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Abstract

Each affine algebraic group G over an algebraically closed field K of positive

characteristic comes equipped with a Frobenius morphism, which corresponds to

the p-th power map on the associated coordinate algebra. The kernel G1 of this

morphism is called the first Frobenius kernel and is a normal subgroup scheme of

G. Its representation theory is precisely the restricted representation theory of g,

the Lie algebra of G.

This correspondence comes from an isomorphism between the restricted envelo-

ping algebra of g and the distribution algebra of G1; the former is a central quotient

of Upgq, while the latter is a Hopf subalgebra of the distribution algebra of G – a

Hopf algebra closely related to the representation theory of G. By deforming the

restricted enveloping algebra of g we obtain the reduced enveloping algebras Uχpgq.

Every irreducible g-module is an irreducible Uχpgq-module for some χ P g˚.

The first question tackled by this thesis is whether a similar deformation theory

can be developed for the higher Frobenius kernels Gr of G, obtained by composing

F with itself multiple times. We find that it can, and exhibit a number of structural

results about the corresponding algebras, as well as proving many results about their

representations.

The second question considered here is when a restricted representation of g

can be integrated to G. This can easily be rephrased as a question about extending

representations from G1 to G. Two approaches to this problem are taken. The first

uses stability and obtains an algorithm placing cohomological conditions on a posi-

tive answer to this question. The second uses exponentials, and affirmatively answers

the question for a certain type of representation which we call over-restricted.
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Chapter 1

Introduction

Let G be an algebraic group. This is a mathematical object which lies in the

intersection of two fields of study: it is a variety, placing it in the field of algebraic

geometry, but it also satisfies the axioms for a group, giving it a home within the

study of group theory. Both algebraic geometry and group theory employ in their

study an idea which has been in use for hundreds of years. This idea is quite simple:

linear objects are straightforward to understand, so the more linear one can make a

complicated object, the easier it is to comprehend. Within algebraic geometry, this

idea appears in the form of tangent spaces; within group theory, in representations.

When trying to employ this idea for algebraic groups, therefore, we have multiple

avenues to explore.

More explicitly, the tangent space of G at the identity has the structure of a

Lie algebra - we call it g. As indicated above, we would like to understand the

relationship between G and g, and we would like to understand the representation

theory of G. Combining these two goals, we may sensibly ask the question: how

closely related are the representation theories of G and g?

The algebraic group G is defined over an algebraically closed field K. As in other

areas of study, the characteristic of K plays an important role in how we develop

answers to this question. When the characteristic of K is zero, many results are

known - some of these will be surveyed below. In prime characteristic, however, the

existing record is less extensive.

One key difference between the cases of zero and non-zero characteristic is the

role of the universal enveloping algebra of g, which we denote Upgq. In positive

characteristic, one has to distinguish between Upgq, which is only defined from the

Lie algebra, and the distribution algebra DistpGq, whose elements are linear maps

δ : KrGs Ñ K satisfying an additional property. Both contain g as a Lie subalgebra,

and a G-module can be easily given the structure of a module over either of these

algebras. In characteristic zero Upgq and DistpGq coincide, but in characteristic

p ą 0 they are different objects. The representation theory of g is closely related (in

fact, identical to) the representation theory of Upgq, but the representation theory

of G is better captured by the representation theory of DistpGq.
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As a result, understanding representations of an algebraic group and its Lie

algebra requires the study of both the universal enveloping algebra and the distri-

bution algebra, as well as the connection between the two. The connection largely

stems from the isomorphism

U0pgq – DistpG1q, (1.1)

where U0pgq is a quotient of Upgq and DistpG1q is a Hopf subalgebra of DistpGq.

This connection is somehow the starting point of this thesis, and it is from this

common groundwork that the thesis breaks into two halves.

A Question of Friedlander and Parshall

In 1988 and 1990, Eric Friedlander and Brian Parshall published a pair of pa-

pers1 exploring the modular representation theory of Lie algebras. They obtained a

number of important results on this topic and at the end of their 1990 paper they

posed several questions for further study. One of these, numbered (5.4), asked the

following:

‘‘Do the [reduced enveloping algebras Uχpgq] have natural ana-

logues corresponding to the infinitesimal group schemes Gr

[the higher Frobenius kernels] associated to G [an algebraic

group over an algebraically closed field of positive charac-

teristic] for r ą 1?’’2

Let us briefly recall the background to this question. Given a linear form χ P g˚,

we define the reduced enveloping algebra

Uχpgq :“
Upgq

xxp ´ xrps ´ χpxqp |x P gy
,

where x ÞÑ xrps is the p-th power map with which the restricted Lie algebra g

is equipped. The reduced enveloping algebras are important for a reason: every

irreducible g-module is an irreducible Uχpgq-module for some χ P g˚. As a result,

understanding the Uχpgq is key to understanding the irreducible representations of

g.3

When χ “ 0, we precisely obtain the algebra U0pgq mentioned earlier, called

the restricted enveloping algebra of g. Using the isomorphism in (1.1) we may hence

describe the reduced enveloping algebras Uχpgq as deformations of DistpG1q.

What is DistpG1q? This is simply the distribution algebra of the infinitesimal

group scheme G1, the first Frobenius kernel of G. The first Frobenius kernel is

obtained as the kernel of some homomorphism F : GÑ G, so we may iterate the map

1[Friedlander and Parshall, 1988] and [Friedlander and Parshall, 1990].
2See [Friedlander and Parshall, 1990].
3This fundamental observation can be found most notably in [Kac and Weisfeiler, 1971].
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to obtain the higher Frobenius kernels Gr of G. This bring us back to Friedlander

and Parshall’s question, which ultimately asks whether similar deformations exist

for DistpGrq with r ą 1.

To answer this question, we must first define and study a family of higher

universal enveloping algebras U rrspGq for r P N, analogues of the universal enveloping

algebra in these higher cases. When r “ 0, this algebra is precisely Upgq, and the

family of algebras tU rrspGqurPN form a direct system with limit DistpGq. This family

of algebras was first introduced in [Kaneda and Ye, 2007], however their study of

it was related primarily to its connection to the study of arithmetic differential

operators.4 The sum and substance of their results on the structure of this algebra

can be found in Subsection 3.1.1 of this thesis, and this algebra has been minimally

studied since then. Indeed, Kaneda and Ye’s construction is not especially useful for

the goals of this thesis and we define the algebra U rrspGq in a different way, before

showing that these constructions are isomorphic in Subsection 3.4.2.

The higher universal enveloping algebras U rrspGq share many similarities with

the universal enveloping algebras. They are finitely generated over their centres

(Proposition 3.4.1.1), all of their irreducible modules are finite-dimensional (Theo-

rem 3.4.1.2), and they have a Poincaré-Birkhoff-Witt basis (Corollary 3.3.1.8 and

Proposition 3.3.2.2). In fact, there exist surjective Hopf algebra homomorphisms

U rrspGq Ñ Upgqprq for each r P N by Proposition 3.2.2.1 and Corollary 3.2.2.3.5

Furthermore, Lemma 3.3.1.1 enables us to define a notion of p-th powers in these

algebras, and hence to define the algebras U
rrs
χ pGq indexed by χ P g˚. These U

rrs
χ pGq

are the analogues of the Uχpgq in this higher setting, and every irreducible U rrspGq-

module is an irreducible U
rrs
χ pGq-module for some χ P g˚ (Proposition 3.5.1.2).

In Chapter 4 we restrict to the case of reductive groups and show, conside-

ring here irreducible modules only up to isomorphism, that there is a well-defined

bijection,6

Ψχ : IrrpU rrsχ pGqq
„
ÝÑ IrrpDistpGrqq ˆ IrrpUχpgqq.

When χ “ 0, we recover Steinberg’s tensor product theorem by iterating this process.

More generally, the bijection allows us to derive various structural results about the

irreducible U
rrs
χ pGq-modules. In particular, given an irreducible DistpGrq-module P

one can construct teenage Verma modules ZrχpP, λq which behave as the baby Verma

modules Zχpλq do in the r “ 0 case (Proposition 4.1.3.4). This allows us to classify

all irreducible U
rrs
χ pGq-modules when χ is regular in Theorem 4.1.4.1. The main

techniques which allow us to prove these results come from the work of Schneider

and Witherspoon on Clifford theory for Hopf algebras.

4See [Berthelot, 1996] for more discussion of arithmetic differential operators.
5Here, Upgqprq indicates the ring Upgq with a twisted K-algebra structure.
6See Theorem 4.1.2.3 and Corollary 4.1.2.6.
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The Humphreys-Verma Conjecture

Turning now to the second half of this thesis, we wish to examine when repre-

sentations can be integrated from a Lie algebra to the associated algebraic group.

To begin this discussion, suppose for the moment that G is a simply-connected

matrix Lie group over the complex numbers C, with Lie algebra g. Given a finite-

dimensional representation θ : gÑ glpV q, it is well known that there exists a unique

Lie group homomorphism Θ : G Ñ GLpV q such that dΘ “ θ.7 In other words,

there is a one-to-one correspondence between finite-dimensional representations of

g and of G. Specifically, every element of G can be written as ex1 . . . exn for some

x1, . . . , xn P g. Defining

Θpex1 . . . exnq “ eθpx1q . . . eθpxnq

turns out to yield a representation of G.

A similar technique can be used to show that, if G is a semisimple simply-

connected algebraic group over a field of characteristic zero with semisimple Lie

algebra g, then G and g also have the same representations. This can also be seen

from the fact that the category of representations of g is a Tannakian category, with

G the associated affine algebraic group.8

In positive characteristic p ą 0, however, things are more complicated. Firstly,

the only representations of g which can be obtained from G are the restricted repre-

sentations of g, i.e. those that preserve the p-structure. So, at a minimum, we have

to limit ourselves to consideration of restricted representations.

A second obstacle to understanding such a correspondence in positive characte-

ristic is the difference between irreducible and indecomposable representations. Let

us restrict our attention to a semisimple, simply connected algebraic group G over

an algebraically closed field K of characteristic p ą 0, and let g be its Lie algebra.

Using the isomorphism in (1.1), restricted representations of g are precisely represen-

tations of the first Frobenius kernel G1 of G. We are able to classify the irreducible

representations of G and of Gr for all r ě 1, and it is then straightforward to see

that every irreducible restricted representation of g extends to an irreducible repre-

sentation of G. The earliest proof of this result lies in [Curtis, 1960], but the reader

can also find a more in depth discussion in Chapters II.2 and II.3 of [Jantzen, 1987].

On the other hand, our understanding of the question for indecomposable repre-

sentations is a lot less complete. The following conjecture was made by Humphreys

and Verma,9 and has become known as the Humphreys-Verma Conjecture:

Conjecture (Humphreys-Verma conjecture). Let G be a semisimple, simply-connected

algebraic group over an algebraically closed field K of positive characteristic p ą 0.

7See, for example, Theorem 5.6 in [Hall, 2015].
8See, for example, [Milne, 2017].
9See, for example, [Humphreys, 1976], [Humphreys and Verma, 1973] and [Ballard, 1978].
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Let V be a projective, indecomposable G1-module. Then there exists a G-module

which restricts to V as a G1-module.

The first person to study this conjecture in detail was Ballard in [Ballard, 1978].

He was able to prove this conjecture for p ě 3h´3, where h is the Coxeter number of

G. This bound was then improved in [Jantzen, 1980]10 to p ě 2h´ 2. For arbitrary

primes, however, the question remains open. Up until 2019, it was believed that

a solution to this problem would come through Donkin’s Tilting Module Conjec-

ture, which in essence conjectured that all projective indecomposable Gr-modules

could be extended to indecomposable tilting G-modules. Instead, the recent pa-

per [Bendel et al., 2019] is able to provide a counterexample to the Tilting Module

Conjecture. Thus, the search for new methods to address the Humphreys-Verma

conjecture continues.

In this thesis, two such methods are given. These methods were developed

jointly with Dmitriy Rumynin, and also appear in [Rumynin and Westaway, 2018]

and [Rumynin and Westaway, 2019].

The first of which, in Chapter 5, is best understood through the lens of abstract

groups. In particular, the question at issue is whether (projective, indecomposable)

G1-modules can be extended to G-modules, so as an initial matter we can examine

when a representation pV, θq of a normal subgroup N of an abstract group H can

be extended to a representation of H.11 If a representation Θ of H indeed restricts

to θ, we must have that pV, θq is equivalent to the twisted representation pV, θhq for

all h P H. In fact, the intertwiner of the two representations can be chosen to be

Θphq. So one may naturally ask the question: if a representation pV, θq of N satisfies

pV, θq – pV, θhq for all h P H can we choose intertwiners Th P GLpV q such that the

map Θ : H Ñ GLpV q sending h to Th is a representation of H extending θ?

It turns out that this reduces to asking whether the intertwiners can be chosen

such that h ÞÑ Th is a homomorphism. Furthermore, it can be shown that, for

h1, h2 P H, the intertwiners can be chosen such that the linear map Th1Th2T
´1
h1h2

is

an N -module automorphism of V . If the group of N -module automorphisms of V

is soluble, with suitable subnormal series AutN pV q� A1 � . . .� Ak “ t1u, we then

give in Theorem 5.1.2.4 a process to determine whether, in fact, one can chose the

intertwiners such that the Th1Th2T
´1
h1h2

instead all lie in A1. This depends on the

vanishing of a certain cocycle in a suitable second cohomology group. Iterating the

process, we conclude that the vanishing of certain cocycles is enough to show that the

Th1Th2T
´1
h1h2

lie in Ak “ t1u, which gives the algorithm in Theorem 5.1.3.1, and more

specific existence and uniqueness tests in Corollary 5.1.3.2 and Corollary 5.1.3.3.

Adapting this method to algebraic groups and group schemes requires the fixing

10See also II.11.11 in [Jantzen, 1987].
11This question has also been looked at in [Dade, 1981] and [Thévenaz, 1983], and our approach

bears some similarities with theirs. In particular, Theorem 5.1.3.1 generalises Corollary 1.8 and
Proposition 2.1 in [Thévenaz, 1983] to the case of a soluble automorphism group AutLpV q. We
also use different cohomology groups than Dade and Thévenaz, in order to be able to translate our
approach to algebraic groups.
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of some technicalities, which we do in Section 5.2, but the result ends up holding in

this case as well in Theorem 5.2.4.1. This leads to some cohomological conditions

for the existence (and uniqueness) of such an extension.

The second approach, in Chapter 6, makes use of exponentials. As discussed

above, when looking at Lie groups or algebraic groups over C, the general method

to integrate finite-dimensional representations is to use exponentials. In positive

characteristic, however, problems quickly arise in trying to use this method.

Specifically, given a restricted representation pV, θq of g, we can define for each

x P Nppgq (the p-nilpotent cone of g) the exponential

eθpxq “

p´1
ÿ

k“0

1

k!
θpxqk P glpV q

and the algebraic group GV ď GLpV q generated by these exponentials. We would

like these elements to satisfy the equation θpeadpxqpyqq “ eθpxqθpyqe´θpxq for all x P

Nppgq, y P g. However, this will only hold in general if θ is over-restricted, that is,

if θpxqtpp`1q{2u “ 0 for all x P Nppgq.

If the representation is, in fact, over-restricted, then we prove in Corollary 6.1.1.7

and Corollary 6.1.1.8 that under certain restrictions (including on the size of p) θ

can be lifted to a representation of GV , which leads to a representation of G. It is

conjectured (Higher Frobenius Conjecture) that a similar process could be applied

for higher Frobenius kernels; if this holds then we find in Proposition 6.2.1.2 that,

under certain conditions, to integrate a projective indecomposable module from G1

to G it is enough to integrate from G1 to some higher Frobenius kernel Gr.

Layout

After this introduction, the thesis starts with Chapter 2: Preliminaries. Here,

the background definitions and results necessary to understand the rest of the thesis

are explained, largely without proofs. This includes a discussion of Lie algebras

in positive characteristic in Section 2.1, Hopf algebras and Hopf-Galois extensions

in Section 2.2, algebraic groups in positive characteristic in Section 2.3, and the

representation theory of reductive Lie algebras and algebraic groups in Section 2.4.

Chapter 3: Higher Deformations - Constructions then begins the study of Fried-

lander and Parshall’s question. After a brief detour about the connection to the

theory of differential operators in Section 3.1, the initial construction of the hig-

her universal enveloping algebras U rrspGq is given in Section 3.2. This section also

shows how these algebras are connected to the universal enveloping algebras Upgq.

Sections 3.3 and 3.4 then prove a number of structural results about these alge-

bras, including the existence of a p-centre and a Poincaré-Birkhoff-Witt basis. The

construction of the higher reduced enveloping algebras U
rrs
χ pGq, as desired by Fried-

lander and Parshall, is then conducted in Section 3.5, where some basic properties

of these algebras are also given.

6



The next chapter, Chapter 4: Higher Deformations - Representation Theory,

delves into the representation theory of the higher reduced universal enveloping

algebras U
rrs
χ pGq when G is reductive. Specifically, focusing on irreducible represen-

tations, in Section 4.1 an analogue for Steinberg’s tensor product theorem is proved

for the U
rrs
χ pGq, the teenage Verma modules ZrχpP, λq are constructed, and a number

of consequences are derived. Then, Section 4.2 explores some questions related to

the centres and Azumaya loci of the U rrspGq.

Chapter 5: Integration of Modules - Stability then turns to the Humphreys-

Verma conjecture and related topics, and tackles the first approach to the problem.

This begins with Section 5.1, which deals with the case of abstract groups. Specifi-

cally, it introduces pL,Hq-morphs and gives the construction of an “exact sequence”

which is then used to give an algorithm giving cohomological conditions on whether

modules can be extended from normal subgroups. Section 5.2 then repeats this

process for algebraic groups, naturally having to spend more time on some of the

algebro-geometric problems that arise in this case.

The thesis concludes with the second approach to Humphreys-Verma related

problems in Chapter 6: Integration of Modules - Exponentials. Section 6.1 defines

over-restricted and r-over-restricted representations of g, and proves (or conjectures)

some results concerning when these representations can be integrated to representa-

tions of G. Applications of these results to the Humphreys-Verma conjecture itself

are then given in Section 6.2.
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Chapter 2

Preliminaries

2.1 Lie algebras in positive characteristic

2.1.1 Lie algebras and universal enveloping algebras

A Lie algebra over an algebraically closed field12 K is a K-vector space g equipped

with a bilinear map r¨, ¨s : gˆ gÑ g (the Lie bracket of g) which satisfies

1. rx, xs “ 0 for all x P g.

2. rx, ry, zss ` ry, rz, xss ` rz, rx, yss “ 0 for all x, y, z P g.

The Lie bracket of g clearly satisfies rx, ys “ ´ry, xs for all x, y P g, and we call

g abelian if rx, ys “ 0 for all x, y P g. A homomorphism of Lie algebras

f : pg1, r¨, ¨s1q Ñ pg2, r¨, ¨s2q is a linear map f : g1 Ñ g2 such that fprx, ys1q “

rfpxq, fpyqs2 for all x, y P g1.

One common source of Lie algebras is associative algebras: an associative alge-

bra A can be made into a Lie algebra by defining the Lie bracket rx, ys “ xy ´ yx

for all x, y P A. This Lie algebra is denoted Ap´q. For example, this process allows

us to define the Lie algebra gln :“MnpKqp´q and its Lie subalgebra

sln :“ tA PMnpKqp´q |TracepAq “ 0u.

The universal enveloping algebra of a Lie algebra g is the associative algebra

Upgq :“
T pgq

Q

where T pgq is the tensor algebra of g and Q is the 2-sided ideal generated by the

elements

xb y ´ y b x´ rx, ys

12In this thesis we only consider algebraically closed fields. Some statements, especially in this
chapter, will hold in greater generality; however, the benefits to taking a case-by-case approach are
outweighed by a desire for clarity and consistency.
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for x, y P g. Letting ι : gÑ Upgqp´q be the natural Lie algebra homomorphism, the

following proposition justifies the “universal” nomenclature.

Proposition 2.1.1.1. Let A be an associative algebra, and let θ : gÑ Ap´q be a Lie

algebra homomorphism. Then there exists a unique homomorphism of associative

algebras rθ : Upgq Ñ A such that rθι “ θ.

A priori, it is not clear that ι need be an injective map. However, this fact follows

from the following explicit description of a basis of Upgq. We state the theorem for

finite-dimensional g, although it can be generalised to the infinite-dimensional case.

Theorem 2.1.1.2 (Poincaré-Birkhoff-Witt Theorem). If x1, . . . , xn is a basis of g,

then Upgq has a basis consisting of the elements13 xa1
1 . . . xann with ai ě 0 for all i.

2.1.2 Representations of Lie algebras

One of the key reasons for defining universal enveloping algebras is their connection

with representation theory. A g-module (equivalently, a representation14 of g)

is defined to be a pair pV, θq where V is a K-vector space and θ is Lie algebra

homomorphism g Ñ glpV q. Given x P g and v P V we often write x ¨ v, or simply

xv, for the element θpxqpvq. The universal property of Upgq implies that there is an

equivalence of categories between g-modules and Upgq-modules.

We are particularly interested in irreducible and indecomposable g-modules.

Definition. Let pV, θq be a g-module.

(1) We call a subspace W of V g-invariant if θpxqpwq P W for all x P g and

w PW .

(2) We say that pV, θq is irreducible if V ‰ 0 and the only g-invariant subspaces

of V are 0 and V .

(3) We say that pV, θq is indecomposable if the only pairs of g-invariant subspa-

ces X and W such that V “ X‘W are pX,W q “ p0, V q and pX,W q “ pV, 0q.

Remark 1. All irreducible g-modules are clearly indecomposable. Over a field of

characteristic zero, it is also true that all finite-dimensional indecomposable modules

are irreducible. However, this converse can fail in positive characteristic. See, for

example, [Jacobson, 1952] (exhibiting a g-module which can be decomposed into a

direct sum of indecomposable modules, but not a direct sum of irreducible ones).

To obtain some examples of Lie algebra representations, let G be an affine

algebraic group15 and let KrGs be its coordinate algebra (i.e. the algebra of regular

13Note that in the universal enveloping algebra Upgq we generally suppress the tensor product
notation and simply write xy for xb y.

14Throughout this thesis we avoid parsing the difference between modules and representations
and the words will be used interchangeably.

15See Subsection 2.3.1, infra, for further discussion of affine algebraic groups.
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functions GÑ K). A morphism GÑ G gives rise to a ring endomorphism of KrGs,
and in this manner we can construct, for each x P G, an endomorphism λx of KrGs
corresponding in G to left multiplication by x.

We further recall that a linear map D : KrGs Ñ KrGs is called a derivation if

Dpfgq “ fDpgq `Dpfqg

for all f, g P KrGs, and we denote by DerKpKrGsq the vector space of all such

derivations. This is in fact a Lie algebra under the Lie bracket rD1, D2s :“ D1 ˝

D2 ´D2 ˝D1.

The Lie algebra of G, which we write as LiepGq or as g, is then defined to be

LiepGq :“ tD P DerKpKrGsq |λx ˝D “ D ˝ λx for all x P Gu,

which one can check is a (finite-dimensional) Lie subalgebra of DerKpKrGsq.

2.1.3 Structure in positive characteristic

Given two derivations τ and σ in LiepGq “ g, it is not true in general that σ ˝ τ

is a derivation. However, when the field K has characteristic p ą 0, we have the

following equation:

τppfgq “

p
ÿ

i“0

ˆ

p

i

˙

τ ipfqτp´ipgq “ fτppgq ` τppfqg.

In other words, τp is a derivation and furthermore it is left invariant. Hence, we

define a map rps : gÑ g which sends δ P g to δrps :“ δp.16 For the rest of this section

we assume that the characteristic of K is p ą 0.

Proposition 2.1.3.1. The map rps : gÑ g satisfies the following two properties:

(1) The map ξ : g Ñ Upgq given by sending x P g to xp ´ xrps in Upgq has image

in the centre of Upgq.

(2) The map ξ is semilinear, i.e. ξpax ` byq “ apξpxq ` bpξpyq for all a, b P K,

x, y P g.

Proof. See A.2 in [Jantzen, 2004].

Definition. A (finite-dimensional) Lie algebra g equipped with a map rps : g Ñ g

which satisfies the conclusions of Proposition 2.1.3.1 is called a restricted Lie

algebra, and rps is called the p-th power map on g.

16From this point on, for δ P g, we always write δrps for the p-times composition of δ with itself,
and use δp to mean the p-th power of δ as an element of the associative algebra Upgq.
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Remark 2. We may, of course, define restricted Lie algebras of arbitrary dimension

using the same criteria. However, many of the results that follow require finite-

dimensionality of g in order to hold, so for this thesis we limit ourselves to the study

of restricted Lie algebras of finite dimension.

Given a homomorphism of algebraic groups f : G1 Ñ G2, we obtain the de-

rivative df : LiepG1q Ñ LiepG2q as the derivative of the underlying morphism of

varieties (we call this process differentiation). The map df is a Lie algebra homo-

morphism. Since LiepGLpV qq “ glpV q for a K-vector space V , if Θ : GÑ GLpV q is

a homomorphism of algebraic groups, i.e. a representation of G, then differentiating

gives dΘ : gÑ glpV q. This hence equips V with the structure of a g-module.

Proposition 2.1.3.2. The representation dΘ of g satisfies the equation dΘpxrpsq “

dΘpxqp for all x P g.

Proof. See Section I.3.19 in [Borel, 1991].

As discussed in the introduction, over a field of characteristic zero all represen-

tations of a Lie algebra LiepGq are derivatives of representations of the algebraic

group G, if G is semisimple and simply-connected. Proposition 2.1.3.2 is the key

reason why this fails in positive characteristic.

Definition. Let g be a restricted Lie algebra. A g-module pV, θq is called restricted

if θpxqp “ θpxrpsq for all x P g.

Even without limiting ourselves to restricted representations, the existence of a

p-th power map on g has some significant consequences for its representation theory,

as the following results show.

Proposition 2.1.3.3. If g is a restricted Lie algebra then all irreducible g-modules

are finite-dimensional. Furthermore, the dimension of these irreducible modules is

bounded by pdimpgq.

Proof. See A.4 in [Jantzen, 2004].

Proposition 2.1.3.4. If g is a restricted Lie algebra and V is an irreducible g-

module (hence an irreducible Upgq-module) then there exists χ P g˚ such that, for

any v P V and x P g,

pxp ´ xrpsq ¨ v “ χpxqpv.

We call χ the p-character of V .

Proof. Since xp´xrps is central in Upgq the linear map f : V Ñ V which sends v P V

to pxp´ xrpsq ¨ v is a Upgq-module endomorphism. Since V is finite-dimensional, the

result then follows from Schur’s lemma17 and the semilinearity of the map x ÞÑ

xp ´ xrps.

17Schur’s lemma: Let A be an algebra over an algebraically closed field K, and let V be a finite-
dimensional irreducible A-module. Then EndApV q is a division ring. Furthermore, if f : V Ñ V is
an A-linear endomorphism then there exists λ P K such that fpvq “ λv for all v P V .

11



This proposition motivates the following definition. For χ P g˚, define

Uχpgq :“
Upgq

xxp ´ xrps ´ χpxqp | x P gy
.

We call Uχpgq a reduced enveloping algebra of g, and we call U0pgq the re-

stricted enveloping algebra of g.

Corollary 2.1.3.5. Every irreducible g-module is an irreducible Uχpgq-module for

some χ P g˚.

Remark 3. This corollary can be used to improve the upper bound on the dimension

of irreducible g-modules to pdimpgq{2, as in Section 2.8 of [Jantzen, 1997].

Observe that restricted representations of g are precisely those which factor

through U0pgq. In particular, this implies that g-modules which factor through

Uχpgq for χ ‰ 0 are not derived from G-modules. The following proposition gives a

analogue of the Poincaré-Birkhoff-Witt Theorem for reduced enveloping algebras.18

Proposition 2.1.3.6. For χ P g˚, the reduced enveloping algebra Uχpgq is an as-

sociative K-algebra of dimension pdimpgq. Furthermore, if x1, . . . , xn is a basis of g,

then Uχpgq has basis

txa1
1 x

a2
2 . . . xann | 0 ď ai ă p for all 1 ď i ď n u.

For each g P G, we can define a homomorphism cg : G Ñ G which sends h to

ghg´1. Differentiating gives a Lie algebra homomorphism Adpgq :“ dcg : g Ñ g,

and hence an action of G on g called the adjoint action. We can furthermore use

this to define an action of G on g˚, called the coadjoint action. This is defined by

g ¨ χpxq “ χpAdpgq´1pxqq for g P G, χ P g˚ and x P g.

Proposition 2.1.3.7. For each g P G, there is an isomorphism

Uχpgq – Ug¨χpgq.

Proof. See A.8 in [Jantzen, 2004].

2.2 Hopf algebras

2.2.1 Definitions

In Subsection 2.1.1, supra, we reviewed the construction and properties of the uni-

versal enveloping algebra of a Lie algebra g. In Subsection 2.3.2, infra, we discuss

the distribution algebra DistpGq of an algebraic group G. An important commo-

nality between the algebras Upgq and DistpGq is that they are both Hopf algebras.

18See A.7 in [Jantzen, 2004].
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To proceed with their study we therefore need to discuss some properties of Hopf

algebras. In this section, we take K to be an algebraically closed field of arbitrary

characteristic.

Recall that a K-algebra19 is a triple pA,m, uq, where A is a K-vector space and

m : A b A Ñ A (multiplication) and u : K Ñ A (unit) are linear maps,20 with the

property that

m ˝ pmb idq “ m ˝ pidbmq, and m ˝ pub idq “ id “ m ˝ pidb uq.

We say that A is commutative if mpabbq “ mpbbaq for all a, b P A. Furthermore,

a homomorphism of K-algebras f : pA,m, uq Ñ pA1,m1, u1q is a linear map f :

AÑ A1 such that

m1 ˝ pf b fq “ f ˝m, and f ˝ u “ u1.

By dualising, we obtain the definitions for coalgebras. Namely, a K-coalgebra is

a triple pC,∆, εq, where C is a K-vector space and ∆ : C Ñ CbC (comultiplication)

and ε : KÑ A (counit) are linear maps, with the property that

p∆b idq ˝∆ “ pidb∆q, and pεb idq ˝∆ “ id “ pidb uq ˝∆.

Note that we use Sweedler’s Σ-notation for comultiplication, i.e., for c P C we write

∆pcq “
ÿ

cp1q b cp2q P C b C.

A coalgebra is called cocommutative if
ř

cp1q b cp2q “
ř

cp2q b cp1q for all c P C.

A homomorphism of K-coalgebras f : pC,∆, εq Ñ pC 1,∆1, ε1q is a linear map

f : C Ñ C 1 such that

pf b fq ˝∆ “ ∆1 ˝ f, and ε1 ˝ f “ ε.

Suppose that pA,m, uq is a K-algebra and pC,∆, εq is a K-coalgebra. Then the

vector space HomKpC,Aq can be made into an algebra whose multiplication, called

the convolution product, is described via

pf ˚ gqpcq “
ÿ

fpcp1qqgpcp2qq

for f, g P HomKpC,Aq and c P C. The unit of this algebra is uε, and we say that

f P HomKpC,Aq is convolution invertible if there exists g P HomKpC,Aq such

that f ˚ g “ uε “ g ˚ f .

19We may simply refer to K-algebras as algebras when the field is clear. Furthermore, the
reader should note that in this section when we discuss algebras without any further qualifier we
are referring to associative algebras.

20Here, and throughout this thesis, an unadorned tensor product b shall be taken to mean tensor
product over the ground field K, i.e. bK.
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We may also discuss modules (resp. comodules) over algebras (resp. coalgebras).

If pA,m, uq is an algebra (resp. pC,∆, εq a coalgebra) then a left A-module (resp.

left C-comodule) is a K-vector space M equipped with a linear map ρ : AbM Ñ

M (resp. ω : M Ñ C bM) such that

ρ ˝ pmb idq “ ρ ˝ pidbmq, and ρ ˝ pub idq “ id

presp. p∆b idq ˝ ω “ pidb∆q ˝ ω, and pεb idq ˝ ω “ idq.

(Note that we also use Sweedler’s Σ-notation for comodules. In particular, if M

is a C-module, we write ωpmq “
ř

mp1q b mp2q for m P M , where mp1q P C and

mp2q P M .) We can similarly define right modules21 (resp. right comodules). A

homomorphism of left A-modules (resp. C-comodules) is then a linear map

f : M ÑM 1 such that

f ˝ ρ “ ρ ˝ pidb fq presp. ω1 ˝ f “ pidb fq ˝ ωq.

Notation. We denote by ModpAq the category of all (left) A-modules, modpAq the

category of all finite-dimensional (left) A-modules, and IrrpAq the category of all

irreducible (left) A-modules.22

We may combine the structure of an algebra and a coalgebra to obtain a bial-

gebra. Namely, a K-bialgebra23 is a vector space B equipped with maps m,u,∆

and ε such that pB,m, uq is an algebra, pB,∆, εq is a coalgebra, and the maps

∆ : B Ñ B b B and ε : B Ñ K are algebra homomorphisms.24 Equivalent to the

latter condition is the requirement that the maps m : BbB Ñ B and u : KÑ B are

coalgebra homomorphisms.25 If pB,m, u,∆, εq and pB1,m1, u1,∆1, ε1q are bialgebras,

a bialgebra homomorphism is a linear map f : B Ñ B1 which is both an algebra

homomorphism and a coalgebra homomorphism.

We can now give the definition of a Hopf algebra.

Definition. A K-Hopf algebra26 is a K-bialgebra pH,m, u,∆, εq equipped with a

K-linear map S : H Ñ H, which we call the antipode of H, such that the diagram

21In this thesis, the word module without qualifier will be taken to mean a left module.
22Recall that a module M over an algebra A is called irreducible if has no proper non-zero

submodules. We do not distinguish notationally between the category of irreducible modules and
the category of finite-dimensional irreducible modules, since for almost all A relevant to this thesis
they will be identical.

23If the field K is clear, we may simply refer to a bialgebra instead of a K-bialgebra.
24Note here that B bB is a K-algebra with multiplication induced by mBbBpb1 b b2, b

1
1 b b

1
2q “

b1b
1
1 b b2b

1
2, for b1, b

1
1, b2, b

1
2 P B, and with unit 1b 1.

25Here, BbB is a coalgebra with comultiplication induced by ∆BbBpbbb
1
q “

ř

pb1bb
1
1qbpb2bb

1
2q

and with counit sending bb b1 to εpbqεpb1q.
26If the field K is clear, we may simply refer to a Hopf algebra instead of a K-Hopf algebra.
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H oo
Sbid

OO

u

H bH
idbS //

OO

∆

HOO

u

K oo ε
H

ε // K

commutes.

The reader should note that the condition on S precisely means that S is con-

volution invertible in HomKpH,Hq.

Definition. Let pH,m, u,∆, ε, Sq and pH 1,m1, u1,∆1, ε1, S1q be Hopf algebras. A

Hopf algebra homomorphism f : pH,m, u,∆, ε, Sq Ñ pH 1,m1, u1,∆1, ε1, S1q is a

bialgebra homomorphism such that S1fphq “ fSphq for all h P H.

Definition. Let pH,m, u,∆, ε, Sq be a Hopf algebra.27 Let A be a vector subspace

of H.

(1) We say that A is a Hopf subalgebra of H if A is a subalgebra28 of H,

∆pAq Ď AbA and SpAq Ď A.

(2) We say that A is a Hopf ideal of H if A is a (two-sided) ideal29 of H,

∆pAq Ď AbH `H bA, SpAq Ď A and εpAq “ 0.

Remark 4. If I is a Hopf ideal of H then the quotient algebra H{I can be equipped

with the structure of a Hopf algebra, where

∆ph` Iq “
ÿ

php1q ` Iq b php2q ` Iq,

εph` Iq “ εphq

and

Sph` Iq “ Sphq ` I.

Furthermore, the natural surjection H Ñ H{I is a homomorphism of Hopf algebras.

Since a Hopf algebra H is both an algebra and a coalgebra, we can speak of both

H-modules and H-comodules. The additional structure of a Hopf algebra enables

us to construct tensor products of modules and comodules. Namely, if M and N are

left H-modules, then M bN can be equipped with the structure of a left H-module

via the action

h ¨ pmb nq “
ÿ

php1qmq b php2qnq.

27From now on, we may avoid the full notation by simply referring to the Hopf algebra H.
In this case, we implicitly denote the maps by m,u,∆, ε and S, or, if there may be ambiguity,
mH , uH ,∆H , εH and SH .

28Recall that a subalgebra A of a K-algebra H is a K-vector subspace of H such that mHpAb
Aq Ď A and uHpKq Ď A

29Recall that a (two-sided) ideal I of a K-algebra H is a K-vector subspace of H such that
mHpH b I ` I bHq Ď I.
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Similarly, if M and N are left comodules, then we can equip M b N with the

comodule structure

mb n ÞÑ
ÿ

mp1qnp1q bmp2q b np2q.

We can, of course, similarly define tensor products of right modules and comodules.

Definition. Let H be a Hopf algebra and A an algebra. We say that A is a (right)

H-comodule algebra if pA,ωq is a right H-comodule and the multiplication and

unit maps of A are H-comodule morphisms.30 We denote

AcoH :“ ta P A |ωpaq “ ab 1u

and call elements of AcoH H-coinvariants of A

Remark 5. If H is a Hopf algebra and I Ď H is a Hopf ideal, then H can be made

into an H{I-comodule algebra, via the H{I-comodule map

h ÞÑ
ÿ

hp1q b php2q ` Iq.

2.2.2 Extensions

When studying the representation theory of abstract groups a powerful tool is the

ability to induce representations from subgroups. When the subgroups in question

are normal, there are a number of significant results about how this induction process

behaves; the study of this situation is called Clifford theory. Later on in this thesis

we shall want to exploit Clifford theory type results for Hopf algebras. Before we

can do that, however, we need to talk about extensions of Hopf algebras.

Definition. Let A be a Hopf algebra. Given a, b P A, we define

adlpaqpbq “
ÿ

ap1qbSpap2qq

and

adrpaqpbq “
ÿ

Spap1qqbap2q.

The maps adl and adr are called the left and right adjoint actions, respectively,

of A on itself.

Definition. Let A be a Hopf algebra and B Ď A a Hopf subalgebra of A. We say

that B is normal in A if adlpaqpbq P B and adrpaqpbq P B for all a P A and b P B.

Note that if A is cocommutative it is sufficient to check this property for either

the left adjoint or the right adjoint action. For the following result, note that given

a Hopf algebra H with counit ε we define

H` :“ H X ker ε.
30The comodule structure on Ab A is as described above. The comodule structure on K comes

from 1K ÞÑ 1K b 1H .
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Proposition 2.2.2.1. Let A be a Hopf algebra and B a normal Hopf subalgebra of

A. Then AB` “ B`A and this is a Hopf ideal of A.

Proof. See Lemma 3.4.2(1) in [Montgomery, 1993].

In particular, in this situation we have an injective Hopf algebra homomorphism

B ãÑ A and a surjective Hopf algebra homomorphism A� A{AB`.

Definition. Let H be a Hopf algebra, pA,ωq a right H-comodule algebra, and B a

subalgebra of A with AcoH “ B. We then call B Ď A a (right) H-extension.

Definition. Let B Ď A be a right H-extension. We say that B Ď A is a (right)

H Galois-extension31 if the natural linear map

AbB AÑ AbK H, abB a
1 ÞÑ pab 1qωpa1q

is bijective.

The following proposition indicates that we have already seen one source of

Hopf-Galois extensions.

Proposition 2.2.2.2. Let A be a Hopf algebra and B a normal Hopf subalgebra of

A. Set H :“ A{AB`. If A is cocommutative then B Ď A is an H-Galois extension.

Proof. See Remark 1.1(4) in [Schneider, 1990].

In order to obtain Clifford theory type results for Hopf algebras, we need to

understand the ways in which a normal Hopf subalgebra can lie inside a Hopf algebra.

The next few definitions and propositions give some perspectives on this.

Definition. Let A be a Hopf algebra and B a normal Hopf subalgebra of A.

(1) We say that A is free over B if A is free as a left B-module under left multi-

plication.

(2) We say that A is faithfully flat over B if, whenever f : N Ñ M is a

homomorphism of left B-modules, f is injective if and only if the corresponding

A-module homomorphism idA b f : AbB N Ñ AbB M is injective.

Proposition 2.2.2.3. Let A be a Hopf algebra and B a normal Hopf subalgebra of

A. The following results hold.

(1) If A is free over B then it is faithfully flat over B.

(2) If B is finite-dimensional over K, then A is free over B.

Proof. It is straightforward to prove (1) from the definitions. Theorem 2.1(2) in

[Schneider, 1993] proves (2).

31We may call this a Hopf-Galois extension if we do not wish to specify H.
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In order to understand Hopf-Galois extensions, we need a way to construct a

comodule algebra from an algebra and a Hopf algebra. This mirrors the way in

which we study extensions of abstract groups. To define these comodule algebras,

we first need to make some further definitions.

Definition. Let H be a Hopf algebra and B an algebra. Let σ : H bH Ñ B be a

convolution invertible linear map.

(1) H is said to measure B if there exists a linear map H b B Ñ B, which we

write as hb b ÞÑ h ¨ b, such the following two conditions hold:

(a) h ¨ 1 “ εphq1 for all h P H.

(b) h ¨ pabq “
ř

php1q ¨ aqphp2q ¨ bq for all h P H and a, b P B.

(2) If H measures B, the linear map σ : H b H Ñ B is called a cocycle of H

with values in B if it satisfies the following two properties:

(a) σph, 1q “ σp1, hq “ εphq for all h P H.

(b)
ř

php1q ¨ σpkp1q,mp1qqqσphp2q, kp2qmp2qq “
ř

σphp1q, kp1qqσphp2qkp2q,mq for

all h, k,m P H.

(3) If H measures B, we call B a twisted H-module (with respect to σ) if the

map H bB Ñ B satisfies the following two conditions:

(a) 1 ¨ b “ b for all b P B.

(b) h ¨ pk ¨ bq “
ř

σphp1q, kp1qqphp2qkp2q ¨ bqσ
´1php3q, kp3qq for all h, k P H and

b P B, where here σ´1 denotes the convolution inverse of σ.

Definition. Let H be a Hopf algebra, B an algebra and σ : HbH Ñ B a convolution

invertible linear map. Furthermore, let H measure B, let σ be a cocycle, and let B be

a twisted H-module with respect to σ. The crossed product B#σH is then defined

to be the associative algebra with underlying vector space B b H, identity element

1#1 (note that we write b#h for the element bb h P B bH), and multiplication

pa#hqpb#kq “
ÿ

aphp1q ¨ bqσphp2q, kp1qq#hp3qkp2q

for all a, b P B and h, k P H.

The algebra B#σH is in fact an H-comodule algebra via the map

b#h ÞÑ
ÿ

pb#hp1qq b hp2q.

H-comodule algebras of this form are key in understanding Hopf algebra extensions,

as we will now see.

Definition. Let H be a Hopf algebra and B Ď A an H-extension.
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(1) The extension is called H-cleft if there exists a convolution invertible right

H-comodule homomorphism32 γ : H Ñ A.

(2) The extension has the (right) normal basis property if there exists an iso-

morphism of left B-modules and right H-comodules33 A – B bH.

Theorem 2.2.2.4. Let H be a Hopf algebra and B Ď A an H-extension. The

following results hold.

(1) The extension is H-cleft if and only if A – B#σH.

(2) The extension is H-cleft if and only if it is H-Galois and has the normal basis

property.

Proof. These results can be found as Theorem 7.2.2 and Theorem 8.2.4, respectively,

in [Montgomery, 1993].

Remark 6. The reader can consult Proposition 7.2.3 in [Montgomery, 1993] for an

explicit description of how one obtains the action of H on B and the cocycle σ from

the cleftness of the extension, and Proposition 7.2.7 in the same to see how the map

γ and its convolution inverse arise from a crossed product.

2.3 Algebraic groups and their representation theory

In this section, we recall some basic facts about algebraic groups and their represen-

tation theory in positive characteristic. To that end, throughout this section G is an

affine algebraic group over an algebraically closed field K of positive characteristic

p ą 0, unless explicitly stated otherwise.

2.3.1 Algebraic groups

Let us briefly recall what these terms mean. To each finitely-generated, commuta-

tive K-algebra A, one can construct by a well-known process a locally-ringed space

SpecpAq. Any locally ringed space isomorphic to one obtained by such a construction

is then called an affine K-scheme, and these form a full subcategory of the category

of locally ringed spaces. Note that this category has terminal object SpecpKq.
To any affine K-scheme X one can associate a unique finitely-generated com-

mutative K-algebra KrXs such that X – SpecpKrXsq. In fact, there exists an

anti-equivalence of categories34

#

Finitely-generated

commutative K-algebras

+

Ø tAffine K-schemesu.

32We may always assume such γ sends 1 to 1 by rescaling if necessary.
33Note that B and H are both H-comodules - B as a subalgebra of A and H via the comultipli-

cation map - so we can equip B bH with the structure of an H-comodule.
34Although we often leave it implicit, it is important to note that an affine K-scheme by definition

comes equipped with a morphism to the terminal object SpecpKq; this corresponds to the K-
structure-defining inclusion of K into the corresponding K-algebra.
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We call KrXs the coordinate algebra of X. It can be identified with the K-algebra

of regular functions35 X Ñ A1. We say that an affine K-scheme X is reduced if

KrXs has no non-zero nilpotent elements.

An affine K-group scheme is then a group object in the category of affine

K-schemes. The anti-equivalence above restricts to an anti-equivalence

#

Finitely-generated commutative

K-Hopf algebras

+

Ø tAffine K-group schemesu.

A reduced affine K-group scheme is called an algebraic K-group or an algebraic

group.36 One can use this anti-equivalence to derive, for a K-group scheme G with

coordinate algebra KrGs, an equivalence

tLeft G´modulesu Ø tRight KrGs ´ comodulesu.

This equivalence is the identity map on the underlying K-vector spaces.

Furthermore, to each K-group scheme G we can assign a K-group functor

rG : tCommutative K-algebrasu Ñ tGroupsu

by defining GpRq “ HompKrGs, Rq with multiplication coming from the Hopf alge-

bra structure of KrGs. Often we describe groups and their homomorphisms through

such a functor, although it is important to note that not all such functors define a

K-group scheme. In particular, we frequently abuse notation to say, for example,

“the algebraic group homomorphism f : GÑ H sends g P G to fpgq P H” to mean

“the algebraic group homomorphism f : GÑ H sends g P GpRq to fpRqpgq P HpRq

for each commutative K-algebra R”.

An affine subgroup scheme of G is an affine K-subscheme of G such that the

inclusion map is a homomorphism of K-group schemes. All closed affine subgroup

schemes of G are of the form SpecpKrGs{Jq ãÑ SpecpKrGsq for a finitely-generated

Hopf ideal J of KrGs. A normal affine subgroup scheme of G is an affine

subgroup scheme N which is preserved by the conjugation action of G on N . If a

(normal) affine subgroup scheme is reduced, we simply call it a (normal) algebraic

subgroup of G, or just a (normal) subgroup of G if no confusion shall arise.

2.3.2 The distribution algebra

Let us now recall the definition of the distribution algebra DistpGq of a K-group

scheme G. If

I1 :“ tf P KrGs | fp1q “ 0u, 37

35Note here that A1
“ SpecpKrtsq, where Krts is the polynomial algebra over K.

36We may sometimes also use the phrase affine algebraic group if we wish to emphasise the
affinity.

37Note that this is the augmentation ideal of KrGs, i.e. the kernel of the counit.
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where we denote by 1 the identity element of GpKq, then we define

DistkpGq :“ tµ : KrGs Ñ K |µ is linear andµpIk`1
1 q “ 0u

and

Dist`k pGq “ tµ P DistkpGq |µp1KrGsq “ 0u.

Note that KrGs “ K‘ I1 and DistkpGq “ K‘Dist`k pGq. We then define

DistpGq :“
ď

kě0

DistkpGq

and

Dist`pGq :“
ď

kě0

Dist`k pGq.

We equip the K-vector space DistpGq with a multiplication defined as follows:

given µ, ρ P DistpGq, we define µρ to be the composition

KrGs ∆
ÝÑ KrGs bKrGs µbρ

ÝÝÑ KbK „
ÝÑ K.

The multiplicative identity is the counit ε of KrGs. This makes DistpGq into a K-

algebra and Dist`pGq into an ideal. If µ P Dist`i pGq and ρ P Dist`j pGq one can show

that38

µρ P Dist`i`jpGq

and

rµ, ρs P Dist`i`j´1pGq.

In other words, DistpGq is a filtered algebra whose associated graded algebra is

commutative. Furthermore, LiepGq lies inside DistpGq as Dist`1 pGq and the Lie

bracket on g is compatible with the Lie bracket rA,Bs “ AB ´BA on DistpGq.

Given a morphism τ : G Ñ H between two K-group schemes, one can define a

linear map

Distpτq : DistpGq Ñ DistpHq

in the natural way, and if τ is in fact a homomorphism then Distpτq is an algebra

homomorphism.39 Furthermore,40 for affine K-group schemes G and H, there is a

K-algebra isomorphism DistpGˆHq – DistpGq bDistpHq. Putting these two facts

together, it is possible to define the map

Distpδq : DistpGq Ñ DistpGq bDistpGq,

where δ : GÑ GˆG is the diagonal morphism. If we define ε : DistpGq Ñ K to be

38See I.7.7 in [Jantzen, 1987].
39See I.7.2 in [Jantzen, 1987].
40See I.7.4(2) and I.7.9 in [Jantzen, 1987].
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map µ ÞÑ µp1q, we can prove that pDistpGq,Distpδq, εq is a coalgebra.

Furthermore, we may obtain from the morphism ι : G Ñ G which sends g to

g´1 the linear map

Distpιq : DistpGq Ñ DistpGq.

Denoting the multiplication of DistpGq by ¨, one can show, for an affine K-group

scheme G, that pDistpGq, ¨, ε,Distpδq, ε,Distpιqq is a cocommutative Hopf algebra.41

Since g embeds in DistpGqp´q as a Lie algebra, the universal property of Upgq

gives a K-algebra homomorphism

Upgq Ñ DistpGq.

If K has characteristic zero,42 this homomorphism is in fact an isomorphism. In

positive characteristic, however, it is neither injective nor surjective in general. One

can show that the embedding of g into DistpGqp´q respects the p-th power maps of

these Lie algebras,43 hence we in fact obtain a K-algebra homomorphism

U0pgq Ñ DistpGq.

This turns out to be injective. We shall see what the image is later on.

2.3.3 Representation theory of distribution algebras

The main reason to study the distribution algebra of a K-group scheme is that it

is better able to capture the representation theory of the algebraic group than the

universal enveloping algebra Upgq when the field has positive characteristic. As such,

it is important to understand the representation theory of distribution algebras.

Let M be a left G-module. We recall from earlier that M can be given the

structure of a right KrGs-comodule; hence, it comes equipped with a linear map

ω : M Ñ M bKrGs. We give M the structure of a left DistpGq-module as follows:

given m P M and µ P DistpGq, we define µm to be the image of m under the

composition

M
ω
ÝÑM bKrGs idbµ

ÝÝÝÑM bK „
ÝÑM.

Furthermore, to each G-module homomorphism f : M ÑM 1 there is a natural way

to construct a homomorphism of DistpGq-modules M ÑM 1.

Let us now recall some basic facts about the DistpGq-module structure of M .

Proofs of all these results can be found in Chapter I.7 in [Jantzen, 1987].

Proposition 2.3.3.1. Let G be a K-group scheme and let M and M 1 be left G-

41See I.7.9 in [Jantzen, 1987].
42It should be clear to the reader that the construction so far has not required any assumption

on the characteristic of the field.
43As with any Lie algebra obtained from an associative algebra, DistpGqp´q has the structure of

a (infinite-dimensional) restricted Lie algebra simply by defining the p-th power map to be the p-th
power map in the underlying associative algebra.
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modules.

(1) Suppose N is a G-submodule of M . Then N is stable under the DistpGq-action

on M , and so is a DistpGq-submodule of M .

(2) Suppose N is a G-submodule of M . Then the DistpGq-module structure of

the G-module M{N is precisely that of the quotient of M by N as DistpGq-

modules.

(3) The DistpGq-module M ‘M 1 is the direct sum of the DistpGq-modules M and

M 1.

(4) If m PM with g ¨m “ m for all g P G then µm “ µp1qm for all µ P DistpGq.

(5) The restriction of the DistpGq-module structure of M to g “ Dist`1 pGq makes

M into a restricted g-module. Furthermore, this is the same g-module structure

as defined in Subsection 2.1.2.

Despite this proposition, it is not true in general that there is an equivalence of

categories between G-modules and DistpGq-modules. However, for a certain family

of group schemes, such an equivalence does exist.

Definition. An affine K-group scheme G is called finite if KrGs is a finite-dimensional

K-algebra. If G is finite and the ideal I1 Ă KrGs is nilpotent then G is called infi-

nitesimal.

It is clear that if G is an infinitesimal affine K-group scheme then DistpGq “

KrGs˚.

Proposition 2.3.3.2. Let G be a finite affine group scheme. Then the category of

G-modules is equivalent to the category of DistpGq-modules.

Proof. See Section I.8.6 in [Jantzen, 1987].

2.3.4 Frobenius kernels

There is a class of infinitesimal (and hence finite) group schemes which will be of

particular importance in what follows. These are the so-called Frobenius kernels of

affine K-group schemes.

Let A be a commutative, finitely-generated K-algebra. For r P N, the map44

γr : AÑ A, a ÞÑ ap
r

is a ring homomorphism, but not a K-algebra homomorphism45 since γrpλaq “

λp
r
γrpaq for a P A, λ P K. In order to recover a ring homomorphism, we therefore

need to modify the K-structure of A.

44Recall here that p is the characteristic of K.
45Hence, it corresponds to a morphism of affine schemes but not of affine K-schemes.
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Definition. Let A be a commutative, finitely-generated K-algebra. For r P N, the

K-algebra Aprq is defined to be equal to A as a ring, but with scalar multiplication

such that λ P K acts on it as λp
´r

does on A.

With this definition in mind, it is straightforward to see that γr induces a K-

algebra homomorphism

γr : Aprq Ñ A, a ÞÑ ap
r
.

We may also view this map as a K-algebra homomorphism A Ñ Ap´rq. Under the

anti-equivalence of categories described above, this corresponds to a morphism

F r :“ Specpγrq : SpecpAq Ñ SpecpAp´rqq

which we call the r-th Frobenius morphism on SpecpAq. Furthermore, one can

check that, if A is a Hopf algebra, then the map γr is, in fact, a homomorphism of

Hopf algebras, so F r is a homomorphism of K-group schemes

F r : GÑ Gprq,

where Gprq is defined to be SpecpKrGsp´rqq.

Definition. If G is an affine K-group scheme, the r-th Frobenius kernel of G is

then defined to be

Gr :“ kerpF rq.

In particular, this is an affine K-group scheme with46

KrGrs “
KrGs

ř

fPI1
KrGsfpr

,

and it is a normal subgroup scheme of G. Since I1{p
ř

fPI1
KrGsfprq is clearly nilpo-

tent, Gr is an infinitesimal affine K-group scheme for all r P N.

The fact that we need to twist the K-algebra structure in order to get a homo-

morphism is an annoyance that we can, at times, remove. We say that a commuta-

tive, finitely-generated K-algebra A has an Fp-form if there exists a commutative,

finitely-generated Fp-algebra A1 such that A – KbFpA
1. In this case, we can define,

for r P N, the map

γgeor : AÑ A, λb a ÞÑ λb ap
r
.

This is already a homomorphism of K-algebras (or K-Hopf algebras, if A is a Hopf

algebra), and on the level of K-group schemes we call this the geometric Frobenius

morphism F rgeo. Furthermore, we can define, for r P N, the map

γarr : Aprq Ñ A, λb a ÞÑ λp
r
b a.

46Here, I1 is as in the definition of the distribution algebra.

24



This map is, in fact, a K-algebra isomorphism, which we call the arithmetic Fro-

benius morphism F rar on the level of K-group schemes. In particular, it is clear

that γr “ γgeor ˝ γarr , and we have the commutative diagram

G
F rgeo //

F r

''

G

F rar��
Gprq

where the vertical arrow is an isomorphism. This implies that

Gr “ kerpF rgeoq

if G is an affine K-group scheme such that KrGs has an Fp-form.47

Using the homomorphism F r : G Ñ Gprq we can equip every Gprq-module M

with the structure of a G-module, which we denote by M rrs. If G is defined over

Fp, using instead the homomorphism F rgeo : G Ñ G we may give a G-module M a

“twisted” G-module structure, which we abuse notation to also denote by M rrs. If,

furthermore, M is defined over Fp - which is to say that there exists a subspace M 1

of M such that K bFp M
1 “ M - and the representation G Ñ GLpMq is defined48

over Fp, then M rrs –M prq as G-modules.49 Here M prq is the K-vector space whose

underlying additive group is pM,`q and such that λ P K acts on M prq as λp
´r

acts

on M ; this can be made into a G-module in a natural way.

Example 1. The additive group Ga is defined to be SpecpKrtsq. Note that the

K-algebra Krts is a Hopf algebra with comultiplication defined by t ÞÑ tb 1` 1b t,

counit defined by t ÞÑ 0 and antipode defined by t ÞÑ ´t. The corresponding K-group

functor maps a commutative K-algebra R to the abelian group pR,`q. Given r ě 0,

we get the r-th Frobenius kernel

Ga,r “ SpecpKrts{xtp
r
yq,

which can also be described via the K-group functor

R ÞÑ tx P R | prx “ 0u.

Example 2. The multiplicative group Gm is defined to be SpecpKrt, t´1sq. Note

that the K-algebra Krt, t´1s is a Hopf algebra with comultiplication defined by t ÞÑ

t b t, counit defined by t ÞÑ 1 and antipode defined by t ÞÑ t´1. The corresponding

K-group functor maps a commutative K-algebra R to the unit group pR˚, ¨q. Given

47We often shorten this to saying that G has an Fp-form.
48The representation ρ : GÑ GLKpMq is said to be defined over Fp if there is a representation

ρ1 : G1 Ñ GLFppM
1
q which becomes ρ under base change.

49See I.9.10 in [Jantzen, 1987].
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r ě 0, we get the r-th Frobenius kernel

Gm,r “ SpecpKrt, t´1s{xtp
r
´ 1yq,

which can also be described via the K-group functor

R ÞÑ tx P R˚ |xp
r
“ 1u.

The Frobenius kernels of G form an ascending sequence

G1 Ď G2 Ď G3 Ď . . .

of normal, infinitesimal K-subgroup schemes of G. Applying the distribution func-

tor, we obtain an ascending sequence

DistpG1q Ď DistpG2q Ď DistpG3q Ď . . .

of normal Hopf subalgebras50 of DistpGq. One can then show that

DistpGq “
ď

rě1

DistpGrq.

Recalling that

g “ Dist`1 pGq “ tµ : I1{I
2
1 Ñ K |µ is linearu,

it is straightforward to see that LiepGrq :“ Dist`1 pGrq is, in fact, equal to g, i.e.

LiepGrq “ LiepGq for all r P N. In particular, this means that the injective homo-

morphism

U0pgq ãÑ DistpGq

defined earlier is even an injective homomorphism

U0pgq ãÑ DistpG1q.

Since G1 is infinitesimal, DistpG1q “ KrG1s
˚ “

´

KrGs{
´

ř

fPI1
KrGsfp

¯¯˚

. From

this, one can deduce that if dimpgq “ n then dim DistpG1q ď pn. On the other hand,

Proposition 2.1.3.6 shows that dimpU0pgqq “ pn. Thus, there is an isomorphism

U0pgq – DistpG1q.

In particular, irreducible representations of G1 are precisely irreducible restricted

representations of g.

Let us make a few more remarks about the structure of DistpGrq.

50See I.7.18 and I.9.8 in [Jantzen, 1987].
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Proposition 2.3.4.1. Let G be an algebraic group over K. Then the following

results hold for r P N.

(1) The K-dimension of DistpGrq is pr dimpgq.

(2) The subspace Distpr´1pGq Ď DistpGq is a subspace of DistpGrq.

(3) The subalgebra of DistpGq generated by Distpr´1pGq is precisely DistpGrq.

Proof. For (1), see Section I.9.6 in [Jantzen, 1987]. For (2), note that if δ P Distpr´1pGq

then δpIp
r

1 q “ 0. Hence, δp
ř

fPI1
KrGsfprq “ 0. Finally, (3) follows from Subsection

2.4.2, infra.

Example 3. Let G “ Ga, the additive group. Then KrGs “ Krts, the polynomial

ring in one variable, and I1 “ xty. Thus,

DistnpGaq “ tδ : Krts Ñ K | δ is linear, and δptkq “ 0 for all k ą nu.

If we define γi P Krts˚ to be the linear map with γipt
jq “ δij, then DistnpGaq has

basis γ0, γ1, . . . , γn and DistpGaq has basis γ0, γ1, . . . , similarly. One can compute

that, in DistpGq,

γiγj “

ˆ

i` j

i

˙

γi`j

which implies that

γi1 “ i!γi.

The reader should consult Section I.7.8 in [Jantzen, 1987] for details. In particular,

this implies that, over C, the distribution algebra DistpGaq has basis

1, γ1,
1

2!
γ2

1 , . . . ,
1

n!
γn1 . . .

and it is straightforward to check that DistpGa,rq is the subspace with basis

1, γ1,
1

2!
γ2

1 , . . . ,
1

ppr ´ 1q!
γp

r´1
1 .

By taking the Z-lattice DistpGa,Zq spanned by elements 1
i!γ

i
1 for i ě 0, we can obtain

DistpGaq over K as DistpGa,ZqbZK. We then conclude that, over K, the distribution

algebra DistpGaq has basis

1b 1, γ1 b 1,
1

2!
γ2

1 b 1, . . . ,
1

n!
γn1 b 1, . . .

and it is straightforward to check that DistpGa,rq is the subspace with basis

1b 1, γ1 b 1,
1

2!
γ2

1 b 1, . . . ,
1

ppr ´ 1q!
γp

r´1
1 b 1.
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Example 4. Let G “ Gm, the multiplicative group. Then KrGs “ Krt, t´1s, the

Laurent polynomial ring, and I1 “ xt´ 1y. Thus,

DistnpGaq “ tδ : Krt, t´1s Ñ K | δ is linear, and δppt´ 1qkq “ 0 for all k ą nu.

If we define δi P Krt, t´1s˚ to be the linear map with δippt´1qjq “ δij, then DistnpGmq

has basis δ0, δ1, . . . , δn and DistpGaq has basis δ0, δ1, . . . , similarly. One can compute

that, in DistpGq,

δiδj “

minpi,jq
ÿ

k“0

pi` j ´ kq!

pi´ kq!pj ´ kq!k!
δi`j´k

which implies that

δ1pδ1 ´ 1q . . . pδ1 ´ i` 1q “ i!δi.

Once again, the reader should consult Section I.7.8 in [Jantzen, 1987] for details.

In particular, this implies that, over C, the distribution algebra DistpGaq has basis

1, δ1,

ˆ

δ1

2

˙

, . . . ,

ˆ

δ1

n

˙

, . . . ,

denoting here
`

δ1
i

˘

:“ δ1pδ1´1q...pδ1´i`1q
i! . It is straightforward to check that DistpGa,rq

is the subspace with basis

1, δ1,

ˆ

δ1

2

˙

, . . . ,

ˆ

δ1

pr ´ 1

˙

.

By taking the Z-lattice DistpGm,Zq spanned by elements
`

δ1
i

˘

for i ě 0, we can

obtain DistpGmq over K as DistpGm,Zq bZ K. We then conclude that, over K, the

distribution algebra DistpGmq has basis

1b 1, δ1 b 1,

ˆ

δ1

2

˙

b 1, . . . ,

ˆ

δ1

n

˙

b 1, . . .

and it is straightforward to check that DistpGm,rq is the subspace with basis

1b 1, δ1 b 1,

ˆ

δ1

2

˙

b 1, . . . ,

ˆ

δ1

pr ´ 1

˙

b 1.

2.4 Reductive groups and their Lie algebras

The representation theory of Lie algebras in positive characteristic and of Frobenius

kernels of algebraic groups is best understood in the reductive case. Let us briefly

summarise the well-known structure of reductive algebraic groups and their Lie

algebras, before delving into their representation theory. Much of the content of

this section, including proofs of the relevant results, can be found in [Jantzen, 1987]

and [Jantzen, 2004]. Throughout this section, G will be a reductive algebraic group

over an algebraically closed field K of positive characteristic p ą 0, and g will be its
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Lie algebra.

2.4.1 The structure of reductive groups and their Lie algebras

We shall call an algebraic group G reductive if its unipotent radical RupGq is trivial.

The unipotent radical RupGq of G is the unique maximal connected unipotent closed

normal subgroup of G, which one can show always exists. The precise definition of

a unipotent subgroup of G is unimportant for this thesis, but the reader can see

Chapter IV.11 in [Borel, 1991] for details.

A subgroup T of G is called a torus if T – pGmq
d for some d P N, and is called

a maximal torus if it is maximal with respect to his property. If T – pGmq
d and

T 1 – pGmq
d1 are two maximal tori then d “ d1, and we call d the rank of G. For a

maximal torus T of G we define

XpT q :“ HompT,Gmq – Zd

and we call it the character group of T , whose group structure we write additively.

We further define the cocharacter group of T

Y pT q :“ HompGm, T q.

Then, as in [Jantzen, 1987, II.1.3], there exists a bilinear pairing XpT qˆY pT q given

by pλ, µq ÞÑ xλ, µy, where xλ, µy is the integer corresponding to λ˝µ P EndpGmq “ Z.

If M is a T -module, then it has a decomposition

M “
à

λPXpT q

Mλ,

where

Mλ :“ tm PM | t ¨m “ λptqm for all t P T u.

Since a maximal torus T acts on the Lie algebra g via the adjoint action, we get a

decomposition

g “
à

λPXpT q

gλ.

We call α P XpT q a root of G with respect to T if α ‰ 0 and gα ‰ 0, and we denote

by ΦpG,T q (or just Φ if no confusion will arise) the set of roots of G with respect

to T . Letting h “ Kd be the Lie algebra of T , we get that

g “ h‘
à

αPΦ

gα.

For α P Φ, one can show that gα is one-dimensional. Since α : T Ñ Gm is a

homomorphism, dα : h Ñ K is a linear map. We often abuse notation by using α

to denote dα, unless context would make this confusing.
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To each root α P Φ one can assign a coroot α_ P Y pT q in a specified way.51 In

the R-vector space XpT q bZ R, the set Φ satisfies the following conditions:

(1) The R-vector space XpT q bZ R is spanned by Φ.

(2) If α P Φ then ´α P Φ, and if sα P Φ for s P R then s P t`1,´1u.

(3) For each α, β P Φ, we have

β ´ 2xβ, α_yα P Φ.

(4) For each α, β P Φ, we have xβ, α_y P Z.

In other words, Φ is a root system in XpT q bZ R. In particular, this means that

in Φ we can choose a system of positive roots, that is, a subset Φ` of Φ such that,

for all α P Φ, either α P Φ` or ´α P Φ`, and such that for all pairs α, β P Φ`

such that α ` β P Φ, we have α ` β P Φ`. We define the corresponding system of

negative roots Φ´ to be ´Φ`. Inside Φ` we have a finite set of simple roots

Π “ tα1, . . . , αnu such that no element of Π can be written as a sum of two or more

elements in Φ`. We then have that every element of Φ is of the form

α “ k1α1 ` ¨ ¨ ¨ ` knαn

with k1, . . . , kn P Z; that α P Φ` if and only if k1, . . . , kn P Zě0; and that α P Φ´ if

and only if k1, . . . , kn P Zď0.

To each root α P Φ we can define a root homomorphism

xα : Ga Ñ G

which satisfies txαpaqt
´1 “ xαpαptqaq for all a P Ga and t P T . The image of this

homomorphism is a closed subgroup of G which we denote by Uα, and whose Lie

algebra is gα. We say that a subset of Φ is unipotent if Ψ X p´Ψq “ H and say

that Ψ is closed if, for all α, β P Ψ, we have pNα ` Nβq X Φ Ď Ψ. To each closed,

unipotent subset Ψ of Φ, we define UpΨq to be the subgroup of G generated by the

subgroups Uα for α P Ψ. In particular, we define

U` :“ UpΦ`q and U´ :“ UpΦ´q.

We further define

B` :“ TU` and B´ :“ TU´,

which are maximal connected solvable subgroups of G. We call B the positive

Borel subgroup52 of G containing T and B´ the negative Borel subgroup of

51See II.1.3 in [Jantzen, 1987] for details.
52Recall that a Borel subgroup of an algebraic group G is a maximal connected solvable sub-

group.
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G containing T .

Defining b` “ LiepB`q, b´ “ LiepB´q, n` “ LiepU`q and n´ “ LiepU´q, we

can show that

n` “
à

αPΦ`

gα,

n´ “
à

αPΦ`

g´α,

and

g “ n´ ‘ h‘ n´.

In general, we write B instead of B` and b instead of b`. We then also have

b “ h‘ n`.

We can then choose a basis h1, . . . ,hd of h and elements eα P gα for α P Φ such

that

teα, ht |α P Φ, 1 ď t ď du

is a basis of g. Defining hα “ re´α, eαs, these satisfy the following relations:

(1) rh, ks “ 0 for all h, k P h.

(2) rh, eαs “ αphqeα for all h P h and α P Φ.

(3) re´α, eαs “ hα can be written as a Z-linear combination of h1, . . . ,hd.

(4) reα, eβs “ ˘pm` 1qeα`β for α ‰ ´β P Φ, where m “ maxtk P N |β´kα P Φu

and eα`β :“ 0 if α` β R Φ.

The basis teα, ht |α P Φ, 1 ď t ď du is called a Chevalley basis of g.53 Further-

more, it is not difficult to see, viewing the elements of g as derivations of KrGs, that

e
rps
α “ 0 for α P Φ and h

rps
t “ ht for all 1 ď t ď d. This demonstrates the p-structure

on g.

A (reductive) algebraic group is called semisimple if it contains no non-trivial

solvable connected closed normal subgroups. This is equivalent to the condition

that ZΦ has finite index in XpT q. A semisimple algebraic group is called simply-

connected if Y pT q “ ZΦ_ “ Ztα_ |α P Φu. See [Jantzen, 1987, I.1.6] for more

details.

2.4.2 Divided powers

For a Hopf algebra H, we define the set of primitive elements

P pHq :“ tx P H |∆pxq “ xb 1` 1b xu,

53See, for example, Chapter VII in [Humphreys, 1972] for a discussion of the characteristic zero
case.
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and the set of group-like elements

GpHq :“ tx P H |∆pxq “ xb xu.

Given an element x P P pHq, a sequence xp0q, xp1q, xp2q, . . . , xpkq P H is said to be a

sequence of divided powers of x if

(1) xp0q “ 1.

(2) xp1q “ x.

(3) ∆pxplqq “
řl
i“0 x

piq b xpl´iq for all l ě 0.

Suppose that x1, . . . , xn is a basis for the Lie algebra g “ LiepGq, where G is

an affine algebraic group. For each 1 ď i ď n, there exists an infinite sequence of

divided powers x
p0q
i , x

p1q
i , x

p2q
i , . . . of xi in the cocommutative Hopf algebra DistpGq.

It is well-known54 that the distribution algebra DistpGrq has basis

tx
pa1q

1 x
pa2q

2 . . . xpanqn | 0 ď ai ă pr for all 1 ď i ď nu,

while the vector space DistkpGq has basis

#

x
pa1q

1 x
pa2q

2 . . . xpanqn

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

ai ď k

+

.

One can also observe that x
pkq
i P DistkpGq for all 1 ď i ď n and k P N.

In particular, if G is a reductive algebraic group with LiepGq “ g, we saw in

Subsection 2.4.1 that g has a basis consisting of elements eα for α P Φ and ht for

1 ď t ď d. To define a basis for DistpGq, we hence would like to construct a sequence

of divided powers for these basis elements. To do this, we first need to work over C.

Define GC to be the simply-connected reductive algebraic group with the same

rank and same root system of G. If we define by gC the C-Lie algebra of GC, then

gC also has a C-basis consisting of elements eα for α P Φ and ht for 1 ď t ď d.

Further defining gZ to be the Z-span of these basis elements in gC, we obtain that

g “ gZ bZ K. We abuse notation by using eα and ht for both the elements in gC

and the corresponding elements in g.

In UpgCq, which is a cocommutative Hopf algebra, we define sequences of divided

powers for these elements as follows. Given α P Φ and k P N, we define

epkqα :“
ekα
k!
,

and, given 1 ď t ď d and k P N, we define

ˆ

ht
k

˙

:“
htpht ´ 1q . . . pht ´ k ` 1q

k!
.

54See [Sweedler, 1967].
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It is shown in [Kostant, 1966] and [Jantzen, 1987, II.1.12] that the set

rUpgqZ “ Z

#

ź

αPΦ`

epiαqα

d
ź

t“1

ˆ

ht
kt

˙

ź

αPΦ`

e
pjαq
´α

ˇ

ˇ

ˇ

ˇ

ˇ

iα, jα, kt ě 0

+

is a Z-form for UpgCq, and that

DistpGq “ rUpgqZ bZ K.

In particular, this gives us a K-basis of DistpGq for reductive groups. We once again

abuse notation to denote by e
pkq
α and

`

ht
k

˘

the corresponding basis elements in both

UpgCq and DistpGq.

2.4.3 Representations of reductive Lie algebras

With this set-up, let us now discuss the representation theory of the reductive Lie

algebra g. For the remainder of this section we assume χ P g˚ vanishes on n`.

An argument in [Kac and Weisfeiler, 1976] shows that this assumption holds if, for

example, the derived group of G is simply-connected.55

Let λ P h˚. We define a 1-dimensional (irreducible) b-module Kλ by making n`

act as 0 and h act via λ. This b-module extends to a Uχpbq-module if and only if

λ P Λχ :“ tλ P h˚ |λphqp ´ λphrpsq “ χphqp for all h P hu.

This is equivalent to the requirement that λphtq
p´λphtq “ χphtq

p for all 1 ď t ď d,

and hence |Λχ| “ pdimphq.

Given λ P Λχ we can then define the baby Verma module

Zχpλq :“ Uχpgq bUχpbq Kλ.

This is a finite-dimensional Uχpgq-module of dimension pdimpn´q. It has as basis the

set
#˜

ź

αPΦ`

ekα´α

¸

b 1 | 0 ď kα ă p

+

,

where we have fixed an order of the positive roots in Φ.

Proposition 2.4.3.1. Every irreducible Uχpgq-module is a quotient of a baby Verma

module Zχpλq for some λ P Λχ.

Proof. By Frobenius reciprocity it is enough to show that every Uχpbq-module is of

the form Kλ for some λ P Λχ. This follows from B.3 in [Jantzen, 2004].

We also have the following result, which gives information about the dimen-

sions of Uχpgq-modules. It was first conjectured in [Kac and Weisfeiler, 1971] and

55Recall that the derived group of a connected reductive algebraic group is semisimple.
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then proved in [Premet, 1995]. The paper [Premet and Skryabin, 1999] contains an

alternative proof.

Theorem 2.4.3.2 (Premet’s Theorem). Suppose that the derived group of G is

simply-connected, that the prime p is good for g,56 and that g is equipped with a non-

degenerate G-invariant bilinear form. Then, for any Uχpgq-module V, the dimension

of V is divisible by pdimpG¨χq{2.

This structure is, in fact, already enough to classify the irreducible sl2-modules

in most cases. It is well-known57 that each element of sl˚2 is conjugate under the

adjoint SL2-action to a linear form such that

e ÞÑ 0 f ÞÑ 0 h ÞÑ t,

where t P K, or

e ÞÑ 0 f ÞÑ 1 h ÞÑ 0.

Here we are using the standard notation of e,h, f P sl2 to mean

e “

˜

0 1

0 0

¸

, h “

˜

1 0

0 ´1

¸

, f “

˜

0 0

1 0

¸

.

A linear form conjugate to the first type is called semisimple, and a linear form

conjugate to the second type (or 0) is called nilpotent. Using Proposition 2.1.3.7,

a classification of Uχpsl2q-modules simply requires a classification for χ non-zero

semisimple, χ non-zero nilpotent, and χ “ 0.

Theorem 2.4.3.3. Let K be an algebraically closed field of characteristic p ą 2,58

and let χ P sl˚2 . Then the following results hold.

(1) If χ ‰ 0 is semisimple, then the irreducible Uχpsl2q-modules are precisely the

baby Verma modules Zχpλq for λ P Λχ. Furthermore, if λ, µ P Λχ then Zχpλq –

Zχpµq if and only if λ “ µ.

(2) If χ ‰ 0 is semisimple, then the irreducible Uχpsl2q-modules are precisely the

baby Verma modules Zχpλq for λ P Λχ. In this case, Λχ “ Fp. Furthermore,

if λ, µ P Λχ then Zχpλq – Zχpµq if and only if λ “ p´ µ´ 2.

(3) If χ “ 0, then every baby Verma module Z0pλq for λ P Λ0 has a unique

irreducible quotient and every irreducible U0psl2q-module appears in this way.

Furthermore, if the irreducible quotients of Z0pλq and Z0pµq for λ, µ P Λ0 are

isomorphic, then µ “ λ.

Proof. See Section 5 in [Jantzen, 1997].
56A prime p being good for g is a property of the root system, and specifically means that: p ‰ 2

for types Bn (n ě 2), Cn (n ě 2), or Dn (n ‰ 4); p ‰ 2, 3 for types E6, E7, F4 or G2; and p ‰ 2, 3, 5
for type E8.

57See, for example, Section 5.4 in [Jantzen, 1997].
58The reader can consult Section 5.6 in [Jantzen, 1997] to see what happens in characteristic 2.
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2.4.4 Representations of reductive groups and their Frobenius ker-

nels

We may also derive representation-theoretic results about the Frobenius kernels Gr

for r ě 1. Since irreducible representations of G1 correspond to irreducible restricted

representations of g, some analogies can be seen between these approaches.

Note that for an algebraic groupG with K-subgroup schemeH, there is a functor

IndGH : ModpHq Ñ ModpGq

which is right adjoint to the restriction functor

ResGH : ModpGq Ñ ModpHq.

More details on the construction can be found in Chapter I.3 in [Jantzen, 1987].

We define

XpT q` :“ tλ P XpT q| xλ, α_y ě 0 for all α P Πu

to be the set of dominant weights of T with respect to Φ` and, for r ě 1, we set

XrpT q :“ tλ P XpT q| 0 ď xλ, α_y ă pr for all α P Πu.

We often make the assumption that the abelian group XpT q{prXpT q has a set of

representatives X 1rpT q with X 1rpT q Ď XrpT q. We call this Assumption (R). This

holds if, for example, G is semisimple and simply-connected. Furthermore, any

reductive group G has a covering group rG which satisfies Assumption (R), although

it need not be the case that rGr is a covering group of Gr. The reader can consult

II.1.17 and II.3.15 in [Jantzen, 1987] for more details.

Remark 7. Assumption (R) fails, for example, for G “ PGL2. This has root

system A1 “ tα,´αu. Observe that

Z „
ÝÑ XpT q, where n ÞÑ

˜

λn :

«

a 0

0 1

ff

ÞÑ an

¸

and

Z „
ÝÑ Y pT q, where n ÞÑ

˜

µn : a ÞÑ

«

an 0

0 1

ff¸

,

using square brackets to denote the image of a matrix in PGL2. Furthermore, ob-

serve that the natural map φα : SL2 Ñ PGL2 induces the coroot

α_ : a ÞÑ

«

a 0

0 a´1

ff

“

«

a2 0

0 1

ff

.
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Thus, xλn, α
_y “ 2n for any n P Z and so, using the above identifications, XrpT q “

tλn | 0 ď 2n ă pru. In particular, taking p odd and n “ pr`1
2 , we obtain that

xλn`p
rλm, α

_y “ pr`1`2prm for any m P Z. Hence, λn`p
rλm R XrpT q for any

m P Z, and so XpT q{prXpT q does not have a system of representatives in XrpT q.

We then define, for λ P XpT q,

∇pλq :“ IndGBpKλq,

where Kλ is the 1-dimensional B “ TU`-module on which U` acts trivially and T

acts via λ. Similarly, for r ě 1 and λ P XpT q we define

∇rpλq :“ IndGrBr pKλq,

where Br is the r-th Frobenius kernel of B.

Theorem 2.4.4.1. Keep the notation from above.

(1) Let M be a G-module. Then M is irreducible if and only if M is isomorphic

to

Lpλq :“ socG∇pλq

for some λ P XpT q`.59 Furthermore, given λ, µ P XpT q`, Lpλq – Lpµq if and

only if λ “ µ.

(2) Let M be a Gr-module. Then M is irreducible if and only if M is isomorphic

to

Lrpλq :“ socGr∇rpλq

for some λ P XpT q`. Furthermore, given λ, µ P XpT q`, we have Lrpλq –

Lrpµq if and only if λ´ µ P prXpT q.

Proof. Statement 1 follows from Corollary II.2.3, Proposition II.2.4 and Proposition

II.2.6 in [Jantzen, 1987]. Statement 2 follows from II.3.9(2) and Proposition II.3.10

in [Jantzen, 1987].

Proposition 2.4.4.2. Keep the notation from above, and let λ P XrpT q Ď XpT q.

Then ResGGrLpλq is an irreducible Gr-module, and is isomorphic to Lrpλq.

Proof. This is Proposition II.3.15 in [Jantzen, 1987].

Remark 8. Combining these two propositions shows that if Assumption (R) is sa-

tisfied, then every irreducible Gr-module extends to an irreducible G-module. In par-

ticular, if we consider the irreducible Gr-module Lrpλq for λ P XpT q` then Assump-

tion (R) says that there exists µ P X 1rpT q Ď XrpT q such that λ´µ P prXpT q. Hence

Lrpλq – Lrpµq as Gr-modules, and Proposition 2.4.4.2 says that Lrpµq – Lpµq as

59Recall that the socle of a module is the sum of its irreducible submodules.
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Gr-modules. But Lpµq is also an irreducible G-module, so Lrpλq has been success-

fully extended to an irreducible G-module.

Proposition 2.4.4.3. Let λ P XrpT q and µ P XpT q`. Then there is an isomor-

phism of G-modules

Lpλ` prµq – Lpλq b Lpµqrrs.

Proof. See Proposition II.3.16 in [Jantzen, 1987].

This leads immediately to Steinberg’s tensor product theorem.

Corollary 2.4.4.4 (Steinberg’s Tensor Product Theorem). Let λ0, λ1, . . . , λr P

X1pT q. Set λ “
řr
i“0 p

iλi P XpT q`. Then there is an isomorphism of G-modules

Lpλq – Lpλ0q b Lpλ1q
r1s b ¨ ¨ ¨ b Lpλrq

rrs.

Proof. See Section II.3.17 in [Jantzen, 1987].
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Chapter 3

Higher Deformations -

Constructions

Let G be an algebraic group over an algebraically closed field K of characteristic

p ą 0 with Lie algebra g. We saw in Subsection 2.3.4 that U0pgq – DistpG1q

and that every irreducible representation of g is an irreducible Uχpgq-module for

some χ P g˚. At the end of [Friedlander and Parshall, 1990], the authors pose the

following question, posed to them in turn by Humphreys:

“Hyperalgebra analogues. Do the algebras Uχpgq have natural analogues

corresponding to the infinitesimal group schemes Gr associated to G for r ą 1?”

This chapter answers the question in the affirmative. We begin by observing

that this question has been previously considered from a different perspective -

namely, the theory of differential operators.

3.1 Differential operators

3.1.1 Sheaves of differential operators

Before getting into the substance of this chapter, let us consider a slightly different

perspective on the topic at hand. While not directly considering the question of

Friedlander and Parshall, some other authors have considered higher generalizations

of the universal enveloping algebra, through the lens of differential operators. It is

worthwhile summarising what is known in this case before we delve into our new

constructions.

When studying sheaves of differential operators on a smooth variety X over

an algebraically closed field K of positive characteristic there are several distinct

notions, which coincide in zero characteristic. Firstly, there are the differential ope-

rators constructed by Grothendieck. The precise construction is omitted here, but

the reader should consult [Dieudonné and Grothendieck, 1960–67] for more detail.

In particular, the sheaf DiffX{K of these differential operators lies inside the sheaf

EndKpOXq.
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This sheaf has a filtration

Dp0qX{K Ñ Dp1qX{K Ñ . . .Ñ DpmqX{K Ñ . . .Ñ DiffX{K “ lim
ÝÑ

DpmqX{K

constructed in [Berthelot, 1996]. The sheaf Dp0qX{K is called the sheaf of crystalline

differential operators and was constructed by Berthelot before the rest of the fil-

tration was developed. This sheaf is used by Bezrukavnikov, Mirković and Rumynin

in [Bezrukavnikov et al., 2008] where they use it to derive a version of Beilinson-

Bernstein’s localisation theorem in positive characteristic. The sheaves DpmqX{K are

called the sheaves of arithmetic differential operators.

When X “ G is a smooth algebraic group we can compare the sheaves of

differential operators with the universal enveloping algebra of LiepGq and the distri-

bution algebra DistpGq. In particular, there is an injective algebra homomorphism

DistpGq ãÑ ΓpG,DiffG{Kq, which is an isomorphism onto the subalgebra of left inva-

riant differential operators.60 Similarly, there is an injective algebra homomorphism

Upgq ãÑ ΓpG,Dp0qX{Kq which is an isomorphism onto the left invariant crystalline

differential operators.

In trying to construct the analogues to the Uχpgq from Friedlander and Pars-

hall’s question, one sees that the arithmetic differential operators should play a

role. To work with arithmetic differential operators explicitly, it helps to recall from

[Hashimoto et al., 2006] that

DpmqX{K –
TKpDiff2pm´1q

C

λ´ λ1OX , δ b δ
1 ´ δ1 b δ ´ rδ, δ1s, δ b δ2 ´ δδ2

where λ P K, δ2 P Diffpm´1, δ, δ1 P Diffpm

G ,

where we denote by Diffk the sheaf of differential operators of order ď k.

Motivated by this, Kaneda and Ye61 define the algebra

Upmq :“
TKpDist2pm´1pGqq

C

λ´ λεG, δ b δ
1 ´ δ1 b δ ´ rδ, δ1s, δ b δ2 ´ δδ2

where λ P K, δ2 P Distpm´1pGq, δ, δ
1 P DistpmpGq

G ,

with εG the counit of KrGs. They obtain, when G is reductive, the following com-

mutative diagram of KrGs-modules:62

KrGs bK Upmq „
ÝÝÝÝÑ ΓpG,DpmqX{Kq

§

§

đ

§

§

đ

KrGs bK DistpGq
„

ÝÝÝÝÑ ΓpG,DiffG{Kq
60See I.7.18 in [Jantzen, 1987] for details.
61See Section 1.2 in [Kaneda and Ye, 2007].
62See Corollary 1.5 in [Kaneda and Ye, 2007].
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with lim
ÝÑ

Upmq – DistpGq.

To answer Friedlander and Parshall’s question we need a slightly different pre-

sentation of this algebra. We see in Subsection 3.4.2, infra, that the later con-

struction gives an algebra isomorphic to Upmq.

3.2 The algebra U rrspGq

3.2.1 Filtered algebras

Before we get to the construction of the algebras U rrspGq that we will be studying

in this chapter, let us generalise slightly the situation we are considering so that we

can develop some notation and tools to work with in our particular circumstance.

Suppose that A is a filtered Hopf algebra63 A “
Ť

kPNAk with A0 “ K and such

that the associated graded algebra grpAq :“
À

kPNAk`1{Ak is commutative.64 We

denote A`k :“ Ak X kerpεAq, where εA is the counit of A.

We can construct the algebra

U rkspAq :“
T pA`k q

Qk
,

where Qk is the two-sided ideal generated by the relations:

(i) xb y “ xy if x P A`i , y P A`j with i` j ă k ` 1, and

(ii) xb y ´ y b x “ rx, ys if x P A`i , y P A`j with i` j ď k ` 1.

Definition. Let A be a filtered Hopf algebra A “
Ť

kPNAk satisfying the above

conditions, and B a K-algebra. We will call a K-linear map φ : A`k Ñ B an

indexed algebra subspace homomorphism if φpxyq “ φpxqφpyq for all x P A`i
and y P A`j with i ` j ă k ` 1, and φprx, ysq “ rφpxq, φpyqs for all x P A`i and

y P A`j with i` j ď k ` 1.

There is a natural indexed algebra subspace homomorphism ιQ : A`k Ñ U rkspAq.

Definition. Let A be a filtered Hopf algebra A “
Ť

kPNAk satisfying the above

conditions. The indexed algebra subspace dual of A`k is the set of all indexed

algebra subspace homomorphisms from A`k to K. We denote it by pA`k q
˚.

It is straightforward to prove the following universal property:

Proposition 3.2.1.1. Let A be a filtered Hopf algebra A “
Ť

kPNAk satisfying the

above conditions, and B a K-algebra. Let φ : A`k Ñ B be an indexed algebra subspace

homomorphism. Then there exists a unique algebra homomorphism φ : U rkspAq Ñ B

such that φ ˝ ιQ “ φ.

63A Hopf algebra A is called a filtered Hopf algebra if it is equipped with a set tAkukPN of
subspaces of A such that Ak Ď Ak`1 for all k P N, A “

Ť

kPNAk, and, for all k, l P N, AkAl Ď Ak`l,

∆pAkq Ď
řk
i“0 Ai bAk´i, and SpAkq Ď Ak.

64In other words, rAk, Als Ď Ak`l´1 for all k, l.
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Let pU rkspAq be the algebra constructed in the same way as U rkspAq except using

Ai instead of A`i for i P N whenever relevant. This has a similar universal property,

and using the universal properties for the linear maps A`k ãÑ Ak and Ak Ñ K‘A`k
it can be shown that the algebras pU rkspAq and U rkspAq are isomorphic.65 We abuse

notation to refer to both algebras as U rkspAq.

Corollary 3.2.1.2. Let A be a filtered Hopf algebra A “
Ť

kPNAk satisfying the

above conditions. Then U rkspAq is a Hopf algebra for all k ě 0. Furthermore, if A

is cocommutative then U rkspAq is cocommutative.

Proof. We already know that U rkspAq is an associative algebra. Applying Proposi-

tion 3.2.1.1 to the comultiplication and counit maps on the coalgebra Ak constructs

the comultiplication and counit maps on U rkspAq. Furthermore, the antipode on A

sends Ak to Ak and so we get the antipode on U rkspAq from Proposition 3.2.1.1.

It is straightforward to check that the Hopf algebra axioms hold, and similarly

straightforward to show cocommutativity when A is cocommutative.

Definition. Let A be a filtered Hopf algebra A “
Ť

kPNAk satisfying the above

conditions. An indexed algebra subspace representation of A`k is an indexed

algebra subspace homomorphism φ : A`k Ñ EndpMq where M is a K-vector space.

Definition. Let A be a filtered Hopf algebra A “
Ť

kPNAk satisfying the above

conditions. A K-vector space M is called an indexed A`k -module if there exists

an indexed algebra subspace homomorphism θ : A`k Ñ EndpMq. For a P A`k and

m PM we often write a ¨m or just am for the element θpaqpmq.

Definition. Let A be a filtered Hopf algebra A “
Ť

kPNAk satisfying the above

conditions, and let pM1, θ1q, pM2, θ2q be indexed A`k -modules. A homomorphism

of indexed A`k -modules is a linear map φ : M1 ÑM2 such that φpamq “ aφpmq

for all a P A`k and m PM .

We can use the universal property in a standard way to get the following theo-

rem.

Proposition 3.2.1.3. There is a bijection between the set of (isomorphism classes

of) indexed A`k -modules and the set of (isomorphism classes of) U rkspAq-modules.

3.2.2 Higher universal enveloping algebras

Observe that, for an affine algebraic group G, the distribution algebra DistpGq is a

filtered Hopf algebra66 DistpGq “
Ť

kPN DistkpGq with Dist0pGq “ K, such that the

associated graded algebra

grpDistpGqq “
à

kPN
Distk`1pGq{DistkpGq

65A similar argument can be made regarding the algebra Upmq defined in Subsection 3.1.1, supra.
66This also holds for an affine group scheme.
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is commutative.67 Furthermore, Dist`k pGq is the same object as DistkpGq
` and

Dist`pGq is an ideal in DistpGq.

We can now use the results of Subsection 3.2.1 to obtain analogues of the univer-

sal enveloping algebras. In particular, we define the higher universal enveloping

algebra of G of degree r to be the algebra

U rrspGq :“ U rp
r`1´1spDistpGqq.

In order to gain an initial understanding of the structure of U rrspGq, recall

that the Frobenius kernel Gs (s P N) is the kernel of the Frobenius homomorphism

F s : G Ñ Gpsq.68 Applying the distribution functor to F s, we get a Hopf algebra

homomorphism

Ξs : DistpGq Ñ DistpGpsqq, Ξspδqpfq “ δpfp
s
q.

Proposition 3.2.2.1. For each r, s P N, the map Ξs induces a Hopf algebra homo-

morphism Υr,s : U rrspGq Ñ U rr´sspGpsqq.

Proof. First, note that if f P Ik`1
1 , with f P KrGs, then Ξspδqpfq “ δpfp

s
q P

δpI
pspk`1q
1 q. So if δ P DistmpGq for m P N, we have Ξspδq P DistnpGq for n ě m`1

ps ´1.

Now, observe that δp1q “ 0 implies Ξspδqp1q “ 0, so δ P Dist`mpGq for m P N in fact

implies that Ξspδq P Dist`n pGq for n ě m`1
ps ´1. We can deduce that if δ P Dist`mpGq

for m ă ps then Ξspδq P Dist`0 pGq “ 0 since m`1
ps ´ 1 ď 0. Hence, ΞspDist`mpGqq “ 0

for m ă ps. Similarly, if δ P Dist`
pr`1´1

pGq then Ξspδq P Dist`
pr´s`1´1

pGq.

Furthermore Ξs : Dist`
pr`1´1

pGq Ñ Dist`
pr´s`1´1

pGq ãÑ U rr´sspGq is an indexed

algebra homomorphism. This follows because if δ P Dist`i pGq and µ P Dist`j pGq

with i` j ă pr`1 then Ξspδq P Dist`
r i`1
ps

s´1
pGq and Ξspµq P Dist`

r
j`1
ps

s´1
pGq (here rxs

denotes the smallest integer ě x), and

R

i` 1

ps

V

´ 1`

R

j ` 1

ps

V

´ 1 ď
i` j

ps
ă pr´s`1,

and similarly for the commutator. Hence the universal property gives an algebra

homomorphism Υr,s : U rrspGq Ñ U rr´sspGq.

The fact that Υr,s is a Hopf algebra homomorphism follows from the fact that

Ξs is a Hopf algebra homomorphism and the fact that the comultiplication, counit

and antipode of U rrspGq come from the corresponding maps on DistpGq.

It is straightforward to check that U rr´sspGpsqq – U rr´sspGqpsq, so these two

notations are used interchangeably from now on.

67See Subsection 2.3.2, supra.
68See Subsection 2.3.4, supra, for details.
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Lemma 3.2.2.2. The map Υr,s : U rrspGq Ñ U rr´sspGpsqqrss is G-equivariant for all

r, s P N.

Proof. This will follow from the same fact for Dist`
pr`1´1

pGq Ñ Dist`
pr´s`1´1

pGqrss.

For this to hold, it is enough that the Frobenius morphism commutes with conju-

gation (where in the codomain the conjugation is pre-composed with the Frobenius

morphism). This condition holds since F s is a homomorphism.

Corollary 3.2.2.3. The map Υr,s is surjective if r ě s.

Proof. If x1, . . . , xn is a basis of g, we choose sequences of divided powers69 such

that Ξspx
pprq
i q “ x

ppr´sq
i for 1 ď i ď n. The result will follow from Lemma 3.3.1.4,

infra.

A special case of the previous observation is that when r “ s the above process

gives a surjective algebra homomorphism Υr,r : U rrspGq Ñ Upgqprq, and a surjective

G-module homomorphism Υr,r : U rrspGqp´rq Ñ Upgqrrs.

Note that if G is defined over Fp (e.g. if G is reductive), we may instead apply

the distribution functor to the geometric Frobenius endomorphism70 F sgeo. This

gives a Hopf algebra homomorphism

Ξs : DistpGq Ñ DistpGq, Ξspδqpf b aq “ δpfp
s
b aq.

In this context one can then similarly obtain, for all r, s P N, surjective Hopf

algebra homomorphisms Υr,s : U rrspGq Ñ U rr´sspGq such that the linear maps

Υr,s : U rrspGq Ñ U rr´sspGqrss are G-equivariant. When G is defined over Fp later in

this thesis, we often prefer this interpretation of these maps.

3.3 The algebra structure of U rrspGq

3.3.1 Initial structural results

The key observation which allows Friedlander and Parshall to develop and study

their deformation algebras is that the p-th power map gives rise to the semilinear

map ξ : g Ñ ZpUpgqq defined in Subsection 2.1.3. In order to make progress with

the study of the structure of U rrspGq we need to construct an analogue of the map

ξ. We start with the following lemma. Note that when δ P Dist`k pGq we already

know from Subsection 2.3.2 that δp P Dist`pkpGq.

Lemma 3.3.1.1. If δ P Dist`k pGq, then δp P Dist`pk´1pGq.

Proof. Recall that KrGs “ K ‘ I1. Hence, for m P N, we have that KrGsbm “
ř

PiPtK,I1u P1 b P2 b ¨ ¨ ¨ b Pm. Using this and the counitary property of the Hopf

69See Subsection 2.4.2.
70See Subsection 2.3.4 for the definition.
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algebra structure of KrGs, we have for f P I1,

∆m´1pfq P f b 1b ¨ ¨ ¨ b 1` 1b f b ¨ ¨ ¨ b 1` ¨ ¨ ¨ ` 1b 1b ¨ ¨ ¨ b f

`
ÿ

aiPt0,1u
2ď

ř

aiďm

Ia1
1 b ¨ ¨ ¨ b Iam1 ,

where ∆m´1 is defined inductively by setting ∆1 as the comultiplication of KrGs
and ∆l :“ p∆l´1 b Idq ˝ ∆ for l ą 1. One can hence show by induction that for

f1, . . . , fn P I1, with n P N, we have

∆m´1pf1 . . . fnq P
n
ź

i“1

pfi b 1b ¨ ¨ ¨ b 1` 1b fi b ¨ ¨ ¨ b 1` ¨ ¨ ¨ ` 1b 1b ¨ ¨ ¨ b fiq

`
ÿ

0ďaiďn
n`1ď

ř

aiďmn

Ia1
1 b ¨ ¨ ¨ b Iam1 .

Rewriting this slightly, we get

∆m´1pf1 . . . fnq P
n
ź

i“1

pfi b 1b ¨ ¨ ¨ b 1` 1b fi b ¨ ¨ ¨ b 1` ¨ ¨ ¨ ` 1b 1b ¨ ¨ ¨ b fiq

`

m
ÿ

j“1

ÿ

0ďaiďn
n`1ď

ř

aiďmn
aj“0

Ia1
1 b ¨ ¨ ¨ b Iam1 `

ÿ

1ďaiďn
ř

ai“n`1

Ia1
1 b ¨ ¨ ¨ b Iam1 .

We now fix m “ p and n “ pk. Given δ P Dist`k pGq (so δpIk`1
1 q “ 0 and δp1q “ 0)

and f1, . . . , fpk P I1 we have that

δppf1 . . . fpkq “ pδ b δ b ¨ ¨ ¨ b δqp∆p´1pf1 . . . fpkqq P

pδ b δ b ¨ ¨ ¨ b δq

˜

pk
ź

i“1

pfi b 1b ¨ ¨ ¨ b 1` 1b fi b ¨ ¨ ¨ b 1` ¨ ¨ ¨ ` 1b 1b ¨ ¨ ¨ b fiq

¸

`

p
ÿ

j“1

ÿ

0ďaiďpk
pk`1ď

ř

aiďp
2k

aj“0

δpIa1
1 q . . . δpI

am
1 q `

ÿ

1ďaiďpk
pk`1“

ř

ai

δpIa1
1 q . . . δpI

ap
1 q.

Since δp1q “ 0, we get

p
ÿ

j“1

ÿ

0ďaiďpk
pk`1ď

ř

aiďp
2k

aj“0

δpIa1
1 q . . . δpI

am
1 q “ 0.

Since a1 ` ¨ ¨ ¨ ` ap “ pk ` 1 implies ai ě k ` 1 for some i, and δpIk`1
1 q “ 0, we also
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have
ÿ

1ďaiďpk
pk`1“

ř

ai

δpIa1
1 q . . . δpI

ap
1 q “ 0.

Now, we want to compute pδb δb ¨ ¨ ¨ b δqp
śpk
i“1pfib 1b ¨ ¨ ¨ b 1` 1b fib ¨ ¨ ¨ b 1`

¨ ¨ ¨ ` 1b 1b ¨ ¨ ¨ b fiqq.

Observe that

pk
ź

i“1

pfi b 1b ¨ ¨ ¨ b 1` 1b fi b ¨ ¨ ¨ b 1` ¨ ¨ ¨ ` 1b 1b ¨ ¨ ¨ b fiq “
ÿ

fA1 b ¨ ¨ ¨ b fAp ,

where the sum is over all ordered partitions71 A1, . . . , Ap of the set t1, . . . , pku where

the sets can be empty, and where, if Ai “ tj1, . . . , jsu with j1 ă . . . ă js, we denote

fAi “ fj1fj2 . . . fjs . Then

pδb δb ¨ ¨ ¨ b δq

˜

pk
ź

i“1

pfi b 1b ¨ ¨ ¨ b 1` 1b fi b ¨ ¨ ¨ b 1` ¨ ¨ ¨ ` 1b 1b ¨ ¨ ¨ b fiq

¸

“
ÿ

δpfA1q . . . δpfApq

where the sum is over the same set as before.

For ordered partitions containing empty sets, δpfAiq “ δp1q “ 0 for those i

with Ai “ H. Furthermore, if two ordered partitions containing no empty sets are

rearrangements of each other, they give the same summand in the above sum since

K is a field. In particular, there are p! such partitions which give the same summand,

so this summand appears p! times. Hence

pδb δb ¨ ¨ ¨ b δq

˜

pk
ź

i“1

pfi b 1b ¨ ¨ ¨ b 1` 1b fi b ¨ ¨ ¨ b 1` ¨ ¨ ¨ ` 1b 1b ¨ ¨ ¨ b fiq

¸

“
ÿ

p!δpfA1q . . . δpfApq “ 0

where this time the second sum is over unordered partitions with p non-empty sets

in them.

Hence, we have that δppf1 . . . fpkq “ 0. That is to say, δp P Dist`pk´1pGq.

In particular, if δ P Dist`prpGq then δp P Dist`
pr`1´1

pGq. This allows us to define

a map ξr : Dist`prpGq Ñ U rrspGq as ξrpδq “ δbp ´ δp where the first exponent is in

U rrspGq and the second is in DistpGq.

Lemma 3.3.1.2. The map ξr is semilinear.

Proof. Clearly ξrpλδq “ λpξrpδq if λ P K and δ P Dist`prpGq. We now want to show

71Ordered partition means for example that t1, 2u, t3, 4u is different from t3, 4u, t1, 2u.
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ξrpµ` ρq “ ξrpµq ` ξrpρq for µ, ρ P Dist`prpGq. Observe that, by definition,

ξrpµ` ρq “ pµ` ρq
bp ´ pµ` ρqp.

We have that

pµ` ρqbp “
ÿ

aiPt0,1u

ηa1 b ¨ ¨ ¨ b ηap ,

where η0 “ µ and η1 “ ρ. Applying µb ρ´ ρb µ “ rµ, ρs P Dist`2pr´1pGq, we get

pµ` ρqbp “

p
ÿ

i“0

ˆ

p

i

˙

µbi b ρbpp´iq ´Ψ

where Ψ is a sum of terms in U rrspGq, each of which is the tensor product of elements

of DistpGq where the sum of the grades is less than pr`1. Hence, Ψ is obtained from

the product of these elements in DistpGq, by the definition of U rrspGq. Since p is

the characteristic of K, we get

pµ` ρqbp “ µbp ` ρbp ´Ψ.

Similarly,

pµ` ρqp “
ÿ

aiPt0,1u

ηa1 . . . ηap ,

where η0 “ µ and η1 “ ρ. Applying µρ´ ρµ “ rµ, ρs P Dist2pr´1pGq, we get

pµ` ρqp “

p
ÿ

i“0

ˆ

p

i

˙

µiρp´i ´Ψ

where Ψ is exactly the same Ψ as above since the multiplication in the expression

of Ψ is the same in DistpGq and U rrspGq. So

pµ` ρqp “ µp ` ρp ´Ψ.

Hence ξrpµ` ρq “ ξrpµq ` ξrpρq

For k ď r, define Xpk to be the K-span in U rrspGq of

tµ P Dist`
pk
pGq |µ “ ρ1ρ2 for ρi P DistjipGqwith j1 ` j2 ď pk, j1, j2 ă pku.

Define Ypk to be a vector space complement of this subspace in Dist`
pk
pGq; when

G is reductive, we take it to be the one with basis te
ppkq
α ,

`

ht
pk

˘

|α P Φ, 1 ď t ď du

(see Subsection 2.4.2 for the notation). The next proposition shows that ξr is only

non-trivial outside of the subspace Xpr .

Proposition 3.3.1.3. For all 0 ď k ď r, we have ξrpXpkq “ 0.

Proof. Since Xpk Ď Xpr for all 0 ď k ď r, it is sufficient to prove that ξrpXprq “ 0.
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Suppose µ P DistipGq, ρ P DistjpGq, where i ` j ď pr and i, j ą 0. So µρ P

DistprpGq. Consider ξrpµρq “ pµρq
bp ´ pµρqp. Note that µρ´ µb ρ “ 0 as i` j ď

pr ă pr`1. We have

pµρqbp “ µb pρb µq b ¨ ¨ ¨ b pρb µq b ρ.

Furthermore ρb µ´ µb ρ “ rρ, µs P Distpr´1pGq. Hence

pµρqbp “ µbp b ρbp ´ Φ,

where Φ is a sum of terms in U rrspGq, each of which is the tensor product of elements

of DistpGq where the sum of the grades is less than pr`1. Hence, Φ is obtained from

the product of these elements in DistpGq. Similarly, we have

pµρqp “ µpρµq . . . pρµqρ.

Since ρµ´ µρ “ rρ, µs by definition, we get that

pµρqp “ µpρp ´ Φ,

where Φ is exactly the same as above, since it doesn’t matter when calculating Φ

if the multiplication is done in DistpGq or in U rrspGq because of the grades of the

elements being multiplied.

Hence, ξrpµρq “ pµρq
bp´pµρqp “ µbpbρbp´µpρp. Since µ P DistipGq and i ă

pr, we have µbp “ µp, and similarly for ρ. So ξrpµρq “ µpbρp´µpρp. Furthermore,

µp P Distpi´1pGq and ρp P Distpj´1pGq, so µp b ρp “ µpρp, so ξrpµρq “ 0.

We would like to show that the image of ξr is central in U rrspGq. To achieve

this, we start by constructing a basis of the higher universal enveloping algebra,

analogous to the Poincaré-Birkhoff-Witt basis for Upgq demonstrated in Theorem

2.1.1.2.

From Proposition 2.3.4.1 there is an inclusion of vector spaces Dist`pr´1pGq ãÑ

DistpGrq Ď DistpGq which clearly satisfies the necessary conditions to employ the

universal property of U rr´1spGq and obtain an algebra homomorphism

πr´1 : U rr´1spGq Ñ DistpGrq.

If we pick a basis x1, . . . , xn of g, then we saw in Subsection 2.4.2 that DistpGrq has

a divided power basis

tx
pa1q

1 x
pa2q

2 . . . xpanqn | 0 ď ai ă pr for all 1 ď i ď nu.

We may then easily to deduce that πr´1 is surjective.

Furthermore, it is straightforward to see that for δ P Dist`
pr´1pGq the equality
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πr´1pδq
p “ πr´1pδ

pq holds. Hence, letting Rr´1 be the ideal of U rr´1spGq generated

by δbp ´ δp for δ P Dist`
pr´1pGq, there is a surjective algebra homomorphism

πr´1 : U rr´1spGq{Rr´1 � DistpGrq.

Lemma 3.3.1.4. The algebra U rr´1spGq is spanned by the set

#

x
pa1q

1 b px
ppr´1q

1 qbb1 b x
pa2q

2 b px
ppr´1q

2 qbb2 b ¨ ¨ ¨ b x
panq
n b px

ppr´1q
n qbbn

such that 0 ď ai ă pr´1, bi ě 0, 1 ď i ď n

+

.

Proof. It is obvious from the basis of Distpr´1pGq given in Subsection 2.4.2 that

these elements generate U rr´1spGq. Hence, using a filtration argument, all that

remains is to make the following observations:

(i) For 1 ď i ď n, if 0 ď s, t ď pr´1, then x
psq
i b x

ptq
i ´

`

s`t
s

˘

x
ps`tq
i lies in the

K-span of the set

#

x
pa1q

1 b x
pa2q

2 b ¨ ¨ ¨ b x
panq
n

with 0 ď aj ă pr´1, 1 ď j ď n, and
řn
j“1 aj ă s` t

+

.

Note here that
`

s`t
s

˘

“ 0 if s` t ě pr´1 and s, t ă pr´1.

(ii) For 0 ď s, t ď pr´1 and 1 ď i ď j ď n, the commutator x
ptq
j bx

psq
i ´x

psq
i bx

ptq
j

lies in the K-span of the set

#

x
pa1q

1 b px
ppr´1q

1 qbb1 b x
pa2q

2 b px
ppr´1q

2 qbb2 b ¨ ¨ ¨ b x
panq
n b px

ppr´1q
n qbbn

with 0 ď ak ă pr´1, bk ě 0, 1 ď k ď n, and
řn
k“1pak ` bkp

r´1q ă s` t

+

.

These observations all follow from the defining relations of U rr´1spGq and cal-

culations with the divided power basis of DistpGrq “ KrGrs˚.

Corollary 3.3.1.5. The algebra U rr´1spGq{Rr´1 is spanned by the set

#

x
pa1q

1 b px
ppr´1q

1 qbb1 b x
pa2q

2 b px
ppr´1q

2 qbb2 b ¨ ¨ ¨ b x
panq
n b px

ppr´1q
n qbbn

such that 0 ď ai ă pr´1, 0 ď bi ă p, 1 ď i ď n

+

.

Proof. This follows from the above lemma since δ P Distpr´1pGq implies δp P

Distpr´1pGq by Lemma 3.3.1.1.

Hence, dimpU rr´1spGq{Rr´1q ď pr dimpgq. However, U rr´1spGq{Rr´1 surjects

onto DistpGrq, which, by Proposition 2.3.4.1, has dimension pr dimpgq. Thus, we

find that U rr´1spGq{Rr´1 – DistpGrq.

In particular, the universal property of the algebra U rr´1spGq{Rr´1 gives an

algebra homomorphism DistpGrq Ñ U rrspGq. Composing with πr then gives an

algebra homomorphism DistpGrq Ñ DistpGr`1q which, by considering the effect on

the basis, is clearly injective. Hence, there is an inclusion DistpGrq ãÑ U rrspGq of

algebras.
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The above results show that DistpGrq is a Hopf subalgebra of U rrspGq, since

the coalgebra structure on U rrspGq is extended from the coalgebra structure on

Distpr`1´1pGq Ď DistpGrq using the universal property given in Proposition 3.2.1.1,

and similarly for the antipode. We can say even more about the structure of this

Hopf subalgebra.

Lemma 3.3.1.6. For an algebraic group G, the algebra U rrspGq satisfies the follo-

wing properties:

(1) DistpGrq is a normal Hopf subalgebra of U rrspGq.

(2) U rrspGq is free as a left and right DistpGrq-module.

(3) U rrspGq is faithfully flat as a left and right DistpGrq-module.

(4) U rrspGq{Dist`pGrqU
rrspGq is isomorphic to the Hopf algebra Upgq.

(5) DistpGrq Ď U rrspGq is a Upgq-Galois extension, with DistpGrq “ U rrspGqcoUpgq.

Proof. Since U rrspGq is cocommutative, to show normality of of DistpGrq in U rrspGq

it is enough enough to prove closure under the left adjoint. Since

adlpaa
1qpbq “ adlpaqadlpa

1qpbq

and

adlpaqpbb
1q “

ÿ

padlpap1qqbqpadlpap2qqb
1q

for a, a1 P A and b, b1 P B, it is enough to show closure for generators of A and B.

We saw in Proposition 2.3.4.1 that DistpGrq Ď DistpGq is generated by Distpr´1pGq,

and U rrspGq is generated by DistprpGq. Let δ P DistprpGq and µ P Distpr´1pGq.

Then

adlpδqpµq “
ÿ

δp1q b µb Spδp2qq,

where the b represents the multiplication in U rrspGq, and we have δp1q P DistipGq,

δp2q P DistjpGq with i` j “ pr. In particular, i` pr ´ 1` j ă pr`1 and so in fact

adlpδqpµq “
ÿ

δp1qµSpδp2qq,

with the multiplication now in Distpr`1´1pGq, the restriction of the multiplication in

DistpGq. Since DistpGrq is normal in DistpGq,72 we hence conclude that adlpδqpµq P

DistpGrq. This proves (1).

Part (2) then follows from Theorem 2.1(2) in [Schneider, 1993], and (3) follows

from (2). Furthermore, (4) is easy to see from the results of Subsection 3.2.2 and

Lemma 3.3.1.4, and (5) follows from Remark 1.1(4) in [Schneider, 1990].

This lemma allows us to understand the structure of U rrspGq as a Hopf algebra.

72See I.7.18 in [Jantzen, 1987].
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Proposition 3.3.1.7. The Upgqprq-extension DistpGrq Ď U rrspGq is Upgqprq-cleft.

Proof. We need to show that there is a convolution-invertible right Upgqprq-comodule

map γ : Upgqprq Ñ U rrspGq. Since Upgqprq has basis

txa1
1 x

a2
2 . . . xann | ai ě 0, 1 ď i ď nu,

we simply need to define γpxa1
1 x

a2
2 . . . xann q for all a1, a2, . . . , an ě 0.

As such, we define

γpxa1
1 x

a2
2 . . . xann q “ px

pprq
1 qba1 b px

pprq
2 qba2 b ¨ ¨ ¨ b pxpp

rq
n qban P U rrspGq

for all a1, a2, . . . , an ě 0.

To show that γ is a Upgqprq-comodule map we need to show that, for y P Upgqprq,

ÿ

γpyqp1q b γpyqp2q “
ÿ

γpyp1qq b yp2q

where we use Sweedler’s Σ-notation and we write γpyqp2q for Υr,rpγpyqp2qq.

It is enough to show this for basis elements. Note that, if y “ xa1
1 x

a2
2 . . . xann

with a1, a2, . . . , an ě 0, then

∆pyq “ px1 b 1` 1b x1q
a1px2 b 1` 1b x2q

a2 . . . pxn b 1` 1b xnq
an

“
ÿ

bi`ci“ai

ˆ

a1

b1

˙ˆ

a2

b2

˙

. . .

ˆ

an
bn

˙

xb11 x
b2
2 . . . xbnn b x

c1
1 x

c2
2 . . . xcnn .

Furthermore, writing ∆Upgqprq for the Upgqprq-comodule map of the comodule

U rrspGq,

∆Upgqprqppx
pprq
1 qba1 b px

pprq
2 qba2 b ¨ ¨ ¨ b pxpp

rq
n qbanq

“ ∆Upgqprqpx
pprq
1 qba1 b∆Upgqprqpx

pprq
2 qba2 b ¨ ¨ ¨ b∆Upgqprqpx

pprq
n qban ,

while, for any 1 ď i ď n,

∆Upgqprqpx
pprq
i q “

pr
ÿ

j“0

x
pjq
i b x

ppr´jq
i “ x

pprq
i b 1` 1b xi

since x
psq
i “ 0 for all 0 ă s ă pr.

Hence,
ř

γpyqp1q b γpyqp2q equals

ÿ

bi`ci“ai

ˆ

a1

b1

˙ˆ

a2

b2

˙

. . .

ˆ

an
bn

˙

ppx
pprq
1 qbb1bpx

pprq
2 qbb2b¨ ¨ ¨bpxpp

rq
n qbbnqbpxc11 x

c2
2 . . . xcnn q
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and
ř

γpyp1qq b yp2q equals

ÿ

bi`ci“ai

ˆ

a1

b1

˙ˆ

a2

b2

˙

. . .

ˆ

an
bn

˙

ppx
pprq
1 qbb1bpx

pprq
2 qbb2b¨ ¨ ¨bpxpp

rq
n qbbnqbpxc11 x

c2
2 . . . xcnn q.

Thus, γ is a Upgqprq-comodule map. Furthermore, γ is convolution-invertible

(with convolution inverse Sγ), since U rrspGq is a Hopf algebra.

By Theorem 2.2.2.4, DistpGrq Ď U rrspGq has the normal basis property. Hence,

U rrspGq – DistpGrqbUpgq
prq as left DistpGrq-modules and right Upgqprq-comodules.

Furthermore, the same theorem shows that

U rrspGq – DistpGrq#σUpgq
prq,

a crossed product of DistpGrq with Upgqprq.73

Corollary 3.3.1.8. The K-algebra U rrspGq has basis

tx
pa1q

1 x
pa2q

2 . . . xpanqn px
pprq
1 qb1px

pprq
2 qb2 . . . pxpp

rq
n qbn | 0 ď ai ă pr, 0 ď bi, 1 ď i ď nu.

3.3.2 Reductive groups

For this section, unless specified otherwise, G will be a reductive algebraic group

over an algebraically closed field K of characteristic p ą 0. We keep the notation

from Subsection 2.4.1; for example, B is a Borel subgroup of G containing a maximal

torus T and with corresponding root system Φ. We show that when G is a reductive

group we may view the higher universal enveloping algebra of G as coming from a

Zppq-form of the universal enveloping algebra of g. Recall here that Zppq :“ tab P

Q |hcfpa, bq “ 1, p - bu is a commutative local ring.

As discussed in Subsection 2.4.2, throughout this thesis we abuse notation by

using the same symbols eα and ht for the corresponding elements of a Chevalley

basis over any base ring. One may see this abuse, for example, in the following

statement: the elements eα P gC for α P Φ form a Chevalley system in gC, where a

Chevalley system is as defined in [Bourbaki, 1975, ch. VIII, §12]. Here, gC is the

complex reductive Lie algebra corresponding to g over the field C.

Let us recall a useful construction of the standard bases for the universal en-

veloping algebra Upgq and the distribution algebra DistpGq. In both cases we start

by considering the complex reductive Lie algebra gC, and we look at elements in

the universal enveloping algebra UpgCq. Recall from the Poincaré-Birkhoff-Witt

73Here, σ : Upgqprq b Upgqprq Ñ DistpGrq is a cocycle as defined in Subsection 2.2.2, where the
reader can also find the definition of a crossed product. The precise description of σ can be found
in Proposition 7.2.3 in [Montgomery, 1993].
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theorem that UpgCq has C-basis

#

ź

αPΦ`

eiαα

d
ź

t“1

hktt
ź

αPΦ`

ejα´α

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď iα, jα, kt

+

.

We then look at the following Z-forms in UpgCq:

UpgqZ “ Z

#

ź

αPΦ`

eiαα

d
ź

t“1

hktt
ź

αPΦ`

ejα´α

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď iα, jα, kt

+

,

rUpgqZ “ Z

#

ź

αPΦ`

epiαqα

d
ź

t“1

ˆ

ht
kt

˙

ź

αPΦ`

e
pjαq
´α

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď iα, jα, kt

+

where e
piαq
α :“ eiαα

iα! and
`

ht
kt

˘

:“ htpht´1q...pht´kt`1q
kt!

as in Subsection 2.4.2. Recall that

we call e
piαq
α and

`

ht
kt

˘

divided powers of eα and ht.

It is easy to see that the first of these is a Z-form from the definitions of the

commutators, while the fact that the second is a Z-form is proved in [Kostant, 1966]

in the case when G is semisimple and simply-connected – the more general result

can be found in [Jantzen, 1987, II.1.12]. From this, we get Upgq “ UpgqZ bZ K and

DistpGq “ rUpgqZ bZ K. To obtain a similar basis for the algebra U rrspGq we apply

the same process with a Zppq-form.74

Given an integer M “ a0 ` a1p ` ¨ ¨ ¨ ` arp
r where 0 ď a0, . . . , ar´1 ă p and

ar ě 0, we define

eJMK
α :“ ea0

α pe
ppq
α q

a1 . . . pepp
rq

α qar P UpgCq

for α P Φ. Furthermore, define

ˆ

ht
JMK

˙

:“

ˆ

ht
1

˙a0
ˆ

ht
p

˙a1

. . .

ˆ

ht
pr

˙ar

P UpgCq

for 1 ď t ď d.

Proposition 3.3.2.1. The subset

U JrKpgqZppq :“ Zppq

#

ź

αPΦ`

eJiαK
α

d
ź

t“1

ˆ

ht
JktK

˙

ź

αPΦ`

e
JjαK
´α

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď iα, jα, kt

+

Ď UpgCq

is a well-defined Zppq-form of UpgCq.

Proof. For this to be well defined, we need to show that it is closed under multipli-

cation. It is clearly enough to show that certain commutators lie inside U JrKpgqZppq .

74Corollary 3.3.1.8 already gives us a basis of U rrspGq. However, for later results - in particular,
showing that the image of ξr is central in U rrspGq - it is useful to have more familiarity with this
basis in the reductive case. For this reason, we give here a different construction of a Poincaré-
Birkhoff-Witt basis for higher universal enveloping algebras of reductive groups.
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Let us introduce the notation

rU JrKpgqZppq :“ Zppq

#

ź

αPΦ`

epiαqα

d
ź

t“1

ˆ

ht
kt

˙

ź

αPΦ`

e
pjαq
´α

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď iα, jα, kt ă pr`1

+

,

which lies inside rUpgqZppq X U
JrKpgqZppq .

One can now compute that, for α, β P Φ, 1 ď t, t1, t2 ď d and 0 ď s, u ă r ` 1,

we have
”

epp
sq

α , e
ppuq
β

ı

P rU JrKpgqZppq ,

”

epp
sq

α , e
ppuq
´α

ı

P rU JrKpgqZppq ,

„

epp
sq

α ,

ˆ

ht
pu

˙

“

pu´1
ÿ

l“0

ˆ

´αphtqp
s

pu ´ l

˙ˆ

ht
l

˙

epp
sq

α P rU JrKpgqZppq ,

„ˆ

ht1
ps

˙

,

ˆ

ht2
pu

˙

“ 0.

More specifically, we know that when we write these commutators in the divided

powers basis we have coefficients in Zppq (this just follows from rUpgqZppq being a

Zppq-form). Hence, for the above statements to hold, all we have to show is that

none of the divided power indices exceed pr`1´1. The first two of these calculations

can be checked directly using [Kostant, 1966] and Lemma 15 in [Steinberg, 1968],

while the second two are clear. For example, if tα, βu form the fundamental roots

for a root system of type G2 with β the long root, then we have

”

epp
sq

α , e
ppuq
β

ı

“
ÿ

εk1,k2,k3,k4e
ppu´k1´k2´k3´2k4q

β

˜

3
ź

j“1

e
pkjq
jα`β

¸

¨ e
pk4q

3α`2βe
pps´k1´2k2´3k3´3k4q
α

where the sum is over all k1, k2, k3, k4 ě 0, not all zero, such that k1`k2`k3`2k4 ď

ps and k1`2k2`3k3`3k4 ď pu and εk1,k2,k3,k4 P Z for all k1, k2, k3, k4. In particular,

none of the heights of the divided powers are greater than or equal to pr`1. The

rest are similar.

We can hence form U JrKpgq :“ U JrKpgqZppq bZppq K.

Proposition 3.3.2.2. There is an isomorphism of algebras U JrKpgq – U rrspGq.

Proof. We prove this by constructing an algebra homomorphism U rrspGq Ñ U JrKpgq

using the universal property and showing that it sends a basis of U rrspGq to a basis

of U JrKpgq.

Distpr`1´1pGq has K-basis

#

ź

αPΦ`

epiαqα

d
ź

t“1

ˆ

ht
kt

˙

ź

αPΦ`

e
pjαq
´α :

ÿ

αPΦ`

piα ` jαq `
d
ÿ

t“1

kt ă pr`1

+

.
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Define φ : Distpr`1´1pGq Ñ U JrKpgq by

φ

˜

ź

αPΦ`

epiαqα

d
ź

t“1

ˆ

ht
kt

˙

ź

αPΦ`

e
pjαq
´α

¸

“
ź

αPΦ`

epiαqα

d
ź

t“1

ˆ

ht
kt

˙

ź

αPΦ`

e
pjαq
´α .

The fact that φpδρq “ φpδqφpρq if δ P Dist`i pGq, ρ P Dist`j pGq with i ` j ă pr`1

and φprδ, ρsq “ rφpδq, φpρqs if δ P Dist`i pGq, ρ P Dist`j pGq with i ` j ď pr`1 is

obvious from how basis elements in Distpr`1´1pGq multiply (since below the pr`1

level, the multiplication is the same in U JrKpgq and DistpGq). Hence we get an

algebra homomorphism φ : U rrspGq Ñ U JrKpgq from the universal property.75

We now need some notation for the elements in U rrspGq. Given an integer

M “ a0 ` a1p` ¨ ¨ ¨ ` arp
r where 0 ď a0, . . . , ar´1 ă p and ar ě 0, we define

eJMKb
α “ eba0

α b peppqα q
ba1 b ¨ ¨ ¨ b pepp

rq
α qbar P U rrspGq

for α P Φ. Furthermore, define

ˆ

ht
JMKb

˙

“

ˆ

ht
1

˙ba0

b

ˆ

ht
p

˙ba1

b ¨ ¨ ¨ b

ˆ

ht
pr

˙bar

P U rrspGq

for 1 ď t ď d. Then

φp
â

αPΦ`

eJiαKb
α

d
â

t“1

ˆ

ht
JktKb

˙

â

αPΦ`

e
JjαKb
´α q “

ź

αPΦ`

eJiαK
α

d
ź

t“1

ˆ

ht
JktK

˙

ź

αPΦ`

e
JjαK
´α .

Furthermore, it is not difficult to see that the

â

αPΦ`

eJiαKb
α

d
â

t“1

ˆ

ht
JktKb

˙

â

αPΦ`

e
JjαKb
´α ,

for iα, j´α, kt P N, span U rrspGq as a vector space. They are also linearly indepen-

dent, since their images under the map φ are. Thus, φ maps a basis to a basis, and

the result holds.

Hence U JrKpgq – U rrspGq as algebras and U rrspGq has the desired basis, which

we generally abuse notation to denote it as

#

ź

αPΦ`

eJiαK
α

d
ź

t“1

ˆ

ht
JktK

˙

ź

αPΦ`

e
JjαK
´α : 0 ď iα, jα, kt

+

.

Note that the universal property of Upgq gives a K-algebra homomorphism

Upgq Ñ U r0spGq. This basis guarantees that this is an isomorphism of K-algebras.76

75Recall Proposition 3.2.1.1.
76In fact, this is an isomorphism of Hopf algebras, by considering the effect of the comultiplication,

counit and antipode on the corresponding bases.
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Hence, the representation theory of reductive Lie algebras over a field of cha-

racteristic p ą 0 as studied in the papers [Friedlander and Parshall, 1988] and

[Friedlander and Parshall, 1990] exists within our theory as the case when r “

0. One can also see this using Kaneda and Ye’s construction Up0q and Proposi-

tion 3.4.2.1, infra.

With this basis of U rrspGq in place, we can now prove the following proposition.

Proposition 3.3.2.3. If G is reductive, the image of ξr is central in U rrspGq.

Proof. By Lemma 3.3.1.2 and Proposition 3.3.1.3, it is enough to show that ξrpe
pprq
α q

and ξrp
`

ht
pr

˘

q are central for α P Φ and 1 ď t ď d. We know that ξrpe
pprq
α q “ pe

pprq
α qbp

and ξrp
`

ht
pr

˘

q “
`

ht
pr

˘bp
´
`

ht
pr

˘

. By the given basis of U rrspGq, it is enough to show

that ξrpe
pprq
α q and ξrp

`

ht
pr

˘

q commute with each element of Dist`prpGq.

Observe that in the notation coming from the Zppq-form the multiplicative no-

tation means the tensor product notation in U rrspGq. This gives us that for α, β P Φ

with α ‰ ´β and 0 ă s ď r, Lemma 15 in [Steinberg, 1968] shows

”

pepp
rq

α qp, e
ppsq
β

ı

“
pr`1!

ppr!qp

”

epp
r`1q

α , e
ppsq
β

ı

P
pr`1!

ppr!qp
U JrKpgqZppq ,

”

pepp
rq

α qp, e
ppsq
´α

ı

“
pr`1!

ppr!qp

”

epp
r`1q

α , e
ppsq
´α

ı

P
pr`1!

ppr!qp
U JrKpgqZppq .

In fact, comparing coefficients in the equation from [Steinberg, 1968, Lemma 15]

shows that these commutators lie in pr`1!
ppr!qp

rU JrKpgqZppq , not just in pr`1!
ppr!qpU

JrKpgqZppq .

The reader can see this with the observation that if, for example, tα, βu form the

fundamental roots for a root system of type G2 with β the long root, then we have

that

”

epp
r`1q

α , e
ppsq
β

ı

“
ÿ

εk1,k2,k3,k4e
pps´k1´k2´k3´2k4q

β

˜

3
ź

j“1

e
pkjq
jα`β

¸

¨ e
pk4q

3α`2βe
ppr`1´k1´2k2´3k3´3k4q
α

where the sum is over all k1, k2, k3, k4 ě 0, not all zero, such that k1`k2`k3`2k4 ď

pr`1 and k1 ` 2k2 ` 3k3 ` 3k4 ď ps and εk1,k2,k3,k4 P Z for all k1, k2, k3, k4. In

particular, none of the divided powers are greater than or equal to pr`1.

Since pr`1!
ppr!qp P Z vanishes modulo p, the above equations hence show that the

commutators vanish in U JrKpgq “ U JrKpgqZppq bZppq K.

Furthermore,

„

pepp
rq

α qp,

ˆ

ht
ps

˙

“

ps´1
ÿ

l“0

ˆ

´αphtqp
r`1

ps ´ l

˙ˆ

ht
l

˙

pepp
rq

α qp “ 0,

where the last equality follows from the observation that
`

´αphtqpr`1

ps´l

˘

“ 0 modulo p
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for all 0 ď l ď ps´1. This comes from Lucas’ Theorem77 and the fact that s ă r`1.

This gives the centrality of ξrpe
pprq
α q. For ξrp

`

ht
pr

˘

q we have

«

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

,

ˆ

hu
ps

˙

ff

“ 0

and

˜

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

¸

epp
sq

α “ epp
sq

α

˜

ˆ

ht ´ αphtqp
s

pr

˙bp

´

ˆ

ht ´ αphtqp
s

pr

˙

¸

“ epp
sq

α

¨

˝

˜

pr
ÿ

l“0

ˆ

ht
l

˙ˆ

´αphtqp
s

pr ´ l

˙

¸bp

´

pr
ÿ

l“0

ˆ

ht
l

˙ˆ

´αphtqp
s

pr ´ l

˙

˛

‚

“ epp
sq

α

˜

pr
ÿ

l“0

ˆ

ht
l

˙bpˆ
´αphtqp

s

pr ´ l

˙

´

pr
ÿ

l“0

ˆ

ht
l

˙ˆ

´αphtqp
s

pr ´ l

˙

¸

“ epp
sq

α

˜

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

¸

since
`

ht
l

˘bp
“

`

ht
l

˘

for l ă pr. This gives the centrality of ξrp
`

ht
pr

˘

q. Hence the image

of ξr is central.

This proposition finally allows us to prove the following result for higher univer-

sal enveloping algebras of arbitrary affine algebraic groups. The idea for this proof

is due to Lewis Topley.

Corollary 3.3.2.4. Let G be an affine algebraic group. For δ P Dist`prpGq, the

element δbp ´ δp is central in U rrspGq.

Proof. If G is an affine algebraic group, then there is an inclusion DistpGq Ď

DistpGLmq for some m P N, which restricts to an inclusion DistkpGq Ď DistkpGLmq

for all k P N. In particular, the inclusion Dist`
pr`1´1

pGq ãÑ Dist`
pr`1´1

pGLmq ãÑ

U rrspGLmq induces, by the universal property, an algebra homomorphism

ι : U rrspGq Ñ U rrspGLmq.

Let x1, . . . , xn be a basis of g “ LiepGq. This can be extended to a basis x1 . . . , xm2

of glm “ LiepGLmq.

The map ι sends

x
pa1q

1 x
pa2q

2 . . . xpanqn px
pprq
1 qb1px

pprq
2 qb2 . . . pxpp

rq
n qbn P U rrspGq

77Lucas’ Theorem: If a, b P Z with a “ a0`b1p`a2p
2
`¨ ¨ ¨ akp

k and b “ b0`b1p`b2p
2
`¨ ¨ ¨`bkp

k

for 0 ď ai, bi ă p, then
`

a
b

˘

is congruent mod p to
`

a0
b0

˘`

a1
b1

˘`

a2
b2

˘

. . .
`

ak
bk

˘

. In particular, if bi ą ai for

some 0 ď i ď k then
`

a
b

˘

“ 0.
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to

x
pa1q

1 x
pa2q

2 . . . xpanqn px
pprq
1 qb1px

pprq
2 qb2 . . . pxpp

rq
n qbn P U rrspGLmq.

Hence, by Corollary 3.3.1.8, ι is injective.

In particular, there is an inclusion ι : U rrspGq ãÑ U rrspGLmq. Now, for δ P

Dist`prpGq, the element ιpδqbp´ ιpδqp is central in U rrspGLmq by Proposition 3.3.2.3,

since GLm is reductive.

Hence, δbp ´ δp is central in U rrspGq.

3.4 Affine algebraic groups

3.4.1 Centres

Let G be an affine algebraic group with Lie algebra g, and let x1, . . . , xn be a basis

of g. We define by Z
rrs
p the subalgebra of ZpU rrspGqq generated by the ξrpδq for

δ P Dist`prpGq. Using Corollaries 3.3.1.8 and 3.3.2.4, we can easily see that Z
rrs
p is

generated by px
pprq
i qbp ´ px

pprq
i qp for i “ 1, . . . , n. From Corollary 3.3.1.8, it is clear

that these elements are algebraically independent over K.

Note the semilinearity of ξr induces an algebra homomorphism from SpY
p1q
pr q

(the symmetric algebra on the vector space Y
p1q
pr defined above) to Z

rrs
p . This map

is bijective.

As a Z
rrs
p -module under left multiplication, U rrspGq is free of rank ppr`1q dimpgq,

with free basis

tx
pa1q

1 x
pa2q

2 . . . xpanqn | 0 ď a1, . . . , an ă pr`1 u.

If G is reductive, we can write this free basis as

$

&

%

ź

αPΦ`

eJiαK
α

ź

βPΠ

ˆ

hβ
JkβK

˙

ź

αPΦ`

e
JjαK
´α

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď iα, jα, kβ ă pr`1

,

.

-

.

This leads us to the following proposition.

Proposition 3.4.1.1. The centre ZpU rrspGqq of U rrspGq is a finitely generated al-

gebra over K. As a ZpU rrspGqq-module, U rrspGq is finitely generated.

Theorem 3.4.1.2. Let E be an irreducible U rrspGq-module. Then E is finite-

dimensional, of dimension less than or equal to ppr`1q dimpgq.

Proof. This follows in exactly the same way as Theorem A.4 in [Jantzen, 2004].

57



3.4.2 Comparison with Kaneda-Ye construction

Let G be a reductive algebraic group. Recall that Kaneda and Ye78 construct the

algebra

Uprq :“
TKpDist2pr´1pGqq

C

λ´ λεG, δ b δ
1 ´ δ1 b δ ´ rδ, δ1s, δ b δ2 ´ δδ2

where λ P K, δ2 P Distpr´1pGq, δ, δ
1 P DistprpGq

G ,

with εG the counit of G.

Proposition 3.4.2.1. The algebras Uprq and U rrspGq are isomorphic.

Proof. The algebra Uprq has a clear universal property, which causes the inclusion

Dist2pr´1pGq ãÑ U rrspGq to induce an algebra homomorphism Uprq Ñ U rrspGq. The

surjectivity of this homomorphism is obvious from the basis constructed in Chap-

ter 3.3.2.

It is left as an exercise for the reader to show that the proof of Proposi-

tion 3.3.2.2, showing that the algebra U rrspGq has the given basis, applies equally well

to the algebra Uprq. This guarantees that the algebra homomorphism Uprq Ñ U rrspGq

is an isomorphism.

3.5 Higher reduced enveloping algebras

3.5.1 Deformation algebras

In this section we start to consider the representation theory of the algebra U rrspGq.

From Proposition 3.2.1.3, we have the immediate result:

Corollary 3.5.1.1. There is a bijection between the set of (isomorphism classes

of) indexed Dist`
pr`1´1

pGq-modules and the set of (isomorphism classes of) U rrspGq-

modules.

One of the most important differences between the representation theory of

Lie algebras in characteristic zero and in positive characteristic is the fact that

in characteristic p ą 0 all irreducible representations of Upgq are finite-dimensional.

Theorem 3.4.1.2 tells us that we can conclude a similar result for irreducible U rrspGq-

modules. The natural question to ask is: how much of the representation theory of

Upgq can be similarly extended to develop the representation theory of U rrspGq? To

that end, let us follow the path well-trodden in the r “ 0 case and see how many

difficulties we discover in the generalisation.

Suppose that E is an irreducible U rrspGq-module. It is finite-dimensional by

Theorem 3.4.1.2. Hence, by Schur’s lemma, ξrpδq P Z
rrs
p acts as a scalar on E for

78See [Kaneda and Ye, 2007].

58



each δ P Dist`prpGq. By the semilinearity of ξr, we can deduce that there exists

χE P Dist`prpGq
˚ (the vector space dual) such that

ξrpδq|E “ χEpδq
pIdE for all δ P Dist`prpGq.

Note that χEpδq “ 0 ðñ χEpδq
p “ 0 ðñ ξrpδq|E “ 0. In particular, this means

that χEpXprq “ 0, where Xpr is defined as in Subsection 3.3.1.

Recall from Proposition 3.2.2.1 and Corollary 3.2.2.3 that Υr,r : U rrspGq Ñ

Upgqprq is a surjective algebra homomorphism such that Υr,rpDist`prpGqq “ gprq.

The linear map Υr,r|Dist`pr pGq
: Dist`prpGq Ñ gprq (in fact indexed algebra subspace

homomorphism) has kernel Xpr and hence χE passes to a linear map χ̂E : g Ñ K.

Similarly, given pχ̂ P g˚qprq we can extend along Υr,r|Dist`pr pGq
to get a linear form

χ : Dist`prpGq Ñ K. We abuse notation slightly in the following way: given pχ P

g˚qprq, we also denote by χ the linear form Dist`prpGq Ñ K induced by Υr,r.
79

This allows us to make the following definition for pχ P g˚qprq:

U rrsχ pGq :“
U rrspGq

xξrpδq ´ χpδqp | δ P Dist`prpGqy
.

We call such an algebra a higher reduced enveloping algebra. Since all irre-

ducible U rrspGq-modules are finite-dimensional by Theorem 3.4.1.2, Schur’s lemma

allows us to easily deduce the following result.

Proposition 3.5.1.2. Every irreducible U rrspGq-module is a U
rrs
χ pGq-module for

some χ P g˚.

It is straightforward to show that as a vector space over K this algebra has

dimension ppr`1q dimpgq with basis the classes of

tx
pa1q

1 x
pa2q

2 . . . xpanqn | 0 ď ai ă pr`1 for all 1 ď i ď nu

in U
rrs
χ pGq. When G is reductive, the basis can be written as the classes of

#

ź

αPΦ`

eJiαK
α

d
ź

t“1

ˆ

ht
JktK

˙

ź

αPΦ`

e
JjαK
´α

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď iα, jα, kt ă pr`1

+

in U
rrs
χ pGq. At times, it will also be beneficial to consider another basis of this

algebra, which can be derived easily from properties of divided powers. This basis

consists of the classes of

#

ź

αPΦ`

epiαqα

d
ź

t“1

ˆ

ht
kt

˙

ź

αPΦ`

e
pjαq
´α

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď iα, jα, kt ă pr`1

+

79Since g˚ and pg˚qprq are equal as sets (and as G-sets) we generally just write g˚ unless the
vector space structure is of particular importance.
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in U
rrs
χ pGq.

We saw as a result of Corollary 3.3.1.5 that U
rrs
0 pGq “ DistpGr`1q. One can also

show that, for χ P g˚ and s ď r, we get that Υr,r´s : U
rrs
χ pGq Ñ U

rss
χ pGqpr´sq is a well-

defined algebra homomorphism. So we get the sequence of algebra homomorphisms

U rrsχ pGq� U rr´1s
χ pGqp1q � ¨ ¨ ¨� U r1sχ pGq

pr´1q � Uχpgq
prq.

Given g P G, we get an adjoint action of g, denoted Adpgq, on Dist`prpGq. This

leads to a coadjoint action of g on Dist`prpGq
˚. We furthermore have a twisted coad-

joint action of g on pg˚qrrs, corresponding to the twisted adjoint action AdpF rpgqq.

Lemma 3.5.1.3. Given pχ P g˚qrrs and g P G, there is an isomorphism U
rrs
χ pGq –

U
rrs
g¨χpGq.

Proof. Consider the coadjoint actions of G on Dist`prpGq
˚ and on g˚ (untwisted and

twisted respectively). A priori, the actions need not be compatible when we switch

between considering pχ P g˚qrrs as a linear form on g and a linear form on Dist`prpGq.

However, the G-equivariance of Υr,r (see Lemma 3.2.2.2) means that this is not a

problem – the actions are compatible.

As a result, one can show that U
rrs
χ pGq – U

rrs
g¨χpGq where we mean by g ¨ χ the

(twisted) coadjoint action of g on χ - by Subsection 3.2.2, it doesn’t matter here if

we consider the action of g on pχ P g˚qrrs or χ P Dist`prpGq
˚.

In particular, much like in the r “ 0 case, to understand the representation

theory of U rrspGq it is enough to understand the representation theory of U
rrs
χ pGq

for pχ P g˚qrrs in distinct G-orbits.

3.5.2 Frobenius kernels

We would now like to show that DistpGrq is a subalgebra of U
rrs
χ pGq for any choice

of χ P g˚. We saw earlier80 that

DistpGrq –
U rrspGq

xδbp ´ δp | δ P Dist`
pr´1pGqy

so by induction it is enough to construct an injective algebra homomorphism

U rr´1spGq

xδbp ´ δp | δ P Dist`
pr´1pGqy

ãÑ
U rrspGq

xδbp ´ δp ´ χpδqp1 | δ P Dist`prpGqy
.

Inclusion gives us a map i : Dist`pr´1pGq ãÑ Dist`
pr`1´1

pGq ãÑ U rrspGq which

clearly satisfies all the conditions for the universal property, so we get an algebra

homomorphism

i : U rr´1spGq Ñ U rrspGq� U rrsχ pGq.

80See Corollary 3.3.1.5 and the discussion following it.
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It is straightforward to see from the basis description of U rrspGq that Impiq X

xδbp´ δp´χpδqp1 | δ P Dist`prpGqy “ 0, so we just need to show that kerpiq “ xδbp´

δp | δ P Dist`
pr´1pGqy. This follows easily from the basis descriptions of U rr´1spGq

and U rrspGq once we notice that ippx
ppr´1q

j qbpq “ px
ppr´1q

j qp for 1 ď j ď n.

In particular, we have the following diagram of injective and surjective algebra

homomorphisms:

. . .

$$ $$

U rr´1spGq

&& &&

OO

� ?

U rrspGq

&& &&

OO

� ?

U rr`1spGq

$$ $$

OO

� ?
¨ ¨ ¨
� � // DistpGr´1q

� � // DistpGrq
� � // DistpGr`1q

� � // ¨ ¨ ¨

This hence provides us with a direct system . . . Ñ U rr´1spGq Ñ U rrspGq Ñ

U rr`1s Ñ . . . with direct limit lim
ÝÑ

U rrspGq “ DistpGq. From what we have already

shown, we can use this to deduce some details of the module theory of U
rrs
χ pGq.

Proposition 3.5.2.1. Every U
rrs
χ pGq-module is a DistpGsq-module for all 0 ď s ď r.

Proposition 3.5.2.2. Every U
rss
χ pGqpr´sq-module can be lifted to a U

rrs
χ pGq-module

via Υr,r´s.

We can put these two results together in the following theorem. The proof

follows easily from Subsection 3.2.2.

Proposition 3.5.2.3. Let M be a U
rrs
χ pGq-module. If M is lifted from a U

rss
χ pGqpr´sq-

module along Υr,r´s then Dist`pGsqM “ 0. On the other hand, if Dist`pGsqM “ 0,

then M is a U
rss
χ pGqpr´sq-module via a lifting along Υr,r´s.

3.5.3 Examples

Example 5. Consider the additive algebraic group G “ Ga. We know from Exam-

ple 3 in Subsection 2.3.4 that Distpr`1´1pGq has basis γ1, γ2, . . . , γpr`1´1 and that in

DistpGq the multiplication is γkγl “
`

k`l
k

˘

γk`l. Using these facts one can show that

U rrspGaq “
Krt0, t1, . . . , trs

xtpi | 0 ď i ď r ´ 1 y
.

Furthermore, given χ P g˚ “ K, we get

U rrsχ pGaq “
Krt0, t1, . . . , trs

xtpr ´ χp; t
p
i | 0 ď i ď r ´ 1 y

–
Krts
xtpy

b ¨ ¨ ¨ b
Krts
xtpy

b
Krts

xtp ´ χpy
.

Example 6. Consider the multiplicative algebraic group G “ Gm. We know from

Example 4 in Subsection 2.3.4 that Distpr`1´1pGq has basis δ1, δ2, . . . , δpr`1´1 and

that in DistpGq the multiplication is δkδl “
řminpk,lq
i“0

pk`l´iq!
pk´iq!pl´iq!i!δk`l´i. Using these

facts one can show that

U rrspGmq “
Krt0, t1, . . . , trs

xtpi ´ ti | 0 ď i ď r ´ 1 y
.
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Furthermore, given χ P g˚ “ K, we get

U rrsχ pGmq “
Krt0, t1, . . . , trs

xtpr ´ tr ´ χp; t
p
i ´ ti | 0 ď i ď r ´ 1 y

– Kˆ ¨ ¨ ¨ ˆK

where there are rp copies of K in the final expression, since tpi ´ ti and tpr ´ tr ´ χ
p

are separable polynomials. This tells us that the algebra U
rrs
χ pGmq is semisimple.
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Chapter 4

Higher Deformations -

Representation Theory

In Chapter 3 we were successfully able to construct the higher universal enveloping

algebra U rrspGq and the family of higher reduced enveloping algebras U
rrs
χ pGq in-

dexed by χ P g˚. We would like to understand the representation theory of the

algebras U
rrs
χ pGq. We do so in this chapter for reductive groups.

Throughout this chapter we will assume that G is a reductive algebraic group

over an algebraically closed field K of characteristic p ą 0 and maintain the standard

notation for the various subgroups and other objects associated with it which can

be found in Subsection 2.4.1. In particular, G is defined over Fp so as observed at

the end of Subsection 3.2.2 we may employ the geometric Frobenius endomorphism

instead of the Frobenius morphism where relevant in order to avoid twisting K-

structures. We do this without comment for the remainder of the chapter.

Furthermore, we make Assumption (R), which the reader should recall from

Subsection 2.4.4 is the assumption that the abelian group XpT q{prXpT q has a set

of representatives X 1rpT q with X 1rpT q Ď XrpT q.

4.1 Representation theory of U rrspGq

4.1.1 Decomposition of U rrspGq-modules

Suppose P is an irreducible left DistpGrq-module and M is an irreducible left

U rrspGq-module. Then P is a left DistpGr`1q-module by Remark 8 in Subsection 2.4.4.

Hence, as U rrspGq surjects onto DistpGr`1q, we have that P can be extended to a

U rrspGq-module.

We can also define a left U rrspGq-module structure on HomGrpP,Mq as follows:81

x ¨ φ : z ÞÑ
ÿ

xp1qφpSpxp2qqzq for x P U rrspGq, z P P, φ P HomGrpN,Mq,

81Since the Frobenius kernels are infinitesimal group schemes, there is no difference between
Gr-modules and DistpGrq-modules, or homomorphisms between them, so we often use the notions
interchangeably. See Section I.8.6 in [Jantzen, 1987] for more details.
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where here we are using the U rrspGq-module structure on P defined in the previous

paragraph. It is a straightforward calculation that this makes HomGrpP,Mq into a

U rrspGq-module, and that the ideal U rrspGqDist`pGrq acts trivially upon it. Hence,

HomGrpP,Mq has the structure of a Upgq “ U rrspGq{U rrspGqDist`pGrq-module.

Putting these two observations together and again using the Hopf algebra struc-

ture of U rrspGq, we can define a U rrspGq-module structure on P b HomGrpP,Mq.
82

Furthermore, if x P DistpGrq, z P P and φ P HomGrpP,Mq, then

x ¨ pz b φq “
ÿ

xp1qz b xp2qφ

“
ÿ

xp1qz b εpxp2qqφ

“ p
ÿ

xp1qεpxp2qqzq b φq

“ xz b φ,

using here that elements of DistpGrq act on HomGrpP,Mq via ε, the counit. So

we see that the U rrspGq-module structure on P b HomGrpP,Mq restricts to the

DistpGrq-module structure on copies of P .

Theorem 4.1.1.1. Make Assumption (R). Let M be an irreducible U rrspGq-module.

Then there exists an irreducible DistpGrq-module P such that M – PbHomGrpP,Mq

as U rrspGq-modules.

Proof. Let P be an irreducible DistpGrq-submodule of M . As above, we can equip

P bHomGrpP,Mq with the structure of a U rrspGq-module. We then define the map

Ψ : P bHomGrpP,Mq ÑM, Ψpz b φq “ φpzq.

It is straightforward to check that this is a homomorphism of U rrspGq-modules.

Since M is irreducible, it is clearly surjective. Hence, using Equation (4.1.1), as

DistpGrq-modules

M –

k
à

i“1

P,

for some k P N. In particular, this implies that HomGrpP,Mq – Kk and so

dimKpMq “ k dimKpP q. Furthermore, dimKpPbHomGrpP,Mqq “ k dimK P . Hence,

Ψ is an isomorphism.

Theorem 4.1.1.1 therefore shows that an irreducible U rrspGq-module can be

decomposed into an irreducible DistpGrq-module and a Upgq-module.

This result can also be obtained in a different way. This alternative method

is more useful for the remainder of this chapter, and is inspired by the results

of [Schneider, 1990] and [Witherspoon, 1999]. In particular, by Lemma 3.3.1.6,

DistpGrq Ď U rrspGq is a Upgq-Galois extension, so many of Schneider and Wit-

herspoon’s Clifford theoretic results are applicable in our setting.

82Recall from Subsection 2.2.1 that tensor product of two modules over a Hopf algebra H can be
made into a module over H.
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Lemma 4.1.1.2. Make Assumption (R). Let P be an irreducible left DistpGrq-

module, and define the algebra

E :“ EndU rrspGqpU
rrspGq bD P q

op,

where here, and throughout this chapter, D :“ DistpGrq. Let U be an irreducible left

E-module. Then PbKU can be given a left U rrspGq-module structure which restricts

to the natural left DistpGrq-module structure.

Proof. The proof of this lemma can essentially be found in [Witherspoon, 1999], but

we include elements of it here for ease of understanding. As described above, P can

be extended to a U rrspGq-module. Remark 3.2(3) of [Schneider, 1990] shows that

P is U rrspGq-stable.83 It is proved in [Schneider, 1994] that P bK E is isomorphic

to U rrspGq bDistpGrq P as right E-modules, using the U rrspGq-stability of P . In

particular, by applying ´bE U , this implies that

P bK U – pU
rrspGq bDistpGrq P q bE U (4.1)

can be given the structure of a left U rrspGq-module. Furthermore, Theorem 2.2(i)

of [Witherspoon, 1999] shows that this U rrspGq-module structure restricts to the

natural DistpGrq-module structure.84

Remark 9. Lemma 4.1.1.2 gives another way to get a U rrspGq-module structure

on P b HomGrpP,Mq, where M is an irreducible left U rrspGq-module, using the

observation that HomGrpP,Mq is a left E-module.85

The key point of the proof of Lemma 4.1.1.2 is Equation (4.1), which in the

context of Remark 9 gives an isomorphism of U rrspGq-modules:

P bHomGrpP,Mq – pU
rrspGq bD P q bE HomU rrspGqpU

rrspGq bD P,Mq.

It is straightforward to show that the map

ηM : pU rrspGq bD P q bE HomU rrspGqpU
rrspGq bD P,Mq ÑM,

ηM pabD nbE φq “ φpabD nq

is a U rrspGq-module homomorphism, and a similar argument to Theorem 4.1.1.1

shows that it is an isomorphism. So we obtain the result:

Theorem 4.1.1.3. Make Assumption (R). Let M be an irreducible U rrspGq-module.

Then there exists an irreducible DistpGrq-module P such that M is isomorphic to

83This means that there exists a left DistpGrq-linear and right Upgq-collinear isomorphism
U rrspGq bDistpGrq P – P bK Upgq - see, for example, [Schneider, 1990] or [Witherspoon, 1999]
for the Upgq-comodule structures on these spaces.

84Although Witherspoon’s theorem is not directly applicable to this setting, it is observed in
[Witherspoon, 1999] that the result still holds in the present situation.

85See, for example, Theorem 2.2.(ii) in [Witherspoon, 1999] for a proof of this statement.

65



P b HomDistpGrqpP,Mq as U rrspGq-modules, where the U rrspGq-module structure on

P bHomGrpP,Mq comes from Lemma 4.1.1.2.

Remark 10. Partial credit for this proof and that of Lemma 4.1.1.4, infra, goes to

Dmitriy Rumynin, who was kind enough to share it with me.

We observe in Remark 9 that HomGrpP,Mq is a left E-module. While at first

blush the algebra E may appear strange, it turns out to be an algebra we know very

well, as the following lemma shows.

Lemma 4.1.1.4. Make Assumption (R). Let P P IrrpDistpGrqq and

E :“ EndU rrspGqpU
rrspGq bDistpGrq P q

op.

Then E – Upgq.

Proof. By Lemma 3.3.1.6, DistpGrq Ď U rrspGq is a Upgq-Galois extension and U rrspGq

is faithfully flat as a right DistpGrq-module. Furthermore, P is finitely-presented as a

DistpGrq-module (as both P and DistpGrq are finite-dimensional over K), and Upgq is

flat over K (as K is a field). Hence, we are in “Situation (S)” from [Schneider, 1990],

so the results from that paper can be applied here. Theorem 3.6 in [Schneider, 1990]

precisely states that K “ EndDistpGrqpP q
op Ď E is a Upgq-crossed product if and

only if P is U rrspGq-stable, which holds under our assumptions as in the proof of

Lemma 4.1.1.2. In particular, this means that there exists a right Upgq-collinear,

convolution invertible map J : Upgq Ñ E. More details about this map will be given

in Remark 11 below. Thus, there exists a cocycle σ : Upgq b Upgq Ñ K such that

E – K#σUpgq. The map J : Upgq Ñ K#σUpgq – E (sending x to 1#x in the first

map) is clearly a bijection.

Furthermore, since the antipode of U rrspGq is bijective (as U rrspGq is cocom-

mutative), Remark 3.8 in [Schneider, 1990] precisely says that J is an algebra ho-

momorphism (i.e. K Ď E is a trivial Upgq-crossed product) if and only if the

DistpGrq-module structure on P extends to a U rrspGq-module structure, which we

have already seen to be true using Assumption (R). Hence J : Upgq Ñ K#σUpgq – E

is an isomorphism of algebras, as required. In particular, E – K#Upgq.86

Remark 11. We can describe this isomorphism a little more explicitly. The iso-

morphism Upgq – K#Upgq sends x P Upgq to 1#x P K#Upgq. We now need to

consider the isomorphism K#Upgq – E from [Schneider, 1990].

Denoting D :“ DistpGrq, let q : U rrspGq bD P Ñ P be the DistpGrq-linear map

extending the DistpGrq-module structure on P to a U rrspGq-module structure. By

Theorem 3.6 in [Schneider, 1990], there is a right Upgq-collinear map J 1 : Upgq Ñ E

given by

J 1phqp1b zq :“
ÿ

riphq b qpliphq b zq,

86Here, K#Upgq means the smash product of K with Upgq, which is precisely the crossed
product with trivial cocycle. More details about smash products can be found in Chapter 4 in
[Montgomery, 1993].
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where h P Upgq, z P P , and riphq, liphq P U
rrspGq are such that

ř

riphq bD liphq is

the inverse image of 1b h under the canonical isomorphism

can : U rrspGq bD U
rrspGq

„
ÝÑ U rrspGq b Upgq, xbD y ÞÑ

ÿ

xyp1q b yp2q.

Note that in this expression, yp2q is the image of yp2q P U
rrspGq under the projection

Υr,r : U rrspGq � Upgq, where Υr,r : U rrspGq � Upgq is as defined in Subsection

3.2.2. By Remark 1.1(4) in [Schneider, 1990], the inverse of the map can sends

xb y ÞÑ
ÿ

xSpyp1qq b yp2q,

so

J 1phqp1b zq “
ÿ

Sphp1qq b qphp2q b zq.

Now fix a Upgq-comodule map γ : Upgq Ñ U rrspGq such that Υr,r ˝ γ “ IdUpgq

and S ˝ γ “ γ ˝ S. The proof of Proposition 3.3.1.7 illustrates a way to do this. We

hence describe the isomorphism J :“ J 1S : Upgq Ñ E as follows:

x ÞÑ p1bD z ÞÑ
ÿ

γpxqp1q bD qpSpγpxqp2qq b zq

for x P Upgq and z P P .

In particular, this remark shows that the action of Upgq on HomGrpP,Mq

through the quotient U rrspGq{U rrspGqDist`pGrq and the action of E on HomGrpP,Mq

described above are compatible with the isomorphism in Lemma 4.1.1.4. So we get

another way of seeing that an irreducible U rrspGq-module can be decomposed into

an irreducible DistpGrq-module and a Upgq-module.

What is the benefit of this latter method of proof? Essentially, the initial

approach uses the Hopf algebra structure of U rrspGq to give certain vector spaces a

module structure, while the latter approach uses the Hopf algebra structure to get

an isomorphism Upgq – E and then uses just the algebra structures to define the

modules. Once one knows such an isomorphism exists, it is often-times easier in

practice to work with an action which only depends on the algebra structure rather

than an action which depends on the whole Hopf algebra structure.

For example, the second approach means that given a left Upgq-module U and

left DistpGrq-module P , the equation

P bK U – pU
rrspGq bDistpGrq P q bE U

allows us to write the U rrspGq-action down very easily. This will have particular use

when considering the action of central elements of U rrspGq, such as elements of the

form δbp ´ δp. Furthermore, the action on E on HomGrpP,Mq is often easier to

calculate with than the action of Upgq on the same.
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4.1.2 Steinberg decomposition

Having now seen, through two different techniques, that an irreducible U rrspGq-

module can be decomposed into a DistpGrq-module and a Upgq-module, there are

two natural questions which follow. Firstly, how does this decomposition behave

when one considers the reduced U
rrs
χ pGq instead of U rrspGq? And secondly, can

we reverse this procedure? How well does the decomposition process characterise

irreducible U rrspGq-modules?

We answer the first question first. As always throughout this chapter, G is a re-

ductive algebraic group over an algebraically closed field K of positive characteristic

p, and we make Assumption (R).

Proposition 4.1.2.1. Let χ P g˚. If M is an irreducible U
rrs
χ pGq-module and P

is an irreducible DistpGrq-module such that M – P b HomGrpP,Mq as U rrspGq-

modules, then HomGrpP,Mq is an irreducible Uχpgq-module.

Proof. From Remark 9 and Lemma 4.1.1.4, we know that HomGrpP,Mq is a Upgq-

module. Hence, all that remains is to show that for x P g, the central element

xp ´ xrps acts on HomGrpP,Mq as χpxqp. Given δ P Dist`prpGq, we know that

δbp ´ δp is central in U rrspGq. Hence, the map

ρpδbp ´ δpq : U rrspGq bD P Ñ U rrspGq bD P

given by left multiplication by δbp ´ δp is a U rrspGq-module endomorphism, and so

lies inside E. However, as we know that M is a U
rrs
χ pGq-module, ρpδbp ´ δpq P E

acts on HomGrpP,Mq as multiplication by χpδqp.

Hence, we just need to show that, for α P Φ, the element epα maps to ρppe
pprq
α qbpq

and, for 1 ď t ď d, the element hpt ´ ht maps to ρp
`

ht
pr

˘bp
´
`

ht
pr

˘

q under the isomor-

phism Upgq – E.

This isomorphism is described in Remark 11. In particular, we know that

epα “ pe
pprq
α qbp and hpt ´ ht “

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

for α P Φ and 1 ď t ď d.

Observe that

∆ppepp
rq

α qbpq “ ∆pepp
rq

α qbp “

pr
ÿ

i“0

pepiqα q
bp b pepp

r´iq
α qbp

“ pepp
rq

α qbp b 1` 1b pepp
rq

α qbp,

since pe
piq
α q

bp “ 0 for all 0 ă i ă pr, while
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∆

˜

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

¸

“ ∆

ˆˆ

ht
pr

˙˙bp

´∆

ˆˆ

ht
pr

˙˙

“

pr
ÿ

i“0

ˆ

ht
i

˙bp

b

ˆ

ht
pr ´ i

˙bp

´

pr
ÿ

i“0

ˆ

ht
i

˙

b

ˆ

ht
pr ´ i

˙

“

˜

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

¸

b 1` 1b

˜

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

¸

since
`

ht
i

˘bp
“

`

ht
i

˘

for all 0 ă i ă pr.

Hence, J 1pepαqp1 b zq “ 1 b qppe
pprq
α qbp b zq ´ pe

pprq
α qbp b qp1 b zq. However,

the U rrspGq-module structure on P comes through the map U rrspGq� DistpGr`1q,

so qppe
pprq
α qbp b zq “ 0. Thus, J 1pepαqp1 b zq “ ´pe

pprq
α qbp b z. Similarly, J 1phpt ´

htqp1b zq “ ´p
`

ht
pr

˘bp
´
`

ht
pr

˘

q b z.

By Remark 3.8 in [Schneider, 1990], the algebra homomorphism J : Upgq Ñ E

is defined as J “ J 1S. Hence, we conclude that Jpepαq “ ρppe
pprq
α qbpq for α P Φ, and

Jphpt ´ htq “ ρp
`

ht
pr

˘bp
´
`

ht
pr

˘

q for 1 ď t ď d. The result follows.

Corollary 4.1.2.2. Suppose that G is connected and that g and p are such that

Premet’s theorem holds.87 Let M be an irreducible U
rrs
χ pGq-module and P an ir-

reducible DistpGrq-module such that M – P b HomGrpP,Mq as U rrspGq-modules.

Then pdimpG¨χq{2 divides dim HomGrpP,Mq.

To answer the remaining questions, we fix an irreducible DistpGrq-module P .

We define ΓP to be the category of irreducible left U rrspGq-modules which decompose

as DistpGrq-modules into a direct sum of copies of (DistpGrq-modules isomorphic

to) P . This is a full subcategory of the category of irreducible left U rrspGq-modules.

Furthermore, recall the notation of modpUpgqq for the category of finite-dimensional

left Upgq-modules.88

We examine the functor

ΨP : ΓP Ñ modpEq “ modpUpgqq

which sends M P ΓP to HomGrpP,Mq. The following theorem should be compared

with Theorem 3.1 in [Witherspoon, 1999].

Theorem 4.1.2.3. There is an equivalence of categories between ΓP and IrrpEq.

In particular, this equivalence is obtained from the maps

ΨP : ΓP Ñ IrrpEq, ΨP pMq “ HomGrpP,Mq;

ΦP : IrrpEq Ñ ΓP , ΦP pNq “ P bK N.
87See Theorem 2.4.3.2 in Subsection 2.4.3.
88Recall that every irreducible Upgq-module has finite dimension, so the category of irreducible

left Upgq-modules, IrrpUpgqq, is a full subcategory of modpUpgqq.
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Proof. We maintain the convention D “ DistpGrq to make formulas clearer.

If M P ΓP , then Lemma 4.1.1.2, Remark 9 and Theorem 4.1.1.3 show that

ΨP pMq “ HomGrpP,Mq “ HomU rrspGqpU
rrspGq bD P,Mq

is a left E-module; that P bK ΨP pMq is a left U rrspGq-module; that P bK ΨP pMq

is isomorphic to pU rrspGq bD P q bE ΨP pMq as U rrspGq-modules; and that

ηM : pU rrspGq bD P q bE ΨP pMq ÑM, ηM pabD z bE φq “ φpabD zq

is an isomorphism of U rrspGq-modules.

Note that ΨP pMq is an irreducible E-module, since if ΨP pMq contains a proper

non-trivial submodule U then

P bK U – pU
rrspGq bD P q bE U

is a proper non-trivial U rrspGq-submodule of the irreducible U rrspGq-module

M – pU rrspGq bD P q bE ΨP pMq – P bK ΨP pMq.

Now, suppose N is an irreducible left E-module. It is proved in Lemma 4.1.1.2

that

ΦP pNq :“ P bK N – pU rrspGq bD P q bE N

is a left U rrspGq-module, and furthermore that the structure is such that ΦP pNq is

a direct sum of copies of P as a DistpGrq-module.

We now wish to show that HomDpP,ΦP pNqq – N as left E-modules. Define

σN : N Ñ HomDpP,ΦP pNqq by σN pnqpzq “ z b n P P bK N.

Since

HomDpP,ΦP pNqq – HomU rrspGqpU
rrspGq bD P,ΦP pNqq

as left E-modules and

P bK N – pU rrspGq bD P q bE N

as left U rrspGq-modules, we can also write this map as

σN : N Ñ HomU rrspGqpU
rrspGq bD P, pU

rrspGq bD P q bE Nq,

σN pnqpabD zq “ pabD zq bE n

for n P N , z P P and a P U rrspGq.

It is straightforward to see that σN pnq is a U rrspGq-module homomorphism from

U rrspGq bD P to pU rrspGq bD P q bE N , and also that σN is a linear map. We show
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that σN is E-linear. It is enough to show that for f P E, n P N , z P P and

a P U rrspGq, we have that

pf ¨ σN pnqqpabD zq “ σN pf ¨ nqpabD zq.

Note that

pf ¨ σN pnqqpabD zq “ σN pnqpfpabD zqq “ fpabD zq bE n,

while

σN pf ¨ nqpabD zq “ pabD zq bE pf ¨ nq.

Since the right E-module structure on U rrspGqbDP comes from the evaluation map,

the result holds from the definition of the tensor product.

Hence, σN is an E-module homomorphism. It is clear that σN is injective from

the description σN pnqpzq “ z b n P P bK N for n P N , z P P . Furthermore, by

above,

ΦP pNq –
k
à

i“1

P

as DistpGrq-modules. Now, k “ dimpNq as dimpΦP pNqq “ dimpP qdimpNq and

dim
´

Àk
i“1 P

¯

“ k dimpP q. Hence,

HomGrpP,ΦP pNqq – HomGr

˜

P,
k
à

i“1

P

¸

“ Kk,

since HomGrpP, P q “ K. Thus, dimpNq “ k “ dimpHomGrpP,ΦP pNqqq. Together

with the injectivity, this proves that σN is an isomorphism of E-modules.

Furthermore, ΦP pNq is an irreducible U rrspGq-module since if it contains a

proper non-trivial submodule L then

HomGrpP,Lq – HomU rrspGqpU
rrspGq bD P,Lq

is a proper non-trivial E-submodule of

N – HomU rrspGqpU
rrspGq bD P,ΦP pNqq – HomDpP,ΦP pNqq,

contradicting the irreducibility of N .

In conclusion, we have shown that the maps ΨP and ΦP are well-defined; that for

any irreducible U rrspGq-module M , we have ΦP pΨP pMqq –M as U rrspGq-modules;

and that for any irreducible E-module N , we have ΨP pΦP pNqq – N as E-modules.

It is then straightforward to see that this bijection is in fact an equivalence of

categories.

Remark 12. This proof, in fact, shows that for any E-module N , not necessarily
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irreducible, it is true that

N – HomGrpP, P bK Nq “ HomGrpP, pU
rrspGq bD P q bE Nq

as E-modules.

For each K-algebra R we consider in this chapter, we denote by IrrpRq the set

of isomorphism classes of irreducible R-modules.

Corollary 4.1.2.4. There is a bijection

Ψ : IrrpU rrspGqq Ñ IrrpDistpGrqq ˆ IrrpUpgqq

which sends M to pP,HomGrpP,Mqq, where P is the unique (up to isomorphism)

irreducible DistpGrq-submodule of M . Furthermore, the reverse map sends pP,Nq

to the U rrspGq-module pU rrspGq bD P q bUpgq N “ P bK N .

We furthermore see that this process also behaves nicely when one passes to

reduced enveloping algebras.

Lemma 4.1.2.5. Let P P IrrpDistpGrqq and N P IrrpUpgqq with p-character χ P g˚

(so N P IrrpUχpgqq). Then the following results hold.

(1) The left U rrspGq-module pU rrspGq bD P q bUpgq N is a left U
rrs
χ pGq-module.

(2) U
rrs
χ pGq bD P is a right Uχpgq-module.

(3) As U
rrs
χ pGq-modules,

pU rrspGq bD P q bUpgq N – pU rrsχ pGq bD P q bUχpgq N.

Proof. (1) To show that pU rrspGqbDP qbUpgqN is a left U
rrs
χ pGq-module, it is enough

to show that δbp´ δp´χpδqp acts on it by zero multiplication for all δ P Dist`prpGq.

Set δ P Dist`prpGq, and let x “ Υr,rpδq P g.

Let u P U rrspGq, z P P and n P N . Then

pδbp ´ δp ´ χpδqpq ¨ pubD zq bUpgq n “ pubD zq ¨ px
p ´ xrps ´ χpxqpq bUpgq n

“ pubD zq bUpgq px
p ´ xrps ´ χpxqpq ¨ n

“ 0.

(2) To show that U
rrs
χ pGqbD P is a right Uχpgq-module, first note that DistpGrq

is a subalgebra of U
rrs
χ pGq, so the tensor product makes sense. We will show that

U
rrs
χ pGqbDP is a right E-module, on which the left multiplication by δbp´δp´χpδqp

is zero for all δ P Dist`prpGq.

Let f P EndU rrspGqpU
rrspGqbDP q

op. We want a linear map ĂTf : U
rrs
χ pGqbDP Ñ

U
rrs
χ pGq bD P . By the universal property of the tensor product, it is enough to give

a linear map Tf : U
rrs
χ pGq ˆ P Ñ U rrspGq bD P which is DistpGrq-balanced.
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Define Tf pu, zq “ fpubD zq for u P U rrspGq and z P P , where fpubD zq is the

image of fpubD zq under the map U rrspGqbDP � U
rrs
χ pGqbDP . First, we must see

that this is well-defined. Suppose u “ v P U
rrs
χ pGq. Hence, u´v P I�U rrspGq, where

I is the ideal generated by δbp ´ δp ´ χpδqp for δ P Dist`prpGq. So fppu´ vq bD zq P

I bD P , so fppu´ vq bD zq “ 0. Furthermore, for d P DistpGrq, we have

Tf pu ¨ d, zq “ Tf pud, zq “ fpudbD zq “ fpubD dzq “ Tf pu, d ¨ zq.

Hence, we obtain a linear map ĂTf : U
rrs
χ pGq bD P Ñ U

rrs
χ pGq bD P . It is

straightforward to see that ĂTfĂTg “ĄTfg, so U
rrs
χ pGq bD P is a right E-module. One

may then check that the action of left multiplication by δbp ´ δp ´ χpδqp is zero for

all δ P Dist`prpGq.

Hence U
rrs
χ pGq bD P is a right Uχpgq-module.

(3) All that remains is to show the isomorphism pU rrspGq bD P q bUpgq N –

pU
rrs
χ pGq bD P q bUχpgq N.

Define the map

F : pU rrspGq bD P q ˆN Ñ pU rrsχ pGq bD P q bUχpgq N

by sending the elements pu bD z, nq to pu bD zq bUχpgq n, where u “ u ` I. It is

easy to see that is map is a well-defined U
rrs
χ pGq-module homomorphism. It is also

Upgq-balanced:

F ppubD zq ¨ f, nq “ fpubD zq bUχpgq n “ pubD zq bUχpgq f ¨ n “ F pubD z, f ¨ nq,

where u P U rrspGq, z P P , n P N , f P E – Upgq and f “ f ` J P E{J , where J is

the ideal in E generated by left multiplications by the elements δbp´ δp´χpδqp for

δ P Dist`prpGq. Hence, there is a U
rrs
χ pGq-module homomorphism rF : pU rrspGq bD

P q bUpgq N Ñ pU
rrs
χ pGq bD P q bUχpgq N .

Furthermore, we define

H : pU rrsχ pGq bD P q ˆN Ñ pU rrspGq bD P q bUpgq N

by sending the elements pubD z, nq to pubD zq bUpgq n. This map is well-defined,

since pU rrspGqbDP qbUpgqN is a U
rrs
χ pGq-module, and a homomorphism of U

rrs
χ pGq-

modules. It is also Uχpgq-balanced:

HppubD zq ¨ f, nq “ fpubD zq bUχpgq n “ pubD zq bUχpgq f ¨ n “ F ppubD zq, f ¨ nq,

where u P U rrspGq, z P P , n P N , f P E – Upgq and f “ f ` J P E{J . This gives

a U
rrs
χ pGq-module homomorphism rH : pU

rrs
χ pGq bD P q bUχpgq N Ñ pU rrspGq bD

P q bUpgq N .

It is straightforward to see that rF and rH are inverse to each other. The result
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follows.

This proof shows the benefit of working with the algebra E, which we know is

isomorphic to Upgq, rather than working directly with Upgq. In particular, we did

not need to use anything other than basic properties of associative algebras to prove

the results.

Corollary 4.1.2.6. There is a bijection

Ψχ : IrrpU rrsχ pGqq Ñ IrrpDistpGrqq ˆ IrrpUχpgqq

which sends M to pP,HomGrpP,Mqq, where P is the unique (up to isomorphism) ir-

reducible DistpGrq-submodule of M . The inverse map sends pP,Nq to pU
rrs
χ pGqbDistpGrq

P q bUχpgq N – P bK N .

4.1.3 Teenage Verma modules

We can use the previous subsection to deduce some structural results about irreduci-

ble U
rrs
χ pGq-modules. We start by defining the following vector subspace of U rrspGq,

using the J¨K notation from Subsection 3.3.2:

{U rrspBq :“ K´ span

#

ź

αPΦ`

eJiαK
α

d
ź

t“1

ˆ

ht
JktK

˙

ź

αPΦ`

e
JjαK
´α : 0 ď iα, kt, 0 ď jα ă pr

+

.

This vector space is, in fact, a subalgebra of U rrspGq by the commutation equati-

ons given in Lecture 15 in [Steinberg, 1968]. Furthermore, the Hopf algebra structure

on U rrspGq makes {U rrspBq into a Hopf subalgebra of U rrspGq.

Clearly DistpGrq is a subalgebra of {U rrspBq, it is normal since it is normal

in U rrspGq, and {U rrspBq is free as both a left and right DistpGrq-module. From

Subsection 3.2.2, we know that the map Υr,r : U rrspGq Ñ Upgq is a surjective

Hopf algebra homomorphism. It is easy to see from the bases that this map re-

stricts to a surjective Hopf algebra homomorphism {U rrspBq � Upbq, with kernel
{U rrspBqDist`pGrq “ Dist`pGrq

{U rrspBq. In particular, DistpGrq Ď
{U rrspBq is a

Upbq-module extension, with DistpGrq “
{U rrspBq

coUpbq
.

Lemma 4.1.3.1. Let P P IrrpDistpGrq. Then End
{U rrspBq

p {U rrspBq bD P q – Upbq.

Proof. This follows as in Lemma 4.1.1.4, since {U rrspBq is a subalgebra of U rrspGq.

It is straightforward to see that the proof of Theorem 4.1.1.1 and the proof of

Theorem 4.1.2.3, supra, hold similarly in this context. In other words, we have the

following proposition.

Proposition 4.1.3.2. There is a bijection

pΨ : Irrp {U rrspBqq
„
ÝÑ IrrpDistpGrqq ˆ IrrpUpbqq
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which sends M to pP,HomGrpP,Mqq, where P is the unique (up to isomorphism)

irreducible DistpGrq-submodule of M . The inverse map sends pP,Nq to the {U rrspBq-

module p {U rrspBq bD P q bUpbq N “ P bK N .

Applying Proposition 4.1.2.1 and Lemma 4.1.2.5 in this context, we get the

following corollary.

Corollary 4.1.3.3. For χ P b˚, the bijection in Proposition 4.1.3.2 restricts to a

bijection

xΨχ : Irrp
{

U
rrs
χ pBqq

„
ÝÑ IrrpDistpGrqq ˆ IrrpUχpbqq.

Assume from now on that χpn`q “ 0. We see in Subsection 2.4.3 that, if

N P IrrpUχpbqq, then N “ Kλ for some λ P Λχ, where Kλ denotes the 1-dimensional

b-module on which n` acts trivially and h P h acts through multiplication by λphq.

Recall here that

Λχ :“ tλ P h˚ |λphqp ´ λphq “ χphqp for all h P hu.

Hence, there is a bijection,

pΨ : Irrp
{

U
rrs
χ pBqq

„
ÝÑ IrrpDistpGrqq ˆ Λχ.

In other words, every irreducible DistpGrq-module P can be extended to an

irreducible
{

U
rrs
χ pBq-module, and there is (up to isomorphism) one such way to do

this for each λ P Λχ. For each λ P Λχ, we can hence define the U
rrs
χ pGq-module

U rrsχ pGq b {

U
rrs
χ pBq

pP bK Kλq “ U rrsχ pGq b {

U
rrs
χ pBq

p
{

U
rrs
χ pBq bD P q bUχpbq Kλ

‹
“ pU rrsχ pGq b {

U
rrs
χ pBq

{

U
rrs
χ pBq bD P q bUχpbq Kλ

“ pU rrsχ pGq bD P q bUχpbq Kλ

“ pU rrsχ pGq bD P q bUχpgq Uχpgq bUχpbq Kλ

“ pU rrsχ pGq bD P q bUχpgq Zχpλq

“ P bK Zχpλq.

Here, equality (‹) follows from an easy check.

We call this U
rrs
χ pGq-module the teenage Verma module ZrχpP, λq. Note that

dimpZrχpP, λqq “ pdimpn´q dimpP q. Frobenius reciprocity then gives the following

proposition.

Proposition 4.1.3.4. Every irreducible U
rrs
χ pGq-module is a quotient of a teenage

Verma module ZrχpP, λq for some P P IrrpDistpGrqq and λ P Λχ.

Despite the fact that baby Verma modules and teenage Verma modules need

not be irreducible, the following lemma shows that the correspondence in Corol-

lary 4.1.2.6 can be extended to these modules.
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Lemma 4.1.3.5. For P P IrrpDistpGrqq and λ P Λχ, we have HomGrpP,Z
r
χpP, λqq –

Zχpλq as left Uχpgq-modules.

Proof. This follows directly from Remark 12.

We also obtain the following structural result.

Proposition 4.1.3.6. Suppose M P IrrpU
rrs
χ pGqq, P P IrrpDistpGrqq and N P

IrrpUχpgqq such that ΨχpMq “ pP,Nq. Then M is an irreducible quotient of ZrχpP, λq

if and only if N is an irreducible quotient of Zχpλq.

Proof. ( ùñ ) By definition of Ψχ and Lemma 4.1.3.5, N “ HomGrpP,Mq and

Zχpλq “ HomGrpP,Z
r
χpP, λqq. Let π : ZrχpP, λq Ñ M be the given surjection. We

then define the map η : Zχpλq Ñ N by defining the map η : HomGrpP,Z
r
χpP, λqq Ñ

HomGrpP,Mq as ηpfqpzq “ πfpzq for f P HomGrpP,Z
r
χpP, λqq and z P P . It is

straightforward to check that this is an E-module homomorphism, hence a Upgq-

module homomorphism, hence a Uχpgq-module homomorphism. It is surjective as

N is irreducible.

( ðù ) By the definitions of Ψχ and ZrχpP, λq, we have M “ pU
rrs
χ pGq bD

P q bUχpgq N and ZrχpP, λq “ pU
rrs
χ pGq bD P q bUχpgq Zχpλq. The result then follows

from the functoriality of the tensor product and the irreducibility of M .

As an application, we can use teenage Verma modules to characterise (most)

irreducible UχpSL2q-modules. A direct computation of these can also be found in

[Westaway, 2018]; this is also a special case of Theorem 4.1.4.1, infra.

Theorem 4.1.3.7 (Classification of irreducible U
rrs
χ pSL2q-modules). If the charac-

teristic of K is odd, we have the following classification of irreducible U
rrs
χ pSL2q-

modules, for pχ P sl˚2q
rrs:

(1) If χ ‰ 0 is semisimple, then the irreducible modules are the ZrχpP, λq for P

an irreducible DistpSL2,rq-module and λ P Λχ. Furthermore, these are all

non-isomorphic, so there are exactly pr`1 non-isomorphic U rχpSL2q-modules.

(2) If χ ‰ 0 is nilpotent, then the irreducible modules are the ZrχpP, λq for P

an irreducible DistpSL2,rq-module and λ P Λχ “ Fp. Furthermore, ZrχpP, λq “

Z
rrs
χ pP 1, λ1q if and only if P – P 1 and λ “ λ1 or λ1 “ p´λ´2 and λ ď p´2 (as

an element of t0, 1, . . . , p ´ 1u), so there are exactly prpp`1
2 q non-isomorphic

U
rrs
χ pSL2q-modules.

(3) If χ “ 0, every irreducible U r0 pSL2q-module is the unique irreducible quotient

of ZrχpP, λq for P an irreducible DistpSL2,rq-module and λ P Λ0 “ Fp.

Proof. This follows from Corollary 4.1.2.6, the definition of the teenage Verma mo-

dules ZrpP, λq, and the classification of irreducible sl2-modules in Theorem 2.4.3.3.
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4.1.4 Consequences

From now on, let us make the following assumptions:89

(H1) The derived group of G is simply-connected.

(H2) The prime p is good90 for G.

(H3) There is a non-degenerate G-invariant bilinear form on g.

In particular, (H3) gives rise to an isomorphism of G-modules91 g Ñ g˚. This

allows us to transfer properties of elements of g to properties of elements of g˚. For

example, we say that χ P g˚ is semisimple if the corresponding element x P g

is semisimple.92 Similarly, we say that χ P g˚ is nilpotent if the corresponding

element x P g is nilpotent.93

Furthermore, we say that x P g is regular if dimpCGpxqq “ dimphq, where

CGpxq :“ tg P G |g¨x “ xu. We hence say that χ P g˚ is regular if the corresponding

x P g is regular - this is equivalent to the requirement that dimpCGpχqq “ dimphq,

where CGpχq :“ tg P G |g ¨ χ “ χu.

With these definitions in mind, we get the following proposition.

Theorem 4.1.4.1. Let M be an irreducible U
rrs
χ pGq-module, for χ P g˚, and let

P be the unique (up to isomorphism) irreducible DistpGrq-submodule of M . The

following results hold.

(1) There exists λ P Λχ such that M is an irreducible quotient of ZrχpP, λq.

(2) If χ is regular, then there exists P P IrrpDistpGrqq and λ P Λχ such that

M – ZrχpP, λq.

(3) If χ is regular semisimple, then ZrχpP, λq – Zrχp
rP , µq if and only if P – rP and

λ “ µ.

(4) If χ is regular nilpotent and χpe´αq ‰ 0 for all α P Π, then ZrχpP, λq –

Zrχp
rP , µq if and only if P – rP and λ P W ‚ µ, where W is the Weyl group of

Φ and ‚ represents the dot-action.

Proof. (1) By above, there exists Q P IrrpDistpGrqq and λ P Λχ such that M is an

irreducible quotient of ZrχpQ,λq. Frobenius reciprocity then shows that

Hom
U
rrs
χ pGq

pZrχpQ,λq,Mq – Hom
{

U
rrs
χ pBq

pQbK Kλ,Mq.

89See Chapter 6 in [Jantzen, 1997] for more details.
90Recall that a prime p being good for G is a property of the root system, and specifically means

that: p ‰ 2 for types Bn (n ě 2), Cn (n ě 2), or Dn (n ‰ 4); p ‰ 2, 3 for types E6, E7, F4 or G2;
and p ‰ 2, 3, 5 for type E8.

91Recall that g is a G-module via the adjoint action and g˚ is a G-module via the coadjoint
action.

92In fact this is equivalent to the requirement that g ¨ χpn` ‘ n´q “ 0 for some g P G, under the
coadjoint action.

93This is equivalent to the requirement that g ¨ χpbq “ 0 for some g P G, under the coadjoint
action.
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In particular, as M ‰ 0, the DistpGrq-module Q Ď ZrχpQ,λq is not in the kernel

of the surjection π : ZrχpQ,λq � M . Hence, the surjection restricts to a DistpGrq-

isomorphism Q Ñ πpQq, so Q is an irreducible DistpGrq-submodule of M . As a

result, Q – P , and we can say that M is an irreducible quotient of ZrχpP, λq for

some λ P Λχ.

(2) The bijection Ψχ sends M to the pair pP,Nq for some N P IrrpUχpgqq, and

dimpMq “ dimpP q dimpNq. Since χ is regular, dimpNq “ pdimpn´q.

However, by (1), M is an irreducible quotient of ZrχpP, λq for some λ P Λχ.

Furthermore, dimpZrχpP, λqq “ pdimpn´q dimpP q. Hence, M – ZrχpP, λq.

(3) Suppose ZrχpP, λq – Zrχp
rP , µq. The U

rrs
χ pGq-module ZrχpP, λq is an irreduci-

ble module containing P , while Zrχp
rP , µq is an irreducible U

rrs
χ pGq-module containing

rP . Since each irreducible U
rrs
χ pGq-module contains a unique irreducible DistpGrq-

submodule, we obtain that P and rP are isomorphic DistpGrq-modules.

Hence,

HomGrpP,Z
r
χpP, λqq – HomGrp

rP ,Zrχp
rP , µqq,

and so

Zχpλq – Zχpµq.

By [Jantzen, 2004, B.10], λ “ µ.

(4) As in (3), if ZrχpP, λq – Zrχp
rP , µq then Zχpλq – Zχpµq. Hence, by Proposition

10.5 in [Jantzen, 1997], λ PW ‚ µ` pX.

Since all irreducible U rrspGq-modules have finite dimension, we can determine

suptdimpMq |M P IrrpU rrspGqqu, the maximal dimension of an irreducible U rrspGq-

module.

Corollary 4.1.4.2. The maximal dimension of an irreducible U rrspGq-module is

ppr`1q dimpn´q, and it is attained.

Proof. Since every irreducible U rrspGq-module is an irreducible quotient of ZrχpP, λq

for some χ P g˚, λ P Λχ, and irreducible DistpGrq-module P , and since the dimension

of ZrχpP, λq depends only on P , the maximal dimension of an irreducible U rrspGq-

module is at most

max
PPIrrpDistpGrqq

tdimpZrχpP, λqqu “ max
PPIrrpDistpGrqq

tppdimpn´q dimpP qqu.

The maximal dimension of an irreducible DistpGrq-module is pr dimpn´q, coming from

the Steinberg weight St.94 In particular, if we choose P “ LrpStq and χ regular,

then ZrχpP, λq is an irreducible U rrspGq-module of dimension ppr`1q dimpn´q, and the

result follows.

94Recall that the Steinberg weight is ppr ´ 1qρ, where ρ is the half-sum of all positive roots.
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Recall further that, given x P g, there exist xs, xn P g such that x “ xs ` xn,

the element xs is semisimple in g, the element xn is nilpotent in g and rxs, xns “ 0.

We call x “ xs ` xn a Jordan decomposition of x. If, under the G-module

isomorphism g Ñ g˚, we have that x maps to χ, that xs maps to χs and that xn

maps to χn, we call χ “ χs ` χn a Jordan decomposition of χ.

Given χ P g˚, we define cgpχq :“ ty P g |χprg, ysq “ 0u. Under our assumptions,

CGpχsq is a Levi subgroup of G with Lie algebra cgpχsq.
95 Hence, there exists a

parabolic subgroup96 Pχs of G which is a semi-direct product of CGpχsq with its

unipotent radical UPχs . Letting u “ LiepUPχs q and p “ LiepPχsq, we get that

p “ cgpχsq ‘ u. Work of [Friedlander and Parshall, 1988] shows that there is a

equivalence of categories

modpUχpgqq ÐÑ modpUχpcgpχsqqq

which sends N P modpUχpgqq to the fixed point set Nu P modpUχpcgpχsqqq, and

sends V P modpUχpcgpχsqqq to Uχpgq bUχppq V P modpUχpgqq, where u acts on V as

0.

Furthermore, letting µ “ χ|cgpχsq, there is another equivalence of categories

modpUµpcgpχsqq ÐÑ modpUµnpcgpχsqqq

which sends V P modpUµpcgpχsqqq to V bW P modpUµnpcgpχsqqq and then sends

V P modpUµnpcgpχsqqq to V bW ˚ P modpUµpcgpχsqqq, where W is a (necessarily 1-

dimensional) irreducible Uµspcgpχsq{rcgpχsq, cgpχsqsq-module viewed as a g-module.

Both of these equivalences of categories send baby Verma modules to baby

Verma modules.

Corollary 4.1.4.3. Keep the notation from the preceding paragraph. There is a

bijection

Ψχ : IrrpU rrsχ pGqq
„
ÝÑ IrrpDistpGrqq ˆ IrrpUµnpcgpχsqqq

which sends M to pP,HomGrpP,Mq
u bW ˚q, where P is the unique (up to isomor-

phism) irreducible DistpGrq-submodule of M . The inverse map sends pP, V q to

pU rrsχ pGq bDistpGrq P q bUχppq pV bW q – P bK pUχpgq bUχppq pV bW qq.

In particular, this result means that to study the irreducible U
rrs
χ pGq-modules,

one may always assume that χ|cgpχsq is nilpotent, and hence that χ vanishes on

bX cgpχsq.

Recall that we say that χ P g˚ has standard Levi form if χpbq “ 0 and there

exists a subset I Ď Π with χpe´αq “ 0 if and only if α P Φ` ´ I.

95See [Brown and Gordon, 2001, Lemma 3.2].
96Recall that a parabolic subgroup of G is a closed subgroup containing a Borel subgroup.
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Definition. We say that χ P g˚ has almost standard Levi form if pχ|cgpχsqqn

has standard Levi form.

Proposition 4.1.4.4. Suppose that χ P g˚ has almost standard Levi form. Let

P P IrrpDistpGrqq and λ P Λχ. Then the U
rrs
χ pGq-module ZrχpP, λq has a unique

irreducible quotient.

Proof. Since µn :“ pχ|cgpχsqqn has standard Levi form, each Zµnpτq for τ P Λµn has

a unique irreducible quotient. Since there is an equivalence of categories between

modpUµnpcgpχsqqq and modpUχpgqq which sends baby Verma modules to baby Verma

modules, it follows that each Zχpλq has a unique irreducible quotient. The result

then follows from Proposition 4.1.3.6.

If χ P g˚ has almost standard Levi form, we write LrχpP, λq for the unique irre-

ducible quotient of ZrχpP, λq. Proposition 10.8 in [Jantzen, 1997] gives the following

isomorphism condition on these modules, where WI is the subgroup of the Weyl

group generated by simple reflections corresponding to simple roots in I.

Corollary 4.1.4.5. Suppose that χ P g˚ has almost standard Levi form correspon-

ding to the subset I of the simple roots of cgpχsq. Let P,Q P IrrpDistpGrqq and

λ, rλ P Λχ. Then LrχpP, λq – LrχpQ,
rλq if and only if P – Q and rλ PWI ‚ λ.97

4.2 The Azumaya locus of U rrspGq

4.2.1 Azumaya and pseudo-Azumaya loci

Let R be a K-algebra, where K is an algebraically closed field,98 which is module-

finite over its centre Z “ ZpRq. Suppose further that Z is an affine K-algebra.99

One can observe that these conditions guarantee the existence of a bound on the

dimensions of irreducible R-modules.100

These conditions further imply that R is a PI ring, i.e. that there exists a

(multilinear101) Z-polynomial f such that fpr1, . . . , rkq “ 0 for all r1, . . . , rk P R.

For n P N, we define the polynomial gn as in Chapter 1.4 of [Rowen, 1980].102 This is

an n2-normal polynomial.103 We then say that R has PI-degree m if R satisfies all

multilinear identities of MmpZq (that is to say, all multilinear Z-polynomials which

vanish on MmpZq) and

gmpRq :“ tgmpr1, . . . , rkq | r1, . . . , rk P Ru

97Defining 2ρ :“
ř

αPΦ` α, we denote w ‚ λ “ wpλ` ρq ´ ρ, for w PWI .
98In this subsection, we may assume K to be of arbitrary characteristic.
99That is to say, Z is finitely generated as a K-algebra.

100See, for example, the proof of Theorem A.4 in [Jantzen, 2004]; although this theorem concerns
the universal enveloping algebra of a Lie algebra, the argument works in this greater generality.

101Recall that a polynomial in k variables is called multilinear if it is linear in each variable.
102See Proposition 1.4.10 in particular.
103The polynomial gn being called n2-normal means gn is linear and alternating in its first n2

variables.
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is not the zero set. If R has PI-degree m, then gmpr1, . . . , rkq P Z for all r1, . . . , rk P

R.

We define the following sets:

SpecmpRq :“ tP P SpecpRq | gmpRq Ę P u,

SpecmpZq :“ tQ P SpecpZq | gmpRq Ę Qu,

where SpecpRq is treated here as just the set of prime ideals104 in R. One can check

that, if R has PI-degree m and P is a prime ideal of R, we have PI-degreepRq ě

PI-degreepR{P q and this inequality is an equality precisely when P P SpecmpRq.

Given a prime ideal Q in Z, we define RQ to be the localization of R at the

multiplicatively closed central subset Z ´ Q.105 In other words, RQ :“ trs´1 | r P

R, s P Z ´Qu, where r1s
´1
1 “ r2s

´1
2 if and only if there exists s P Z ´Q such that

spr1s2 ´ r2s1q “ 0. We denote by ZQ the usual localization of R ´ Q in Z. By

[Rowen, 1980], ZQ Ď ZpRQq with equality if Z ´Q is regular in R.106

Given a central subalgebra C of R, we say107 that R is Azumaya over C if

(i) R is a faithful and finitely generated projective C-module; and

(ii) the canonical map R bC R
op Ñ EndCpRq, which sends a b b to the map

x ÞÑ axb, is a K-algebra isomorphism.

If C “ Z, we will simply call R an Azumaya algebra. We furthermore say that

R is Azumaya over C of constant rank t if RI is a free module of rank t over CI

for all prime ideals I of C.108 By Remark 1.8.36 in [Rowen, 1991], we observe that

if R is Azumaya over C of constant rank t then, for each prime ideal I of C, we have

that RI is also Azumaya over CI of constant rank t.

Note that Theorem 5.3.24 in [Rowen, 1991] implies that if RQ is Azumaya

over ZQ then ZQ “ ZpRQq. The following lemma follows from Section 5.3 in

[Rowen, 1991].

Lemma 4.2.1.1. The algebra RQ is Azumaya over ZQ if and only if ZQ “ ZpRQq

and RQ is Azumaya over its centre. Either of these conditions is satisfied if, for

example, Z ´Q is regular in R and RQ is Azumaya over its centre.

The Azumaya locus AR of R is hence defined to be the set of maximal ideals

m in Z such that Rm is an Azumaya algebra over Zm. If R is prime, this is precisely

the definition of Azumaya locus given in [Brown and Goodearl, 1997].

104Recall that a proper ideal P of R is called prime if one of four equivalent conditions holds: (1)
if a pair of ideals A,B in R satisfy AB Ď P then A Ď P or B Ď P ; (2) if a pair of left ideals A,B
in R satisfy AB Ď P then A Ď P or B Ď P ; (3) if a pair of right ideals A,B in R satisfy AB Ď P
then A Ď P or B Ď P ; (4) if a pair of elements a, b P R satisfy aRb Ď P then a P P or b P P .

105If Q is instead an ideal in a subalgebra C of Z, we can of course apply the same construction
with C in place of Z.

106Z ´Q is regular in R if for any s P Z ´Q, r P R, we have that sr “ 0 implies r “ 0.
107See, for example, Definition 5.3.23 in [Rowen, 1991].
108See Definition 2.12.21 in [Rowen, 1991].

81



We further define the pseudo-Azumaya locus of R, denoted PAR, as

PAR :“ tannZpMq |M an irreducible leftR-module of maximal dimensionu.

This is in fact an open subset of MaxspecpZq. The next theorems show how the

Azumaya and pseudo-Azumaya loci are connected.

Theorem 4.2.1.2. Let R be a K-algebra, where K is an algebraically closed field,

which is module-finite over its centre Z “ ZpRq, and assume that Z is affine. Let

JpRq be the Jacobson radical of R. Then the following results hold.

(1) The ring R{JpRq has PI-degree d, where d is the maximal dimension of an

irreducible (left) R-module.

(2) If R has PI-degree m, then m “ d if and only if there exists a primitive ideal

A in SpecmpRq.

Proof. (1) Observe that for an irreducible R-module M with annihilator A “

annRpMq, we have that R{A is a finite-dimensional, simple algebra over Z{m, where

m “ A X Z. This holds because M is a faithful R{A-module, so R{A embeds in

EndKpMq. In particular, R{A – MnApKq by the algebraically closed nature of the

field K, for some nA P N. Hence, every irreducible R{A-module has dimension nA.

In particular,

d “ max
A�R primitive

tnAu.

Furthermore, Kaplansky’s Theorem109 tells us that, for a primitive ideal A of

R, the PI-degree of R{A is also nA. Hence, for any primitive ideal A,

PI-degreepR{Aq “ nA ď d.

In particular, this says that if f is a multilinear identity of MdpZq then fpRq Ď A

for each primitive ideal A of R. Thus R{JpRq satisfies all the multilinear identities

of MdpZq.
Also, PI-degreepR{annRpMqq “ d if M is an irreducible R-module of maximal

dimension. Hence gdpRq Ę annRpMq, and thus gdpRq Ę JpRq. So gdpR{JpRqq ‰ 0.

This precisely says that R{JpRq has PI-degree d.

(2) We know that PI-degreepR{annRpMqq “ d when M is an irreducible left

R-module of maximal dimension. Thus, PI-degreepRq “ PI-degreepR{annRpMqq

when m “ d, and so annRpMq P SpecmpRq.

On the other hand, if there exists a primitive ideal A P SpecmpRq then

m “ PI-degreepRq “ PI-degreepR{Aq ď PI-degreepR{JpRqq ď PI-degreepRq

109Kaplansky’s Theorem: If R is a primitive PI ring then R has some PI-degree n and R –
MtpDq for a division ring D, uniquely defined up to isomorphism, such that n2

“ t2rD : ZpDqs. See
[Rowen, 1991] for more details.
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and the result follows.

Proposition 4.2.1.3. Let R be a K-algebra, where K is an algebraically closed

field, which is module-finite over its centre Z “ ZpRq, and assume that Z is affine.

Assume further that R has PI-degree d, where d is the maximal dimension of an

irreducible (left) R-module. Then PAR is an open subset of MaxspecpZq.

Proof. Proposition III.1.1 and Lemma III.1.5 in [Brown and Goodearl, 2002] show

that the centre Z is a Noetherian ring and that it is thus enough to show that

yPAR :“ tannRpMq |M an irreducible leftR-module of maximal dimensionu

is closed in MaxspecpRq. This is precisely the set of maximal ideals A in R such

that A P SpecdpRq, using the proof of Theorem 4.2.1.2 and the fact that primitive

and maximal ideals are the same in a PI ring. If I is the intersection of all maximal

ideals in R which do not lie in SpecdpRq, then clearly gdpRq Ď I. In particular,

I ‰ 0. Furthermore, if A is a maximal ideal of R containing I then gdpRq Ď A and

so A R SpecdpRq. Thus

yPAR “ tA P MaxspecpRq | I Ę Au,

which gives the result.

Note that the assumptions of Theorem 4.2.1.2 guarantee that R is a Jacobson

ring, i.e. that every prime ideal is an intersection of primitive ideals. In particular,

JpRq is the intersection of all prime ideals in R. Hence, if R is a prime ring then

R has PI degree d and the Azumaya and pseudo-Azumaya loci coincide by the

following theorem (noting that, over a prime ring, if Rm is an Azumaya algebra then

it must be of constant rank as ZpRmq “ Zm is local for all maximal ideals m of Z

– see also Section 13.7 in [McConnell and Robson, 2001]). Note that Brown and

Goodearl have already shown the prime case in [Brown and Goodearl, 1997], using

similar techniques.

Theorem 4.2.1.4. Let R be a K-algebra, where K is an algebraically closed field,

which is module-finite over its centre Z “ ZpRq, and assume that Z is affine.

Suppose that R has PI-degree d, where d is the maximum dimension of an ir-

reducible (left) R-module. Furthermore, let M be an irreducible (left) R-module,

A “ annRpMq and m “ annZpMq. Then dimpMq “ d if and only if Rm is an

Azumaya algebra of constant rank d2.

Note that, since Z is affine, m is a maximal ideal of Z.

Proof. ( ùñ ) Suppose that M is an irreducible (left) R-module of dimension d.

Then R{A –MdpKq and so PI-degreepR{Aq “ d “ PI-degreepRq.

In particular, this means that A P SpecdpRq and so gdpRq Ę A. Thus, gdpRq X

pZ´mq ‰ H, and hence gdpRq contains an invertible element of Zm, so an invertible

83



element of Rm. Thus gdpRmq ‰ t0u. Furthermore, any homogeneous multilinear

polynomial identity of R is a polynomial identity of Rm, and so PI-degreepRmq “

PI-degreepRq.

Also, 1 P gdpRmqRm since gdpRmq contains an element of Z´m. So by a version

of the Artin-Procesi theorem (see [Rowen, 1991]110), Rm is Azumaya over its centre

of constant rank d2.

( ðù ) Suppose that Rm is Azumaya of constant rank d2 over its centre. In

particular, the Artin-Procesi theorem from [Rowen, 1991] tells us that Rm has PI-

degree d and that 1 P gdpRmqRm.

Note that it is always true that R{mR – Rm{mRm. Furthermore Rm{mRm

satisfies all multilinear identities of Rm, and if gdpRmq Ď mRm then 1 P gdpRmqRm Ď

mRm. But then mRm “ Rm which is a contradiction. So Rm{mRm has PI-degree

d, and so R{mR has PI-degree d. This precisely says that mR P SpecdpRq, and so

m P SpecdpZq.

Since m is a maximal ideal of Z, Theorem 1.9.21 of [Rowen, 1980] says that

mR is a maximal ideal of R, and so A “ mR. In particular, R{mR – MdpKq as in

the proof of Theorem 4.2.1.2. Since M is an irreducible R{mR-module, the result

follows.

Observe that, by Schur’s lemma, if M is an irreducible R-module then each

u P Z acts on M by scalar multiplication. In particular, there exists a central

character ζM : Z Ñ K where ζM puq is defined by u ¨m “ ζM puqm for all m P M .

Thus,

PAR “ tkerpζM q |M an irreducibleR-module of maximal dimensionu.

4.2.2 Pseudo-Azumaya loci for higher universal enveloping alge-

bras

From now on, we once again suppose K has characteristic p ą 0.

We now explore the pseudo-Azumaya locus for the higher universal enveloping

algebras. Suppose that G is a connected reductive algebraic group over K. We

then take Z
rrs
p to be the (central) subalgebra of U rrspGq generated by the elements

δbp ´ δp for δ P Dist`prpGq. We know that

Zrrsp “ K

«

pepp
rq

α qbp,

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

|α P Φ, 1 ď t ď d

ff

.

Furthermore, U rrspGq is an affine K-algebra and a free Z
rrs
p -module of finite

rank ppr`1qdimpgq. Since Z
rrs
p is Noetherian and finitely-generated, the Artin-Tate

110In relevant part, this version of the Artin-Procesi Theorem says that a ring R is Azumaya
of constant rank d2 if and only if it has PI-degree d and 1 P gdpRqR.
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Lemma111 gives that the centre of U rrspGq, which we denote by ZrrspGq, is an affine

Z
rrs
p -algebra and an affine K-algebra. This implies that Z

rrs
p , ZrrspGq and U rrspGq

are Noetherian PI rings and that U rrspGq is a Jacobson ring.112

For the remainder of this chapter we use the convention that for an irre-

ducible Upgq-module N the corresponding central character is ζN : Zpgq Ñ K
while for an irreducible U rrspGq-module M the corresponding central character is

ζ
rrs
M : ZrrspGq Ñ K. In order to understand how these maps interact, we need to

consider some homomorphisms between the centres.

Recall from Subsection 3.2.2 that there exists a surjective algebra homomor-

phism Υ :“ Υr,r : U rrspGq Ñ Upgq. This map clearly maps centres to centres,

so gives an algebra homomorphism Υ : ZrrspGq Ñ Zpgq. In particular, Corollary

3.2.2.3 shows that, Υppe
pprq
α qbpq “ epα for α P Φ and Υp

`

ht
pr

˘bp
´
`

ht
pr

˘

q “ hpt ´ ht for

1 ď t ď d. Hence, Υ further restricts to an algebra homomorphism

Υ : Zrrsp Ñ Zp

which is now clearly an isomorphism.

There is another map between centres which is worth considering. Let P be an

irreducible DistpGrq-module, and let us consider the induced module U rrspGqbD P ,

where, as always, D denotes DistpGrq. The action of U rrspGq on U rrspGq bD P is

by left multiplication, so in particular u P ZrrspGq acts on U rrspGq bD P by the

U rrspGq-module endomorphism

ρpuq : U rrspGq bD P Ñ U rrspGq bD P,

which is left multiplication by u. Clearly ρpuq is a central element of the algebra E :“

EndU rrspGqpU
rrspGq bD P q

op. Recall from Lemma 4.1.1.4 that Upgq is isomorphic to

E, and let τ : E Ñ Upgq be the isomorphism. Hence, there is a homomorphism of

algebras

ΩP : ZrrspGq Ñ Zpgq

given by composition of τ and ρ.

We can furthermore observe that the proof of Proposition 4.1.2.1 shows that

ΩP ppe
pprq
α qbpq “ epα

for α P Φ and

ΩP

˜

ˆ

ht
pr

˙bp

´

ˆ

ht
pr

˙

¸

“ hpt ´ ht

for 1 ď t ď d. In particular, Υ|
Z
rrs
p
“ ΩP |Zrrsp

, and so ΩP restricts to an isomorphism

111Artin-Tate Lemma: Let C be a commutative Noetherian ring and A an affine C-algebra.
Let B be a central C-subalgebra of A such that A is a finitely generated B-module. Then B is
affine as a C-algebra.

112See, for example, Proposition III.1.1 in [Brown and Goodearl, 2002].
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Z
rrs
p Ñ Zp.

The following conditions for the map ΩP to be surjective or injective are easy

to prove.

Lemma 4.2.2.1. The homomorphism ΩP is surjective if and only if every central

element of E is left multiplication by some central element of U rrspGq.

Lemma 4.2.2.2. The homomorphism ΩP is injective if and only if, for u P ZrrspGq,

we have that ubDz “ 0 P U rrspGqbDP for all z P P implies that u “ 0. Equivalently,

if and only if U rrspGq bD P is a faithful ZrrspGq-module.

Let us see how the homomorphisms ΩP interact with the central characters of

irreducible U rrspGq-modules.

Proposition 4.2.2.3. Let M be an irreducible U rrspGq-module with ΨpMq “ pP,Nq

for P P IrrpDistpGrqq and N P IrrpUpgqq. Then the following diagram commutes:

ZrrspGq
ζ
rrs
M //

ΩP
��

K

Zpgq

ζN
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Proof. Recall here that M “ pU rrspGq bD P q bUpgq N . Now, let u P ZrrspGq,

v P U rrspGq, z P P and n P N . Then

u ¨ pv bD zq bUpgq n “ ρpuqpv bD zq bUpgq n “ pv bD zq ¨ τpρpuqq bUpgq n

“ pv bD zq bUpgq ΩP puq ¨ n “ ζN pΩP puqqpv bD zq bUpgq n

Corollary 4.2.2.4. Let M be an irreducible U rrspGq-module with ΨpMq “ pP,Nq

for P P IrrpDistpGrqq and N P IrrpUpgqq. Then

ker ζ
rrs
M “ Ω´1

P pker ζN q.

Recall from Corollary 4.1.4.2 that if M is an irreducible U rrspGq-module cor-

responding to the pair pP,Nq P IrrpDistpGrqq ˆ IrrpUpgqq then we have dimpMq “

dimpP q dimpNq. Hence, an irreducible U rrspGq-module M is of maximal dimension

if and only if the corresponding modules P and N are of maximal dimension.

From now on fix P as the r-th Steinberg module of G, hence an irreducible

DistpGrq-module of maximal dimension. As in Subsection 4.1.2, let ΓP be the

category of irreducible U rrspGq-modules which contain P as an irreducible DistpGrq-

submodule. Let MaxΓP denote the full subcategory of ΓP whose objects are the

irreducible U rrspGq-modules of maximal dimension in ΓP , and let MaxIrrpUpgqq

86



similarly denote the full subcategory of IrrpUpgqq consisting of irreducible Upgq-

modules of maximal dimension. The inverse equivalences of categories ΨP : ΓP Ñ

IrrpUpgqq and ΦP : IrrpUpgqq Ñ ΓP then restrict to inverse equivalences of categories

ΨP : MaxΓP Ñ MaxIrrpUpgqq and ΦP : MaxIrrpUpgqq Ñ MaxΓP .

We have already seen that, forM P MaxΓP , we have kerpζ
rrs
M q “ Ω´1

P pkerpζΨP pMqq.

We hence have that

PAU rrspGq “ tkerpζ
rrs
M q |M P MaxIrrpU rrspGqqu “ tkerpζ

rrs
M q |M P MaxΓP u

“ tΩ´1
P pkerpζΨP pMqqq |M P MaxΓP u “ tΩ

´1
P pkerpζN qq |N P MaxIrrpUpgqqu.

Proposition 4.2.2.5. Let P be the r-th Steinberg module Str of G. There is a sur-

jective morphism Ω˚P : PAUpgq Ñ PAU rrspGq which sends kerpζN q to Ω´1
P pkerpζN qq.

Proof. ΩP : ZrrspGq Ñ Zpgq is a homomorphism of commutative algebras, so it

induces a morphism

Ω˚P : SpecpZpgqq Ñ SpecpZrrspGqq.

This morphism sends I P SpecpZpgqq to Ω´1
P pIq P SpecpZrrspGqq, so by above re-

stricts to a map Ω˚P : PAUpgq Ñ PAU rrspGq. It is surjective by the above discus-

sion.

Corollary 4.2.2.6. Let P be the r-th Steinberg module Str of G. If ΩP is surjective,

then Ω˚P is a bijection.

If we instead take P to be an arbitrary irreducible DistpGrq-module then ΨP

and ΦP still restrict to inverse equivalences of categories between MaxΓP and

MaxIrrpUpgqq, and we still get the equality

tkerpζ
rrs
M q |M P MaxΓP u “ tΩ

´1
P pkerpζN qq |N P MaxIrrpUpgqqu,

but the left hand side may no longer be equal to PAU rrspGq. For example, if P

is the trivial 1-dimensional DistpGrq-module then ΦP simply lifts an irreducible

Upgq-module N to the irreducible U rrspGq-module N along the natural quotient

U rrspGq ÞÑ U rrspGq{U rrspGqDist`pGrq. Hence, if N is an irreducible Upgq-module

of maximum dimension, then kerpζN q is in the pseudo-Azumaya locus of Upgq (and

hence the Azumaya locus, since Upgq is prime), but Ω˚P pkerpζN qq “ kerpζ
rrs
N q. In

particular, Ω˚P pkerpζN qq will contain ZXU rrspGqDist`pGrq, suggesting that it is not

the central annihilator of an irreducible U rrspGq-module of maximum dimension.
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Chapter 5

Integration of Modules -

Stability

In this chapter and Chapter 6, we turn to a different question than the one we have

been considering so far. Specifically, we now wish to consider approaches to the

Humphreys-Verma conjecture.

Conjecture (Humphreys-Verma conjecture113). Let G be a semisimple, simply-

connected algebraic group over an algebraically closed field K of positive characte-

ristic p ą 0. Let V be a projective, indecomposable G1-module. Then there exists a

G-module which restricts to V as a G1-module.

The significance of this conjecture, of course, is that G1-modules are precisely

restricted g-modules, so this conjecture is really asking about our ability to integrate

modules from Lie algebras to algebraic groups. It is currently proved for p ě 2h´2,

where h is the Coxeter number of G.114 Our first approach to this question uses

stability.

5.1 G-stable modules for abstract groups

5.1.1 Automorphisms of indecomposable modules

Let B be a finite-dimensional algebra over a field K (of any characteristic), V a

finite-dimensional B-module, E “ EndpV q its endomorphism ring, J “ JpEq its

Jacobson radical,115 and H “ AutpV q its automorphism group. We start with the

following useful observation:

113See, for example, [Humphreys and Verma, 1973], [Humphreys, 1976], [Ballard, 1978],
[Donkin, 1982], and [Sobaje, 2017].

114See [Jantzen, 1987, II.11.11]. There are various ways to define the Coxeter number of a root
system Φ with set of simple roots Π, but perhaps the easiest is as |Φ|{|Π|.

115Recall that the Jacobson radical JpRq of a ring R is the intersection of all maximal left ideals
of R. Equivalently, it is the intersection of all annihilators of simple left R-modules. This is a
two-sided ideal in R, and if we instead consider maximal right ideals and simple right R-modules,
we obtain the same ideal.
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Proposition 5.1.1.1. (1) The quotient algebra E{J is a division algebra if and

only if V is indecomposable.

(2) If V is indecomposable and E{J is separable,116 then H – GL1pDq ˙ U where

D “ E{J is a division algebra and U “ 1` J is a connected unipotent group.

(3) Under the same assumptions as (2), if D “ K, then H “ GL1pKq ˆ U .

Proof. (1) It is a standard fact that a finite length module is indecomposable if

and only if its endomorphism ring is local.117 Since E is finite-dimensional, this is

equivalent to E{J being a division ring.

(2) By (1), D “ E{J is a division algebra. Since D is separable, we can use

the Malcev-Wedderburn Theorem118 to split off the radical, i.e., to realize D as a

subalgebra of E such that E “ D‘ J .

Clearly, H “ GL1pEq. Consider an element x “ d ` j, where d P D and j P J .

Since xn “ dn ` j1 for some j1 P J , the element x is nilpotent if and only if d “ 0.

By the Fitting Lemma,119 x P H if and only if d ‰ 0. The key isomorphism is given

by the multiplication map:

GL1pDq ˙ U
–
ÝÑ H “ GL1pEq, pd, 1` jq ÞÑ d` dj ,

H “ GL1pEq
–
ÝÑ GL1pDq ˙ U, d` j ÞÑ pd, 1` d´1jq .

It remains to observe that U “ 1` J is a connected unipotent algebraic group.

It is connected because it is isomorphic to J as a variety. It is unipotent because

each of its elements is unipotent in GLpV q.

(3) The Malcev-Wedderburn decomposition turns J into a D-D-bimodule.120

Our condition forces D bK Dop “ K bK Kop “ K so that the bimodule structure is

just the K-vector space structure. Hence, GL1pDq “ GL1pKq and U commute.

5.1.2 pL,Hq-Morphs

Let G ě L, K ě H be two group-subgroup pairs. Let N “ NKpHq and CKpHq be

the normaliser121 and the centraliser122 of H in K. By an pL,Hq-morph from G

to K we understand a function f : GÑ K satisfying the following four conditions:

(M1) f |L is a group homomorphism.

(M2) fpGq Ď NKpHq.

116Recall that a K-algebra A is separable if AbK F is semisimple for any field extension F of K.
117See, for example, Proposition 3.1 and Theorem 3.7 in [Jacobson, 1989].
118See Theorem 6.2.1 in [Drozd and Kirichenko, 1994].
119Fitting Lemma: Let R be a ring and V an indecomposable R-module of finite length. Let
f P EndpV q. Then either f is bijective or f is nilpotent.

120Recall that if R and S are K-algebras, an R ´ S-bimodule is an additive group M which is
a left R-module, a right S-module, and satisfies prmqs “ rpmsq for all r P R, s P S and m P M .
Equivalently, it is a left RbK S

op-module.
121Recall that NKpHq is the set of k P K such that kHk´1

“ H.
122Recall that CKpHq is the set of k P K such that khk´1

“ h for all h P H.
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(M3) fpxqfpyq P fpxyqH for all x, y P G.

(M4) fpLq Ď CKpHq.

By a weak pL,Hq-morph from G to K we understand a function f : GÑ K

satisfying only the first three conditions.

One can observe that a weak pL,Hq-morph is just a homomorphism GÑ N{H

with a choice of lifting to N satisfying an additional condition.123 For instance,

weak pG, 1q-morphs are the same as homomorphisms G Ñ K and weak p1,Kq-

morphs are just functions G Ñ K which preserves the identity. Furthermore, the

same statements also hold if we replace weak morphs with morphs in the previous

sentence.

Commonly pL,Hq-morphs originate from K-G-sets X “ KXG, i.e., G acts on

the right, K on the left and the actions commute. Let θ P X such that its G-orbit

is inside its K-orbit. Let H be the stabiliser of θ in K. Choose a section K{H Ñ K

which sends the coset H to 1K . The composition of the section with the G-orbit

map of θ is a function

f : GÑ K characterised by fpxqθ “ θx for all x P G.

Lemma 5.1.2.1. The map f defined above is a p1, Hq-morph.

Proof. By definition, fpxyqθ “ θxy. On the other hand, θxy “ pθxqy “ p fpxqθqy “
fpxqfpyqθ. Hence, θ “ fpxyq´1fpxyqθ “ fpxyq´1fpxqfpyqθ and fpxyq´1fpxqfpyq P H.

Now pick h P H. Then fpxq´1hfpxqθ “ fpxq´1hθx “ fpxq´1
θx “ fpxq´1fpxqθ “ θ so

that fpxq´1hfpxq P H.

We would like to identify weak pL,Hq-morphs that define the same homomor-

phisms G Ñ N{H. More precisely, we say that two weak pL,Hq-morphs f and f 1

are equivalent if f 1pxq P fpxqH for all x P G. We denote the set of equivalence

classes of weak pL,Hq-morphs by rLHsmopG,Kq. Furthermore, given a fixed ho-

momorphism θ : LÑ K we denote by rLHsθmopG,Kq the set of equivalence classes

of those weak pL,Hq-morphs that restrict to θ on L.

Let A be an additive abelian group with a G-action (a ZG-module). We consider

a subcomplex p rC‚pG,L;Aq, dq of the standard complex124 pC‚pG;Aq, dq that consists

of those cochains µn that are trivial on Ln, i.e., µn |Lˆ¨¨¨ˆL” 0A.

We observe that this cochain complex fits into an exact sequence of cochain

complexes

0 Ñ rC‚pG,L;Aq Ñ C‚pG;Aq Ñ C‚pL;Aq Ñ 0 .

123Namely that the lifting must remain a homomorphism on L.
124The reader should recall that the complex pC‚pG;Aq, dq consists of abelian groups CnpG;Aq :“
tµ : Gn Ñ Au, for n P N, with differentials dn : CnpG;Aq Ñ Cn`1

pG;Aq defined by
dnµpg1, . . . , gn`1q “ g1µpg2, . . . , gn`1q `

řn
i“1 µpg1, . . . , gi´1, gigi`1, gi`2, . . . , gn`1q ` µpg1, . . . , gnq

for µ P CnpG;Aq and g1, . . . , gn`1 P G.
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This then allows us to form a long exact sequence of cohomology

¨ ¨ ¨ Ñ Hn´1pL;Aq Ñ rHnpG,L;Aq Ñ HnpG;Aq Ñ HnpL;Aq Ñ ¨ ¨ ¨

For our purposes, we have to modify this subcomplex slightly. We consider a

subcomplex pC‚pG,L;Aq, dq of the standard complex pC‚pG;Aq, dq which is obtained

from p rC‚pG,L;Aq, dq in the following way: for n ą 0, we have CnpG,L;Aq “

rCnpG,L;Aq, whilst C0pG,L;Aq “ AL. We can furthermore replace the complex

C‚pL;Aq with the complex rC‚pL;Aq, defined by rCnpL;Aq “ CokerpCnpG,L;Aq Ñ

CnpG;Aqq for all n ě 0. In particular, we observe that rCnpL;Aq “ CnpL;Aq for all

n ě 1. This then recovers an exact sequence of cochain complexes:

0 Ñ C‚pG,L;Aq Ñ C‚pG;Aq Ñ rC‚pL;Aq Ñ 0 .

In particular, noting that for the cochain complex rC‚pL;Aq we have rH0pL;Aq “

0 and rHnpL;Aq “ HnpL;Aq for n ě 1, we can form the long exact sequence of

cohomology

0 Ñ H1pG,L;Aq Ñ H1pG;Aq Ñ H1pL;Aq Ñ ¨ ¨ ¨

. . .Ñ Hn´1pL;Aq Ñ HnpG,L;Aq Ñ HnpG;Aq Ñ HnpL;Aq Ñ ¨ ¨ ¨

What can we say about the natural map fn : HnpG,L;Aq Ñ HnpG;Aq? From

this long exact sequence, the following proposition is clear.

Proposition 5.1.2.2. (1) For n ą 0, HnpL;Aq “ 0 if and only if fn is surjective

and fn`1 is injective.

(2) For n ą 1, the map fn is injective if and only if the restriction map Zn´1pG;Aq Ñ

Zn´1pL;Aq is surjective.

Proof. (1) This follows from the exact sequence.

(2) Suppose Zn´1pG;Aq Ñ Zn´1pL;Aq is surjective. Pick µ P ZnpG,L;Aq such

that rµs P kerpfnq. Then µ P BnpG;Aq and µ “ dη for some η P Cn´1pG;Aq.

Moreover, dpη|Lq “ µ|L ” 0 so that η|L P Zn´1pL;Aq. Our assumption gives

ζ P Zn´1pG;Aq such that ζ|L “ η|L. Hence, η ´ ζ P Cn´1pG,L;Aq and µ “

dpη ´ ζq P BnpG,L;Aq.

Now suppose fn is injective. Pick µ P Zn´1pL;Aq, and extend it to χ P

Cn´1pG;Aq. Hence dχ P ZnpG,L;Aq and rdχs P kerpfnq. So dχ “ dζ for some

ζ P Cn´1pG,L;Aq. Now χ´ ζ P Zn´1pG;Aq and pχ´ ζq|L “ µ.

Corollary 5.1.2.3. For n ą 1, HnpG,L;Aq “ 0 if and only if Hn´1pG;Aq Ñ

Hn´1pL;Aq is surjective and HnpG;Aq Ñ HnpL;Aq is injective. Furthermore,

H1pG,L;Aq “ 0 if and only if H1pG;Aq Ñ H1pL;Aq is injective.
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The next theorem clarifies the origin of this new complex. Let us fix a homo-

morphism θ “ f |L : LÑ N and choose a subgroup rH ď H, normal in N “ NKpHq

such that A :“ H{ rH is abelian. Notice that the conjugation gHh rH :“ ghg´1
rH de-

fines a structure of an N{H-module (and a G-module via any weak pL,Hq-morph)

on A. Informally, we should think of the next theorem as “an exact sequence”

H1pG,L;Aq 99K rL rHsθmopG,Nq ÝÑ rLHsθmopG,Nq ÝÑ H2pG,L;Aq (5.1)

keeping in mind that the second and the third terms are sets (not even pointed sets)

and the first arrow is an “action” rather than a map. Let us make it more precise:

a weak pL,Hq-morph defines a G-module structure ρ on A. For each particular ρ

(not just its isomorphism class) we define

rL rHsθmopG,Nqρ Ď rL rHsθmopG,Nq, rLHsθmopG,Nqρ Ď rLHs
θmopG,Nq

as subsets of those weak pL,Hq-morphs that define this particular G-action ρ. These

subsets could be empty, in which case we consider the following theorem true for

trivial reasons. The reader should consider this theorem and its proof as a generali-

sation of the results in Sections 1 and 2 in [Thévenaz, 1983] to the situation of weak

pL,Hq-morphs.

Theorem 5.1.2.4. We are in the notations preceding this theorem. For each G-

action ρ on A the following statements hold:

(1) There is a restriction map

Res : rL rHsθmopG,Nqρ ÝÑ rLHsθmopG,Nqρ, Respxfyq “ rf s

where xfy and rf s denote the equivalence classes in rL rHsθmopG,Nqρ and

rLHsθmopG,Nqρ.

(2) The abelian group Z1pG,L; pA, ρqq acts freely on the set rL rHsθmopG,Nqρ by

γ ¨ xfy :“ x 9γfy where 9γfpxq “ 9γpxqfpxq for all x P G

and 9γ : G
γ
ÝÑ AÑ H is a lift of γ to a map GÑ H with 9γp1q “ 1.

(3) The corestricted restriction map Res : rL rHsθmopG,Nqρ ÝÑ ImpResq is a

quotient map by the Z1pG,L; pA, ρqq-action.

(4) Two classes xfy, xgy P rL rHsθmopG,Nqρ lie in the same B1pG,L; pA, ρqq-orbit

if and only if there exist h P H, f 1 P xfy, g1 P xgy such that rfpLq, hs Ď rH and

f 1pxq “ hg1pxqh´1 for all x P G.

(5) There is an obstruction map

Obs : rLHsθmopG,Nqρ ÝÑ H2pG,L; pA, ρqq, Obsprf sq “ rf 7s
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where the cocycle f 7 is defined by f 7px, yq “ fpxqfpyqfpxyq´1
rH.

(6) The sequence (5.1) is exact, i.e., the image of Res is equal to Obs´1pr0sq.

Proof. Suppose xfy “ xgy. This gives a function α : GÑ rH such that α|L ” 1 and

fpxq “ αpxqgpxq for all x P G. Since H Ě rH, we conclude that rf s “ rgs and the

map Res is well-defined. This proves (1).

Suppose Respxfyq “ Respxgyq. Then rf s “ rgs gives a function α : GÑ H such

that α|L ” 1 and fpxq “ αpxqgpxq for all x P G. We can also obtain such a function

from a cochain γ P C1pG,L; pA, ρqq by lifting α “ 9γ. Let us compute in the group

N{ rH denoting a rH by a. The weak pL,Hq-morph condition for f is equivalent to

the following equality:

αpxyq gpxyq “ fpxyq “ fpxq fpyq “ αpxqgpxq αpyqgpyq

“ αpxqgpxqαpyqgpxq´1 gpxqgpyq.

Now notice that

gpxyq “ gpxqgpyq “ gpxq gpyq

is the weak pL,Hq-morph condition for g, while

αpxyq “ αpxqgpxqαpyqgpxq´1 “ αpxq gpxqαpyqgpxq´1 “ αpxq rρpxqpαqspyq

is the cocycle condition for α “ α rH. Any two of these three conditions imply the

third one, which proves both (2) and (3), except the action freeness.

Suppose xfy “ γ ¨ xfy “ x 9γfy. This gives a function α : G Ñ rH such that

α|L ” 1 and 9γpxqfpxq “ αpxqfpxq for all x P G. Hence, 9γ “ α and γ “ α ” 1.

Thus, the action is free.

Let us examine da ¨ xfy “ x 9dafy for some a P AL. Since dapxq “ ´a ` ρpxqpaq

and ρpxq can be computed by conjugating with fpxq, we immediately conclude that

r 9daf spxq “ 9a´1fpxq 9afpxq´1fpxq “ 9a´1fpxq 9a.

It is easy to see that rfpLq, 9as Ď rH. The argument we have just given is reversible,

i.e., if fpxq “ hgpxqh´1 then xgy “ dh ¨ xfy and h P AL. This proves (4).

Suppose rf s “ rgs. This gives a function α : G Ñ H such that α|L ” 1 and

fpxq “ αpxqgpxq for all x P G. Let us compute the cocycles in N{ rH, keeping in

mind that H{ rH is abelian:

f 7px, yq “ fpxqfpyqfpxyq´1 “ αpxq gpxq αpyq gpyq gpxyq
´1
αpxyq

´1
“

pαpxyq
´1
αpxq gpxqαpyqgpxq´1qgpxqgpyqgpxyq´1 “ dαpx, yq ` g7px, yq.

Thus rf 7s “ rg7s, proving (5).

It is clear that f 7 ” 1 for f P rL rHsθmopG,Nqρ. Hence, ObspRespxfyqq “ r0s.
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Suppose now that Obsprf sq “ r0s. This gives a function α : G Ñ H such that

α|L ” 1 and dα “ f 7 Consider g : G Ñ N defined by gpxq “ αpxq´1fpxq for all

x P G. Then rgs “ rf s and we can verify that g P rL rHsθmopG,Nqρ by checking

g7 ” 1 in N{ rH:

g7px, yq “ αpxq
´1
fpxq αpyq

´1
fpyq fpxyq

´1
αpxyq

„ αpxyq αpxq
´1
pfpxq αpyq fpxq

´1
q´1f 7px, yq

“ pdαpx, yqq´1f 7px, yq ” 1.

This proves (6).

Let us quickly re-examine how the last section works for pL,Hq-morphs. All of

its results including Theorem 5.1.2.4 clearly work, although the objects that appear

have additional properties. Most crucially, since fpLq Ď CKpHq, the L-action on

the abelian group A is trivial. If L is normal in G, this just means that A is a

ZG{L-module.

An important feature is that Z1pL;Aq consists of homomorphisms L Ñ A in

this case. This means that Proposition 5.1.2.2 yields the following corollary:

Corollary 5.1.2.5. If the group L is perfect, then f1 : H1pG,L;Aq Ñ H1pG;Aq is

surjective and f2 : H2pG,L;Aq Ñ H2pG;Aq is injective.

5.1.3 Module extensions

We now assume that L is a normal subgroup of G. Let A be a ring, pV, θq an AL-

module, K “ AutAV and H “ AutALV its automorphism groups. We can think

of θ as an element of the set of AL-structures X “ HompL,Kq. Then H is the

centraliser in K of θpLq. By N , as before, we denote the normaliser of H in K.

Naturally, X is a K-G-set: G acts by conjugation on L twisting the AL-module

structure. K acts by conjugations on the target, while H “ StabKpθq. The module

V is called G-stable if pV, θq – pV, θgq for all g P G. This is equivalent to the orbit

inclusion θG Ď Kθ. By Lemma 5.1.2.1 this gives a p1, Hq-morph f : GÑ K.

If g P L, the isomorphism fpgq : pV, θq Ñ pV, θgq can be chosen to be θpgq.

Indeed,

θpgqpθphqvq “ θpghqpvq “ θpghg´1qpθpgqpvqq “ θgphqpθpgqpvqq

for all g, h P L. Then, without loss of generality f |L “ θ, and f is an pL,Hq-morph

in rLHsθmopG,Nq.

Suppose that the groupH “ AutALV is soluble. We can always find a subnormal

series H “ H0�H1� . . .�Hk “ t1u with abelian quotients Aj “ Hj´1{Hj such that

each Hj is normal in N . For instance, we can use the commutator series Hj “ Hpjq.

In this case, every abelian group Aj becomes an N -module.
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If A is finite-dimensional over the field K and V is a finite-dimensional inde-

composable AL-module, we can use Proposition 5.1.1.1 to derive useful information

about its automorphisms. In particular, if D “ EndALpV q{J is a separable field

extension of K, then H “ GL1pDq ˙ p1` Jq is soluble. It admits another standard

N -stable subnormal series:

Hm “ 1` Jm, m ě 1, Am “ p1` J
mq{p1` Jm`1q.

As groups, we have Am “ pp1` J
mq{p1` Jm`1q, ¨q – pJm{Jm`1,`q. The following

theorem is the direct application of Theorem 5.1.2.4. It determines the uniqueness

and existence of a G-module structure on a G-stable L-module. The proof is obvious.

Theorem 5.1.3.1. Let V “ pV, θq be a G-stable AL-module with a soluble automor-

phism group H, where A is an associative ring. Let H “ H0 �H1 � . . .�Hk “ t1u

be a subnormal N -stable series with abelian factors Aj “ Hj´1{Hj.

Any AG-module structure Θ on pV, θq compatible with its AL-structure (i.e.,

Θ|AL “ θ) can be discovered by the following recursive process in k steps. One

initialises the process with an pL,H0q-morph f0 “ f coming from the G-stability.

The step m is the following.

(1) The pL,Hm´1q-morph fm´1 : G Ñ N such that fm´1|L “ θ determines a

G-module structure ρm on Am.

(2) If Obsprfm´1sq ‰ 0 P H2pG,L; pAm, ρmqq, then this branch of the process

terminates.

(3) If Obsprfm´1sq “ 0 P H2pG,L; pAm, ρmqq, then we choose an pL,Hmq-morph

fm : GÑ N such that Resprfmsq “ rfm´1s.

(4) For each element of H1pG,L; pAm, ρmqq we choose a different fm branching

the process. (The choices different by an element of B1pG,L; pAm, ρmqq are

equivalent, not requiring the branching.)

(5) We change m to m` 1 and go to step (1).

An AG-module structure Θ on pV, θq compatible with its AL-structure is equivalent

to fk for one of the non-terminated branches. Distinct non-terminated branches

produce (as fk) non-equivalent compatible AG-module structures.

This process is subtle as ρm is revealed only when fm´1 is computed. It would

be useful to have stability, i.e., the fact the G-modules pAm, ρmq are the same

(isomorphic) for different branches. The actions ρm on Am “ Hm´1{Hm on different

branches differ by conjugation via a function GÑ Hm´2. Thus, one needs all two-

step quotients Hm´1{Hm`1 to be abelian to ensure stability. Having said that, we

can still have some easy criteria for existence, uniqueness and non-uniqueness.
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Corollary 5.1.3.2. (Existence Test) Suppose H2pG,L; pAm, ρmqq “ 0 for all m

for one of the branches. Then this branch does not terminate and an AG-module

structure exists.

Corollary 5.1.3.3. (Uniqueness Test) Suppose H1pG,L; pAm, ρmqq “ 0 for all m

for one of the non-terminating branches. Then this branch is the only branch. Mo-

reover, if an AG-module structure exists, it is unique up to an isomorphism.

Corollary 5.1.3.4. (Non-Uniqueness Test) Suppose H1pG,L; pAk, ρkqq ‰ 0 for one

of the non-terminating branches. Then there exist non-equivalent AG-module struc-

tures.

5.1.4 Extension from not necessarily normal subgroups

In Subsection 5.1.3 we restrict our attention to the case of L being a normal subgroup

ofG. Let us take a moment to examine how Subsection 5.1.3 works if L is not normal.

Set P :“
Ş

gPG L
g, where Lg :“ g´1Lg. Let A be a ring, pV, θq an AL-module.

Note that pV, θq is also an AP -module under restriction, so we can view θ as an

element of the set X “ HompP,Kq, where K “ AutAV . Let H “ AutAPV , so H is

the centraliser in K of θpP q. By N , as before, we denote the normaliser of H in K.

As in Subsection 5.1.3, X is a K-G-set. The AL-module V is called G-stable-

by-conjugation if pV, θq – pV, θgq as ArLXLgs-modules for all g P G. Note that this

condition guarantees that V is G-stable as an AP -module. This is equivalent to the

orbit inclusion θG Ď Kθ. By Lemma 5.1.2.1 this gives a p1, Hq-morph f : GÑ K.

If g P L, the ArL X Lgs-isomorphism fpgq : pV, θq Ñ pV, θgq can be chosen to

be θpgq. Indeed, θpgqpθphqvq “ θpghqpvq “ θpghg´1qpθpgqpvqq “ θgphqpθpgqpvqq for

g P L, h P LXLg. Then, without loss of generality f |L “ θ, and f is an pL,Hq-morph

in rLHsθmopG,Nq.

This then allows us to proceed with the inductive process of Theorem 5.1.3.1 as

before, when H “ AutAPV is soluble.

5.1.5 Comparison with C‚pG{L;Aq

When studying the question of extending representations from a normal subgroup,

[Dade, 1981] and [Thévenaz, 1983] use the cohomology of the familiar cochain com-

plex pC‚pG{L;Aq, dq to control existence and uniqueness of such extensions. In this

subsection, however, we use the cohomology complex pC‚pG,L;Aq, dq instead. It is

worth taking a moment to compare the cohomology of these two complexes, and see

where the difference in approaches arises. We use the notation of Subsection 5.1.2,

assuming that cochains are normalised since this does not affect the cohomology

groups.125

125A 1-cochain µ : GÑ A is called normalised if µp1q “ 0. A 2-cochain η : GˆGÑ A is called
normalised if ηp1, gq “ ηpg, 1q “ 0 for all g P G.
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In order for the action of G{L on A to make sense, we need to make the assump-

tion that L acts on A trivially. The reader can observe that this assumption holds

in the case considered in Subsection 5.1.3, and, in fact, holds whenever one obtains

the G-action on A from an pL,Hq-morph as opposed to a weak pL,Hq-morph. With

this assumption, we have the following proposition.

Proposition 5.1.5.1. Under the aforementioned conditions we have isomorphisms

of groups H0pG,L;Aq – H0pG{L;Aq and H1pG,L;Aq – H1pG{L;Aq.

Proof. It is easy to see that H0pG,L;Aq “ AG “ H0pG{L;Aq. The natural map

from the group of normalised cochains

inf : pC1pG{L;Aq Ñ C1pG,L;Aq, infpµqpgq “ µpgLq.

defines a map Inf :“ rinfs : H1pG{L;Aq Ñ H1pG,L;Aq of cohomology groups. It is

injective because Infprµsq “ 0 means that infpµq “ da for some a P A. Then µ “ da

and rµs “ 0.

It is surjective because for η P Z1pG,L;Aq we have dη “ 0 that translates as

ηpghq “ gpηphqq ` ηpgq for all g, h P G.

If one chooses h P L, then it tells us that ηpghq “ ηpgq, i.e., that η is constant on

L-cosets. Thus, the cocycle

µ P pZ1pG{L;Aq, µpgLq :“ ηpgq

is well-defined. By definition infpµq “ η.

Considering the second cohomology of these complexes, it is still possible to

construct the inflation map Inf : H2pG{L;Aq Ñ H2pG,L;Aq in the natural way, but

this map is no longer an isomorphism in general. We can still view H2pG{L;Aq as

a subgroup of H2pG,L;Aq:

Proposition 5.1.5.2. The map Inf : H2pG{L;Aq Ñ H2pG,L;Aq is injective.

Proof. If Infprηsq “ 0 P H2pG,L;Aq then there exists µ P C1pG,L;Aq such that

dµ “ infpηq. Note that infpηq is constant on L ˆ L-cosets by construction. In

particular, for g P G and h P L, we have

µpgq ´ µpghq “ gpµphqq ` µpgq ´ µpghq “ infpηqpg, hq “ infpηqpg, 1q “ 0 ,

using fact that η is normalised for the last equality. Hence, µ is constant on cosets

of L in G. In particular, if we define rµ P pC1pG{L;Aq by rµpgLq “ µpgq then we

obtain that η “ drµ and so rηs “ 0 P H2pG{L;Aq.

In the context of Theorem 5.1.2.4, we can see that H2pG{L;Aq and H2pG,L;Aq

can be made to play the same role in certain key cases. To that end, we say that
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an pL,Hq-morph f is normalised if fpghq “ fpgqfphq whenever g P G and h P L.

Note that this definition is independent of the subgroup H.

Lemma 5.1.5.3. In the context of Theorem 5.1.3.1, the pL,Hiq-morphs fi can be

assumed to be normalised for each i. Furthermore, with this assumption, the cocycles

f 7i P Z
2pG,L;Ai`1q are constant on cosets of Lˆ L in GˆG.

Proof. These results follow easily from Lemmas 9.2 and 9.4(i) in [Karpilovsky, 1989].

For the remainder of this subsection we assume that all morphs are normalised.

The second statement of Lemma 5.1.5.3 immediately yields that, given an pL,Hq-

morph f , the element Obsprf sq lies in the image of the natural homomorphism Inf :

H2pG{L;Aq Ñ H2pG,L;Aq. The discussion in this subsection yields the following

result.

Corollary 5.1.5.4. Let f be a normalised pL,Hq-morph. Then there exists η P

Z2pG{L;Aq with Infprηsq “ Obsprf sq. Furthermore, Obsprf sq “ 0 P H2pG,L;Aq if

and only if rηs “ 0 P H2pG{L;Aq.

Combining Proposition 5.1.5.1 and Corollary 5.1.5.4, we observe that Chap-

ters 5.1.2 and 5.1.3 could be interpreted using the cochain complex C‚pG{L;Aq at

all points instead of the complex C‚pG,L;Aq (although doing so would force us to

work exclusively with normalised morphs instead of not-necessarily-normalised weak

morphs). Indeed, this is the approach taken by Dade and Thévenaz in the contexts

they consider. Our reasons for not taking this approach are threefold. Firstly, our

new complex fits nicely into an exact sequence as described in Subsection 5.1.2.

Secondly, this complex is more natural to work with – Dade and Thévenaz essen-

tially move from the complex C‚pG{L;Aq to the complex C‚pG,L;Aq as described

in this subsection, and then proceed as we do. Finally, our main motivation in stu-

dying the case for abstract groups is to gain insight into the question for algebraic

groups, where the procedures described in this subsection do not work smoothly (cf.

Subsection 5.2.5).

In particular, the reader should note that if H is abelian then the corollaries

at the end of Subsection 5.1.3 give precisely Corollary 1.8 and Proposition 2.1 in

[Thévenaz, 1983].

5.2 G-stable modules for algebraic groups

We return to considering algebraic groups over an algebraically closed field K of

positive characteristic p. In this section, all group schemes will be assumed to

be affine, but not necessarily reduced. Furthermore, recall that algebraic groups

are affine and reduced by definition, and we shall therefore frequently identify an

algebraic group with its K-points, equipped with the Zariski topology.
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Similar to the definition for abstract groups, a restricted g-module if called a

G-stable g-module is pV, θq is isomorphic to pV, θqx :“ pV, θ ˝Adpxqq for all x P G.

Here, as always, Ad represents the adjoint action of G on g and on the restricted

enveloping algebra U0pgq.

5.2.1 Rational and algebraic G-modules

We distinguish algebraic and rational maps of algebraic varieties.126 In particular,

we talk about algebraic and rational homomorphisms of algebraic groups f : GÑ H.

The latter are defined on an open dense127 subset U “ dompfq of G containing 1

and satisfy fpxqfpyq “ fpxyq whenever x, y, xy P U .

A rational automorphic G-action on a commutative algebraic group H is a

rational map G ˆ H Ñ H, defined on an open set U ˆ H containing 1 ˆ H, with

the usual action conditions and also such that for each g P U the map x ÞÑ gx is a

group automorphism of H. An algebraic G-action on H is the same, but where

the map GˆH Ñ H is algebraic.

In an important case, the distinction between rational and algebraic maps can

be essentially forgotten, as observed in [Rosenlicht, 1956].

Lemma 5.2.1.1. [Rosenlicht, 1956, Theorem 3] Let G and H be algebraic groups

with G connected. Suppose f : GÑ H is a rational homomorphism. Then f extends

uniquely to an algebraic group homomorphism GÑ H.

When H is commutative, this lemma is a special case of the next lemma. Indeed,

if one takes theG-action onH to be trivial, then the condition in the following lemma

is precisely the condition for a map to be a homomorphism.

Lemma 5.2.1.2. Suppose that G is a connected algebraic group and pH,`q is a

commutative algebraic group with an algebraic automorphic G-action ρ. Let f : GÑ

H be a rational map such that128 fpxyq “ fpxq ` xfpyq for all x, y, xy P dompfq.

Then f extends to an algebraic map satisfying fpxyq “ fpxq` xfpyq for all x, y P G.

Proof. Since f is rational and G is connected, dompfq “ U Ď G is a dense open

subset. Set V “ U X U´1.

Fix x P V . Consider the rational map

fx : GÑ H, fxpyq :“ fpyxq ` yxfpx´1q.

126In this thesis, an algebraic variety over the field K is a reduced affine K-scheme which is
separated, i.e. the diagonal map is a closed immersion. In particular, since algebraic groups are
separated, all algebraic groups are varieties. Furthermore, algebraic maps of algebraic varieties
are just morphisms of schemes, and rational maps are algebraic maps which are only defined
on an open dense subset of the domain. See Chapter AG in [Borel, 1991], for example, for more
details.

127Recall that an open subset of a topological space X is called dense if it has non-empty inter-
section with every non-empty open set of X.

128Here we use the notation that xfpyq :“ ρpxqpfpyqq.
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This map is rational since it is defined on the dense open set V x´1. Observe that

on V X V x´1 we have that fx “ f by the assumption on f . Now, let x, z P V and

define the rational map

fx,z : GÑ H, fx,zpyq :“ fxpyq ´ fzpyq.

Then fx,z is defined on V x´1 X V z´1. If the set f´1
x,z pHzt0uq is non-empty, it is

open dense. Hence, it has non-empty intersection with V XV x´1XV z´1. However,

since on V X V x´1 X V z´1 we have f “ fx “ fz, this is impossible. Thus, we must

have fx,z ” 0 on V x´1XV z´1. In particular, if y P V x´1XV z´1 then fxpyq “ fzpyq.

Therefore, the following map is a well-defined locally-algebraic, and hence alge-

braic, map
pf : GÑ H, pfpyq :“ fwpyq where w P y´1V.

This map clearly restricts to f on V . Furthermore, it satisfies the condition from

the lemma:

Let a, b P G. Choose w P b´1a´1V X b´1V – this exists since both these sets are

open dense in G. We then have abw P V and bw P V . The condition on f tells us

that 0 “ fp1q “ fpbwq ` bwfpw´1b´1q. Hence, we have the equations

pfpabq “ fwpabq “ fpabwq ` abwfpw´1q,

pfpaq “ fbwpaq “ fpabwq ` abwfpw´1b´1q,

a
pfpbq “ afwpbq “

afpbwq ` abwfpw´1q.

This then gives us that pfpabq “ pfpaq ` a
pfpbq, as required.

Recall that a rational129 representation of an algebraic group G is a vector

space V , equipped with an algebraic homomorphism θ : GÑ GLpV q. An immediate

consequence of Lemma 5.2.1.1 is that ifG is connected, then θ is uniquely determined

by any of its restrictions to an open subset and any rational homomorphism of

algebraic groups GÑ GLpV q determines a representation.

Similar to the case of abstract groups, we have the following proposition. This

in fact follows from Proposition 5.1.1.1.

Proposition 5.2.1.3. [Xanthopoulos, 1992, Section 4.3] Suppose that V is a finite-

dimensional indecomposable restricted g-module, where g is the Lie algebra of the

algebraic group G over K. Then as algebraic groups we have

AutgpV q “ Kˆ ˆ p1` Jq

where J is the Jacobson radical of EndgpV q. Furthermore, 1 ` J is a connected

129It is a standard terminology, which slightly disagrees with our usage of the adjective rational.
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unipotent algebraic subgroup of AutgpV q.

5.2.2 Rational and algebraic cohomologies

Let H be an affine group scheme acting on an additive algebraic group pA,`q

algebraically by automorphisms. The following easy lemma shall be useful in what

follows.

Lemma 5.2.2.1. Let H be an irreducible130 affine group scheme. Then H is pri-

mary, i.e., every zero-divisor in KrHs lies inside the nilradical.

Proof. The affinity of H tells us that KrHs “ Kry1, . . . , yns{I for some n ě 1 and

some Hopf ideal I. In particular, I has a primary decomposition I “ Q0 X . . .XQr

(which we assume to be normal) with associated primes P0 “
?
I, P1, . . . , Pr. From

the perspective of group schemes, this uniquely endows H with a finite collection

p0, p1, . . . , pr of embedded points of H, where pi is a generic point of the irreducible

closed subscheme given by Qi. Furthermore, for i ą 0 each pi is of codimension

at least one. If x is a closed point in H, then the set xp0, xp1, . . . , xpr corre-

sponds to the associated primes of another primary decomposition of I. Hence,

by uniqueness, x acts on the set p0, p1, . . . , pr by permutation. Thus, Hred “
Ťr
i“1p

Ť

x closed point
xpiqred “

Ťr
i“1ppiqred. However, over an algebraically closed field,

Hred cannot be a finite union of proper subvarieties. Hence, r “ 0 and the result

follows.

Define the cochain complex pCnRatpH;Aq, dq to consist of the rational maps

Hn Ñ A defined at p1, 1, . . . , 1q with the standard differentials of group cohomology.

A rational function f on Hn is defined on an open dense subset U Ď Hn, thus,

U has a non-empty intersection Uα “ U X Hn
α with each irreducible component

Hn
α of Hn. Since Hn is a group scheme, its irreducible components are connected

components that yields the direct sum decomposition of functions:

KrHns “ ‘αKrHn
αs.

Note that each Hα is isomorphic to an irreducible affine group scheme, so we can

apply Lemma 5.2.2.1. Thus, Uα is of the form Upsαq for a non-zero-divisor sα P

KrHn
αs and f “ hs´1 for some h P KrHns and a non-zero-divisor s :“ psαq P KrHns.

Thus, f P KrHnsS , the localised ring of functions obtained by inverting the set S of

all non-zero-divisors.

Writing functions on the algebraic group A as KrAs “ Krx1, . . . xms{I, a ra-

tional n-cochain µ is uniquely determined by an m-tuple of rational functions

pµiq P KrHnsmS satisfying the relations of I. In particular, if each component of

130A scheme is called irreducible if the underlying topological space cannot be written as the
union of two proper closed subsets.

101



H is infinitesimal,

KrHnsS “ KrHns and CnRatpH;Aq “ CnAlgpH;Aq ,

where, in general, pCnAlgpH;Aq, dq is the cochain subcomplex of pCnRatpH;Aq, dq that

consists of those rational maps Hn Ñ A which are, in fact, algebraic.

Let us now concentrate on a connected algebraic group G and its connected

subgroup scheme L. There is another subcomplex of pCnRatpG;Aq, dq which we are

interested in: we define p rC‚RatpG,L;Aq, dq to consist of rational maps Gn Ñ A that

are trivial on Ln (i.e., everywhere 0 on Ln). As in the case of abstract groups, we

define pC‚RatpG,L;Aq, dq by

CnRatpG,L;Aq “

$

&

%

rCnRatpG,L;Aq, if n ą 0,

AL, if n “ 0.

There is a natural inclusion of cochain complexes C‚RatpG,L;Aq Ñ C‚RatpG;Aq.

We can hence define the cochain complex rC‚RatpL;Aq such that rCnRatpL;Aq :“

CokerpCnRatpG,L;Aq Ñ CnRatpG;Aqq for all n ě 0.

In particular, this gives us the short exact sequence of cochain complexes

0 Ñ C‚RatpG,L;Aq Ñ C‚RatpG;Aq Ñ rC‚RatpL;Aq Ñ 0.

We define the algebraic complexes C‚AlgpG,L;Aq and rC‚AlgpL;Aq in the expected

way, and once again get a short exact sequence of cochain complexes. In either case,

this allows us to construct the long exact sequence in cohomology (suppressing the

‘Rat’ and ‘Alg’):

0 Ñ H1pG,L;Aq Ñ H1pG;Aq Ñ rH1pL;Aq Ñ ¨ ¨ ¨

. . .Ñ rHn´1pL;Aq Ñ HnpG,L;Aq Ñ HnpG;Aq Ñ rHnpL;Aq Ñ ¨ ¨ ¨

Note that rH0
RatpL;Aq “ rH0

AlgpL;Aq “ 0, hence this exact sequence starts in degree

one.

These long exact sequences can be connected, using the maps induced by the

inclusions CnAlgpG,L;Aq ãÑ CnRatpG,L;Aq and CnAlgpG;Aq ãÑ CnRatpG;Aq:

¨ ¨ ¨ ÝÝÝÝÑ Hn
AlgpG;Aq ÝÝÝÝÑ rHn

AlgpL;Aq ÝÝÝÝÑ Hn`1
Alg pG,L;Aq ÝÝÝÝÑ ¨ ¨ ¨

§

§

đ

§

§

đ

§

§

đ

¨ ¨ ¨ ÝÝÝÝÑ Hn
RatpG;Aq ÝÝÝÝÑ rHn

RatpL;Aq ÝÝÝÝÑ Hn`1
Rat pG,L;Aq ÝÝÝÝÑ ¨ ¨ ¨ .

Since we identify C0
AlgpG;Aq with algebraic maps from the trivial algebraic

group to A (and similarly in the other complexes), there is no distinction between
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rational and algebraic maps. Hence,

H0
RatpG;Aq “ H0

AlgpG;Aq “ H0
RatpG,L;Aq “ H0

AlgpG,L;Aq “ AG.

The cocycle condition on f P C1
RatpG;Aq is precisely the condition considered in

Lemma 5.2.1.2 for a rational map f : GÑ A. Since G is connected, Lemma 5.2.1.2

tells us the map extends to an algebraic map. Hence, in this case

H1
RatpG;Aq “ H1

AlgpG;Aq and H1
RatpG,L;Aq “ H1

AlgpG,L;Aq.

This leads to the following proposition. The first part of it follows from the

exact sequence. The second part has a similar proof as Proposition 5.1.2.2.

Proposition 5.2.2.2. (cf. Proposition 5.1.2.2)

(1) If rH1
RatpL;Aq “ 0, then H1

RatpG,L;Aq “ H1
RatpG;Aq.

(2) For n ą 0, if the natural map Zn´1
Rat pG;Aq Ñ rZn´1

Rat pL;Aq is surjective, then

the natural map Hn
RatpG,L;Aq Ñ Hn

RatpG;Aq is injective.

The appropriate long exact sequence yields the following.

Corollary 5.2.2.3. The cohomology group H2
RatpG,L;Aq is trivial if and only if

H1
RatpG;Aq Ñ rH1

RatpL;Aq is surjective and H2
RatpG;Aq Ñ rH2

RatpL;Aq is injective.

When the action is trivial, we can learn more about what these cohomology

groups are.

Lemma 5.2.2.4. If G acts trivially on A and HompL,Aq “ 0, then rZ1
RatpL;Aq “ 0.

Proof. Let µ ` C1
RatpG,L;Aq P rZ1

RatpL;Aq, so dµ P C2
RatpG,L;Aq. In particular,

dµ|L2 “ 0. However, since the action is trivial, dµ|L2 “ 0 if and only if µ|L is

a rational homomorphism L Ñ A if and only if µ|L is a homomorphism L Ñ A

(since L is connected, by assumption). Since HompL,Aq “ 0, we conclude that

µ` C1
RatpG,L;Aq “ 0` C1

RatpG,L;Aq. Hence, rZ1
RatpL;Aq “ 0.

Lemma 5.2.2.5. Let G be a connected algebraic group which acts trivially on a

commutative algebraic group A. Let L ď G be a closed connected subgroup scheme.

Then H1
RatpG;Aq “ HompG,Aq and H1

RatpG,L;Aq “ tµ P HompG,Aq |µ|L ” 0u.

Proof. The coboundary map C0
RatpG;Aq Ñ C1

RatpG;Aq is just the trivial map since

the G-action on A is trivial. Hence, we get that H1
RatpG;Aq “ Z1

RatpG;Aq, the

rational 1-cocycles of G. However, as the action is trivial, rational 1-cocycles of

G on A are the same as homomorphisms of algebraic groups G Ñ A. Hence,

H1
RatpG;Aq “ HompG,Aq.

Essentially the same argument gives

H1
RatpG,L;Aq “ tµ P HompG,Aq |µ|L ” 0u.
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Combining Lemma 5.2.2.5 with Lemma 5.2.2.4 and Proposition 5.2.2.2(2), we

get the following corollary.

Corollary 5.2.2.6. Let G be a connected algebraic group acting algebraically (not

necessarily trivially) by automorphisms on a commutative algebraic group A. Let

L ď G be a connected closed subgroup scheme of G such that the action of L

on A is trivial, and HompL,Aq “ 0. Then H1
RatpG,L;Aq “ H1

AlgpG;Aq and

H2
RatpG,L;Aq Ñ H2

RatpG;Aq is injective.

The following result from [van der Kallen, 1973, Prop. 2.2] is useful in what

follows.

Lemma 5.2.2.7. Let G be a semisimple, simply-connected algebraic group. Suppose

further that, if p “ 2, the Lie algebra g of G does not contain A1, B2 or Cl (l ě 3)

as a direct summand. Then g is perfect, i.e., g “ rg, gs.

Proof. It is enough to prove this result for G simple and simply-connected, with

irreducible root system Φ. It is known131 that g is simple and non-abelian (and so

g “ rg, gs) in the following cases: p - l ` 1 in type Al, p ‰ 2 in types Bl, Cl, Dl, E7

and F4, p ‰ 3 in types E6 and G2, and arbitrary p in type E8.

Furthermore, we obtain from Table 1 in [Hogeweij, 1982] that g “ rg, gs in all

the remaining cases except for p “ 2 in types A1, B2, Cl (l ě 3).

Lemma 5.2.2.8. Let G be a semisimple, simply-connected algebraic group over an

algebraically closed field K of characteristic p which acts trivially on a commutative

algebraic group A. Suppose further that, if p “ 2, the Lie algebra g of G does not

contain A1, B2 or Cl (l ě 3) as a direct summand. Let G1 be the first Frobenius

kernel of G. Then H2
RatpG,G1;Aq “ 0.

Proof. Let us first show that H2
RatpG;Aq “ 0. Let µ : G ˆ G Ñ A be a rational

cocycle defined on the open set U ˆ U with U´1 “ U . We can define a local group

structure on the set AˆG by setting

pa, gqpb, hq “ pa` b` µpg, hq, ghq and pa, gq´1 “ p´a´ µpg, g´1q, g´1q.

In the language of [Weil, 1955], A ˆ U is a group-chunk in the pre-group A ˆ G.

By Weil’s theorem,132 there exists an algebraic group H birationally equivalent to

Aˆ U with Φ : Aˆ U Ñ ΦpAˆ Uq an isomorphism of algebraic group-chunks and

ΦpAˆ Uq a dense open set in H.

Since H is connected it is generated by ΦpA ˆ Uq. Let f : A Ñ H be the

natural algebraic group homomorphism coming from A Ñ A ˆ U . This is clearly

injective and, since A commutes with each element of AˆU , we have fpAq Ď ZpHq.

131See, for example, Corollary 2.7 in [Hogeweij, 1982].
132See [Weil, 1955].
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Furthermore, the natural projection A ˆ U Ñ G extends to a rational (and so

algebraic) homomorphism π : H Ñ G, which is surjective as U generates G (since

G connected). Finally, it is clear that fpAq “ kerπ XΦpAˆUq. Hence, π descends

to a homomorphism π̄ : H{fpAq Ñ G, whose kernel is discrete (since ΦpA ˆ Uq is

dense in H) and, hence, central (as G connected).

In other words, we have a central extension 1 Ñ AÑ H Ñ GÑ 1 of algebraic

groups, which corresponds to an algebraic cocycle rµ : G ˆ G Ñ A. It is straight-

forward to see that rµ|UˆU “ µ|UˆU , and hence rµs lies in the image of the natural

map H2
AlgpG;Aq Ñ H2

RatpG;Aq. Therefore, the map H2
AlgpG;Aq Ñ H2

RatpG;Aq is

surjective.

It suffices to prove that H2
AlgpG;Aq “ 0 when A is Ga or Gm or a finite group:

the long exact sequence in cohomology reduces the case of arbitrary A to one of

these cases. It is known133 that H2
AlgpG;Gaq “ H2pG;Ktrivq “ 0.

Consider a non-trivial cohomology class in H2
AlgpG;Aq when A is Gm or a non-

trivial finite group. It yields a non-split central extension 1 Ñ A Ñ rG Ñ G Ñ 1.

Pick a non-trivial character χ : AÑ Gm. There exists an irreducible representation

of rG with a central character χ. It is an irreducible projective representation134

of G. By the original version of Steinberg’s tensor product theorem135 it is linear.

Hence, χ is trivial. This contradiction proves that H2
AlgpG;Aq “ 0 for these two

particular A. We have finished the proof that H2
RatpG;Aq “ 0 for an arbitrary A.

Since G1 is a height 1 group scheme, rational homomorphisms of schemes

G1 Ñ A are fully controlled by the corresponding restricted homomorphisms of

Lie algebras gÑ LiepAq. By Lemma 5.2.2.7, g “ rg, gs and thus all such homomor-

phism of Lie algebras are trivial. Hence, we can apply Corollary 5.2.2.6 to get that

H2
RatpG,G1;Aq Ñ H2

RatpG;Aq is injective, and so H2
RatpG,G1;Aq “ 0.

5.2.3 G-Stable bricks

In Section 5.1, we have introduced the notions of weak pL,Hq-morphs and pL,Hq-

morphs for abstract groups. In this subsection, we discuss how these notions apply

to algebraic groups and see how they can be used to shed some light on the lifting

of g-modules to G-modules.

Suppose that G,K are algebraic groups over K, where G is connected, and that

L,H are closed subgroup schemes of G,K respectively. We say that a rational map

f : GÑ K is a (weak) pL,Hq-morph of algebraic groups if it satisfies the conditions

for a (weak) pL,Hq-morph of abstract groups given in Subsection 5.1.2, where the

condition (M3) is interpreted for only those x, y, xy P dompfq.

In analogy with the case of abstract groups, a weak pL,Hq-morph of algebraic

groups is a homomorphism G Ñ N{H with a rational lifting N{H Ñ N which

133See Section II.4.11 in [Jantzen, 1987].
134A projective representation of G is a pair pV, θq where V is a K-vector space and θ : G Ñ

PGLpV q is a homomorphism of algebraic groups.
135See [Steinberg, 1963].
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satisfies an additional condition. It is clear that if H is normal in K then condition

(M2) is trivially satisfied. We again have that weak pL, 1q-morphs are just homo-

morphisms GÑ K, and that weak p1,Kq-morphs are rational maps GÑ K which

preserve the identity.

We say that two weak pL,Hq-morphs of algebraic groups, f and g, are equivalent

if fpxqgpxq´1 P H for all x P dompfqXdompgq. Given a homomorphism of algebraic

groups θ : L Ñ K, we denote by rLHsθmopG,Kq the quotient by this equivalence

relation of the set of weak pL,Hq-morphs of algebraic groups from G to K which

restrict to θ on L. The reader may note that the notation here is the same as the

notation for abstract groups, but, since we only deal with algebraic groups for the

remainder of the chapter, no confusion should arise.

Suppose that X is a separated algebraic scheme on which G acts rationally on

the right (i.e. the action X ˆ G Ñ X is a rational map), K acts algebraically on

the left, and the actions commute. Suppose further that θ P XpKq is such that

θG Ď Kθ, and that there exists a rational section K{H Ñ K where H “ StabKpθq

is the scheme-theoretic stabiliser of θ.

As in the case for abstract groups, this gives us a rational map

f : GÑ K characterised by fpxqθ “ θx for all x P U
open
Ď G.

Lemma 5.2.3.1. The map f defined above is a p1, Hq-morph of algebraic groups.

Proof. We can think of f as the composition of the following rational maps

G ãÑ tθu ˆGÑ Kθ Ñ K{H Ñ K.

Note that Proposition 3.2.1 in [Demazure and Gabriel, 1970] precisely says that
Kθ Ñ K{H is an algebraic map. We then have that the composition is rational since

each domain of definition intersects the previous map’s image.

The proof that fpxqfpyq P fpxyqH for x, y P G with fpxq, fpyq and fpxyq defined

is exactly the same as in the abstract case, as is the proof that fpGq Ď NKpHq.

Now we fix algebraic (group, subgroup scheme) pairs pG,Lq and pK,Hq with

H soluble and G connected. Denote by mG,mK the corresponding multiplication

maps, ∆G,∆K the diagonal embeddings, and invG, invK the inverse maps. Let

θ : LÑ K be a homomorphism of algebraic group schemes. Furthermore, choose rH

to be an algebraic subgroup of H, characteristic in N “ NKpHq such that A :“ H{ rH

is commutative. We denote the quotient map H Ñ A by π.

We can define an N -action on H by conjugation. Note that since rH is cha-

racteristic in N , so preserved by conjugation, this passes to an algebraic N -action

on A. Hence, we have an algebraic action of N on A which is trivial on H (since

A is commutative). This gives us an algebraic N{H-action on A. For an element
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f P rLHsθmopG,Kq, we get a rational homomorphism GÑ N{H which is, in fact,

algebraic by Lemma 5.2.1.1. Thus, every element of rLHsθmopG,Kq induces an

algebraic G-action on A. This G-action respects the multiplication operation of A,

i.e. it is an algebraic automorphic G-action.

As in the case for abstract groups, we can form something resembling an exact

sequence. Let ρ be a rational G-action on A, and define

rL rHsθmopG,Nqρ Ď rL rHsθmopG,Nq, rLHsθmopG,Nqρ Ď rLHs
θmopG,Nq

as the subsets of weak morphs which induce the action ρ.

We get the following theorem.

Theorem 5.2.3.2. (cf. Theorem 5.1.2.4) For a rational G-action ρ on A the fol-

lowing statements hold:

(1) There is a restriction map

Res : rL rHsθmopG,Nqρ ÝÑ rLHsθmopG,Nqρ, Respxfyq “ rf s

where xfy and rf s denote the equivalence classes in rL rHsθmopG,Nqρ and

rLHsθmopG,Nqρ.

(2) The abelian group Z1
RatpG,L; pA, ρqq acts freely on the set rL rHsθmopG,Nqρ by

γ ¨ xfy :“ x 9γfy where 9γf “ mK ˝ p 9γ ˆ fq ˝∆G

and 9γ : G
γ
ÝÑ A Ñ H comes from a rational Rosenlicht section A Ñ H (cf.

[Rosenlicht, 1956, Theorem 10]) with 9γp1q “ 1.

(3) The corestricted restriction map Res : rL rHsθmopG,Nqρ ÝÑ ImpResq is a

quotient map by the Z1
RatpG,L; pA, ρqq-action.

(4) If H, rH and A are reduced, two classes xfy, xgy P rL rHsθmopG,Nqρ lie in the

same B1
RatpG,L; pA, ρqq-orbit if and only if there exist h P H, f 1 P xfy, g1 P xgy

such that rfpLq, hs Ď rH and f 1pxq “ hg1pxqh´1 for all x P G.

(5) There is an obstruction map

Obs : rLHsθmopG,Nqρ ÝÑ H2
RatpG,L; pA, ρqq, Obsprf sq “ rf 7s

where the cocycle f 7 is defined by

GˆG
pp1,p2,mKq
ÝÝÝÝÝÝÝÑ GˆGˆG

pf,f,invKfq
ÝÝÝÝÝÝÝÑ K ˆK ˆK

mK
ÝÝÑ H

π
ÝÑ A

Here, p1 and p2 denote projection to the first and second coordinate respecti-

vely.
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(6) The sequence (cf. Sequence (5.1))

rL rHsθmopG,Nqρ ÝÑ rLHsθmopG,Nqρ ÝÑ H2
RatpG,L; pA, ρqq

is exact, i.e., the image of Res is equal to Obs´1pr0sq.

Proof. If xfy “ xgy then the map

α : G
pf,invKgq
ÝÝÝÝÝÝÑ K ˆK

m
ÝÑ K

has image in rH and is trivial on L. It is rational as it is a composition of rational

maps, and the identity is in the domain of definition and image of each map.

We also observe that given an analogous α : G Ñ H (i.e. corresponding to

rf s “ rgs) we get πα : GÑ A. Denoting the Rosenlicht section136 AÑ H by τ , we

see that τπα “ α and thus 9pπαq “ α. Note that we may assume that the Rosenlicht

section is defined at 0A by composing with a translation if necessary. All the maps

here are rational. In particular, πα P C1
RatpG,L; pA, ρqq.

With these observations in mind, the remainder of the proof follows in the same

way as in the proof of Theorem 5.1.2.4 does for abstract groups, doing everything

diagrammatically.

Before going any further, let’s consider the following case where we can use this

exact sequence directly. A restricted g-module pV, θq satisfying the condition that

AutgpV q “ Kˆ is called a brick. A brick is necessarily an indecomposable g-module.

Theorem 5.2.3.3. Suppose G is a semisimple, simply-connected algebraic group

over an algebraically closed field K of characteristic p ą 0, with Lie algebra g.

Suppose further that, if p “ 2, the Lie algebra g does not contain A1, B2 or Cl

(l ě 3) as a direct summand. Let pV, θq be a finite-dimensional G-stable brick.

Then there exists a unique G-module structure Θ on V with Θ|G1 “ θ.

Proof. We use Theorem 5.2.3.2 in the following situation:

– L “ G1, the first Frobenius kernel of G.

– K “ GLpV q.

– H “ AutgpV q “ Kˆ.

– N “ NKpHq.

– X “ HomKpg, glpV qq, a separated affine scheme with θ P XpKq.
136See [Rosenlicht, 1956, Theorem 10].
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Observe that G acts on X on the right via the adjoint map on the domain and

GLpV q acts on X on the left via conjugation on the image. Furthermore, the actions

commute, and the G-stability of V gives us that θG Ď GLpV qθ.

Hence, Lemma 5.2.3.1 gives us a p1, Hq-morph of algebraic groups, which we

denote f : GÑ GLpV q. In particular, it gives a homomorphism of algebraic groups

f : G Ñ PGLpV q, together with a rational lifting η : PGLpV q Ñ GLpV q. This

rational lifting can be defined as follows: fix a basis of V and let U be the open

subset of PGLpV q consisting of all cosets which can be represented by a (unique)

matrix A “ paijq P GLpV q with a11 “ 1. Then define the map η : U Ñ GLpV q by

assigning to each coset this representative.

Currently f and θ give the same maps from G1 to N{H – since

θpxqθpaqpvq “ θpxqθpaqθpx´1qpvq “ θpxax´1qpvq “ θxpaqpvq

for x, a P G1pSq, v P V pSq for any commutative K-algebra S. Note, however, that

the maps G1 Ñ K do not necessarily agree.

To fix this potential disagreement, we define a rational map R : G1 Ñ H “ Kˆ

by Rpgq “ fpgq´1θpgq for g P G1pSq. There exists a rational map rR : GÑ H “ Kˆ

which restricts to R on G1. Indeed, we have R P KrG1s (as G1 is infinitesimal), so

we can lift it to rR P KrGs (since KrLs is a quotient of KrGs). Let U “ Gz rf´1p0q.

This is open in G, and on U we have that the image of rR lies inside Kˆ, so rR is a

rational map G Ñ Kˆ. If now we define rf : G Ñ GLpV q by rfpgq “ fpgq rRpgq, we

get that rf is a pG1, Hq-morph which restricts to θ on G1, fixing the disagreement.

Observe that with rH :“ 1, we get (in the notation of the Theorem 5.2.3.2)

A “ H and G acting on A trivially. Hence, the “exact sequence” from Theorem

5.2.3.2 is

H1
RatpG,G1;Kˆq 99K rG11sθmopG,Nq1 Ñ rG1Hs

θmopG,Nq1 Ñ H2
RatpG,G1;Kˆq

By Lemma 5.2.2.8, H2
RatpG,G1;Kˆq “ 0. Hence r rf s P rG1Hs

θmopG,Nq1 can

be lifted to pf P rG11sθmopG,Nq1. This means that Θ :“ pf : G Ñ GLpV q is a

homomorphism of algebraic groups which restricts to θ on G1. Furthermore, this

representation is unique (up to equivalence) if H1
RatpG,G1;Kˆq “ 0.

By Lemma 5.2.2.5, H1
RatpG,G1;Kˆq “ tµ P HompG;Kˆq |µ|G1 ” 1u. Since G

is perfect, H1
RatpG,G1;Kˆq “ 0 and the extension is unique.

We recall from Remark 8 that irreducible G1-modules can be extended to G-

modules when G is a semisimple, simply-connected algebraic group. Since irreduci-

ble U0pgq-modules are clearly bricks and Proposition II.3.11 in [Jantzen, 1987] shows

that they are G-stable, this theorem provides another approach to that result. This

approach is similar to the one used in Theorem 1 of [Cline, Parshall and Scott, 1980]

to show the same thing, which also involves lifting a projective representation

G Ñ PGLpV q to a representation G Ñ GLpV q. In that result, the projective
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representation is obtained from the structure theory of semisimple algebras and

the lifting comes from the simply-connectedness of G. As in the proof of Theo-

rem 5.2.3.3, much of the proof in [Cline, Parshall and Scott, 1980] involves showing

that the lifted representation indeed extends the g-module structure. This proves

to be one of the main complications in adapting our method from abstract groups

to algebraic groups, as we shall further see in Subsection 5.2.4.

5.2.4 G-Stable modules with soluble automorphisms

We return to the general situation, where pG,Lq, pK,Hq are algebraic (group, sub-

group scheme) pairs with H soluble, G connected, and H reduced. However, from

now on we suppose that L is a normal subgroup scheme of G. We also fix a homo-

morphism of algebraic groups θ : L Ñ K, where the image commutes with H, so

we are now dealing with pL,Hq-morphs. Everything in the previous section can be

reformulated in terms of pL,Hq-morphs without difficulty - the key difference is that

the G-action on A is now trivial on L. Since H is soluble, we can find a subnormal

series H “ H0 �H1 � . . . �Hk “ t1u with commutative quotients Aj “ Hj´1{Hj

and each Hj characteristic in N “ NKpHq and reduced.

Suppose that f is an pL,Hq-morph of algebraic groups such that f |L “ θ. As

in the case of abstract groups, we get the following theorem – it generalises the

procedure which we have used for bricks in the previous subsection.

Theorem 5.2.4.1. (cf. Theorem 5.1.3.1) Given an pL,Hq-morph of algebraic

groups f “ f0 with f |L “ θ, we obtain any pL, 1q-morph extending θ by applying the

following procedure. Step m is the following:

(1) The pL,Hm´1q-morph fm´1 : G Ñ N such that fm´1|L “ θ determines a

rational G-action ρm on Am.

(2) If Obsprfm´1sq ‰ 0 P H2
RatpG,L; pAm, ρmqq, then this branch of the process

terminates.

(3) If Obsprfm´1sq “ 0 P H2
RatpG,L; pAm, ρmqq, then we choose an pL,Hmq-morph

fm : GÑ N such that Resprfmsq “ rfm´1s.

(4) For each element of H1
RatpG,L; pAm, ρmqq we choose a different fm branching

the process. (The choices different by an element of B1
RatpG,L; pAm, ρmqq are

conjugate by an element of H.)

(5) We change m to m` 1 and go to step (1).

An pL, 1q-morph which restricts to θ on L is equivalent to fk for one of the

non-terminated branches. Two pL, 1q-morphs f, g come from different branches if

and only if there is no h P H such that fpxq “ hgpxqh´1 for all x P G.

We get the following corollaries, similarly to Subsection 5.1.3:
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Corollary 5.2.4.2. Suppose H2
RatpG,L; pAm, ρmqq “ 0 for all m for one of the

branches. Then this branch does not terminate and there exists a homomorphism

f : GÑ K which restricts to θ on L.

Corollary 5.2.4.3. Suppose H1
RatpG,L; pAm, ρmqq “ 0 for all m for one of the

non-terminating branches. Then this branch is the only branch. Moreover, if a

homomorphism of algebraic groups f : G Ñ K restricting to θ exists, then it is

unique up to conjugation by an element of H.

Corollary 5.2.4.4. Suppose H1
RatpG,L; pAk, ρkqq ‰ 0 for one of the non-terminating

branches. Then there exist algebraic homomorphisms G Ñ K which are not conju-

gate by an element of H.

We apply this theorem (and these corollaries) in the following case - a genera-

lisation of the case from the previous subsection:

– G is a connected algebraic group over K with Lie algebra g.

– L “ G1.

– K “ GLpV q, where pV, θq is a finite-dimensional G-stable indecomposable

g-module.

– H “ AutgpV q,.

– X “ HomKpg, glpV qq, a separated affine scheme with θ P XpKq.

Applying exactly the same argument as in Theorem 5.2.3.3, we only start to

encounter problems when trying to extend the rational map R : G1 Ñ H to a

rational map on the whole of G. This can be fixed without much difficulty.

As a variety, we have that H “ Kˆ ˆKn Ď Kn`1 for some n.137 Hence, we get

R “ pR0, R1, . . . , Rnq where Ri P KrG1s for i “ 0, 1, . . . , n. We can then lift each

of these to elements of KrGs, so we obtain rR “ pĂR0,ĂR1 . . . , ĂRnq : G Ñ Kn`1. We

would like the image to lie in H. Thus, we define U “ GzR´1
0 p0q. This is an open

set in G, so we can view rR as a rational map from G to Kˆ ˆ Kn “ H which is

defined on U , and restricts to R on G1.

Now we can define rf : GÑ GLpV q as rfpgq “ fpgq rRpgq. This is a pG1, Hq-morph

of algebraic groups, which restricts to θ on G1. Hence, we are in the situation of

Theorem 5.2.4.1. Observe that θ : G1 Ñ GLpV q extends to a homomorphism of

algebraic groups Θ : G Ñ GLpV q if and only if there exists a pG1, 1q-morph of

algebraic groups extending θ. In particular, the corollaries to Theorem 5.2.4.1 can

be used to determine the existence and uniqueness of a G-module structure on V .

137See Proposition 5.2.1.3.
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Corollary 5.2.4.5. (Existence Test) Suppose that G is a connected algebraic group

over K with Lie algebra g, and suppose further that V is an indecomposable G-

stable finite-dimensional g-module. Then there exists a G-action on V , which re-

spects the g-module structure, if and only if there is a branch (in the terminology

of Theorem 5.2.4.1) which does not terminate; for instance, a branch such that

H2
RatpG,G1; pAm, ρmqq “ 0 for all pAm, ρmq on that branch.

Corollary 5.2.4.6. (Uniqueness Test) Suppose that G is a connected algebraic

group over K with Lie algebra g, and that V is an indecomposable G-stable finite-

dimensional g-module. Suppose further that there exists a G-action on V which

extends the g-module structure. This G-action is unique (up to isomorphism) if

and only if there is a branch (in the terminology of Theorem 5.2.4.1) such that

H1
RatpG,G1; pAm, ρmqq “ 0 for all pAm, ρmq on that branch.

Observe that combining Corollary 5.2.4.6 with Corollary 5.2.2.6 for the N -stable

subnormal series Hm “ 1` Jm, m ě 1, we get a similar result to Proposition 4.3.1

in [Xanthopoulos, 1992].

5.2.5 Comparison with C‚RatpG{L;Aq

Let us now mimic the approach we took in Subsection 5.1.5 and examine how our

cochain complex pC‚RatpG,L;Aq, dq compares with the complex pC‚RatpG{L;Aq, dq

on the level of cohomology. We use the notation of Subsection 5.2.3. As with our

discussion in Subsection 5.1.5 we have to assume that L acts trivially on A for this

discussion to be meaningful – a condition which holds in the examples considered.

Similar to the case for abstract groups, we have the following proposition.

Proposition 5.2.5.1. Under the aforementioned conditions we have isomorphisms

of groups H0
AlgpG,L;Aq – H0

AlgpG{L;Aq and H1
AlgpG,L;Aq – H1

AlgpG{L;Aq.

Proof. Making use of the universal property of the quotient for algebraic groups,

the proof follows word-for-word as in Proposition 5.1.5.1.

Recalling the observation that there is no distinction between H i
Alg and H i

Rat

for i “ 0, 1 this tells us that H0
RatpG,L;Aq – H0

AlgpG{L;Aq and H1
RatpG,L;Aq –

H1
AlgpG{L;Aq in these circumstances.

The universal property of the quotient for algebraic groups further yields an

analogue of Proposition 5.1.5.2.

Proposition 5.2.5.2. The map InfAlg : H2
AlgpG{L;Aq Ñ H2

AlgpG,L;Aq and the

map InfRat : H2
RatpG{L;Aq Ñ H2

RatpG,L;Aq are injective.

Proof. The proof follows as in Proposition 5.1.5.2.

In the case of abstract groups, Subsection 5.1.5 shows that by making careful

choices of pL,Hq-morphs in Theorem 5.1.3.1 we can guarantee that the image of
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the obstruction maps Obs : rLHsθmopG,Nqρi ÝÑ H2pG,L; pAi, ρiqq always lies

inside H2pG{L; pAi, ρiqq ãÑ H2pG,L; pAi, ρiqq. As such, it is possible to reinterpret

Theorem 5.1.3.1 using the complex pC‚pG{L;Aq, dq instead of pC‚pG,L;Aq, dq at

all points. This conclusion for abstract groups, however, relies on the observation

that it is always possible to assume that the pL,Hq-morphs being considered are

normalised. When translating the results to the case of algebraic groups it is far

from clear that the analogues of Lemma 5.1.5.3 and Corollary 5.1.5.4 hold.

Question: Can the pL,Hq-morphs considered in Subsections 5.2.3 and 5.2.4 be

chosen to be normalised?
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Chapter 6

Integration of Modules -

Exponentials

The approach to the Humphreys-Verma conjecture in Chapter 5 resolves the con-

jecture if the vanishing of certain cocycles in certain cohomology groups is known.

Unfortunately, this requirement creates practical limits on providing a definitive

answer to the question, since in many cases these cocycles and cohomology groups

are not well understood. As a result, there remains interest in other approaches to

the Humphreys-Verma conjecture, and this chapter provides another such example.

6.1 Over-restriction

6.1.1 Over-restricted representations

Let g be a restricted Lie algebra over an algebraically closed field K of characteristic

p ą 0,138 with p-th power map rps : gÑ g. As usual, denote by U0pgq its restricted

enveloping algebra, and let pV, θq be a restricted representation.139 Let Nppgq be

the p-nilpotent cone of g, i.e., the set of all x P g such that xrps “ 0. Notice that

for x P Nppgq we have θpxqp “ θpxrpsq “ 0. This allows us to define exponentials for

each x P Nppgq:

eθpxq “

p´1
ÿ

k“0

1

k!
θpxqk P glpV q .

The element eθpxq is invertible because peθpxqq´1 “ eθp´xq. We define a pseudo-

Chevalley group GV as the subgroup of GLpV q generated by all exponentials

eθpxq for all x P Nppgq.

Proposition 6.1.1.1. The following statements hold for any finite-dimensional re-

stricted representation pV, θq of g:

(1) GV is a (Zariski) closed subgroup of GLpV q.

138In fact, up until Theorem 6.1.1.5, the results hold for an arbitrary field of positive characteristic.
139Recall that this means θpxrpsq “ θpxqp for all x P g.
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(2) One can choose finitely many x1, x2 . . . xn P Nppgq such that the following map

f is surjective:

f : Kn Ñ GV , fpa1, a2, . . . , anq “ eθpa1x1q ¨ ¨ ¨ eθpanxnq .

Proof. Proposition I.2.2 in [Borel, 1991] states the following. Consider a family of

morphisms tfi : Vi Ñ GuiPI , where the Vi are irreducible varieties and G is an

algebraic group, which satisfies the property that each fipViq contains the identity

of G. Then the group closure ApMq of M :“
Ť

iPI fipViq is a connected subgroup

of G and there exists a finite sequence i1, . . . , in of elements in I such that A “

fi1pVi1q
e1 . . . finpVinq

en , where the ej lie in t´1, 1u.

Choosing I “ Nppgq, Vx “ K, and fxpaq “ eθpaxq, the results follow. Specifically,

we obtain that Ap
Ť

xPNppgq
fxpVxqq “ ApGV q “ GV is a closed connected subgroup

of GLpV q and that there exist x1, . . . , xn P Nppgq such that GV “ eθpKx1q . . . eθpKxnq.

This shows that GV Ď GV and thus that GV is closed.

Two particular pseudo-Chevalley groups are worth separate discussion. Let

pU0pgq, θq be the left regular representation of g on its restricted enveloping al-

gebra.140 The exponential eθpxq is uniquely determined by its application to the

identity

eθpxqp1q “

p´1
ÿ

k“0

1

k!
xk P U0pgq .

This element should be called ex P U0pgq. We can identify eθpxq with ex because

GU0pgq is a subgroup of GL1pU0pgqq that, in turn, acts on U0pgq by left multiplication:

GU0pgq ď GL1pU0pgqq ď GLpU0pgqq.

The element ex is not group-like in U0pgq, yet it is close to it in the sense that

∆pexq “ ex b ex `Opxtpp`1q{2uq

where Opxmq denotes a sum of terms xk with k ě m. To make this precise, we say

that a U0pgq-module V is over-restricted if θpxqtpp`1q{2u “ 0 for all x P Nppgq. See

Subsection 6.2.2, infra, for some examples. Notice that if p “ 2, then tpp`1q{2u “ 1

and this requirement is severe: θpxq “ 0.

The second vital example of a pseudo-Chevalley group is Gg, procured from

the adjoint representation pg, adq.141 This group is intricately connected with the

pseudo-Chevalley groups of over-restricted representations, as the following propo-

sitions show.

140In other words, we take V “ U0pgq and for each w P U0pgq we define θpwq to be left multipli-
cation by w.

141This is a restricted representation of g.
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Proposition 6.1.1.2. Let pg, adq be the adjoint representation of g. If pV, θq is an

over-restricted representation of U0pgq, then

θpeadpxqpyqq “ eθpxqθpyqe´θpxq

for all x P Nppgq, y P g.

Proof. First, observe by induction that, for each k “ 1, 2, . . . p´ 1,

θ

ˆ

1

k!
adpxqkpyq

˙

“

k
ÿ

j“0

p´1qj

pk ´ jq!j!
θpxqk´jθpyqθpxqj .

For k “ 1 this is just the definition of a representation:

θpadpxqpyqq “ θprx, ysq “ θpxqθpyq ´ θpyqθpxq.

Going from k to k ` 1,

θ

ˆ

1

pk ` 1q!
adpxqk`1pyq

˙

“
1

k ` 1

ˆ

θpxqθ

ˆ

1

k!
adpxqkpyq

˙

´ θ

ˆ

1

k!
adpxqkpyq

˙

θpxq

˙

“

k
ÿ

j“0

p´1qj

k ` 1

ˆ

1

pk ´ jq!j!
θpxqk´j`1θpyqθpxqj

´
1

pk ´ jq!j!
θpxqk´jθpyqθpxqj`1

˙

“
1

pk ` 1q!
θpxqk`1θpyq

`

k
ÿ

i“1

ˆ

p´1qi

pk ` 1qpk ´ iq!pi´ 1q!

ˆ

1

i
`

1

k ` 1´ i

˙

¨ θpxqk`1´iθpyqθpxqi
˙

`
p´1qk`1

pk ` 1q!
θpyqθpxqk`1

“

k`1
ÿ

i“0

p´1qi

pk ` 1´ iq!i!
θpxqk`1´iθpyqθpxqi .

Finally,

θpeadpxqpyqq “

p´1
ÿ

k“0

θp
1

k!
adpxqkpyqq

“

p´1
ÿ

i`j“0

p´1qj

i!j!
θpxqiθpyqθpxqj

“

p´1
ÿ

i,j“0

p´1qj

i!j!
θpxqiθpyqθpxqj
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“

´

p´1
ÿ

i“0

1

i!
θpxqi

¯

θpyq

p´1
ÿ

j“0

p´1qj

j!
θpxqj

“ eθpxqθpyqe´θpxq,

where the third equality holds because pV, θq is over-restricted: all missing terms

are actually zero.

Proposition 6.1.1.3. If pV, θq is a faithful142 over-restricted representation of g,

then the assignment

φ : eθpNppgqq Ñ Gg, φpeθpxqq “ eadpxq, x P Nppgq

extends to a surjective homomorphism of abstract groups φ : GV Ñ Gg whose kernel

is central and consists of g-automorphisms of V .

Proof. Proposition 6.1.1.1 yields the elements x1, . . . , xn P Nppgq for GV and the

elements xn`1, . . . , xm P Nppgq for Gg. Combining these elements together, we get

surjective algebraic maps with common domain:

f : Km Ñ GV , pf : Km Ñ Gg

f
´

pakq
m
k“1

¯

“

n
ź

k“1

eθpakxkq, pf
´

pakq
m
k“1

¯

“

m
ź

k“n`1

eadpakxkq .

Let H “ pK,`q˚m be the free product of m additive groups. The maps f and pf

extend to surjective group homomorphisms

f 7 : H Ñ GV , pf 7 : H Ñ Gg

so that both GV and Gg are quotients of H as abstract groups. Consider an element

of the kernel a1 ˚ ¨ ¨ ¨ ˚ ak P kerpf 7q where ai belongs to the tpiq-th component of the

free product. Clearly,

IdV “ f 7pa1 ˚ ¨ ¨ ¨ ˚ akq “ eθpa1xtp1qqeθpa2xtp2qq . . . eθpakxtpkqq .

Proposition 6.1.1.2 tells us that

θpeadpa1xtp1qqeadpa2xtp2qq . . . eadpakxtpkqqpyqq “ θpyq for all y P g.

Since θ is injective it follows that eadpa1xtp1qq . . . eadpakxtpkqq “ Idg, so a1 ˚ ¨ ¨ ¨ ˚ ak P

kerp pf 7q. It follows that the homomorphism φ is well-defined.

Consider A :“ eθpa1xtp1qq . . . eθpakxtpkqq P kerpφq. By Proposition 6.1.1.2,

θpyq “ θpφpAqpyqq “ AθpyqA´1

142A module pV, θq is called faithful if θ is injective.

117



for all y P g. Hence, A commutes with all θpyq, so A P AutgpV q. Consequently, A

commutes with all eθpxq, which are generators of GV . Hence, A is central in GV .

It is natural to inquire whether the homomorphism φ is a homomorphism of

algebraic groups. To prove this, we need a technical result.

Theorem 6.1.1.4. Suppose that each degree DegxtpFjpx1, . . . xnqq of every compo-

nent of a polynomial map F “ pFjpx1, . . . xnqq
m
j“1 : Kn Ñ Km is less than p. Let Y

be the Zariski closure of the image of the polynomial map F . Then the corestricted

morphism pF :“ F |Y : Kn Ñ Y is generically smooth.143

The proof is omitted from this thesis, but can be found in the Appendix of

[Rumynin and Westaway, 2018]. We can now turn to the main result of this chapter:

Theorem 6.1.1.5. The following statements hold for a faithful over-restricted finite-

dimensional representation pV, θq of a restricted Lie algebra g:

(1) The map φ : GV Ñ Gg constructed in Proposition 6.1.1.3 is a homomorphism

of algebraic groups.

(2) The Lie algebra LiepGV q is isomorphic to g0, the Lie subalgebra of g generated

by all x P Nppgq. Therefore, g0 is a restricted Lie subalgebra of g.144

(3) The derivative dη of the natural representation η : GV ãÑ GLpV q is equal to

θ|g0.

(4) The derivative dφ is surjective. Its kernel is g0XZpgq where Zpgq is the centre

of g.145

(5) The scheme-theoretic kernel kerφ is a subgroup scheme of AutgpV q, central in

GV .

(6) If Zpgq “ 0, then kerφ is discrete.

Proof. (1) On top of the surjective maps f : Km Ñ GV and pf : Km Ñ Gg, utilised in

Proposition 6.1.1.3, using Proposition I.2.2 in [Borel, 1991] once again we can find

xm`1, xm`2 . . . , xk P Nppgq such that the image G of the map

rf : Kk Ñ GV ˆGg,

fpa1, a2, . . . , akq “ pe
θpa1x1q ¨ ¨ ¨ eθpakxkq, eadpa1x1q ¨ ¨ ¨ eadpakxkqq

143Recall that a morphism Ψ : X Ñ Y of irreducible algebraic varieties over an algebraically closed
field is smooth if dxΨ : TxX Ñ TΨpxqY is surjective for all x P X. The morphism Ψ : X Ñ Y is
called generically smooth if there exists a dense open subset U Ď X such that dxΨ is surjective
for all x P U .

144A Lie subalgebra g0 of a restricted Lie algebra g is a restricted Lie subalgebra of g if xrps P g0

for all x P g0.
145Recall that the centre of g is Zpgq “ tx P g | rx, ys “ 0 for all y P gu.

118



is a closed algebraic subgroup of GV ˆ Gg. Extending f and pf in the obvious way

to the maps f 1 and pf 1 defined on Kk, we see that rf “ pf 1, pf 1q. Hence, G is the graph

of the group homomorphism φ : GV Ñ Gg.

Moreover, the first projection π1 : G Ñ GV is bijective. Since f 1 is given by

polynomials of degree less than p by construction, Theorem 6.1.1.4 ensures that f 1

is generically smooth. Since dπ1 ˝ d rf “ df 1, the differential dπ1 is surjective at some

point. Since π1 is a morphism of algebraic groups, the differential dπ1 is surjective

at all points. Hence, π1 is an isomorphism of algebraic groups.146 Consequently, φ

is a morphism of algebraic varieties (or groups) since φ “ π2π
´1
1 .

(2) Let g1 be the linear span of all x P Nppgq. Let pz1, . . . , zkq be the standard

coordinates on Kk. For all i “ 1, . . . , k the calculation

d0f
1p
B

Bzi
q “

d

dt
eθptxiq|t“0 “ θpxiq

implies that LiepGV q Ě Impd0f
1q “ θpg1q. It follows that LiepGV q Ě θpg0q.

By Theorem 6.1.1.4, the differential daf
1 is surjective at some point a P Kk. If

La : GV Ñ GV is the left multiplication by f 1paq´1, then the Lie algebra LiepGV q

is spanned by elements

df 1paqLa

ˆ

daf
1p
B

Bzi
q

˙

“ df 1paqLa

ˆ

d

dt
eθpa1x1q . . . eθpai´1xi´1qeθppai`tqxiqeθpai`1xi`1q . . . |t“0

˙

“ df 1paqLa

´

eθpa1x1q . . . eθpai´1xi´1qeθpaixiqθpxiqe
θpai`1xi`1q . . .

¯

“ e´θpanxnq . . . e´θpai`1xi`1qθpxiqe
θpai`1xi`1q . . . eθpanxnq

“ θ
´

e´adpanxnq . . . e´adpai`1xi`1qpxiq
¯

.

The last equality holds because of Proposition 6.1.1.2. Since all xj belong to g0, the

element e´adpanxnq . . . e´adpai`1xi`1qpxiq also belongs there. Hence, this calculation

shows LiepGV q Ď θpg0q. Since θ is faithful, the result follows.

(3) This follows easily from (2).

(4) The same argument as in (1) shows that d1π2 is surjective. Hence, d1φ “

d1π2 ˝ d1π
´1
1 is surjective as well.

The second statement follows from the observation that d1φ “ ad|g0 . This can

be checked on elements x P Nppgq since they generate g0 as a Lie algebra:

d1φpxq “
d

dt
eadptxq|t“0 “ adpxq .

(5) This follows from Proposition 6.1.1.3.

(6) This follows from (4) that the differential dφ : LiepGV q Ñ LiepGgq is an

isomorphism of Lie algebras. Observe that GV is connected because it is generated

as a group by a connected set eθpNppgqq containing the identity element. Hence, the

kernel of φ is discrete.

146See Theorem AG.17.3 in [Borel, 1991] and Theorem 4.6 of Chapter 1 in [Humphreys, 1975].
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Let us state an immediate, rather curious corollary of the proof of part (2):

Corollary 6.1.1.6. Let g be a finite-dimensional restricted Lie algebra over an

algebraically closed field that admits a faithful over-restricted representation. Let

g1 be the span of Nppgq. The following statements, in the notation of the proof of

Theorem 6.1.1.5(2), are equivalent:

(1) g1 is a restricted Lie subalgebra,

(2) for some choice of θ and f 1, the differential d0f
1 is surjective,

(3) for all choices of θ and f 1, the differential d0f
1 is surjective.

Let us contemplate applications of Theorem 6.1.1.5 to integration of represen-

tations. Suppose g “ LiepGq where G is a connected algebraic group G (over an

algebraically closed field K). The adjoint group Gad is defined as the image of the

adjoint representation Ad : GÑ GLpgq. Notice that Gad is closed because the image

of a morphism of algebraic groups is closed.147 We can compare Gad and Gg as sets

because both are algebraic subgroups of GLpgq.

Corollary 6.1.1.7. Suppose that Gad “ Gg. The following statements hold for a

faithful over-restricted finite-dimensional representation pV, θq of g “ LiepGq:

(1) The representation pV, θq yields a rational representation pV,Θq of a central

extension (that happens to be GV ) of Gad such that dΘpxq “ θpxq for all x P g0.

(2) If pV, θq is a brick,148 then pV, θq yields a rational projective representation of

Gad such that dΘpxq “ θpxq for all x P g0.

Our terminology of pseudo-Chevalley groups is justified by the following exam-

ple: consider the adjoint representation g of a semisimple algebraic group G. Then,

barring accidents in small characteristic,149 Gg is indeed the adjoint Chevalley group

Gad. Notice that the Chevalley group Gad is generated by the exponentials of root

vectors eα. In characteristic zero adZpeαq
4 “ 0, while in positive characteristic

adpeαq
p “ 0 so the exponentials could be different. For instance, if G is of type G2

in characteristic 3, then the Chevalley exponential eeαZ of the short root vector eα

contains the divided-power term adZpe
p3q
α q but our exponential stops at adpeαq

2{2.

Similar difficulty appears for all groups in characteristic 2. It is interesting to inves-

tigate these questions further: what is the precise relation between Gg and Gad for

simple algebraic groups in characteristic 2 (and the type G2 group in characteristic

3).

We finish the subsection with an application to semisimple groups. Notice that

it is true in characteristic 2 because in this case over-restricted representations are

direct sums of the trivial representation.

147See [Borel, 1991, I.1.4].
148This means that EndgV “ K.
149For instance, taking p ě 5.
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Corollary 6.1.1.8. Suppose that G is a connected simply-connected semisimple al-

gebraic group such that Zpgq “ 0. Assume further that if p “ 3, then G has no

components of type G2. Then a faithful over-restricted finite-dimensional represen-

tation pV, θq of g integrates to a rational representation of G.

6.1.2 Higher Frobenius kernels

In this subsection we take G to be a semisimple simply-connected algebraic group

over an algebraically closed field K of characteristic p ą 0.150 We maintain the

standard notations for reductive groups used throughout this thesis. In particular,

g is generated by the elements eα, where α P Φ. It is useful to keep in mind that

adpeαq
p “ 0 for all α P Φ.

Letting Gr be the r-th Frobenius kernel of G, recall that DistpGrq has a divided

powers basis

$

&

%

ź

αPΦ`

epmαqα

ź

βPΠ

ˆ

hβ
nβ

˙

ź

αPΦ`

e
pm´αq
´α

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 ď mα, nβ,m´α ă pr

,

.

-

.

Recall further that if k ă p then

epkq “
1

k!
ek P DistpG1q Q

ˆ

h

k

˙

“
1

k!
hph´ 1q . . . ph´ k ` 1q

so that DistpG1q is a subalgebra of DistpGrq, naturally isomorphic to U0pgq.
151

Let us now consider a representation pV, θq of Gr. As in Subsection 2.3.3, it is

naturally a representation of DistpGrq which we also denote by pV, θq. We define

exponentials in an analogous way to the previous subsection:

Yαptq “ Y V
α ptq :“ eθpteαq “

pn´1
ÿ

k“0

θptkepkqα q P EndpV q

Zαptq “ eteα “

pn´1
ÿ

k“0

tkepkqα P DistpGrq

where t P K and α P Φ. Both Yαptq and Zαptq are invertible. In fact, these are

one-parameter subgroups: YαptqYαpsq “ Yαpt` sq and ZαptqZαpsq “ Zαpt` sq. Let

us generate subgroups by them:

Gr,V :“ xYαptq | α P Φ, t P Ky ď GLpV q,

rG :“ xZαptq | α P Φ, t P Ky ď GL1pDistpGrqq.

Conjugation by G equips DistpGrq with a G-module structure, which we can then re-

150We can replace the assumption that K is algebraically closed with the assumption that G is
split up until the Higher Frobenius Conjecture.

151See Subsections 2.1.3, 2.3.2 and 2.4.2 for more details.
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strict to Gr-module and DistpGrq-module structures. The corresponding representa-

tion of DistpGrq is precisely the adjoint representation discussed in Subsection 2.2.2,

so we denote it by ad. Note that the “usual” adjoint representation on g is a subre-

presentation under g ãÑ U0pgq ãÑ DistpGrq (cf. [Jantzen, 1987, I.7.18, I.7.11(4)]).

We also use ad to denote the representation of DistpGq on DistpGrq; this restricts

to the above ad on DistpGrq.

We say that pV, θq is r-over-restricted if θpe
pkq
α q “ 0 for all k ě tppr ` 1q{2u,

and all α P Φ. Notice that if pr “ 2 then this condition forces pV, θq to be a direct

sum of the copies of the trivial module.

Proposition 6.1.2.1. (cf. Proposition 6.1.1.2) If pV, θq is an r-over-restricted re-

presentation of DistpGrq, then

θ
´

adpZαptqqpdq
¯

“ YαptqθpdqYαp´tq

for all t P K, α P Φ and d P DistpGrq.

Proof. We write ad using Sweedler’s Σ-notation:152

adpxqpdq “
ÿ

pxq

xp1qdSpxp2qq for all x, d P DistpGrq.

Since ∆pe
pkq
α q “

ř

i`j“k e
piq
α b e

pjq
α and Spe

pkq
α q “ p´1qke

pkq
α , we get

θpadptkepkqα qpdqq “ θ

¨

˝

ÿ

i`j“k

p´1qjtkepiqα de
pjq
α

˛

‚“
ÿ

i`j“k

θptiepiqα qθpdqθpp´tq
jepjqα q.

Hence,

θ
´

adpZαptqqpdq
¯

“

pr´1
ÿ

k“0

ÿ

i`j“k

θptiepiqα qθpdqθpp´tq
jepjqα q.

On the other hand, we have

YαptqθpdqYαp´tq “

pr´1
ÿ

i,j“0

θptiepiqα qθpdqθpp´tq
jepjqα q.

The result follows from the fact that V is r-over-restricted.

It is useful to remind the reader that g can be recovered inside DistpGrq as the

set of primitive elements:

g “ P pDistpGrqq “ td P DistpGrq | ∆pdq “ db 1` 1b du.

This explains why g is a submodule of DistpGrq under the adjoint action: we leave

it to the reader to check that adpxqpdq P P pDistpGrqq for all x P DistpGrq and

152See I.7.18 in [Jantzen, 1987]
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d P P pDistpGrqq.

Proposition 6.1.2.2. Let pV, θq be an r-over-restricted representation of DistpGrq,

faithful on g. Then the assignment

φpY V
α ptqq “ Y g

α ptq p “ eadpteαqq

extends to a surjective homomorphism of groups φ : Gr,V Ñ Gr,g, whose kernel

consists of g-automorphisms of V .

Proof. The fact that φ is a well-defined homomorphism is proved in a similar way

as in Proposition 6.1.1.3. Let H “ ˚αUα be the free product of (additive) root

subgroups. Both Gr,V and Gr,g are naturally quotients of H. If Wβ1pt1q ˚ ¨ ¨ ¨ ˚

Wβmptmq P kerpH Ñ Gr,V q then

Y V
β1
pt1q . . . Y

V
βmptmq “ IV .

Proposition 6.1.2.1 tells us that for all d P g

θpadpZβ1pt1qqadpZβ2pt2qq . . . adpZβmptmqqpdqq “ θpY g
β1
pt1q . . . Y

g
βm
ptmqpdqq “ θpdq.

Since θ is faithful on g, Y g
β1
pt1qY

g
β2
pt2q . . . Y

g
βm
ptmq “ Ig, henceWβ1pt1q˚¨ ¨ ¨˚Wβmptmq P

kerpH Ñ Gn,gq. Thus, the homomorphism φ is well-defined.

Suppose A “ Y V
β1
pt1q . . . Y

V
βm
ptmq P kerpφq. By above, θpdq “ θpφpAqpdqq “

AθpdqA´1 for all d P g. Hence, A P AutgpV q.

If the adjoint representation is r-over-restricted, we can identify the adjoint

group Gad with Gr,g. Proposition 6.1.2.2 yields an exact sequence of abstract groups

1 Ñ Zprq,V Ñ Gr,V
φ
ÝÑ Gad Ñ 1

where Zr,V is the kernel of φ. To tie up loose ends we need to address the algebraic

group properties of this sequence:

Higher Frobenius Conjecture. Suppose that G is a semisimple connected al-

gebraic group over an algebraically closed field K of characteristic p ą 0. The

following statements should hold for an r-over-restricted finite-dimensional repre-

sentation pV, θq of Gr, faithful on g:

(1) The map φ : Gr,V Ñ Gr,g constructed in Proposition 6.1.2.2 is a homomor-

phism of algebraic groups.

(2) If pg, adq is r-over-restricted then φ : Gr,V Ñ Gr,g is a central extension of

algebraic groups.

(3) If pg, adq is r-over-restricted then pV, θq extends to a rational representation of

the simply-connected group Gsc.
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6.2 Applications

6.2.1 Applications of Higher Frobenius Conjecture

Once again, G is a semisimple simply-connected algebraic group over an algebrai-

cally closed field K of characteristic p ą 0. Let pP, θq be a projective indecompo-

sable U0pgq-module. The Humphreys-Verma Conjecture states that pP, θq extends

to a G-module. A similar statement for higher Frobenius kernels follows from the

Humphreys-Verma Conjecture.153 Let us examine what our new Higher Frobenius

Conjecture can contribute towards this long-standing conjecture.

Let T be the maximal torus of G. TGr-modules are the same as XpT q-graded

Gr-modules. We can control the condition of being r-over-restricted for them by

monitoring their weights

XpV q :“ tλ P XpT q | Vλ ‰ 0u.

We define the height of V by the following formula:

ξpV q :“ inftn P N | @α P Φ XpV q X pXpV q ` nαq “ Hu.

Clearly θpe
pξpV qq
α q “ 0 is guaranteed for a TGr-module pV, θq. Hence, the next

proposition immediately follows from the Higher Frobenius Conjecture:

Proposition 6.2.1.1. Suppose that the Higher Frobenius Conjecture holds for a

connected simply-connected semisimple algebraic group G such that Zpgq “ 0. As-

sume further that if pr “ 3, then G has no components of type G2. Let pV, θq be

a TGr-module, faithful as a g-module, such that pr ě 2ξpV q ´ 1 if p is odd, or

pr ě 2ξpV q if p “ 2. Then pV, θq can be extended to a G-module.

It follows that if a TG1-module can be extended to a TGr-module for sufficiently

large r, then it can be extended to a G-module. Due to particular significance of

projective U0pgq-modules we state this observation for them as a proposition. Recall

that ρ “ 1
2

ř

αPΦ` α is the half-sum of positive roots. Let a “ max1ďiďnpaiq where

2ρ “
ř

αiPΠ
aiαi for ai P Z.

Proposition 6.2.1.2. Suppose that the Higher Frobenius Conjecture holds for a

connected simply-connected semisimple algebraic group G such that Zpgq “ 0. Let

P be a projective indecomposable U0pgq-module. Suppose P extends to a rational

Gr-module where

r ě logpp4app´ 1q ` 1q.

if p is odd, or

r ě log2pa` 1q ` 2

if p “ 2. Then P extends to a G-module.

153See Remark II.11.18 in [Jantzen, 1987].
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Table 6.1: Coxeter numbers and coefficients a (Classical type)

A2l`1 A2l Bn Cn Dn

2h´ 2 4l ` 2 4l 4n´ 2 4n´ 2 4n´ 6

a pl ` 1q2 lpl ` 1q n2 pn´ 1qpn` 2q pn` 1qpn´ 2q

Table 6.2: Coxeter numbers and coefficients a (Exceptional type)

E6 E7 E8 F4 G2

2h´ 2 22 34 58 22 10

a 42 96 270 42 10

Proof. It is known that P is a TG1-module.154 Clearly, ξpP q ď ξpU0pgqq. From the

Poincaré-Birkhoff-Witt basis, it follows that the “top” grade of the grading on U0pgq

is attained by the element
ś

αPΦ` ep´1
α . This has grade 2pp ´ 1qρ. Similarly, the

“bottom” grade is ´2pp´ 1qρ. Thus, ξpU0pgqq ď 2pp´ 1qa` 1 and the condition in

Proposition 6.2.1.1, when p is odd, becomes pr ě 2ξpU0pgqq ´ 1; for this to be true,

it is enough that pr ě 4app ´ 1q ` 1. When p “ 2, the condition becomes 2r´1 ě

ξpU0pgqq, for which it is enough that 2r´1 ě 2a` 1 or equivalently 2r´2 ě a` 1.

For the reader’s benefit we add four tables. The first two contain the values

of 2h ´ 2 and a. The third and fourth list the smallest prime p0 for all groups up

to rank 8 so that extension of P to a rational Gr-module guarantees an extension

to a rational G-module as soon as p ě p0 (the column is the type of G, the row is

Gr). They also list the smallest r such that extension to Gr ensures extension to G

for p “ 2, 3, 5. For Table 6.3, we omit this list for p “ 3, 5 since in these cases the

requirement becomes vacuous – no extension to a higher Frobenius kernel is needed.

Some of the entries are marked with the dagger †. This signifies the presence of a

non-trivial centre Zpgq ‰ 0.

6.2.2 Examples

The heights can be computed for Weyl modules.155 Let V pλq be the Weyl module

with the highest weight λ “
ř

i ki$i written in the basis of fundamental weights. It

154See II.11.3 in [Jantzen, 1987].
155The Weyl module V pλq, for λ P XpT q, is defined as the contravariant dual of the G-module

∇pλq, where ∇pλq is as in Subsection 2.4.4.
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Table 6.3: Gr-extension requirements in characteristic p (Smaller ranks)

G2 G3 G4 G5 2

A1 3 †2 †2 †2 †G3

A2 7 †3 2 2 G4

B2 17 5 3 †2 †G5

G2 41 7 3 3 G6

A3 17 5 3 †2 †G5

B3 37 7 3 3 †G6

C3 41 7 3 3 †G6

A4 23 †5 3 2 G5

B4 67 11 5 3 †G7

C4 71 11 5 3 †G7

D4 41 7 3 3 G6

A5 37 7 †3 †3 G6

B5 101 11 5 3 †G7

C5 113 11 5 3 †G7

D5 71 11 5 3 G7
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Table 6.4: Gr-extension requirements in characteristic p (Larger ranks)

G2 G3 G4 G5 2 3 5

F4 167 13 7 5 G8 G6 G5

A6 47 †7 5 3 G6 G5 G4

B6 149 13 5 5 †G8 G6 G4

C6 161 13 7 5 †G8 G6 G5

D6 113 11 5 3 G7 G5 G4

E6 167 13 7 5 G8
†G6 G5

A7 67 11 5 3 †G7 G5 G4

B7 193 17 7 5 †G8 G6 G5

C7 221 17 7 5 †G8 G6 G5

D7 161 13 7 5 G8 G6 G5

E7 383 23 7 5 †G9 G7 G5

A8 79 11 5 3 G7
†G5 G4

B8 257 17 7 5 †G9 G6 G5

C8 281 17 7 5 †G9 G6 G5

D8 221 17 7 5 G8 G6 G5

E8 1087 37 11 7 G11 G7 G6
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follows from the description of V pλq by generators and relations156 that

ξpV pλqq ď 1` 2 max
i

pλ, αiq

pαi, αiq
“ 1`max

i
ki .

This means that the Weyl modules with ki ď pp ´ 1q{2 for all i “ 1, . . . , r are

over-restricted. For instance, if g is of type A2 then (for p ą 3) the Weyl module

V pp´1
2 ω1 `

p´1
2 ω2q is the only over-restricted Weyl module outside the first closed

p-alcove (under the ‚-action): indeed, k1` k2 “ p´ 1 ą p´ 2. Thus, most (but not

all) over-restricted modules are semisimple in this case.

On the other hand, if g is of type G2 and α1 is short, then the over-restricted

Weyl module V pp´1
2 ω1 `

p´1
2 ω2q lies inside the ninth p-alcove (if p ą 3):

k1 ` 2k2 “
3

2
pp´ 1q ă 2p´ 3, k1 ` 3k2 “ 2pp´ 1q ą 2p´ 4, k1 “

p´ 1

2
ă p´ 1.

Ninth in this context means that there are eight dominant p-alcoves below it. Thus,

in type G2 there are many over-restricted non-semisimple modules.

6.2.3 Conclusion

What have we achieved in this chapter and Chapter 5? Suppose G is a semisimple

algebraic group with Lie algebra g. Which concrete g-modules can we now extend to

G-modules? One evident case is when pV, θq is an indecomposable G-stable g-module

such thatG acts trivially on AutgpV, θq. By combination of Corollary 5.2.2.6, Lemma

5.2.2.8 and the cohomology vanishing of the trivial module,157 H2
RatpG,G1;Aq “ 0 “

H1
RatpG,G1;Aq for all A, constituents of AutgpV, θq. Thus, the g-module structure

of such pV, θq extends uniquely to a G-module structure.

It is possible to ensure the triviality of the action if one can control the weights.

The weights of simple constituents of AutgpV, θq must be divisible by p because G1

acts trivially. On the other hand, the weights of V bV ˚ are the differences of weights

of V . Thus, the difference of any two distinct weights of V must be divisible by p,

and this can be made impossible by bounding ξpV q. We therefore have a version of

Proposition 6.2.1.1:

Proposition 6.2.3.1. Let pV, θq be a G-stable TG1-module such that p ě 2ξpV q´1.

Then pV, θq can be uniquely extended to a G-module.

156See Theorem 21.4 in [Humphreys, 1972].
157See II.4.11 in [Jantzen, 1987].
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[Thévenaz, 1983] J. Thévenaz, Extensions of group representations from a normal

subgroup, Communications in Algebra 11(4) (1983), 391–425.

[van der Kallen, 1973] W. van der Kallen, Infinitesimally central extensions of Che-

valley groups, Lecture Notes in Math. 356, Springer, Berlin, 1973.

132



[Weil, 1955] A. Weil, On algebraic groups of transformations, Amer. J. Math. 77

(1955), 355–391.

[Westaway, 2018] M. Westaway, Higher deformations of Lie algebra representations

I, arXiv:1807.00660, (2018). To appear.

[Westaway, 2019] M. Westaway, Higher deformations of Lie algebra representations

II, arXiv:1904.10860, (2019). To appear.

[Witherspoon, 1999] S. Witherspoon, Clifford correspondence for finite-dimensional

Hopf algebras, J. Algebra 218(2) (1999), 608–620.

[Xanthopoulos, 1992] S. Xanthopoulos, On a question of Verma about decomposable

representations of algebraic groups and their Lie algebras, PhD Thesis, Queen

Mary University of London, 1992.

133


	Insert from: "WRAP_Coversheet_Theses_new.pdf"
	http://wrap.warwick.ac.uk/157543


