

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/157546

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

© 2021 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/157546
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

Formal Modelling and Security Analysis
of Bitcoin’s Payment Protocol

Paolo Modestia,∗, Siamak F. Shahandashtib, Patrick McCorryc, Feng Haod

aDepartment of Computing and Games, Teesside University, UK
bDepartment of Computer Science, University of York, UK

cPISA Research, UK
dDepartment of Computer Science, University of Warwick, UK

Abstract

The Payment Protocol standard BIP70, specifying how payments in Bitcoin
are performed by merchants and customers, is supported by the largest pay-
ment processors and most widely-used wallets. The protocol has been shown
to be vulnerable to refund attacks due to lack of authentication of the refund
addresses. In this paper, we give the first formal model of the protocol and for-
malise the refund address security goals for the protocol, namely refund address
authentication and secrecy. The formal model utilises communication channels
as abstractions conveying security goals on which the protocol modeller and
verifier can rely. We analyse the Payment Protocol confirming that it is vul-
nerable to an attack violating the refund address authentication security goal.
Moreover, we present a concrete protocol revision proposal supporting the mer-
chant with publicly verifiable evidence that can mitigate the attack. We verify
that the revised protocol meets the security goals defined for the refund address.
Hence, we demonstrate that the revised protocol is secure, not only against the
existing attacks, but also against any further attacks violating the formalised
security goals.

Keywords: Bitcoin, Bitccoin Security, Bitcoin Payment Protocol, Payment
Security, Refund Attack, Formal Modelling, Security Analysis, OFMC, AnB

1. Introduction

Bitcoin [38], the world’s most successful cryptocurrency, is a popular pay-
ment method and is currently processing on average more than 300k transactions
per day. Payment Processors such as BitPay and Coinbase offer online store in-
tegration on platforms such as Shopify, OpenCart, and WordPress eCommerce

∗Corresponding author
Email addresses: p.modesti@tees.ac.uk (Paolo Modesti),

siamak.shahandashti@york.ac.uk (Siamak F. Shahandashti), feng.hao@warwick.ac.uk (Feng
Hao)

Preprint submitted to Elsevier

for sending and receiving bitcoins. This service is popular amongst merchants
willing to accept cryptocurrencies as a form of payment as it automatically con-
verts bitcoins to fiat currency and removes the risks involved in Bitcoin’s price
volatility. The total Bitcoin transaction volume of such payment processors has
reportedly been worth around $10M per day on average in 2019 [13].

Major Payment Processors that mediate the service between user wallets
and merchants require user wallets to implement the BIP21 URI Scheme [42]
and BIP70 Payment Protocol [1] Bitcoin community standards.

BIP21 provides a two-step payment procedure in which the user follows a
link that triggers the user’s wallet to automatically prepare a payment of the
correct amount to the correct address, both embedded within the URI. BIP70
goes further and enables authenticated communication with the merchant and
improved payment experience including receipt notifications, refund addresses,
and payment acknowledgement. BIP70 hence improves on BIP21 in two ma-
jor areas: security and usability. Since BIP21 does not provide any form of
authentication, it is open to man-in-the-middle attacks. Malicious third-party
scripts and extensions, viruses, or malicious Tor exit nodes have been reported
to mount such attacks and change the receiver’s Bitcoin address to route funds
towards adversaries [46, 10]. BIP70 however, builds in the authentication of the
merchant using X.509 certificates. Besides, it improves on the usability of Bit-
coin payments as customers are no longer required to manually handle Bitcoin
addresses, consisting of 26–35 random-looking alphanumeric characters, used
to send and receive bitcoins. Instead, the customer can verify the merchant’s
identity using a human-readable name, coming from the certificate’s ‘common
name’ field, before authorising a payment. A refund Bitcoin address is also
sent to the merchant by the user’s wallet that should be used in the event of
a refund. Indeed, BitPay has reported a sharp reduction of payment errors,
including under- and over-payments, as a result of the adoption of the BIP70
Payment Protocol [11]. BIP70 is hence supported by major payment processors
such as BitPay and Coinbase, along with popular Bitcoin development libraries
such as BitcoinJ.

In a recent setback in the widespread adoption of BIP70, support for it was
removed from the Bitcoin Core client, the Bitcoin reference implementation,
in version 0.20.0 released in June 2020 [8]. However, the continued use of the
protocol is still supported by BitPay and Coinbase wallets, many other popular
(software) wallets (see e.g. [26]), and major hardware wallets such as Trezor.

From a high-level point of view, the Payment Protocol essentially provides
two pieces of evidence that can be used by the parties involved to prove they
have followed the protocol without malice: the Payment Request sent by the
merchant to the customer which is digitally signed by the merchant, and the
payment transaction broadcast by the customer and included in the blockchain
which is digitally signed by the (pseudonymous) customer. In our previous
work [32], we demonstrated that a third piece of evidence is further required:
endorsement of the refund address(es) by the customer. Without this third
piece of evidence two types of attacks would be possible:

2

• An attack that allows a customer to request refunds to an illicit trader’s
Bitcoin address for a previous payment, e.g. by cancelling their order.
This is called the Silkroad Trader attack and leverages the fact that the
customer can later deny providing an illicit trader’s address for refund
purposes.

• An attack that allows a rogue trader to forward a Payment Request from
an honest merchant to a customer and later request refunds from the mer-
chant to their own Bitcoin address. This is called the Marketplace Trader
attack and leverages the fact that refund requests are not authenticated.

Responding to the disclosure of the above attacks, payment processors tight-
ened their refund address communication policy and to some extent mitigated
the Marketplace Trader attack. The Silkroad Trader attack however, is still an
open issue and addressing it would require a revision of the Payment Protocol.

We focus on the Silkroad Trader attack and extend our previous work [32]
to provide the first formal model of BIP70. The Payment Protocol security
analysis, which is performed using the symbolic model-checker OFMC, confirms
the above attack as an Authentication Attack. Similarly, we also verify that the
revised Payment Protocol in [32] fixes the vulnerability. This is the first formal
model for an application of the Bitcoin blockchain and is complementary to other
work in the research community which includes formal models for Nakamoto-
style consensus protocols [21], formal verification of the runtime and functional
correctness [7, 25, 44, 29] for smart contracts in other cryptocurrencies due to
substantial thefts, and formal languages for writing Bitcoin script [40].

Contributions. This work builds on and extends our previous work (McCorry
et al. [32]) focusing on the Silkroad Trader attack. The contributions presented
are summarised below:

• We present the first formal model of the Bitcoin Payment Protocol. It
utilises communication channels as abstractions conveying security goals
that allow us to specify a model that is tractable and can be analysed
more efficiently by the model-checker OFMC.

• We demonstrate, by model-checking, that the protocol is vulnerable to
authentication attacks of the refund addresses. This attack was informally
presented in [32] as the Silkroad Trader attack.

• We validate the revised Payment Protocol proposed in [32] and confirm
that it prevents the Silkroad Trader attack. Moreover, we propose a sim-
pler alternative fix, and the model-checking shows that no further attacks
to the identified security goals can be performed once any of the two fixes
is applied.

3

Transaction A’s identification hash,
Transaction A’s output index,
Script (signature, public key)

Script (Bitcoin address),
Number of Bitcoins

Output 1

Transaction A Transaction B

Output 1

Output 2

Input 1Input 1

Input 2

Block X Block ZBlock Y

Figure 1: Information stored in the inputs and outputs of Bitcoin transactions

2. Background

We briefly discuss background information about Bitcoin, the formal mod-
elling technique used in this paper, and related work in these areas before pre-
senting the Payment Protocol standard in the next section.

2.1. Bitcoin
We briefly introduce three key concepts: Bitcoin addresses, a form of pseudony-

mous identification, transactions, a mechanism used to record the transfer of bit-
coins, and the blockchain, a decentralised data structure storing all transactions
on the network.

A Bitcoin address is an identifier in the Bitcoin network and is computed
from the hash of an Elliptic Curve (EC) public key. An address serves as a
pseudonymous identified of the user in possession of the corresponding private
key. The corresponding private key can be used to claim bitcoins sent to a
user and to authorise payments to other users using the Elliptic Curve Digital
Signature Algorithm (ECDSA). Given the output length of the hash functions
involved in the computation, the probability of collision is negligible, so these
identifiers can be safely assumed unique within the network.

A transaction records the transfer of bitcoins. It consists of one or more
inputs, specifying the source of bitcoins being spent, and one or more outputs,
specifying new owner’s Bitcoin address and the amount being transferred (see
Figure 1). To authorise the payment, the sender must specify an input con-
sisting of the previous transaction’s identification hash and an index to one of
its outputs, and provide the corresponding public key and a valid digital signa-
ture. The inputs and outputs are controlled by means of scripts in a Forth-like
language specifying the conditions sufficient to claim the bitcoins. The stan-
dard script is the pay-to-pubkey-hash requiring a single signature from a Bitcoin
address to authorise the payment.

4

The blockchain stores the complete transaction history of the network with
a secure time-stamp [38] arranged in blocks of transactions. This append-only
data structure (ledger) is stored in a distributed fashion by most users of the
network. Appending new transactions requires solving a proof of work puzzle
which is computationally difficult to solve but easy to verify if a solution is
given. Nodes that solve proofs of work are called miners. They receive rewards
in Bitcoin for their computational effort.

2.2. Formal Modelling Approach
Our approach to formal modelling and security analysis of the BIP70 Pay-

ment Protocol involves the symbolic model-checker OFMC [5] (version 2020),
and the specification of a model in AnB [34], a formal language in the style of
Alice and Bob narrations. An important reason for adopting this methodology
is that in the specification of the protocol, it is possible to model communica-
tion channels as abstractions conveying security goals like authenticity and/or
secrecy, without the need to specify the concrete implementation used to en-
force such goals. The protocol modeller and the verification tool can then rely
on the assumptions provided by such channels. This allows to specify a simpler
model that is tractable by the verifier, and can be analysed more efficiently.
In fact, modelling the underlying channel cryptographic implementation explic-
itly will lead model the checker towards a state-explosion problem and/or face
out-of-memory errors.

Another important feature is that in AnB channels, agents can be identified
by pseudonyms rather than by their real identities, similarly to what happens
in secure channels like TLS without client authentication. Such ability to model
and verify a range of different channels makes AnB suitable for the verification
of payment protocols like BIP70, since in such protocols secure channels (HTTP
over TLS) are used and agents use pseudonyms (e.g. ephemeral public keys).

Moreover, since we model BIP70 protocol on top of these channels, we need
to discuss whether the vertical composition of such protocols is secure.

Channel as assumption. In general, OFMC allows specifying three type of chan-
nels in AnB: authentic, confidential, and secure, with variants that allow agents
to be identified by a pseudonym rather than by a real identity. The supported
standard channels are:

1. A→ B : M , an insecure channel from A to B, under the complete control
of a Dolev-Yao intruder [16];

2. A •→B : M , an authentic channel from A to B, where B can rely on the
fact that A has sent the message M and meant it for B;

3. A→•B : M , a confidential channel, where A can rely on the fact that only
B can receive the message M ;

4. A •→•B : M , a secure channel (both authentic and confidential).

Pseudonymous channels [35] are similar to standard channels, with the exception
that one of the secured endpoints is logically tied to a pseudonym instead of a
real name. The notation [A]ψ represents that an agent A is not identified by its

5

real name A but by the pseudonym ψ. Usually ψ can be omitted, simplifying the
notation to [A], when the role uses only one pseudonym for the entire session,
as it is in our case and in many other protocols.

For example, [A] •→B : M1 denotes an authentic channel from A to B,
where B can rely on the fact the an agent identified by a pseudonym has sent
a message M1 and this message was meant for B. If during the same protocol
run, another action like [A] •→B : M2 is executed, B can rely on the fact that
the same agent (identified by the same pseudonym) has also sentM2, and again
the message was meant for B.

Assuming that B does not know already the real name of A, the execution
of these two actions does not allow B to learn the real identity of A (unless
this information is made available during the protocol execution), but B has a
guarantee that he was communicating with the same agent during both message
exchanges. The term sender invariance is used to refer to this property, and
the most common example is the TLS protocol without client authentication.

Vertical Protocol Composition. Since in our model BIP70 runs on top of ab-
stract channels providing security guarantees (such as the TLS without client
authentication), we are in effect vertically composing TLS and BIP70 protocols.
Strictly speaking, we should consider HTTPS, but since the security guarantees
are provided by TLS, the model can simply abstract the HTTP messages.

In general, given a secure protocol P1 that provides a certain channel type
as a goal and another secure protocol P2 that assumes this channel type, their
vertical composition P2[P1] is not secure as attacks may be possible even when
the individual protocols are all secure in isolation. Sufficient conditions for
vertical composition have been established [36] and, in essence, they require
the disjointness of the message formats of P1 and P2, and that the payloads of
P2 are embedded into P1 under a unique context to define a sharp borderline.
According to Mödersheim and Viganò [36], these conditions and the other minor
conditions are satisfied in practice by a large class of protocols. As the specific
implementation of the underlining protocol is not part of the BIP70 specification
(P2), but P2 only assumes that the communication occurs on channels that
guarantee a secret communication with server authentication (P1), we make
our analysis under the assumption that the conditions sufficient for vertical
composition specified in [36] are satisfied.

2.3. Related Work
An overview of related research on Bitcoin payment protocols and formal

methods applied to Bitcoin and blockchain technologies is given below.

2.3.1. Bitcoin Payment Protocols
The Payment Protocol is designed for ‘on-chain’ payments in which all the

transactions required for the intended payment are appended to the blockchain.
Inherent and practical limitations on global transaction rates translate into seri-
ous scalability issues for Bitcoin and other cryptocurrencies. This has served as
the main motivation for a line of work on ‘off-chain’ payment channels (See [30]

6

for an overview), in which payments are optimistically carried out with limited
interaction with the blockchain and ‘on-chain’ transactions are only used to re-
solve party failures or to settle disputes. Recent proposals in this area include
AMCU [19] for Bitcoin (and other cryptocurrencies with restricted scripting
capabilities) and Sprites [33] for Ethereum. The most widely deployed of such
networks are Lightning [41] for Bitcoin and Raiden (see raiden.network) for
Ethereum. Although these alternative payment methods have a growing user
base, their overall usage remains comparatively low (see e.g. statistics in [43, 9]).

Lack of methods for post-payment communications that are securely bound
to the original payment transaction has been acknowledged by the community.
In [31], the authors propose to bootstrap authenticated key exchange proto-
cols between the sender and the receiver of an existing transaction leveraging
the signatures recorded on the blockchain. Such a protocol will provide a se-
cure channel between the parties to a transaction and can be used for secure
post-transaction communications including arranging refunds. However, such
protocols have not been deployed in practice.

An early solution to the lack of refund address endorsement by Hearn [23]
suggested endorsement by any key that authorised the original payment trans-
action. However, this solution was shown to be prone to the ‘malicious co-signer
attack’ [32]. Subsequent to [32], where the vulnerability of the Payment Pro-
tocol to refund attacks was demonstrated, alternative mitigation methods have
been also proposed. In [4], Avizheh et al. proposed another solution based on
multi-signature and time-locked transactions. The idea is that in case of a re-
fund request, the merchant prepares two refund transactions: one that requires
signatures from both the refundee and the (original) customer to be claimed (a
‘multi-signature’ transaction), and another that enables the customer to claim
the refund after certain period of time (a ‘time-locked’ transaction) in case the
customer does not authorise the former refund transaction. This would reduce
the amount of log keeping the merchant needs to implement to protect itself
against refund attacks compared to the solutions we proposed in [32]. How-
ever, Avizheh et al.’s solution would need substantial changes to the Payment
Protocol standard, whereas our modifications are designed to require minimal
changes to the standard.

Another noteworthy related service is the Ethereum Name Service (see ens.
domains). This service provides a secure binding between the domain name of
a merchant and their cryptocurrency addresses, supported by Ethereum smart
contracts. Such a service is, in effect, akin to a distributed DNS service. A
customer only needs to input the domain name of a merchant as the recipient of a
payment in a wallet that supports the Ethereum Name Service look-up protocol.
The wallet would be able to find the corresponding authenticated address via
communication with the Ethereum blockchain. Although such services address
the low usability and lack of authentication of merchant Bitcoin address, they
do not offer any solution for customer refund address authentication.

In summary, while the Payment Protocol remains the dominant Bitcoin pay-
ment method, especially with major payment processors, customer refund ad-
dress authentication remains an open problem in practice. Existing proposals

7

raiden.network
ens.domains
ens.domains

for secure post-payment authentication are not deployed and alternative refund
address authentication mechanisms require substantial changes to the estab-
lished standard. Our proposed modifications to the standard are minimal and
can be readily adopted. Furthermore, all previous works addressing refund
address authentication have followed the ‘design-break-fix’ paradigm in which
solutions merely guarantee that specific attack strategies do not apply anymore.
We break from this paradigm and provide a formal modelling of the required
security properties along with a verification of our proposed solutions satisfying
those formalised properties. Such verification provides a guarantee of security
independent of the attack strategy for a general class of adversaries specified by
their capabilities and goals, namely the Dolev-Yao attacker model [16]. Interest-
ingly, the model is also realistic. In fact, Herzog [24] proved that there are many
significant cases in which the Dolev-Yao adversary can be a valid abstraction of
all realistic adversaries.

2.3.2. Formal Modelling and Verification
Given the growing interest in blockchain and cryptocurrencies, these tech-

nologies have been the subject of studies by the formal methods community as
well, Bitcoin in particular. These works either focus on Bitcoin transactions,
blockchain, and their security properties, or consider other components of the
cyrptocurrency ecosystem such as consensus mechanisms, smart contracts, and
wallets. None of these works attempt formalising any of the Bitcoin protocols
built on top of the core Bitcoin protocol such as the Payment Protocol. However,
we briefly review these works in the interest of completeness.

Among the previous works considering the formalisation of the core Bitcoin
ecosystem are the following. Garay et al. [21] presented a formal modelling
of the Bitcoin backbone, the protocol used at the core of Bitcoin’s transaction
ledger. They formalised and proved basic properties they called ‘common pre-
fix’, ‘chain quality’, and ‘chain growth’, analyzing applications that can be built
on top of the backbone protocol, focusing on Byzantine agreement (BA) and
on the notion of a public transaction. Atzei et al. [3] proposed a formal model
for Bitcoin transactions that abstractly describes their essential aspects, and
at the same time enables formal reasoning. The model allows formally proving
several well-formedness properties of the Bitcoin blockchain, for instance that
each transaction can only be spent once. Chaudhary et al. [14] also consid-
ered the success probability of a double spending attack, which is linked to the
computational power of the attacker. As the validation of Bitcoin transactions
requires the successful execution of scripts, Klomp and Bracciali [27] worked
on the formal verification for the Bitcoin validation framework, proposing a
symbolic verification theory and a toolkit for the verification.

Other researchers have investigated different components of the cyrptocur-
rency ecosystem. For example, Duan and al. [17] presented the model-based
formalization, simulation and verification of a blockchain protocol by using the
SDL formalism of Telelogic/Rational Tau considering aspects such as security
and safety of blockchain. The work also provides support for assessing different
network consensus algorithms as well as on the topology of blockchain networks.

8

Click: “Pay Now”

PaymentRequest

Authorise?

Click: “OK”

Payment

transaction

PaymentACK
(optional)
message transactions

Customer Wallet App Merchant Server
Bitcoin P2P

Network

Figure 2: Overview of the Payment Protocol (adapted from [1])

Additionally, a number of works focused on formal modelling of wallets [45, 2]
and smart contracts [22, 18].

In summary, no previous work has considered formal modelling and verifica-
tion of protocols built on top of the core Bitcoin protocol such as the Payment
Protocol. Our previous work [32] has shown that even if the core Bitcoin proto-
col is considered secure, vulnerabilities can exist in the design of the Payment
Protocol which is built on top of the core Bitcoin protocol. It remained an open
problem to formally model the amended Payment Protocol and verify that it
satisfies the intended security properties assuming that the core Bitcoin protocol
is secure. In this paper, we address this gap.

3. The Payment Protocol

The Payment Protocol was proposed in 2013 by Andresen and Hearn in
BIP70 [1] and later adopted by the Bitcoin community as a standard. The
authors present the goal of the protocol as follows:

“This BIP describes a protocol for communication between a mer-
chant and their customer, enabling both a better customer experi-
ence and better security against man-in-the-middle attacks on the
payment process.”

The communication channel between the customer and merchant is strongly
recommended to be over HTTPS leveraging the merchant’s X.509 certificate
issued by a trusted Certificate Authority. This allows the customer to authen-
ticate messages from the merchant.

9

Figure 2 outlines an overview of the messages exchanged and actions per-
formed during the protocol execution. The protocols begins with the customer
clicking on the ‘Pay Now’ button on the merchant’s website to generate a Bit-
coin payment URI. This URI allows to open the customer’s Bitcoin wallet and
download the Payment Request from the merchant’s website. The wallet app
can then verify the digital signature on the Payment Request using the public
key of the merchant and the validity of the associated certificate. Given suc-
cessful verification of the signature, the merchant’s name in a human-readable
format, extracted from the X.509 certificate’s ‘common name’ field, and the bit-
coin amount requested are shown to the customer requesting for authorisation
of the payment. When the user authorises the payment, the wallet puts together
a payment transaction and broadcasts it to the network. Besides, it includes
the transaction and refund addresses within a Payment message which is sent
back to the merchant. The merchant then replies to the customer wallet with
a Payment Acknowledgement and once the payment transaction is detected on
the blockchain the customer receives a confirmation of the payment.

3.1. Modelling BIP70
Our general approach to formal modelling, similarly to [20], requires the

analysis of the protocol specification and its informal security requirements.
In particular, in order to verify the BIP70 protocol, we build a model with
n (n ≥ 1) customers C1, . . . , Cn and one merchant M . We assume that these
agents can trade over Bitcoin and that the identity of the merchant is known to
all of them. Strictly speaking, since multiple customers might be co-operating
in the payment with a single merchant, our model requires that at least one of
customers knows the merchant name. We also assume that, prior the run of the
protocol, the merchant does not know the identity of these customers and the
communication between agents and merchants does not require a mechanism
which explicitly discloses the real identity of the client. Such one-way authenti-
cation can be customarily achieved using HTTPS, as in BIP70. In this case, the
client is guaranteed that messages are exchanged with the authenticated server,
but the server is only guaranteed that the communication channel is shared with
the same pseudonymous agent. In our case, we denote the pseudonym of the
agent C1 during the protocol run by [C1].

In the model, we also assume that C1 is the only agent that communicates
with the merchant, while other agents communicate with C1 using a secure
channel (or out-of band) to collaboratively setup an order for the merchant.
This reflects the actual usage scenario of the Payment Protocol in which pay-
ment may be made from multiple psudonymous Bitcoin addresses, belonging
to one or multiple actual entities, and it is the responsibility of the customer
communicating with the merchant to assemble the payment transaction in co-
ordination with all the Bitcoin address holders. The model employs two kinds
of channels:

• [C1] •→•M denotes a secure (secret and authentic) channel between the
client C1 and the merchant M , with the peculiarity that M can bind the

10

other end point to a pseudonym [C1] rather than to the real identity of C.

• Ci •→•Cj denotes a secure channel between the clients Ci and Cj .

We use the identifiers listed in Table 1 to denote the data exchanged.

Identifier Description
BM merchant Bitcoin address for the current transaction, a

public key freshly generated by M with the
corresponding private key denoted by inv(BM)

BCi
customer Ci Bitcoin address for the current
transaction, a public key freshly generated by Ci, with
the corresponding private key denoted by inv(BCi)

RCi
refund address of customer Ci

B number of Bitcoins for the current transaction
BCi

number of Bitcoins to be refunded to RCi
in case of a

refund
t1, t2* timestamps indicating Payment Request creation and

expiry times, resp.
mM* mC*, m′M* memo messages included in the Payment Request (by

M), Payment (by C), and Payment Acknowledgement
(by M) messages

uM* payment URL
zM* payment id provided by the merchant

Table 1: Notation – Identifiers used to denote the data exchanged
(optional parameters are starred)

Moreover, we denote the hash function used in generating Bitcoin addresses
by H. Let us introduce the following definitions used in the protocol specifica-
tion:

• ωi = BCi
,H(BCi

): the previous transaction outputs for customer Ci;

• τCi
= tr (ωi): the previous transaction for customer Ci. Future transac-

tions depend only on unspent/spendable transaction outputs; we consider
here a function tr that returns a transaction parameterised on the output
used by Ci in the current transaction;

• πCi
= signinv(BCi

)(H(τ ′Ci
),BCi

): the transaction input endorsed by Ci;

• π = πC1 , ..., πCn
: the transaction input, a list transaction inputs endorsed

by the customers;

• PaymentRequest = signinv(sk(M))(H(BM),B, t1, t2,mM, uM, zM): the Pay-
ment Request, a message digitally signed with inv(sk(M)), the private key
of M. The associated public key utilised to verify the digital signature,

11

that we denote as sk(M), is certified by a Certificate Authority and stored
in a X.509 certificate;

• RACi
= (RCi

,BCi): the refund address and amount for customer Ci;

• τC = π, (H(BM),B): one or more valid transactions, where π represents
the inputs, and (H(BM),B) represent the output.

3.1.1. Agents’ Initial Knowledge
The initial knowledge of a model with one merchant M and two customers

C1,C2 is as follows:

• C1 : C1,C2,M,H, tr, sk,paynow

• C2 : C1,C2,H, tr, sk

• M : M,H, tr, sk, inv(sk(M)),paynow, t1, t2

Each agent has an identity and access to the hash function H, the symbolic
function tr and a symbolic function sk for modelling digital signatures. In par-
ticular, the sk function allows customers Ci to retrieve sk(M) the public key
of agent M from a repository, and verify the corresponding X.509 certificate,
provided that they know the name of M.

inv(sk(M)) represents the private key of M and is known only by M. It should
be noted that in the AnB language, inv() is a private function. Therefore, neither
other agents nor the intruder can use inv to retrieve any agent’s private key.

Initially, M does not know the identities C1 and C2, while C1 and C2 know
each other as they need to collaborate to build the transaction. However, only
C1 knows C2 since C1 will be the only customer interacting with the merchant.
Finally, various constants (t1, t2,paynow) are available to agents according to
the protocol specification.

The initial knowledge can be easily generalised for n customers; it should
be noted that a customer does not need to know all other customers prior
the protocol run, but at least one. As customers can coordinate as they wish
(including out-of-band communication), only one customer will need to interact
with the merchant.

3.1.2. Security Goals
We expect the following security goals to hold after the protocol execution:

• Goal 1: Refund Addresses Authentication. M has a guarantee that all
refund addresses RCi

, for all i = 1..n are provided by and linked to the
customers involved in the transaction; In AnB, we denote the goal as:

M weakly authenticates Ci on RCi
,BCi (for all i = 1..n)

12

• Goal 2: Refund Address Agreement and Secrecy. All refund addresses
RCi are secret and known only by the merchant and the customers in-
volved in the transaction. In AnB, we denote the goal as:

(RC1 , . . . ,RCn
) secret between M,C1, . . . ,Cn

Note that the Payment Protocol is built on top of the core Bitcoin protocol
and blockchain and the question we consider is whether the Payment Protocol
is secure assuming the core Bitcoin protocol is secure. Therefore, we do not
model the security goals that are expected to be guaranteed by the core Bitcoin
protocol and blockchain, such as the double-spending prevention, and assume
that they are satisfied. In fact, as discussed earlier, the security properties of
the core Bitcoin protocol and blockchain have been formally proven in previous
works [3, 14]. By the same token, we do not explicitly consider the security
issues at the lower layers of the networking stack such as eavesdropping, pre-
diction and fixation, since our work only concerns the application layer and
assumes that protocols such as TLS are secure. The approach of considering
the security properties of different layers in isolation is sound, provided that the
conditions of the vertical composition theorem [36] are satisfied as discussed in
Section 2.2. It should be noted that the secrecy goal (2) prevents eavesdropping,
and that known prediction and fixation vulnerabilities have been addressed by
more recent versions of TLS [6, 15].

3.1.3. Protocol Actions
Given their initial knowledge, agents are involved in a sequence of message

exchanges over the designated channel. On the sender side, agents should have
enough information to compose the message. On the recipient side, every agent
must decompose the incoming messages (for example, decrypting the message
or verifying a digital signature) according to their current knowledge, including
knowledge acquired during previous steps. For simplicity, we assume that all
public keys are available, at a certain point of the protocol execution, to the
agents and the intruder.

[C1] •→•M : paynow C1 clicks ‘Pay Now’

M •→• [C1] : PaymentRequest Payment Request

C1 •→•C2 : RC1M,PaymentRequest,BC1 C1,C2 cooperate -

C2 •→•C1 : RC2 , πC2 - to build a transaction

[C1] •→•M : zM, τC,RAC1 ,RAC2 ,mC Payment

M •→• [C1] : zM, τC,RAC1 ,RAC2 ,mC,m
′
M PaymentACK

13

signinv(sk(M))(H(BM),B| , t1, t2,mM, uM, zM)

zM, τC, (RAC1
, . . . ,RACn

),mC

where RACi
= (RCi

,B| Ci
)

PaymentRequest =

Payment =

PaymentACK =
Payment,m′

M

Click ‘Pay Now’

Broadcast τC

Customer C Merchant M

Detect τC

Figure 3: Expanded message contents for the Payment Protocol for C and M. Messages are
sent over an HTTPS communication channel. We use the notation signinv(sk(M))(X) to denote
both the message X and the digital signature on the message by the private key inv(sk(M)).

3.1.4. Protocol Message Details
The Payment Protocol standard specifies the format of the Payment Request,

Payment, and Payment Acknowledgement messages. The standard only recom-
mends running the protocol over HTTPS, however in this paper we assume this
is always the case. Discussed attacks apply regardless of whether HTTPS is
used. Although the standard supports payment via multiple transactions, we
discuss the details of the messages here for the case where the customers pays
through only one transaction. The proposed solutions and formalisation results
can be easily extended to the case where a payment is made through multiple
transactions. The protocol messages are as follows:

• The Payment Request consists of the recipient’s Bitcoin address H(BM),
requested Bitcoin amount B, timestamps t1, t2 corresponding to the re-
quest creation and expiry times, a ‘memo’ field mM for a note showed to
the customer, the payment URL uM where the payment message should
be sent, and an identifier zM for the merchant to link subsequent payment
messages with this request. All of the fields are collectively signed by the
merchant using their private key denoted by inv(sk(M)) corresponding to
their X.509 certificate public key.

• The Payment message consists of the merchant identifier zM, the payment
transaction τC, a list of pairs of the form RACi

= (RCi
,BCi) each con-

taining the refund address RCi
and the amount to be paid to that address

BCi in case of refund, and an optional customer ‘memo’ field mC.

• The Payment Acknowledgement consists of a copy of the Payment message
sent by the customer and an optional ‘memo’ m′M to be shown to the
customer.

The Payment Protocol messages are shown Figure 3. Note that the Payment
message, and specially the refund addresses provided therein, are not signed by

14

the customer, and although protected by HTTPS, they can be subsequently
repudiated by the customer. This is the underlying weakness that allows the
Silkroad Trader attack.

4. Verification of the Silkroad Trader Attack

We now discuss the Silkroad Trader attack, proposed in [32] and verify, by
model-checking, the violation of the security goals. The Silkroad Trader attack
allows a customer to route Bitcoin payments through an honest merchant to
an illicit trader and later deny their involvement as we discuss below. We also
demonstrate that this attack can be captured as an authentication attack within
our formal model of the Payment Protocol.

4.1. Silkroad Trader Attack
As mentioned earlier, the refund addresses provided by the customer are

not digitally signed. This means that a malicious customer will be able to
order refunds to any arbitrary address without being required to provide any
undeniable authorisation. The Silkroad Trader attack leverages such plausible
deniability afforded to the customer in the Payment Protocol.

The attack sequence diagram is shown in Figure 4. Assume a Customer
wishes to buy some illicit goods from a ‘Silkroad Trader’. The Customer receives
a Payment Request from the Silkroad Trader (T) that includes the Silkroad
Trader’s Bitcoin address H(BT).The Customer then finds an honest Merchant
supporting the Payment Protocol and selling an item of similar (or possibly
just greater) price. The customer then expresses their wish to buy the item
and receives a Payment Request from the Merchant. The Customer then puts
together a Payment message that includes the payment transaction τC, but
crucially states the Silkroad Trader’s address as the refund address, i.e. RT =
H(BT), and sends the Payment message to the Merchant. After finalising the
payment and receiving the Payment Acknowledgement and before the Merchant
ships the item, the Customer cancels the order and requests a refund. This will
prompt the Merchant to prepare and broadcast a refund transaction τM that
sends the funds to the Silkroad Trader’s Bitcoin address. The Customer will
then be able to detect this transaction and include it in a Payment message
she composes and sends to the Silkroad Trader. The Silkroad Trader will then
detect the transaction, send the Payment Acknowledgement to the Customer
and ship the illicit goods.

Note that since the Payment message sent from the Customer to the Mer-
chant is not digitally signed, the Merchant will not be able to subsequently
prove that it was indeed the Customer that requested the funds to be refunded
to the Silkroad Trader’s address. Hence, the Customer will be able to pay for
the illicit goods through the honest Merchant without leaving any trace of a
direct payment to the Silkroad Trader.

15

signinv(sk(M))(H(BM),B| , t1, t2,mM, uM, zM)

zM, τC, (RT = H(BT),B|),mC

PaymentRequest =

Payment =

PaymentACK =
Payment,m′

M

Click ‘Pay Now’

Broadcast τC

Detect τC

Trader T
Click ‘Pay Now’

signinv(sk(T))(H(BT),B| , t1T, t2T,mT, uT, zT)
PaymentRequesti =

Refund Request

Broadcast τM
Refund Confirmation

Detect τM
zT, τM, (RC,B|),m′

C

Payment′ =

PaymentACKi =
Payment′,m′

T

Silkroad
C

Customer
M

Merchant

Detect τM

Figure 4: The Silkroad Trader Attack allows a customer to route bitcoins to an illicit trader via
an honest merchant and then plausibly deny their involvement. This is achieved by requesting
the refund to be issued to the illicit trader. Note that the customer uses the trader’s address
H(BT) as the refund address within the Payment message sent to the merchant. All messages
are sent over an HTTPS communication channel. The notation is specified in Section 3.1 and
the detailed explanation of the attack can be found in Section 4.1.

4.2. Model Checking
We encoded the model described in Section 3 in the AnBx language [12], an

extension of the AnB language supported by OFMC, allowing for macro defini-
tions, functions type signature definition and stricter type-checking. Using the
AnBx compiler [37], we translated the model in the AnB format which is suitable
for verification with OFMC. The source code is available in the Appendix.

We run our tests on a Windows 10 PC, with Intel Core i7 4700HQ 2.40GHz
CPU and 16GB RAM and we verified the model for a single session in OFMC
in the classic and typed mode. As a result, the model demonstrated that both
authentication and secrecy goals were violated. The attack was found in 2.34
seconds.

The authentication goal M weakly authenticates Ci on RCi
,BCi

states for
all customers (i = 1..n), the merchant can have a guarantee of endorsment of
the refund addresses and amounts.

In particular, the goal is violated because in not possible to verify the non-
injective agreement [28] between the construction of RACi = (RCi ,BCi) done
by Ci and the corresponding values received by M. This is possible because
the customers are not required to endorse the value (RCi

,BCi
) using digital

16

signatures. Therefore a compromised or dishonest client can easily manipulate
the refund address and perform attacks like the one described in 4.1.

The secrecy goal (RC1 , . . . ,RCn
) secret between M,C1, . . . ,Cn is also vio-

lated. The definition of secrecy used in our model implies that all members of
the secrecy set know the secret values and agree on these. But in this case, due
to lack of authentication, the customer who is communicating with the merchant
can convince other customers that the refund address she is using is different
from the one sent to the merchant. For example, RC2 , the refund address of the
second customer, can be easily replaced with a different address by C1 before
being communicated to M.

It should be noted that, in general, with the automated verification it is
not possible to validate a specific attack trace known a priori, and the analysis
usually aims at assessing the absence or presence of at least an attack trace
that leads at a violation of a security goal. In particular, in order to verify
the protocol, the model-checker OFMC builds a state-transition system, and
given the initial configuration, analyses the possible transitions in order to see
if any attack state is reachable in presence of an active attacker. Therefore,
the presence of a specific attack trace is not automatically confirmed, rather,
such automated versification helps decide whether any attack trace is present
or absent, where an attack trace is defined as a sequence of steps leading to a
violation of a given security goal. However, the absence of any attack trace is
the ultimate goal of verification, to state the security of the analysed protocol,
and we will see how this can be achieved in Section 5.

4.3. Real-World Experiments
Our experiments, originally reported in [32], aimed to verify the practice

of processing refunds by merchants, and assess the feasibility of the attacks.
We purchased items from real-world merchants using a modified Bitcoin wallet
before requesting for the order to be cancelled and a refund processed. The
merchants used during these experiments are based in the UK and are supported
by BitPay or Coinbase. The bitcoins used for the experiments are owned by
the authors and no money is sent to any illicit trader. All experiments were
ethically approved by the relevant research ethics committee.

4.3.1. Proof of Concept Wallet
We developed a wallet supporting the Payment Protocol and automating

the Silkroad Trader attack. Our wallet works as follows:

1. The customer inserts the illicit trader’s Payment Request URI into the
wallet which stores both the request and Bitcoin address for later use.

2. The customer finds an item equal (or greater) in value as the ‘illicit goods’
and inserts the merchant’s Payment Request URI into their wallet.

3. The wallet provides a list of refund addresses that can be chosen for the
Payment message that is sent to the merchant and the customer can choose
the illicit trader’s Bitcoin address.

17

4. Assuming a refund has been authorised by the merchant, the wallet can
detect the merchant’s refund transaction on the network and include it in
a Payment message that is sent to the illicit trader.

5. The wallet is notified by a Payment Acknowledgement message from the
illicit trader that the payment has been received.

4.3.2. Simulation of the Attack
We discuss the results of carrying out a simulation of the Silkroad Trader

attack against real-world merchants using arbitrary identities, e.g. names and
e-mail addresses, created for the experiments only.

Cex refunded the bitcoins within 3 hours of cancelling the order and used
the refund address from the Payment Protocol.

Pimoroni Ltd. refunded the bitcoins within a single business day and used
the refund address from the Payment Protocol.

Scan refunded the bitcoins after 26 days and used the refund address from
the Payment Protocol. The delay was due to Scan initially requesting us to
provide a refund address over e-mail, but we insisted using the one specified in
the original payment message.

Dell were unable to process the refund due to ‘technical difficulties’ and
requested our bank details. We informed them that we did not own a bank
account and Dell suggested sending the refund as a cheque. While not the
experiment’s aim, this potentially opens Dell as an exchange for laundering
tainted bitcoins.

4.3.3. Payment Processors’ Responses
We privately disclosed our attacks to the Payment Processors and received

the following responses:
BitPay acknowledged “the researchers have done their homework” and that

“refunds are definitely a significant money laundering attack vector”. They are
now actively monitoring for refund activity on behalf of their merchants.

Coinbase acknowledged the Silkroad Trader attack as a good example of an
authentication vulnerability in the Payment Protocol.

Bitt acknowledged both attacks and believe the endorsement evidence may
support Payment Processors to become more ‘airtight’ for future regulation.

In response to our disclosures, the payment processors have put in place tem-
porary mitigation measures such as monitoring refunds. These measures only
partially address the Silkroad Trader attack. To fully address the vulnerability,
the BIP70 standard would need to be revised, as we have discuss in Section 5.

5. Verification of the Proposed Solutions

In our previous work (McCorry et al. [32]), we proposed a solution that
requires the refund addresses in the Payment message to be endorsed by the
customer. This provides the merchant with a proof of endorsement that can
be used to demonstrate to a third party that the customer who authorised the

18

signinv(sk(M))(H(BM),B| , t1, t2,mM, uM, zM)

zM, τC, (RAC1
, . . . ,RACn

),mC

where RACi
= signinv(BCi

)(πCi
,RCi

,B| Ci
,mCi

, PaymentRequest)

PaymentRequest =

Payment =

PaymentACK =
signinv(sk(M))(Payment,m

′
M)

Click ‘Pay Now’

Broadcast τC

Customer C Merchant M

Detect τC

Figure 5: The Original Solution: expanded message contents for the amended Payment Pro-
tocol for Customer C and Merchant M. The Customer endorses the refund addresses by
providing digital signatures RACi

. The endorsement can be used by the Merchant to prove
that they acted as per the instructions of the Customer in case of a refund. The protocol is
explained in detail in Section 5.1.

payment also endorsed the refund addresses. We explain the solution first and
then verify, by model-checking, that the solution meets the security goals set out
in Section 3.1.2. We also present an alternative solution meeting the security
goals and discuss the comparative merits of each solution.
5.1. The Original Solution

Figure 5 shows the amended Payment Protocol as proposed in our earlier
work [32]. The Payment Request is similar to before, except that this solution re-
quires the memo mM to include specific information to assure the customer that
the message is in response to their ‘click’. This is to mitigate the Marketplace
Trader attack and does not change the formal model we propose in this work.
The Payment message includes all the elements specified in the Payment Pro-
tocol plus a digital signature to endorse each refund address. More specifically,
for each refund address RCi

and refund amount BCi
, the customer provides a

digital signature on (RCi ,BCi ,mCi ,PaymentRequest) as a proof of endorsement
of the refund address and amount that binds these values to the corresponding
payment transaction input and the specific PaymentRequest. The Payment Ac-
knowledgement contains a copy of the Payment message and a memo as before,
plus a digital signature by the merchant using the private key corresponding to
their X.509 certificate public key.

More specifically, each refund address endorsement signature is in the form:

RACi
= signinv(BCi

)(πCi
,RCi

,BCi
,mCi

,PaymentRequest),

where sign() is the signature algorithm and inv(BCi) is the private key that
authorised the transaction input πCi

. These parameters were chosen to clarify
the correspondence between the transaction inputs and the endorsed refund
addresses and to ensure the endorsement is only valid for a specific Payment

19

Request. Moreover, the proposed solution suggests that the Merchant should
digitally sign the Payment Acknowledgement as follows:

PaymentACK = signinv(sk(M))(Payment,m′M),

such that the customers can have evidence of the completion of the protocol.

Verification. We updated the model described in Section 3 with the new speci-
fication, ran the tests and verified the model for a single session in OFMC in the
classic and typed mode. With such amendments, we verified in 10.08 seconds
that there are no attacks on the security goals for the one-session verification.
We also tested the model for two parallel sessions, as long as the available RAM
(32 GB) allowed for it. We did not find further attacks.

The fix works because now the refund address and the amount are digitally
signed by the private key that authorised the transaction input πCi

. It is now
possible to prove the non-injective agreement, i.e. the weak authentication
goal. Since the refund address is endorsed and the merchant receives evidence
of endorsement of the refund addresses, it is now impossible for a compromised
or dishonest customer to manipulate these values.

We furthermore tested the stronger authentication goal M authenticates
Ci on RCi ,BCi

(for all i = 1..n) and we found it also holds. This in practice
gives the recipients of the signed message evidence of freshness, provided the
message contains sufficient information to distinguish between different trans-
actions, which is usually the case.

The secrecy goal is also satisfied because now all the customers and the
merchant agree on the refund addresses. It is not possible for an attacker to
manipulate the refund addresses since the digital signatures would not verify in
case of manipulation.

In conclusion, we verified that the proposed solution fixes the protocol in
that it successfully prevents attacks on the authentication and secrecy goals.

5.2. An Alternative Solution
We also propose an alternative solution, depicted in Figure 6, where now the

following definition is used:

RACi = signinv(sk(BCi
))(M,RCi ,BCi,mCi ,PaymentRequest).

In this solution, instead of including πCi , which introduces a dependency
on previous transactions, we simply add the identity of the merchant M, which
would be immediately available, allowing τCi

to be computed later. Similarly to
the previous solution, all goals, including strong authentication, are successfully
verified, in this case significantly faster (5.30 sec).

It is important to note that the authentication goal is met as well because the
identity M is included in the signed messages and this provides a clear evidence
of the customers’ intention to run the Payment Protocol with the explicitly
identified merchant M. Specifically, from the theoretical point of view, this
satisfies the definition of the notion of ‘agreement’ [28] usually considered in

20

signinv(sk(M))(H(BM),B| , t1, t2,mM, uM, zM)

zM, τC, (RAC1
, . . . ,RACn

),mC

where RACi
= signinv(BCi

)(M,RCi
,B| Ci

,mCi
, PaymentRequest)

PaymentRequest =

Payment =

PaymentACK =
signinv(sk(M))(Payment,m

′
M)

Click ‘Pay Now’

Broadcast τC

Customer C Merchant M

Detect τC

Figure 6: Alternative solution: expanded message contents for the amended Payment Protocol
for Customer C and Merchant M. The Customer endorsement RACi

does not require the
transaction πCi

and instead includes the identity of the Merchant M. The protocol is explained
in detail in Section 5.2.

formal methods. This notion is stronger than the kind of guarantee that can
be achieved with a digital signature if the recipient identity is omitted in the
payload (i.e. what is called ‘proof of endorsement’). In practice, binding the
refund details to the merchant identity provides an extra guarantee (compared
to [32]) that the endorsed refund details can not be reused with merchants other
than M.

5.3. Discussion
The main idea behind the proposed solutions is to augment the protocol

with a proof of endorsement of the refund addresses by the keys that authorise
the original transaction. The merchant may store this proof of endorsement
and demonstrate their appropriate conduct to a third party in case of a Silkroad
Trader attack. The customer colluding with an illicit trader on the other hand
will lose their ability to plausibly deny their involvement in such an attack.
Note that the proof of endorsement only links pseudonymous Bitcoin addresses.
This is the same as what the merchant would learn from the original protocol
messages.

It should be pointed out that the proposed extension BIP75 [39], aims at
providing the merchant with a publicly verifiable audit log of all transactions.
The solutions considered in this paper also aim to provide the merchant with
this audit log but without the need to know the customer’s real-world iden-
tity. In our approach, customers do not need to maintain certificates to spend
their bitcoins. Instead, we propose using the same keys that authorised the
Bitcoin transaction to provide the merchant with publicly verifiable evidence.
This evidence states that the same pseudonymous customer that authorised
the payment has agreed to the terms of the purchase, and authenticates any
new instructions provided by the pseudonymous customer. Every new payment

21

authenticates a new pseudonymous customer and the merchant does not nec-
essarily need to know their identity, but just cares that it is dealing with the
correct pseudonymous customer for each payment.

5.4. Solution Performance
The computational overhead of the solution is quite low in general. On

the customer side, the wallet already needs to carry out several cryptographic
operations for participating in the original Payment Protocol, including verifying
the merchant’s certificate chain and signature, signing the payment transaction,
and generating refund keys. Hence, an extra signature (per input) introduces
minimal overhead on the customer side. On the merchant side, the overhead is
more substantial, however it is limited to the verification of an extra signature
and the production of an extra signature for the Payment Acknowledgement.

We have implemented the modifications to the Payment Protocol and mea-
sured the performance of all the steps of both the original and the amended
Payment Protocols. All tests were carried out on a MacBook Pro running
OS X 10.9.1 with 2.3 GHz Intel Core i7 and 16 GB DDR3 RAM. The details
of the measured timing performance can be found in Table 2. The reported
measurements are for the Bitcoin Core Client while utilising 1 core. Further-
more, both signing operations in steps 3 and 8, and the verification operation
in step 9, are performed using the Secp256k1 implementation which has re-
placed OpenSSL in Bitcoin Core [47]. Each step was executed 100 times and
the reported times represent the average.

Steps 1–5 represent the customer’s perspective in the current Payment Proto-
col’s implementation. The wallet verifies the merchant’s certificate authenticity
using the chain of certificates that lead to a trusted root authority and verifies
the merchant’s signature on the Payment Request message before authorising at
least one transaction input to authorise the payment. Then, the wallet fetches a
list of pre-generated refund addresses and Step 4b only occurs if this list is empty
as a new refund address must be generated. This refund address is associated
with the payment for future reference. These steps require 74.39 ms if the list
of pre-generated refund addresses is not empty, otherwise 184.94 ms is required.
Our proposed change in Step 6 takes 0.11 ms and requires the customer’s wallet
to sign an endorsement message for the refund address, obtaining the signature
σC. In total, the time required for the customer is 185.04 ms with Step 4b, and
74.49 ms without Step 4b.

Step 7 represents the merchant’s perspective in the current Payment Proto-
col’s implementation and requires 0.29 ms to check if the payment transaction
with a single input is valid. We propose in Steps 8–9 that the merchant fetches
the transaction output referenced in the payment transaction’s input to let the
merchant check the number of bitcoins associated with each refund address.
Then, the transaction input’s public key C is used to verify the endorsement
signature. These proposed changes require 0.14 ms, and in total the time re-
quired for the merchant is 0.43 ms.

22

Customer in the current protocol
1 Verify authenticity of merchant’s certificate chain 0.83 ms
2 Verify merchant’s signature on Payment Request 0.08 ms
3 Sign a single transaction input 0.08 ms
4a Fetch list of pre-generated refund addresses RC1 , ..., RCn 0.72 ms
4b Generate new refund address RC from wallet key pool 110.55 ms
5 Update wallet address book with refund address RC 72.68 ms

Total without 4b: 74.39 ms
Total with 4b: 184.94 ms

Additional changes proposed for the customer
6 Compute endorsement signature RAC 0.11 ms

New Total without 4b: 74.49 ms
New Total with 4b: 185.04 ms

Merchant in the current protocol
7 Verify customer’s payment transaction 0.29 ms

Total: 0.29 ms
Additional changes proposed for the merchant

8 Fetch referenced transaction output 0.01 ms
9 Verify endorsement signature RAC 0.13 ms

New Total: 0.43 ms

Table 2: Time performance for proposed changes to the Payment Protocol

6. Conclusion

In this work, we considered Bitcoin’s Payment Protocol and its vulnerabil-
ity to an empirically demonstrated attack that leverages the lack of refund ad-
dress authentication in the protocol to allow malicious customers to route funds
through honest merchants to illicit traders and be able to later deny doing so.
We formally modelled the protocol, proved it is vulnerable and validated the
solution proposed previously to fix the protocol. We also presented and verified
a new alternative solution which is simpler and can have, in principle, a re-
duced computational impact than the previous one. In both cases, the solutions
provide the merchant with evidence that the refund address received during
the Payment Protocol has been digitally signed from the same pseudonymous
customer who authorised the transaction.

To the best of our knowledge, our model of the Bitcoin Payment Proto-
col, which complements previous work focusing on underlying core aspects of
blockchain and Bitcoin, is the first attempt to formally model and analyse the
security of a protocol relaying on Bitcoin. It is worth noting that to complete the
analysis we employed specific notions available in OFMC, such as pseudonyms
channels and channel abstractions conveying security goals, that allowed us to
specify a model that is tractable and can be analysed more efficiently.

23

Acknowledgements
The second and forth authors were supported by the European Research

Council (ERC) Starting Grant (No. 306994).

References

[1] G. Andresen and M. Hearn. BIP 70: Payment Protocol. Bitcoin Im-
provement Process, July 2013. https://github.com/bitcoin/bips/blob/
master/bip-0070.mediawiki.

[2] M. Arapinis, A. Gkaniatsou, D. Karakostas, and A. Kiayias. A formal
treatment of hardware wallets. In Goldberg and Moore, editors, Financial
Cryptography and Data Security (FC 2019), volume 11598 of LNCS, pages
426–445. Springer, 2019.

[3] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino. A formal model of bitcoin
transactions. In Meiklejohn and Sako, editors, Financial Cryptography and
Data Security (FC 2018), volume 10957 of LNCS, pages 541–560. Springer,
2018.

[4] S. Avizheh, R. Safavi-Naini, and S. F. Shahandashti. A New Look at
the Refund Mechanism in the Bitcoin Payment Protocol. In Financial
Cryptography, volume 10957 of Lecture Notes in Computer Science, pages
369–387. Springer, 2018.

[5] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. International Journal of Information Se-
curity, 4(3):181–208, 2005.

[6] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and refer-
ence implementations for the TLS 1.3 standard candidate. In 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May
22-26, 2017, pages 483–502. IEEE Computer Society, 2017.

[7] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Zanella-
Beguelin. Formal verification of smart contracts. In Proceedings of the
2016 ACM Workshop on Programming Languages and Analysis for Secu-
rity PLAS16, pages 91–96, 2016.

[8] Bitcoin Core Team. Bitcoin Core release notes 0.20.0, 2020. https:
//github.com/bitcoin/bitcoin/blob/master/doc/release-notes/
release-notes-0.20.0.md/.

[9] BitMEX Research. Lightning network (part 6) - over 60,000 non-
cooperative channel closures, 2020. https://blog.bitmex.com/
lightning-network-part-6-over-60000-non-cooperative-channel-closures.

24

https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0070.mediawiki
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.20.0.md/
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.20.0.md/
https://github.com/bitcoin/bitcoin/blob/master/doc/release-notes/release-notes-0.20.0.md/
https://blog.bitmex.com/lightning-network-part-6-over-60000-non-cooperative-channel-closures
https://blog.bitmex.com/lightning-network-part-6-over-60000-non-cooperative-channel-closures

[10] BitPay. Avoiding and detecting a new virus affect-
ing some bitcoin users, 2016. https://bitpay.com/blog/
avoiding-and-detecting-a-new-virus-affecting-some-bitcoin-users/.

[11] BitPay. How payment protocol is eliminating costly bitcoin pay-
ment errors: Stats and results, 2018. https://bitpay.com/blog/
payment-protocol-results.

[12] M. Bugliesi, S. Calzavara, S. Mödersheim, and P. Modesti. Security pro-
tocol specification and verification with AnBx. Journal of Information
Security and Applications, 30:46–63, 2016.

[13] Chainalysis Team. Darknet market activity higher than ever in 2019 de-
spite closures. how does law enforcement respond?, 2020. https://blog.
chainalysis.com/reports/darknet-markets-cryptocurrency-2019.

[14] K. Chaudhary, A. Fehnker, J. van de Pol, and M. Stoelinga. Modeling
and verification of the bitcoin protocol. In van Glabbeek, Groote, and
Höfner, editors, Proceedings Workshop on Models for Formal Analysis of
Real Systems, MARS 2015, volume 196 of EPTCS, pages 46–60, 2015.

[15] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe. A
comprehensive symbolic analysis of TLS 1.3. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS
2017), pages 1773–1788. ACM, 2017.

[16] D. Dolev and A. Yao. On the security of public-key protocols. IEEE
Transactions on information Theory, 2(29), 1983.

[17] Z. Duan, H. Mao, Z. Chen, X. Bai, K. Hu, and J.-P. Talpin. Formal model-
ing and verification of blockchain system. In Meiklejohn and Sako, editors,
Proceedings of the 10th International Conference on Computer Modeling
and Simulation, volume 10957 of LNCS, pages 231–235. Springer, 2018.

[18] V. Dwivedi, V. Deval, A. Dixit, and A. Norta. Formal-verification of smart-
contract languages: A survey. In International Conference on Advances in
Computing and Data Sciences, pages 738–747. Springer, 2019.

[19] C. Egger, P. Moreno-Sanchez, and M. Maffei. Atomic multi-channel up-
dates with constant collateral in bitcoin-compatible payment-channel net-
works. In Computer and Communications Security (CCS), pages 801–815.
ACM, 2019.

[20] L. Freitas, P. Modesti, and M. Emms. A Methodology for Protocol Verifica-
tion applied to EMV1. In Formal Methods: Foundations and Applications
- 21th Brazilian Symposium, SBMF 2018, Proceedings, volume 11254 of
LNCS. Springer, 2018.

25

https://bitpay.com/blog/avoiding-and-detecting-a-new-virus-affecting-some-bitcoin-users/
https://bitpay.com/blog/avoiding-and-detecting-a-new-virus-affecting-some-bitcoin-users/
https://bitpay.com/blog/payment-protocol-results
https://bitpay.com/blog/payment-protocol-results
https://blog.chainalysis.com/reports/darknet-markets-cryptocurrency-2019
https://blog.chainalysis.com/reports/darknet-markets-cryptocurrency-2019

[21] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol:
Analysis and applications. In EUROCRYPT (2), pages 281–310, 2015.

[22] D. Harz and W. J. Knottenbelt. Towards safer smart contracts: A survey
of languages and verification methods. CoRR, abs/1809.09805, 2018.

[23] M. Hearn. Re: [Bitcoin-development] BIP 70 refund field. Bitcoin-
Development, Mar. 2014. http://sourceforge.net/p/bitcoin/mailman/
message/32157661/.

[24] J. Herzog. A computational interpretation of dolev-yao adversaries. Theor.
Comput. Sci., 340(1):57–81, 2005.

[25] E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth,
B. M. Moore, D. Park, Y. Zhang, A. Stefanescu, and G. Rosu. KEVM:
A complete formal semantics of the ethereum virtual machine. In 31st
IEEE Computer Security Foundations Symposium, CSF 2018, pages 204–
217. IEEE Computer Society, 2018.

[26] Keaton (BitPay Support). Which wallets work best for a bitpay payment?
Which wallets are compatible?, June 2020. https://support.bitpay.com/
hc/en-us/articles/115005701523.

[27] R. Klomp and A. Bracciali. On symbolic verification of bitcoin’s script lan-
guage. In García-Alfaro, Herrera-Joancomartí, Livraga, and Rios, editors,
Data Privacy Management, Cryptocurrencies and Blockchain Technology -
ESORICS 2018 International Workshops, DPM 2018 and CBT 2018, Pro-
ceedings, volume 11025 of LNCS, pages 38–56. Springer, 2018.

[28] G. Lowe. A hierarchy of authentication specifications. In CSFW’97, pages
31–43. IEEE Computer Society Press, 1997.

[29] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 254–269. ACM, 2016.

[30] P. McCorry, M. Möser, S. F. Shahandashti, and F. Hao. Towards bit-
coin payment networks. In ACISP (1), volume 9722 of Lecture Notes in
Computer Science, pages 57–76. Springer, 2016.

[31] P. McCorry, S. F. Shahandashti, D. Clarke, and F. Hao. Authenticated
Key Exchange over Bitcoin. In Security Standardisation Research, volume
9497 of Lecture Notes in Computer Science, pages 3–20. Springer, 2015.

[32] P. McCorry, S. F. Shahandashti, and F. Hao. Refund attacks on bitcoin‘s
payment protocol. In 20th Financial Cryptography and Data Security con-
ference, 2016.

[33] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry. Sprites
and state channels: Payment networks that go faster than lightning. In
Financial Cryptography and Data Security, pages 508–526. Springer, 2019.

26

http://sourceforge.net/p/bitcoin/mailman/message/ 32157661/
http://sourceforge.net/p/bitcoin/mailman/message/ 32157661/
https://support.bitpay.com/hc/en-us/articles/115005701523
https://support.bitpay.com/hc/en-us/articles/115005701523

[34] S. Mödersheim. Algebraic properties in Alice and Bob notation. In Inter-
national Conference on Availability, Reliability and Security (ARES 2009),
pages 433–440, 2009.

[35] S. Mödersheim and L. Viganò. Secure pseudonymous channels. In Com-
puter Security–ESORICS 2009: 14th European Symposium on Research in
Computer Security, Saint-Malo, France, September 21-23, 2009, Proceed-
ings, page 337. Springer, 2009.

[36] S. Mödersheim and L. Viganò. Sufficient conditions for vertical compo-
sition of security protocols. In Proceedings of the 9th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS ’14,
pages 435–446, New York, NY, USA, 2014. ACM.

[37] P. Modesti. AnBx: Automatic generation and verification of security pro-
tocols implementations. In 8th International Symposium on Foundations
& Practice of Security, volume 9482 of LNCS. Springer, 2015.

[38] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, November
2008. https://bitcoin.org/bitcoin.pdf.

[39] J. Newton, M. David, A. Voisine, and M. James. BIP 75: Out of Band Ad-
dress Exchange using Payment Protocol Encryption. Bitcoin Improvement
Process, Nov. 2015. https://github.com/bitcoin/bips/blob/master/
bip-0075.mediawiki.

[40] R. O’Connor. Simplicity: A new language for blockchains. In Proceedings of
the 2017 Workshop on Programming Languages and Analysis for Security,
PLAS@CCS 2017, pages 107–120. ACM, 2017.

[41] J. Poon and T. Dryja. The bitcoin lightning network: Scal-
able off-chain instant payments, 2016. https://lightning.network/
lightningnetwork-paper.pdf.

[42] N. Schneider and M. Corallo. BIP 21: URI Scheme. Bitcoin Improve-
ment Process, 2012. https://github.com/bitcoin/bips/blob/master/
bip-0021.mediawiki.

[43] K. Torpey. Is bitcoin’s lightning network ready to replace alt-
coin use cases?, 2020. https://cryptonews.com/exclusives/
is-bitcoin-s-lightning-network-ready-to-replace-altcoin-use-6511.
htm.

[44] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and
M. T. Vechev. Securify: Practical security analysis of smart contracts.
In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, pages 67–82. ACM, 2018.

27

https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bips/blob/master/bip-0075.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0075.mediawiki
https://lightning.network/lightningnetwork-paper.pdf
https://lightning.network/lightningnetwork-paper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0021.mediawiki
https://cryptonews.com/exclusives/is-bitcoin-s-lightning-network-ready-to-replace-altcoin-use-6511.htm
https://cryptonews.com/exclusives/is-bitcoin-s-lightning-network-ready-to-replace-altcoin-use-6511.htm
https://cryptonews.com/exclusives/is-bitcoin-s-lightning-network-ready-to-replace-altcoin-use-6511.htm

[45] M. Turuani, T. Voegtlin, and M. Rusinowitch. Automated verification
of electrum wallet. In Clark, Meiklejohn, Ryan, Wallach, Brenner, and
Rohloff, editors, Financial Cryptography and Data Security - FC 2016 In-
ternational Workshops, BITCOIN, VOTING, and WAHC, volume 9604 of
LNCS, pages 27–42. Springer, 2016.

[46] W. Wei. Malicious chrome extension hijacks cryptocurren-
cies and wallets, 2014. https://thehackernews.com/2014/04/
malicious-chrome-extension-hijacks.html.

[47] P. Wuille. Switch to libsecp256k1-based ECDSA validation. Bitcoin
Github Repository, Nov. 2015. https://github.com/bitcoin/bitcoin/
pull/6954.

Appendix

Protocol: BIP70 AnB

Types:

Agent C1,C2,M;
Number paynow,BTC,BTC1,BTC2,t1,t2,MM,UM,ZM,MM1,RC1,RC2;
PublicKey BAM,BC1,BC2;
Function [Agent -> PublicKey] sk;
Function [Number,Number -> Number] tr;
Function [Untyped -> Number] hash

Definitions:

Bitcoin transaction outputs (previous transaction)
OutC1: BTC1,hash(BC1);
OutC2: BTC2,hash(BC2);

we ignore inputs as they are not relevant for the next transaction
TauC1: tr(OutC1);
TauC2: tr(OutC2);

Bitcoin transaction inputs
PiC1 : {hash(TauC1)}inv(BC1),BC1;
PiC2 : {hash(TauC2)}inv(BC2),BC2;

Bitcoin transaction inputs
Pi: PiC1,PiC2;

Payment request from merchant
PaymentRequest:{hash(BAM),BTC,t1,t2,MM,UM,ZM}inv(sk(M));

SilkRoad attack
merchant does not have a guarantee that
refund addresses RCx are authorised by BCx

<-- UNCOMMENT THESE LINES TO REPRODUCE THE ATTACK
and COMMENT the other definition of RACx
Refund address authorization (original specification)

28

https://thehackernews.com/2014/04/malicious-chrome-extension-hijacks.html
https://thehackernews.com/2014/04/malicious-chrome-extension-hijacks.html
https://github.com/bitcoin/bitcoin/pull/6954
https://github.com/bitcoin/bitcoin/pull/6954

RAC1: RC1,BTC1;
RAC2: RC2,BTC2;

McCorry et al. solution: the payment request
is needed to link the refund request to the transaction
RAC1: {PiC1,RC1,BTC1,PaymentRequest}inv(BC1);
RAC2: {PiC2,RC2,BTC2,PaymentRequest}inv(BC2);

alternative solution
RAC1: {M,RC1,BTC1,PaymentRequest}inv(BC1);
RAC2: {M,RC2,BTC2,PaymentRequest}inv(BC2);

TauC: Pi,(BTC,hash(BAM))

The fix includes a message digitally signed
with the session private key of C1 or C2 - inv(BCx)
The signed message includes the identities of M and the
Refund addresses RCx, the bitcoin amount BTCx, PiCx
Note that C1,M are required to achieve the weak authentication goal.
In practice C1, M may be an unique identifier on which
the parties agree, a public key for example

Knowledge:

initial knowledge of agents
M does not know C1,C2 - C1,C2 know each other - C2 does not know M
C2: C2,C1,sk,hash,tr;
C1: C1,M,C2,sk,hash,paynow,tr;
M: M,sk,inv(sk(M)),hash,paynow,t1,t2,tr

Actions:

the previous transactions are exchanged between C1,C2
made public so the intruder can learn them
this is a fictional exchange as this information
is already public on the blockchain
C1 -> C2: TauC1
C2 -> C1: TauC2

starting payment protocol
[C1] *->* M: paynow

payment request signed by the merchant
M *->* [C1]: PaymentRequest

C1,C2 cooperate to construct a transaction
(not part of payment protocol)
C1 *->* C2: RAC1,M,PaymentRequest,BC1
C2 *->* C1: RAC2,PiC2

Payment
[C1] *->* M: ZM,TauC,RAC1,RAC2

Payment Acknowledgement
original specification
M *->* [C1]: ZM,TauC,RAC1,RAC2,MM1

29

McCorry et al. and alternative solution
M *->* [C1]: {ZM,TauC,RAC1,RAC2,MM1}inv(sk(M))

end of the payment protocol

agents names are revealed to M
[C1] *->* M: C1,C2

TauC is made public (broadcasted) and learned by the intruder
M -> C1: TauC

Public Keys are made available
C1 -> M: BC1,BC2,TauC1,TauC2

M -> C1: BAM
C1 -> C2: BAM

Goals:

M has a guarantee that RCx,BTCx are provided by and linked to Cx
M weakly authenticates C1 on RC1,BTC1
M weakly authenticates C2 on RC2,BTC2

RCx are confidential
RC1,RC2 secret between M,C1,C2

other goals
M weakly authenticates [C1] on RC1,BTC1,RC2,BTC2
M weakly authenticates [C1] on RC1,BTC1
M weakly authenticates [C1] on BC1

30

	Introduction
	Background
	Bitcoin
	Formal Modelling Approach
	Related Work
	Bitcoin Payment Protocols
	Formal Modelling and Verification

	The Payment Protocol
	Modelling BIP70
	Agents' Initial Knowledge
	Security Goals
	Protocol Actions
	Protocol Message Details

	Verification of the Silkroad Trader Attack
	Silkroad Trader Attack
	Model Checking
	Real-World Experiments
	Proof of Concept Wallet
	Simulation of the Attack
	Payment Processors' Responses

	Verification of the Proposed Solutions
	The Original Solution
	An Alternative Solution
	Discussion
	Solution Performance

	Conclusion

