK W1
W2Augmented Plant PPreview ControllerLidar�d

F

dd

e
d

r

uc ym

z1
z2 z}

W3 z3
Figure 4.7: H∞ tracking problem with Lidar preview. d̂, d̃, d, r, uc denote the
wind disturbance in front of the aircraft, wind measurements from Lidar, the wind
disturbance actually impact the aircraft, reference commands and control inputs,
respectively. zi=1,2,3 are the performance outputs, ym is the measurement output.
Φ is the N -step delay chain. G and K are the transfer functions of the plant and
the preview controller.
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As discussed in Section 3.2.1, the inner loop serves as an aeroelastic control

loop for dynamic stabilization and gust load alleviation, and also acts to track the

attitude angle command received from the outer loop. Thus, the control design is

treated as an H∞ tracking problem. The mixed sensitivity H∞ synthesis method is

employed, which introduces weighting functions to achieve both good disturbance

rejection performance and tracking effectiveness, as shown in Fig. 4.7. The ob-

jective is to obtain a controller K which minimizes the H∞-norm of the transfer

function from the future wind disturbance d̂ and inner-loop reference commands

r to the weighted performance outputs z. Therefore, by augmenting system (4.10)

with weighting functions (re-written in discrete-time state space description) for H∞

preview control synthesis, we obtain the realization

Pp =



Aw1 0 0 −Bw1Cf 0 0 Bw1 0

0 Aw2 0 0 0 0 0 Bw2

0 0 Aw3 Bw3Cf 0 0 0 0

0 0 0 Af BfwCd 0 0 Bfu

0 0 0 0 Ad Bd 0 0

Cw1 0 0 −Dw1Cf 0 0 Dw1 0

0 Cw2 0 0 0 0 0 Dw2

0 0 Cw3 Dw3Cf 0 0 0 0

0 0 0 −Cf 0 0 Ir 0

0 0 0 0 0 Ild 0 0



, (4.11)

where (Awi, Bwi, Cwi, Dwi) are the discrete-time state space matrices of the weighting

functions Wi=1,2,3, Ir is an identity matrix with dimension that of the reference

commands. The realization Pp is then used as the basis to synthesize the inner-

loop H∞ preview controller.

Discrete-time H∞ Synthesis

As described above, the preview-based mixed sensitivity H∞ tracking problem is

formulated as in (4.11) in the discrete-time domain. To synthesize the H∞ preview

controller, a brutal method is to convert the discrete-time formulation into the con-

tinuous domain and use the hinfsyn command provided in Matlabr to solve the

continuous-time controller, which will then be converted back to the discrete-time
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domain to eventually obtain the discrete-time H∞ preview controller. However, it

is worth noting that the N -step delay chain is a pure time delay which can only

be approximated via certain approximation methods (for example, the Padé ap-

proximation formulas [146]) to deal with time delays in the continuous domain,

resulting in a non-optimal solution. Hence, to avoid such issues, we solve the pre-

view controller based on the discrete-time H∞ synthesis theory proposed in [142]

which provides the accurate solution. Two discrete-time algebraic Riccati equations

(DARE) regarding the Full Information (FI) control problem and Output Feedback

(OF) control problem for system PP are solved to derive the H∞ preview controller.

The FI control problem is formulated as

PFI =



Ap Bp1 Bp2

Cp1 Dp11 Dp12

Ir 0 0

0 Ild 0


, (4.12)

in which Ap,Bp1,Bp2,Cp1,Dp11 and Dp12 comform with the partitions in (4.11).

We derive the non-negative, stabilizing, feasible solution XFI to the FI discrete-time

algebraic Riccati equation

XFI =Ap
>XFIAp+QFI−L>FI(RFI+B>p XFIBp)−1LFI,

such that the objective H∞ norm for the FI control problem is less than a given

value γ with the stabilising controller derived by KFI = −R−1
3 [L2 R2]. Here, QFI =

Cp1
>Cp1, Bp = [Bp1 Bp2], LFI = [Dp11 Dp12]>Cp1 + Bp

>XFIAp ,

[
L1

L2

]
and

RFI =

 Dp11
>Dp11 − γ2I Dp11

>Dp12

Dp12
>Dp11 Dp12

>Dp12

 ,

 R1 R
>
2

R2 R3

 .
Furthermore, the OF control problem is formulated as

POF =


Ap Bp1 Bp2

Cp1 Dp11 Dp12

Cp2 Dp21 0


, (4.13)
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in which Cp2 and Dp21 conform with the partitions including both the feedback

and preview channels in (4.11). Similarly, we derive the non-negative, stabilizing,

feasible solution YOF to the OF discrete-time algebraic Riccati equation

YOF =ApYOFAp
>+QOF−LOF(ROF+CpYOFCp

>)−1L>OF,

such that the corresponding H∞ norm for the H∞ control problem is less than

γ and ρ(XFIYOF ) < γ2 where ρ(.) denotes the spectral radius. Here, QOF =

Bp1Bp1
>, Cp = [Cp1

> Cp2
>]>, LOF = Bp1[Dp11

> Dp21
>] + ApYOFCp

> and ROF = Dp11Dp11
> − γ2I Dp11Dp21

>

Dp21Dp11
> Dp21Dp21

>

 .
The discrete-time H∞ preview controller is derived as a function of the two

DARE solutions and the plant realization, which is K = f(PP, XFI, YOF). We refer

to [142] for more detailed formulations and discussions. The dimension of the derived

discrete-time H∞ preview controller is equal to the dimension of the augmented plant

(4.11). Thus, although it is not the case in this work, it is important to mention

that when the preview length N is very large, using the above standard synthesis

method is time-consuming and may even fail to obtain a solution. Instead, an

efficient algorithm was proposed by Hazell and Limebeer in [147] wihch provides

a better solution to synthesize the discrete-time H∞ preview control problem with

large preview dimension.

Note that the wind measurements d̃ from the Lidar system instead of the

ideal wind disturbance d̂ are actually provided to the preview controller as input

to make it more realistic, as shown in Fig. 4.7. It is also necessary to mention

that, as stated in [132,148], the preview controller is essentially the combination of

a feedforward controller and a feedback controller, which means

K = Kfbe+ Kff d̃ , (4.14)

but both parts are designed simultaneously with guaranteed robustness (by min-

imising the H∞-norm of the transfer function from the future disturbance and the

reference command to the performance output). In (4.14), d̃ is the vector of Lidar

wind measurements at each preview step, Kfb and Kff denote the feedback loop

controller and the feedforward loop controller, respectively. As a feedforward loop,

the preview action does not affect the stability of the closed-loop system, while the

closed-loop stability is ensured by H∞ control synthesis. In this work, although

the Lidar system is used to provide such preview information, it can be essentially
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regarded as a low-pass filter embedded in the feedforward loop, the closed-loop sta-

bility is still guaranteed since the feedback loop is independent of the Lidar system.

In order to enhance the robust performance and simultaneously achieve good

tracking effectiveness, the simulation-based PSO (Particle Swarm Optimization) al-

gorithm is again employed to optimize the parameters of the corresponding weight-

ing functions, based on the discrete-time equivalence of the reduced-order nonlinear

model (2.10). We refer to Section 3.2.1 for more details. Similarly, since the linear

model (2.12) is decoupled in the longitudinal channel and lateral channel, the H∞

preview controller can be synthesized separately, which are denoted by Klonp and

Klatp, respectively, as shown in Fig. 4.6.

4.4.2 Outer-loop Control Design

As discussed earlier, the outer loop is designed to generate attitude angle commands

for the inner loop. Here, we use the same outer-loop controllers (3.4), (3.5) and

(3.9) that are developed in Section 3.2.2. In the longitudinal channel, the LADRC

altitude controller (3.5) is used to control the aircraft to glide down at constant

flight path angle in the final approach phase, while the PI vertical speed controller

(3.4) is used to control the aircraft to gradually adjust its vertical speed and pitch

angle to the desired range in the flare phase to guarantee safe touchdown. In the

lateral channel, the LADRC lateral displacement controller (3.9) is used to control

the aircraft to align with the center of the runway in both the final approach and

flare phases. Please refer to Section 3.2.2 for more details on the design of these

outer-loop controllers.

4.5 Simulation Results

In this section, we conduct simulation tests based on the full-order nonlinear aeroe-

lastic model (2.4) to check the performance of the designed preview-based landing

control system. As in Chapter 3, the 4th-order Runge-Kutta solver ode45 in Matlabr

is used in the nonlinear simulations, and the control inputs are updated at the fre-

quency of 20Hz. All the control actuators are modelled as first-order lag systems

with time constants of 0.3 seconds and the operating range of -100N∼200N for thrust

and ±20◦ for flap deflections (negative thrust are assumed to be available to act as

air brakes to increase drag and reduce speed). Details on the configurations of the

very flexible flying wing model can be found in Section 2.4.
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4.5.1 Robustness against Modeling Uncertainties

This subsection demonstrates the robust performance of the inner-loop H∞ preview

controller with respect to modelling uncertainties. Taking the longitudinal inner-

loop as an example, we conduct simulations on the full-order nonlinear models (2.4)

with varying bending stiffness EI2, namely the ”more” (0.9EI2), ”regular” (1.0EI2)

and ”less” (1.1EI2) flexible wings. The same H∞ preview controller Klonp designed

based on the ”regular” very flexible configuration is used in these three simulation

cases. We mention that the difficulty of the control design to stabilize the aircraft

is largely dependent on its airframe flexibility. The ”regular” flexible configuration

already represents a highly flexible wing which is very difficult to stabilize, while the

”more” flexible configuration represents a much more difficult case and the ”less”

flexible configuration represents a less difficult one.
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Figure 4.8: Pitch responses of the preview control system based on three types of
very flexible configurations with varying bending stiffness.

The corresponding step responses of the pitch angle are shown in Fig. 4.8,

where one can see that the control system succeeds to track the pitch angle com-

mand with satisfactory performance in all three cases. Overshoot is observed in the

”more” flexible configuration due to increased flexibility, while a slower response
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is observed in the ”less” flexible configuration due to increased stiffness, compared

to the response of the ”regular” configuration. Considering the baseline stiffness

(1.0EI2) is notably small, the differences between the three responses in Fig. 4.8

are essentially small, which indicates the good robustness of the designed inner-loop

H∞ preview controller against modelling uncertainties.

4.5.2 Lidar Wind Measurement

This subsection shows the simulation results of the three-dimensional wind mea-

surements using the Lidar simulator developed in Section 4.3. We generate the

continuous three-dimensional turbulent wind field using windSim simulator [149] in

Matlabr (based on von Kármán velocity spectra). The turbulence scale length and

intensity at low altitudes are defined as [150],

Lw = href ,

Lu = Lv =
href

(0.177 + 0.000823h)1.2
,

σw = 0.1w20,

σu = σv =
σw

(0.177 + 0.000823h)0.4
,

where Lu,v,w are the scale lengths and σu,v,w are the turbulence intensities in the

lateral, forward and vertical direction, respectively. href is altitude (in feet) and w20

is the wind speed at 6 meters. We mention that there are better turbulence models

at low altitudes, but the von Kármán model is good enough for test purpose.

Fig. 4.9 shows the sample series of the synthetic turbulence and the corre-

sponding Lidar wind measurements. The turbulence length and intensity are set to

be Lw = 5m,Lu = Lv = 38.85m and σw = 0.5m/s, σu = σv = 1m/s, respectively.

The blue solid line indicates the synthetic wind turbulence while the red dashed line

indicates the Lidar measurements. The Lidar wind measurements are time-shifted

by two seconds (which is consistent with preview length) to align with the synthetic

wind turbulence. It is clear that the Lidar measurements well capture the low fre-

quency components of the wind turbulences, which is due to the low-pass filtering

property of the spatial weighting in line-of-sight measurement. Note that in the

following simulations, the actual (synthetic) wind turbulence will be applied to the

aircraft while the Lidar wind measurements will be provided to the control system

as preview information.
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10 15 20 25 30 35 40 45 50Time (s)-202w u (m/s) 10 15 20 25 30 35 40 45 50Time (s)-101w w (m/s) 10 15 20 25 30 35 40 45 50Time (s)-202w v (m/s) LidarSynthetic
Figure 4.9: Sample series of the three-dimensional synthetic turbulence at h = 5m
with w20 = 5m/s and the corresponding Lidar wind measurements. wu,wv,ww

denote the lateral, forward and vertical component of the wind disturbance, respec-
tively.

4.5.3 Wind Turbulence Response

We assume that the altitudes of the final approach phase starting point and flare

phase starting point are H0 = 40m and H1 = 15m (see Fig. 4.1), respectively. The

desired vertical speed at touchdown point is vzr = −0.1m/s and the flying wing is

assumed to have an initial lateral deviation of 2m. In the final approach phase, the

descent flight path angle (glide ratio) is determined by the lift-to-drag (L/D) ratio.

In our case, the lift-to-drag ratio is about 56 for the very flexible flying wing model

(2.4). Therefore, the desired descent flight path angle γL =−atan(D/L)≈−1◦ is

obtained.

Now we test the performance of the preview-based landing control system in

the presence of wind turbulence. The excitation used here is the three-dimensional
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synthetic von Kármán turbulence generated in Section 4.5.2, of which the lateral

component is also added with a constant lateral wind of 1m/s. The turbulence is

applied all the way to the touchdown. The responses of the flying wing with the

preview-based landing control system are shown in Fig. 4.10 - Fig. 4.12, compared

to those of the baseline non-preview landing control system (which is adapted from

the aeroelastic and trajectory control system developed in Chapter 3). It is clear

from Fig. 4.10 that both landing control systems could drive the flying wing to align

with the center of the runway and land successfully.
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Figure 4.10: Time histories of the landing trajectories with the preview-based and
non-preview landing control systems in the presence of three-dimensional turbulence.
The green cross symbol denotes the flare phase starting point. The altitude response
without wind turbulence is also plotted in the top diagram.
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In the top diagram of Fig. 4.10, the black dash-dotted line represents the

reference landing trajectory without wind disturbance, while the blue solid line and

the red dashed line represents the actual landing trajectory with the baseline control

system (without preview) and the preview control system in the presence of wind

disturbance, respectively. In the final approach phase (0∼118 seconds), both control

systems succeed to direct the aircraft to follow the descent path via tracking the

desired altitude command. In the flare phase, since vertical speed control instead

of altitude control is employed to ensure the aircraft achieves appropriate touch

down speed and pitch angle at the loss of touch down effectiveness (please refer

to Section 4.2), there exist deviations of the touchdown point in the presence of

wind turbulence, compared to the case without turbulence. However, the deviation

of the touchdown point and lateral displacement with the preview control system

are smaller than the case without preview, which demonstrates the benefit of using

Lidar wind measurements as preview information to improve control performance.

From Fig. 4.10 and Fig. 4.11, we can also see that oscillations in both

the longitudinal and lateral variables are all reduced by the preview-based landing

control system. The deviations in the lateral displacement, vertical speed, pitch

angle, roll angle and yaw angle are significantly reduced by 58%, 28%, 45%, 68%

and 71% in the root-mean-square (RMS) metrics, respectively, compared to those of

the baseline non-preview controller. The bottom two diagrams in Fig. 4.11 depict

the corresponding wing tip displacements relative to the center of the aircraft, which

indicate smaller wing deformations with the preview control system. All these results

show that the preview-based landing control system has achieved better landing

effectiveness and disturbance rejection performance, which is able to realize more

efficient and safer autonomous landing in the presence of wind turbulence. The

corresponding control actions are plotted in Fig. 4.12, where one can see that the

control actions of the preview control system are smaller than those of the baseline

non-preview controller. This is because by using Lidar wind measurements as prior

knowledge, the preview control system can act before the wind disturbance actually

affect the aircraft, thus requiring less control efforts to adjust itself to a proper state

in advance to reduce the impact of the incoming disturbance on flight dynamics.

Note that the negative thrust required in the simultaneous thrust indicates that

airbrakes are needed to actively increase drag during landing (but not considered

here.
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Figure 4.11: Time histories of the aircraft responses by the preview-based control
system with measurement noise in the Lidar system.
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Figure 4.12: Time histories of the control actions by the preview-based control
system with measurement noise in the Lidar system.
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Furthermore, we illustrate the consistent trajectory of the center of gravity

(cg) and those of the center of the wing (cw) in Fig. 4.13, which indicates that the

disturbance does not excite any vibration mode that would affect the approximation

of the rigid-body motions.
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Figure 4.13: Trajectories of the center of gravity (cg) and the center of the flying
wing (cw) during landing.

4.5.4 Modal Analysis

A major advantage of the aeroelastic formulation (2.4) is that the modal contribu-

tions are used as primary variables and can be easily analysed. In this subsection,

we identify the contributions of the dominant modes to the observed dynamics in

the above simulations, which are summarized in Table 4.1. Results with and with-

out preview are both included. In Table 4.1, the third and fourth column show the

modal energy (1
2q

2
ij , with i=1 for kinetic energy and i=2 for strain energy of mode

j) relative to the trim condition of the dominant modes, while the last two column
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show the degrees of reduction level in modal energy by the preview control approach

with respect to the baseline non-preview case. Table 4.1 reveals that the RMS devi-

ations of the modal amplitudes of the rigid-body modes and the dominant flexible

modes were all reduced (except Mode 13) at different degrees by preview control.

In addition, an example of the modal amplitudes of the first symmetric out-of-plane

bending mode (q17) is shown in Fig. 4.14 to illustrate the improvements by preview

control.
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Figure 4.14: Modal amplitudes of the first symmetric out-of-plane bending mode
with and without preview-based landing control systems in the landing simulations.
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4.5.5 Measurement Noise Analysis

In the above simulations, accurate measurements of the wind velocities are assumed.

Now we test the performance of the preview-based landing control system with

measurement noise in the Lidar system. The setting up of the simulation case in

Section 4.5.3 is considered here with two setups of Gaussian white noise added to

the Lidar measurement outputs (see the top subfigure in Fig. 4.15) which have

the signal-to-noise ratios (SNR) of 15dB and 5dB, respectively. The two sets of

noisy measurement outputs are then provided to the preview controller as prior

information, respectively. The responses of the flying wing are depicted in Fig. 4.15

and Fig. 4.16, compared to those using ideal Lidar wind measurement (i.e. no noise

in the output measurement), while the corresponding control inputs are depicted in

Fig. 4.17.
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Figure 4.15: Time histories of the aircraft responses using noisy Lidar wind measure-
ments as prior information to the preview control system. In the top diagram, only
the first 50 seconds of the Lidar wind measurements of the non-stationary crosswind
are plotted for better view of the measurement noises.

We can see that the responses of the aircraft in the case of SNR = 15dB
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Figure 4.16: Time histories of the aircraft responses with the preview-based and
non-preview landing control systems in the presence of wind turbulence.
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Figure 4.17: Time histories of the control actions with the preview-based and non-
preview landing control systems in the presence of wind turbulence.
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remain almost the same comparing to those using ideal measurements, while very

small deviations are observed in the case of SNR = 5dB. The overall performance

of the preview control system barely degrades by the noisy measurements, which

indicate good robustness of the preview control system with respect to preview

measurement errors.

4.6 Conclusions

A preview-based autonomous landing control system using a two-loop PI/LADRC

and H∞ preview control scheme has been proposed for a very flexible flying wing

model. A Lidar (light detection and ranging) simulator was developed to measure

the wind disturbance at a distance in front of the aircraft, which were provided

to the H∞ preview controller as prior knowledge to improve control performance.

Simulation tests conducted based on the full-order nonlinear model (2.4) showed

that the preview-based landing control system was able to land the aircraft safely,

and also achieved better landing effectiveness and disturbance rejection performance

than the baseline landing control system (without preview). It was shown that the

preview control system also achieved good robustness with respect to measurement

errors of the preview information. These results have demonstrated the potential of

using short range Lidar wind measurements to benefit the autonomous landing of

very flexible aircraft in the presence of wind turbulence. It should be noted that this

work basically intended to investigate the applicability of preview control scheme

to improving landing performance for very flexible aircraft, without considering

the practical implementations of the Lidar system. Moreover, the spatial velocity

fluctuations of wind turbulence was assumed to be small along the airframe, it is

also necessary to investigate the applicability of the proposed method under wind

turbulence with large spatial velocity fluctuations in future studies. The proposed

method is not confined to the landing scenario but can be extended to benefit

trajectory tracking problems.
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Chapter 5

Data-driven Flight Control

In the previous two chapters, the flight control systems are both designed using con-

ventional model-based H∞ control methods, for which a significant amount of efforts

have to be first devoted to obtaining an appropriate mathematical model of the very

flexible flying wing. However, the issues of modelling uncertainties and unmodeled

dynamics are inevitable due to the complex system dynamics of the very flexible

aircraft (VFA), and the model order reduction to obtain a reduced-order design

model further introduces modelling uncertainties. The controllers designed based

on an inaccurate model may result in performance degrade and robustness issues

when connected to the practical system. In this chapter, we investigate the data-

driven flight control for the very flexible flying wing, by directly using the system

input/output (I/O) data for control synthesis to reduce its dependence on explicit

system modelling and thus avoid the issues of modelling uncertainties and unmod-

eled dynamics. The data-driven Model-Free Adaptive Control (MFAC) scheme is

employed for this purpose. A cascaded proportional-derivative Model-Free Adap-

tive Control (PD-MFAC) approach is proposed to accommodate the MFAC scheme

in a flight control problem, which shows better control performance over the orig-

inal MFAC algorithm. Based on the PD-MFAC approach, the data-driven flight

control system is developed to achieve gust load alleviation and path-following in

three dimensions, with a guidance system designed to generate the corresponding

path-following commands to track both the straight-line and curved paths. Simu-

lations are conducted on the nonlinear aeroservoelastic model (2.4) to demonstrate

the performance of the data-driven flight control system, compared to a baseline

H∞ flight control system adapted from Chapter 3.
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5.1 Introduction

As discussed previously, the flight control of VFA mainly includes the aeroelas-

tic control for gust load alleviation and the trajectory control for path follow-

ing [21, 68, 79, 95]. By far, almost all the flight control systems are designed using

various types of linear or nonlinear model-based control methods [27, 66, 68, 72, 79,

101, 102, 127, 151, 152], such as H∞ control, linear quadratic control, dynamic in-

version control, model predictive control, etc. For conventional model-based control

methods, the control design is typically based on a mathematical model of the plant,

which is obtained by either first-principles modeling or system identification tech-

niques, with the faith that it represents the practical system. However, the obtained

mathematical model is only an approximation of the practical system, modelling un-

certainties and unmodeled dynamics always exist in the modelling process. Thus,

the performance and reliability of the control system designed based on an inac-

curate model may be largely affected [153]. This situation is especially serious for

VFA. Despite the fact that the existing modelling frameworks for VFA are able to

capture their dominant characteristics, the issues of modelling uncertainties and un-

modeled dynamics are inevitable and undoubtedly more severe due to their highly

complex system dynamics. Moreover, the mathematical model of VFA usually con-

tains a large number of states [19] to describe the nonlinear aeroelastic effects, which

makes it unsuitable for direct control synthesis. Therefore, one needs to reduce the

model order first and design the control system based on the obtained reduced-order

model, which further introduces modelling errors and uncertainties in the control

design. All these factors will lead to possible performance degrade or even unstable

response of the closed-loop system when employing conventional model-based con-

trol methods for flight control of VFA in practice. Hence, it is of great significance

to design a flight control system which can overcome these disadvantages. In this

regard, the data-driven control approach may provide better solutions.

As defined in [154], data-driven control includes “control theories and meth-

ods in which the controller is designed by directly using on-line or off-line in-

put/output (I/O) data of the controlled system or knowledge from the data process-

ing but not any explicit information of the mathematical model of the controlled

process”. The contribution of this chapter is to investigate the flight control for

VFA using data-driven control methods to overcome the aforementioned issues of

conventional model-based control methods. Among the existing data-driven control

schemes [154], the Model-Free Adaptive Control (MFAC) approach proposed by

Hou [155] has developed into a systematic framework and shown rather satisfactory
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control performance in dealing with nonlinear systems without the need of estab-

lishing a mathematical model of the system plant. The MFAC methods therefore

have been successfully applied in many industrial fields [156]. The essential idea of

the MFAC approach is to build an online data model of the nonlinear system based

on the dynamic linearisation technique with a novel concept called pseudo partial

derivative (PPD), which is estimated and updated online at each time step using

only the history I/O data of the controlled plant. The adaptive control law is then

derived from a weighted one-step-ahead prediction error cost function. In this fash-

ion, the dependence of control design on explicit system modelling is significantly

reduced in the MFAC approach, which avoids the inherent issues of conventional

model-based control methods concerning unmodelled dynamics and modelling un-

certainties, thereby improving the controller’s effectiveness and robustness. It is

important to mention that the dynamic linearisation data model in MFAC theory

is control-design-oriented, which simply describes the time-varying dynamic rela-

tionships between the change of system output at the next time instant and the

changes of the control inputs within a moving time window. It is proposed only

for control synthesis and is not suitable for system analysis or long-term prediction

of the system output, therefore not any explicit information of the mathematical

model of the controlled system is needed, which distinguishes the MFAC methods

from conventional model-based control methods and avoids the issues of modelling

uncertainties and unmodeled dynamics. Furthermore, the control-design-oriented

dynamic linearisation data model has a simple structure, a moderate amount of

adjustable parameters, and is much easier to be integrated with control algorithm

design. Nevertheless, it might be arguable to classify the MFAC theory as “model-

free” control methods since essentially a time series input-output data model is

used for control synthesis. Hence, to avoid ambiguity, we use the notion of “con-

ventional model-based control” to represent model-based control methods which

require mathematical modeling (built by either first-principle modelling or system

identification), while use the notion of “data-driven control” to represent the MFAC

methods in this work. Based on the type of dynamic linearisation technique em-

ployed (compact-form dynamic linearisation (CFDL), partial-form dynamic lineari-

sation (PFDL) and full-form dynamic linearisation (FFDL)), three different MFAC

approaches were developed respectively. The stability analysis and robustness issue

(against measurement noise and data dropout) of the PFDL-MFAC and CFDL-

MFAC (a special case of PFDL-MFAC) methods have been studied with [157–161].

But the stability analysis of the FFDL-MFAC approach is still an open problem,

which hinders its applicability. Thus we do not consider this algorithm in this work,
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and by MFAC approach we mean the PFDL-MFAC approach hereinafter.

In this chapter, we design the flight control system for a very flexible flying

wing developed in Chapter 2 using the MFAC scheme. Instead of devoting efforts

to building a mathematical model with appropriate accuracy and system order for

control synthesis, the characteristics of the aeroservoelastic system, such as the geo-

metrical nonlinearities, time-varying parameters, etc., are estimated and integrated

into the PPD of the online dynamic linearisation data model, based on which the

adaptive control law is designed uniformly. However, the condition of applicability

of MFAC approach requires that the sign of PPD remains unchanged, implying the

system output needs to change monotonically with the control input. Such condition

is not satisfied in the desired control bandwidth of a flight control problem, thus the

MFAC algorithm cannot be directly applied, and extra damping effect is required

to adjust the dynamics of the closed-loop system to meet this condition. There-

fore, we propose a cascaded proportional-derivative MFAC (PD-MFAC) scheme to

introduce damping effect for adjustment of the closed-loop dynamics, which accom-

modates the MFAC scheme in a flight control problem and improves the performance

of the original MFAC algorithm. We thereby design the aeroelastic and trajectory

control system based on the proposed PD-MFAC approach, to achieve desirable gust

load alleviation and efficient path-following in three dimensions. A guidance system

which can track both straight-line and curved paths is developed to generate the

corresponding path-following commands. Simulation results based on the nonlin-

ear aeroservoelastic model (2.4) show that the proposed data-driven flight control

system is able to properly regulate all the rigid-body and flexible modes, and also

achieves better effectiveness and robustness (against disturbance rejection and mod-

elling uncertainties) than the baseline H∞ control system, which is adapted from

the flight control system developed in Chapter 3. These indicate the the advantages

of the data-driven MFAC scheme in addressing the flight control problem for VFA

whose control design model usually has very high dimensions and/or big modelling

errors when employing conventional model-based control design.

The structure of this chapter is organized as follows: Section 5.2 designs the

guidance system to generate the path-following commands. Section 5.3 presents

some background of the MFAC approach and designs the data-driven flight control

system. Section 5.4 conducts simulation studies to test the performance of the

control system and Section 5.5 concludes this chapter.
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5.2 Guidance System

Recall that in Section 3.3.3, we used a waypoint tracking mechanism to direct the

aircraft to track straight-line trajectory. We now extend the guidance system to

track both straight-line and curved paths using the nonlinear guidance algorithm

developed in [162].

Fig. 5.1 gives an illustration of the guidance system projected in the horizon-

tal and vertical planes, respectively. A virtual target point (VTP) PT is designated

along the desired route at a constant distance LT ahead of the current aircraft po-

sition. The guidance system then commands the vehicle to chase the VTP and

asymptotically follow the path.

T
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h

V¥

RC

T
P

T
R

Figure 5.1: Illustration of the guidance system. The blue solid line denotes the
predefined route.

Assuming the aircraft travels at constant speed, the horizontal subsystem

(see Fig. 5.1(a)) prescribes a circular arc path which is tangential to the current

heading of the vehicle and passes through the VTP. In this manner, we obtain the

centripetal acceleration command as

alc = V 2
∞/RC = 2V 2

∞ sin η/RT ,

where V∞ is the aircraft velocity, RC is the desired turning radius, RT is the pro-

jected distance of LT in the horizontal plane and η is the heading error. To facilitate

the implementation of this command with the control system in the lateral chan-

nel, by further assuming the aircraft maintains level flight, i.e. L cosφ = mg and

L sinφ=mal where L is the lift force and φ is the roll angle, we derive the roll angle
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command φr as

φr = atan(alc/g) = atan(2V 2
∞ sin η/(gRT )), (5.1)

where g is the acceleration of gravity. On the other hand, the vertical subsystem

(see Fig. 5.1(b)) prescribes a climb rate command to realize altitude tracking in the

vertical plane, which is

Ḣr = V∞hT /LT , (5.2)

where hT is the altitude difference between the VTP and the current position of the

aircraft.

The roll angle command (5.1) and the climb rate command (5.2) are eventu-

ally used to command the control system to direct the aircraft toward the predefined

route in three dimensions.

5.3 Control System

In this section, we design the data-driven flight control system for the very flexible

flying wing based on the MFAC scheme. Following a conventional control structure,

the control design is divided into the longitudinal channel and the lateral channel,

as shown in Fig. 5.2.
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Figure 5.2: Control structure of the data-driven flight control system. Ḣ, θ, V, bm
and φ are the climb rate, pitch angle, forward velocity, root bending moment and
roll angle, respectively. X,Y, Z are the geometric position of the aircraft. The
subscript symbol r denotes the reference command. MFAC-H, PD-MFAC-Lon and
PD-MFAC-Lat denote the longitudinal outer-loop climb rate controller, the longi-
tudinal inner-loop controller and the lateral inner-loop controller, respectively.
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In the longitudinal channel, we employ the two-loop control scheme to achieve

altitude tracking. The outer-loop controller tracks the climb rate command received

from the guidance system and generates a pitch angle command to the inner loop,

which is regulated by a MFAC controller using the climb rate Ḣ as feedback. While

the inner-loop MFAC controller serves as the aeroelastic control loop for gust load

alleviation, and also acts to track the pitch angle command from the outer loop

and stabilize the forward velocity and root bending moment, simultaneously. This

is achieved by generating longitudinal control inputs (to the corresponding flaps

and thrust), using pitch angle θ, root bending moment bm and forward velocity

V as feedback. Note that the objective of stabilizing the root bending moment is

to maintain the aircraft at its trimmed shape during maneuver and suppress the

structural vibration modes. In the lateral channel, we employ a MFAC controller

to generate lateral control inputs (to the corresponding flaps and thrust) to track

the roll angle command from the guidance system, using roll angle φ as feedback.

Again, we mention that the center node of the flying wing is selected as reference

point to track the aircraft flight dynamics, thus all the output measurements are

defined at this reference point.

5.3.1 MFAC Algorithm Preliminaries

Before diving into the detailed control design, we briefly introduce some background

on the MFAC algorithm [157,158]. Consider a class of nonlinear single-input single-

output (SISO) systems described in the discrete-time domain as follows:

y(k + 1) = f(y(k), ..., y(k − ny), u(k), ..., u(k − nu)), (5.3)

where y(k) and u(k) are the system output and control input at time k, f is an

unknown nonlinear function, ny and nu are unknown positive integers. We define

ULc(k) = [u(k), ..., u(k − Lc + 1)]T as the vector of all the history control inputs

within the time window [k − Lc + 1, k] where Lc is called the linearisation length

constant, ∆y(k) = y(k)−y(k−1) and ∆ULc(k) = ULc(k)−ULc(k−1) as the respective

change of system output and control input between two consecutive time steps.

Assumption 5.1 : The partial derivatives of function f with respect to the control

input u(k), ..., u(k−Lc+1) are continuous, and system (5.3) satisfies the generalized

Lipschitz condition: |∆y(k+1)|≤b ‖∆ULc(k)‖ for any k and ∆ULc(k) 6= 0. Here, b

is a positive bounded constant and ‖.‖ is the Euclidean norm of a vector.

For system (5.3) satisfying Assumption 5.1, when ‖∆ULc(k)‖ 6= 0, there

exists a time-varying vector ξξξLc(k) called the pseudo partial derivative (PPD) vector,
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such that system (5.3) can be equivalently described by the following partial form

dynamic linearisation (PFDL) data model

∆y(k + 1) = ξξξLc(k)∆ULc(k) (5.4)

in which ξξξLc(k)=[ξ1(k), ..., ξLc(k)] is bounded at any time k.

Based on the PFDL data model (5.4), the PFDL-MFAC algorithm for SISO

systems are given as follows,

u(k) = u(k − 1) +
ρ1ξ̂1(k)(yr(k + 1)− y(k))

λ+
∣∣∣ξ̂1(k)

∣∣∣2
−
ξ̂1(k)

∑Lc
i=2 ρiξ̂i(k)∆u(k−i+1)

λ+
∣∣∣ξ̂1(k)

∣∣∣2 , (5.5a)

ξ̂ξξLc(k) = ξ̂ξξLc(k−1) + ζ∆ULc(k−1)∗

(∆y(k)−ξ̂ξξ
T

Lc(k−1)∆ULc(k−1))

µ+ ‖∆ULc(k−1)‖2
, (5.5b)

ξ̂ξξLc(k) = ξ̂ξξLc(1), if
∥∥∥ξ̂ξξLc(k)

∥∥∥ ≤ ε, or ‖∆ULc(k−1)‖ ≤ ε,

or sign(ξ̂1(k)) 6=sign(ξ̂1(1)), (5.5c)

in which the controller algorithm (5.5a) is derived from minimizing the weighted

one-step-ahead cost function of tracking error and control input rate,

J(u(k))= |yr(k+1)−y(k+1)|2+λ|u(k)−u(k−1)|2,

while the PG estimation algorithm (5.5b) is derived similarly by minimizing the

weighted cost function

J(ξξξ(k))=
∣∣∣∆y(k)−ξ̂ξξ

T

Lc(k)∆ULc(k−1)
∣∣∣2+µ

∥∥∥ξ̂ξξLc(k)−ξ̂ξξLc(k−1)
∥∥∥2
.

The reset algorithm (5.5c) is added to facilitate the PPD vector estimation algorithm

(5.5b) to track time-varying parameters. ρi ∈ (0, 1] and ζ ∈ (0, 2] are the step

factors, and λ > 0, µ > 0 are the penalty factors. ξ̂ξξLc(k) is the estimated value

of PPD vector ξξξLc(k). We mention that when Lc = 1, the PFDL-MFAC becomes

the CFDL-MFAC. The stability and convergence of the MFAC algorithm (5.5) for

SISO systems was discussed in [157], assuming the sign of the PPD ξ1(k) remains

unchanged.
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Similarly, consider a class of multiple-input multiple-output (MIMO) systems

described in the discrete-time domain as

y(k+1)=f (y(k), ...,y(k−ny),u(k), ...,u(k−nu)), (5.6)

where y(k) and u(k) are the system output and control input at time k, f =

(f1, ..., fm)T is the unknown nonlinear vector-valued function. The vector of all the

history control inputs within the time window [k−Lc+1, k] is denoted as HLc(k)=

[u>(k), ...,u>(k−Lc+1)]>.

Assumption 5.2 : The partial derivatives of function fi,i=1...m with respect to all

elements of the control input u(k), ...,u(k−Lc+1) are continuous, and system (5.6)

satisfies the generalized Lipschitz condition: |∆y(k+1)| ≤ b ‖∆HLc(k)‖ for any k

and ∆HLc(k) 6= 0.

For system (5.6) satisfying Assumption 5.2, following the same procedure by

minimizing the corresponding cost functions for the controller algorithm and the

estimation algorithm, the MFAC algorithm for MIMO systems (5.6) are derived as

u(k)= u(k−1) +
ρ1Ξ̂ΞΞ

T

1 (k)(y∗(k+1)−y(k))

λ+‖Ξ̂ΞΞ1(k)‖2

−
Ξ̂ΞΞ
T

1 (k)
∑Lc

i=2 ρiΞ̂ΞΞ
T

i (k)∆u(k−i+1)

λ+‖Ξ̂ΞΞ1(k)‖2
, (5.7a)

Ξ̂ΞΞLc(k) = Ξ̂ΞΞLc(k−1)+ζ∆HLc(k−1)∗

(∆y(k)−Ξ̂ΞΞ
T

Lc(k−1)∆HLc(k−1))

µ+‖∆HLc(k−1)‖2
, (5.7b)

ξ̂iiq(k)= ξ̂iiq(1)[i,q=1,··· ,m], if
∣∣∣ξ̂iiq(k)

∣∣∣<b2, or∣∣∣ξ̂iiq(k)
∣∣∣>ab2, or sign(ξ̂iiq(k)) 6=sign(ξ̂iiq(1)),

ξ̂ijq(k)= ξ̂ijq(1)[i,j,q=1,··· ,m,i 6=j], if
∣∣∣ξ̂ijq(k)

∣∣∣>b1,
or sign(ξ̂ijq(k)) 6=sign(ξ̂ijq(1)), (5.7c)

where (5.7c) is the corresponding reset algorithm, and Ξ̂ΞΞLc(k) is the estimated value

of the PPD matrix ΞΞΞLc(k). The stability and convergence analysis of the MFAC

algorithm for MIMO systems was discussed in [158], assuming that the PPD matrix

ΞΞΞ1(k) is a diagonally dominant matrix and the sign of all the elements in ΞΞΞ1(k)

remain unchanged.

Remark 1 : Assumption 5.1 (or 5.2 ) is a typical constraint for general nonlinear

system in the field of control system design, and imposes an upper bound on the
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change rate of the system output driven by the change of the control input.

Remark 2 : It is important to mention that we use two other strong assumptions

when applying the MFAC algorithm in the flight control problem. First, since the

aircraft’s dynamics to small perturbations at any operating point can be formulated

into the form of (5.6), we assume the aircraft system satisfies the description of (5.6)

in the context of this work. Second, the assumption on the diagonal dominance of

the PPD matrix ΞΞΞ1(k) and the fixed sign of all the elements in ΞΞΞ1(k) is implicitly

satisfied by assigning a dominant control input to regulate the corresponding output

(the non-dominant effects from other control inputs are taken into account via the

non-diagonal elements of the PPD matrix and the damping gain parameter matrix

to be introduced in the next subsection), and is guaranteed by the reset algorithm.

5.3.2 Longitudinal Inner-loop Control Design

We now design the longitudinal inner-loop controller using the MFAC scheme. How-

ever, as discussed earlier, the original MFAC algorithm cannot be applied directly.

The condition of applicability of the original MFAC approach requires that the sign

of pseudo partial derivative (PPD) remains unchanged, which implies the system

output needs to change monotonically with the control input. Nevertheless, such

condition is not satisfied in the desired control bandwidth of the inner-loop system,

thus extra damping effect is required to adjust the dynamics of the closed-loop sys-

tem to meet this condition. This can be normally achieved by introducing damping

effect to adjust the closed-loop system phase through derivatives of the controlled

signal, just as the derivative term functions in PID control. On the other hand, in

the control law of the MFAC algorithm, a set of step factors are used as propor-

tional gains to tune the speed of the closed-loop response. Faster dynamic response

requires larger gains and vice versa. However, increasing the proportional gains

alone to meet the performance specifications of the inner-loop control problem, may

lead to undesirable overshoot, oscillations or even unstable dynamics in the system

response due to the absence of damping effect. Therefore, it is of great importance

to introduce derivatives of the controlled signal for control damping in the MFAC

scheme to obtain an appropriate dynamic response in the desired control bandwidth.

To serve this purpose, we propose a cascaded proportional-derivative MFAC

(PD-MFAC) approach, which integrates the original MFAC algorithm with neces-

sary damping effect to accommodate the MFAC scheme in the inner-loop control

design and improve the control performance of the original MFAC approach. It

is clear from Fig. 5.2 that the longitudinal inner-loop system is a MIMO system,

the control structure of the PD-MFAC approach for MIMO systems (denoted as
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PD-MFAC-MIMO) is as depicted in Fig. 5.3.

MFAC G

- -

PD-MFAC-MIMO

-

( 1)
r
k +y

( )ky

yK

dyK

*( )ku ( )ku ( )ky

d

dt

Figure 5.3: Control structure of the cascaded PD-MFAC-MIMO algorithm. G de-
notes the unknown nonlinear system plant.

We define a vector of virtual control input H∗Lc(k)=[u>∗ (k), ...,u>∗ (k−Lc+1)]>

within the moving time window [k−Lc + 1, k], in which the virtual control input is

given as

u∗(k) = u(k) + Kyy(k) + Kdy∆y(k)/dt. (5.8)

Here, Ky and Kdy are the parameter matrices added to introduce the corresponding

derivative terms, dt is the sampling time of the control system. Then, we derive the

PD-MFAC-MIMO algorithm as below,

u(k)= u(k−1)+
ρ1Ξ̂ΞΞ

T

∗1(k)(y∗(k+1)−y(k))

λ+‖Ξ̂ΞΞ∗1(k)‖2

−
Ξ̂ΞΞ
T

∗1(k)
∑L

i=2 ρiΞ̂ΞΞ
T

∗i(k)∆u∗(k−i+1)

λ+‖Ξ̂ΞΞ∗1(k)‖2
(5.9a)

−sign(Ξ̂ΞΞ∗1(1))(Ky∆y(k)+
Kdy

dt
∆(∆y(k))),

Ξ̂ΞΞ∗L(k) = Ξ̂ΞΞ∗L(k−1)+ζ∆H∗L(k−1)∗

(∆y(k)−Ξ̂ΞΞ
T

L(k−1)∆H∗L(k−1))

µ+‖∆H∗L(k−1)‖2
, (5.9b)

ξ̂∗iiq(k)=ξ̂∗iiq(1)[i,q=1,··· ,m], if
∣∣∣ξ̂∗iiq(k)

∣∣∣<b2, or∣∣∣ξ̂∗iiq(k)
∣∣∣>ab2, or sign(ξ̂∗iiq(k)) 6=sign(ξ̂∗iiq(1)),

ξ̂∗ijq(k)=ξ̂∗ijq(1)[i,j,q=1,··· ,m,i 6=j], if
∣∣∣ξ̂∗ijq(k)

∣∣∣>b1,
or sign(ξ̂∗ijq(k)) 6=sign(ξ̂∗ijq(1)), (5.9c)
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where ∆(∆y(k))=∆y(k)−∆y(k−1). To attenuate the impact of sensor measurement

noise, a noise-tolerant tracking differentiator (TD) [163–165] can be employed to

obtain the derivative signals ∆y(k)/dt. Based on the above analysis, we remark

that the PD-MFAC scheme can be equivalently regarded as a cascade of MFAC and

PD control, it extends the applicability of the MFAC approach and improves the

control performance with the aid of appropriate damping effect. The longitudinal

inner-loop controller is then designed based on the PD-MFAC-MIMO algorithm

(5.9). The stability analysis of the algorithm (5.9) will be discussed in Section 5.3.5.

As mentioned earlier, within the original MFAC scheme, the FFDL-MFAC

approach [155] taking account of the history data of system output may potentially

provide an alternative solution, but its stability analysis is still an open problem,

thus not considered in this thesis.

5.3.3 Lateral Inner-loop Control Design

The inner-loop system in the lateral channel is a multiple-input single-output (MISO)

system. The corresponding PD-MFAC algorithm for MISO systems (PD-MFAC-

MISO) based on which the lateral inner-loop controller is designed can be easily

adapted from the PD-MFAC-MIMO algorithm (5.9), which is

u(k)= u(k−1)+
ρ1ξ̂ξξ

T

∗1(k)(y∗(k+1)−y(k))

λ+‖ξ̂ξξ∗1(k)‖2

−
ξ̂ξξ
T

∗1(k)
∑L

i=2 ρiξ̂ξξ
T

∗i(k)∆u∗(k−i+1)

λ+‖ξ̂ξξ∗1(k)‖2
(5.10a)

−sign(ξ̂ξξ∗1(1))(K y∆y(k)+
K dy

dt
∆(∆y(k))),

ξ̂ξξ∗Lc(k) = ξ̂ξξ∗Lc(k−1)+η∆U∗Lc(k−1)∗

(∆y(k)−ξ̂ξξ
T

Lc(k−1)∆U∗Lc(k−1))

µ+
∥∥∆U∗Lc(k−1)

∥∥2 , (5.10b)

ξ̂∗iq(k)=ξ̂∗iq(1)[i,q=1,··· ,m], if
∣∣∣ξ̂∗iiq(k)

∣∣∣<b2,
or sign(ξ̂∗iq(k)) 6=sign(ξ̂∗iq(1)), (5.10c)

where U∗Lc(k−1) = [uT∗ (k), ...,uT∗ (k−Lc+1)]T is the vector of the virtual control

inputs u∗(k). K y and K dy are the parameter vectors added to introduce the cor-

responding derivative terms.
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5.3.4 Longitudinal Outer-loop Control Design

In terms of the longitudinal outer-loop control design, since the change of the climb

rate Ḣ (system output) with regard to the pitch angle θ (control input) is approxi-

mately monotonic in the sense Ḣ ≈ V θ at all times (V is the forward velocity), we

therefore directly employ the MFAC-SISO algorithm (5.5) to design the longitudinal

outer-loop controller for climb rate control.

5.3.5 Stability Analysis

We now present the stability analysis of the cascaded PD-MFAC-MIMO algorithm.

An equivalent form of the control structure of the PD-MFAC-MIMO scheme is given

as in Fig. 5.4 to facilitate the analysis. It is clear that the stability analysis of the

PD-MFAC-MIMO algorithm (5.9) with respect to the nonlinear system plant G (see

Fig. 5.3) is now converted into the stability analysis of the original MFAC-MIMO

algorithm (5.9) with respect to the augmented system plant P (see Fig. 5.4).

MFAC G

- -

Augmented System P

-

*( )ku ( )ku

d
dt dyK

yK

( )ky

( )ky( 1)r k +y

Figure 5.4: Equivalent control structure of the cascaded PD-MFAC-MIMO algo-
rithm. P denotes the augmented system plant consisting of the original system
plant and the damping terms.

The existence of the PFDL data model of the augmented system plant P and

the stability analysis of the PD-MFAC-MIMO algorithm (5.9) follow immediately

from the proof of Theorem 3 and Theorem 4 in [158], thus omitted here. We refer

to [158] for details.

5.4 Simulation Results

In this section, we conduct simulation tests to check the performance of the data-

driven flight control system developed in Section 5.3, based on the nonlinear aeroser-

voelastic model (2.4) of the very flexible flying wing with full-payload configuration,
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for which we refer to Section 2.4 for details. The 4th-order Runge-Kutta solver ode45

in Matlabr is used in the nonlinear simulations and the control inputs are updated

at the frequency of 20Hz. All the control actuators are modelled as first-order lag

systems with time constants of 0.3 seconds and the operating range of -100N∼200N

for thrust and ±20◦ for flap deflections (as in Chapter 4, certain negative thrust are

assumed to be available to act as air brakes to increase drag and reduce speed). The

distance to the reference point on the desired path in the guidance system is set as

LT =250m.

5.4.1 Step Response

This subsection compares the dynamic performance of the PD-MFAC approach

against the original MFAC approach. Unit step commands of pitch and roll angle

are applied to the inner-loop control system from the beginning of simulations,

the responses of pitch and roll angle using the original MFAC approach and the

proposed PD-MFAC approach are shown in the top and middle diagrams of Fig.

5.5, respectively. Recall that with full-payload configuration, the open-loop system

of the flying wing is unstable (see Section 3.3.1). As shown in Fig. 5.5, the MFAC

controller fails to stabilize the system due to the lack of necessary damping effect to

adjust closed-loop system phase (see Section 5.3.2 for detailed explanations), while

the PD-MFAC controller successfully stabilizes the system. We mention that the

dynamic responses of root bending moment, forward velocity and actuator dynamics

are also satisfactory, but their plots are omitted here for briefness. Furthermore, to

give a straight comparison of the dynamic performance between the PD-MFAC and

the original MFAC approach, we design the inner-loop controllers using these two

methods for a flying wing configuration with 40% payload (open-loop stable [19]).

The corresponding step responses are shown in the bottom diagrams of Fig. 5.5. It

is clear that with the MFAC controller, the pitch angle response is relatively slow

with obvious oscillations, and the roll angle response exhibits large overshoot. In

contrast, the PD-MFAC controller achieves faster and more smooth response in the

pitch angle and roll angle, where the oscillations and overshoot are well damped by

the introduced damping effect. All these results demonstrate that the PD-MFAC

approach achieves better performance than the original MFAC approach.

5.4.2 Disturbance Rejection

This subsection investigates the robust performance of the data-driven control sys-

tem with respect to disturbance rejection. The control system is commanded to
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Figure 5.5: Step response of the inner-loop control system designed using the PD-
MFAC approach and the original MFAC approach, respectively.
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maintain the aircraft along a straight-line path at H = 0m in the presence of wind

turbulence. A conventional model-based control system with satisfactory perfor-

mance, employing H∞ control in both the longitudinal and lateral inner loop (de-

veloped in Chapter 3), is utilized as a baseline controller for performance compari-

son. To facilitate a straightforward performance comparison between the PD-MFAC

and H∞ control, we use the same guidance system (see Section 5.2) and the same

longitudinal outer-loop controller (see Section 5.3.4) in both control systems. The

continuous three-dimensional turbulence used in the simulations are generated based

on von Kármán velocity spectra with the scale length Lw = 5m,Lu =Lv = 38.85m

and the intensity σw = 0.5m/s, σu=σv = 1m/s. The time history of the turbulence

applied is shown in Fig. 5.6.
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Figure 5.6: Time history of the synthetic von Kármán turbulence. u, v, w denote
the lateral, forward and vertical component, respectively.

The responses of the flying wing (full-payload) with the data-driven control

system are depicted in Fig. 5.7 and Fig. 5.8, compared to those with the baseline
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H∞ control system. It is clear that both control systems succeed to maintain the

aircraft along the desired straight-line path in turbulence. With the data-driven

control system, the root-mean-square (RMS) value of the oscillations in altitude,

pitch angle, roll angle, forward velocity and root bending moment are reduced by

47%, 52%, 36%, 59% and 56%, compared to those with the H∞ control system,

while the oscillations in lateral displacement (the lateral deviation of the aircraft

position to the desired path) is slightly reduced by 3%. The reductions of the left

(∆LTip.) and right wing tip (∆RTip.) displacement relative to the center of the

flying wing are 48% and 47%, respectively. These results show that the data-driven

control system has achieved better robustness against disturbance rejection than

the H∞ controller in our case of flight control for VFA. The corresponding control

input are as shown in Fig. 5.9, which shows that the corresponding control inputs

are within reasonable range.0 50 100 150 200 250 300Time (s)-202Altitude (m) hinf pd-mfac0 50 100 150 200 250 300Time (s)-20020Lateral Displacement (m) 0 50 100 150 200 250 300Time (s)111213Forward Velocity (m/s)
Figure 5.7: Time histories of the altitude, lateral displacement and forwared velocity
responses with the data-driven and H∞ control systems in the presence of wind
turbulence.
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Figure 5.8: Time histories of the pitch, roll, bending moment, left wingtip and right
wingtip responses with the data-driven and the H∞ control systems in the presence
of wind turbulence.
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Figure 5.9: Time histories of the control inputs with the data-driven and the H∞
control systems in the presence of wind turbulence.
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5.4.3 Robust Performance

We now demonstrate the data-driven control system’s robustness with respect to

modelling uncertainties. We repeat the above simulations on the nonlinear aeroser-

voelastic model (2.4) with varying bending stiffness (EI2), namely, the ”more”

(0.9EI2) and ”less” (1.1EI2) flexible configurations relative to the nominal very

flexible flying wing (1.0EI2), using the same data-driven and the H∞ control sys-

tems as in the previous section. The corresponding responses of the aircraft are

shown in Fig. 5.10 and Fig. 5.11. In both figures, it shows that on the ”less” flex-

ible configuration (left-side diagrams), although the responses of all the variables

become more disturbed, both control systems still succeed to maintain the aircraft

along the desired path with good disturbance rejection performance, but the data-

driven control system outperforms the H∞ control system in reducing oscillations in

altitude, lateral displacement, forward velocity, pitch angle, roll angle, root bending

moment, left wing tip and right wing tip by 33%, 9%, 62%, 55%, 52%, 43%, 24%

and 26%, respectively. In the case of ”more” flexible configuration (see right-side

diagrams of Fig. 5.10 and Fig. 5.11) which represents a more severe situation, the

H∞ control system fails to stabilize the aircraft while the data-driven one still works

with satisfactory performance. All these results indicate the better effectiveness and

robustness of the data-driven control system against modelling uncertainties. The

corresponding control inputs are as shown in Fig. 5.12.

5.4.4 Path following in Turbulence

This subsection shows the path-following performance of the data-driven control

system in turbulence, based on the nominal very flexible flying wing model (i.e.

full-payload configuration without uncertainties in the bending stiffness EI2). The

control system aims to drive the aircraft to follow a spiral path of the turning radius

RC = 500m with the climb rate Ḣ = 0.432m/s. The same von Kármán turbulence

used in the previous section is applied. The responses of the flying wing with the

data-driven control system and the H∞ control system are depicted in Fig. 5.13. It

is clear that the data-driven control system is able to direct the aircraft to follow

the desired path in the presence of wind turbulence, and all the variables are within

appropriate range. Note that there exists a steady tracking error in the altitude,

this is due to the slow climb rate response of the control system when tracking a

varying command. As analyzed in Section 5.4.3, one can see that the data-driven

control system out-performs the H∞ control system in this test case.
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Figure 5.10: Time histories of the altitude, lateral displacement, forward velocity
and pitch response with the data-driven and the H∞ control systems in turbulence,
based on two very flexible configurations with varying bending stiffness.
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Figure 5.12: Time histories of control inputs with the data-driven and the H∞
control systems in turbulence, based on two very flexible configurations with varying
bending stiffness.
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Figure 5.13: Time histories of the responses with the data-driven control system for
path-following in the presence of wind turbulence.
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Figure 5.14: Time histories of the control actions with the data-driven control system
for path-following in the presence of wind turbulence.
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Furthermore, a modal contribution analysis reveals that the rigid-body modes

are properly regulated to achieve satisfactory path-following in three dimensions,

and the dominant flexible modes are all suppressed in disturbance rejection. Fig.

5.15 and Fig. 5.16 give examples of the modal amplitudes of the rigid-body modes

and the first five dominant flexible modes in the above simulations, respectively.

q1j{j=1∼6} are the amplitudes of the rigid-body modes (lateral, forward, vertical

translation, and pitch, roll, yaw rotation), while qij{i=1∼2, j=7∼11} are those of the

1st symmetric out-of-plane bending, the 1st asymmetric out-of-plane bending, the

1st symmetric in-plane bending, the 1st asymmetric in-plane bending and the 2nd

symmetric out-of-plane bending (with i= 1 for kinetic energy and i= 2 for strain

energy of mode j), respectively.
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Figure 5.15: Modal amplitudes of the rigid-body modes with the data-driven control
systems for path-following in presence of wind turbulence.
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Figure 5.16: Modal amplitudes of the first five dominant flexible modes with the
data-driven control systems for path-following in presence of wind turbulence.
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5.5 Conclusions

This chapter investigated the aeroelastic and trajectory control of a very flexible

flying wing using the Model-Free Adaptive Control (MFAC) scheme. A cascaded

proportional-derivative MFAC (PD-MFAC) approach has been proposed to accom-

modate the MFAC scheme in a flight control problem, which also offers better control

performance than the original MFAC approach by introducing necessary damping ef-

fects. The control system was designed based on a dynamic linearisation data model

built from history input/output data and online updated the adaptive control law,

without requiring explicit mathematical modelling of the aircraft. Simulation re-

sults showed that the proposed PD-MFAC control system was able to regulate all

the rigid-body and flexible modes to achieve desirable gust load alleviation response

and efficient path-following in three dimensions. The PD-MFAC control system

also showed better effectiveness and robustness (against disturbance rejection and

modelling uncertainties) compared to a baseline H∞ control system. These results

demonstrated the potential of the data-driven MFAC approach in addressing the

flight control problem for VFA whose control design model usually has very high

dimensions and/or big modelling errors when employing conventional model-based

control design. However, it is important to note that strong assumptions were made

to apply the MFAC scheme to address the flight control problem of VFA in this

work, these assumptions must be theoretically justified in future studies, especially

when using the MFAC approach in practice.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have investigated the flight control of very flexible aircraft (VFA) in

the scenarios of trajectory tracking and autonomous landing. Chapter 2 briefly sum-

marized the aeroelastic modelling of a very flexible flying wing which was developed

in the work of [19]. Key results of the modal aeroservoelastic formulation and using

nonlinear model reduction to obtain an appropriate reduced-order model for control

synthesis were presented. Chapter 3 and Chapter 4 investigated the aeroelastic and

trajectory control, and the autonomous landing control for the very flexible flying

wing model, respectively, using conventional model-based control methods, while

Chapter 5 investigated the aeroelastic and trajectory control using data-driven con-

trol methods. The work of Chapters 3∼5 is summarized in details as below.

Chapter 3 dealt with the combined aeroelastic and trajectory control of the

very flexible flying wing in the presence of wind disturbance. Since VFA exhibit com-

plex dynamics and are very sensitive to wind disturbance, it is crucial to guarantee

robustness of the designed control system with respect to disturbance rejection. For

this purpose, a two-loop robust control scheme based on the PI/LADRC and H∞

control methods have been proposed, and the particle swarm optimization algorithm

was employed to optimize the weighting parameters in the H∞ control design to en-

hance robustness and effectiveness. The control design was based on a reduced-order

linear model. Through simulation tests conducted on the full-order nonlinear model,

the designed control system was shown to achieve good performance in aspects of

trajectory tracking effectiveness and robustness against disturbance rejection. In

the control design, the rigid-body degrees of freedom were approximated by taking

sensor measurements (e.g. position, attitude angle, velocity) at the centre of the
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wing, while the root bending moment which is utilized to control the first symmetric

bending degree of freedom was assumed directly available to the control system. In

future studies, it is necessary to investigate the optimisation of sensor configuration

to obtain such information. Moreover, the very flexible flying wing model used in

this work used the same conventional set of flap/thrust control actions as in [19],

the optimization of actuator configuration and the fault tolerant control regarding

loss or malfunction of sensors/actuators are also worthy of further investigation.

Chapter 4 addressed the autonomous landing control of the very flexible

flying wing in the presence of wind disturbance. The control design followed the

two-loop control scheme proposed in Chapter 3, but extended the inner-loop H∞

controller to incorporate Lidar wind measurements and employ H∞ preview control.

A Lidar simulator was developed to measure the wind disturbances at a distance in

front of the aircraft, which were provided to the control system as prior knowledge.

This enabled the control system to adjust the aircraft to a proper state in advance

before the wind disturbances actually affect the aircraft, therefore improved the

disturbance rejection performance. Simulation studies showed that the preview-

based landing control system was able to land the aircraft safely and effectively in the

presence of wind disturbance. Oscillations in the longitudinal and lateral variables

were observed to be largely reduced by the preview-based landing control system

compared to a baseline landing control system (without preview), which indicated

better landing effectiveness and disturbance rejection performance. Modal analysis

further validated these results from the perspective of modal energy contributions.

The proposed design has demonstrated the potential of using short-range Lidar

wind measurements and preview control scheme to benefit the autonomous landing

of VFA in the presence of wind turbulence. Furthermore, the proposed method

is not confined to the landing scenario but can be extended to benefit trajectory

tracking problems.

Chapter 5 successfully used data-driven control methods to address the aeroe-

lastic and trajectory control of the very flexible flying wing based on the Model-Free

Adaptive Control (MFAC) scheme. A cascaded proportional-derivative MFAC (PD-

MFAC) approach was proposed to accommodate the MFAC scheme in a flight con-

trol problem, which offered better control performance than the original MFAC

approach by introducing necessary damping effects. The data-driven MFAC con-

trol system was designed based on a dynamic linearisation data model which was

built by directly using the history input/output data, without requiring any explicit

information on the modelling of the aircraft, thus avoided the issues of modelling

uncertainties and unmodeled dynamics. Simulation results showed that the pro-
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posed PD-MFAC control system was able to regulate all the rigid-body and flexible

modes to achieve desirable gust load alleviation response and efficient path-following

in three dimensions. Compared with a baseline H∞ control system, the proposed

data-driven flight control system also achieved better effectiveness and robustness

against disturbance rejection and modelling uncertainties. These results demon-

strated the potential of data-driven scheme in addressing the flight control problem

for VFA whose control design model usually has very high dimensions and/or big

modelling errors when employing conventional model-based control design. How-

ever, it is important to note that strong assumptions were made to apply the MFAC

scheme to address the flight control problem of VFA in this work, these assumptions

must be theoretically justified in future studies, especially when using the MFAC

approach in practice.

6.2 Future Work

The recommendations for future studies are as below.

(1) Optimisation of sensor configuration

The root bending moment was utilized in this work as feedback to control

the first symmetric bending degree of freedom which plays a significant role in shap-

ing the elastic mode. This work simply assumed the root bending moment was

directly available, without considering the optimisation of sensor configuration to

obtain such information. It is necessary to investigate the optimisation of sensor

configuration, for example, the types of sensors (e.g. inertial measurement unit,

accelerometer, strain gauge, etc.), the corresponding numbers and locations, etc., to

reconstruct the actual shape of the wing.

(2) Optimisation of actuator configuration

This work followed the same definition of flap/thrust control actions as in [19]

to control the rigid-body degrees of freedom and the structural bending degrees of

freedom. It would be interesting to investigate the optimisation of actuator config-

uration for this particular flying wing model, for example, the number of flaps or

motors, the size and location of flap surfaces, etc., to provide optimal control au-

thorities. Given the actual sensor/actuator configurations, the fault tolerant control

regarding the loss/malfunction of sensors/actuators is also an interesting topic.

(3) Reducing the conservativeness of H∞ control design to modeling uncertainties

Standard H∞ synthesis aims to minimize the influence of uncertainty in the
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controlled plant, but the uncertainty to be dealt with is assumed to be unstructured,

which means no particular description of the uncertainty is specified. However, in

most practical problems, the uncertainty involved is structured (also called paramet-

ric uncertainty, for example, uncertainty in parameters of the controlled plant that

are not known exactly or even time-variant, or uncertainty resulted from neglecting

high-frequency dynamics due to system order reduction, etc.). This may cause the

designed H∞ controller to be conservative and limit the performance of the closed-

loop system. Given appropriate uncertainty description for the very flexible aircraft,

the µ synthesis method (which minimizes the upper bound of the structure singular

value µ, i.e. the smallest H∞ norm γ, such that the corresponding input-output gain

of the closed-loop system stays below γ for all modelled uncertainty up to size 1/γ)

can be considered in future studies to reduce the conservativeness of H∞ control

design with respect to uncertainties and obtain a possibly more robust controller.

(4) Preview control with Lidar measurements under wind turbulence with large

spatial velocity fluctuations

In Chapter 4, the spatial velocity fluctuations of wind turbulence was as-

sumed to be small along the airframe, one Lidar system was used to measure the

three-dimensional components of the wind velocity. However, the large wing span

of the aircraft may be exposed to wind turbulence under large velocity fluctuations

at different locations along the airframe. Multiple Lidar systems might be needed

to measure the wind velocity at different regions to determine the actual wind speed

distribution. Thus, it is necessary to investigate the corresponding preview control

scheme with multiple Lidar measurement in future studies.

(5) Flight control of VFA using reinforcement learning

In Chapter 5, strong assumptions were made to apply the MFAC scheme to

address the flight control problem of VFA. It would be of significance to study the

application of other data-driven control methods to relax these assumptions and en-

able the control system with learning abilities to improve control performance. The

reinforcement learning method might be a good candidate, which allows for the de-

sign of feedback controllers with combined features of adaptive control and optimal

control. The controller features an actor-critic structure which can learn the op-

timal solutions by solving the Hamilton-Jacobi-Bellman equations online, without

knowing full system dynamics. It might be also necessary to consider combining

model-based and data-driven control methods to further improve control perfor-

mance.
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(6) Build a prototype flexible aircraft and carry out experimental flight tests to

validate the modelling methods and control design.
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Appendix A

Based on the work of [19], the explicit form of the aerodynamic forces on a 2D

aerofoil section under linear assumptions are expressed by the local velocities used

in the beam equations (2.1) (i.e. x1 = [v1, v2, v3, w1, w2, w3]>) as

LAE =
1

2
ρv2 · 2b · (CLα(

1

2
(−v3 + b(1− a)w1) +

1

2
V∞

NAE∑
j=1

2AAEj bAEj λj)

+ V∞(CL0 + CLδδ))−
1

2
ρv3V∞ · 2b · CD0,

DAE = −1

2
ρv3 · 2b · (CLα(

1

2
(−v3 + b(1− a)w1) +

1

2
V∞

NAE∑
j=1

2AAEj bAEj λj)

+ V∞(CL0 + CLδδ))−
1

2
ρv2V∞ · 2b · CD0,

MAE =
1

2
ρV∞ · 2b · 2b(−CLα

b

8
w1 + V∞(CM0 + CMδδ))

+ ab
1

2
ρV∞ · 2b(CLα(

1

2
(−v3 + b(1− a)w1) +

1

2
V∞

NAE∑
j=1

2AAEj bAEj λj)

+ V∞(CL0 + CLδδ)),

(A.1)

where LAE , DAE ,MAE are the lift, drag and moment, respectively. ρ is the air den-

sity, b is the semi-chord of the aerofoil, a is the normalised distance of aerodynamic

centre to structural centre, V∞ is the free-stream velocity. CL0, CLα, CD0, CM0 are

the steady-state lift coefficient at zero angle of attack, the slope of steady-state

lift coefficient with respect to angle of attack, the steady-state drag and moment

coefficient, respectively. CLδ, CMδ are the slope of steady-state lift and moment

coefficient with respect to the control surface deflections δ, respectively. NAE is the

number of aerodynamic states used in the unsteady aerofoil theory, AAEj and bAEj
are the rational function approximation coefficients to the Theodorsen’s function.

The aerodynamic state λj is expressed as

λ̇j +
bAEj V∞

b
λj = −1

b
v3 + (1− a)w1. (A.2)
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The above formulations can be written in a compact form as

fe = ρb(A1(x1)x1 + V∞A2x1 ·
NAE∑
j=1

2AAEj bAEj λj +A3(x1)x1 · δ),

λ̇j = k>AEx1 −
bAEj V∞

b
λj ,

(A.3)

where fe = [ 0 DAE LAE MAE 0 0 ], k>AE = [ 0 0 −1/b (1− a) 0 0 ]

and the linear operators being

A1(x1) =

0 0 0 0 0 0

0 −CD0v2
CLα

2 v3 − CL0v2 −b(1− a)CLα2 v3 0 0

0 CL0v2 − (CLα2 + CD0)v3 0 b(1− a)CLα2 v2 0 0

0 b((2CM0 + aCL0)v2 − aCLα2 v3) 0 b2(a− a2 − 1
2)CLα2 v2 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

(A.4)

A2 =



0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

0 ab 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, (A.5)

A3(x1) =



0 0 0 0 0 0

0 0 −CLδv2 0 0 0

0 CLδv2 0 0 0 0

0 (abCLδ + 2bCMδ)v2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (A.6)

Subsequently, by inserting (2.3) into the beam equations (2.1) and the aero-

dynamic force/moment equations (A.3), the modal aeroservoelastic formulations

(2.4) are eventually derived. For example, by inserting (2.3) into (A.3), we have
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fe = ρb(A1(

∞∑
k=1

φ1kq1k)

∞∑
l=1

φ1lq1l + V∞A2

∞∑
k=1

φ1kq1k ·
NAE∑
j=1

2AAEj bAEj λj

+A3(

∞∑
k=1

φ1kq1k)

∞∑
l=1

φ1lq1l · δ),

λ̇j = kTAE

∞∑
k=1

φ1kq1k −
bAEj V∞

b
λj ,

(A.7)

with λj being split into components corresponding to each velocity mode as

λj =
∞∑
k=1

kTAEφ1kqa,jk. (A.8)
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Appendix B

The guidance algorithm used in Section 3.3.3 is based on the waypoint tracking

mechanism proposed in [116], we now introduce relevant details for easy reference.

*

*

* *

*

WP1

switching area

WP2

WP3
WPn-1

WPn

Figure 1: Illustration of the waypoint tracking.

As depicted in Fig. 1, the desired flight path is described by the connection

of multiple waypoints (WP1 to WPn) which are defined by the altitude, longitude

and latitude coordinates. The guidance algorithm aims to direct the aircraft to

follow these waypoints in sequence using a waypoint switching strategy. We assume

the aircraft is initially flying from WP1 towards WP2, where WP1 is denoted as

the departure waypoint and WP2 as the destination waypoint. We also define the

distance between the aircraft’s current position (which is sensed by onboard GPS

sensors) and the destination waypoint as the ”distance to travel” denoted by Dwp.

As the aircraft approaches to WP2, if Dwp is less than a given value, the aircraft

enters the switching area, in which WP2 becomes the new departure waypoint and

WP3 becomes the new destination waypoint. The guidance algorithm then directs

the aircraft to fly from WP2 towards WP3 and follows the same switching mech-

anism until the aircraft reaches the final destination waypoint WPn. During this

process, the waypoint tracking algorithm generates reference commands and neces-

sary guidance information to the control system to achieve altitude tracking in the

vertical plane and to keep the aircraft aligned with the straight line between the
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departure and destination waypoint in the horizontal plane.

To perform such waypoint tracking, the ”distance to travel” Dwp, the lateral

displacement S and the lateral speed Ṡ are required. The formulations of these vari-

ables are derived using the aircraft’s current position and velocity, and the departure

and destination waypoint information as below.

The lateral displacement S (see Fig. 3.5) is derived as

S = Rp · (
π

2
− arccos(

κ1 × κ0

|κ1 × κ0|
· κ))

Rp = Rc ·

{
1 +

E2
D

2
·

[
1

1 +
(
1− E2

D

)
· tan(Lat)

− 1

]}

κ1 = [cos(BEC1) cos(Late), cos(BEC1) sin(Late), sin(BEC1)]>

κ0 = [cos(BEC0) cos(Lats), cos(BEC0) sin(Lats), sin(BEC0)]>

κ = [cos(BEC) cos(Lat), cos(BEC) sin(Lat), sin(BEC)]>

BEC = arctan((
H +Rd
H +Rc

)2 · tan(Lat)

BEC0 = arctan((
H +Rd
H +Rc

)2 · tan(Lats)

BEC1 = arctan((
H +Rd
H +Rc

)2 · tan(Late)

(B.1)

in which Rc ≈ 6378137m is the Earth’s equatorial radius, Rd ≈ 6356752m is the

Earth’s polar radius, ED ≈ 0.0033523 is the flattening of the Earth. Lon, Lons

and Lone are the longitude coordinate of the aircraft’s current position, departure

waypoint and destination waypoint, respectively. Lat, Lats and Late are the latitude

coordinate of the aircraft’s current position, departure waypoint and destination

waypoint, respectively. H is the altitude of the aircraft. The symbol ”×” denotes

the cross product operator.
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The lateral speed Ṡ is derived as

Ṡ =


Vdn · cos(ν)− Vde · sin(ν) if Late < Lats

Vdn · cos(ν) + Vde · sin(ν) if Late > Lats

ν = arccos(
κ4 × κ3

|κ4 × κ3|
· κ2)

κ2 = [− sin(Lat) cos(Lon),− sin(Lat) sin(Lon), cos(Lat)]
>

κ3 = [cos(Lats) cos(Lons), cos(Lats) sin(Lons), sin(Lats)]
>

κ4 = [cos(Late) cos(Lone), cos(Late) sin(Lone), sin(Late)]
>

(B.2)

where Vdn and Vde are the northern and eastern component of the ground speed,

respectively, which can be obtained through the onboard GPS sensors.

The ”distance to travel” Dwp is derived as

Dwp =
√

∆x2 + ∆y2

∆x = Rp · cos(BEC1) · (Lon − Lone)

∆y = Rp · (BEC −BEC1)

(B.3)

where Rp, BEC and BEC1 follow the definitions in (B.1).
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