A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/157543

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications


http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/157543
mailto:wrap@warwick.ac.uk

A/

WARWICK

THE UNIVERSITY OF WARWICK

Modular Representation Theory of Algebraic
Groups and Their Lie Algebras

by

Matthew Westaway

Thesis
Submitted to the University of Warwick
for the degree of

Doctor of Philosophy in Mathematics

Mathematics Institute

March 2020



Contents

List of Tables iii
Acknowledgments iv
Declarations v
Abstract vi
Chapter 1 Introduction 1
Chapter 2 Preliminaries 8
2.1 Lie algebras in positive characteristic . . . . . . ... ... ... ... 8
2.1.1 Lie algebras and universal enveloping algebras . . .. .. .. 8

2.1.2 Representations of Lie algebras . . . . . .. ... .. ... .. 9

2.1.3 Structure in positive characteristic . . . . . . ... ... ... 10

2.2 Hopfalgebras . . . . . . . ... 12
2.2.1 Definitions . . . . ... 12

2.2.2 Extensions . . . . . . ... e 16

2.3 Algebraic groups and their representation theory . . ... .. .. .. 19
2.3.1 Algebraic groups . . . . . . ... oo 19

2.3.2 The distribution algebra . . . . . . .. ... ... ... 20

2.3.3 Representation theory of distribution algebras. . . . . . . .. 22

2.3.4 Frobenius kernels . . . . . .. ... oL 23

2.4 Reductive groups and their Lie algebras . . . . . . .. ... ... .. 28
2.4.1 The structure of reductive groups and their Lie algebras . . . 29

2.4.2 Divided powers . . . . . . ... 31

2.4.3 Representations of reductive Lie algebras . . . .. ... ... 33

2.4.4 Representations of reductive groups and their Frobenius kernels 35
Chapter 3 Higher Deformations - Constructions 38
3.1 Differential operators . . . . . . . ... ... ... 38
3.1.1 Sheaves of differential operators . . . . . . .. ... ... ... 38

3.2 Thealgebra UUN(G) . .. ... ... .. ... .. 40

3.2.1 Filtered algebras . . . . . ... ... ... . .. 40



3.2.2 Higher universal enveloping algebras . . . . . ... ... ... 41

3.3 The algebra structure of UUN(G) . .. ... L 43
3.3.1 Initial structural results . . . . . .. ... ... ... ..., 43
3.3.2 Reductive groups . . . . . . ... oo 51

3.4 Affine algebraic groups . . . . . . ... oo 57
3.4.1 Centres . . . . . . . 57
3.4.2 Comparison with Kaneda-Ye construction . . . . ... .. .. 58

3.5 Higher reduced enveloping algebras . . . . . .. ... ... ... ... 58
3.5.1 Deformation algebras . . . ... .. ... .. ......... 58
3.5.2 Frobenius kernels . . . . . .. ... oL 60
3.5.3 Examples . . . . . . ... 61

Chapter 4 Higher Deformations - Representation Theory 63

4.1 Representation theory of UI'N(G) . . .. ... ... ... ... 63
4.1.1 Decomposition of UI'N(G)-modules . . . . ... ... ... .. 63
4.1.2 Steinberg decomposition . . . . . .. ..o 68
4.1.3 Teenage Verma modules . . . . . .. .. ... ... ... ... 74
4.1.4 Consequences . . . . . . . .t 77

4.2 The Azumaya locus of UUN(G) . . . .. ... ... ... 80
4.2.1 Azumaya and pseudo-Azumaya loci . . . .. ... ... ... 80

4.2.2 Pseudo-Azumaya loci for higher universal enveloping algebras 84

Chapter 5 Integration of Modules - Stability 88
5.1 G-stable modules for abstract groups . . . . . . ... ... ... .. 88
5.1.1 Automorphisms of indecomposable modules . . . . . . .. .. 88

512 (L,H)-Morphs . . . ... ... ... ... .. .. ... ... 89

5.1.3 Module extensions . . . . . ... ..o 94

5.1.4 Extension from not necessarily normal subgroups . . . . . . . 96

5.1.5  Comparison with C*(G/L; A) . . . . ... .. ... ... ... 96

5.2 (G-stable modules for algebraic groups . . . .. .. ... ... .... 98
5.2.1 Rational and algebraic G-modules . . . . ... ... ... .. 99

5.2.2 Rational and algebraic cohomologies . . . . . . ... ... .. 101

5.2.3 G-Stablebricks . . . . ... oL 105

5.2.4 G-Stable modules with soluble automorphisms . . . . . . .. 110

5.2.5 Comparison with Cp,,(G/L;A) . . . ... ... ... ..... 112
Chapter 6 Integration of Modules - Exponentials 114
6.1 Over-restriction . . . . . . . . . ... 114
6.1.1 Over-restricted representations . . . . . .. ... ... .... 114

6.1.2 Higher Frobenius kernels. . . . . .. ... ... ... ..... 121

6.2 Applications . . . . . . . ... 124

6.2.1 Applications of Higher Frobenius Conjecture . . . .. .. .. 124

ii



6.2.2 Examples . . . .. .. 125
6.2.3 Conclusion . . . . . . . . . e 128

Bibliography 129

List of Tables

6.1 Coxeter numbers and coefficients a (Classical type) . . . . . . . . .. 125
6.2 Coxeter numbers and coefficients a (Exceptional type) . . . . . . .. 125
6.3 G,-extension requirements in characteristic p (Smaller ranks) . . . . 126

6.4 G,-extension requirements in characteristic p (Larger ranks) . . . . . 127

iii



Acknowledgments

The following thesis would not have been possible without the support and assistance
of my PhD supervisors Dmitriy Rumynin and Inna Capdeboscq. I would also like
to thank them for suggesting these (and other) topics for me to study, and to thank
Dmitriy for his co-authorship with me of the two papers which make up Chapters 5
and 6. More generally, I wish to extend my thanks to the whole of the University of
Warwick for providing a great environment in which to undertake my postgraduate
study.

Furthermore, I would like to thank Lewis Topley for some useful conversations
regarding the material in this thesis, as well as for giving me the opportunity to
present some of this research at the University of Kent. Similarly, I want to thank
Alexander Premet and Simon Goodwin for allowing me to talk about my research at
the University of Manchester and the University of Birmingham. My thanks also go
out to the various referees of the papers which make up these thesis, many of whom
have made valuable comments which led to changes in the papers. Thanks also go
to Ami Braun, Jim Humphreys and Stephen Donkin for valuable discussions about
the content of Chapters 5 and 6 with my coauthor for those papers. I would also
like to thank the examiners of this thesis, Alexander Premet and Adam Thomas,
for their useful comments and corrections.

Finally, I greatly want to thank my parents for supporting me during my post-

graduate study and in everything else I do.

v



Declarations

This thesis is being submitted for the degree of Doctor of Philosophy in Mathema-
tics. This PhD was undertaken at the University of Warwick and was funded by a
studentship from the Engineering and Physical Sciences Research Council.

The original work in this thesis is entirely contained in the following four
papers: [Westaway, 2018], [Westaway, 2019], [Rumynin and Westaway, 2018], and
[Rumynin and Westaway, 2019]. The former two papers were completed solely by
the author, except at points explicitly indicated in the text. The latter two pa-
pers were completed jointly with my PhD supervisor, Dmitriy Rumynin. The paper
[Rumynin and Westaway, 2019] has been published in the Pacific Journal of Mat-
hematics. The paper [Westaway, 2018] has been accepted for publication by the
Journal of the Mathematical Society of Japan. The paper [Westaway, 2019] has
been accepted for publication by the Nagoya Mathematical Journal. The remaining

paper is currently under review at a journal.



Abstract

Each affine algebraic group G over an algebraically closed field K of positive
characteristic comes equipped with a Frobenius morphism, which corresponds to
the p-th power map on the associated coordinate algebra. The kernel Gy of this
morphism is called the first Frobenius kernel and is a normal subgroup scheme of
G. Its representation theory is precisely the restricted representation theory of g,
the Lie algebra of G.

This correspondence comes from an isomorphism between the restricted envelo-
ping algebra of g and the distribution algebra of G1; the former is a central quotient
of U(g), while the latter is a Hopf subalgebra of the distribution algebra of G — a
Hopf algebra closely related to the representation theory of G. By deforming the
restricted enveloping algebra of g we obtain the reduced enveloping algebras U, (g).
Every irreducible g-module is an irreducible U, (g)-module for some x € g*.

The first question tackled by this thesis is whether a similar deformation theory
can be developed for the higher Frobenius kernels G, of G, obtained by composing
F with itself multiple times. We find that it can, and exhibit a number of structural
results about the corresponding algebras, as well as proving many results about their
representations.

The second question considered here is when a restricted representation of g
can be integrated to G. This can easily be rephrased as a question about extending
representations from G to G. Two approaches to this problem are taken. The first
uses stability and obtains an algorithm placing cohomological conditions on a posi-
tive answer to this question. The second uses exponentials, and affirmatively answers

the question for a certain type of representation which we call over-restricted.

vi



Chapter 1

Introduction

Let G be an algebraic group. This is a mathematical object which lies in the
intersection of two fields of study: it is a variety, placing it in the field of algebraic
geometry, but it also satisfies the axioms for a group, giving it a home within the
study of group theory. Both algebraic geometry and group theory employ in their
study an idea which has been in use for hundreds of years. This idea is quite simple:
linear objects are straightforward to understand, so the more linear one can make a
complicated object, the easier it is to comprehend. Within algebraic geometry, this
idea appears in the form of tangent spaces; within group theory, in representations.
When trying to employ this idea for algebraic groups, therefore, we have multiple
avenues to explore.

More explicitly, the tangent space of G at the identity has the structure of a
Lie algebra - we call it g. As indicated above, we would like to understand the
relationship between G and g, and we would like to understand the representation
theory of G. Combining these two goals, we may sensibly ask the question: how
closely related are the representation theories of G and g7

The algebraic group G is defined over an algebraically closed field K. As in other
areas of study, the characteristic of K plays an important role in how we develop
answers to this question. When the characteristic of K is zero, many results are
known - some of these will be surveyed below. In prime characteristic, however, the
existing record is less extensive.

One key difference between the cases of zero and non-zero characteristic is the
role of the universal enveloping algebra of g, which we denote U(g). In positive
characteristic, one has to distinguish between U(g), which is only defined from the
Lie algebra, and the distribution algebra Dist(G), whose elements are linear maps
 : K[G] — K satisfying an additional property. Both contain g as a Lie subalgebra,
and a G-module can be easily given the structure of a module over either of these
algebras. In characteristic zero U(g) and Dist(G) coincide, but in characteristic
p > 0 they are different objects. The representation theory of g is closely related (in
fact, identical to) the representation theory of U(g), but the representation theory
of G is better captured by the representation theory of Dist(G).



As a result, understanding representations of an algebraic group and its Lie
algebra requires the study of both the universal enveloping algebra and the distri-
bution algebra, as well as the connection between the two. The connection largely

stems from the isomorphism
Uo(g) = Dist(G1), (1.1)

where Up(g) is a quotient of U(g) and Dist(G1) is a Hopf subalgebra of Dist(G).
This connection is somehow the starting point of this thesis, and it is from this

common groundwork that the thesis breaks into two halves.
A Question of Friedlander and Parshall

In 1988 and 1990, Eric Friedlander and Brian Parshall published a pair of pa-
pers! exploring the modular representation theory of Lie algebras. They obtained a
number of important results on this topic and at the end of their 1990 paper they
posed several questions for further study. One of these, numbered (5.4), asked the

following;:

‘‘Do the [reduced enveloping algebras UXQQ] have natural ana-
logues corresponding to the infinitesimal group schemes G,
[the higher Frobenius kernels] associated to G [an algebraic
group over an algebraically closed field of positive charac-—

teristic] for r>12’ 12

Let us briefly recall the background to this question. Given a linear form x € g*,

we define the reduced enveloping algebra

_ U(g)
(ap —all — x(z)r |z e g)’

Ux(9) :

where z — [Pl is the p-th power map with which the restricted Lie algebra g
is equipped. The reduced enveloping algebras are important for a reason: every
irreducible g-module is an irreducible Uy (g)-module for some x € g*. As a result,

understanding the U, (g) is key to understanding the irreducible representations of

g.?

When y = 0, we precisely obtain the algebra Uy(g) mentioned earlier, called
the restricted enveloping algebra of g. Using the isomorphism in (1.1) we may hence
describe the reduced enveloping algebras U, (g) as deformations of Dist(G1).

What is Dist(G1)? This is simply the distribution algebra of the infinitesimal
group scheme G, the first Frobenius kernel of G. The first Frobenius kernel is

obtained as the kernel of some homomorphism F' : G — (G, so we may iterate the map

![Friedlander and Parshall, 1988] and [Friedlander and Parshall, 1990].
2See [Friedlander and Parshall, 1990].
3This fundamental observation can be found most notably in [Kac and Weisfeiler, 1971].



to obtain the higher Frobenius kernels G, of G. This bring us back to Friedlander
and Parshall’s question, which ultimately asks whether similar deformations exist
for Dist(G,) with r > 1.

To answer this question, we must first define and study a family of higher
universal enveloping algebras U] (G) for r € N, analogues of the universal enveloping
algebra in these higher cases. When r = 0, this algebra is precisely U(g), and the
family of algebras {Ul")(G)},en form a direct system with limit Dist(G). This family
of algebras was first introduced in [Kaneda and Ye, 2007], however their study of
it was related primarily to its connection to the study of arithmetic differential
operators. The sum and substance of their results on the structure of this algebra
can be found in Subsection 3.1.1 of this thesis, and this algebra has been minimally
studied since then. Indeed, Kaneda and Ye’s construction is not especially useful for
the goals of this thesis and we define the algebra UI'/(G) in a different way, before
showing that these constructions are isomorphic in Subsection 3.4.2.

The higher universal enveloping algebras U [T](G) share many similarities with
the universal enveloping algebras. They are finitely generated over their centres
(Proposition 3.4.1.1), all of their irreducible modules are finite-dimensional (Theo-
rem 3.4.1.2), and they have a Poincaré-Birkhoff-Witt basis (Corollary 3.3.1.8 and
Proposition 3.3.2.2). In fact, there exist surjective Hopf algebra homomorphisms
Ulrl(G) — U(g)™ for each r € N by Proposition 3.2.2.1 and Corollary 3.2.2.3.%
Furthermore, Lemma 3.3.1.1 enables us to define a notion of p-th powers in these
algebras, and hence to define the algebras U>[<T] (G) indexed by x € g*. These U>[<r](G)
are the analogues of the U, (g) in this higher setting, and every irreducible U"l(G)-
module is an irreducible U>[<r] (G)-module for some x € g* (Proposition 3.5.1.2).

In Chapter 4 we restrict to the case of reductive groups and show, conside-
ring here irreducible modules only up to isomorphism, that there is a well-defined
bijection,®

U, : I (UYN(G)) = Tir(Dist(G,)) x Trr(Uy(g)).

When x = 0, we recover Steinberg’s tensor product theorem by iterating this process.
More generally, the bijection allows us to derive various structural results about the
irreducible U>[<r] (G)-modules. In particular, given an irreducible Dist(G,)-module P
one can construct teenage Verma modules Z7 (P, ) which behave as the baby Verma
modules Z, () do in the r = 0 case (Proposition 4.1.3.4). This allows us to classify
all irreducible U)[CT](G)—modules when x is regular in Theorem 4.1.4.1. The main
techniques which allow us to prove these results come from the work of Schneider

and Witherspoon on Clifford theory for Hopf algebras.

“See [Berthelot, 1996] for more discussion of arithmetic differential operators.
SHere, U(g)(" indicates the ring U(g) with a twisted K-algebra structure.
5See Theorem 4.1.2.3 and Corollary 4.1.2.6.



The Humphreys-Verma Conjecture

Turning now to the second half of this thesis, we wish to examine when repre-
sentations can be integrated from a Lie algebra to the associated algebraic group.
To begin this discussion, suppose for the moment that G is a simply-connected
matrix Lie group over the complex numbers C, with Lie algebra g. Given a finite-
dimensional representation 6 : g — gl(V), it is well known that there exists a unique
Lie group homomorphism © : G — GL(V) such that d© = 6.7 In other words,
there is a one-to-one correspondence between finite-dimensional representations of
g and of G. Specifically, every element of G can be written as e*! ...e" for some

T1,...,Ty € ¢g. Defining

O(e™...e"") = @) eflan)

turns out to yield a representation of G.

A similar technique can be used to show that, if G is a semisimple simply-
connected algebraic group over a field of characteristic zero with semisimple Lie
algebra g, then G and g also have the same representations. This can also be seen
from the fact that the category of representations of g is a Tannakian category, with
G the associated affine algebraic group.®

In positive characteristic p > 0, however, things are more complicated. Firstly,
the only representations of g which can be obtained from G are the restricted repre-
sentations of g, i.e. those that preserve the p-structure. So, at a minimum, we have
to limit ourselves to consideration of restricted representations.

A second obstacle to understanding such a correspondence in positive characte-
ristic is the difference between irreducible and indecomposable representations. Let
us restrict our attention to a semisimple, simply connected algebraic group G over
an algebraically closed field K of characteristic p > 0, and let g be its Lie algebra.
Using the isomorphism in (1.1), restricted representations of g are precisely represen-
tations of the first Frobenius kernel G; of G. We are able to classify the irreducible
representations of G and of G, for all r > 1, and it is then straightforward to see
that every irreducible restricted representation of g extends to an irreducible repre-
sentation of G. The earliest proof of this result lies in [Curtis, 1960], but the reader
can also find a more in depth discussion in Chapters I1.2 and I1.3 of [Jantzen, 1987].

On the other hand, our understanding of the question for indecomposable repre-
sentations is a lot less complete. The following conjecture was made by Humphreys

and Verma,? and has become known as the Humphreys- Verma Conjecture:

Conjecture (Humphreys-Verma conjecture). Let G be a semisimple, simply-connected

algebraic group over an algebraically closed field K of positive characteristic p > 0.

"See, for example, Theorem 5.6 in [Hall, 2015].
8See, for example, [Milne, 2017].
9See, for example, [Humphreys, 1976], [Humphreys and Verma, 1973] and [Ballard, 1978].



Let V' be a projective, indecomposable G1-module. Then there exists a G-module

which restricts to V' as a G1-module.

The first person to study this conjecture in detail was Ballard in [Ballard, 1978].
He was able to prove this conjecture for p = 3h—3, where h is the Coxeter number of
G. This bound was then improved in [Jantzen, 1980]'° to p > 2h — 2. For arbitrary
primes, however, the question remains open. Up until 2019, it was believed that
a solution to this problem would come through Donkin’s Tilting Module Conjec-
ture, which in essence conjectured that all projective indecomposable G,.-modules
could be extended to indecomposable tilting G-modules. Instead, the recent pa-
per [Bendel et al., 2019] is able to provide a counterexample to the Tilting Module
Conjecture. Thus, the search for new methods to address the Humphreys-Verma
conjecture continues.

In this thesis, two such methods are given. These methods were developed
jointly with Dmitriy Rumynin, and also appear in [Rumynin and Westaway, 2018]
and [Rumynin and Westaway, 2019].

The first of which, in Chapter 5, is best understood through the lens of abstract
groups. In particular, the question at issue is whether (projective, indecomposable)
G1-modules can be extended to G-modules, so as an initial matter we can examine
when a representation (V) of a normal subgroup N of an abstract group H can
be extended to a representation of H.'! If a representation © of H indeed restricts
to 0, we must have that (V,0) is equivalent to the twisted representation (V,6") for
all h € H. In fact, the intertwiner of the two representations can be chosen to be
©(h). So one may naturally ask the question: if a representation (V, 6) of N satisfies
(V,0) = (V,0") for all h € H can we choose intertwiners T}, € GL(V') such that the
map O : H — GL(V) sending h to T}, is a representation of H extending 67

It turns out that this reduces to asking whether the intertwiners can be chosen
such that h — T} is a homomorphism. Furthermore, it can be shown that, for
hi,ho € H, the intertwiners can be chosen such that the linear map 7] hi o Ty, }12 is
an N-module automorphism of V. If the group of N-module automorphisms of V'
is soluble, with suitable subnormal series Auty (V) > Ay > ... > Ay = {1}, we then
give in Theorem 5.1.2.4 a process to determine whether, in fact, one can chose the
intertwiners such that the T, T, T}, }12 instead all lie in A;. This depends on the
vanishing of a certain cocycle in a suitable second cohomology group. Iterating the
process, we conclude that the vanishing of certain cocycles is enough to show that the
Th,Th, Th—ﬁtz lie in Ay = {1}, which gives the algorithm in Theorem 5.1.3.1, and more
specific existence and uniqueness tests in Corollary 5.1.3.2 and Corollary 5.1.3.3.

Adapting this method to algebraic groups and group schemes requires the fixing

198ee also T1.11.11 in [Jantzen, 1987].

"'This question has also been looked at in [Dade, 1981] and [Thévenaz, 1983], and our approach
bears some similarities with theirs. In particular, Theorem 5.1.3.1 generalises Corollary 1.8 and
Proposition 2.1 in [Thévenaz, 1983] to the case of a soluble automorphism group Autz (V). We
also use different cohomology groups than Dade and Thévenaz, in order to be able to translate our
approach to algebraic groups.



of some technicalities, which we do in Section 5.2, but the result ends up holding in
this case as well in Theorem 5.2.4.1. This leads to some cohomological conditions
for the existence (and uniqueness) of such an extension.

The second approach, in Chapter 6, makes use of exponentials. As discussed
above, when looking at Lie groups or algebraic groups over C, the general method
to integrate finite-dimensional representations is to use exponentials. In positive
characteristic, however, problems quickly arise in trying to use this method.

Specifically, given a restricted representation (V) of g, we can define for each

x € Np(g) (the p-nilpotent cone of g) the exponential

and the algebraic group Gy < GL(V') generated by these exponentials. We would
like these elements to satisfy the equation 0(e*®)(y)) = /@@ (y)e=0®) for all €
Ny(g), y € g. However, this will only hold in general if 6 is over-restricted, that is,
if O(z)lP+D/21 = 0 for all z € N,(g).

If the representation is, in fact, over-restricted, then we prove in Corollary 6.1.1.7
and Corollary 6.1.1.8 that under certain restrictions (including on the size of p)
can be lifted to a representation of Gy, which leads to a representation of G. It is
conjectured (Higher Frobenius Conjecture) that a similar process could be applied
for higher Frobenius kernels; if this holds then we find in Proposition 6.2.1.2 that,
under certain conditions, to integrate a projective indecomposable module from G4

to G it is enough to integrate from G to some higher Frobenius kernel G,..
Layout

After this introduction, the thesis starts with Chapter 2: Preliminaries. Here,
the background definitions and results necessary to understand the rest of the thesis
are explained, largely without proofs. This includes a discussion of Lie algebras
in positive characteristic in Section 2.1, Hopf algebras and Hopf-Galois extensions
in Section 2.2, algebraic groups in positive characteristic in Section 2.3, and the
representation theory of reductive Lie algebras and algebraic groups in Section 2.4.

Chapter 8: Higher Deformations - Constructions then begins the study of Fried-
lander and Parshall’s question. After a brief detour about the connection to the
theory of differential operators in Section 3.1, the initial construction of the hig-
her universal enveloping algebras Ul"1(G) is given in Section 3.2. This section also
shows how these algebras are connected to the universal enveloping algebras U(g).
Sections 3.3 and 3.4 then prove a number of structural results about these alge-
bras, including the existence of a p-centre and a Poincaré-Birkhoff-Witt basis. The
construction of the higher reduced enveloping algebras U)[(r] (G), as desired by Fried-
lander and Parshall, is then conducted in Section 3.5, where some basic properties

of these algebras are also given.



The next chapter, Chapter 4: Higher Deformations - Representation Theory,
delves into the representation theory of the higher reduced universal enveloping
algebras U>[<r](G) when G is reductive. Specifically, focusing on irreducible represen-
tations, in Section 4.1 an analogue for Steinberg’s tensor product theorem is proved
for the U)[(T] (G), the teenage Verma modules Z} (P, A) are constructed, and a number
of consequences are derived. Then, Section 4.2 explores some questions related to
the centres and Azumaya loci of the UI(G).

Chapter 5: Integration of Modules - Stability then turns to the Humphreys-
Verma conjecture and related topics, and tackles the first approach to the problem.
This begins with Section 5.1, which deals with the case of abstract groups. Specifi-
cally, it introduces (L, H)-morphs and gives the construction of an “exact sequence”
which is then used to give an algorithm giving cohomological conditions on whether
modules can be extended from normal subgroups. Section 5.2 then repeats this
process for algebraic groups, naturally having to spend more time on some of the
algebro-geometric problems that arise in this case.

The thesis concludes with the second approach to Humphreys-Verma related
problems in Chapter 6: Integration of Modules - Exponentials. Section 6.1 defines
over-restricted and r-over-restricted representations of g, and proves (or conjectures)
some results concerning when these representations can be integrated to representa-
tions of G. Applications of these results to the Humphreys-Verma conjecture itself

are then given in Section 6.2.



Chapter 2

Preliminaries

2.1 Lie algebras in positive characteristic

2.1.1 Lie algebras and universal enveloping algebras

A Lie algebra over an algebraically closed field'? K is a K-vector space g equipped
with a bilinear map [-,-] : g x g — g (the Lie bracket of g) which satisfies

1. [z,z] =0 for all z € g.

2. [z, [y, 2]] + [y, [z, z]] + [z, [z,y]] = 0 for all x,y, z € g.

The Lie bracket of g clearly satisfies [x,y] = —[y,z] for all z,y € g, and we call
g abelian if [z,y] = 0 for all z,y € g. A homomorphism of Lie algebras
f (o1, ]1) — (g2,[,-]2) is a linear map f : g1 — go such that f([z,y]1) =

[f(fb), f(y)]2 for all z,y € g1.
One common source of Lie algebras is associative algebras: an associative alge-

bra A can be made into a Lie algebra by defining the Lie bracket [z,y] = zy — yx
for all 2,y € A. This Lie algebra is denoted A(~). For example, this process allows
us to define the Lie algebra gl,, := Mn(K)(_) and its Lie subalgebra

sl, = {A e M,(K)7) | Trace(A) = 0}.

The universal enveloping algebra of a Lie algebra g is the associative algebra

7(g)
U(g) = —=

()=
where T'(g) is the tensor algebra of g and @ is the 2-sided ideal generated by the
elements

ry—yQz—[z,y]

2In this thesis we only consider algebraically closed fields. Some statements, especially in this
chapter, will hold in greater generality; however, the benefits to taking a case-by-case approach are
outweighed by a desire for clarity and consistency.



for 2,y € g. Letting + : g — U(g)(") be the natural Lie algebra homomorphism, the

following proposition justifies the “universal” nomenclature.

Proposition 2.1.1.1. Let A be an associative algebra, and let 0 : g — A be a Lie
algebra homomorphism. Then there exists a unique homomorphism of associative
algebras 6 : U(g) — A such that 6. = 6.

A priori, it is not clear that ¢ need be an injective map. However, this fact follows
from the following explicit description of a basis of U(g). We state the theorem for

finite-dimensional g, although it can be generalised to the infinite-dimensional case.

Theorem 2.1.1.2 (Poincaré-Birkhoff-Witt Theorem). If x1,...,z, is a basis of g,

then U(g) has a basis consisting of the elements' it alr with a; = 0 for all .

2.1.2 Representations of Lie algebras

One of the key reasons for defining universal enveloping algebras is their connection
with representation theory. A g-module (equivalently, a representation'* of g)
is defined to be a pair (V,0) where V is a K-vector space and 6 is Lie algebra
homomorphism g — gl(V'). Given x € g and v € V we often write x - v, or simply
zv, for the element 6(z)(v). The universal property of U(g) implies that there is an
equivalence of categories between g-modules and U (g)-modules.

We are particularly interested in irreducible and indecomposable g-modules.
Definition. Let (V,0) be a g-module.

(1) We call a subspace W of V g-invariant if 0(x)(w) € W for all x € g and
weW.

(2) We say that (V,0) is irreducible if V' # 0 and the only g-invariant subspaces
of V are 0 and V.

(3) We say that (V,0) is indecomposable if the only pairs of g-invariant subspa-
ces X and W such that V.= X@®W are (X,W) = (0,V) and (X,W) = (V,0).

Remark 1. All irreducible g-modules are clearly indecomposable. Over a field of
characteristic zero, it is also true that all finite-dimensional indecomposable modules
are irreducible. However, this converse can fail in positive characteristic. See, for
example, [Jacobson, 1952] (exhibiting a g-module which can be decomposed into a

direct sum of indecomposable modules, but not a direct sum of irreducible ones).

To obtain some examples of Lie algebra representations, let G be an affine

algebraic group!® and let K[G] be its coordinate algebra (i.e. the algebra of regular

3Note that in the universal enveloping algebra U(g) we generally suppress the tensor product
notation and simply write zy for x ® y.

MThroughout this thesis we avoid parsing the difference between modules and representations
and the words will be used interchangeably.

15See Subsection 2.3.1, infra, for further discussion of affine algebraic groups.



functions G — K). A morphism G — G gives rise to a ring endomorphism of K[G],
and in this manner we can construct, for each z € G, an endomorphism \, of K[G]
corresponding in G to left multiplication by z.

We further recall that a linear map D : K[G] — K[G] is called a derivation if

D(fg) = fD(g) + D(f)g

for all f,g € K[G], and we denote by Derkx(K[G]) the vector space of all such
derivations. This is in fact a Lie algebra under the Lie bracket [Dy, Ds] := Dj o
Dy — Dy o D;q.

The Lie algebra of G, which we write as Lie(G) or as g, is then defined to be

Lie(G) = {D € Derg(K[G]) | Az © D = D o \; for all x € G},
which one can check is a (finite-dimensional) Lie subalgebra of Derg (K|[G]).

2.1.3 Structure in positive characteristic

Given two derivations 7 and o in Lie(G) = g, it is not true in general that o o7
is a derivation. However, when the field K has characteristic p > 0, we have the

following equation:
P
i) = 3 (0)7 0 a) = 700+ 77
=0

In other words, 7P is a derivation and furthermore it is left invariant. Hence, we
define a map P] : g — g which sends § € g to 6[P! := §7.16 For the rest of this section

we assume that the characteristic of K is p > 0.
Proposition 2.1.3.1. The map P! : g — g satisfies the following two properties:

(1) The map € : g — U(g) given by sending x € g to zP — zP) in U(g) has image
in the centre of U(g).

(2) The map & is semilinear, i.e. &(ax + by) = aP&(x) + bPE(y) for all a,b € K,
T,y € g.

Proof. See A.2 in [Jantzen, 2004]. O

Definition. A (finite-dimensional) Lie algebra g equipped with a map [p] . g—0
which satisfies the conclusions of Proposition 2.1.3.1 is called a restricted Lie

algebra, and [P is called the p-th power map on g.

16From this point on, for § € g, we always write 5] for the p-times composition of § with itself,
and use 67 to mean the p-th power of ¢ as an element of the associative algebra U(g).
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Remark 2. We may, of course, define restricted Lie algebras of arbitrary dimension
using the same criteria. However, many of the results that follow require finite-
dimensionality of g in order to hold, so for this thesis we limit ourselves to the study

of restricted Lie algebras of finite dimension.

Given a homomorphism of algebraic groups f : G; — (G2, we obtain the de-
rivative df : Lie(G1) — Lie(G2) as the derivative of the underlying morphism of
varieties (we call this process differentiation). The map df is a Lie algebra homo-
morphism. Since Lie(GL(V)) = gl(V) for a K-vector space V,if © : G — GL(V) is
a homomorphism of algebraic groups, i.e. a representation of G, then differentiating

gives dO : g — gl(V). This hence equips V' with the structure of a g-module.

Proposition 2.1.3.2. The representation dO of g satisfies the equation d@(x[p]) =
dO(x)? for all z € g.

Proof. See Section 1.3.19 in [Borel, 1991]. O

As discussed in the introduction, over a field of characteristic zero all represen-
tations of a Lie algebra Lie(G) are derivatives of representations of the algebraic
group G, if G is semisimple and simply-connected. Proposition 2.1.3.2 is the key

reason why this fails in positive characteristic.

Definition. Let g be a restricted Lie algebra. A g-module (V, ) is called restricted
if 0(z)P = 0(x[P!) for all z € g.

Even without limiting ourselves to restricted representations, the existence of a
p-th power map on g has some significant consequences for its representation theory,

as the following results show.

Proposition 2.1.3.3. If g is a restricted Lie algebra then all irreducible g-modules
are finite-dimensional. Furthermore, the dimension of these irreducible modules is

bounded by pdim(@),

Proof. See A.4 in [Jantzen, 2004]. O

Proposition 2.1.3.4. If g is a restricted Lie algebra and V is an irreducible g-
module (hence an irreducible U(g)-module) then there exists x € g* such that, for

anyveV and x € g,

(2P — 2Py -y = y(2)Po.
We call x the p-character of V.

Proof. Since P —zlP! is central in U (g) the linear map f : V — V which sends v € V
to (27 — zP)) . v is a U(g)-module endomorphism. Since V is finite-dimensional, the
result then follows from Schur’s lemma!” and the semilinearity of the map = —

aP — zlpl, O

17Schur’s lemma: Let A be an algebra over an algebraically closed field K, and let V be a finite-
dimensional irreducible A-module. Then End4 (V) is a division ring. Furthermore, if f:V — V is
an A-linear endomorphism then there exists A € K such that f(v) = Av for all ve V.

11



This proposition motivates the following definition. For x € g*, define

Ulg)

Ux(g) = (xP — ) — x(2)P | 2 € g)

We call U, (g) a reduced enveloping algebra of g, and we call Uy(g) the re-

stricted enveloping algebra of g.

Corollary 2.1.3.5. Every irreducible g-module is an irreducible Uy (g)-module for

some x € g*.

Remark 3. This corollary can be used to improve the upper bound on the dimension
of irreducible g-modules to pi™®/2 a5 in Section 2.8 of [Jantzen, 1997].

Observe that restricted representations of g are precisely those which factor
through Up(g). In particular, this implies that g-modules which factor through
Uy(g) for x # 0 are not derived from G-modules. The following proposition gives a

analogue of the Poincaré-Birkhoff-Witt Theorem for reduced enveloping algebras.!®

Proposition 2.1.3.6. For x € g*, the reduced enveloping algebra U,(g) is an as-

dim(g)

sociative K-algebra of dimension p Furthermore, if x1,...,z, is a basis of g,

then U, (g) has basis
{etz3? ...zl |0<a;<pforalll<i<n}.
For each g € GG, we can define a homomorphism ¢, : G — G which sends h to

ghg™!
and hence an action of G on g called the adjoint action. We can furthermore use

. Differentiating gives a Lie algebra homomorphism Ad(g) := dcy : g — g,

this to define an action of G on g*, called the coadjoint action. This is defined by

g9-x(x) = x(Ad(g)"!(x)) for ge G, x € g* and z € g.

Proposition 2.1.3.7. For each g € G, there is an isomorphism

Uy(g) = Ugy(9)-

Proof. See A.8 in [Jantzen, 2004]. O

2.2 Hopf algebras

2.2.1 Definitions

In Subsection 2.1.1, supra, we reviewed the construction and properties of the uni-
versal enveloping algebra of a Lie algebra g. In Subsection 2.3.2, infra, we discuss
the distribution algebra Dist(G) of an algebraic group G. An important commo-
nality between the algebras U(g) and Dist(G) is that they are both Hopf algebras.

'83ee A.7 in [Jantzen, 2004].
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To proceed with their study we therefore need to discuss some properties of Hopf
algebras. In this section, we take K to be an algebraically closed field of arbitrary
characteristic.

Recall that a K-algebra!? is a triple (A, m,u), where A is a K-vector space and
m:A® A — A (multiplication) and u : K — A (unit) are linear maps,2° with the
property that

mo(m®id) =mo (id®m), and mo (u®id) =1id =mo (id®u).

We say that A is commutative if m(a®b) = m(b®a) for all a,b € A. Furthermore,
a homomorphism of K-algebras f : (A,m,u) — (A’,m’,«) is a linear map f :
A — A’ such that

mo(f®f)=fom, and fou=1

By dualising, we obtain the definitions for coalgebras. Namely, a K-coalgebra is
a triple (C, A, €), where C is a K-vector space and A : C' — C®C (comultiplication)
and € : K — A (counit) are linear maps, with the property that

(A®id)o A =(id®A), and (e®id)oA =1id= (id®u)o A.
Note that we use Sweedler’s Y-notation for comultiplication, i.e., for ¢ € C' we write
A(C) = 26(1) ®C(2) eC®C.

A coalgebra is called cocommutative if Y c) ® co) = X ¢y ®cqq) for all ce C.
A homomorphism of K-coalgebras f : (C,A,e) — (C',A’,€) is a linear map
f: C — O’ such that

(F®f)oA=Aof and &of=c

Suppose that (4, m,u) is a K-algebra and (C, A, ¢) is a K-coalgebra. Then the
vector space Homg (C, A) can be made into an algebra whose multiplication, called

the convolution product, is described via

(f = 9)(e) = D Fleayglee)

for f,g € Homg(C, A) and ¢ € C. The unit of this algebra is ue, and we say that
f € Homg(C, A) is convolution invertible if there exists g € Homg(C, A) such
that f+g=wue=g=* f.

19We may simply refer to K-algebras as algebras when the field is clear. Furthermore, the
reader should note that in this section when we discuss algebras without any further qualifier we
are referring to associative algebras.

29Here, and throughout this thesis, an unadorned tensor product ® shall be taken to mean tensor
product over the ground field K, i.e. ®xk.
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We may also discuss modules (resp. comodules) over algebras (resp. coalgebras).
If (A,m,u) is an algebra (resp. (C, A, ¢€) a coalgebra) then a left A-module (resp.
left C-comodule) is a K-vector space M equipped with a linear map p: AQ M —
M (resp. w: M — C' ® M) such that

po(m®id) =po(id®m), and po(u®id) =id

(resp. (A®id)ow = (id®A)ow, and (e®id)ow =id).

(Note that we also use Sweedler’s Y-notation for comodules. In particular, if M
is a C-module, we write w(m) = > m ) ® m(y) for m € M, where m;y € C' and
mg) € M.) We can similarly define right modules?! (resp. right comodules). A
homomorphism of left A-modules (resp. C-comodules) is then a linear map
f: M — M’ such that

fop=po(id®f) (resp.w'of=(id® f)ow).

Notation. We denote by Mod(A) the category of all (left) A-modules, mod(A) the
category of all finite-dimensional (left) A-modules, and Irr(A) the category of all
irreducible (left) A-modules.?

We may combine the structure of an algebra and a coalgebra to obtain a bial-
gebra. Namely, a K-bialgebra?? is a vector space B equipped with maps m,u, A
and e such that (B,m,u) is an algebra, (B,A,¢) is a coalgebra, and the maps
A:B - B®B and ¢ : B — K are algebra homomorphisms.?* Equivalent to the
latter condition is the requirement that the maps m : BQB — B and u: K — B are
coalgebra homomorphisms.?® If (B, m,u, A, ¢) and (B, m/,u’, A’,£’) are bialgebras,
a bialgebra homomorphism is a linear map f : B — B’ which is both an algebra
homomorphism and a coalgebra homomorphism.

We can now give the definition of a Hopf algebra.

Definition. A K-Hopf algebra® is a K-bialgebra (H, m,u, A, €) equipped with a
K-linear map S : H — H, which we call the antipode of H, such that the diagram

2n this thesis, the word module without qualifier will be taken to mean a left module.

22Recall that a module M over an algebra A is called irreducible if has no proper non-zero
submodules. We do not distinguish notationally between the category of irreducible modules and
the category of finite-dimensional irreducible modules, since for almost all A relevant to this thesis
they will be identical.

231f the field K is clear, we may simply refer to a bialgebra instead of a K-bialgebra.

2"Note here that B ® B is a K-algebra with multiplication induced by mpgp (b1 ® b2, by @ bs) =
b1by ® babh, for by, by, ba, by € B, and with unit 1 ® 1.

**Here, B®B is a coalgebra with comultiplication induced by Apgs(b@b) = 3(b1 @b})® (b2 @b%)
and with counit sending b ® b’ to £(b)e(b).

251f the field K is clear, we may simply refer to a Hopf algebra instead of a K-Hopf algebra.

14



H S®id H ® H 1d®S H
Tu TA TU
K < H < K

commautes.

The reader should note that the condition on S precisely means that S is con-

volution invertible in Homg (H, H).

Definition. Let (H,m,u,A,e,S) and (H',m' v/, A’ ¢',S") be Hopf algebras. A
Hopf algebra homomorphism f : (H,m,u,A,e,S) —» (H',m/' v/, A" &', 5") is a
bialgebra homomorphism such that S'f(h) = fS(h) for all he H.

Definition. Let (H,m,u,A,e,S) be a Hopf algebra.’” Let A be a vector subspace
of H.

(1) We say that A is a Hopf subalgebra of H if A is a subalgebra®® of H,
A(A) S A® A and S(A) < A.

(2) We say that A is a Hopf ideal of H if A is a (two-sided) ideal®® of H,
AA) S AQH+H®A, S(A) < A and e(A) =0.

Remark 4. If I is a Hopf ideal of H then the quotient algebra H/I can be equipped
with the structure of a Hopf algebra, where

A(h+1) = Z(h(l) +1)® (heg) + 1),

e(h+1)=c¢e(h)

and
S(h+1)==S(h)+1I.

Furthermore, the natural surjection H — H /I is a homomorphism of Hopf algebras.

Since a Hopf algebra H is both an algebra and a coalgebra, we can speak of both
H-modules and H-comodules. The additional structure of a Hopf algebra enables
us to construct tensor products of modules and comodules. Namely, if M and N are
left H-modules, then M ® N can be equipped with the structure of a left H-module

via the action
he-(m®@n) = (hqym) ® (hen).

2"From now on, we may avoid the full notation by simply referring to the Hopf algebra H.
In this case, we implicitly denote the maps by m,u,A,e and S, or, if there may be ambiguity,
myg,uH, AH, EH and SH,

28Recall that a subalgebra A of a K-algebra H is a K-vector subspace of H such that mm(A®
A)c Aand ug(K)c A

2Recall that a (two-sided) ideal I of a K-algebra H is a K-vector subspace of H such that
mg(HRI+IQH)< 1.
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Similarly, if M and N are left comodules, then we can equip M ® N with the

comodule structure

m@n = Y myna) @ me) @ne).
We can, of course, similarly define tensor products of right modules and comodules.

Definition. Let H be a Hopf algebra and A an algebra. We say that A is a (right)
H-comodule algebra if (4,w) is a right H-comodule and the multiplication and

unit maps of A are H-comodule morphisms.’® We denote
Al — fae Alw(a) = a®1}

and call elements of A H-coinvariants of A

Remark 5. If H is a Hopf algebra and I < H is a Hopf ideal, then H can be made

into an H /I-comodule algebra, via the H/I-comodule map
h— Zh(l) ® (h(g) + I).

2.2.2 Extensions

When studying the representation theory of abstract groups a powerful tool is the
ability to induce representations from subgroups. When the subgroups in question
are normal, there are a number of significant results about how this induction process
behaves; the study of this situation is called Clifford theory. Later on in this thesis
we shall want to exploit Clifford theory type results for Hopf algebras. Before we

can do that, however, we need to talk about extensions of Hopf algebras.

Definition. Let A be a Hopf algebra. Given a,be A, we define

ady(a)(b) = Y a@)bS(a))

and
ad,(a)(b) = > S(a))bag.

The maps ad; and ad, are called the left and right adjoint actions, respectively,
of A on itself.

Definition. Let A be a Hopf algebra and B < A a Hopf subalgebra of A. We say
that B is normal in A if ad;(a)(b) € B and ad,(a)(b) € B for alla€ A and b€ B.

Note that if A is cocommutative it is sufficient to check this property for either
the left adjoint or the right adjoint action. For the following result, note that given
a Hopf algebra H with counit ¢ we define

H' := H nkere.

30The comodule structure on A ® A is as described above. The comodule structure on K comes
from 1x — Ik ® 15.
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Proposition 2.2.2.1. Let A be a Hopf algebra and B a normal Hopf subalgebra of
A. Then ABY = BT A and this is a Hopf ideal of A.

Proof. See Lemma 3.4.2(1) in [Montgomery, 1993]. O

In particular, in this situation we have an injective Hopf algebra homomorphism

B — A and a surjective Hopf algebra homomorphism A — A/AB™.

Definition. Let H be a Hopf algebra, (A,w) a right H-comodule algebra, and B a
subalgebra of A with A" = B. We then call B < A a (right) H-extension.

Definition. Let B € A be a right H-extension. We say that B < A is a (right)

H Galois-extension?! if the natural linear map
A®p A—> A®k H, a®pad — (a®1)w(a)
1$ bijective.

The following proposition indicates that we have already seen one source of

Hopf-Galois extensions.

Proposition 2.2.2.2. Let A be a Hopf algebra and B a normal Hopf subalgebra of
A. Set H :== A/JAB™. If A is cocommutative then B € A is an H-Galois extension.

Proof. See Remark 1.1(4) in [Schneider, 1990]. O

In order to obtain Clifford theory type results for Hopf algebras, we need to
understand the ways in which a normal Hopf subalgebra can lie inside a Hopf algebra.

The next few definitions and propositions give some perspectives on this.
Definition. Let A be a Hopf algebra and B a normal Hopf subalgebra of A.

(1) We say that A is free over B if A is free as a left B-module under left multi-

plication.

(2) We say that A is faithfully flat over B if, whenever f : N — M is a
homomorphism of left B-modules, f is injective if and only if the corresponding
A-module homomorphism idga ® f : AQg N —> AQp M is injective.

Proposition 2.2.2.3. Let A be a Hopf algebra and B a normal Hopf subalgebra of
A. The following results hold.

(1) If A is free over B then it is faithfully flat over B.
(2) If B is finite-dimensional over K, then A is free over B.

Proof. Tt is straightforward to prove (1) from the definitions. Theorem 2.1(2) in
[Schneider, 1993] proves (2). O

31We may call this a Hopf-Galois extension if we do not wish to specify H.
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In order to understand Hopf-Galois extensions, we need a way to construct a
comodule algebra from an algebra and a Hopf algebra. This mirrors the way in
which we study extensions of abstract groups. To define these comodule algebras,

we first need to make some further definitions.

Definition. Let H be a Hopf algebra and B an algebra. Let 0 : HQ® H — B be a

convolution invertible linear map.

(1) H is said to measure B if there exists a linear map H® B — B, which we

write as h @b — h - b, such the following two conditions hold:
(a) h-1=¢e(h)l for all he H.
(b) h-(ab) = X (hay - a)(hw)-b) for allhe H and a,be B.

(2) If H measures B, the linear map o : H® H — B is called a cocycle of H

with values in B if it satisfies the following two properties:
(a) o(h,1) =0c(1,h) =¢c(h) for allhe H.

(b) X(hay - o(kay, my))o(heay, koyma)) = 2 olhay, kay)o(hayke),m) for
all h,k,m e H.

(3) If H measures B, we call B a twisted H-module (with respect to o) if the
map H ® B — B satisfies the following two conditions:

(a) 1-b=10 for allbe B.
(b) h-(k-b) = Y o(hay, kay)(heke) - b)o (hs), kg) for all h,k € H and

be B, where here o~ ! denotes the convolution inverse of o.

Definition. Let H be a Hopf algebra, B an algebra and o : HQH — B a convolution
invertible linear map. Furthermore, let H measure B, let o be a cocycle, and let B be
a twisted H-module with respect to o. The crossed product B#,H is then defined
to be the associative algebra with underlying vector space B ® H, identity element
1#1 (note that we write b#h for the element b® h € B® H ), and multiplication

(agth) (b#k) = > ahqy - b)a(he). ka))#heke)
for all a,be B and h,k € H.
The algebra B#,H is in fact an H-comodule algebra via the map
b#h — Y (b#ha)) @ ).

H-comodule algebras of this form are key in understanding Hopf algebra extensions,

as we will now see.

Definition. Let H be a Hopf algebra and B < A an H-extension.
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(1) The extension is called H-cleft if there exists a convolution invertible right

H -comodule homomorphism3? v : H — A.

(2) The extension has the (right) normal basis property if there exists an iso-
morphism of left B-modules and right H-comodules®® A~ B® H.

Theorem 2.2.2.4. Let H be a Hopf algebra and B < A an H-extension. The
following results hold.

(1) The extension is H-cleft if and only if A ~ B#,H.

(2) The extension is H-cleft if and only if it is H-Galois and has the normal basis
property.

Proof. These results can be found as Theorem 7.2.2 and Theorem 8.2.4, respectively,
in [Montgomery, 1993]. O

Remark 6. The reader can consult Proposition 7.2.3 in [Montgomery, 1993] for an
explicit description of how one obtains the action of H on B and the cocycle o from
the cleftness of the extension, and Proposition 7.2.7 in the same to see how the map

~v and its convolution inverse arise from a crossed product.

2.3 Algebraic groups and their representation theory

In this section, we recall some basic facts about algebraic groups and their represen-
tation theory in positive characteristic. To that end, throughout this section G is an
affine algebraic group over an algebraically closed field K of positive characteristic

p > 0, unless explicitly stated otherwise.

2.3.1 Algebraic groups

Let us briefly recall what these terms mean. To each finitely-generated, commuta-
tive K-algebra A, one can construct by a well-known process a locally-ringed space
Spec(A). Any locally ringed space isomorphic to one obtained by such a construction
is then called an affine K-scheme, and these form a full subcategory of the category
of locally ringed spaces. Note that this category has terminal object Spec(K).

To any affine K-scheme X one can associate a unique finitely-generated com-
mutative K-algebra K[X] such that X =~ Spec(K[X]). In fact, there exists an
anti-equivalence of categories®
{ Finitely-generated

commutative K-algebras

} « {Affine K-schemes}.

32We may always assume such ~y sends 1 to 1 by rescaling if necessary.

33Note that B and H are both H-comodules - B as a subalgebra of A and H via the comultipli-
cation map - so we can equip B ® H with the structure of an H-comodule.

34 Although we often leave it implicit, it is important to note that an affine K-scheme by definition
comes equipped with a morphism to the terminal object Spec(K); this corresponds to the K-
structure-defining inclusion of K into the corresponding K-algebra.
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We call K[X] the coordinate algebra of X. It can be identified with the K-algebra
of regular functions®® X — A!. We say that an affine K-scheme X is reduced if
K[X] has no non-zero nilpotent elements.

An affine K-group scheme is then a group object in the category of affine

K-schemes. The anti-equivalence above restricts to an anti-equivalence

Finitely-generated commutative o {Affine K-group schemes}.
K-Hopf algebras

A reduced affine K-group scheme is called an algebraic K-group or an algebraic
group.3% One can use this anti-equivalence to derive, for a K-group scheme G with

coordinate algebra K[G], an equivalence
{Left G — modules} < {Right K[G] — comodules}.

This equivalence is the identity map on the underlying K-vector spaces.

Furthermore, to each K-group scheme G we can assign a K-group functor
G : {Commutative K-algebras} — {Groups}

by defining G(R) = Hom(K[G], R) with multiplication coming from the Hopf alge-
bra structure of K[G]. Often we describe groups and their homomorphisms through
such a functor, although it is important to note that not all such functors define a
K-group scheme. In particular, we frequently abuse notation to say, for example,
“the algebraic group homomorphism f: G — H sends g € G to f(g) € H” to mean
“the algebraic group homomorphism f : G — H sends g € G(R) to f(R)(g) € H(R)
for each commutative K-algebra R”.

An affine subgroup scheme of G is an affine K-subscheme of G such that the
inclusion map is a homomorphism of K-group schemes. All closed affine subgroup
schemes of G are of the form Spec(K[G]/J) < Spec(K[G]) for a finitely-generated
Hopf ideal J of K[G]. A normal affine subgroup scheme of G is an affine
subgroup scheme N which is preserved by the conjugation action of G on N. If a
(normal) affine subgroup scheme is reduced, we simply call it a (normal) algebraic

subgroup of G, or just a (normal) subgroup of G if no confusion shall arise.

2.3.2 The distribution algebra

Let us now recall the definition of the distribution algebra Dist(G) of a K-group
scheme G. If

I = {f e K[G]| f(1) = 0},

35Note here that A* = Spec(K[t]), where K[t] is the polynomial algebra over K.

36We may sometimes also use the phrase affine algebraic group if we wish to emphasise the
affinity.

3TNote that this is the augmentation ideal of K[G], i.e. the kernel of the counit.
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where we denote by 1 the identity element of G(K), then we define
Dist),(G) := {u : K[G] — K| pis linear and u(IF™!) = 0}

and
Dist;f () = {u € Disti(C) | u(lge) = 0}

Note that K[G] = K@ I; and Dist;(G) = K@ Dist; (G). We then define

Dist(G) = U Disty(Q)
k=0

and
Dist*(G) == | | Dist}} (G).
k=0
We equip the K-vector space Dist(G) with a multiplication defined as follows:
given u, p € Dist(G), we define pp to be the composition

K[G] 2 K[G] ® K[G] “2% K@K = K.
The multiplicative identity is the counit ¢ of K[G]. This makes Dist(G) into a K-
algebra and Dist* (G) into an ideal. If p € Dist; (G) and p € Dist;r(G) one can show
that®

Hp € DiSt;r+j (@)

and

[1e, p] € Distf, ;4

(@).

In other words, Dist(G) is a filtered algebra whose associated graded algebra is

commutative. Furthermore, Lie(G) lies inside Dist(G) as Dist] (G) and the Lie

bracket on g is compatible with the Lie bracket [A4, B] = AB — BA on Dist(G).
Given a morphism 7 : G — H between two K-group schemes, one can define a

linear map

Dist(r) : Dist(G) — Dist(H)

in the natural way, and if 7 is in fact a homomorphism then Dist(7) is an algebra
homomorphism.?® Furthermore,? for affine K-group schemes G and H, there is a
K-algebra isomorphism Dist(G x H) =~ Dist(G) ® Dist(H). Putting these two facts
together, it is possible to define the map

Dist(d) : Dist(G) — Dist(G) ® Dist(G),

where 0 : G — G x G is the diagonal morphism. If we define € : Dist(G) — K to be

38See 1.7.7 in [Jantzen, 1987].
39See 1.7.2 in [Jantzen, 1987).
408ce 1.7.4(2) and 1.7.9 in [Jantzen, 1987].
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map g — (1), we can prove that (Dist(G), Dist(d), €) is a coalgebra.
Furthermore, we may obtain from the morphism ¢ : G — G which sends g to
g~ ! the linear map
Dist(¢) : Dist(G) — Dist(G).

Denoting the multiplication of Dist(G) by -, one can show, for an affine K-group
scheme G, that (Dist(G), -, &, Dist(§), €, Dist(¢)) is a cocommutative Hopf algebra.*!
Since g embeds in Dist(G)(™) as a Lie algebra, the universal property of U(g)

gives a K-algebra homomorphism
U(g) — Dist(G).

If K has characteristic zero,*? this homomorphism is in fact an isomorphism. In
positive characteristic, however, it is neither injective nor surjective in general. One
can show that the embedding of g into Dist(G)(*) respects the p-th power maps of

these Lie algebras,*® hence we in fact obtain a K-algebra homomorphism
Uo(g) — Dist(G).
This turns out to be injective. We shall see what the image is later on.

2.3.3 Representation theory of distribution algebras

The main reason to study the distribution algebra of a K-group scheme is that it
is better able to capture the representation theory of the algebraic group than the
universal enveloping algebra U (g) when the field has positive characteristic. As such,
it is important to understand the representation theory of distribution algebras.

Let M be a left G-module. We recall from earlier that M can be given the
structure of a right K[G]-comodule; hence, it comes equipped with a linear map
w: M —> M®K|[G]. We give M the structure of a left Dist(G)-module as follows:
given m € M and p € Dist(G), we define um to be the image of m under the
composition

M % MK[G] 24 M@K = M.

Furthermore, to each G-module homomorphism f : M — M’ there is a natural way
to construct a homomorphism of Dist(G)-modules M — M’.
Let us now recall some basic facts about the Dist(G)-module structure of M.

Proofs of all these results can be found in Chapter 1.7 in [Jantzen, 1987].

Proposition 2.3.3.1. Let G be a K-group scheme and let M and M’ be left G-

“1See 1.7.9 in [Jantzen, 1987).

12Tt should be clear to the reader that the construction so far has not required any assumption
on the characteristic of the field.

43 As with any Lie algebra obtained from an associative algebra, Dist(G)<_) has the structure of
a (infinite-dimensional) restricted Lie algebra simply by defining the p-th power map to be the p-th
power map in the underlying associative algebra.
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modules.

(1) Suppose N is a G-submodule of M. Then N is stable under the Dist(G)-action
on M, and so is a Dist(G)-submodule of M.

(2) Suppose N is a G-submodule of M. Then the Dist(G)-module structure of
the G-module M /N s precisely that of the quotient of M by N as Dist(G)-

modules.

(3) The Dist(G)-module M @ M’ is the direct sum of the Dist(G)-modules M and
M.

(4) If me M with g-m =m for all g € G then pm = p(1)m for all p € Dist(G).

(5) The restriction of the Dist(G)-module structure of M to g = Dist{ (G) makes
M into a restricted g-module. Furthermore, this is the same g-module structure
as defined in Subsection 2.1.2.

Despite this proposition, it is not true in general that there is an equivalence of
categories between G-modules and Dist(G)-modules. However, for a certain family

of group schemes, such an equivalence does exist.

Definition. An affine K-group scheme G is called finite if K[G] is a finite-dimensional
K-algebra. If G is finite and the ideal Iy < K[G] is nilpotent then G is called infi-

nitesimal.

It is clear that if G is an infinitesimal affine K-group scheme then Dist(G) =
K[G]*.

Proposition 2.3.3.2. Let G be a finite affine group scheme. Then the category of
G-modules is equivalent to the category of Dist(G)-modules.

Proof. See Section 1.8.6 in [Jantzen, 1987]. O

2.3.4 Frobenius kernels

There is a class of infinitesimal (and hence finite) group schemes which will be of
particular importance in what follows. These are the so-called Frobenius kernels of
affine K-group schemes.

Let A be a commutative, finitely-generated K-algebra. For r € N, the map**
Vi A— A, a— a”

is a ring homomorphism, but not a K-algebra homomorphism®® since v,.(\a) =
A" 7,.(a) for a € A, A € K. In order to recover a ring homomorphism, we therefore

need to modify the K-structure of A.

“Recall here that p is the characteristic of K.
“5Hence, it corresponds to a morphism of affine schemes but not of affine K-schemes.
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Definition. Let A be a commutative, finitely-generated K-algebra. For r € N, the
K-algebra A" is defined to be equal to A as a ring, but with scalar multiplication
such that A € K acts on it as \P~ ' does on A.

With this definition in mind, it is straightforward to see that -, induces a K-

algebra homomorphism
Yy : A" s 4, a—a .

We may also view this map as a K-algebra homomorphism A — A(="). Under the

anti-equivalence of categories described above, this corresponds to a morphism
F" := Spec(yy) : Spec(A) — Spec(A)

which we call the r-th Frobenius morphism on Spec(A4). Furthermore, one can
check that, if A is a Hopf algebra, then the map =, is, in fact, a homomorphism of

Hopf algebras, so F" is a homomorphism of K-group schemes
Fr:G— G,

where G(") is defined to be Spec(K[G](~")).

Definition. If G is an affine K-group scheme, the r-th Frobenius kernel of G is
then defined to be
G, = ker(F").

In particular, this is an affine K-group scheme with*6

K[G]

kel =s  xerp

and it is a normal subgroup scheme of G. Since I1/(3 </, K[G] fP") is clearly nilpo-
tent, GG, is an infinitesimal affine K-group scheme for all r € N.

The fact that we need to twist the K-algebra structure in order to get a homo-
morphism is an annoyance that we can, at times, remove. We say that a commuta-
tive, finitely-generated K-algebra A has an Fp-form if there exists a commutative,
finitely-generated Fj-algebra A’ such that A =~ K®p, A’. In this case, we can define,
for r € N, the map

vl T A — A, A®a— A \Qa” .

This is already a homomorphism of K-algebras (or K-Hopf algebras, if A is a Hopf
algebra), and on the level of K-group schemes we call this the geometric Frobenius

morphism F,. Furthermore, we can define, for r € N, the map

%‘}T;A(T)_)A’ A®a— N ®a.

46Here, 1, is as in the definition of the distribution algebra.
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This map is, in fact, a K-algebra isomorphism, which we call the arithmetic Fro-

benius morphism F,. on the level of K-group schemes. In particular, it is clear

that v, = 77 042", and we have the commutative diagram
FTED
G ! G
K l Fr.

where the vertical arrow is an isomorphism. This implies that

G, = ker(F".,)

geo

if G is an affine K-group scheme such that K[G] has an F,-form.%"

Using the homomorphism F” : G — G") we can equip every G("-module M
with the structure of a G-module, which we denote by M. If G is defined over
Fp, using instead the homomorphism F,, : G — G we may give a G-module M a
“twisted” G-module structure, which we abuse notation to also denote by M ], 1f,
furthermore, M is defined over F,, - which is to say that there exists a subspace M’
of M such that K@Fp M’ = M - and the representation G — GL(M) is defined*®
over [Fj, then Ml ~ M) as G-modules.*® Here M) is the K-vector space whose
underlying additive group is (M, +) and such that A € K acts on M (") as A" acts

on M; this can be made into a G-module in a natural way.

Example 1. The additive group G, is defined to be Spec(K|[t]). Note that the
K-algebra K[t] is a Hopf algebra with comultiplication defined byt —t® 1+ 1 ®t,
counit defined by t — 0 and antipode defined by t — —t. The corresponding K-group
functor maps a commutative K-algebra R to the abelian group (R,+). Given r = 0,

we get the r-th Frobenius kernel
Ga,r = Spec(K[t]/H")),
which can also be described via the K-group functor
R— {xeR|p'z =0}

Example 2. The multiplicative group G,, is defined to be Spec(K[t,t~1]). Note
that the K-algebra K[t,t~1] is a Hopf algebra with comultiplication defined by t >
t®t, counit defined by t — 1 and antipode defined by t — t~'. The corresponding

K-group functor maps a commutative K-algebra R to the unit group (R*,-). Given

4TWe often shorten this to saying that G has an F,-form.

“8The representation p : G — GLx (M) is said to be defined over F,, if there is a representation
p': G' = GLr,(M') which becomes p under base change.

“9See 1.9.10 in [Jantzen, 1987].
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r = 0, we get the r-th Frobenius kernel
G = Spec(K[t,t 1] /(7" — 1)),
which can also be described via the K-group functor
R~ {z e R*|zF" =1}.
The Frobenius kernels of G form an ascending sequence
GicGycGsec...

of normal, infinitesimal K-subgroup schemes of GG. Applying the distribution func-

tor, we obtain an ascending sequence
DiSt(Gl) o DiSt(GQ) c DiSt(Gg) c ...
of normal Hopf subalgebras®® of Dist(G). One can then show that

Dist(G) = |  Dist(G,).

r=1

Recalling that
g = Dist{ (G) = {u: [1/I} — K| pis linear},

it is straightforward to see that Lie(G,) = Dist{ (G,) is, in fact, equal to g, i.e.
Lie(Gy) = Lie(G) for all » € N. In particular, this means that the injective homo-
morphism

Uo(g) — DiSt(G)
defined earlier is even an injective homomorphism
Uo(g) — DiSt(Gl).

*
Since G is infinitesimal, Dist(G1) = K[G1]* = <K[G]/ (Zfe]l K[G] fp)> . From
this, one can deduce that if dim(g) = n then dim Dist(G7) < p™. On the other hand,
Proposition 2.1.3.6 shows that dim(Uy(g)) = p™. Thus, there is an isomorphism

Uo(g) = Dist(G).

In particular, irreducible representations of GG1 are precisely irreducible restricted
representations of g.

Let us make a few more remarks about the structure of Dist(G,).

508ee 1.7.18 and 1.9.8 in [Jantzen, 1987].
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Proposition 2.3.4.1. Let G be an algebraic group over K. Then the following
results hold for r € N.

(1) The K-dimension of Dist(G,.) is p" (@),
(2) The subspace Dist,r_1(G) < Dist(G) is a subspace of Dist(G).
(3) The subalgebra of Dist(G) generated by Dist,r_1(G) is precisely Dist(G).

Proof. For (1), see Section 1.9.6 in [Jantzen, 1987]. For (2), note that if § € Dist,r_1(G)
then 5([{“) = 0. Hence, §(X ¢y, K[G]fP") = 0. Finally, (3) follows from Subsection
2.4.2, infra. O

Example 3. Let G = G, the additive group. Then K[G] = K|[t], the polynomial

ring in one variable, and Iy = {t). Thus,
Dist,,(G,) = {6 : K[t] — K |d is linear, and §(t*) = 0 for all k > n}.

If we define y; € K[t]* to be the linear map with ;(t’) = &;;, then Dist,(G,) has

basis 0,71, - --,Vn and Dist(Gg) has basis vo,71,- .., similarly. One can compute
that, in Dist(Q),
147
Yiv; = < i )%‘ﬂ'
which implies that
1 =i

The reader should consult Section 1.7.8 in [Jantzen, 1987] for details. In particular,
this implies that, over C, the distribution algebra Dist(G,) has basis

1 2 1 n
1,71,571,...,571

and it is straightforward to check that Dist(G ) is the subspace with basis

1, 1
17’7175’)’17-~-7m%
By taking the Z-lattice Dist(Gg z) spanned by elements %’y{ fori =0, we can obtain
Dist(Gg) over K as Dist(Ggq7)®zK. We then conclude that, over K, the distribution
algebra Dist(G,) has basis

1 1
1®1,V1®1,avf®1,...,mﬁ®1,,,,

and it is straightforward to check that Dist(G ) is the subspace with basis

1 r_

1
1®1 1, -®1,...,———
® 771®7271®7 7<p7._1)

!
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Example 4. Let G = G,,, the multiplicative group. Then K[G] = K[t,t7!], the
Laurent polynomial ring, and Iy = {t — 1). Thus,

Dist,, (Gq) = {0 : K[t,t '] — K| & is linear, and 6((t — 1)*) = 0 for all k > n}.

If we define &; € K[t,t]* to be the linear map with &;((t—1)7) = &;;, then Dist,,(Gyy,)
has basis 8o, 01, . . ., 0n and Dist(G,) has basis o, 01, . .., similarly. One can compute
that, in Dist(G),

min(%,5) . .
o (i4+j—k)! o
%i0j = kZ_O (i— k)G — k)!lc!é“”_k

which implies that
(51((51 — 1) (51 — 1+ 1) = 319;.

Once again, the reader should consult Section 1.7.8 in [Jantzen, 1987] for details.

In particular, this implies that, over C, the distribution algebra Dist(G,) has basis

01 01
(B (M)

51) . 01 (5171)...(51 *i+1)
i) !

1,51,(51>,...,< o )
2 pr—1

By taking the Z-lattice Dist(G,,z) spanned by elements (i.l) for v = 0, we can
obtain Dist(G,) over K as Dist(G, z) ®z K. We then conclude that, over K, the
distribution algebra Dist(Gy,) has basis

1®Lm®L<&>®LHW<&>®L”.
2 n

and it is straightforward to check that Dist(Gyy, ) is the subspace with basis

191,56 ®1, <5l>®1,...,< o >®1.
2 pr—1

2.4 Reductive groups and their Lie algebras

denoting here ( . It is straightforward to check that Dist(G,, )

1s the subspace with basis

The representation theory of Lie algebras in positive characteristic and of Frobenius
kernels of algebraic groups is best understood in the reductive case. Let us briefly
summarise the well-known structure of reductive algebraic groups and their Lie
algebras, before delving into their representation theory. Much of the content of
this section, including proofs of the relevant results, can be found in [Jantzen, 1987]
and [Jantzen, 2004]. Throughout this section, G will be a reductive algebraic group

over an algebraically closed field K of positive characteristic p > 0, and g will be its
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Lie algebra.

2.4.1 The structure of reductive groups and their Lie algebras

We shall call an algebraic group G reductive if its unipotent radical R, (G) is trivial.
The unipotent radical R, (G) of G is the unique maximal connected unipotent closed
normal subgroup of G, which one can show always exists. The precise definition of
a unipotent subgroup of G is unimportant for this thesis, but the reader can see
Chapter IV.11 in [Borel, 1991] for details.

A subgroup T of G is called a torus if T = (G,,)? for some d € N, and is called
a maximal torus if it is maximal with respect to his property. If T' = (G,,)? and
T' = (G,,)? are two maximal tori then d = d’, and we call d the rank of G. For a

maximal torus T of G we define
X(T) := Hom(T, G,,) =~ 74

and we call it the character group of T', whose group structure we write additively.

We further define the cocharacter group of T
Y (T) .= Hom(G,,,T).

Then, as in [Jantzen, 1987, I1.1.3], there exists a bilinear pairing X (7') x Y (T") given
by (A, 1) — (A, 1y, where (A, uy is the integer corresponding to Aoy € End(G,,) = Z.

If M is a T-module, then it has a decomposition

M = @ M,
AeX(T)

where
My :={meM|t-m= \t)m for all t € T'}.

Since a maximal torus 7" acts on the Lie algebra g via the adjoint action, we get a

decomposition

g= (—B gx-

AeX(T)

We call a € X(T') a root of G with respect to T if a # 0 and g, # 0, and we denote
by ®(G,T) (or just @ if no confusion will arise) the set of roots of G with respect
to T. Letting h = K? be the Lie algebra of T, we get that

g:b@g_)ga-

acd

For a« € ®, one can show that g, is one-dimensional. Since o : T' — Gy, is a
homomorphism, da : h — K is a linear map. We often abuse notation by using «

to denote da, unless context would make this confusing.
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To each root o € ® one can assign a coroot ¥ € Y(T) in a specified way.?! In
the R-vector space X (7T) ®z R, the set ® satisfies the following conditions:

(1) The R-vector space X(T') ®z R is spanned by ®.
(2) If « € ® then —a € @, and if sa € @ for s € R then s € {+1,—1}.

(3) For each «, 8 € ®, we have
B —2p,a" ae .

(4) For each «, 8 € &, we have (B,a") € Z.

In other words, ® is a root system in X (7') ®z R. In particular, this means that
in ® we can choose a system of positive roots, that is, a subset ®* of ® such that,
for all & € @, either « € T or —a € T, and such that for all pairs o, 8 € ®*
such that a + 8 € ®, we have a + 3 € ®*. We define the corresponding system of
negative roots ®~ to be —®*. Inside ®* we have a finite set of simple roots
IT = {a1,...,a,} such that no element of IT can be written as a sum of two or more

elements in ®*. We then have that every element of ® is of the form
a=kiay+ -+ kpay

with k1,...,k, € Z; that « € @1 if and only if k1, ..., k, € Z>p; and that a € &~ if
and only if ki,...,k, € Z«o-

To each root o € & we can define a root homomorphism
To: G, — G

which satisfies tz,(a)t™! = z4(a(t)a) for all @ € G, and t € T. The image of this
homomorphism is a closed subgroup of G which we denote by U,, and whose Lie
algebra is g,. We say that a subset of ® is unipotent if ¥ n (—¥) = & and say
that W is closed if, for all o, 8 € ¥, we have (Na + N5) n & < W. To each closed,
unipotent subset W of ®, we define U(V¥) to be the subgroup of G generated by the

subgroups U, for a € . In particular, we define
Ut =U(®") and U =U(P").

We further define
Bt =TU™" and B =TU",

which are maximal connected solvable subgroups of G. We call B the positive

Borel subgroup®? of G’ containing 7' and B~ the negative Borel subgroup of

5!See 11.1.3 in [Jantzen, 1987] for details.
52Recall that a Borel subgroup of an algebraic group G is a maximal connected solvable sub-
group.

30



G containing T
Defining b™ = Lie(B™), b~ = Lie(B™), nt = Lie(U") and n~ = Lie(U™), we

can show that

= @D ga,

acdt
ni = @ g—Oéa
acdt
and
g=n"®Hhdn".

In general, we write B instead of BT and b instead of b™. We then also have
b=h®n".

We can then choose a basis hy, ..., hg of h and elements e, € g, for a € ® such
that
{ea, hylae @, 1 <t < d}

is a basis of g. Defining h, = [e_,, €, ], these satisfy the following relations:
(1) [h k] =0 for all h,k € b.
(2) [h,eq] = a(h)e, for all h e h and a € ®.
(3) [e—aseq] = hy can be written as a Z-linear combination of hy, ..., hy.

(4) [ea,ep] = £(m+1)eqyp for a # —f € , where m = max{k e N| 3 —ka € ¢}
and eq1 3 =0if o+ 3 ¢ ®.

The basis {e,, hy|a € &, 1 <t < d} is called a Chevalley basis of g.5 Further-
more, it is not difficult to see, viewing the elements of g as derivations of K[G], that
el =0 fora e ®and hgp ] =, for all 1 <t < d. This demonstrates the p-structure
on g.

A (reductive) algebraic group is called semisimple if it contains no non-trivial
solvable connected closed normal subgroups. This is equivalent to the condition
that Z® has finite index in X (7T"). A semisimple algebraic group is called simply-
connected if Y(T) = Z®Y = Z{a" |a € ®}. See [Jantzen, 1987, 1.1.6] for more
details.

2.4.2 Divided powers

For a Hopf algebra H, we define the set of primitive elements

PH)={zeH|A(x) =2®1+1®z},

538ee, for example, Chapter VII in [Humphreys, 1972] for a discussion of the characteristic zero
case.
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and the set of group-like elements

GH)={xe H|A(z) =z ®x}.
Given an element x € P(H), a sequence 2O 2 2@ %) e H is said to be a

sequence of divided powers of z if

(3) A(x(l)) = Zi:o 20 @ 2= for all [ > 0.

Suppose that z1,...,x, is a basis for the Lie algebra g = Lie(G), where G is

an affine algebraic group. For each 1 < ¢ < n, there exists an infinite sequence of

EO), xl(l), x§2), ... of z; in the cocommutative Hopf algebra Dist(G).

It is well-known®* that the distribution algebra Dist(G,) has basis

divided powers x
(a‘l) (G'Q) (an) . r .
{7 Vs oo |0 < a; <p” forall 1 <i<n},
while the vector space Disty(G) has basis

n

{x&‘“)wg‘m) ... xlan)

zn:aiék}.

i=1
One can also observe that ngk) € Dist(G) for all 1 <i<nand keN.

In particular, if G is a reductive algebraic group with Lie(G) = g, we saw in
Subsection 2.4.1 that g has a basis consisting of elements e, for a € ® and h; for
1 <t < d. To define a basis for Dist(G), we hence would like to construct a sequence
of divided powers for these basis elements. To do this, we first need to work over C.

Define G to be the simply-connected reductive algebraic group with the same
rank and same root system of G. If we define by gc the C-Lie algebra of G, then
gc also has a C-basis consisting of elements e, for « € ® and hy for 1 <t < d.
Further defining gz to be the Z-span of these basis elements in gc, we obtain that
g = gz ®z K. We abuse notation by using e, and h; for both the elements in gc
and the corresponding elements in g.

In U(gc), which is a cocommutative Hopf algebra, we define sequences of divided

powers for these elements as follows. Given a € ® and k € N, we define

k
elk) . Ca
@ k!’

and, given 1 <t < d and k € N, we define

<1;t) _ hu(h 1), .k;!(ht —k+1)

®4See [Sweedler, 1967].

32



It is shown in [Kostant, 1966] and [Jantzen, 1987, I1.1.12] that the set

d
mmzz{ [T e TT(2) 11 \ ia,ja,wo}

k
aedt t=1 t/ qed+

is a Z-form for U(gc), and that
Dist(G) = U(g)z ®z K.

In particular, this gives us a K-basis of Dist(G) for reductive groups. We once again

abuse notation to denote by e&k) and (l;;) the corresponding basis elements in both

U(gc) and Dist(G).

2.4.3 Representations of reductive Lie algebras

With this set-up, let us now discuss the representation theory of the reductive Lie
algebra g. For the remainder of this section we assume x € g* vanishes on n™.
An argument in [Kac and Weisfeiler, 1976] shows that this assumption holds if, for
example, the derived group of G is simply-connected.?

Let A € h*. We define a 1-dimensional (irreducible) b-module K, by making n™
act as 0 and bh act via A\. This b-module extends to a U, (b)-module if and only if

Ae Ay = {Aeb* | A(h)P — A(hP)) = x(R)P for all h e b}.

This is equivalent to the requirement that A(h)? — A(h) = x(hy)? for all 1 <t < d,

and hence |A, | = pdim®).

Given A € A, we can then define the baby Verma module

Zy(A) = Uy(9) ®u, (v) Kx.

This is a finite-dimensional U, (g)-module of dimension pd™(®”). Tt has as basis the

{(H e’“aa>®1\0<ka<p},
aedt

where we have fixed an order of the positive roots in ®.

set

Proposition 2.4.3.1. Every irreducible U, (g)-module is a quotient of a baby Verma
module Zy () for some X € A,.

Proof. By Frobenius reciprocity it is enough to show that every U, (b)-module is of
the form K for some X € A,. This follows from B.3 in [Jantzen, 2004]. O

We also have the following result, which gives information about the dimen-

sions of U, (g)-modules. It was first conjectured in [Kac and Weisfeiler, 1971] and

55Recall that the derived group of a connected reductive algebraic group is semisimple.
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then proved in [Premet, 1995]. The paper [Premet and Skryabin, 1999] contains an

alternative proof.

Theorem 2.4.3.2 (Premet’s Theorem). Suppose that the derived group of G is
simply-connected, that the prime p is good for g,°% and that g is equipped with a non-
degenerate G-invariant bilinear form. Then, for any Uy (g)-module V, the dimension
of V is divisible by ptim(Gx)/2,

This structure is, in fact, already enough to classify the irreducible sls-modules
in most cases. It is well-known®” that each element of sl} is conjugate under the

adjoint SLs-action to a linear form such that

where t € K, or

Here we are using the standard notation of e, h, f € sls to mean

(1)) ()

A linear form conjugate to the first type is called semisimple, and a linear form
conjugate to the second type (or 0) is called nilpotent. Using Proposition 2.1.3.7,
a classification of U, (slz)-modules simply requires a classification for x non-zero

semisimple, x non-zero nilpotent, and x = 0.

Theorem 2.4.3.3. Let K be an algebraically closed field of characteristic p > 2,58
and let x € sl5. Then the following results hold.

(1) If x # 0 is semisimple, then the irreducible U, (sly)-mod