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Abstract

The white matter of the brain is increasingly understood to play a crucial

role in neurodegenerative diseases including mild cognitive impairment (MCI) and

Alzheimer’s disease (AD). Diffusion tensor imaging (DTI) has been developed to image

the white matter in vivo, and several parameters such as fractional anisotropy (FA),

mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) may be

computed from the acquired signal to infer the integrity of the tissue microstructure.

The studies carried out in this thesis aim to improve DTI analysis for clinical

applications and investigate the association of DTI signal with the underlying white

matter physiology. Imaging data and neurophysiological assessments used in this

thesis were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

A qualitative comparison between three different segmentation strategies of

the corpus callosum emphasised the need for a consistent analysis protocol across

DTI studies. It was demonstrated that the median of pixel values in a manually

delineated ROI may provide more accurate measurements compared to the more

widely used atlas-based ROI. A study of corpus callosum sub-regions using this

segmentation strategy revealed statistically significant (p<0.05) alterations in DTI

parameters in specific regions projecting to motor-related areas of the brain in MCI

and AD, compared with healthy ageing. This involvement of the corpus callosum

was supported by neurophysiological assessments of subjects that showed increased

motor deficits in MCI patients such as tremors and gait imbalance.

Further evidence to support these results was obtained from tractography-

based analysis of the corpus callosum of these subjects where similar alterations were

xx



found in DTI parameters in motor-related regions (p < 0.003). Results obtained

from NODDI-DTI (an adaptation of Neurite Orientation and Dispersion Density

Imaging (NODDI) for clinically acquired images) analysis of the healthy ADNI

cohort indicated a decrease in neurite density in the corpus callosum with ageing

that correlated with changes in FA. Adaptation of advanced methods to clinically

acquired images was thus demonstrated to provide more specific information about

the white matter changes, extending what was achieved in the conventional DTI

analysis.

In the final section of the thesis, numerical models of healthy white mat-

ter, acute and chronic demyelination, and neuroinflammation were simulated to

investigate the associations of FA, MD, RD, and AxD with underlying physiological

mechanisms. The results indicated that acute demyelination generated a larger

decrease in FA and larger increases in MD, RD, and AxD compared to other disease

models - the pattern that is most seen in clinical studies. The study also investigated

the dependence of these metrics on the transverse relaxation time (T2) of the white

matter and its compartments. The results suggested that separating out the effects of

relaxation and diffusion on the acquired signal provided a more accurate estimation

of DTI metrics, achievable for the white matter as a whole at typical clinical scan

settings, and for its compartments at more advanced scan settings.

Data collected in this thesis using DTI, tractography, and NODDI-DTI

suggested that a reduction in fibre packing density was a major factor contributing

to the decrease in FA and increases in MD, RD, and AxD, as widely reported in

ageing, MCI, and AD. These results were demonstrated in the corpus callosum,

but are likely to hold in other white matter tracts as well. The results from white

matter modelling supported these findings, where acute demyelination (modelled as

a decrease in fibre packing density) was found to cause the largest alterations in FA,

MD, RD, and AxD, compared to other disease cases modelled.

In summary, the collected work in this thesis presents an analysis framework

enabling application of research developments in clinical DTI, supported by improved

specificity gained from modelling.
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Chapter 1

Introduction and Background

1.1 Alzheimer’s disease and mild cognitive impairment

Dementia is one of the leading health challenges in the world. It describes a set
of symptoms including memory loss and impaired mental and cognitive faculties,
leading to difficulty carrying out routine tasks in daily life. Alzheimer’s disease
(AD) is a neurodegenerative disorder characterised by progressive deficits in memory
and cognitive function and the most common cause of dementia. The prevalence
of AD was estimated to be at about 5% in Europe [Niu et al., 2017] with a huge
socio-economic impact in the society. Many risk factors for AD have been identified,
including age, gender, smoking, obesity, and diabetes [Li et al., 2016].

The first case of AD was reported in 1906 by Dr. Alois Alzheimer [Hippius
and Neundörfer, 2003; Möller and Graeber, 1998]. When examining post-mortem
brain tissue of a patient who had presented with symptoms including memory loss,
aggression, and confusion, he discovered abnormal histological features such as
senile plaques and neurofibrillary tangles. Plaques are extracellular deposits of the
protein amyloid beta (Aβ) and neurofibrillary tangles are phosphorylated forms of
the protein tau [Brion, 1998; Cras et al., 1991]. Despite extensive research, it is
still unclear whether abnormal Aβ and tau deposition are causing the pathological
changes leading to AD or their by-products.

When a person exhibits symptoms of cognitive decline greater than what is
normally expected with their age but not sufficient to be diagnosed with dementia,
they are categorised as a patient with mild cognitive impairment (MCI). Patients
with MCI are at a higher risk of progressing to AD and AD dementia [Gauthier
et al., 2006].
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1.1.1 Symptoms of AD

The symptoms of AD are manifold. Cognitive deficits including impaired functions
of memory, awareness, and judgement are recognised as clinical manifestations of AD
pathology and have been extensively studied [Bature et al., 2017]. Neuropsychiatric
symptoms such as apathy, depression, anxiety, and aggression have been reported in
patients with AD, although behavioural and other non-memory related symptoms
were found to be more common in younger patients [Zhao et al., 2016; Barnes et al.,
2015]. Neuroimaging studies have mapped these symptoms to various regions of
the brain network and neurochemical associations have been reported with tau, as
well as with acetylcholine and serotonin which are neurotransmitters involved in
communication processes in the brain [Boublay et al., 2016; Rosenberg et al., 2015;
Bruen et al., 2008].

Sensory and motor impairments have been reported in pre-clinical and very
early stages of AD, even when cognitive and neuropsychiatric symptoms have not
yet presented. Impairment in olfactory function has been observed to be an early
symptom, significantly associated with memory deficits and a reduced volume of
hippocampus [Murphy, 2019; Albers et al., 2015]. Visual impairment, due to a loss of
retinal ganglion cells and a subsequent reduction in retinal layer thickness, has been
observed in patients with AD [Javaid et al., 2016; Bublak et al., 2011]; as well as a
deficit in auditory function corresponding to pathology in the brain auditory pathway
[Golden et al., 2015]. Reduced motor functions, including tremor, impaired gait, and
rigidity of the limbs have also been reported [Albers et al., 2015]. These non-memory
related symptoms have been observed to be some of the earliest manifestations in
the course of AD pathology.

1.1.2 Age and gender as risk factors for AD

Ageing is the single biggest risk factor for AD. The human body becomes increasingly
vulnerable as it ages, often getting pushed into a pre-disease or disease state by
dysregulation in various functional networks. The pre-disease state is thought to be
potentially reversible and is a major area of focus for research into drug development.
Dyshomeostasis of body systems with ageing have been found to be associated with
increased risk of incidence of AD [Riedel et al., 2016].

The incidence of AD has also been observed to be greater in women than in
men with a relative risk of 1.33 [Li et al., 2016]. Traditionally, this was thought
to be due to an average longer lifespan for women than men, but recent evidence
has helped establish that some risk factors affect both genders in different ways.
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For instance, there are risk factors that may have a stronger effect in women (e.g.
the Apolipoprotein E (APOE) genotype), or may be more common in women (e.g.
socio-cultural factors such as lower education) or affect only women (e.g. menopause)
[Nebel et al., 2018]. Longitudinal rate of cognitive decline in MCI has been reported
to be greater in women than in men [Lin et al., 2015]. Clinical trials testing new
drugs for treatment of AD have considered these differences in outcomes for both
genders while recruiting subjects, but have often neglected them when analysing the
effects of drugs on patients. Gender has now been established to be an important
risk factor for AD and needs to be given appropriate importance in clinical studies
for better advances in diagnosis and individualised treatment development [Mielke,
2018].

In the investigations carried out in this thesis, the effects of age and gender
on study outcomes will be accounted for by including them in statistical testing for
differences between healthy ageing, MCI, and AD to ensure that individual variations
in the impacts of these risk factors are addressed.

1.1.3 Diagnosis criteria for MCI and AD

A set of criteria for clinical diagnosis of MCI have been proposed where MCI was
defined as the pre-dementia phase of AD when symptoms have already started to
appear [Albert et al., 2011]. Diagnosis of MCI require the expert judgement of a
doctor based on the results of clinical and neuropsychological examinations. The
currently followed diagnostic criteria have been summarised in box 1.1. Although
different imaging biomarkers have been proposed for MCI including Aβ and tau
levels in the cerebrospinal fluid (CSF), these require further validation and therefore
have been recommended for use in research settings only. Longitudinal follow-ups
were strongly advised for patients with MCI to monitor symptoms and track their
progression to AD.

Box 1.1: MCI diagnostic criteria

• Evidence of impairment in cognitive domains such as memory, language,
or executive functions

• Ability to independently carry out daily tasks despite the problems men-
tioned above

• Cognitive deficits not being sufficient for a diagnosis of dementia
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Currently, there are no means to conclusively diagnose AD until post-mortem.
However, a diagnosis of ‘probable AD’ may be given to the patient while alive.
A set of criteria for clinical diagnosis of probable AD has been proposed in 1984
[McKhann et al., 1984]. Clinically presenting symptoms were to be supported by
other relevant factors such as family history and evidence of cortical atrophy on
computed tomography (CT) scans. With more information on AD gained as a result
of extensive research over the years, AD diagnostic criteria have been revised in 2011
as summarised in box 1.2 [McKhann et al., 2011].

Box 1.2: AD diagnosis criteria

• Dementia established through clinical and neuropsychological exams

• Cognitive deficits in multiple functional areas and progressive loss of
memory

• Gradual onset of symptoms over a span of months or years

• Patient aged between 40 and 90 years

• Absence of other brain disorders

• Biomarkers of Aβ deposition in the brain:

– Low levels of Aβ42 in CSF samples
– Positron emission tomography (PET) scans showing amyloid deposi-

tion as plaques in the brain

• Biomarkers of neuronal injury:

– Elevated levels of tau protein in CSF samples
– Decreased metabolism in the temporo-parietal cortex in PET scans
– Brain atrophy as imaged using magnetic resonance imaging (MRI)

1.2 The brain

1.2.1 Neuron

A neuron is the basic building block of the human nervous system specialised in
conduction of electrical impulses. It has three main components - the cell body,
dendrites, and axons. The cell body contains the nucleus and various organelles,
and controls the functions of the cell. It projects to axons and dendrites, which
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are responsible for communication between neurons; dendrites bring information
into the cell body and axons carry information out to the next neuron. Axons are
longer projections than dendrites and may be of the order of 1 metre. They have an
insulating layer of fatty tissue around them called myelin that enables transmission
of electrical nerve impulses efficiently through the nervous system. Periodic gaps in
the myelin sheath, called nodes of Ranvier, facilitate rapid saltatory conduction of
impulses.

A schematic of the neuron is given in Figure 1.1 along with some of the
other cells in the brain. Oligodendrocytes are glial cells responsible for producing
myelin. They repeatedly envelop axons with myelin layers forming an insulating
sheath. Neighbouring segments of axons may be covered with myelin produced by
different oligodendrocytes. Astrocytes are a different type of glial cells responsible
for specialised functions such as information transmission and processing in the brain.
They release neurotropic factors, aid the development of neurons, are involved in
neurotransmitter metabolism, and maintain pH and K+ levels [Dong and Benveniste,
2001]. Oligodendrocytes and astrocytes are collectively called the macroglia. On
the other hand, microglia are cells that remove brain debris and are macrophage
cells activated by disturbances to brain homeostasis by events such as infection or
trauma [Ginhoux et al., 2013].

Cell bodies, dendrites, and axon terminals collectively make up the grey
matter of the brain. It has a light grey appearance in living tissue arising from cell
bodies and blood vessels. On the other hand, axons appear white due to the presence
of myelin, thus constituting the white matter of the brain. White matter can be

Figure 1.1: A schematic of cells in the white matter.
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thought of as communication pathways in the brain connecting different grey matter
tissues with each other.

1.2.2 Grey matter in ageing, MCI, and AD

The grey matter of the brain is known to be affected by degenerative processes,
whether as part of normal ageing or diseases such as MCI and AD. Global brain
atrophy has been reported in ageing brains, but a few studies have suggested that
lifestyle factors such as physical activity and balanced diet may preserve grey matter
volume [Batouli and Saba, 2017; Aribisala et al., 2013]. Increasing rate of atrophy
with age in the medial temporal lobe, which contains grey matter structures such as
the hippocampus responsible for memory and other cognitive functions, has been
used to predict future cognitive decline in healthy individuals [Ritchie et al., 2015;
Rusinek et al., 2003]. On the other hand, a few studies have reported relative
preservation of the medial temporal lobe with age but did not compare results with
cognitive levels of study subjects [Good et al., 2001]. Prediction of brain age (as
opposed to chronological age) based on grey matter changes has been proposed as a
means to evaluate degeneration and mortality to support management of clinical
care [Cole et al., 2018].

Grey matter atrophy has also been reported in MCI in the medial temporal
lobe, specifically in the hippocampus [Yi et al., 2016; Pennanen et al., 2005; Karas
et al., 2004]. Similar changes have also been found in the thalamus, amygdala,
and putamen [Yi et al., 2016; Balthazar et al., 2009; Karas et al., 2004]. Along
with grey matter atrophy, abnormal tau deposition has also been observed in the
medial temporal lobe [Cho et al., 2016]. Neuroinflammation has been reported in
amyloid-positive MCI patients where brain regions with inflammation and amyloid
deposition were found to coincide [Parbo et al., 2017]. Longitudinal tracking of these
changes may support prediction of patient conversion from MCI to AD [Yi et al.,
2016; Sexton et al., 2010].

Grey matter changes reported in patients with AD are similar to that in
MCI, though far more extensive. Global grey matter atrophy has been observed in
AD, including in the medial temporal lobe, specifically the hippocampus, and limbic
regions [Dicks et al., 2019; Phillips et al., 2019; Yi et al., 2016]. Grey matter atrophy
has been associated with cognitive deficits, with an early onset of AD observed
to progress faster than a late onset [Agosta et al., 2015]. However, longitudinal
tracking of patients has revealed a heterogeneous pattern of degeneration. Therefore,
monitoring atrophy in persons with a genetic risk of AD has been proposed to help
track symptoms and slow down disease progression during pre-clinical stages of AD
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[Reiter et al., 2017]. In addition to atrophy, tau pathology has also been reported
in most cortical regions in AD [Cho et al., 2016]. Although neuroinflammation in
AD has been detected, it was not found to be associated with tau. Combining this
result with the one described previously where inflammation was found to coincide
with amyloid deposition, it has been suggested that inflammation may precede tau
pathology and may carry a protective role to remove Aβ [Parbo et al., 2018; Suridjan
et al., 2015].

1.2.3 White matter in ageing, MCI, and AD

Post-mortem studies of the human brain have found that age-related volume loss
in the white matter may exceed that in grey matter [Piguet et al., 2009]. This
atrophy has been attributed to a loss of myelinated nerve fibres [Tang et al., 1997].
White matter lesions may often be observed in the ageing brain and have been
associated with grey matter atrophy and cognitive decline [Maniega et al., 2015;
Aribisala et al., 2013]. Neuroinflammation has also been observed in the white
matter, suggested to be more prominent than in the grey matter [Gefen et al.,
2019]. Age-related alterations in the white matter microstructure have typically
been observed in association (superior and inferior longitudinal fasciculi, inferior
fronto-occipital fasciculus, and uncinate fasciculus), thalamic (anterior, posterior and
superior thalamic radiations), commissural (forceps major and minor), and limbic
(cingulate gyrus, parahippocampal cingulum) tracts [Cox et al., 2016; Cremers et al.,
2016].

Alterations in white matter properties have been reported in patients with
MCI, even when their grey matter structures were relatively preserved. For instance,
the white matter integrity has been found to be damaged in limbic tracts, the
corpus callosum, and more generally in the temporal, frontal, and parietal white
matter in MCI [Zhuang et al., 2012; Ukmar et al., 2008; Medina et al., 2006]. These
pathological changes have been found to be similar to that reported for AD, although
not as extensive. They have been associated with grey matter atrophy and cognitive
impairment, and reportedly predicted conversion of HC to MCI [Giulietti et al.,
2018; Doi et al., 2015; Debette and Markus, 2010]. Neuroinflammation has also been
observed in the white matter in MCI [Wang et al., 2016].

More widespread damage to the white matter has been reported in AD. Early
impacts of disease mechanisms have been observed in the temporal stem, which
is the white matter tract connecting the temporal and frontal lobes [Hanyu et al.,
1998]. Although many studies have investigated white matter changes in AD, there
is still no consensus on whether these are primary effects of underlying pathological
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Figure 1.2: (a) The right brain hemisphere as viewed from the left side with the
corpus callosum marked in orange (b) Brain as viewed from the top with the corpus
callosum fibres shown to be connecting both hemispheres. Images have been adapted
with permission from Cover et al. [2018] and wileyessential.com.

mechanisms, or occur secondary to grey matter atrophy [Kaskikallio et al., 2019;
Caballero et al., 2018; McAleese et al., 2017; Fischer et al., 2015]. Extensive damage
has been reported in the global brain white matter, including in the corpus callosum,
cingulum, and the association tracts [Mayo et al., 2017]. This has also been found
to be influenced by Aβ deposition [Vipin et al., 2019]. Local interactions between
various factors as well as the sequence of these events have been reported to affect
both grey matter and white matter in different ways [Villain et al., 2010].

1.2.4 Corpus callosum

The corpus callosum is the largest white matter tract in the human brain and consists
of a bundle of fibres connecting the left and right hemispheres. It is also the largest
of the commissural tracts connecting corresponding regions in the hemispheres. The
size of the corpus callosum has been suggested to be influenced by ethnicity, genetic
factors, and gender [?Woldehawariat et al., 2014; Sullivan et al., 2001], although some
studies have reported evidence that suggests the contrary [Bishop and Wahlsten,
1997; Pozzilli et al., 1994]. Schematics of the brain from an axial (top) view and that
of a brain hemisphere from a sagittal (side) view are shown in Figure 1.2 with the
corpus callosum annotated.

The corpus callosum is known to be a heterogeneous bundle of fibres with
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differing diameters [Aboitiz et al., 1992]. It continues to grow in area and mature
through childhood into adolescence. Different parts of the corpus callosum have
been reported to develop at different rates with the peak maturity of development
achieved in mid-life (between 30 and 45 years of age) [Prendergast et al., 2015].
Several studies of the corpus callosum have suggested that anterior regions may be
affected by age-related mechanisms earlier than posterior regions [Slater et al., 2019;
Prendergast et al., 2015], although a few investigations have reported no significant
differences between the effects of age on different regions [Bennett et al., 2017].
Atrophy of the corpus callosum has been associated with cognitive and motor deficits
in healthy ageing, MCI, and AD [Qiu et al., 2016; Lee et al., 2016; Wang et al., 2015b;
Zhu et al., 2012; Ryberg et al., 2007]. Changes in callosal volume and thickness have
been attributed to a variety of reasons including demyelination and axonal damage
[Luders et al., 2010].

1.3 Theories of AD pathogenesis

Several potential sequences of events in the brain have been proposed as leading
to AD pathogenesis. Although it is not possible within the scope of this thesis to
describe them in depth, the primary theories are highlighted here.

1.3.1 Neuroinflammation

Inflammation in the brain has been widely reported as involved in AD pathogenesis,
although it is not quite clear whether it plays a protective or harmful role [Steardo
et al., 2015; Latta et al., 2015]. It is possible that Aβ accumulation triggers an
inflammatory reaction, but environmental risk factors of AD may modify the response
of the brain immune system [Heneka et al., 2015]. Molecular characteristics of
neuroinflammation may prove to be a critical area of research in future studies of
drug development [Van Eldik et al., 2016].

1.3.2 Trace metals and oxidative stress

Oxidative stress has now been established as a significant factor contributing to
the pathogenesis of AD. Trace metals in the brain, such as iron, copper, and
zinc, may potentially bind to high affinity sites on Aβ, catalysing free radical
generation and leading to accumulation of reactive oxygen species and oxygen damage
over time [Cheignon et al., 2018; González-Reyes et al., 2017; Huang et al., 2016].
Oxidative stress and abnormal mitotic signalling (required for cell division processes)
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Figure 1.3: A diagram of the amyloid cascade hypothesis. The figure shows the
perceived progression of biomarkers over time in AD pathology. Each biomarker
needs to be above a threshold level to be detected. Picture obtained with permission
from Jack Jr. et al. [2013]

may independently trigger disease mechanisms, despite both being necessary for
progression to AD [Zhu et al., 2004]. Although not sufficient to provide a complete
picture of AD pathogenesis, oxidative stress has been established to be closely
associated with the disease.

1.3.3 Tau hypothesis

This theory proposes a critical role for tau aggregates in triggering AD pathology.
While initially formed in only some parts of the brain, they later propagate to
other regions and gradually lead to neurodegeneration [Kametani and Hasegawa,
2018; Maccioni et al., 2010]. Tau phosphorylation has been hypothesised to be a
neuronal response against degenerative mechanisms such as oxidative stress [Lee
et al., 2005]. A possibility of Aβ and tau triggering AD pathogenesis together has
also been proposed [Ittner and Götz, 2011; Small and Duff, 2008].

1.3.4 The amyloid cascade hypothesis

The most widely cited theory of AD pathogenesis is arguably the amyloid cascade
hypothesis, which consists of the following sequence of events [Jack Jr. et al., 2013].
Tau aggregates start forming in the brain triggering the gradual accumulation of
Aβ peptides and leading to inflammation, oxidative stress, and subsequent vascular
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and neuronal damage. Aβ deposition accelerates tau pathology resulting in the
deposition of neurofibrillary tangles and eventual neuronal death. The last of
clinically detectable symptoms to arise are deficits in memory and other executive
functions. Although this model of AD remains popular, it has been criticised for
an overly simplistic and linear trajectory of aetiology [Herrup, 2015; Reitz, 2012].
A diagrammatic representation of AD progression under the framework of this
hypothesis has been given in Figure 1.3. Although the role of amyloid in AD has not
been discarded, the amyloid cascade theory by itself has been demonstrated to be
incomplete, as inferred from failures in drug trials that targeted amyloid in patients
with AD [Reitz, 2012].

1.3.5 Myelin

Even though the amyloid cascade hypothesis is widely accepted, clinical trials that
reduced Aβ deposition in the brain have failed to improve cognitive functions in
patients with AD, suggesting that the theory may not be sufficient to explain AD
pathogenesis [Reitz, 2012]. Instead, AD has been hypothesised to be a disease of
the white matter [Bartzokis, 2011]. This theory has been developed based on the
results of neuroimaging studies that showed degenerative changes in the white matter
occurring years before and independent of grey matter atrophy (see section 1.2.3).
It suggests that age-related myelin degeneration may be a trigger for AD-related
pathological mechanisms. Processes occurring in the brain to repair myelin have
been postulated to lead to the production of Aβ and tau. AD is thus regarded to be
a ‘homeostatic response’ to the breakdown of myelin [Bartzokis, 2011, 2004].

This theory has also looked at AD pathogenesis from an evolutionary point of
view. It suggests that myelin is the component in the brain that is the most recently
evolved and is therefore vulnerable to damage being the weakest link. Rather than
discounting the contributions of Aβ and tau to AD aetiology, this theory attempts
to bring a broader perspective to AD by combining several aspects and pathways of
the disease. It may require modifications in the future as more information on the
molecular, epidemiologic, pathologic, and mechanistic characteristics of myelin and
white matter pathways is unravelled [Bartzokis, 2011].

1.4 Imaging in AD

Various imaging modalities may be utilised in different stages of AD to detect and
investigate biomarkers, and provide suitable tools to test the validity of hypotheses
described in section 1.3. Some of them have been summarised here in the context of
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clinical diagnosis of AD.
Aβ is now known to have accumulated in the brain by early and cognitively

normal phases of AD. This may be reflected in the abnormal Aβ levels in patient
CSF samples. Aβ deposits may also be visualised on PET scans of the brain
where a radiotracer called Pittsburgh Compound-B (PiB) is used to image amyloid.
Fibrillar Aβ deposits have been observed in PET scans of cognitively normal elderly
individuals with a high genetic risk of AD and have been associated with accelerated
brain atrophy and cognitive decline [Petersen et al., 2016; Reiman et al., 2009].
Interestingly, Aβ accumulation has also been observed in individuals who preserve
their cognitive functions at follow-ups. This has been attributed to a relatively high
cognitive reserve in these individuals [Jack Jr. et al., 2014; Ewers et al., 2013].

Subsequent neurodegeneration may be reflected in the abnormal tau levels in
CSF samples of the patient. Tau deposition may also be visualised on PET scans
using fluorodeoxyglucose (FDG) tracer which tracks glucose consumption. Metabolic
rate of glucose in the brain has been reported to decrease several years before clinical
symptoms of AD manifest [Landau et al., 2011]. FDG-PET has been validated to
be an excellent tool to evaluate and diagnose AD at an early stage when clinical
symptoms of the disease may not yet have presented [Cabral et al., 2015; Jagust
et al., 2007]. In contrast to amyloid-PET scans, which have not correlated well with
cognitive decline in all cases, a negative FDG-PET scan has been found to be a
strong predictor of clinical stability [Iaccarino et al., 2019].

By early stages of clinically diagnosable MCI, brain atrophy becomes de-
tectable on structural MRI scans. Results of studies investigating atrophy in MCI
have been discussed in section 1.2.2. Cognitive abilities start to decline by a de-
tectable measure in patients with MCI and AD. The imaging biomarkers described
above may be detectable in patients prior to manifestation of clinical symptoms;
whereas cognitive decline is typically observed in patients at a later stage in the
disease course, i.e., diagnosable MCI or probable AD [McKhann et al., 2011].

1.4.1 Imaging the white matter

Diffusion tensor imaging (DTI) is an MRI technique that can map the diffusion of
water molecules in the brain, and is capable of acquiring an image with a typical
resolution of 1-3 mm. It has evolved to become an important tool in neuroscience.
DTI may be used to investigate the properties of brain white matter in healthy ageing
and diseases. A brief summary on DTI acquisition and mathematical formulations
of different parameters that characterise diffusion in the tissue has been provided in
chapter 2. Although white matter alterations have been detected in MCI and AD
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compared to healthy ageing, it is not yet clear whether these are secondary effects of
grey matter atrophy or a primary cause of disease pathology. There is a need to
investigate these changes and explore their scope as potential biomarkers of MCI
and AD.

1.5 Motivation and Aims

The importance of imaging biomarkers has been acknowledged in the current di-
agnosis criteria for MCI and AD (boxes 1.1 and 1.2). Biomarkers also play a big
role in monitoring subject progression in drug development trials. However, their
accuracy depends on the manner in which they are measured; for instance, qual-
itative inspection or manual, semi-automated, or automated segmentation of the
regions of interest (ROI) may provide different measurements [Frisoni et al., 2013].
Although many biomarkers have been proposed and developed in research settings, a
majority of them have not been successfully translated into routine clinical practice
[Kilimann et al., 2017]. A standardised protocol of quantitative measurement of
imaging biomarkers may help speed this up, and enable comparison across studies.

DTI is an excellent tool to image the brain white matter and investigate its
role in disease mechanisms in MCI and AD. Many advances have been made in
the field of DTI acquisition and processing, some of which have been covered in
chapter 2. Routinely acquired clinical DTI scans are typically not suited for analysis
using these advanced methods. The studies carried out in this thesis aim to utilise
conventional and advanced analyses to extract detailed and specific information
from clinical DTI scans.

Standardisation of analysis protocols for clinical applications is important in
the context of future studies investigating the role of white matter in AD pathogenesis.
It is likely that biomarkers, and protocols to detect them, may depend on the
characteristics of the white matter region itself; therefore, a single white matter tract
- the corpus callosum - has been focused upon in this thesis to maintain consistency.
Against this context, the aim of this thesis is to investigate the following questions:

Aim 1: Do segmentation strategies impact quantitative measurements of DTI
biomarkers in the corpus callosum? The results obtained by investigating this
question have the potential to clarify whether segmentation practices currently
followed need improvement, and enable standardisation of DTI analysis protocols
in the scientific and clinical community. Such a standardisation could be critical
in comparing results from multiple DTI studies in that any additional uncertainty
introduced by the segmentation strategy used can potentially be eliminated.
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Aim 2: Are there detectable changes in DTI biomarkers in the corpus callosum
of patients with MCI or early AD, compared to normal ageing? Identifying such
changes has scope to enable monitoring and tracking of potential patients from an
early stage. While most DTI studies on Alzheimer’s disease focus on memory-related
impairments, it has been suggested that early manifestations may be observed in
other functions, such as motor skills. The results from investigating the corpus
callosum and its sub-regions are expected to provide indications of what functions
may be affected in MCI, since it is the largest white matter tract connecting several
regions of the brain.

Aim 3: Can advanced and more specific methods be applied to clinical DTI images to
extract information from the corpus callosum that extends results from a conventional
DTI analysis? Although DTI has proved to be an invaluable technique in clinical
settings, it is also non-specific, i.e., the variations observed in DTI metrics cannot be
associated with a specific underlying mechanism. Several advanced DTI techniques
exist, but they cannot be applied to scans taken using typical clinical scan settings
without appropriate modifications. Two such advanced methods will be demonstrated
for use on clinical DTI scans to investigate their potential to improve the specificity
of DTI in clinical settings.

Aim 4: How do the DTI metrics vary in specific pathological scenarios and how
are their values dependent on the scan settings used? These are two very important
questions investigated in this thesis, aiming to bring specificity and improve accuracy
of DTI analysis in clinical practice. Models of healthy white matter tissue as
well disease cases (acute/chronic demyelination and neuroinflammation) will be
developed and simulated DTI scans acquired to understand how the commonly used
DTI metrics vary. The dependence of DTI metrics on a scan-specific parameter called
transverse relaxation time (explained in Chapter 2) will be investigated. The results
are expected to reveal the impact of transverse relaxation time on the estimation of
DTI metrics; this has not yet been demonstrated or adopted as routine practice in
the community.

1.6 Organisation of the thesis

The fundamentals of MRI and DTI acquisition are briefly explained in chapter 2.
The four main DTI parameters that are extensively used in this thesis - fractional
anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity
(AxD) - are described, followed by their potential associations with the underlying
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biology. The open access database Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and the breadth of information it carries on healthy controls (HC) and
patients with MCI and AD are introduced. The information available from ADNI
includes MRI, DTI, and PET imaging data, results of clinical and neurophysio-
logical assessments, as well as genotyping and biospecimen data. Chapter 2 also
summarises important findings from prior DTI studies in healthy ageing, MCI, and
AD, irrespective of whether images from ADNI were used.

Chapter 3 tackles aim 1 given above (section 1.5). Various factors affecting
the estimation of DTI parameters are discussed including scan settings, mathematical
methods for tensor estimation, and ROI segmentation strategies. Different software
packages available for DTI processing and statistical analysis, that are used in this
thesis, are briefly introduced. A protocol for analysis of DTI scans is developed after
carrying out comparisons between different segmentation strategies. A feasibility
study is carried out in the whole brain white matter using DTI scans from ADNI,
aimed at exploring their scope for investigations into alterations in the corpus
callosum. Detailed analysis of the corpus callosum is then performed using the
developed protocol to study the properties of DTI parameters in MCI and AD
compared to HC.

Chapter 4 addresses aims 1 and 2 (section 1.5). Images from ADNI are used
to investigate DTI parameters in the whole corpus callosum and its sub-regions,
using a scheme that divides it into regions based on the areas of the brain they
project to. Changes in DTI parameters in healthy ageing are analysed and compared
to changes occurring in MCI. The results of neurophysiological assessments of study
participants are collected from ADNI to enable comparison with the results of DTI
analysis. This investigation is then extended to a small group of patients with AD.

Chapter 5 tackles aim 3 (section 1.5). Two advanced methods of DTI analysis,
NODDI-DTI and tractography, are applied on clinical DTI scans to investigate the
scope of extracting information that may extend the results obtained from the
conventional DTI analysis described in chapter 4. These methods require the DTI
images to be acquired using scan parameters that are not typical in clinical settings.
However, modifications have previously been proposed to adapt these methods to
clinical DTI scans.

Chapter 6 addresses aim 4 (section 1.5). Models of healthy white matter,
acute and chronic demyelination, and neuroinflammation are designed, and simulated
DTI scans of these models are acquired. The dependence of FA, MD, RD, and AxD
on the underlying physiological factors are investigated with and without accounting
for the effects of transverse relaxation time. The results are then used to interpret
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the data obtained from studies described in the previous chapters. The thesis is
concluded in chapter 7.

Data from both ADNI-2 and ADNI-3 have been used for investigations into
ageing, MCI, and AD, depending on availability at the time of conducting the study
being described. Scan acquisition parameters of images have been included with the
details of each study.
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Chapter 2

Diffusion Tensor Imaging

2.1 Fundamentals of MRI physics

MRI has become an integral part of routine clinical practice. In an MRI scan, a
single voxel of tissue, represented by a greyscale number, is constructed from the
collective signal generated from the protons present in the tissue. This is explained
in detail below.

The human body consists of about 70% water molecules that in turn, are
made up of hydrogen atoms. Each of these atoms consists of a single positively
charged proton that spins on its own axis, creating a tiny magnetic field. These
spins are randomly oriented and cancel each other out. But in the presence of an
external magnetic field like that of an MRI scanner, these spins or tiny magnets
align themselves along the direction of the field and start to precess (Figure 2.1),
creating a net magnetisation vector. The frequency of precession is determined by
the Larmor equation:

F = γB0
2π (2.1)

where F is the Larmor precession frequency, γ is the gyromagnetic ratio specific to
each nucleus (here, the nuclei being that of hydrogen) and B0 is the strength of the
external field. The net magnetisation vector alone is not sufficient to generate a
measurable signal from the tissue being imaged. To achieve this, the precessing spins
are excited with a radio frequency (RF) energy pulse of the Larmor frequency. As a
result of this excitation, the net magnetisation vector Mz flips 90° from the positive
z-axis to the transverse xy plane and rotates around B0 at Larmor frequency. This
rotating magnetic field can now be measured as it induces a current in the receiver
coils of the MRI scanner.
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Figure 2.1: In the absence of an external magnetic field, the proton spins are randomly
oriented. When an external magnetic field is applied, protons align themselves along
its direction; there is a net magnetisation vector Mz parallel to the external field. ‘S’
and ‘N’ represent the south and north poles of this magnet respectively.

When the RF pulse is switched off, the protons seek to return to a state of
equilibrium or a lower energy state by decay of the net magnetisation over time.
This results in a decrease in the strength of the received signal. The process of
returning to equilibrium is termed ‘relaxation’ and the time taken to achieve this
is called the ‘relaxation time’. There are two types of relaxation - transverse and
longitudinal. The process of realignment of spins to the external magnetic field, as
they were before the RF pulse was turned on, is called longitudinal relaxation and
the corresponding relaxation time is denoted as T1. It is defined as the time taken
for the spins to recover 63% of its equilibrium state. On the other hand, transverse
relaxation occurs due to local magnetic field inhomogeneities. Subtle differences
are generated in the Larmor frequencies of adjacent spins, resulting in a gradual
dephasing of protons. The time taken for this proton dephasing to reduce the signal
strength to 37% of its original value is called the transverse relaxation time T2. T1

and T2 may be used in a set of equations to calculate the nuclear magnetisation as a
function of time; these are called the Bloch equations [Bloch, 1946].
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Figure 2.2: Schematic showing slice selection.

A signal is acquired by the MRI scanner in the form of current induced
in receiver coils. To reconstruct an image from this signal, it needs to contain
information about its point of origin. This is achieved using a technique called slice
selection. A small gradient is applied to the main magnetic field (B0) in order to
change the Larmor frequency of protons at different locations by a small amount.
Now the RF pulse required to excite the magnetisation vector is different at different
locations or ‘slices’ (Figure 2.2). The pulse frequency is altered to select and image
different slices, and the gradient is temporarily applied in the opposite direction to
reset the nuclei to their original Larmor frequency before repeating the process to
select the next slice.

When a slice is selected, techniques called frequency and phase encoding
are used for spatial localisation within the slice. Frequency encoding localises one
axis in the xy plane by applying a gradient along the axis in a similar manner as
in slice selection. Phase encoding is used to localise the other axis in the slice, by
applying a gradient for a short duration and turning it off. This creates a phase
shift between protons since they start precessing at different frequencies due to the
applied gradient. Data obtained from phase encoding is mapped to the k-space
frequency domain to preserve location information. Details about these techniques
and the k-space are out of scope of this thesis, but may be obtained from several
sources including text book chapters [Dietrich, 2007; Brown et al., 2014].

When a gradient is applied to the external magnetic field, it causes spins
to precess slower or faster depending on location. Spin frequencies are restored
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Figure 2.3: (a) A gradient is applied, causing protons to precess faster or slower
while also undergoing random diffusion. (b) A gradient of equal magnitude is applied
in the opposite direction for the same duration. But the displaced protons do not
perceive the gradient strength as equal to that in (a). (c) The spins remain out of
phase after turning off the second gradient and the signal is attenuated.

when this gradient is turned off but are now phase-shifted. If a second gradient
of equal magnitude is now applied in the opposite direction for the same duration,
protons that precessed slower become faster and vice-versa, thus restoring the phase
to produce a strong signal. This holds true if the spins are stationary. However,
protons (or water molecules) in the human body are constantly diffusing. Because
of this displacement, the two gradients applied in opposite directions are received at
different magnitudes by a proton. When the second gradient is turned off, protons
remain out of phase, and the magnetic resonance (MR) signal is attenuated (Figure
2.3). The attenuation obtained from such a pulse sequence provides information on
diffusion of water molecules in the tissue and is the basis for diffusion weighted MRI
(DW-MRI).

2.2 History and Mathematical Development of DTI

The development of diffusion nuclear magnetic resonance (NMR) began as early
as in 1950, when the effect of diffusion on spin echo signal amplitudes was first
recognised [Hahn, 1950]. In a few years, an extended model of Bloch equations was
developed to include diffusion terms, thus enabling diffusion NMR [Torrey, 1956].
In 1965, Stejskal and Tanner modified the basic MR spin echo sequence, introducing
pulsed diffusion gradients instead of steady state gradients. They observed that the
acquired signal was much more sensitive to diffusion when using pulsed gradients
and developed the Stejskal-Tanner formula to describe diffusion in terms of signal
attenuation [Stejskal and Tanner, 1965]. The simplest case of Gaussian diffusion
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may be expressed using this formula as follows:

S = S0e
−bD (2.2)

where S is the strength of the signal acquired by applying a pulse sequence with
diffusion gradients, S0 is the signal strength in a pulse sequence with no diffusion
sensitisation, and D is the diffusion coefficient of the particles being imaged. The
characteristic features of a diffusion weighted pulse sequence have been combined in
the following way to obtain a parameter known as the b-value.

b = γ2G2δ2(∆− δ/3) (2.3)

where G is the strength of the diffusion gradient, δ is the duration of the two
diffusion gradients with a delay of ∆ between them (Figure 2.4), and γ is the nuclear
gyromagnetic ratio. When δ << ∆, equation 2.3 may be re-written as:

b = γ2G2δ2∆ (2.4)

In an MRI or DTI pulse sequence, the duration between the application of
two subsequent 90° RF pulses is called the repetition time (TR) and the duration
between a 90° RF pulse and subsequent output signal sampling is called the echo
time (TE). The 180° RF pulse is usually applied at time TE/2. Depending on the
values of T1, T2, TE, and TR, different weighting schemes may be generated for an

Figure 2.4: A schematic of the Stejskal-Tanner diffusion sensitising pulse sequence.
G is the strength of the diffusion gradient, δ is its duration, and ∆ is the delay
between the two gradients. RF represents radio frequency pulses and Gdiff represents
the axis on which the diffusion sensitisation is carried out.
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MR scan sequence. For instance, if TR � T1 and TE � T2 in a scan a T1-weighted
MRI is acquired, which is an excellent way to visualise anatomy. Keeping TR � T1

and TE � T2 enables acquisition of a T2-weighted scan which performs better at
identifying pathologies.

By mid-1980s, DW-MRI was conceptualised and developed from diffusion
NMR [Le Bihan et al., 1986; Le Bihan and Breton, 1985]. Water diffusion in the
body was modelled and the diffusion coefficient estimated using Einstein’s equation,
assuming Gaussian diffusion:

x2 = 2Dt (2.5)

where x is the mean-squared displacement, D is the diffusion coefficient, and t is the
time duration. The estimated value D was however, called the ‘apparent diffusion
coefficient’ (ADC) to emphasise its differences from the free diffusion coefficient.
The ADC depends on measurement conditions, especially the intensity and time
profiles of the gradient pulse. Nevertheless, its development has facilitated several
clinical applications of DW-MRI. ADC can be estimated from MR signal using the
following equation [Le Bihan et al., 1988]:

ADC = ln (S0/S1)
b1 − b0

(2.6)

where S0 and S1 are signal intensities obtained at two b-values, b0 and b1.
The development of DTI extended the scope and applications of DW-MRI

[Basser et al., 1994a]. While DW-MRI estimated diffusion along a single direction,
DTI has enabled three-dimensional measurements. In the presence of directional
diffusion, such as that observed in some tissue structures such as the brain white
matter, DTI has facilitated full characterisation of diffusion in three dimensions
using a mathematical tensor D, whereas DW-MRI provided a partial picture by
estimating ADC. A diffusion tensor D can fully characterise molecular mobility
along each of the directions x, y, and z; and correlate mobility in these directions
[Le Bihan et al., 2001].

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.7)

The acquired signal (equation 2.2) may be redefined as:

S = S0e
−BD (2.8)
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where B is the b-matrix, containing the b-values used for imaging along different
directions. Since measurements are made in the MRI coordinate system which may
not align with the diffusion frame of the tissue being imaged, the above equation is
typically expanded as:

S = S0 exp

− ∑
i=x,y,z

∑
j=x,y,z

bijDij

 (2.9)

where [x, y, z] are coordinates in the MRI scanner coordinate system. In typical
clinical scan sequences, the b-value is equal in all directions being imaged. This
gives:

S = S0 exp {−b[Dxx +Dyy +Dzz + 2Dxy + 2Dxz + 2Dyz]} (2.10)

Figure 2.5: A schematic visualisation of diffusion tensor using ellipsoids. (a) shows
a case of anisotropic diffusion of a molecule, where the main axis of the ellipsoid
indicated by eigen value λ1 of D represents the main direction of diffusion. (b)
shows the case of isotropic diffusion, where there is no single dominant direction of
diffusion. The figure also shows how water molecules may diffuse in different media,
creating trajectories that may then be represented using ellipsoids.
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The diffusion tensor D is a symmetric matrix. Therefore, a minimum of six images
acquired along six diffusion sensitised directions and at least one image acquired
without any diffusion weighting are required to estimate D by solving equation 2.10.
ADC may be expressed in terms of D as:

ADC = qTDq (2.11)

where,
q = γδG

2π (2.12)

The space of all 3D q-vectors is called the q-space. The acquired signal corresponds
to a single q-space point in DW-MRI [Descoteaux, 2008].

Diffusion ellipsoids are often used to visualise D [Basser et al., 1994b]. They
may be constructed from the eigen values (λ1, λ2, λ3) and eigen vectors of D for
every voxel in the image. The main axis of the ellipsoid represents the primary
direction of diffusion within the voxel and its eccentricity gives a measure of the
anisotropy or directionality of diffusion. The length of the ellipsoid in any direction
represents the displacement of molecules diffusing in that direction. A schematic of
this system of tensor visualisation is shown in Figure 2.5.

Various parameters may be estimated from the eigen values of D in order
to study the nature of diffusion in the tissue imaged. These parameters have been
designed to reveal information about the structure and properties of barriers to
the diffusion, thereby indirectly estimating properties of the tissue itself. FA is a
commonly used metric used to characterise diffusion anisotropy in the tissue [Basser
and Pierpaoli, 1996]. It is a measure of the proportion of diffusion in D that can be
described as anisotropic. It is calculated as follows [Le Bihan et al., 2001; Basser
and Pierpaoli, 1996].

FA =
√

3((λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2)√
2(λ2

1 + λ2
2 + λ2

3)
(2.13)

where,

λ = (λ1 + λ2 + λ3) /3 (2.14)

The value of FA ranges from 0 to 1, with 0 indicating pure isotropy and 1
indicating pure anisotropy. Other indices such as relative anisotropy (RA), may also
be estimated to measure directional diffusion [Basser and Pierpaoli, 1996]. RA is
a measure of the ratio of anisotropic part of D to its isotropic part, and can vary
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between 0 and
√

2, with 0 denoting isotropy and
√

2 denoting infinite anisotropy.

RA =
√

(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2)√
3λ

(2.15)

Another parameter commonly used in DTI studies is diffusivity. Different
types of diffusivity measures have been proposed to represent diffusion in different
ways. MD is a measure of the diffusion averaged across all directions. RD is estimated
as the diffusion perpendicular to the primary direction, and AxD as the diffusion
along it. These parameters may be estimated from the eigen values of D as follows
[Le Bihan et al., 2001].

MD = (λ1 + λ2 + λ3) /3 (2.16)

RD = (λ2 + λ3) /2 (2.17)

AxD = λ1 (2.18)

2.2.1 Advances: Tractography and Connectomics

The early 21st century saw major advances to DTI as a response to the need for
sophisticated tools to carry out research into the structure and connections in the
human brain. Models other than those using the diffusion tensor have been employed
to obtain more accurate and specific results, such as cylindrical axon models to
estimate axon diameters [Assaf et al., 2008], and multi-compartment diffusion models
that enabled association of the MR signal with intra or extra-cellular compartments
in the tissue [Jelescu and Budde, 2017].

Tractography is a method developed for DTI images to reconstruct a path
of neural connection between two brain regions by starting from one voxel and
checking for path continuity in the neighbouring voxels. Continuation of the path in
a voxel may be verified using an estimate of the local tract orientation. Tractography
algorithms can be classified as either deterministic or probabilistic. Deterministic
algorithms typically use the anisotropy estimate from the tensor D to map connections
in the brain. They rely on the hypothesis that the anisotropy calculated in a voxel
is representative of the fibre orientation in the voxel. They are generally simple
and fast algorithms and label tracked voxels as belonging to a single fibre tract
[Alexander et al., 2010].

Probabilistic algorithms generate the probabilities of a tracked voxel belonging
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to potential tracts. They provide information about the error in tracking, and thus
a measure of confidence in the results. They are typically slower than deterministic
algorithms [Parker, 2012]. Path continuity in probabilistic tractography may be
verified using orientation distribution functions (ODF) calculated from high angular
resolution diffusion imaging (HARDI) data [Tournier et al., 2004]. This has been
described in detail in section 2.2.2. Sophisticated techniques have been developed to
extract multiple fibre directions in order to accurately estimate fibre orientation in
situations such as voxels with crossing fibres [Tournier et al., 2012; Staempfli et al.,
2006].

Fibre tracking algorithms are susceptible to inaccuracies in conditions such
as low signal to noise ratio (SNR) and low resolution, as well as in cases of tracking
near the cortex of the brain [Jeurissen et al., 2019]. Even with these limitations,
tractography has proved to be an invaluable tool in neuroscience. For instance,
it has been used to develop an atlas of the human brain white matter [Wakana
et al., 2004], and comprehensively map neural elements and their interconnections
in the brain. The latter has now evolved to be an area of extensive research called
connectomics.

2.2.2 Advances: HARDI Imaging

A limitation of DTI is its underlying assumption of Gaussian diffusion that offers
a limited number of degrees of freedom for the model. This has been proved to
be insufficient to unravel situations such as crossing fibres [Mori and Tournier,
2014]. A higher order model is required to describe a non-Gaussian probability
distribution function (PDF) of diffusion. HARDI offers one such model where the
true diffusion PDF is reconstructed by sampling the q-space along as many directions
and magnitudes as possible [Descoteaux, 2008]. The PDF thus estimated is free
of assumptions and can recover the diffusion of water molecules in any scenario
including crossing fibres. The HARDI model estimates a 3-dimensional distribution
of diffusion as opposed to a scalar metric (ADC) in DW-MRI or a tensor in DTI.
However, the image acquisition protocol for HARDI is an extension of DTI, requiring
diffusion weighted images in several gradient directions with the same b-value and
the directions uniformly spread over a half-sphere [Mori and Tournier, 2014].

Two methods have been proposed to sample the q-space in HARDI [De-
scoteaux, 2008]. The first is to lay down a grid of points over the q-space and obtain
the diffusion PDF by estimating the inverse Fourier transform of the signal at these
points. A diffusion ODF is then defined to carry angular information from the
diffusion PDF. The second method to sample the q-space is spherical sampling at a

26



radius r (which is determined by the b-value). This is called single-shell spherical
sampling since it involves measuring on a single ’shell’ or radius of the q-space.
Multi-shell sampling methods have also been developed where measurements are
taken at multiple radii.

2.3 Sources of anisotropy in the white matter

Until the development of DTI, microstructural properties of the brain white matter
had not been extensively studied in vivo. It has now evolved to be an excellent
method of investigation of the white matter due to the packed, organised, and
oriented structure of fibres. Diffusion has been observed to be mostly isotropic in
the grey matter and anisotropic in the white matter, generating a contrast between
the two tissue types in an FA image, making it easier to identify the white matter,
carry out analyses, and compare properties between two or more subjects.

Extensive investigations have been carried out to determine the sources
of diffusion anisotropy in white matter as observed in FA maps. Early studies
concluded that the observed anisotropy was a result of diffusion barriers in the white
matter presented by myelin sheaths [Thomsen et al., 1987]. Water molecules would
preferentially diffuse along the length of the axons and were hindered by myelin if
they diffused in a perpendicular direction. This hypothesis, i.e., myelin sheath being
the primary source of diffusion anisotropy, remained unproven in the early 1990s,
but was still preferred over other theories.

One of the first studies that disproved this hypothesis was an investigation of
the normally non-myelinated olfactory nerve of a garfish, which showed anisotropic
water diffusion in the absence of myelin [Beaulieu and Allen, 1994a]. This observation
has been corroborated by other independent investigations [Seo et al., 1999; Prayer
et al., 1997]. However, the presence of myelin was also found to reduce perpendicular
diffusivity [Gulani et al., 2001]. It was therefore concluded that myelin was not
a requirement for anisotropic diffusion, rather it was a factor that modulated the
degree of anisotropy. Myelin and axonal membranes were instead found to be the
primary determinant of anisotropy [Beaulieu and Allen, 1994b].

The relationship of DTI with the structure and properties of white matter has
enabled its use in investigations of neurological conditions like cerebral infarctions,
neurodegenerative diseases like AD, and psychiatric disorders such as schizophrenia.
Section 2.4 reviews the results of studies using DTI to investigate the white matter
in the context of ageing, MCI, and AD. It summarises how DTI parameters (FA,
MD, RD, and AxD) have been interpreted to infer the underlying physiological
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mechanisms in white matter. Different patterns of changes in FA, MD, RD, and
AxD may imply different processes; five of these have been described by Burzynska
et al. in 2010:

1. An increase in both RD and MD may suggest chronic white matter damage.
Myelin and axonal membrane degeneration may cause an increase in RD,
while cellular debris clearance by microglia may result in a slight increase in
longitudinal diffusion and cause an overall increase in MD.

2. An increase in RD accompanied by a reduction in FA may be attributed to
loss of myelin.

3. A decrease in FA with no alterations in the other parameters may imply a
mixture of subtle differences in RD and AxD. This may likely be due to mild
microstructural alterations such as minor fibre loss without gross tissue loss.

4. A decrease in FA and AxD accompanied by an increase in RD and a non-
significant difference in MD may be attributed to secondary Wallerian degen-
eration.

5. A decrease in AxD and MD along with a decrease in FA may suggest acute
axonal damage.

Studies in mice have suggested that RD and AxD alterations may be indicators
of demyelination and axonal degeneration respectively, although this has been
criticised to be a simplistic view of the underlying mechanisms giving rise to anisotropy
[Winklewski et al., 2018; Song et al., 2003]. Despite extensive investigations in this
area, DTI remains a non-specific technique, i.e., the exact nature of underlying
mechanisms causing alterations in DTI parameters is currently not known.

2.4 DTI studies of the white matter

Early applications of DW-MRI in clinical practice were in stroke-related acute brain
ischemia [Le Bihan et al., 1992]. The value of ADC was observed to decrease by a
significant amount within minutes after an ischemic injury even when conventional
MRI appeared normal. The scope of application has been extended with DTI, which
offers a means to study white matter structure in healthy ageing and neurological
disorders.
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2.4.1 Childhood and healthy ageing

Studies investigating brain development in childhood have reported an increase in FA
with age and attributed it to myelination of nerve fibres [Lebel et al., 2019; Oyefiade
et al., 2018]. The developing myelin sheath was thought to restrict perpendicular
diffusion as described in section 2.3. FA has been observed to change with age
throughout life. The current consensus is that it increases in childhood, reaches a
plateau in mid-life before starting to gradually decline in approximately the fifth
decade of life [Sexton et al., 2014]. This trajectory of FA has been attributed to
age-related changes in the healthy brain. An increase in FA in early life has been
associated with axonal packing or myelination and a decrease in FA in later life with
axonal dispersion or demyelination [Geeraert et al., 2019; Branzoli et al., 2016].

Trajectories of diffusivities have also been reported to change with age. An
increase in FA has typically been accompanied by a decrease in MD in early life and
vice-versa in older life [Lebel et al., 2019; Branzoli et al., 2016]. Both FA and MD
have been observed to follow opposite patterns of change with age, i.e. FA increases
in childhood and adolescence and decreases in older age, whereas MD decreases in
childhood and increases with age. A longitudinal study of 3 years on participants
between 20 and 84 years old have reported extensive significant annual decreases in
FA and increases in MD, with the rate of annual change also increasing with age
[Sexton et al., 2014]. Other diffusivity measures such as RD and AxD have been
reported to decrease in childhood and increase in older age similar to the trajectory
of MD [Kumar et al., 2012; Burzynska et al., 2010]. Changes in RD and AxD in mice
brains have previously been attributed to demyelination and axonal degeneration
respectively [Song et al., 2003]. DTI studies in humans have used these findings to
attribute changes in RD and AxD to similar processes. However, such an association
has been criticised to be a simplistic view of the complex underlying mechanisms
[Winklewski et al., 2018].

2.4.1.1 Retrogenesis

One important consequence of DTI studies of the human brain is the emergence of
retrogenesis theory. It has stemmed from results of DTI investigations that suggested
white matter fibres matured or myelinated at different times and variable rates
during brain development. Some were already fully developed by birth or early
childhood and others continued to mature through adolescence into early adulthood
[Dubois et al., 2014]. Fibres that myelinated earlier in life were thought to be more
robust than later-myelinating ones and therefore less susceptible to damage under
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ageing and disease-related processes [Stricker et al., 2009]. However, no conclusive
evidence has been reported for the retrogenesis theory, with some studies supporting
it and a few studies opposing [Brickman et al., 2012; Di Paola et al., 2010; Sexton
et al., 2011].

2.4.2 MCI and AD

DTI has been used to study neurodegenerative mechanisms in MCI and AD. It has
helped reveal significantly widespread alterations in white matter integrity in AD
compared to HC. A decrease in FA has been reported in patients with AD in the
temporal, parietal, and frontal lobe regions, cingulum, corpus callosum, fornix, and
optic nerves [Nishioka et al., 2015; Agosta et al., 2011; Acosta-Cabronero et al.,
2010; Mielke et al., 2009; Zhang et al., 2009, 2007]. Increases in diffusivities have
also been observed in the fornix, corpus callosum, cingulum, temporal, parietal, and
occipital lobe regions [Hong et al., 2013; Acosta-Cabronero et al., 2012, 2010; Huang
and Auchus, 2007]. Similar but less extensive changes in DTI parameters have been
reported in MCI in these white matter regions [Gyebnár et al., 2018; Nishioka et al.,
2015; Hong et al., 2013; Liu et al., 2013; Agosta et al., 2011].

A meta-analysis of white matter abnormalities reported in MCI and AD
has concluded that FA and MD alterations were significant in the fornix, uncinate
fasciculus, parahippocampal cingulum, and posterior corona radiata [Yu et al., 2017].
A review of DTI studies in AD has reported similar results and has suggested that
changes in AD were dominant in white matter tracts connecting to grey matter
structures involved in memory function [Gold et al., 2012]. Very few longitudinal
studies have been reported in MCI and AD. In one such investigation, FA has been
found to decrease exclusively in the corpus callosum in patients with MCI who later
converted to AD [Douaud et al., 2013]. Longitudinal changes have also been reported
in the cingulum and the fornix [Nowrangi et al., 2013], uncinate fasciculus, inferior
longitudinal fasciculus, and inferior occipitofrontal fasciculus [Kitamura et al., 2013]
of patients with MCI and AD. Results of these studies suggest that white matter
alterations in MCI and AD differ between individuals, although they may share
common features and appear in similar regions.

It has also emerged that FA is the least sensitive DTI measure for picking
up group differences. Diffusivity measures have been found to be able to detect
more subtle differences than FA in MCI [Yu et al., 2017; Nir et al., 2013]. It has
been suggested that brain atrophy may be one of the main reasons of white matter
damage observed in disease, although changes independent of atrophy have also been
reported in MCI and AD [Amlien and Fjell, 2014; Bosch et al., 2012]. However, DTI
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parameters are known for their lack of specificity and a major focus of research in
recent years has been to associate physiological processes with parameters measured
from DTI.

2.5 Alzheimer’s Disease Neuroimaging Initiative

Data and images used in this thesis have been obtained from ADNI, which was
launched in 2003 as a public-private partnership, led by principal investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsychological assessments can
be combined to measure the progression of MCI and early AD.

The first phase of ADNI, called ADNI-1, commenced in October 2004 and
collected data from 200 HC, 400 MCI and 200 AD participants. The primary goal
of this phase was to develop biomarkers that may be used to measure clinical trial
outcomes [Weiner et al., 2013, 2010]. In 2009, ADNI-1 was extended through the
ADNI-GO phase, which recruited 200 early MCI participants to the existing cohorts
of subjects. This phase focused on investigating biomarkers during early stages of
AD and MCI. The second phase of ADNI began in 2011 and was called ADNI-2. In
addition to the participants who carried on from ADNI-1/ADNI-GO, 150 HC, 150
AD, 100 early MCI, 150 late MCI and 107 subjects with a self-reported significant
memory concern (SMC) were recruited. The primary aim of this phase was to
develop biomarkers that could predict cognitive decline [Weiner et al., 2015]. The
most recent phase of ADNI, called ADNI-3, began in 2016 to study the use of PET
and functional imaging in clinical trials. Existing participants in ADNI-2 were
carried on to the new phase, and 371 new participants (133 HC, 151 MCI, and 87
AD) have been recruited till date [Weiner et al., 2017]. An overview of subject
demographics has been shown in Figure 2.6, excluding the age groups that contained
very few participants (e.g. under two years old). An estimate of the proportion of
participants in each group and gender may be made from the figure.

Several types of data have been collected from ADNI participants at baseline
and regular follow-ups. They can be categorised into one of the following [Weiner
et al., 2017, 2010]:

• Clinical: Information in this category may include subject demographics (e.g.
age, gender), medical history, and results of physical and cognitive examinations.
Initially collected during the baseline visit, the data has been updated as
required after each follow-up visit.
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Figure 2.6: A visual summary of subject demographics, plotted with participant
summary data obtained from ADNI. Subjects have been shown stratified according
to their disease group, as well as gender.

• Genetic: Genotyping and sequencing data have been generated at the time of
participant recruitment to capture information on genetic risk factors such as
the APOE ε4 allele.

• MRI: Collection of MRI scans during baseline and follow-up visits is critical to
the primary goal of ADNI, i.e., development of biomarkers that can predict
cognitive outcomes. Different types of MRI scans have been acquired to support
different avenues of research, including structural MRI for measurement of
atrophy, DTI for investigation of white matter changes, and high-resolution
MRI of the hippocampus for measurement of atrophy of its sub-regions.

• PET: Similar to MRI, PET is also critical for biomarker development in ADNI.
Both amyloid and tau PET scans have been acquired, with the tau-PET scan
scheduled depending on the amount of amyloid detected in the brain. Because
of potential harmful effects from ionising radiations, a lower number of PET
scans have been acquired for each subject compared to MRI.

• Bio-specimen: This includes blood, urine and CSF collected from participants
during recruitment and follow-up visits. The samples have been analysed to
extract information on different factors such as homocysteine (an amino acid
linked to heart disease), tau levels, and amyloid precursor protein (involved in
Aβ generation).

The breadth of multi-modal information collected by ADNI has played a
significant role in making advances in the field of AD research [Weiner et al., 2015,
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2013]. Pathological mechanisms, including amyloid deposition and brain atrophy, are
now known to be present much before symptoms start to appear. Cognitive decline
has been associated more closely with the deposition of tau and neurofibrillary tangles
than with Aβ. The pathogenesis of AD has been reported to be heterogeneous, with
different individuals following different patterns of changes in the brain to progress
to AD.

2.6 Conclusions

In this chapter, the fundamental principles of DW-MRI and DTI have been intro-
duced, and different potential sources of anisotropy as observed in the white matter
have been discussed. It must be noted that the biological mechanisms giving rise
to specific patterns of changes on a DTI scan have not yet been established. It is
important to keep this in mind while interpreting the results of a DTI study.

The goals, scope, and extent of data available through ADNI have been intro-
duced and described. Being the first of its kind, ADNI is a large-scale collaborative
partnership supported by funding from both the government and pharmaceutical
industry. It has played a significant role in advancing biomarker development in
AD by making its collection of data to researchers around the world free of charge.
Throughout the three phases, the overarching goals of ADNI have remained the
same: development of biomarkers to track disease progression, support treatment
development, and uphold the open-access data sharing policy.
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Chapter 3

Methodological Considerations
in DTI Analysis

3.1 Introduction

The results of a DTI study may be influenced by several factors associated with the
analysis methodology, ranging from scan acquisition parameters to the algorithm
used to fit tensors to image voxels. While a study protocol would be established
and followed in an investigation, an inter-centre bias may still exist in multi-centre
studies due to reasons such as different scanner manufacturers. This chapter has
focused on such factors in the context of ADNI to understand how they might affect
measurements. A DTI analysis protocol has been developed based on this to be
followed throughout this thesis.

3.2 Scan parameters

The effects of scan acquisition parameters on DTI have been studied extensively. In
general, the following factors have been found to impact the results of DTI studies:

1. Number of gradient directions: Although a minimum of six directions are
theoretically required for DTI (section 2.2), increasing the number of gradient
directions has been found to increase the accuracy of tensor estimation [?].
However, this has been observed to be true only to a certain extent [Tristán-
Vega et al., 2012]. A few studies have reported that at least 20 unique directions
are required for a robust estimation of FA, while a minimum of 30 directions are
required for robust estimations of tensor orientations and MD [Ni et al., 2006;
Jones and Basser, 2004]. The FA of highly anisotropic structures have been
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observed to increase and that of low anisotropic structures to decrease, with an
increase in the number of gradient directions [Giannelli et al., 2010]. However,
a few studies have reported no impact of the number of gradient directions on
FA and MD measured in highly anisotropic regions, and suggested that clinical
studies using similar protocols but different well-balanced diffusion weighting
schemes may be comparable [Lebel et al., 2012b; Landman et al., 2007].

2. Signal to noise ratio: SNR of the acquired signal describes the relative
contributions of the true signal and random noise. It is often unclear how to
define SNR in DTI studies since diffusion weighted and non-diffusion weighted
images have different signal and noise characteristics. Given the fact that
diffusion is represented by attenuation of the acquired signal (section 2.2), it is
easy in suboptimal settings for the signal to drop below noise level. This may
lead to an underestimation of measured diffusion through a systematic shift
in the eigen vectors of the diffusion tensor, and a subsequent underestimation
of anisotropy [Laun et al., 2009]. An important recommendation made by
Farrell et al. (2007) is that patients and controls be scanned with equal number
of gradient directions to keep SNR profiles similar when investigating group
differences. Deviations from the true value in DTI parameters due to reasons
such as different number of gradient directions are reportedly prominent at a
lower SNR [Landman et al., 2007]. In fact, it has been shown that the effect of
SNR plays an important role in determining the robustness of obtained results
when other scan parameters are suboptimal [Tijssen et al., 2009]. Efficient
receiver coils or signal averaging may help increase the SNR.

3. b-value: The diffusion weighting of an MRI scan is determined by the b-value
estimated from the pulse sequence (equation 2.3). Simulation studies have
reported that an increasing b-value leads to an underestimation of FA due
to a co-existing decrease in SNR [Alexander, 2005; Jones, 2004]. Confirming
these findings are results of experimental studies where increasing the applied
b-value has been associated with decreasing FA and MD [Chung et al., 2013;
Hui et al., 2010]. This has been attributed to a non-mono-exponential decay
of the diffusion weighted signal with at a higher b-value, caused by complex
underlying biological mechanisms [Hui et al., 2010]. However, this effect may
vary depending on the type of tissue being probed. At a magnetic field strength
of 3 T, a b-value of 1000 s/mm2 has been reported to be optimal for clinical
studies of the white matter [Chung et al., 2013].

4. TE and TR: A DTI is fundamentally a T2-weighted MRI. Therefore, a typical
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DTI scan sequence has a very long TE and TR (section 2.1). The effects of TE
and TR on DTI measurements have not been thoroughly investigated. Linear
correlations of TE with FA, RD, and AxD have been reported, where a decrease
in RD and an increase in AxD were observed with increasing TE potentially
resulting in an increase in FA and absence of variations in MD [Qin et al.,
2009]. It has been postulated that an increase in TE might affect DTI in three
possible ways: a decrease in SNR, an increase in the time period over which
diffusion is observed, and a significant decay of short-T2 compartments in the
tissue [Qin et al., 2009]. While TE is usually of the order of a few milliseconds,
typical values of TR are in seconds. It is likely that relatively small differences
in TR may not have any impact on the acquired signal. However, this has not
been corroborated by experimental studies.

5. Resolution: Another factor that may affect the accuracy of measurement in
DTI is spatial resolution. This is closely associated with SNR for a given set of
scan sequence parameters. Increasing the spatial resolution may lead to a low
SNR and impact the estimation of FA as described above in (2). On the other
hand, a smaller resolution or a larger voxel size may result in partial volume
effects that also impacts FA measurements. It has been reported that using
a non-isotropic voxel resolution may affect the estimation of DTI parameters
[Oouchi et al., 2007]. An isotropic resolution of 2 mm has been found to give
the best SNR in clinical DTI settings [Jahanshad et al., 2010; Kim et al., 2006].

When using images acquired by a multi-centre study such as ADNI, care
must be taken to ensure that the images are quantitatively comparable with each
other. A report by Zavaliangos-Petropulu et al. in 2019 has acknowledged that
although spatial resolution of images remains consistent across ADNI sites, other
factors including the number of gradient directions may vary depending on the
scanner to accommodate scanning sessions under 60 minutes. The report showed
that images from multiple sites may be used together in studies but after harmonising
them across protocols.

Images from multiple ADNI sites have been used in this thesis, if they have
been acquired with the same scanner manufacturer and model, as well as the same
scan parameters. This is to ensure the elimination of potential confounding factors
so that differences observed between cohorts may be attributed to changes in the
brain with a degree of confidence.
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3.3 Software

Several software packages have been developed in response to the need for tools
to process and analyse DTI. Some are generic image analysis tool kits capable of
processing MRI and DTI while others are dedicated programs. The processing
algorithms used vary from software to software with some performing better than
others for specific tasks. This thesis has explored several tool kits and used them as
required for the studies described in the following chapters. Details of these software
have been given in appendix section A.1.

3.4 Tensor fitting methods

The diffusion tensor D can be estimated by solving equation 2.9 to obtain the values
of Dxx, Dyy, Dzz, Dxy, Dxz and Dyz:

S = S0 exp[−bxxDxx − byyDyy − bzzDzz − 2bxyDxy − 2bxzDxz − 2byzDyz]

As described in section 2.2, a minimum of six gradient directions is required
to solve this system of equations containing six unknowns. Standard methods such
as Cramer’s rule may be used to estimate D as described below, assuming a DTI
scan with M images, in which N have been acquired with diffusion gradients (b >
0) and M −N without (b = 0).

D = H−1Y (3.1)

where H is the gradient matrix given by

H =



g2
x1 g2

y1 g2
z1 2gx1gy1 2gx1gz1 2gy1gz1

g2
x2 g2

y2 g2
z2 2gx2gy2 2gx2gz2 2gy2gz2

. . . . . .

. . . . . .

. . . . . .

g2
xN g2

yN g2
zN 2gxNgyN 2gxNgzN 2gyNgzN


(3.2)

where gi represents the normalised ith gradient component of the scan sequence and
Y represents the logarithm of signal intensities, given by

Y = 1
b

[
ln(S1/S0) ln(S2/S0) . . . ln(SN/S0)

]T
(3.3)
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With six gradient directions, H is a square matrix with an inverse. When there
are more than six gradients, H is no longer square and does not have an inverse.
Instead, a pseudo-inverse Hψ may be calculated as follows.

Hψ = (HTH)−1HT (3.4)

This method of solving for the diffusion tensor is called linear least squares fitting.
All acquired signal intensities (Si) are treated as if they were equally accurate. In
contrast, weighted linear least squares is another method where more weight (or
importance) is given to higher values of lnSi, and lower weight to lower values of
lnSi. This is due to the fact that although the original signal intensities may be
equally true, this is not the case for their logarithms - if signal intensities have been
acquired with the same variance, the uncertainty in lnSi is proportional to 1/Si.
Mathematically, weighted least squared fitting may be carried out using a matrix
containing the b-values as follows.

D = (BTΣ−1B)−1(BTΣ−1)x (3.5)

where B is the b-value matrix given by

B =


−bxx1 −byy1 −bzz1 −2bxy1 −2bxz1 −2byz1 1
. . . . . .

. . . . . .

−bxxM −byyM −bzzM −2bxyM −2bxzM −2byzM 1

 (3.6)

and Σ is an M x M diagonal matrix given by the following equation for i ranging
from 1 to M .

Σ−1 = diag(S2
i /σ

2
i ) (3.7)

If each value of S2
i /σ

2
i is 1 defining Σ−1 to be the identity matrix, the above is

equivalent to a non-weighted linear least squares fitting. The matrix BTΣ−1B is
called the covariance matrix and is useful in computing the propagation of error and
optimising DTI parameters.

Another method of diffusion tensor estimation is through the non-linear
least squares fitting of the acquired signal. This is commonly used in cases where
the noise is high. One of the common methods used for non-linear fitting of data
is the Levenberg-Marquardt algorithm. It attempts to reduce the error between
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estimated and measured data using two minimisation methods, i.e., the gradient
descent and the Gauss-Newton. It is an iterative algorithm with the output of a
linear least squared fit typically being the starting point. A detailed description
of the Levenberg-Marquardt algorithm is out of scope for this thesis but may be
obtained in Moré [1978].

More recently developed methods of tensor estimation include bi-exponential
fitting [Maier et al., 2004] and the robust estimation of tensors by outlier rejection
(RESTORE) [Chang et al., 2012]. Bi-exponential models provide a more accurate
estimation of D by assuming a non-mono-exponential relationship between the MR
signal and the b-value. However, this method requires the DTI to be acquired at
multiple b-values. On the other hand, RESTORE iteratively carries out a weighted
least squares fit of the data, identifies potential outliers in each step, and exclude
them in the next iteration.

3.4.1 Comparison of linear (weighted and non-weighted) and non-
linear tensor estimation

In this section, linear least squares (both weighted and non-weighted) as well as non-
linear fitting methods have been compared to evaluate their performance on ADNI
images. Advanced methods have not been tested due to their input requirements
(e.g. multiple b-values) that have not been satisfied by ADNI. DTI scans of 10 HC
and 10 AD participants (5 females and 5 males each, aged 70-75 years old) from
ADNI-2, acquired with the same set of scan parameters (field strength = 3 T, TE =
56 ms, TR = 7200 ms, voxel size = 1.3 mm x 1.3 mm x 2.7 mm, number of gradient
directions = 55), were selected for this study. The following steps were carried out.

1. For each image, eddy current artefacts were eliminated and the brain was
extracted using FSL commands ‘eddy_correct’ and ‘bet’ respectively.

2. Diffusion tensors were estimated in Camino. Linear least squares models (both
weighted and non-weighted) and a non-linear model using the Levenberg-
Marquardt algorithm were employed to obtain three different estimates of the
tensor D for each image. In weighted linear fitting, the standard deviation of
each log-transformed DW-MRI intensity (σln) has been approximated as σ/Sm
where Sm is the non-log-transformed DW-MRI intensity and σ is its standard
deviation. Each observation has then been weighted by the corresponding
σln. Non-linear fitting has been implemented with the imposition of a positive-
definiteness constraint on D.
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3. For each estimate of D, a metric describing the quality of fit called pixel
chi-squared (χ2

p) was calculated for every slice in the volume, averaged for the
gradient directions as described below.

Estimation of pixel chi-squared

A ‘goodness of fit’ metric is required to quantitatively assess how well the estimated
tensor can reconstruct the acquired image. The traditional metric chi-squared (χ2)
has been adapted specifically for DTI as pixel chi-squared (χ2

p) [Papadakis et al.,
2003]. It is given by:

χ2
p =

J∑
j=1

(Sm,j − Sf,j)2∑J
j=1 S

2
m,j

(3.8)

where j = 1...J is the gradient direction, Sm,j and Sf,j are the acquired DW-MRI
signal and the signal reconstructed using the tensor respectively, in the jth direction.
The errors in fitting have been normalised using Sm,j . Data with high noise or poor
fit are mapped to higher values of χ2

p with the noise region centred around χ2
p = 0.2,

while data with a good fit of the tensor are mapped to smaller values of χ2
p.

A MATLAB code to estimate χ2
p was generated and has been given in

appendix section A.2. For each image, the three steps previously explained were
carried out to estimate non-weighted and weighted linear, and non-linear fits of the

Figure 3.1: (a) χ2
p plotted for each slice in an ADNI-2 image (b) Histogram of χ2

p with
lower values indicating a good fit of the data, and values equal to and greater than
0.2 indicating noise. The three fitting methods have been represented in different
ways for better visualisation in overlapping regions. The non-weighted and weighted
linear fits have similar histograms in (b), with the non-weighted fit not visualised
due to the overlap.
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tensor in Camino. The χ2
p maps of the three fits were qualitatively compared to

evaluate their performance on ADNI images. An example of a χ2
p map for a DW-MRI

image from ADNI-2 has been given in Figure 3.1. It may be noted that both the
weighted linear fit and the non-linear fit showed similar performance on the images,
while the non-weighted linear fit gave a slightly greater χ2

p. A few studies have
reported superior performance of the weighted least squares fit of diffusion tensors
compared to non-linear and non-weighted linear fits [Veraart et al., 2013; Salvador
et al., 2005]. Therefore, throughout this thesis, weighted linear least squares fitting
has been implemented to estimate the diffusion tensor. Performance of the three
methods may vary on images acquired with different scan parameters.

Since FSL does not offer a non-linear estimation of the diffusion tensor, this
study has used Camino to compare different fitting methods. However, it must be
noted that Camino and FSL have implemented different algorithms for weighted
fitting. A lack of consensus has been reported in the community on the best available
algorithm for weighted linear least squares estimation of the tensor [Veraart et al.,
2013]. The algorithm as implemented in FSL has been used throughout this thesis,
chosen over Camino for its simpler user-interface, which may contribute to the
portability of the analysis protocol described in the next section.

Figure 3.2: (a) Manual sampling of FA values in the corpus callosum in the axial
plane using circles placed as ROI. Measurements taken from this ROI have been
considered as the ground truth for comparison (b) Atlas-based ROI of the corpus
callosum (c) Manual segmentation of corpus callosum in the FA image in the sagittal
plane.
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3.5 Comparison between segmentation methods

Segmentation of an ROI on a DTI scan may be performed using automated, semi-
automated or manual methods. A comparison study was carried out between three
different segmentation strategies to investigate their performance and impact on
results. The corpus callosum has been chosen as the ROI for this study since it is
the largest white matter tract in the human brain, can be easily identified on an
FA image, and has been studied in detail in subsequent chapters in the context
of ageing and diseases. Several DTI investigations of the corpus callosum have
employed automated segmentation of the ROI [Bennett et al., 2017; Ma et al., 2009].
A few studies have also investigated the corpus callosum by sub-regions often using
automated methods including tractography [Feng et al., 2018; Lebel et al., 2010;
Ota et al., 2006]. With several methods available to analyse and interpret DTI
parameters in the corpus callosum, it is important to establish a protocol to be
consistently followed. To this end, a cohort of 10 healthy adults aged between 55
and 95 years was selected from ADNI-3, with their DTI scans acquired using the
same parameters: field strength = 3 T, number of gradient directions = 54, voxel
size = 2 mm x 2 mm x 2 mm, TE = 56 ms, TR = 7200 ms.

Figure 3.3: Plot showing measured values of FA in the cohort with 10 randomly
selected healthy subjects when different segmentation schemes are used.
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Since ADNI-3 scans have been acquired in the axial plane, ideally the definition
of the corpus callosum ROI would likewise have been performed in the axial plane.
However, segmenting the whole structure in the axial plane would likely lead to an
inaccurate ROI due to the lack of visible boundaries. Therefore, circular ROI of
varying radii were placed in the corpus callosum to sample mean FA values, which
were then considered to be the ground truth (Figure 3.2a) [Bartzokis et al., 2010; Li
et al., 2009]. The mean FA measured in the circular ROI were used to estimate a
final average representing the corpus callosum, which has been plotted in Figure 3.3
(‘Circles in axial plane (mean)’).

An ROI of the corpus callosum was defined in FSL using the ICBM-DTI-81
atlas [Mori et al., 2008]. Labelled regions corresponding to different parts of the
corpus callosum were used to threshold the atlas and obtain a binary mask. Subject
images were registered to the Montreal Neurological Institute (MNI) coordinate
system and the mean value of FA in the corpus callosum was measured using
the mask for each subject. However, it was noted that the mask did not always
accurately define the ROI, often including regions outside the corpus callosum such
as the ventricles (Figure 3.2b). This resulted in a drastic reduction in the estimated
mean FA values which have been plotted in Figure 3.3 (‘Atlas ROI (mean)’). The
possibility of ICBM-DTI-81 being inaccurate has been addressed by Rohlfing in 2013.

A manual segmentation strategy was tested in ROIEditor as follows. The
FA image originally estimated in the axial plane was reconstructed in the sagittal
plane. The mid-sagittal slice of the brain was estimated using the method reported
by Freitas et al. in 2011 which has been described in appendix section A.3. The
corpus callosum was then segmented on the mid-sagittal slice as well as two slices
each on either side of it. The manual segmentation method thus yielded a volume of
five sagittal slices defining the corpus callosum. A slice from this volume has been
shown in Figure 3.2c. Mean and median of FA values in this ROI were estimated
and plotted in Figure 3.3 (‘ROI in sagittal plane (mean)’ and ‘ROI in sagittal plane
(median)’ respectively).

Median values of FA in the ROI generated in the sagittal plane were found to
be the closest to ground truth. An approximately consistent offset of 0.1 was observed
between the ground truth and the medians, suggesting that measurements in these
cases would follow similar distributions. The manually segmented sagittal ROI may
also used to obtain the median of MD, RD, and AxD values in the corresponding
parameter maps.
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3.6 Segmentation and analysis protocol for the corpus
callosum

Using the results described in the previous sections, the segmentation and DTI
parameter estimation protocols developed for the corpus callosum in ADNI images
may be summarised in the following steps:

1. For the axially acquired DW-MRI in ADNI, generate the FA map in FSL using
a weighted fit of the diffusion tensor and reconstruct it in the sagittal plane
using ImageJ.

2. Estimate the mid-sagittal slice of the FA map in MATLAB using the method
described in appendix section A.3.

3. Manually segment the corpus callosum on the mid-sagittal slice and two slices
to either side of it in ROIEditor to obtain a segmented volume of five slices.

4. Measure pixel-wise FA in the ROI in ROIEditor and estimate their median
value (carried out in MATLAB for this thesis).

5. Save the estimated median as the FA of the corpus callosum for the subject
analysed.

6. Repeat steps 4 and 5 on MD, RD, and AxD maps using the same ROI to
obtain median MD, RD, and AxD in the corpus callosum.

In subsequent chapters of this thesis, the corpus callosum has also been studied
by sub-region. Several different schemes of sub-division have been proposed, one of

Figure 3.4: (a) Diagram showing the Hofer and Frahm scheme of sub-division. ‘A’
denotes the anterior and ‘P’ denotes the posterior ends of the corpus callosum. The
anterior-posterior length has been divided into sub-regions as shown. Picture has
been adapted with permission from Hofer and Frahm [2006] (b) Sub-division using
the Hofer and Frahm scheme carried out in ImageJ.
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the most widely used being the Witelson scheme which has been used as a reference
in numerous studies [Tanaka-Arakawa et al., 2015; Witelson, 1989]. However, this
scheme is based on the anterior-posterior extent of the corpus callosum and data
obtained from primates. Another method of sub-division, called the Hofer and Frahm
scheme [Hofer and Frahm, 2006], is based on the results of tractography analysis of
human DW-MRI. Five sub-regions have been defined in the corpus callosum in this
scheme, with fibres projecting to (i) prefrontal, (ii) premotor and supplementary
motor, (iii) primary motor, (iv) sensory, and (v) parietal, temporal and occipital
regions of the brain. This manner of subdivision enables investigation of changes
occurring in a corpus callosum region in relation to the corresponding part of the
brain it projects to. A diagram of Hofer and Frahm sub-division scheme is given in
Figure 3.4a.

Manual segmentation protocol for the corpus callosum may be modified by
adding the following steps to divide it into sub-regions using the Hofer and Frahm
scheme (Figure 3.4b):

1. Carry out steps 1 - 3 from the original protocol to manually segment 5 sagittal
slices containing the corpus callosum on the FA image.

2. Use the rectangle drawing tool in ImageJ to create a bounding box extending
from the anterior end to the posterior end of the corpus callosum. Knowing
the width of the rectangle, create smaller rectangles of sizes 1/6th, 1/2, 1/3rd

and 1/4th of the width and place them as shown in Figure 3.4 to visualise the
sub-divisions.

3. Manually segment the corpus callosum in each of these sub-divisions to create
five ROI volumes for the five sub-regions.

4. Carry out steps 4 - 6 from the protocol described previously to estimate median
FA, MD, RD and AxD in each of the sub-regions.

3.7 Feasibility study

A feasibility study was conducted with images from ADNI-2 to explore their scope
and suitability for investigations of the corpus callosum carried out in this thesis.
This study did not use the protocol developed in the previous section, rather it was
carried out using TBSS to obtain initial data on group differences in HC, MCI, and
AD.
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3.7.1 Power analysis

An a priori estimation of sample size was made using power analysis in G*Power
before carrying out the feasibility study [Faul et al., 2009]. This provided the number
of study subjects required to reveal significant differences in DTI parameters between
HC, MCI, and AD cohorts. A mean effect size was estimated by averaging the effect
sizes of FA in different white matter regions as reported in a meta-analysis study
[Sexton et al., 2011], which was 0.605 for AD versus HC and 0.503 for MCI versus
HC. A liberal statistical power of 0.8 and a significance level of 0.05 were set. Sample
sizes were assumed to be equal between groups. Details of the analysis have been
given in appendix section A.4. A sample size of 35 each for HC and AD groups and
50 each for HC and MCI groups were estimated using the above parameters for a
one-tailed two-sample test for differences between two independent means.

Given that the aim of this feasibility study was to detect group differences in
the corpus callosum of ADNI subjects as a starting point for detailed ROI analysis,
the sample sizes were kept small at 10 subjects in each group. The sample size
estimated using power analysis has been considered in later studies described in this
thesis.

3.7.2 Analysis using TBSS

DTI scan acquisition details of ADNI-2 participants included in the study have been
given in Table 3.1. 10 age- and gender-matched subjects (5 males and 5 females)
between 65 and 80 years old were included in each group (HC, MCI, and AD).
TBSS was used to study cohort differences in white matter tracts by carrying out
voxel-wise statistical analysis of DTI parameters between two groups at a time.
All the necessary steps including pre-processing have been carried out in FSL as
described below.

Table 3.1: Scan acquisition details of ADNI-2 images used in the feasibility study.

Image size 256 x 256 x 59 Voxel size 1.3 mm x 1.3 mm x 2.7 mm

Field strength 3 T Flip angle 90°

Number of
gradients 41

Number of
non-diffusion-

weighted images
7

Scanner manufac-
turer/model GE/ Signa HDxt Pulse sequence EP/ SE

Echo time 68.3 ms Repetition time 12500 ms
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Figure 3.5: Results of TBSS analysis between AD and HC groups. First row
represents p-value images testing for whether (a) FA, (b) MD, (c) RD, and (d)
AxD of patients with AD were greater than that in HC. The second row represents
p-value images testing for whether (e) FA, (f) MD, (g) RD, and (h) AxD of HC were
greater than that in patients with AD. The p-values have been represented using a
colour map with the colour scale as shown on the left and voxels in yellow showing
significant differences between the groups.

Raw DW-MRI were corrected for eddy current artefacts using the eddy_correct
tool. The skull region was removed and the brain extracted from this image using
the bet command. FA, MD, RD, and AxD maps were generated by weighted fitting
of the tensor using the dtifit tool. They were then registered to a 1 mm x 1 mm x 1
mm standard space using flirt. A mean FA image was then estimated and a mean
FA skeleton generated from this, to represent the centres of all tracts common to
the groups being studied. Each subject’s FA data was projected onto this skeleton
and voxel-wise cross-subject statistics was carried out. The FSL codes written to
implement these processes have been given in the appendix as Figure A.8.

3.7.2.1 Group differences between AD and HC

The results of TBSS analysis between AD and HC have been shown in Figure 3.5.
Differences were observed in FA between the two groups, though these were not
statistically significant. This may be due to the low sensitivity of FA to detect
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Figure 3.6: Results of TBSS between MCI and HC carried out in the feasibility
study. First row represents p-value images testing for whether (a) FA, (b) MD, (c)
RD, and (d) AxD of patients with MCI were greater than that in HC. The second
row represents p-value images testing for whether (e) FA, (f) MD, (g) RD, and (h)
AxD of HC were greater than that in patients with MCI. The p-values have been
represented using a colour map with the colour scale as shown on the left and voxels
in yellow showing significant differences between the groups.

changes as previously reported (section 2.4) or the sample size being insufficient
to detect differences or a combination of both. Widespread significant (p < 0.05)
increases in MD were observed in patients with AD including in the genu, splenium,
and body of the corpus callosum, cingulum, superior longitudinal fasciculus, internal
capsule, posterior thalamic radiation, and the posterior corona radiata. These regions
have been identified on DTI parameter maps using the ICBM-DTI-81 white matter
labels provided with FSL, with the possibility of errors, as discussed previously, kept
in mind [Mori et al., 2008]. Significant differences were observed for RD and AxD
(p < 0.05) in the corpus callosum, internal capsule, posterior thalamic radiation,
and the superior longitudinal fasciculus. Changes observed in the white matter for
patients with AD in this feasibility study (increases in MD, RD, and AxD with no
significant differences in FA) have not been identified as a pattern by Burzynska
et al. (section 2.3). However, several published studies, described in section 2.4,
have reported similar observations.
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3.7.2.2 Group Differences between MCI and HC

The results of TBSS analysis between MCI and HC have been shown in Figure
3.6. Widespread differences were observed in FA, MD, RD, and AxD between
MCI and HC including in the corpus callosum, cingulum, superior longitudinal
fasciculus, internal capsule, posterior thalamic radiation and the posterior corona
radiata. However, not all differences were found to be statistically significant. Similar
to the results in patients with AD, FA decreased in MCI compared to HC while MD,
RD and AxD increased, although not to the level of statistical significance. This
may be attributed to subjects with MCI being very early in their disease stage to
exhibit significant white matter changes. A larger sample size may be required to
detect changes in MCI accurately and reliably.

3.7.3 DTI analysis of the corpus callosum

The feasibility study described above has demonstrated the suitability of ADNI
images to detect changes in DTI parameters in the corpus callosum of 30 participants
belonging to HC, MCI, and AD groups. A detailed analysis of the corpus callosum
was carried out using the protocol developed in section 3.6 with the same subject
images. Each of these images were processed as follows:

1. Eddy current artefacts were eliminated using the ‘eddy_correct’ command of
FSL; brain was extracted using ‘bet’ and DTI parameter maps (FA, MD, RD,
and AxD) were estimated using ‘dtifit’.

2. The estimated FA map was used to manually segment the corpus callosum in
the sagittal plane (as shown in Figure 3.2c). The median of pixel-wise FA in
the ROI was estimated in MATLAB.

3. Similar to step 2, the median of pixel values of MD, RD, and AxD in the
corpus callosum were also estimated using the same ROI.

The MATLAB code used to estimate the medians has been given in appendix
section A.6. Once the median FA, MD, RD, and AxD were calculated, statistical
analysis was carried out in R. Box plots were used to visualise the distribution of data
(Figure 3.7) and independent samples t-tests were used to check if they significantly
differed between cohorts. A statistically significant difference was observed between
HC and AD groups for FA, MD, and RD (p < 0.05), but not for AxD. However,
such a difference was not observed between HC and MCI or between AD and MCI.
The details of the three pair-wise t-tests have been given in Tables 3.2 and 3.3.
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Figure 3.7: Box plots showing the distribution of FA, MD, RD, and AxD in HC,
MCI and AD groups. The estimated median values of the four parameters have
been used to plot these figures. The p-values of t-tests between AD and HC have
been shown on corresponding plots which were considered significant if less than
0.05. The p-values of t-tests between AD and MCI, and between HC and MCI did
not reach a level of statistical significance, but have been given in Table 3.3.

The number of pixels segmented as ROI for each image was extracted using
the tools available in ROIEditor. The volume of ROI for each image was then
computed in mm3 using the pixel dimensions given in Table 3.1. The total brain
volume was also estimated in mm3 by extracting the number of pixels in the brain
mask image computed by FSL. The normalised volume of the corpus callosum ROI
was then calculated using equation 3.9 and has been plotted for each cohort in Figure
3.8.

Normalised volume = Volume of ROI
Total brain volume (3.9)

Although differences in cohort ROI volumes were observed from Figure 3.8, they did
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Table 3.2: Average values of the median DTI parameters in the study cohorts.
Independent sample t-tests were conducted to test for significant differences in these
values and results have been given in Table 3.3.

Parameter Healthy
Controls

Mild Cognitive
Impairment

Alzheimer’s
Disease

Fractional Anisotropy 0.652 0.636 0.603
Mean Diffusivity (10−3 mm2/s) 0.859 0.896 0.925
Radial Diffusivity (10−3 mm2/s) 0.471 0.511 0.552
Axial Diffusivity (10−3 mm2/s) 1.69 1.729 1.738
ROI Volume (mm3) 2992.9 3061.4 3327.9
Total Brain Volume (mm3) 1770487 2097965 1949474
Normalised Volume 0.169 0.152 0.173

Table 3.3: Results (p-values) of t-tests conducted between HC, MCI, and AD groups.
A difference between groups was considered significant if p < 0.05.

Pair-wise
t-test

Fractional
Anisotropy

Mean
Diffusivity

Radial
Diffusivity

Axial
Diffusivity

Normalised
Volume

HC - AD 0.02 0.04 0.02 0.15 0.68
HC - MCI 0.45 0.23 0.22 0.31 0.13
AD - MCI 0.22 0.42 0.32 0.78 0.09

not reach the level of statistical significance between any of the groups (Table 3.3).
Estimating volumes using anatomical T1-weighted MRI is usually preferred [Cho
et al., 2018; Westlye et al., 2010] but this has also been carried out using DW-MRI
in a few studies [Rotarska-Jagiela et al., 2008; Alexander et al., 2007]. The corpus
callosum volume of patients with MCI was found to be slightly lower than that of
both HC and AD (Figure 3.8). This may be attributed to the pathological processes
in MCI and AD such as neuroinflammation and atrophy, or relatively simpler reasons
such as a low sample size. Analysis using larger cohort sizes as well as T1-weighted
MRI of corresponding subjects are required to confirm the validity of these findings.

3.8 Conclusions

This chapter has discussed several factors affecting the results of DTI studies and
developed a protocol to be consistently followed across investigations. The latter
has been carried out in the context of the corpus callosum. While this protocol may
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Figure 3.8: Box plots showing the volumes of segmented corpus callosum ROI for
HC, MCI, and AD groups

be extended to other white matter tracts in the brain, manual segmentation may
be a more demanding method for these structures. For instance, boundaries of the
tracts may not be sufficiently visible or the structure itself may be too small to be
accurately identified on the image. In such cases, TBSS or atlas-based ROI may
provide initial information on group-wise differences. If an atlas-based ROI is used,
it is good practice to overlay it on top of the image for visual verification.

DTI scans from ADNI-2 have been explored in a feasibility study using TBSS.
Statistically significant group differences were revealed between patients with AD
and HC in different white matter regions. A decrease in FA accompanied by increases
in MD, RD, and AxD has not been attributed to any specific pathological process,
although this is a pattern observed by many studies including the feasibility study
described in this chapter. More detailed analysis of the observed group differences
have been investigated using the developed protocol in the corpus callosum of HC,
MCI, and AD cohorts. Results indicated a significant decrease in FA and a significant
increase in MD and RD for patients with AD compared to HC. Although box plots
indicated similar differences between HC and MCI groups, they did not reach the
level of statistical significance. The developed segmentation and analysis protocol
was thus demonstrated through a DTI analysis of HC, MCI, and AD subjects. The
measured parameters have been given in appendix B.
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Chapter 4

Corpus callosum in mild
cognitive impairment and

Alzheimer’s disease

4.1 Introduction

The segmentation and analysis protocol described in section 3.6 has been applied
in a feasibility study in section 3.7.3, and the results revealed differences in DTI
parameters in the corpus callosum between HC and AD cohorts. In this chapter, a
detailed analysis of the corpus callosum has been carried out to investigate alterations
in DTI parameters occurring in MCI and AD. The first set of images from the third
phase of ADNI (called ADNI-3) had just been released before this study commenced.
DTI scans in ADNI-3 have been acquired with an isotropic resolution of 2 mm which
has been suggested to give a good SNR on clinical scanners (section 3.2). Therefore,
although the analysis in section 3.7 has been conducted with data from ADNI-2, this
study has utilised DTI scans from ADNI-3.

4.2 Imaging studies of the corpus callosum

Corpus callosum is the largest white matter tract connecting the two hemispheres of
the human brain (section 1.2.4). Post-mortem studies have found altered properties
of the corpus callosum in normal ageing and neurological diseases including AD
[Køster et al., 2018; Hou and Pakkenberg, 2012]. Corpus callosum atrophy has
been commonly reported and a loss of fibres have been found to be the major factor
contributing to atrophy [Hou and Pakkenberg, 2012].
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Non-invasive MRI studies have strengthened the significance of post-mortem
results described above. For instance, corpus callosum atrophy is a feature that
has been reported in several studies of neurological disorders including MCI and
AD [Wang et al., 2015b]. Annual rates of this atrophy have been used to develop
a logistic regression model to predict conversion of patients with MCI to AD [Lee
et al., 2016]. The prediction accuracy of the model was reportedly higher for females
than males suggesting that discriminating regions of the corpus callosum differed
between genders. MRI studies have also reported morphological changes of the
corpus callosum using properties such as ‘circularity’, which is a parameter that
captures both area and deformity of the structure [Ardekani et al., 2014]. In contrast
to these observations in adults, the corpus callosum area and thickness have been
observed to increase in children with neurological conditions compared to matched
controls [Wolff et al., 2015].

DTI has been used by several studies to investigate the microstructural
properties of the corpus callosum. Typically, an increase in FA and a decrease in
MD have been reported in studies of normal ageing [Bennett et al., 2017; Ota et al.,
2006; Hasan et al., 2005] similar to other white matter structures. FA and MD
in the corpus callosum have been modelled as a function of age to evaluate their
patterns of change in mid to later years of life; a negative linear relationship has
been observed between FA and age and a positive linear relationship between MD
and age [Ota et al., 2006]. Some studies have suggested a better fit for data using
non-linear models [Sala et al., 2012; Lebel et al., 2012b]. In general, an increasing FA
and a decreasing MD have been reported in childhood and adolescence, gradually
reversing trajectories in older age [Lebel et al., 2012b].

Altered DTI properties of the corpus callosum have also been observed in
MCI and AD [Mayo et al., 2017; Stricker et al., 2016; Genc et al., 2016]. Results
of DTI studies have established that changes occurring in the corpus callosum in
degenerative diseases exceeded that arising from normal ageing. Atrophy of the
corpus callosum as observed in MRI studies has correlated well with cognitive decline
in MCI and AD [Lee et al., 2016; Wang et al., 2015a], but DTI parameters have
predicted subtle changes in the corpus callosum that preceded atrophy [Sala et al.,
2012].

DTI studies have also suggested that corpus callosum may be the white
matter structure most affected by age, but the extent to which it is affected varies by
sub-region [Ota et al., 2006]. These variations have been suggested to be indicative
of the differing effects of age in the corresponding parts of the brain each sub-region
projects to [Lebel et al., 2010]. While some studies have reported a larger effect of
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age (typically indicated by a decrease in FA and an increase in MD) in the anterior
parts of the corpus callosum such as the genu [Lebel et al., 2010; Ota et al., 2006;
Hasan et al., 2005], other studies have observed this in the posterior parts such as the
splenium [Bennett et al., 2017]. In this chapter, analysis of the corpus callosum will
be carried out by sub-region to account for this heterogeneity in its microstructure.

4.2.1 Corpus callosum sub-regions

Imaging as well as proteomics studies of the human corpus callosum have confirmed
its heterogeneous structure [Kashem et al., 2009; Bartzokis et al., 2004]. However,
no macroscopic landmarks exist to differentiate between regions. An introduction to
different schemes of sub-division of the corpus callosum has been given in section
3.6. A simple method is to divide the corpus callosum into the anterior genu,
the body, and the posterior splenium [Weis et al., 1993]. The most widely used

Figure 4.1: Subdivision of the corpus callosum using (a) Witelson’s scheme: 1.
Rostrum 2. Genu 3. Rostral body 4. Anterior body 5. Posterior body 6. Isthmus
7. Splenium. Regions 1-3 project to prefrontal, premotor and supplementary motor
areas, region 4 to motor areas, region 5 to somaesthetic and posterior parietal areas,
region 6 to posterior parietal and superior temporal areas, and region 7 to occipital
and inferior temporal areas. (b) Hofer scheme: 1. Prefrontal 2. Premotor and
supplementary motor 3. Motor 4. Sensory 5. Parietal, temporal, and occipital
projections.
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geometrical subdivision is the Witelson’s classification [Witelson, 1989]. It divides the
corpus callosum into seven regions, namely rostrum, genu, rostral body, anterior body,
posterior body, isthmus, and splenium, as shown in Figure 4.1a. The main limitations
of this scheme are its geometrical method of classification, and its development based
on data obtained from non-human primates.

Several studies have used tractography based parcellations of the corpus
callosum to identify sub-divisions based on the regions of the brain they project
to. The scheme developed by Hofer and Frahm (2006) is one such method, where
after parcellation through the corpus callosum of 8 healthy subjects, sub-divisions
were proposed based on the average results of tractography. They found differences
between Witelson’s classification and the results of their tractography analysis, which
has motivated the development of their scheme. It divides the corpus callosum
into five regions based on the areas of the brain they project to; namely, prefrontal
(region 1), premotor and supplementary motor (region 2), motor (region 3), sensory
(region 4), and parietal, temporal and occipital (region 5) areas. A diagrammatic
representation of the Hofer and Frahm sub-division method has been given in Figure
4.1b.

In this chapter, the Hofer and Frahm scheme of sub-division has been used
to analyse the corpus callosum by sub-region. This scheme has been chosen since it
offers a means to investigate alterations in DTI parameters in the sub-regions and
their potential roles in impacting the brain areas they project to. This may play a
significant role in associating clinical symptoms with DTI parameter alterations in
the corpus callosum. A careful analysis by sub-region may reveal minor pathological
changes in MCI and AD that may otherwise be missed.

4.3 Materials and methods

Images used in this study have been obtained from ADNI-3. Since they have been
acquired from multiple scan sites, the inclusion criteria were designed to select images
with fully matched scan parameters. This was necessary to eliminate confounding
factors since scan parameters have been reported to affect tensor estimation in DTI
as described previously (section 3.2). Scan sequence details of images included in this
study are: field strength = 3 T, TE = 56 ms, TR = 7200 ms, b = 0, 1000 s/mm2,
number of diffusion weighted images = 48, number of non-diffusion weighted images
= 7, voxel size = 2 mm x 2 mm x 2 mm, and approximate scan time = 7 minutes 30
seconds. Diffusion weighted scans of 107 HC, 28 subjects with MCI, and 5 patients
with AD matched the inclusion criteria. This resulted in unbalanced cohort sizes with
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subject numbers not equal to that estimated in section 3.7.1, although the unequal
sample sizes were accounted for in the statistical analysis. Subject demographics
have been summarised in Table 4.1.

A subset of subjects from HC, that included only age- and gender-matched
participants, was selected to investigate the effects of gender on changes in DTI
parameters. This group consisted of 74 subjects (37 males and 37 females) and was
called HCsub. The demographics of this group have also been given in Table 4.1. The
cohort of healthy subjects to be studied was selected (HC or HCsub) after analysing
the effects of gender on changes in DTI parameters of the corpus callosum with age.
If gender proved to be a significant factor, the cohort HCsub was studied along with
MCI and AD; otherwise, cohort HC was selected.

Once the healthy subject group (HC or HCsub) was selected, analysis of
the corpus callosum with ageing, MCI, and AD was carried out as described in
the following sections. The analysis protocol developed in section 3.6 was used to
extract values of FA, MD, RD, and AxD in the whole corpus callosum as well as its

Table 4.1: Age and gender distribution of subjects in the study (M: male, F: female).

HC MCI AD
Age

Range
Cohort M F M F M F

55-60 HC - 1 - 2 1 -
HCsub - -

61-65 HC 5 8 1 - - -
HCsub 5 5

66-70 HC 7 24 2 1 1 -
HCsub 7 7

71-75 HC 5 10 4 4 - 1
HCsub 5 5

76-80 HC 11 9 3 4 1 -
HCsub 9 9

81-85 HC 8 9 1 - -
HCsub 8 8

86-90 HC 6 2 1 2 - 1
HCsub 2 2

90-96 HC 1 1 1 2 - -
HCsub 1 1

Total HC 43 64 13 15 3 2
HCsub 37 37
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sub-regions. Statistical tests including linear regression and analysis of covariance
(ANCOVA) were then carried out for each DTI parameter to detect significant
deviations from healthy ageing in MCI and AD.

4.4 Testing for the effects of gender on DTI parameters

Previous studies of the corpus callosum, and the white matter in general, have
reported mixed results regarding the effects of gender on changes in DTI parameters
with age. Although gender has been observed to have a significant effect in different
age ranges, the absolute differences between DTI parameters of males and females
were very small [Lebel et al., 2010]. Even among studies reporting these differences,
there is no clear consensus on how gender affects the measurements. For instance,

Figure 4.2: Linear regression plots of (a) FA, (b) MD, (c) RD, and (d) AxD in the
corpus callosum of subjects from HCsub. Observations have been stratified according
to gender.
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some studies have reported a higher FA in the white matter of healthy adult males
compared to females [Lebel et al., 2010], while others have observed a higher FA
in males in some white matter regions and lower in others [Kanaan et al., 2012].
Contrasting these findings are the results of investigations that found no significant
differences between genders in DTI parameters [Inano et al., 2011; Davis et al., 2009;
Ota et al., 2006]. Even among studies focusing specifically on the corpus callosum,
similar contrasting results have been reported on the effects of gender [Muetzel et al.,
2008; Westerhausen et al., 2004]. Individual differences in subject data may account
for these discrepancies. Therefore, it is important that any effects of gender on DTI
parameters should be tested on the study data before the main investigations are
carried out.

Multiple linear regression analysis was carried out on FA, MD, RD, and AxD
values estimated using the protocol described in section 3.6 from the subjects in
cohort HCsub. Age, gender, and the effects of their interaction were considered as
factors. All four DTI parameters exhibited linear trends with age in the age range
analysed (Figure 4.2), consistent with previously reported observations [Lebel et al.,
2010; Ota et al., 2006]. An offset was noted between the regression lines plotted for
male and female patterns of change for MD, RD, and AxD, but not for FA. However,
these gender-related differences were not found to be statistically significant (Table
4.2). Neither gender, nor the effects of interaction between age and gender, were
found to be significant factors contributing to changes in DTI parameters with age.

Since gender was not found to be a significant factor impacting DTI measure-
ments in the present dataset, cohort HC was used for further analysis instead of
HCsub. This enabled a larger sample size to be studied which may lead to a lower
variance in the fitted regression models. Unequal sample sizes for HC, MCI, and AD
may be accounted for in the statistical tests carried out.

Table 4.2: The contributions of age, gender, and their interaction, to observed linear
trends in Figure 4.2 were analysed using a null hypothesis that tests their correlation
with the DTI parameters (FA, MD, RD, and AxD) and outputs a probability ‘p’.
The factor is considered significant if ‘p’ is less than 0.05. p(age:gender) denotes the
p-value for the effects of interaction of age and gender on the DTI parameters.

DTI parameter p(age) p(gender) p(age:gender)
FA 0.06 0.8 0.8
MD < 0.001 0.63 0.51
RD < 0.01 0.91 0.85
AxD < 0.001 0.8 0.62
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4.5 Analysis of the corpus callosum in ageing

The cohort HC was used to analyse the effects of healthy ageing on DTI parameters
in the corpus callosum. Results of linear regression analysis have been given in
Figure 4.3(a-d). For all four DTI parameters, age was found to be a significant factor
contributing to changes observed (p < 0.001). This agreed with previous studies
where a negative correlation of FA and positive correlations of MD, RD, and AxD
with age have been reported (see section 2.4). It is likely that although a linear
relationship existed in the age range analysed, a non-linear fit may better describe
the data as more subjects (younger and older) are added [Lebel et al., 2012a; Sala
et al., 2012; Lebel et al., 2010].

Regression analysis was also carried out by corpus callosum sub-region to
investigate whether patterns of change in DTI parameters with age were similar
throughout the white matter tract (Figure 4.3(e-h)). Tests using ANCOVA on the
region-wise data revealed that the measured values of FA, MD, and RD differed
significantly (p < 0.001) between sub-regions after controlling for the effects of age.
Tukey’s multiple comparison tests between FA, MD, RD, and AxD of the five regions
supported these observations, although AxD remained fairly constant between the
regions (Figure 4.4). The effect sizes of region as a contributing factor to the variance
observed in the DTI parameters have been given in Table 4.3.

A post-mortem study has shown that the corpus callosum is a bundle of fibres
with different diameters connecting the left and the right hemispheres. The anterior
corpus callosum has the highest density of thin fibres. This decreases towards the
posterior regions with a rising presence of larger fibres, and reaches a minimum before
increasing again towards the posterior end; an opposite trend has been observed
for the density of fibres with larger diameters (Figure 4.5a) [Aboitiz et al., 1992].
Another study [Barazany et al., 2009] has reported a positive correlation between the
axon diameter and RD in the corpus callosum of rat brain, potentially due to larger
diameters leading to a lower density and a subsequent increase in perpendicular
diffusion. This relationship was found to hold true in the present study in the human
corpus callosum (Figure 4.5b), even though the schemes of subdivision used were
different.

Regional variations observed in DTI parameters in the corpus callosum ROI
(Table 4.3) may likely be due to the varying density of axons with larger and smaller
diameters. However, these regional variations in microstructure were not found to
significantly impact the values of AxD in the corpus callosum. This may be due
to the manner of segmentation of the ROI itself; variations in fibre size between
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Figure 4.3: Linear regression plots of (a) FA, (b) MD, (c) RD, and (d) AxD in the
whole corpus callosum. The p-values from testing age as a contributing factor to the
observed trends have been shown on the plots with their corresponding r-squared
values. Figures (e), (f), (g), and (h) show the parameters stratified by sub-region.
The results of corresponding statistical tests have been given in Table 4.3.
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Figure 4.4: Results of Tukey’s multiple comparison tests between FA, MD, RD,
and AxD of corpus callosum sub-regions with different colours indicating different
significance levels.

Table 4.3: Results of ANCOVA between regions 1 - 5 in HC, testing for regional
differences after controlling for the effects of age. Partial omega squared (ω2) is a
measure of effect size; it is an estimate of how much variance in the output variables
are accounted for by the explanatory variable, i.e., corpus callosum sub-region. ω2

has values between 1 and -1, with 0 indicating no effect.

DTI parameter Cumulative p-value (ANCOVA) ω2

FA < 0.001 0.285
MD < 0.001 0.252
RD < 0.001 0.306
AxD 0.006 0.017

62



anterior and posterior regions may not have an impact on AxD, which measures the
diffusivity in a direction parallel to the fibre orientation, i.e., from one hemisphere to
the other. It is important to keep in mind that the anterior-posterior segmentation
of the corpus callosum ROI does not represent the direction of fibre orientation.

The analysis carried out in this section has revealed that regional variations
in DTI properties in the corpus callosum are statistically significant. Results given
in Table 4.3 have suggested that at least 25% of variance in FA, MD, and RD mea-
surements may be explained by regional variations. Therefore, studies investigating
the diffusion properties of the corpus callosum in ageing or disease may be better
served by analysing each sub-region separately.

Figure 4.5: (a) Density distribution of small and large diameter axons in the corpus
callosum. Picture has been adapted with permission from Aboitiz et al. [1992]. (b)
Distribution of FA and RD values in the corpus callosum sub-regions were observed
to follow a similar trajectory. Although the sub-division scheme used in this study
is different to that used in (a), it may be observed that the minimum and maximum
density for smaller and larger diameter fibres occur in region B3 (isthmus) and the
minimum and maximum for FA and RD distributions occur in region 4 in the Hofer
and Frahm scheme. These regions may be observed from the figures to be the same.

63



4.6 Analysis of the corpus callosum in MCI and AD

The cohorts MCI and AD described in section 4.3 were used to analyse the effects of
disease-related microstructural changes on DTI parameters in the corpus callosum.
Linear regression plots of FA, MD, RD, and AxD in the whole corpus callosum
ROI have been shown in Figure 4.6. Initial tests were carried out in this ROI using
ANCOVA. They revealed subtle but significant changes in FA, RD, and AxD of
patients with MCI compared to HC after controlling for the effects of age (Table
4.4). A decrease in RD accompanied by an increase in AxD likely had opposing
effects on MD measurements, which were not statistically significant between MCI
and HC. This has been shown in Figure 4.7 where the linear relationship between
MD and RD + AxD implied by the equations using diffusion tensor eigen values

Figure 4.6: Linear regression plots of DTI parameters with age in the whole corpus
callosum ROI of HC, MCI, and AD groups.
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Figure 4.7: Plots showing the relationships between MD, RD, and AxD of HC and
MCI subjects.

Table 4.4: Results of ANCOVA tests between HC, MCI, and AD groups with
age and disease group as factors. Effect sizes of disease on the parameters have
been represented by ω2. Tukey’s test was used to obtain a p-value for pairwise
comparisons between groups.

DTI parameter Pairwise comparison Effect size (ω2)
HC-MCI HC-AD

FA < 0.001 0.2 0.119
MD 0.91 0.99 -0.009
RD 0.013 0.65 0.036
AxD 0.02 0.98 0.026
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[RD = (λ2 + λ3)/2, AxD = λ1, and MD = (λ1 + λ2 + λ3)/3] may be observed.
These equations have been used to generate plots that show a smaller RD and a
larger AxD in MCI patients compared to HC, for a given value of MD. The third
plot in Figure 4.7 suggests that these opposing patterns (represented by RD + AxD)
bring the MD values of HC and MCI subjects closer to each other, resulting in a
non-significant difference.

Measurements from patients with AD were not found to be significantly
different from either HC or MCI patients. However, this was more likely due to
insufficient number of subjects rather than the absence of pathological changes.
Nevertheless, the data obtained from patients with AD were plotted alongside
that from HC and MCI to visualise the regression trends (Figure 4.6). Results of
ANCOVA comparing data from AD and HC cohorts have been given in Table 4.4.

It is worth noting that the measured FA values in patients with MCI were
higher than that in HC on average, and the values for MD and RD were lower
(Figure 4.6). This contradicted previous reports which showed trends of lower FA
and higher diffusivities in degeneration (see section 2.4), but seemed to suggest a role
for inflammation in MCI as indicated by increasing FA and decreasing diffusivities
[Gupta et al., 2008; Nath et al., 2007]. This has been reported to be suggestive of
either intracellular inflammation with inflow of extracellular water in the axons,
or decreased extracellular space due to cellular infiltration by inflammatory cells
[Renoux et al., 2006]. Neuroinflammation in MCI and AD has not been extensively
studied in the context of DTI. Advanced diffusion models of the brain such as those
quantifying extracellular free-water volume are being used to develop markers to
study neuroinflammation [Pasternak et al., 2016, 2012].

An investigation into region-wise measurements provided a better insight
into the differences between DTI parameters in HC and MCI. Density plots or
smoothed histograms were plotted for DTI parameters in each region to visualise
the distribution of measured values and the heterogeneity (Figures 4.8 and 4.9).
Significant differences were observed in MD (p < 0.05), RD (p < 0.1), and AxD (p
< 0.05) between HC and MCI in region 2 and only AxD (p < 0.1) in region 3. This
indicated that degenerative changes observed in MCI were dominant in regions 2
and 3 of the corpus callosum and that they might be more extensive in region 2 than
in region 3. No significant differences were observed between HC and AD groups at
p < 0.05 but this may likely be due to the low sample size. Results of ANCOVA
analysis on region-wise DTI parameters of HC, MCI, and AD groups have been
given in Table 4.5. It should be noted that although the effect sizes of disease in
regions 2 and 3 for the significantly different parameters (see Table 4.5) were higher
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than in other regions, their absolute values were still small. This may be attributed
to the subtle differences between HC and MCI during the early stages of cognitive
impairment.

Physiological interpretations for RD have included demyelination and that for
AxD have included axonal degeneration [Song et al., 2003]. This implies a diminished
corpus callosum integrity in MCI, potentially playing a role in progression to AD.
Alterations in DTI parameters in the corpus callosum of patients with AD could not
be investigated thoroughly in this study due to the low sample size. This may be
carried out in a future study after ADNI-3 releases more patient data. Nevertheless,
several DTI studies have reported corpus callosum degeneration in AD [Doan et al.,

Figure 4.8: Density plots of FA and MD visualised separately in the corpus callosum
sub-regions.
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2017; Demey et al., 2015; Preti et al., 2012] using images obtained from other sources.

4.6.1 Associations with clinical observations

The results of the DTI analysis indicated that corpus callosum sub-regions 2 and
3 were affected in MCI. Region 2 of the corpus callosum projects to pre-motor
and supplementary motor areas, and region 3 to primary motor areas of the brain
[Hofer and Frahm, 2006]. An effect of disease in MCI, indicated by altered values
of DTI parameters in these regions, may help explain motor impairments observed
in patients with MCI and pre-clinical AD [de Paula et al., 2016; Buchman and

Figure 4.9: Density plots of RD and AxD visualised separately in the corpus callosum
sub-regions.
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Bennett, 2011]. Neurophysiological examination results accompanying participant
data in ADNI-3 were used to test this hypothesis. They have been collected as part
of subject screening process and provide preliminary information about a range of
functional networks including motor, visual, and auditory systems.

The results of neurophysiological examinations have been summarised in
Table 4.6. They showed that a higher proportion of tremors, abnormal reflexes and
impaired gait were reported in MCI patients compared to HC. It is interesting to note
that this pattern was observed only in motor-related functions and not in the results
of visual or auditory examinations. This agreed with the study results that indicated
altered DTI parameters only in regions 2 and 3, which are regions projecting to motor
areas of the brain. The study also supported results from previous investigations
that show significant correlations between altered FA in the anterior parts of the

Table 4.5: Effect size (ω2) and significance (p-values) of disease on the corpus
callosum. Tukey’s test was used to obtain a p-value from pairwise comparisons of
MCI and AD with HC.

Region DTI parameter Cumulative p-value Effect size Pairwise comparison
HC-MCI HC-AD

FA 0.79 -0.01 0.98 0.77
1 MD 0.32 0.002 0.41 0.61

RD 0.42 -0.001 0.61 0.56
AxD 0.36 0 0.46 0.62
FA 0.38 0 0.92 0.36

2 MD 0.003 0.05 0.005 0.19
RD 0.03 0.03 0.09 0.18
AxD 0.006 0.05 0.005 0.57
FA 0.33 0.001 0.74 0.44

3 MD 0.25 0.005 0.23 0.92
RD 0.62 -0.007 0.88 0.64
AxD 0.05 0.03 0.08 0.59
FA 0.1 0.02 0.32 0.3

4 MD 0.84 -0.011 0.99 0.83
RD 0.67 -0.008 0.78 0.86
AxD 0.03 0.03 0.31 0.09
FA 0.79 -0.011 0.98 0.77

5 MD 0.37 0 0.54 0.55
RD 0.16 0.01 0.37 0.3
AxD 0.86 -0.012 0.85 0.99
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corpus callosum and abnormal gait function [Snir et al., 2019; de Laat et al., 2011;
Bhadelia et al., 2009]. However, it must be noted that an increase in FA in the
ROI was observed in this study, whereas previous studies have reported a decrease
in FA. Although results from AD group show a similar increase in motor related
abnormalities, they have not been considered while interpreting the data due to the
low sample size of the cohort.

Due to a lack of specificity in DTI, the nature of pathological changes giving
rise to alterations in measured parameters in the corpus callosum could not be
established. Prior associations of DTI parameters with demyelination and axonal
degeneration suggest these processes may occur in the anterior parts of the corpus
callosum in MCI and AD, resulting in diminished processing of information in the
pre-motor, supplementary motor and primary motor areas of the brain [Song et al.,
2003].

4.7 Evidence for retrogenesis

The results of the study described in this chapter agreed with the retrogenesis theory,
which suggests that white matter fibres that myelinated later in life were more
susceptible to damage from ageing and diseases than those that myelinated earlier in
life (see section 2.4.1.1). In other words, it postulates that degeneration of the white
matter follows an opposite trajectory to that of myelogenesis. In the human corpus
callosum, posterior areas such as the splenium have been found to myelinate earlier
in life compared to anterior regions such as the genu and are therefore thought to be
more resilient in ageing and disease [Knyazeva, 2013].

In the corpus callosum analysis carried out in this chapter, FA values in the

Table 4.6: Summary of neurophysiological examination data from ADNI-3 subjects,
showing the % of subjects with abnormal results.

Examination HC MCI AD
Visual impairment 5.6 3.6 0
Auditory impairment 6.5 7.1 0
Presence of tremors 8.4 21.4 40
Abnormal tendon reflexes 7.5 10.7 20
Abnormal plantar reflexes 0.9 3.6 0
Abnormal gait 8.4 21.4 40
Motor strength 2.8 0 20
Sensory reflexes 12.1 10.7 20
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anterior parts of the corpus callosum were observed to be lower and MD values
higher than in the posterior parts (Figures 4.10 and 4.11). Welch’s two-sample t-tests
were carried out to quantify the significance of this difference; this test was chosen
to account for unequal variances in measurements in different regions of the corpus
callosum. The results of t-tests have been summarised in Table 4.7. Significant
differences were observed between regions 1 and 5 in FA, MD, and RD (p < 0.001),
but not for AxD. These results supported the retrogenesis theory by indicating that
the anterior parts of the corpus callosum which myelinate later in life may be more
susceptible to degeneration with ageing than the posterior parts.

Figure 4.10: Region-wise box plots of FA and MD in the corpus callosum of HC
subjects.

Figure 4.11: Region-wise box plots of FA and MD in the corpus callosum of HC
subjects and patients with MCI and AD.
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Table 4.7: Results of Welch’s two-sample t-tests carried out between regions 1 and
5 of the corpus callosum.

DTI Parameter Mean in Region 1 Mean in Region 5 p-value
FA 0.71 0.75 < 0.001
MD 0.83 0.79 < 0.001
RD 0.41 0.35 < 0.001
AxD 1.7 1.68 0.15

4.8 Conclusions

The effects of normal ageing as well as pathological effects of MCI and AD have
been analysed in the corpus callosum using DTI. Corpus callosum was divided
into sub-regions to account for its microstructural heterogeneity in measurements.
Age-related alterations in diffusion properties have been observed to be significantly
different between the sub-regions. A careful and detailed analysis of FA, MD,
RD, and AxD, which also accounted for the AD risk factors age and gender, has
shown that the DTI properties of the corpus callosum were best characterised when
investigated by sub-region rather than as a single structure. The analysis has also
revealed alterations in DTI parameters occurring in the corpus callosum due to MCI,
predominantly in regions 2 and 3. This suggested a potential role of the corpus
callosum in motor-related deficits seen in MCI and early AD, as regions 2 and 3
project to motor areas of the brain. The results have been supported by evidence
from neurophysiological exam data archived in ADNI-3, where patients with MCI
were more likely than HC to experience motor-related deficits compared to other
impairments.

The results described in this chapter have demonstrated a role for the corpus
callosum in a symptom that is observed early in AD pathogenesis, i.e., motor related
abnormalities. They have showed the utility of the segmentation and analysis
protocol developed in chapter 3 in detecting clinically relevant, subtle alterations
in DTI parameters in disease. A limitation of this study is the lack of detailed
information about motor functions in ADNI-3 neurophysiological exams, which were
collected as part of screening. The results indicate only the presence or absence of
abnormalities. Availability of detailed test results may help estimate the correlation
between DTI parameters, tremors, reflexes and gait, providing insight into the
extent of the role of corpus callosum in motor impairment as observed in MCI
and potentially, pre-clinical AD. The measurements collected have been given in
appendix C.
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Chapter 5

Advanced DTI methods for
clinical scans

5.1 Introduction

A detailed study of the corpus callosum was carried out in chapter 4 using the protocol
developed in chapter 3. The corpus callosum was observed to be a heterogeneous
structure with its properties varying between sub-regions. Alterations in DTI
properties were also measured in specific sub-regions of the corpus callosum projecting
to motor areas of the brain in patients with MCI and AD as compared to HC. In
this chapter, two advanced methods of DTI analysis have been applied on the same
cohorts of subjects to investigate the feasibility of extracting more specific information
about ageing and disease-related changes in the corpus callosum. Although these
methods have originally been proposed for DTI scans acquired using multiple HARDI
shells or a higher resolution, prior studies have adapted them for application to
clinically acquired scans.

5.2 NODDI-DTI

5.2.1 Neurite Orientation Dispersion and Density Imaging (NODDI)

NODDI has been developed by Zhang et al. (2012) as a method to investigate
the integrity of axons through indices that are more specific to variations in mi-
crostructure than the common DTI parameters (FA, MD, RD, AxD). The NODDI
model of the white matter may be represented by a modified version of the com-
posite hindered and restricted model of diffusion (CHARMED, Assaf and Basser
[2005]). CHARMED attributed the MR signal decay observed in white matter to
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both Gaussian (hindered) and non-Gaussian (restricted) diffusion compartments,
with hindered diffusion thought to occur in the extra-axonal space and restricted
diffusion in the intra-axonal space [Assaf and Basser, 2005]. NODDI has generalised
this model by representing the white matter as a bundle of impermeable cylindrical
axons with an orientation distribution and equal diameters [Zhang et al., 2011]. It
has approximated the acquired signal as contributed to by three compartments -
intra-cellular, extra-cellular, and CSF.

The DW-MRI scan acquisition protocol for NODDI requires a minimum of
two HARDI shells to create a model of the white matter that includes intra-cellular,
extra-cellular, and CSF compartments. The intra-cellular space has been modelled
using a set of cylinders with zero radii to capture the highly anisotropic diffusion
in the axons. On the other hand, the extra-cellular space has been described by an
anisotropic Gaussian diffusion and the CSF space by an isotropic Gaussian diffusion
[Zhang et al., 2012]. The CSF compartment in the model allows for the estimation
of CSF partial volume fraction in the signal, which may result in more accurate
measurements in white matter structures close to the ventricles such as the corpus
callosum.

The NODDI model may be mathematically described as follows [Zhang et al.,
2012]:

A = (1− νiso)(νicAic + (1− νic)Aec) + νisoAiso (5.1)

where ν represents the volume fraction, A represents the normalised signal, and ic,
ec, and iso are the intra-cellular, extra-cellular, and CSF compartments respectively.
The intra-cellular compartment has been modelled using a Watson distribution to
describe the ODF of the fibre bundle:

f(n) = M

(1
2 ,

3
2 , κ

)−1
eκ(µ.n)2 (5.2)

where M is a special mathematical function known as the confluent hypergeometric
function, µ is the mean fibre orientation and κ is a parameter measuring the dispersion
of orientation around µ. The extra-cellular compartment has been modelled using a
symmetric tensor with the principal direction of diffusion n and diffusion coefficients
d‖ and d⊥. The CSF compartment has been described using an isotropic Gaussian
diffusion with diffusivity diso. The model has then been fitted to the acquired image
using non-linear optimisation [Zhang et al., 2012; Alexander and Seunarine, 2010]
and the parameter κ has been used to compute the orientation dispersion index
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[Zhang et al., 2012] (OD) as follows:

OD = 2
π
arctan

[1
κ

]
(5.3)

The performance of NODDI has been tested under different scan acquisition
protocols with multiple shells and one protocol with a single shell. It has been
established that the neurite density as measured by νic cannot be estimated accurately
with single shell DTI acquisition, rather a minimum of two shells was required.
NODDI may be applied to scans acquired with typical clinical b-values, provided
the signal has been sampled using more than one HARDI shell.

5.2.2 The NODDI-DTI model

The NODDI-DTI model has been proposed as a modification to NODDI that enabled
its application to single-shell DTI. It has eliminated the CSF compartment from
the model and recommended application on voxels without CSF partial volume
contamination [Edwards et al., 2017]. The parameter OD has been redefined as τ
[Edwards et al., 2017; Zhang et al., 2012]:

τ = 1√
πκ exp(−κ) erfi(

√
κ) −

1
2κ, τ ∈ [1/3, 1] (5.4)

The value of τ may vary from 1/3 in isotropic structures (κ=0) to 1 in strictly
anisotropic structures (κ =∞). The eigen values of the diffusion tensor has been
used to express νic and τ in terms of FA and MD [Edwards et al., 2017], leading to
the following equations:

νic = 1−
√

1
2

(3 MD
d
− 1

)
(5.5)

τ = 1
3

[
1 + 4
| d−MD |

MD . FA√
3− 2 FA2

]
(5.6)

Since νic ∈ [0, 1] and τ ∈ [1/3, 1], this implies [Edwards et al., 2017]:

MD ∈ [d/3, d], FA ∈

0,
√

3
2

| d − MD |√
2 MD2 − (d−MD)2

 (5.7)

A heuristic correction has been applied to MD to account for diffusion kurtosis
[Edwards et al., 2017] that may be present in single-shell DTI. Kurtosis is a measure
of the tails of a probability distribution, with a higher kurtosis implying heavier tails
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or outliers. Heuristically corrected MD has been defined as:

MDh = MD + b

6

 3∑
i,j=1

1 + 2δij
15 λiλj

 (5.8)

where λi is the ith eigen value of the diffusion tensor and δij is the Kronecker delta
function.

The heuristic correction applied to MD has been based on several assumptions:
(a) diffusional kurtosis is the dominant factor contributing to the observed bias,
(b) the square of ADC is not correlated with the apparent diffusional kurtosis,
(c) the mean diffusional kurtosis is 1, and (d) the effect of diffusional kurtosis on
each individual eigen value is negligible. The kurtosis bias may not be completely
eliminated due to the nature of these assumptions, and the residual effects may push
the values of MD outside its normal range of [d/3, d]. This is a major limitation of
the NODDI-DTI model. The value of MDh may be substituted in equation 5.5 to
estimate values of νic. A heuristic correction has not been recommended for FA since
it was found to reduce the upper bound of values leading to unphysical estimates
of τ . The parameters νic and τ estimated using NODDI-DTI have been found to
be close to that estimated using NODDI, demonstrating the utility of NODDI-DTI
method in images acquired using typical clinical scan parameters [Edwards et al.,
2017].

It must be noted that the NODDI-DTI model may often give rise to unphysical
estimates of νic and τ . Some explanations for this have been proposed by Edwards
et al.. They include errors in the estimation of FA and MD using the diffusion
tensor, partial volume effects of CSF in the image after setting its contribution to
zero in the model, residual bias after heuristic kurtosis correction as described above,
and cases where model assumptions of NODDI itself are invalid. Edwards et al. has
further stipulated that ageing or pathological mechanisms in the white matter may
lead to one or more of the above situations and subsequent unphysical parameter
estimates, and has recommended that the NODDI-DTI model be applied only to
healthy subject data. Here, the cohort HC from chapter 4 has been used to explore
the scope of NODDI-DTI model in extracting specific information that enriches the
DTI analysis of the corpus callosum.

5.2.3 Analysis of ADNI-3 HC group

Images used in this study belong to the cohort HC obtained from ADNI-3 and has
been described in chapter 4. Briefly, the scan sequence parameters of the images are:
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field strength = 3 T, TE = 56 ms, TR = 7200 ms, b = 0, 1000 s/mm2, number of
diffusion weighted images = 48, number of non-diffusion weighted images = 7, voxel
size = 2 mm x 2 mm x 2 mm, and approximate scan time = 7 minutes 30 seconds.
Subject demographics have been summarised in Table 4.1 in chapter 4.

The following steps have been followed for analysis of HC data using NODDI-
DTI. They have been derived from the segmentation and analysis protocol developed
in section 3.6. To ensure the accuracy of the NODDI-DTI model, the corpus callosum
was manually segmented ensuring no CSF contamination in the ROI.

1. Using the steps described in section 3.6, FA and MD were estimated for every
pixel in the corpus callosum ROI.

2. For each image, a heuristic correction was applied to estimate pixel-wise MDh,
and used instead of MD in equation 5.5 to estimate pixel-wise νic. Such a
correction was not carried out for the estimation of τ (equation 5.6) as it was
not recommended by Edwards et al..

3. The median of pixel-wise νic and τ were estimated to represent these parameters
in the ROI of each image.

The above steps were carried out for the corpus callosum both as a single
ROI and by sub-regions similar to the analysis in chapter 4. The corresponding
plots of νic and τ have been given in Figure 5.1. A decrease in νic was observed
with ageing, with the patterns of change differing between the sub-regions of the
corpus callosum; this was observed to be similar to the changes in FA (Figure 4.3).
On the other hand, variations in τ with ageing were not found to be statistically
significant in the whole corpus callosum ROI or the sub-regions. The estimation of
τ using equation 5.6 resulted in a few values outside the range of feasible bounds as
discussed by Edwards et al. and has been ignored for the calculations carried out in
this study.

Some of the different sources of diffusion anisotropy have been discussed
previously (see section 2.3). A decrease in νic or an increase in τ have been proposed
as factors contributing to a reduction in FA observed in DTI studies of the white
matter [Beaulieu, 2014]. The similarity in patterns of change observed in FA and νic
supports this hypothesis and was further investigated using a correlation analysis.
The values of Pearson’s correlation coefficient for each sub-region have been given
in Table 5.1. The results described in the table suggest a high degree of correlation
between FA and νic, especially in the anterior sub-region 1 of the corpus callosum.
Linear regression analysis was carried out to obtain the values of r2 in different
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Figure 5.1: (a) Plot of neurite density νic showing a decrease with age. (b) Plot of
the orientation dispersion τ with age. Plots (c) and (d) show region-wise distribution
of values of νic and τ . Only values within physically feasible bounds have been
plotted for τ . The correlation coefficient and r2 values have been shown for the
whole corpus callosum in the figure, and for the sub-regions in Table 5.1.

regions; these results (Table 5.1) indicate a high r2 in region 1 of the corpus callosum
and suggest νic as a major factor contributing to the changes observed in FA in this
region.

The retrogenesis theory postulates that the anterior regions of the corpus
callosum may be more susceptible to the effects of ageing than the posterior regions
(section 2.4.1.1). The evidence for a reduced neurite density in region 1 compared to
region 5 of the corpus callosum (Figure 5.1) supported this hypothesis. A prior study
of neurite density across the human lifespan (7 - 63 years) has observed a similar
trajectory as FA, i.e., increasing in childhood and plateauing in adulthood [Chang
et al., 2015]. In this study, a decline in FA with age that corresponds to a decline in
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νic was observed. The scope of NODDI-DTI, to improve specificity and extend the
results of conventional DTI analysis, has been demonstrated on clinically acquired
images of the HC cohort from ADNI-3. While the original NODDI model may offer
a more accurate and comprehensive picture, it also requires images to be acquired
using multiple HARDI shells. This has not yet become a routine clinical practice.

5.3 TractSeg

A widely adopted method of white matter tract segmentation uses tractography
followed by manual delineation to obtain an ROI. Automated segmentation methods
have also been proposed to follow tractography and obtain the ROI. These may
include atlases, anatomy-based clustering, template matching, and geometric flow-
based segmentation [Wasserthal et al., 2018b]. TractSeg is an algorithm based on a
convolutional neural network for white matter segmentation and tractography that
has aimed to surpass the performance of these automated methods by using a fully
convolutional neural network (FCNN). Training data for the algorithm has been
produced by a semi-automated segmentation of 72 white matter tracts in a cohort of
105 HC subjects from the Human Connectome Project (HCP) database [Van Essen
et al., 2013]. Thus, TractSeg is capable of segmenting 72 white matter tracts in total.
It has been made available free of charge at www.github.com/MIC-DKFZ/TractSeg.

DTI scans have been acquired by the HCP at 3 T with 1.25 mm x 1.25
mm x 1.25 mm isotropic voxel resolution, 270 diffusion weighted directions evenly
distributed over 3 HARDI shells with b-values of 1000, 2000, and 3000 s/mm2, and 18
images without diffusion weighting. These scan parameters are state-of-the-art and
not typical for clinical scanners. To ensure a good performance of TractSeg on clinical
datasets as well, the HCP images have been down-sampled to 2.5 mm isotropic
resolution with only 32 diffusion weighted directions retained at b=1000 s/mm2.
This reduced quality data was then used to validate the performance of TractSeg

Table 5.1: Results of Pearson’s test and linear regression for the corpus callosum
sub-regions between FA and νic.

Region Pearson’s r Adjusted r2 p-value
1 0.72 0.52 < 0.001
2 0.38 0.14 < 0.001
3 0.31 0.089 0.001
4 0.49 0.23 < 0.001
5 0.4 0.15 < 0.001
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on clinically acquired images. In this study, TractSeg has been implemented on the
ADNI-3 cohort to analyse corpus callosum tracts in HC, MCI, and AD subject images.
These are the same cohorts that have been analysed in the DTI study in chapter
4. Here, TractSeg has been used to extract information that may complement the
results already obtained from conventional DTI analysis.

An important fact to keep in mind is the difference in the corpus callosum
ROI as processed by the DTI analysis and TractSeg. While the protocol developed
in chapter 3 has proposed an ROI on a mid-sagittal volume extending from anterior
to posterior regions of the brain, TractSeg parses the corpus callosum from one
hemisphere of the brain to the other (Figure 1.2). In other words, while DTI analysis
in chapter 4 has revealed changes in MCI and AD across the corpus callosum fibre
bundle, TractSeg has been used to extract the same information along the length of
the bundle.

5.3.1 TractSeg model and architecture

5.3.1.1 Model architecture and training

The FCNN model proposed by TractSeg has been based on the widely used U-Net
architecture [Ronneberger et al., 2015]. The input is in the form of a 2D image with
144 x 144 voxels and 9 channels to represent the extracted orientation peaks. The
FCNN generates an output image with 144 x 144 voxels and 72 channels, with each
channel carrying the voxel-wise probabilities for one of the 72 possible white matter
tracts, which may be converted to binary outcomes by thresholding at 0.5.

The model has not been extended to 3D images to retain memory efficiency.
However, the 2D image slices are randomly sampled in axial, sagittal and coronal
orientations to ensure a good performance of the model independent of the image
acquisition plane. Three predictions are made based on the orientation peaks which
are later averaged to obtain a single final prediction of the white matter tract each
pixel belongs to. Rather than directly taking the mean of the predictions, an optional
second FCNN stage has been proposed, which may offer an optimum combination of
slice orientations to obtain the best prediction.

Data augmentation of the ODF peak images, including rotation, elastic defor-
mation, displacement, zoom, noise addition, contrast, and brightness augmentation
have been carried out on the training data to improve the performance of the FCNN
[Wasserthal et al., 2018b]. Different types of ODF peak images have been gener-
ated for training including using: (a) multi-shell multi-tissue constrained spherical
deconvolution (CSD) using all gradient directions, (b) single-shell CSD using all
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gradient directions at b=1000 s/mm2, and (c) single-shell CSD using only 12 gradient
directions at b=1000 s/mm2. Training data for the network has been randomly
sampled from these peak images to ensure an overall good performance.

The images of 105 subjects from HCP have been used to generate segmenta-
tions of 72 white matter tracts to train and validate the FCNN. These images have
been put through the following processing steps - (a) tractography using the ODF
generated by multi-shell CSD, (b) initial extraction of the tracts using a dictionary of
anatomical definitions describing each of them, (c) tract refinement using manually
defined inclusion and exclusion ROI, (d) manual inspection for quality control, and
(e) generation of binary masks for the 72 tracts.

5.3.1.2 Pre-processing

The input to TractSeg is required to be in the form of 3 fibre directions per voxel,
each represented by a 3D vector, resulting in 9 input channels. Fibre directions
may be extracted using CSD, that expresses the acquired HARDI signal from a
fibre bundle with a specific ODF as the convolution of a response function in a
spherical coordinate system [Tournier et al., 2004]. A non-negativity constraint has
been found to result in a robust determination of the fibre orientations using CSD
[Tournier et al., 2007]. A multi-shell version of this algorithm has also been proposed
[Jeurissen et al., 2014]. If an image voxel contains fibres with only one orientation,
such as in the corpus callosum, the other two are set to zero. The images from HCP
with spatial resolution 145 x 174 x 145 voxels have been cropped to 144 x 144 x 144
voxels without losing brain tissue, to fit them to the FCNN input size.

The three stages of TractSeg, as explained below, have been based on the
same FCNN receiving fibre ODF as input. However, they differ based on the training
target or the expected outcome. The workflow of TractSeg algorithm is shown in
Figure 5.2 and is explained in the following sections.

5.3.1.3 Tract segmentation

The FCNN, trained as described in the previous section, carries out voxel-wise
classification of white matter tracts in this stage of TractSeg. It has 72 output
channels, each producing a binary image with voxel labels of 0 or 1 depending on
whether they belong to the corresponding tract. Therefore, the FCNN at this stage
has an output in the form of 144 x 144 voxels and 72 channels.
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5.3.1.4 Start and end segmentation

The FCNN has been trained to segment the start and end regions of each tract in
this stage of TractSeg. Thus, a total of 144 output channels are required for 72 white
matter tracts. Training of the network has been carried out similar to that of the
tract segmentation stage, except for the fact that 2 outputs per tract are generated
- one start and one end region. These regions have been derived from the binary
masks obtained from the tract fibres by setting each voxel to 1 if at least one fibre
streamline passes through it [Wasserthal et al., 2019].

5.3.1.5 Tract orientation mapping

Tract orientation mapping (TOM) is carried out as the third stage of TractSeg
using an FCNN. [Wasserthal et al., 2018a, 2019]. The network has been trained
to learn tract-specific orientations from the ODF, which are then used to generate
tract orientation maps (also abbreviated TOM). Each voxel in a TOM carries a
3D vector representing a single tract and its orientation, constituting 72 x 3 = 216
output channels in total. However, since this has been found to lead to problems
with convergence, four separate FCNN models have been trained for TOM, with 18
tracts and 18 x 3 = 54 output channels per model.

5.3.1.6 Tractometry

Tractometry is a method through with FA and other DTI parameters may be mea-
sured along the fibres of white matter tracts [Yeatman et al., 2012]. In TractSeg, the
method proposed by Chandio et al. has been implemented to carry out tractometry
through the following steps:

1. All fibre streamlines in the white matter tract being studied are resampled to
an equal number of points, that may be specified by the user.

2. The centroids of these streamlines are determined.

3. For each streamline, each sampled segment is assigned to the nearest centroid
segment.

4. The FA is evaluated at each segment of each streamline.

5. The average FA is then calculated from the centroid segments.
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5.3.2 Analysis of ADNI-3 data

The TractSeg model trained on images from HCP was downloaded and used in a
study on images from ADNI-3. The corpus callosum was tracked on the DW-MRI
scans obtained from 107 HC, 28 MCI, and 5 AD subjects, which is the same cohort
that has been studied in chapter 4. Briefly, the scan sequence details of ADNI-3
image are: field strength = 3 T, echo time (TE) = 56 ms, repetition time (TR) =
7200 ms, b = 0, 1000 s/mm2, number of diffusion weighted images = 48, number
of non-diffusion weighted images = 7, voxel size = 2 mm x 2 mm x 2 mm, and
approximate scan time = 7 minutes 30 seconds. Subject demographics have been
summarised in Table 4.1. Since these images have been acquired by ADNI-3 at a
lower resolution than HCP, the protocol recommended by the authors of TractSeg for
use in ‘standard cases’ was followed (see TractSeg tutorial by Wasserthal, accessed
14/09/2018). This includes altering the threshold value for small, incomplete tracts as
required to convert probability masks to complete binary masks, and post-processing
of tracked bundles to remove regions containing very few voxels.

TractSeg tracks the fibre bundles of the corpus callosum according to Witel-
son’s classification into 7 sub-regions (section 4.2.1). Although the results in chapter
4 has been obtained using Hofer scheme of subdivision, they may be compared with
the results of TractSeg using an approximation of coinciding regions. For instance,
it can be observed from Figure 4.1 that regions 1 and 2 in the Witelson scheme
corresponds to region 1 in the Hofer scheme, regions 3 and 4 in the Witelson scheme
to region 2 in the Hofer scheme, and regions 5, 6, and 7 in the Witelson scheme to
regions 3, 4, and 5 respectively in the Hofer scheme. The tractography results have
been shown in Figure 5.3.

The results of TractSeg analysis on images from HC and MCI groups have
been given in Figure 5.4. It shows a statistically significant difference in FA along
the tract for Witelson’s region 3 of the corpus callosum, which corresponds to region
2 in the Hofer scheme. This agreed with the analysis in chapter 4, where a difference
in DTI parameters have been noted in region 2 of the corpus callosum. Statistical
significance has been evaluated by TractSeg after correcting for multiple comparisons.
It must be noted that significant differences were estimated in a small portion of
the fibre bundle in Witelson’s region 3, although further deviations were present in
other parts (Figure 5.4). This was attributed to the unequal sample sizes of HC and
MCI groups and a corresponding larger variance observed in measurements from the
MCI group.

The results of TractSeg analysis on images from AD and MCI groups have
been given in Figure 5.5. Although separate patterns of change may be observed
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between the groups in the corpus callosum sub-regions, these were not found to be
statistically significant. The variance in data measured from patients with AD were
found to be high - a few measurements were observed to carry negative values as is
the case when the acquired data does not follow the diffusion tensor model due to
noise or signal drop [Niethammer et al., 2006]. The observed patterns in FA may be
validated by carrying out the study with sufficient number of participants in the
AD cohort.

5.4 Conclusions

In this chapter, two advanced analysis methods have been implemented for ADNI
DTI images to demonstrate the extent of information that may be extracted to
enrich conventional DTI analysis. Application of NODDI-DTI to images from the
HC cohort has suggested that neurite density in the ageing corpus callosum varied
between sub-regions and that it may be a major contributing factor to changes
observed in FA with age. It has also offered some support to the retrogenesis theory
with evidence of a reduced neurite density in the anterior regions compared to the
posterior regions of the corpus callosum. While the results of TractSeg analysis may
not be directly compared to the DTI study due to differences in the way the corpus
callosum has been parsed, they were in agreement with the findings in chapter 4.
Statistically significant differences were observed in Witelson’s region 3 of the corpus
callosum, which projects to motor areas of the brain. This agreed with the results
from chapter 4 where similar differences have been found in Hofer’s regions 2 and 3
that also project to motor areas of the brain. The measured parameters have been
given in appendix C.
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Chapter 6

Modelling white matter DTI

6.1 Introduction

In previous chapters, DTI analyses of the corpus callosum have revealed alterations
in FA, MD, RD, and AxD resulting from age-related changes as well as neurodegen-
erative mechanisms of MCI and AD. A significant outcome from these investigations
has been the association of specific corpus callosum sub-regions with motor-related
impairments observed in patients with MCI and AD. These findings have further
been supported by results of advanced analyses using NODDI-DTI and TractSeg.

DTI has proved to be an invaluable tool in clinical practice to diagnose and
monitor various conditions. However, DTI is a technique known for its lack of
specificity in measurements. It is not currently feasible to associate changes in DTI
parameters such as FA, MD, RD, and AxD, with underlying pathophysiological
mechanisms in routine clinical settings. Advanced tools are being developed which
may provide more specific measures of physiological parameters such as axon or
myelin diameters, but they often require image acquisition using state-of-the-art
scan settings, and may not always be applicable in clinical practice [Jung et al., 2018;
Zhang et al., 2012; Assaf et al., 2008]. Investigating biological processes in the white
matter and their associations with DTI is not a trivial task in vivo; and this becomes
even more complicated under typical clinical imaging conditions.

The white matter has been modelled in a prior study using various parameters
to represent the physiology, including axon and myelin radii, fibre packing density,
and myelin membrane permeability, to predict the sensitivity of diffusion metrics
to changes in these parameters [Sen and Basser, 2005]. An analysis of this model
revealed that diffusion metrics were largely dependent on the axon radius, the
extra-cellular volume fraction, and the spacing between the axons. The study also
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concluded that the myelin sheath presented a diffusion barrier to water molecules
in the axon, resulting in the extra-cellular fluid being the major determinant of the
estimated metrics. This theoretical model was later used to design a computational
study, based on the fact that DTI metrics measured in vivo are dependent also on
the properties of the scan pulse sequence [Baxter and Frank, 2013], rather than solely
on the physiological parameters.

A strategy to correlate clinically acquired DTI with physiological parameters
of the white matter was proposed by Davoodi-Bojd and Soltanian-Zadeh [2011].
They first estimated the eigen values, FA, and ADC from the diffusion tensor and
then fitted these metrics to the analytical model of Sen and Basser [2005]. Their
study concluded that the analytical fibre model needed modifications to enable a
more precise association with underlying physiology when using typical clinical DTI
scan settings.

The analytical model of Sen and Basser [2005] has held true for DTI pulse
sequences with low b-values and long diffusion times, which is typically not the case
in clinical scans. Deviations from predicted values have been observed for diffusion
metrics in simulation experiments, specifically at clinically relevant b-values, carrying
significant implications for data interpretation in DTI studies [Baxter and Frank,
2013]. These observations are compounded by the fact that a voxel of DTI signal
acquired from the white matter is a composite of signal contributions from several
compartments, of which the axon, myelin, and extracellular compartments are
thought to be the most significant [Beaulieu, 2002]. In these compartments, the
overall mobility of water molecules undergoing diffusion is different and is determined
by the tissue structure.

It has also been established that the longitudinal (T1) and transverse (T2)
relaxation properties of water molecules in these white matter compartments are
different [Peled, 2007; Does and Gore, 2002]. Both relaxation and diffusion appear
as signal attenuation; therefore, it is critical that their effects are separated and only
the attenuation due to diffusion is considered while estimating DTI metrics. Studies
looking at relaxation properties of the white matter have typically estimated them
separately using MRI and then compared them with DTI metrics. For instance,
two-compartment T2 decay models have been fitted to MRI signal resulting in a
short and a long T2 compartment; it has now been established that the short T2

compartment belonged to the myelin layer and the long T2 compartment to the
intra/extra-cellular water [MacKay et al., 2006; Mädler et al., 2008; Laule et al.,
2004; Laule and Moore, 2018]. However, a thorough search of relevant literature
revealed no studies that accounted for the effects of relaxation while estimating the
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diffusion tensor.
The study described in this chapter is based on the computational framework

previously developed [Baxter and Frank, 2013] which in turn, was based on the
theoretical model of the white matter proposed by Sen and Basser [2005]. Simulations
of the model have been carried out, both with and without accounting for T2

relaxation, and the results compared. The parameters of the model have been varied
(as described later) to represent healthy tissue, chronic and acute demyelination,
and neuroinflammation to investigate the impact of T2 relaxation on the estimated
DTI metrics and their interpretation. The results of this study will be significant in
understanding how T2 relaxation in the white matter affects DTI, thereby improving
the specificity of results obtained from in vivo DTI studies. The experiment has
been carried out using both single and multi-compartment fitting of the acquired
signal, as explained in later sections.

6.2 White matter model

6.2.1 Model assumptions

The geometry of the model was designed based on the following assumptions, which
have been derived from the original computational framework [Baxter and Frank,
2013].

1. An axon was represented using a straight cylinder of a constant diameter
throughout; with the myelin sheath represented using a larger cylinder enclosing
the axon completely.

2. Diameters of all axon cylinders in the model are constant.

3. Diameters of all myelin cylinders in the model are constant, and greater than
that of axon cylinders.

4. Axons are packed in a hexagonal array with constant spacing between adjacent
cylinders throughout the array.

The selection of geometrical and other physiological parameters describing
the model have been explained in detail in the following section. Several parameters,
such as the diffusion coefficients of water in various compartments, have not been
conclusively estimated for the white matter. In this study, they have been chosen
either based on studies investigating similar properties for other cell types, or results
from in vivo studies where available, as explained later.
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Figure 6.1: Schematic of the white matter model using cylinders to represent axon
and myelin. Adjacent cylinders were spaced L µm apart. The rectangular region
was infinitely replicated to create an array of cylinders. The schematic is based on
Figure 1 in Baxter and Frank [2013].

6.2.2 Model design

The model consisted of a hexagonally packed array of axons represented by cylinders
of radius ra wrapped around by myelin layers represented by cylinders with a larger
radius rm. Adjacent cylinders in the array were spaced at a distance Lµm apart. The
packing density f of the hexagonal array was defined as the area fraction occupied
by the axon-myelin structure.

f = 2πr2
m

L ∗
√

3L
(6.1)

The model as shown in Figure 6.1 constituted of three media - the axon,
the myelin, and the ECS. Different parameters of the model included the diffusion
coefficients of water molecules in the axon (Da), the myelin (Dm), and the ECS
(De), and the corresponding concentration of water molecules (Ca, Cm, Ce). Derived
from Fick’s first and second laws of diffusion, the probability of transition of a
water molecule from one medium to the other has been proposed as a function of its
concentration and diffusion coefficient [Baxter and Frank, 2013]:

pAB = CB
√
DB

CA
√
DA

(6.2)
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where A is a medium with a higher flux than medium B, CA, CB, DA, and DB

represent the concentrations and diffusion coefficients of water molecules in A and B
respectively, and pAB is the probability of transition of a molecule from A to B. The
probability of water diffusion through the membrane in the opposite direction, i.e.,
from a low flux medium to a high flux medium was set as 1. With the probabilities
of transition or permeability having been so defined, a model implemented with an
initial condition will achieve a quasi steady state within a given time. Quasi steady
state is when the conditions within a system change slowly enough to be considered
constant. The range of values used in this experiment for the model parameters
have been shown in Table 6.1 and the rationale for choosing these values have been
given below.

For all experiments, the transverse relaxation time (T2) of water molecules
in the whole white matter was set as 110 ms [Wansapura et al., 1999], and that of
various compartments were set as: T2m = 12 ms, T2a = T2e = 90 ms, where ‘m’
denotes myelin water and ‘a’ and ‘e’ denote the axonal and extra-cellular water
molecules respectively. These values agreed with results of several prior in vivo and
in vitro studies [MacKay and Laule, 2016; Andrews et al., 2006; Laule and Moore,
2018; Does and Gore, 2002; Lancaster et al., 2003] but were set based on a prior
study carried out at 3 T [Deoni et al., 2013]. Since DTI is a T2-weighted MRI, the
effects of longitudinal relaxation (T1) are considered negligible and were therefore
not accounted for in this study.

Myelin and axon radii were similarly estimated based on published literature.
Specifically, they were based on fibre sizes in the corpus callosum, where radii of
around 0.7 µm have been observed to make up the major portion [De Santis et al.,
2016; Liewald et al., 2014; Aboitiz et al., 1992]. To represent larger diameter fibres,
axon radii of ra = 1.2 µm, 1.75 µm, 2.2 µm, and 3 µm (reported largest diameter in
the corpus callosum by De Santis et al. [2016])) were simulated for all sets of initial
conditions. This enabled mapping the patterns of observed changes with variations
in fibre diameter.

The g-ratio, which is the ratio of axon radius to myelin radius, has been
reported to be fairly constant in the white matter. Theoretically, the optimum
g-ratio has been estimated to be 0.65 [Rushton, 1951]; and several studies have
reported in vivo g-ratios close to this value [Berman et al., 2018; Thapaliya et al.,
2018; Mohammadi et al., 2015]. This gave myelin radii of 1.076 µm, 1.85 µm, 2.7
µm, 3.38 µm, and 4.615 µm for corresponding axon radii.

The arrangement of axons in vivo has not yet been conclusively established,
although studies have hinted at complex morphologies that include dispersion,
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Table 6.1: Summary table containing the range of values of parameters used in the
model (for healthy white matter and disease cases). A full list of the different model
conditions simulated is given in appendix section A.7.4.

Parameter Value Parameter Value
T2 110 ms at 3 T f 0.55 - 0.8

T2m 12 ms at 3 T L
1.752 - 2.76 µm for ra
= 0.7 µm, 7.517 - 11.85
µm for ra = 3 µm

T2a = T2e 90 ms at 3 T Cm 8% - 13 %
ra 0.7 - 3 µm g 0.65 - 0.85

rm

0.823 - 1.076 µm for ra
= 0.7 µm, 3.53 - 4.615
µm for ra = 3 µm

Dm 0.3 ∗ 10−5 cm2/s

De
0.05 ∗ 10−5 − 2 ∗ 10−5

cm2/s Da 2 ∗ 10−5 cm2/s

undulation, and bends [Abdollahzadeh et al., 2019]. In this study, the axons were
arranged in a hexagonal packing array, following several prior studies [Baxter and
Frank, 2013; Peled, 2007] since it offered a maximum packing density of 0.907 which
may support packing densities as observed in physiology. Since extra-cellular volume
has been reported to be about 20% of the total brain volume [Nicholson, 2001],
assuming the same in the white matter gave a fibre packing density (f) of 0.8. Using
equation 6.1, this results in a fibre spacing (L) of 2.29 µm for ra = 0.7 µm and 9.827
µm for ra = 3 µm. The values of L for the remaining axon radii have been given in
appendix section A.7.4.

The concentrations of water molecules in various model compartments were
estimated based on prior in vivo and post-mortem studies on myelin water fraction
[Meyers et al., 2017; Hwang et al., 2010; Du et al., 2007; Whittall et al., 1997], which
has been estimated to be about 0.13. Based on this, a base concentration of C (100
particles per µm3) and Cm = 0.13C in healthy tissue were defined. Following Peled
[2007], the remaining 87% was distributed between axonal and ECS compartments
weighted by their volume. For each value of ra in healthy tissue, this gave Ca =
0.55C and Ce = 0.32C in healthy tissue. The diffusion coefficients of water molecules
in these compartments were estimated as Dm = 0.3*10-5 cm2/s, and Da = De =
2*10-5 cm2/s [Peled, 2007; Andrews et al., 2006; Latour et al., 1994].

Several of the above parameter values differ from that used in the original
theoretical model by Sen and Basser [2005] and later by Baxter and Frank [2013].
However Sen and Basser [2005] has acknowledged that their values were based on
reasonable approximations, often based on values estimated in other cell types. In
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this study, the model parameters have been based on results from several published
studies, both in vivo and post-mortem, so they may represent the physiology more
accurately. While the above values represent healthy physiology, variations in these
parameters representing demyelination and neuroinflammation have been modelled
as described below.

6.2.2.1 Demyelination

Demyelination is the process of disintegration of the myelin layers around an axon
due to pathological or physiological processes. It was represented in this study
following the process in multiple sclerosis (MS), which has been established to be
a disease affecting the white matter. In MS, demyelination has been reported to
be followed by the body’s attempts at remyelination, however the myelin sheaths
typically remain thinner than before [Franklin and ffrench-Constant, 2008].

In this study, the g-ratio has been increased from 0.65 (healthy) up to 0.85
to represent MS demyelinating lesions – with the higher values representing newer
lesions. These values have been based on prior in vivo and post-mortem studies
on MS [Yu et al., 2019; Stikov et al., 2015; Albert et al., 2007; Campbell et al.,
2018]. Accompanying this loss of myelin, a decrease in myelin water fraction down
to 8% and less has also been reported in MS [Vavasour et al., 2018; Kolind et al.,
2012]. Based on this, the value of Cm has been progressively reduced from 13% to
8% with increasing g-ratio in demyelination. Values of Ca and Ce have been varied
accordingly. No corresponding changes in T2m have been reported in demyelination.
Rather, an absence of changes in T2m in demyelination in MS has been observed in
a few prior studies [Vavasour et al., 2018; Tozer et al., 2005].

Two types of demyelination mechanisms have been modelled in this study –
acute and chronic. Acute lesions are typically softer than healthy tissue; this has been
represented by an increase in the extracellular space and therefore the water content
(varying f and keeping L constant at its healthy tissue value). Chronic lesions are
typically stiffer than healthy tissue; this has been represented by a shrinkage of
the fibre tract and therefore increased cellular deposits (varying L and keeping f
constant at its healthy value) [Pietsch and Tournier, 2015; Urbanski et al., 2019].
These two types of demyelination mechanisms have been shown in a schematic in
Figure 6.2. The model parameters for different values of ra have been given in
appendix section A.7.4.
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Figure 6.2: (a) Left: Healthy tissue; Right: Tissue in acute demyelinating lesions –
the extracellular volume fraction increases while the spacing between axons stays
constant (b) Left: Healthy tissue; Right: Tissue in chronic demyelinating lesions
– the extracellular volume fraction is kept constant by shrinking the fibre tract so
that axonal spacing decreases.

6.2.2.2 Neuroinflammation

Neuroinflammation is defined as an inflammatory process in the central nervous
system, regulated by microglia and astrocytes. When this process is successfully
controlled, it may have protective effects such as promoting recovery and tissue
regrowth after infections [DiSabato et al., 2016]. However, in pathological conditions
the process of neuroinflammation is triggered but often not terminated, leading to
oedema and tissue damage. The detrimental mechanisms and effects of neuroinflam-
mation have been widely studied [Tohidpour et al., 2017]. Recent findings using
DTI and other advanced techniques based on diffusion have revealed the significance
of neuroinflammation in several diseases including schizophrenia, multiple sclerosis,
and Alzheimer’s disease [Pasternak et al., 2016; Wang et al., 2015a, 2019].

An increased cellularity (number of cells) and an increased ECS volume in
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the white matter are two features of neuroinflammation that have been reported
in several studies [Samara et al., 2020; Pasternak et al., 2015; Wang et al., 2011;
Chiang et al., 2014; Taquet et al., 2019]. Based on these findings, neuroinflammation
has been modelled through decreasing values of f and De. While a reduction
in f represents an ECS expansion to accommodate cellular deposits, a reduction
in De represents the corresponding increase in the number of cells within ECS
hindering diffusion. Published literature on alterations in white matter parameters
due to neuroinflammation, including in f and De, is not as extensive as that on
demyelination. In this study, f has been varied with values 0.8, 0.75, 0.7, 0.65, 0.6,
and 0.55 while correspondingly varying De with values 2, 1.5, 1, 0.5, 0.1, and 0.05
(10-5 cm2/s). All other parameters have been kept the same as that of healthy tissue,
except for L which will vary with f . These models were then simulated at different
values of ra; the corresponding parameter values have been given in appendix section
A.7.4.

6.2.3 Model implementation

Several software packages are available for numerical modelling and DTI simulation
of the white matter. For instance, Camino has implemented an algorithm that can
acquire a DTI signal through the simulated diffusion of water molecules in simple or
complex environments. Camino represents the white matter fibres using cylinders,
with options to specify the packing arrangement, membrane permeability, and
whether the fibres are crossing. It also allows specification of the DTI pulse sequence
to simulate the scan. However, some limitations of Camino have been demonstrated
previously including better simulation in simplified designs of the white matter, more
number of time steps within a scan pulse, and a larger computing time to finish
simulations [Balls and Frank, 2009]. Other numerical simulation approaches have also
been proposed for both model and DTI design and simulation, such as SpinDoctor,
Diffusion Microscopist Simulator (DMS) and its upgraded version Microstructure
Environment Designer with Unified Sphere Atoms (MEDUSA) [Ginsburger et al.,
2019; Yeh et al., 2013; Li et al., 2019]. In the study described in this chapter, the
Monte Carlo diffusion simulator ‘MCell’ was used to simulate the white matter
structure, and the software ‘DIFSIM’ to acquire the DTI signal. The open source
graphics software ‘Blender’ was used to design the model, which was then used
by MCell for simulation. Descriptions of Blender, MCell, and DIFSIM along with
relevant details of their diffusion and DTI simulation algorithms have been provided
in appendix section A.7.1.

In MCell, the concentrations of water molecules in the three compartments
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were required to be in the units of mols/L. At each boundary, the transition of water
molecules from one compartment to the other was achieved using MCell reactions.
The reaction or transition probability pAB at each boundary was calculated for each
simulation using equation 6.2 and the corresponding reaction rate to be set in MCell
was estimated as pAB/pbf , where the probability factor pbf was computed using the
equation [Gupta et al., 2018]:

pbf = 1011 ∗A
2 ∗Nav

√
(π ∗∆t

D
) (6.3)

where A is the surface grid density in MCell, Nav is the Avogadro’s constant,
∆t is the simulation time step, and D is the diffusion coefficient of the molecule
undergoing transition at the boundary.

For the main simulation study, the DTI signal was acquired using a spin echo
pulse of G = 4 G/cm at three different b-values (1000, 4000, and 8000 s/mm2), and
an echo time (TE) of 100 ms determined by the highest b-value used [Peled et al.,
2009]. The corresponding pulse sequence parameters were: (i) ∆ = 25.2 ms, δ = 22.2
ms for b = 1000 s/mm2 (ii) ∆ = 38.96 ms, δ = 36 ms for b = 4000 s/mm2, and (iii)
∆ = 48.69 ms, δ = 45.7 ms for b = 8000 s/mm2. The schematic of a diffusion pulse
is shown in Figure 2.4. Each simulation was run 5 times with different seed points
to estimate experiment uncertainty in terms of standard deviation of measurements.

To unravel the associations between different model parameters and the signal
acquired by DIFSIM, two simple systems were initially designed and simulated at a
b-value of 1000 s/mm2. The results have been given in section A.7.2 in the appendix.
The patterns of change observed in simple geometries such as those simulated in
section A.7.2 supported data interpretation in more complex geometries such as the
white matter model. The cylinder radius, diffusion or simulation time, diffusion
coefficient of the molecules, and permeability of the cylinder surface were observed to
have an impact on FA, MD, RD, and AxD. Interestingly, axial diffusion was found
to rise when diffusion in radial directions was increased by changing the cylinder
radius or permeability. This was in agreement with the findings of Baxter and Frank
[2013] where an increase in the longitudinal diffusion coefficient was observed as the
exchange between compartments or permeability was increased. Although this could
not be predicted by the theoretical model of Sen and Basser [2005], it appeared that
an increase in radial diffusion may cause a corresponding increase in axial diffusion,
detectable at a b-value of 1000 s/mm2.

The simulations were run on a Tinis high performance computing system
based on Lenovo NeXtScale nx360 M5 servers with 2 Intel Xeon E5-2630 v3 2.4
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GHz (Haswell) 8-core processors constituting a node. In total, 70 models were
designed with each of them representing either healthy tissue, demyelination, or
neuroinflammation at a specific value of ra (see section A.7.4 in appendix). Each
model was simulated at three different b-values, with each simulation using one node
of the Tinis system and taking an average of 10,000 seconds to complete. The total
computing hours required to carry out this study was about 25 days.

6.2.3.1 Diffusion Tensor Estimation

In a typical DTI experiment the signal acquired is affected by diffusion in three
dimensions, and the diffusion is represented by a tensor D. This has been given in
equation 2.2:

S = S0e
−bD

where D is the diffusion tensor characterising the diffusion in x, y, and z directions
as well as the correlation between diffusion in these directions (equation 2.7):

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz


More details on the diffusion tensor has been given in chapter 2. The above equations
do not account for the effects of T2 relaxation on the acquired signal, and may lead
to an over-estimation of molecular diffusion. In order to account for T2 in DTI,
equation 2.2 may be re-written as:

S = S0e
−TE/T2e−bD (6.4)

Deriving a compartmental model for equation 6.4, the acquired signal can be described
as a sum of signal contributions from the different model compartments as given
below:

S = S0
[
fae
−TE/T2ae−bDa + fme

−TE/T2me−bDm + fee
−TE/T2ee−bDe

]
(6.5)

where the ECS volume fraction fe = 1− f and fa and fm are the axon and myelin
volume fractions in the model schematic shown in Figure 6.1. The diffusion tensor
and DTI metrics were estimated separately using equations 2.2 and 6.4 at three
different b-values (1000, 4000, and 8000 s/mm2) to compare results obtained with
and without accounting for T2 (110 ms). Compartmental diffusion tensors were
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Figure 6.3: Variations in FA, MD, RD, and AxD with increasing axon radius. The
rectangular region represents an average axon radius centred around 0.7 µm, which
is the average size of fibres in the corpus callosum. Error bars represent the standard
deviation of measurements taken from five repetitions of each experiment.

estimated using equation 6.5 containing three unknowns (Da, Dm, De), with the
signals acquired at three b-values and T2m = 12 ms, T2a = T2e = 90 ms. Custom
codes written in MATLAB using the fanDTasia toolbox [Barmpoutis and Vemuri,
2010], to fit the acquired signal to equations 2.2, 6.4, and 6.5 have been given in
appendix section A.7.3.

6.3 Simulation Results

6.3.1 Healthy Tissue

It can be seen from the results in Figure 6.3 that for all three b-values, accounting for
T2 relaxation (equation 6.4)) resulted in a greater FA, and lower MD, RD, and AxD,
than when not accounting for T2 relaxation (equation 2.2)). Since both relaxation
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Figure 6.4: Data simulated from models representing healthy tissue, of different ra.
Data obtained from both single (at b = 1000 s/mm2) and multi-compartment fitting
have been plotted. The rectangular region represents an average axon radius centred
around 0.7 µm, which is the average size of fibres in the corpus callosum. Error bars
represent the standard deviation of measurements taken from five repetitions of each
experiment.

and diffusion appears as signal attenuation, it is likely that accounting for relaxation
in equation 6.4 provided a more accurate estimation of diffusion. It was observed that
the disparity between DTI metrics computed using equations 2.2 and 6.4 decreased
with increasing b-value.

The DTI metrics estimated using equation 6.4 was compared with that
obtained through compartmental fitting of the signal (equation 6.5)) in Figure 6.4.
Since Da = De and T2a = T2e in the model, the signal acquired from axon and ECS
as well as the DTI metrics estimated in these compartments had very similar values
and therefore were plotted together in Figure 6.4. It was observed that the metrics
calculated using compartmental fitting of the diffusion tensor differed from that
obtained using single compartment fitting, although the general pattern of change

101



was preserved. The results showed the metrics computed from single-compartment
fitting of the signal closely following the metrics of the ECS compartment, supporting
prior hypothesis that the acquired DTI signal is dominated by the properties of
water molecules in the ECS [Sen and Basser, 2005].

An interesting observation was made regarding the pattern of changes in
FA, MD, RD, and AxD in Figures 6.3 and 6.4. The scientific consensus point to
a decrease in FA and an increase in MD, RD, and AxD with increasing fibre size
in the corpus callosum and other white matter tracts [Beaulieu, 2002, 2014]. While
this was found to be the case for ra = 0.7 – 1 µm (average fibre size in the white
matter tract), deviations from this pattern were observed for other values of ra.
Rather, an oscillatory nature was observed in measurements, especially FA, with the
oscillations appearing to plateau with increasing ra. While this oscillatory pattern
can be observed in results from prior studies [Berry et al., 2018], it has not been
addressed in discussions. The underlying mechanisms giving rise to this pattern is
not yet known, but more studies may be required to understand whether it is caused
by uncertainties or discretisation in simulations or tensor calculations, or related to
the diffusion process itself.

The increased measurement uncertainty observed specifically in the myelin
compartment in multi-compartment fitting (Figure 6.4) may rise from the fact that
the acquired signal S (equation 6.5) is heavily influenced by the water molecules in
the ECS (and therefore also the axon compartment since their parameters are set
equal in the model). This can be observed in Figure 6.4 where the total signal (single-
compartment fitting) closely follows the signal from the axon/ECS compartments.
Therefore, fitting this signal using a multi-compartment model probably attributed
all uncertainty to the myelin compartment. Although the uncertainty is high, it is
clear from Figure 6.4 that the variations in DTI metrics in the myelin compartment
is different to that in the axon/ECS compartment or that obtained using single
compartment fitting.

The choice of single or multi-compartment fitting of the acquired DTI signal
may depend on different factors such as measurement uncertainty and utility in
clinical practice. However, Figures 6.3 and 6.4 indicate that accounting for T2

relaxation while estimating the diffusion tensor may result in more accurate estimates
of FA, MD, RD, and AxD in in vivo studies.

6.3.2 Chronic Demyelination

Chronic demyelination has been modelled in this study by varying L with g-ratio
while keeping f constant at its healthy value. Figures 6.5 and 6.6 shows the variations
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in DTI metrics estimated with and without T2 relaxation terms (equations 2.2 and
6.4) for an axon radius of ra = 1.75 µm and b = 1000 s/mm2. It may be observed
that accounting for T2 relaxation (equation 6.4) resulted in a greater FA, and lower
MD, RD, and AxD, than when not accounting for T2 relaxation, similar to results
observed for healthy tissue. Slopes between data points were also different for the
two cases, suggesting that the DTI metrics showing large variations in demyelination
may in fact, be only slightly affected due to disease; and that the variations seen may
likely be due to relaxation effects. Not accounting for these effects may therefore
result in incorrect interpretations of results where changes in DTI metrics arising
from T2 relaxation are attributed to pathological mechanisms in demyelination.

If the DTI metrics obtained from the diffusion tensor estimated by accounting
for T2 relaxation are considered, there appears to be minimal to no variation with
increasing g-ratio. This is in contrast to a decreasing FA and increasing diffusivities
typically reported in demyelination [Pietsch and Tournier, 2015; Inglese and Bester,
2010]. This might be related to the way chronic demyelination has been modelled in
this study – it has been compared with the results from acute demyelination model
in the next section to interpret the findings together.

Figures 6.5 and 6.6 also show the DTI metrics, estimated using single and
multi-compartment fitting accounting for T2 relaxation, for ra = 1.75 µm. It was
observed that DTI metrics differed in both cases, although the general pattern of
change was preserved. Similar to the observations made for healthy tissue, these
results also showed the metrics computed from single-compartment fitting of the
signal closely following the metrics of the ECS compartment. The uncertainty in
measurement was higher in the case of multi-compartment fitting due to reasons
explained in the previous section.

6.3.3 Acute Demyelination

Acute demyelination has been modelled in this study by varying f with the g-ratio
and keeping L constant at its healthy value. Figures 6.7 and 6.8 shows the variations
in DTI metrics estimated with and without T2 relaxation terms (equations 2.2 and
6.4) for an axon radius of ra = 1.75 µm and b = 1000 s/mm2. It may be observed
that accounting for T2 relaxation (equation 6.4) resulted in a greater FA, and lower
MD, RD, and AxD, than when not accounting for T2 relaxation, similar to results
observed for healthy tissue and chronic demyelination.

For chronic demyelination, minimal to no changes were observed in the DTI
metrics when considering the measurements obtained by accounting for T2 relaxation.
In contrast, variations were observed in acute demyelination, although the intensity
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Figure 6.5: Variations in FA and MD with increasing g-ratio which represents an
increasing severity of chronic demyelination. Error bars represent the standard
deviation of measurements taken from five repetitions of each experiment. On
the left: data from single compartment fitting at b=1000 s/mm2 and ra=1.75 µm,
with and without accounting for T2 relaxation. Error bars are not visible since the
standard deviation is very small compared to the y-axis scale. On the right: data
from single vs. multi-compartment fitting for ra=1.75 µm. Single compartment data
has been plotted for b=1000 s/mm2. Legends for both columns have been given at
the top of the figure.

of these variations was lower than when not accounting for T2 relaxation. It may be
due to the fact that while equation 2.2 estimated a diffusion tensor by attributing all
signal attenuation to diffusion, equation 6.4 differentiated between the two processes
and estimated a more accurate tensor using attenuation that may belong to diffusion.
An increase in MD, RD, and AxD were observed which have been associated with
demyelination in several published in vivo DTI studies [Pietsch and Tournier, 2015;
Inglese and Bester, 2010]. In contrast to a decrease in FA typically reported, a very
small increase in FA was observed.

When comparing the results from acute and chronic demyelination models
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Figure 6.6: Variations in RD and AxD with increasing g-ratio which represents an
increasing severity of chronic demyelination. Detailed plot descriptions can be found
in Figure 6.5 caption.

with that from prior studies, it appeared that the mechanisms giving rise to reported
results aligned more with acute rather than chronic demyelination. It was clear
from the simulation results that accounting for T2 relaxation while estimating the
diffusion tensor may lead to more accurate measurements of diffusion. This may
carry significant implications for interpretation of results in quantitative in vivo DTI
studies of demyelination.

Figures 6.7 and 6.8 also show the DTI metrics, estimated using single and
multi-compartment fitting accounting for T2 relaxation, for ra = 1.75 µm. Similar to
the observations made for healthy tissue and chronic demyelination, these results also
showed the metrics computed from single-compartment fitting of the signal closely
following the metrics of the ECS compartment. The uncertainty in measurement was
higher in the case of multi-compartment fitting due to reasons previously explained.
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Figure 6.7: Variations in FA, MD, RD, and AxD with increasing g-ratio which
represents an increasing severity of acute demyelination. Error bars represent the
standard deviation of measurements taken from five repetitions of each experiment.
On the left: data from single compartment fitting at b=1000 s/mm2 and ra=1.75
µm, with and without accounting for T2 relaxation. Some error bars are not visible
since the standard deviation is very small compared to the y-axis scale. On the right:
data from single vs. multi-compartment fitting for ra=1.75 µm. Single compartment
data has been plotted for b=1000 s/mm2. Legends for both columns have been given
at the top of the figure.

6.3.4 Neuroinflammation

Neuroinflammation has been modelled in this study by an increasing f accompanied
by a decreasing De. Figures 6.9 and 6.10 show the variations in DTI metrics
estimated with and without accounting for T2 relaxation (equations 2.2 and 6.4) for
an axon radius of ra = 1.75 µm and b = 1000 s/mm2. Like previous results, the FA is
underestimated whereas MD, RD, and AxD are overestimated when not accounting
for T2 while tracking acute demyelination. It can also be clearly seen that while
there is little to no variation in the DTI metrics in the model of neuroinflammation,
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Figure 6.8: Variations in RD and AxD with increasing g-ratio which represents an
increasing severity of acute demyelination. Detailed plot descriptions can be found
in Figure 6.7 caption.

estimating the diffusion tensor without accounting for relaxation resulted in big
variations, which may be misinterpreted as pathological changes in the tissue. This
model of neuroinflammation clearly demonstrates the importance of accounting for
T2 relaxation in in vivo studies.

Figures 6.9 and 6.10 also shows the differences in single and multi-compartment
fitting of data in the neuroinflammation model. The increased experimental un-
certainty seen in the previous models may be observed here as well, localised to
the myelin compartment. It is interesting to note that although parameters of the
ECS compartment are varied to represent increasing inflammation, the resulting
variations in DTI metrics are observed largely in the myelin compartment. This
may likely be due to changes in myelin membrane permeability occurring because
of changes in flux in the ECS (equation 6.2). However, the DTI metrics measured
in the ECS compartment and therefore, that measured using single compartment
fitting of the tensor, remain fairly constant with increasing f .
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Figure 6.9: Variations in FA, MD, RD, and AxD with increasing fibre packing
density which represents an increasing severity of neuroinflammation. Error bars
represent the standard deviation of measurements taken from five repetitions of each
experiment. On the left: data from single compartment fitting at b=1000 s/mm2

and ra=1.75 µm, with and without accounting for T2 relaxation. Error bars are not
visible since the standard deviation is very small compared to the y-axis scale. On
the right: data from single vs. multi-compartment fitting for ra=1.75 µm. Single
compartment data has been plotted for b=1000 s/mm2. Legends for both columns
have been given at the top of the figure.

6.4 Conclusions

This chapter has demonstrated the significance as well as feasibility of accounting
for T2 relaxation effects when estimating the diffusion tensor. The impact of T2

relaxation and water diffusion both appear as signal attenuation in DTI; therefore, it
is likely that the attenuation due to relaxation is mistakenly attributed to diffusion
and incorrect estimates of anisotropy and diffusivity are made. Several studies have
now been published that report the values of T2 of the white matter at different
magnetic field strengths [Wansapura et al., 1999]. A simple modification of the

108



Figure 6.10: Variations in RD and AxD with increasing fibre packing density which
represents an increasing severity of neuroinflammation. Detailed plot descriptions
can be found in Figure 6.9 caption.

typical diffusion tensor equation might provide more accurate measurements of FA,
MD, RD, and AxD; and this was shown to be feasible at a typical clinical b-value of
1000 s/mm2.

An even more accurate picture of diffusion may be obtained by compart-
mental fitting of the diffusion tensor. In this chapter, three (axon, myelin, ECS)
compartments were fitted to the acquired DTI signal to obtain separate diffusion
tensors for each compartment (equation 6.5). However, this may not be suitable for
clinical scans as the equation contains three unknowns and therefore, require signal
acquired with at least three b-values to solve them. In this chapter, the signal was
acquired at b=1000, 4000, and 8000 s/mm2. However, b=4000 and 8000 s/mm2 are
not typically feasible in clinical scans due to gradient limitations or increased scan
time.

A summary plot showing the values of FA, MD, RD, and AxD has been
shown in Figure 6.11. The data used to plot this figure has been taken from
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Figure 6.11: Radar plot showing variations in the four DTI parameters in the
simulated healthy and disease cases.

model numbers 1, 5, 9, and 14 (models with ra = 0.7 µm, b=1000 s/mm2 and the
most severe disease state modelled in case of demyelination and neuroinflammation,
see appendix section A.7.4). It can be observed that compared to the values
measured for the healthy tissue model, the largest deviations are present in the
case of acute demyelination for all four DTI metrics. This plot indicates a greater
likelihood in in vivo DTI studies of the reported changes in FA, MD, RD, and AxD
occurring as a result of acute demyelination compared to chronic demyelination or
neuroinflammation. Further disease states could be modelled, such as hydrocephalus
or cytotoxic/cytogenic oedema as demonstrated by Sen and Basser [2005]. However,
the model parameters used in their study are not representative of physiologically
plausible values as discussed before and a thorough search of literature provided no
studies that investigated changes in physiological factors such as g-ratio or packing
density in these conditions. Therefore, a direct comparison of these disease states as
modelled in Sen and Basser [2005] with that modelled in this study would not be
appropriate.

A model of healthy tissue at different values of axon radius was presented in
this chapter, along with models of three commonly found neurological mechanisms
– chronic and acute demyelination, and neuroinflammation. It was observed that
not accounting for T2 relaxation when estimating the DTI metrics may lead to
misinterpretation of results. This was clearly demonstrated in the neuroinflammation
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model, where large variations seen in DTI metrics with disease severity disappeared
when T2 relaxation was accounted for. The results of this chapter has emphasised
the significance of including T2 relaxation terms in diffusion tensor estimation and
the need to adopt this practice widely across the scientific community to obtain
accurate metrics of diffusion.

There were some limitations to this study. Firstly, the model used to simulate
healthy and diseased tissue was a very simplified model of the actual tissue geometry
in the white matter. Secondly, the experimental uncertainty was estimated as the
standard deviation of measurements from five repetitions of each simulation with
different seed points. However, the uncertainty present in each experiment was
not known. While this is partially accounted for in DIFSIM [Berry et al., 2018],
there is a possibility that some uncertainty was associated with each simulation.
Thirdly, the models of healthy and diseased tissue were simplified views of normal
and pathological mechanisms occurring in the white matter. However, even with
these limitations, the study presented in this chapter has clearly demonstrated the
need to adopt T2 relaxation terms in diffusion tensor estimation.
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Chapter 7

Conclusions

7.1 Outcomes

The work carried out in this thesis focused on methodological and analysis aspects
of clinically acquired DTI, and their utility in detecting subtle changes in the corpus
callosum microstructure in patients with MCI and AD. The studies discussed in
chapters 3, 4, 5, and 6 investigated several aspects of DTI and tackled the aims
described in section 1.5. The novel contributions made by the thesis are summarised
below and described in detail in the following sections.

1. The study carried out in Chapter 3 addresses Aim 1 (see Chapter 1). Several
strategies to segment the corpus callosum on DTI were compared in terms of
their impact on quantitative measurements made. It was found that atlas-
based segmentation, which is a widely used method to delineate the corpus
callosum, gave less accurate results when compared with other methods. This
suggested that results of quantitative DTI studies that have used atlas-based
segmentation of the corpus callosum may carry a greater level of uncertainty
than initially thought. This is likely to be the case for other white matter
tracts as well.

2. The study described in Chapter 4 tackles Aim 2. DTI metrics (FA, MD,
RD, AxD) measured from the corpus callosum of patients with MCI and AD
were compared with that of healthy individuals. While the whole corpus
callosum ROI showed differences, these were localised to the sub-regions
involved in motor functions of the brain. The results were also supported by
neurophysiological assessments of participants where impairments in motor
functions were observed. The results from this study have been published (see
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section D.4) and contribute to understanding the early stages of Alzheimer’s
disease where non-memory related functions of the brain may be affected.

3. Chapter 5 addresses Aim 3. Two advanced DTI analysis methods were applied
on clinical scans from ADNI to demonstrate the feasibility of their application
in routine practice. The results from these studies supported the findings made
in chapter 4, and also suggested that the alterations in the corpus callosum
seen in MCI and AD may arise from a decreasing packing density of fibres
which in turn, may be caused by underlying pathological mechanisms. These
results demonstrated the scope of improving the specificity of clinical DTI
studies using existing advanced analysis methods.

4. The experiments described in Chapter 6 tackles Aim 4. A model of the white
matter was developed to investigate the impact of varying physiological param-
eters on the widely used DTI metrics (FA, MD, RD, AxD). Using this model,
healthy tissue as well as various disease conditions were simulated. While
fitting the diffusion tensor to the acquired signal, the impact of T2 relaxation
time was considered. It was found that not including T2 relaxation terms
while estimating the tensor led to less accurate results, as signal attenuation
which in fact, was arising from relaxation was also considered to be arising
from diffusion. While comparing results from healthy and disease models, it
was found that acute demyelination (reduction in packing density) may be
the dominating factor behind white matter alterations seen in in vivo studies,
which supported results from previous chapters. Estimation of the diffusion
tensor by including T2 relaxation terms is a novel contribution of this thesis,
as a thorough search of published literature revealed that this has not been
carried out previously.

7.1.1 Segmentation strategies

Segmentation strategies were found to impact quantitative measurements of DTI
parameters in chapter 3. The measured values of FA from atlas-based ROI of
the corpus callosum were drastically reduced compared to the ground truth values
although the patterns in change were preserved. This may have implications for
future DTI studies as ROI derived from white matter atlases are widely used for
analyses. Median value of the pixels in the ROI obtained by manual segmentation of
the corpus callosum on sagittal FA images were observed to be closest to the ground
truth.
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The contribution of Chapter 3 is the development of a protocol for segmenta-
tion and analysis of data measured from the corpus callosum ROI and its sub-regions.
The Hofer and Frahm scheme of sub-division was chosen as it divided the corpus
callosum based on the region of the brain the fibres project to [Hofer and Frahm,
2006]. This enabled association of changes in DTI parameters with clinical and
neurophysiological observations.

7.1.2 Corpus callosum in MCI and AD

The novel contribution from Chapter 4 (published, see section D.4) is the use of the
above segmentation approach to delineate the corpus callosum in healthy controls
and individuals with MCI and AD; and to use the measurements from this ROI to
reveal alterations in motor-related sub-regions.

In healthy controls, the heterogeneity in the corpus callosum microstructure
was revealed through variations in measured DTI parameters between sub-regions.
This was associated with the presence of fibres of varying sizes with differing regional
density in the tract. Regional differences were found to be a major source of
variance in measurements in the corpus callosum and it was recommended that
future investigations be carried out by sub-region.

Alterations in each of the corpus callosum sub-regions was investigated using
MCI and AD patient data from ADNI. A decrease in FA and increases in MD, RD,
and AxD was observed in specific regions that project to pre-motor, supplementary
motor, and motor areas of the brain. The implications of these findings were
revealed through the results of neurophysiological assessments that indicated a
higher proportion of patients with MCI exhibited motor-related deficits including
gait imbalances and tremors. A similar pattern was also observed for patients with
AD although they were not considered conclusive due to the small cohort size.

7.1.3 Advanced methods for clinical DTI

The contribution made by Chapter 5 is the demonstration of the feasibility and
utility of translating advanced DTI analysis tools to clinical practice. While these
advanced methods have already been developed and validated, their use on clinical
DTI scans have not yet been highlighted. The results obtained in Chapter 5 using
NODDI-DTI and TractSeg analyses demonstrate the fact that albeit with limitations,
these techniques improve the specificity of results obtained from conventional DTI
analysis.

NODDI-DTI, a previously proposed adaptation of the more widely used
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NODDI, showed a decrease in neurite density in a cohort of healthy subjects with
ageing. This, accompanied by the simulation results from chapter 6, supported the
interpretation of results in chapter 4 - a reduced packing density was revealed to be
the dominant factor contributing to the decrease in FA and increases in MD, RD,
and AxD observed with ageing, and potentially MCI and AD.

TractSeg, a machine learning approach to tractography, provided a different
perspective to the results obtained in chapters 4 and 5, as it tracked the corpus
callosum fibres along its length from one hemisphere to the other in contrast to
an anterior-posterior direction. A reduction in FA was observed in MCI subjects
compared to HC specifically in the fibres projecting to motor areas of the brain,
supporting the results of the DTI analysis in chapter 4.

7.1.4 Modelling the white matter

The novel contributions made by Chapter 6 are two - (a) develop a model of healthy
white matter, acute/chronic demyelination, and neuroinflammation using parameters
that are as physiologically accurate as possible, (b) account for the effects of T2

relaxation when estimating the diffusion tensor.
The white matter model developed in Chapter 6 was based on the theoretical

model proposed by Sen and Basser [2005] and its numerical implementation by
Baxter and Frank [2013]. While Baxter and Frank [2013] have used the values
of physiological parameters proposed by Sen and Basser [2005], they were not
physiologically accurate and were based on values estimated for other cell types. In
Chapter 6, although the model framework is based on Sen and Basser [2005], the
physiological parameters have been based on values reported in published in vivo
and post mortem studies of the white matter. By implementing the model in this
way, it is now possible to use it to derive conclusions regarding observations made in
clinical DTI studies, enhancing the specificity offered by routine clinical DTI scans.
In fact, the results indicated that white matter alterations, such as those seen in
MCI and early AD (Chapter 4), may arise from acute demyelination, which has been
modelled as a reduction in fibre packing density.

The other major contribution made by Chapter 6 is accounting for the effects
of T2 relaxation when estimating the diffusion tensor and DTI metrics (FA, MD,
RD, AxD). While it has been acknowledged in prior studies that there is an effect of
T2 relaxation on DTI scans, it has not yet been quantified. The results described in
Chapter 6 indicate that if the effects of T2 relaxation are not accounted for, the FA
might be under-estimated and the diffusivity metrics over-estimated. They highlight
the importance of including T2 terms in the diffusion tensor equation as well as the
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need to estimate the value of T2 in the white matter. While the study in Chapter
6 has also estimated the diffusion tensor in each white matter compartment by
accounting for relaxation separately, it has shown that a single field-dependent value
of T2 for the white matter can improve the physiological relevance of the estimated
diffusion by separating out the effects of relaxation.

7.2 Overarching themes, limitations, and scope for fu-
ture work

Outcomes from the studies carried out in this thesis may be categorised into one of
three overarching themes as described in the following sections. Some implications
of these outcomes and scope for future work have been discussed.

7.2.1 Standardisation of analysis protocols

The comparison study between different segmentation strategies in section 3.5 has
revealed that methodology plays a crucial role in the outcomes of quantitative DTI
investigations including in the corpus callosum. Although patterns of change were
preserved, absolute values of DTI parameters differed from the ground truth. This
may carry implications for quantitative comparisons between studies with different
methodologies, for instance in a meta-analysis. Manual segmentation has widely
been thought of as the gold standard in image analysis and has been preferred for
the work carried out in chapters 3, 4, and 5. However, manual delineation of white
matter ROI is a demanding task and is limited in terms of reproducibility owing to
human bias.

Automated segmentation of white matter structures including the corpus
callosum may be developed based on the contrast between grey and white matter
structures on FA images. Methods available include simple intensity thresholding
and active contouring. It may be easier to automate the segmentation of the corpus
callosum, compared to smaller white matter tracts due to their size and absence
of clear boundaries. This limits the amount of detailed ROI analysis that may be
carried out for smaller but important tracts such as the parahippocampal cingulum
or the fornix which have been previously implicated in AD. A potential starting
point to develop automated methods to delineate smaller tracts is TBSS, which
compares white matter regions common to the subject images analysed. Atlas labels
are currently used to identify tracts after carrying out TBSS, but as seen from section
3.5 this may be susceptible to errors. Semi-automated methods of segmentation that
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ensures visual inspection of the ROI may be the best approach for smaller tracts.
The FSL tool ‘eddy_correct’ has been used throughout in this thesis for

consistency since its upgraded version ‘eddy’ was released after the initial processing
of data had been completed. The new tool ‘eddy’ is computationally intensive
and requires phase encoding information to eliminate eddy current artefacts and
susceptibility distortions [Andersson and Sotiropoulos, 2016]. This has been validated
to perform better than ‘eddy_correct’ and recommended to be substituted in its
place in future studies [Andersson and Sotiropoulos, 2016; Graham et al., 2016].

7.2.1.1 Involvement of corpus callosum in MCI and AD

Subtle alterations in DTI parameters were observed in specific corpus callosum
sub-regions that suggested its involvement in motor impairments observed in MCI
and potentially AD. Motor-related deficits in early stages of dementia have not been
so extensively studied as cognitive impairments. The study outcomes in chapter 4
emphasised the importance of considering MCI and AD as part of a spectrum of
neurodegenerative disorders that include other diseases such as Parkinson’s disease,
Huntington’s disease, and multiple sclerosis. Symptoms characteristic of any one
of these diseases may appear in the course of progression of others; for instance
motor deficits have been observed in patients with pre-clinical AD while cognitive
impairment has been observed in Parkinson’s disease patients. Some support for
retrogenesis was also obtained from the results in chapter 4 that suggested later-
myelinating regions of the corpus callosum were more susceptible to ageing and
disease-related mechanisms compared to those that myelinated earlier. Age and
gender, two risk factors for AD as described in chapter 1, have been carefully
considered in the study to account for their relationship with changes in DTI
parameters.

A more detailed analysis of the AD cohort may be carried out when ADNI-3
releases further patient data. Once the required sample sizes are available, the
inclusion criteria may be modified to select subjects who are both age and gender
matched. This will enable a more accurate modelling of the data using regression or
other statistical methods, with a reduced variance in measurements with a higher
sample size.

7.2.2 Translation of research advances to clinical practice

Advances in the field of DTI offer sophisticated modelling of the acquired signal to
provide more specific information on the white matter compared to conventional DTI
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analysis. A majority of these techniques require that the images be acquired with
advanced scan settings such as multiple HARDI shells, which may not be typical
in clinical practice. There is a need to translate research advances into clinical
settings to improve specificity in diagnosis and monitoring of patients. Mathematical
adaptations and assumptions regarding the tissue model may enable this and offer
a bridge between research advances and clinical practice. To demonstrate this,
NODDI-DTI and TractSeg were applied on ADNI images to extract information
on the corpus callosum that extended the results obtained from conventional DTI
analysis.

A limitation of using modifications of advanced methods as described above,
is the alterations made to the core assumptions of the original methods. This
may quantitatively impact the measured parameters even if patterns in change are
preserved. On the other hand, acquisition of superior DTI scans that are required
by these methods may not be feasible in clinical settings. Translation of research
advances to the clinic is thus susceptible to inaccuracies, but this is a trade-off with
the amount of information that may be extracted.

7.2.3 Specificity of DTI

Advances in the field of DTI offer methods with a higher specificity compared to
conventional analysis. However, it is equally important to improve this in a clinical
setting. The white matter model developed in Chapter 6 offers a way to model
healthy and pathological mechanisms and understand their impact on the DTI
metrics. Moreover, it highlights the necessity of adopting T2 terms in diffusion tensor
equations as standard practice in order to obtain accurate estimates of diffusion.

While the simple white matter model was designed as a proof of concept, it
offers flexibility for extension including more physiological variables such as cells in
the ECS including astrocytes and microglia. The model may also be improved by
extending the concept of cylindrical axons and myelin to truly reflect the physiology.
The myelin layer may be modelled as a spiralling structure encapsulating single
or multiple axons. Axons in turn may be modelled not as elongated cylindrical
structures, but as fibres with bends, twists, undulations, and crossings. A more
complete model of the white matter may help unravel its associations with DTI and
investigate the sources contributing to different patterns in DTI parameter changes
as described section 2.3 [Burzynska et al., 2010].

It must also be noted that the scan pulse used by DIFSIM was a pulsed
gradient spin echo, whereas a quicker and advanced scan sequence may be used
in clinical scanners. This may carry an implication for the modelling results, but
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the nature of its impact is not currently known. This may be tested within the
framework of DIFSIM in the future. When accounting for the effects of T2, it is
important that the value of T2 used in the diffusion tensor equations is as accurate
as possible. Although several studies have investigated this, the exact value of T2

for a given field strength (including 3 T as used in this chapter) is still under debate;
only a range of possible values is currently known.

7.3 Conclusions

This chapter has presented an overarching view of the work carried out in this
thesis. Age, gender, and other risk factors may lead to courses of disease progression
being different between individuals in MCI and AD. This implies a need to monitor
patients longitudinally using advanced methods that may offer information about the
underlying physiological mechanisms. This in turn requires consistent methodology
and translation of research advances into clinical practice. The work carried out in
this thesis demonstrates the feasibility of extracting subtle information from study
cohorts using conventional DTI analysis, supported by more specific results obtained
from advanced methods, and interprets this in a physiological context using results
obtained from simulation. The data extracted using this approach revealed a key
role of the fibre packing density in the corpus callosum in motor-related impairments
in patients with MCI and potentially, AD.
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Appendix A

Supporting Information

A.1 Software used for processing DTI

A.1.1 FSL (FMRIB’s Software Library)

The official web page for FSL has described it as a comprehensive library of analysis
tools for MRI, functional MRI (FMRI), and DTI brain imaging data. It is being
developed, maintained, and distributed free of charge by researchers at the Oxford
Centre for Functional MRI of the Brain (FMRIB), University of Oxford [Jenkinson
et al., 2012; Woolrich et al., 2009; Smith et al., 2004]. It supports installation
on Unix-based operating systems and may be used from the command line and a
graphical user interface (GUI) (figure A.1a).

FMRIB’s Diffusion Toolbox (FDT) is a collection of algorithms for processing
DTI such as ‘eddy_correct’ for elimination of eddy current artefacts, ‘bet’ for
extraction of the brain by eliminating the skull, ‘dtifit’ for estimation of the diffusion
tensor, ‘probtrackx’ for tractography based analysis, and ‘flirt’ and ‘fnirt’ for linear
and non-linear registration of images respectively. An upgraded version of the
tool ‘eddy_correct’ called ‘eddy’ is now available, but was released after the initial
processing of data for this thesis had been completed. Therefore, the command
‘eddy_correct’ has been used consistently to eliminate eddy current artefacts from
DW-MRI. It removes effects such as image stretching, shearing, and translation
induced by eddy currents by an affine registration of diffusion weighted images to
the non-diffusion weighted image [Yamada et al., 2014]. However, ‘eddy’ has been
validated to perform better than ‘eddy_correct’ and has been discussed further in
section 7.2.1 [Andersson and Sotiropoulos, 2016; Graham et al., 2016].

The command ‘dtifit’ fits a diffusion tensor for every voxel in the image.
It needs a diffusion weighted image (typically the output from the command
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‘eddy_correct’), a brain mask, a list of b-values (known as the ‘bval’ file), and
gradient directions (known as the ‘bvec’ file) used in acquisition. The tensors are
estimated either using the least squares or weighted least squares fit of a linear model
depending on the option specified [Basser et al., 1994a]. Diffusion parameters such
as FA, MD, RD, and AxD may be estimated from the tensor along with the eigen
value and eigen vector maps.

FSL offers a method called tract based spatial statistics (TBSS) that enables
group-wise comparison of white matter tracts. To carry out TBSS, diffusion weighted
images are initially processed by commands ‘eddy_correct’ and ‘bet’. Diffusion
tensors are fitted using ‘dtifit’ and the FA maps estimated and aligned to a standard
space. A mean FA skeleton is generated to represent the centres of tracts common
to all subjects. Each subject’s FA map is then projected onto this skeleton and
voxel-wise statistics between disease groups is carried out. Further details have been
given later in this chapter as part of a feasibility study (section 3.7.2). Region-wise
analysis of the white matter may be performed using the atlases provided by FSL
[Mori et al., 2005; Wakana et al., 2007; Hua et al., 2008]. Binary masks of the ROI
may be generated using the atlas labels, with the accuracy of the ROI depending on
the accuracy of these labels.

A.1.2 Camino

Camino is an open source software package developed and maintained by the
Microstructure Imaging Group at University College London [Cook et al., 2006]. It
has a modular design that enables construction of processing pipelines including
modules from other software packages. It supports installation on Unix systems with
its codes written in Java to support calls from other programming environments
such as MATLAB.

Camino provides an option to convert FSL-style ‘bval’ and ‘bvec’ files to
‘scheme’ files supported by its tensor fitting module ‘modelfit’. The tensor may be
fitted using linear, weighted linear, or non-linear models based on the user-specified
option. The command ‘modelfit’ also supports fitting analytic multi-compartment
models including two-tensor and three-tensor models to DW-MRI acquired using a
Stejskal-Tanner pulse sequence [Panagiotaki et al., 2012].

Advanced techniques such as multi-fibre reconstruction of DW-MRI are
available in Camino [Seunarine and Alexander, 2009; Alexander, 2005]. A processing
pipeline first classifies voxels into isotropic or anisotropic, Gaussian or non-Gaussian,
revealing regions with crossing fibres. Results of voxel classification are used to
determine whether a single-tensor or two-tensor model should be fit to the data on a
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voxel-by-voxel basis. The ODF for each voxel is then estimated using a specialised
algorithm designed to handle multiple fibre directions [Descoteaux et al., 2007].
However, these advanced techniques require that the DW-MRI be acquired using
multiple HARDI shells. This requirement has not been satisfied by images in ADNI.
Camino also offers a platform to carry out Monte-Carlo simulations to generate
synthetic MR data [Hall and Alexander, 2009]. The simulator allows creation of
simple to very complex diffusion environments using different substrates such as
cylinders and meshes, and several DTI pulse sequences.

A.1.3 ROIEditor (Region of Interest Editing Tools)

ROIEditor is an open-access toolkit developed by the Center for Imaging Science,
Johns Hopkins University. It supports installation on Windows operating system.
It offers several tools that may be used to define an ROI on DTI and DTI-derived
images, as well as obtain summary statistics in the ROI. It is being offered as part of
a software suite called MRIStudio (earlier known as DTIStudio) which can perform
DTI processing tasks such as tensor estimation and tractography. Segmentation

Figure A.1: (a) The FSL GUI (b) Top: ROIEditor GUI. Bottom: The atlas and
manual drawing tools used for segmentation in ROIEditor magnified for visibility.
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of the ROI may be carried out in ROIEditor either using an atlas or the different
drawing tools provided. The software GUI has been shown in figure A.1b.

A.1.4 MATLAB

MATLAB is a widely used commercial software package developed by MathWorks
with capability to carry out intensive computations, both imaging-related and
otherwise. Custom codes written in MATLAB have been used for data analysis in
this thesis. They have been provided in the appendix and referred to in relevant
sections.

A.1.5 ImageJ (Image Processing and Analysis in Java)

ImageJ is a generic image processing and editing software developed at the National
Institute of Mental Health, Bethesda (figure A.2). Since its first release, the scope
and capability of ImageJ has been extended by the inclusion of user-written codes
called plugins. Manual segmentation of the ROI may be carried out in ImageJ using
freehand, rectangular, elliptical, or other drawing tools.

A.1.6 The R Project for Statistical Computing

R is an open-access environment for statistical computing and graphics, offering
linear and non-linear modelling, classification and clustering of data. It also provides
tools to visualise data and results of statistical tests. The capability of R can be
easily extended using packages, which are often user-written codes available for
download.

A.1.7 Other software

TractSeg and Blender are two other software tools that have been used in this thesis.
TractSeg offers a tractography algorithm for images that have been acquired with
typical clinical scan parameters. Blender, together with add-on software called MCell

Figure A.2: The ImageJ GUI.
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and DIFSIM, offers a means for spatial simulation of white matter models. Details
of these software packages and their algorithms have been described in chapters 5
and 6.

A.2 MATLAB code to estimate χ2
p map from DW-MRI

The code provided by Lauzon et al. at https://www.nitrc.org/projects/masimatlab
has been adapted as required and is given below.

function [reportFile,state] = ...

DTI_QA_Pipeline(file_name,output_folder,path_to_QA_DTI)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%CALCULATE CHI_2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% sd contains the fitting error to be plotted

% name_tensor_dt_nii = /filename/of/tensor/image/estimated/by/Camino

% name_md_nii=/filename/of/MD/map

% name_fa_nii=/filename/of/FA/map

% mask_nii_name=/filename/of/brain/mask

% name_reg=/filename/of/input/image/from/which/DTI/was/estimated

T=double(niftiread(name_tensor_dt_nii));

Reg_Im=double(niftiread(name_reg));

ADC=double(niftiread(name_md_nii));

ADC=reshape(ADC,[],1);

FA=double(niftiread(name_fa_nii));

FA=reshape(FA,[],1);

mask_nii=double(niftiread(mask_nii_name));

brain=(mask_nii==1);

mADC=ADC(brain);

mFA=FA(brain);

stdFA=std(FA(brain));

stdADC=std(ADC(brain));

% temp folder to save temporary outputs

tmp=sprintf('%s/temp_folder',output_folder);

mkdir tmp;
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[scan_info_text grad_file bval_vec resolution name_Y_data] = ...

getNIIinfo(tmp,file_name);

[sd Nz ModelData ...

Errors]=calDTIrevC_norm(T,grad_file,bval_vec,Reg_Im,mask_nii);

%plot(1:Nz,sd);

%histogram(sd);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [ss Nz Se ...

Errors]=calDTIrevC_norm(T,grad_file,bvals,S_measured,mask)

%normalised according to 2003 "A measure of curve fitting error for noise

%filtering diffusion tensor MRI data"

Nx=size(S_measured,1);

Ny=size(S_measured,2);

Nz=size(S_measured,3);

bo=reshape(S_measured(:,:,:,end),1,[]);

D_vec=[];

D_vec(1,:)=reshape(T(:,:,:,1),1,[]); %Dxx

D_vec(2,:)=reshape(T(:,:,:,3),1,[]); %Dyy

D_vec(3,:)=reshape(T(:,:,:,6),1,[]); %Dzz

D_vec(4,:)=reshape(T(:,:,:,2),1,[]); %Dxy

D_vec(5,:)=reshape(T(:,:,:,4),1,[]); %Dxz

D_vec(6,:)=reshape(T(:,:,:,5),1,[]); %Dyz

%create gradient vector

grads=grad_file;

gs=[grads.^2 2*grads(:,1).*grads(:,2) 2*grads(:,1).*grads(:,3) ...

2*grads(:,3).*grads(:,2)];

S_model=[];

for vol=1:size(grad_file,1)-5

gb(vol,1:6)=bvals(1,vol)*gs(vol,:);

end

Sm=S_measured(:,:,:,1:end-5)./repmat(S_measured(:,:,:,end),[1 1 1 ...

size(S_measured,4)-5]);

Sm=reshape(Sm,Nx*Ny*Nz,size(gs,1)-5); Sm=permute(Sm,[2 1]);

Se=exp(-gb*D_vec);

Errors=double(Sm)-Se;
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ee=repmat(double(bo),size(gs,1)-5,1).*Se;

S_model=reshape(permute(ee,[2 1]),Nx,Ny,Nz,size(gs,1)-5);

del_S=(S_model-double(S_measured(:,:,:,1:end-5))).^2;

S_fi=S_measured(:,:,:,1:end-5);

normS=sum(S_fi.^2,4);

chi_sq_p=zeros(Nx*Ny*Nz,size(gs,1)-5);

mask=mask(:);

mask=(mask==1);

del_S=reshape(del_S,Nx*Ny*Nz,size(gs,1)-5);

normS=reshape(normS,Nx*Ny*Nz,1);

for vol=1:size(gs,1)-5

chi_sq_p(mask,vol)=del_S(mask,vol)./normS(mask);

end

s=reshape(chi_sq_p,[Nx Ny Nz size(grad_file,1)-5]);

s=sum(s,4);

ss=zeros(1,Nz);

for i=1:Nz

avg=mean(mean(s(:,:,i)));

ss(1,i)=avg;

end

A.3 Estimation of mid-sagittal slice

Detection of the mid-sagittal slice of the brain was carried out automatically on
an FA image using the method described by Freitas et al. (2011). It makes use
of the inter-hemispheric fissure as a landmark of the mid-sagittal slice. The FA
map for this slice will contain large areas corresponding to CSF with low FA and
white matter structures such as the corpus callosum with high FA. The average FA
estimated for this slice will therefore be low. In fact, if slices from image extremities
with small cross-sectional area of the brain are discarded, the average FA of the
mid-sagittal slice will be the lowest. The method described by Freitas et al. is as
follows:

1. Estimate the FA map of the image.

2. Use the brain mask to estimate the cross-sectional area of the brain in each
slice. Discard slices with brain area less than 80% of the maximum.

3. For each of the remaining slices, calculate the average FA. Discard values
greater than 50% of the maximum FA when estimating the average.
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4. Plot the average FA for all slices to visualise the results (figure A.3a).

5. Find the slice with the lowest FA to be the mid-sagittal slice (figure A.3b).

A.4 Power analysis

Power analysis is used to estimate the sample size required to detect an effect size
with a given degree of confidence. Conversely, it can be used to determine the
probability of detecting an effect size with a given level of confidence under sample
size constraints. The following four parameters are involved in power analysis and
given any three, the fourth can be determined.

• Sample size.

• Effect size - this is typically an educated guess or derived from pilot studies.
Typical values are 0.2 (small), 0.5 (medium) and 0.8 (large).

• Significance level - probability of finding an effect that is not present, i.e., a
false positive.

• Power of the test - probability of finding an effect that is present.

Figure A.3: (a) Plot of average FA versus slice number, with data points in red being
below the threshold FA and discarded. After factoring in the brain cross-sectional
area, the mid-sagittal slice was estimated to be the slice where FA is the lowest
between two peaks (red marker between the blue markers), which was 60 for this
image. (b) Slice number 60 from the FA image (brightness and contrast adjusted to
increase visibility).
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Figure A.4: Plot of effect size against sample size required to conduct a two-sample
t test between AD and HC plotted in G*Power.

A liberal statistical power of 0.8 and a significance level of 0.05 were set
and sample size required for the feasibility study (section 3.7.2) was estimated in
G*Power. As described in section 3.7.1, an effect size of 0.605 was calculated for
AD versus HC and 0.503 for MCI versus HC [Sexton et al., 2011]. Plots of effect
size against sample size, and details of sample size estimation have been given in
figures A.4, A.5, A.6, andA.7.
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Figure A.5: Plot of effect size against sample size required to conduct a two-sample
t test between MCI and HC plotted in G*Power.

A.5 TBSS code

Example of a command script written in Linux CentOS to carry out TBSS on HC
and AD images has been given in figure A.8. A similar code was used for comparison
between HC and MCI groups with only the file names changed. The instructions

Figure A.6: Details of the a-priori sample size estimation carried out in G*Power for
a two-sample t-test between MCI and HC
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given in FSL official website (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS/UserGuide)
to carry out TBSS were followed to generate this command script.

Figure A.7: Details of the a-priori sample size estimation carried out in G*Power for
a two-sample t-test between AD and HC

Figure A.8: Codes written in FSL to carry out TBSS between AD and HC. Similar
codes have been used to compare MCI and HC.
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A.6 MATLAB code to estimate median FA, MD, RD
and AxD

clc;

clear;

folder='/path/to/directory/containing/image/files/';

load('imageID.mat'); %names of folders to be processed

D=dir(folder);

cd(folder);

for i=1:length(imageID)

file=num2str(imageID(i));

cd(file);

FA = importdata('PixelValue_FA.txt');

MD = importdata('PixelValue_MD.txt');

RD = importdata('PixelValue_RD.txt');

AxD = importdata('PixelValue_AxD.txt');

medianFA = median(FA);

fprintf('FA = %12f\n',medianFA);

medianMD = median(MD);

fprintf('MD = %12f\n',medianMD);

medianRD = median(RD);

fprintf('RD = %12f\n',medianRD);

medianAxD = median(AxD);

fprintf('AxD = %12f\n',medianAxD);

cd(folder);

end

A.7 White matter modelling

A.7.1 Software

In chapter 6, the following software tools have been used to design and simulate a
model of the white matter.
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A.7.1.1 Blender

Blender is an open source 3D creation suite capable of modelling, animation, simu-
lation, rendering, and motion tracking. It has been developed as a public project,
realised using contributions from studios and individual artists around the world.
More information about the software project may be found at www.blender.org.
Advanced and customised capabilities of Blender may also be realised using its
interface with Python programming language. Supported platforms include Linux,
Windows, and Macintosh. Blender has been made available under the GNU General
Public Licence which imposes no restrictions on how the software may be used. The
geometry of the white matter model was designed in chapter 6 using Blender.

A.7.1.2 MCell and Cellblender

MCell stands for ‘Monte Carlo cell’. It is a toolkit that enables particle-based
stochastic simulations in 3D geometries, allowing numerical investigations to be
carried out in biochemical systems [Kerr et al., 2008; Stiles and Bartol, 2001; Stiles
et al., 1996]. It has been developed as a collaborative project by several groups at the
University of Pittsburgh and the Salk Institute. A brief introduction to stochastic
modelling as well as details of its implementation in MCell have been given below.

A stochastic simulation contains variables that can change their values
stochastically or randomly with individual probabilities. A particle-based stochastic
simulator is one that can locate and monitor the interactions between different
particles in a stochastic system [Blackwell, 2014]. If the average distance travelled
by a particle during its lifetime (lk) is very small compared to the scale of volume
of the model, the system may be assumed to be heterogeneous with changes in
concentration being localised. Spatial modelling methods such as the particle-based
stochastic simulator implemented in MCell may be used in this case to investigate
various properties of the system. There are four essential components to an MCell
model [Gupta et al., 2018]:

1. Mesh objects: They are surfaces that may be defined directly in MCell or
through Blender GUI, that describe the geometry of the model being designed.
The objects are triangulated for use in MCell, i.e., each face of an object is
divided into triangles. This may be performed in Blender or in MCell’s GUI
(Cellblender).

2. Molecules: Two types of molecules may be defined, i.e., surface or volume
molecules. The diffusion coefficient of each molecule type may be defined
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separately. Surface molecules are allowed to diffuse only in a 2D space in the
model, while volume molecules may diffuse in a 3D space.

3. Molecule release sites: These are regions or locations where the molecules are
placed at the start of or during a simulation. Surface molecules may only be
released on a 2D surface, while volume molecules may be released in a 3D
volume.

4. Reactions: They define the manner in which molecules in the model interact
with each other. They may be unimolecular or bimolecular interactions with
specific reaction rates that determine the probability of their occurrence.

Using the above components, there are four processes that may occur at each
simulation time step in MCell:

1. Diffusion: The molecules may diffuse with a random step length and direction
estimated in MCell as described in later sections.

2. Collision: The molecules may collide with surfaces or other molecules. This
can be detected using a collision radius which is checked at every time step to
estimate if a collision occurs.

3. Reaction: If a collision occurs, a user-specified reaction may be triggered
depending on the reaction rate and its associated probability. A reaction may
be between two volume molecules, two surface molecules, or a volume molecule
and a surface molecule.

Random walk diffusion

At each time step in a simulation, the motion and trajectory of a molecule is
determined by randomly selecting a direction and moving the molecule by one unit
in that direction. This is called a random walk diffusion. It has been developed
to simulate Brownian motion, where diffusion of a molecule in a medium may be
influenced by random collisions with surfaces or other molecules [Codling et al., 2008].
In a 3D volume, the probability of a volume molecule with diffusion coefficient D
moving a distance r in time t is given by [Gupta et al., 2018]:

p(r, t) = 1
[4πDt]3/2 e

−r2/4Dt (A.1)
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The cumulative distribution function (cdf) of p(r, t) is given by:

cdf(R, t) =
∫ R

0
p(r, t)4πr2dr (A.2)

where R is the magnitude of displacement. The value of cdf(R, t) lies between 0 and
1 and R may be estimated through the inverse of cdf . The value of R is then scaled
by
√

4Dt as explained later. Along with the displacement, MCell also calculates
the direction of diffusion in a volume by computing the azimuthal angle φ and the
polar angle θ. While φ is randomly selected from a distribution within [0, 2π), θ
is randomly chosen from a lookup table containing solutions of θ for the equation
Y = (1− cosθ)/2, Y ∈ [0, 1] [Gupta et al., 2018].

Other implementations of random walk diffusion, such as that in Camino,
assign a fixed displacement and a random direction to molecules at each simulation
step. This does not truly represent free diffusion and require averaging over several
simulation steps to make it so. On the other hand, equation A.1 is used by MCell to
initialise a look-up table at the start of the simulation to store a large number of
diffusion step lengths and directions with an equal probability of being assigned to
a molecule. At each simulation time step, this look-up table is used to randomly
select a displacement and direction. The displacement is then scaled by a factor√

4Dt and the molecule is moved in the chosen direction by an amount equal to
this scaled displacement. By implementing random walk diffusion this way, MCell
offers the flexibility to set longer time steps that enables a quicker completion of the
simulation.

A.7.1.3 DIFSIM

DIFSIM is a diffusion simulator developed at the Centre for Scientific Computation
in Imaging at the University of California San Diego. It provides the capability
to simulate a diffusion MRI experiment on a tissue model defined within MCell
[Baxter and Frank, 2013; Balls and Frank, 2009]. The acquired output signal may
then be used to compute various DTI parameters including FA, MD, RD, and AxD.
DIFSIM provides an excellent means to test hypotheses about disease models, e.g.,
how alterations in tissue structure may impact the widely used DTI parameters.

DIFSIM has integrated MCell within itself as a function that is called during
the simulated scan. The phase shift of the molecules in the MCell model is updated
in DIFSIM through this function at each simulation time step, and the signal
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attenuation E due to phase differences is estimated as [Balls and Frank, 2009]:

E = 1
Np

Np∑
j=1

eiγθj (A.3)

where Np is the total number of diffusing molecules or spins, i is the imaginary
unit

√
−1, γ is the gyromagnetic ratio, and θj is the phase of a spin j due to its

displacement in the diffusion MRI pulse gradient direction given by

θj(t) =
Nt∑
i=0

G(ti) . xj(ti)dt (A.4)

where ‘.’ represents the dot product between magnetic field gradient G(ti) and
displacement xj(ti) at a time step ti with the time having been discretised into Nt

steps each of length dt. Effects of T1 and T2 relaxation on the acquired signal may
be accounted for by setting their corresponding values for the various compartments
simulated in the model. DIFSIM also offers several pulse sequences including spin
echo and gradient echo pulses to simulate a DTI scan, with options to set the values
of the diffusion time (∆), pulse duration (δ), gradient strength (G), and the gradient
ramp time (tr). An example of a diffusion encoding pulse has been shown in figure
2.4. Using the parameters of the pulse, the b-value is estimated automatically by
DIFSIM. The acquired signal is provided as input to an external program called
Analysis of Functional Neuroimages (AFNI) which estimates the diffusion tensor, its
eigen values and parameters such as FA and MD [Balls and Frank, 2009].

A.7.2 Test models

Two models, one with a single cylinder and the other with a cylinder enclosed inside
a cube, were designed. Variable parameters included cylinder radius (rcy) and length
(l), cube side length (rcu), number of molecules inside the cylinder (ncy) and the
cube (ncu), their diffusion coefficient (dc), simulation time (t), and the permeability
of the cylinder membrane (p) when placed inside the cube. The dependence of FA,
MD, RD, and AxD on these factors at b=1000 s/mm2 were studied.

A.7.2.1 Radius of the cylinder

In the model consisting of just the cylinder without the cube, rcy was varied while
keeping the other parameters constant at l = 15 µm, ncy = 100, 000, dc = 7.5 ∗ 10−6

cm2/s, and t = 40 ms. The cylinder surface was assumed to be impermeable. A
decrease in FA accompanied by increases in MD, RD, and AxD was observed with
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Figure A.9: Variation of measured FA, MD, RD, and AxD of a cylinder with varying
radius. Spearman’s rank correlation coefficient (ρ) has been estimated for each of
the parameters for variation in radius, testing for a monotonic association.

increasing rcy as shown in figure A.9. This may be attributed to an increase in the
space available to a molecule for diffusion as the radius was increased. This likely
resulted in a reduction in the number of molecular collisions leading to an overall
increase in diffusion. Interestingly, increasing the dimensions radially was observed
to lead to an increase in diffusion in both radial and axial directions (RD and AxD).

A.7.2.2 Length of the cylinder

The length of the cylinder was varied at three different radii (rcy=1 µm, 3 µm, 6
µm) while keeping the other parameters constant at ncy = 100, 000, dc = 7.5 ∗ 10−6

cm2/s, and t = 40 ms. The cylinder surface was assumed to be impermeable as
before. The values of FA, MD, RD, and AxD were observed to stay fairly constant as
the cylinder length was varied, although a difference was observed in corresponding
values between cylinders of different radii (figure A.10). For given dc and t, increasing
l may not impact the space available for molecular diffusion except in locations

161



Figure A.10: Variation of measured FA, MD, RD, and AxD of a cylinder with length
at different radii. Spearman’s rank correlation coefficient (ρ) has been shown on the
corresponding plots for monotonic association of each of the DTI parameters with
the cylinder length.

towards the cylinder end-regions. This may help explain the patterns seen figure
A.10.

A.7.2.3 Number of molecules

Cylinders with rcy=1 µm, 3 µm, and 6 µm were modelled by setting l = 15 µm,
dc = 7.5 ∗ 10−6 cm2/s, and t = 40 ms. The cylinder surface was assumed to be
impermeable. The number of molecules simulated was varied on a logarithmic scale
as shown in figure A.11 and the corresponding DTI parameters were measured. It
was observed that for all three radii, the measurements plateaued as the number of
molecules was increased. This indicated that the DTI parameters depended on the
number of molecules simulated and a minimum number was required to obtain a
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Figure A.11: Variation of measured FA, MD, RD, and AxD of a cylinder with number
of molecules simulated at different radii. Spearman’s rank correlation coefficient (ρ)
has been shown on the corresponding plots for monotonic association of each of the
DTI parameters with the number of molecules simulated.

fair estimate.

A.7.2.4 Simulation time

Cylinders with rcy=1 µm, 3 µm, and 6 µm were simulated for varying durations
by keeping l = 15 µm, ncy = 100, 000, dc = 7.5 ∗ 10−6 cm2/s and DTI scans were
acquired. The cylinder surface was assumed to be impermeable. A decrease in FA
accompanied by increases in MD, RD, and AxD was observed as simulation time
was increased on a logarithmic scale (figure A.12). This may be attributed to the
increasing distance travelled by the molecules with time resulting in an increase
in overall diffusion and a subsequent decrease in anisotropy. Interestingly for the
cylinder with rcy=6 µm, FA was observed to increase for a brief period of time after
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Figure A.12: Variation of measured FA, MD, RD, and AxD of a cylinder with
simulation time at different radii. Spearman’s rank correlation coefficient (ρ) was
estimated for monotonic association of each DTI parameter with the simulation
time.

which it started decreasing. The reason behind this pattern was not clear but may
perhaps be rising from the larger radius of the cylinder.

A.7.2.5 Diffusion coefficient

Diffusion coefficient dc is an estimate of the distance or area covered by a molecule
in a given unit of time. Cylinders of radii rcy=1 µm, 3 µm, and 6 µm were used to
simulate DTI scans at varying values of dc while keeping other parameters constant
at l = 15 µm, ncy = 100, 000, and t = 40 ms. The cylinder surface was assumed to be
impermeable. A decrease in FA accompanied by increases in MD, RD, and AxD was
observed with increasing dc (figure A.13). This may be attributed to the increased
overall diffusion occurring as a result of increased dc for a given simulation time,
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Figure A.13: Variation of measured FA, MD, RD, and AxD of a cylinder with
diffusion coefficient of molecules at different radii. Spearman’s rank correlation
coefficient (ρ) was estimated for monotonic association of each DTI parameter with
the molecular diffusion coefficient.

leading to a greater overall diffusivity and a subsequent reduction in FA. However,
an initial increase in the values of FA was observed before it started decreasing as
shown in figure A.12. This may be related to the similar pattern observed in section
A.7.2.4 and may perhaps be arising from the distances travelled by the molecules as
the simulation time or diffusion coefficient are varied.

A.7.2.6 Permeability

The parameters described above have been investigated using a model constituting of
a single cylinder. In order to investigate the properties of the cylinder in a medium,
a second model was designed with a cylinder placed inside a cube. The following
values were assigned to the different parameters: rcy=1 µm, 3 µm, and 6 µm, l = 15
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Figure A.14: Variation of measured FA, MD, RD, and AxD of a cylinder with
permeability defined as the probability of transition of a molecule from inside the
cylinder to outside. The volume fraction of the cylinder inside the cube is denoted
as ‘f’. Spearman’s rank correlation coefficient (ρ) has been shown for monotonic
association of each DTI parameter with the probability of transition at the boundary.

µm, rcu=16 µm, ncy = ncu = 100, 000, dc = 7.5 ∗ 10−6 cm2/s, and t = 40 ms.
The cylinder surface was assumed to be permeable, with the molecules carrying a
probability of transition from inside to outside when it hits the surface. In MCell,
this may be controlled by setting the rate of reaction, where the reaction is the
transition of the molecule from one side of the boundary to the other. As shown
in figure A.14, increasing the permeability of the cylinder surface was observed to
lead to an increase in overall diffusion and subsequent increases in MD, RD, and
AxD accompanied by a decrease in FA. It was observed that a small increase in
permeability led to a drastic reduction in the value of FA. This may be attributed
to small changes in radial diffusion (represented by diffusion tensor eigen values λ2
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Figure A.15: Variation of measured FA, MD, RD, and AxD of a cylinder with the
number of molecules simulated inside the cylinder and cube. The volume fraction of
the cylinder inside the cube is denoted as ‘f’. Different symbols indicate different
values of ncu as shown in the legend. Spearman’s rank correlation coefficient (ρ)
has been shown on the corresponding plots for monotonic association of each DTI
parameter with the number of molecules simulated inside the cylinder.

and λ3) causing large changes in FA, owing to the non-linear relationship between
them (see section 2.2).

A.7.2.7 Permeability and the number of molecules

The impact of the number of molecules simulated inside and outside a permeable
cylinder when placed in a cube was investigated. The values of different parameters
were set as: rcy=1 µm, 3 µm, and 6 µm, l = 15 µm, rcu=16 µm, dc = 7.5 ∗ 10−6

cm2/s, and t = 40 ms. The value of ncy was varied from 100,000 to 500,000 at two
different values of ncu (100,000 and 200,000). An increase in FA accompanied by
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decreases in MD, RD, and AxD was observed with increasing ncy. Moreover, at
any given value of ncy, the FA measured from the model with ncu=200,000 was less
than the FA measured from the model with ncu=100,000. This was reversed for the
case of MD, RD, and AxD (figure A.15). This result contrasted with the results in
section A.7.2.3 where FA, MD, RD, and AxD plateaued as the number of molecules
was increased. Figure A.15 indicated that the number of molecules may have an
impact on DTI parameters in models with a permeable cylinder surface.
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A.7.3 MATLAB codes

A.7.3.1 Single compartment fitting, with and without T2 relaxation
terms

clc; clear; format longG;

global b;

b = 8000;

% change to each seed folder to get results

file_location = ".../seed200/";

bval_filename = sprintf(".../bvals_%d.txt",b);

bvec_filename = ".../bvecs.txt";

b_value = importdata(bval_filename);

b_value = b_value(2:end, :);

g = importdata(bvec_filename);

g = g(2:end, :);

global Gi;

Gi = zeros(30,6);

for i=1:30

Gi(i,:) = [g(i,1)^2 g(i,2)^2 g(i,3)^2 2*g(i,1)*g(i,2) ...

2*g(i,1)*g(i,3) 2*g(i,2)*g(i,3)];

end

T2 = 110; %ms

TE = 100; %ms

t2term = exp(-TE/T2);

models = ["1" "2" "3" "69" "70"]; % array carrying all 70 model names

FAresults = zeros(size(models, 2),1);

MDresults = zeros(size(models, 2),1);

RDresults = zeros(size(models, 2),1);

AxDresults = zeros(size(models, 2),1);

L1results = zeros(size(models, 2),1);

L2results = zeros(size(models, 2),1);

L3results = zeros(size(models, 2),1);

% fanDTasia toolbox is used in this code.

fields = {'bt'} ; c = cell(length(fields),1); global xps; xps = ...

cell2struct(c,fields);

type = {'dti_nls'}; c=cell(length(type),1); opts = cell2struct(c, type);
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opts.dti_nls.do_plot = 1; opts.dti_nls.lsq_opts=[];

t_guess = [1 1 1 1 1 1];

t_lb = [0 0 0 0 -9 -9 -9];

t_ub = [2 9 9 9 +9 +9 +9];

for modelnumber = 1:size(models,2)

signal_file = sprintf("%s%s/signal_%d.dat", ...

file_location, models(1, modelnumber), b);

signal = importdata(signal_file).data;

%% signal - 1: total 2: myelin 3: axon 4:ecs

signal = signal(2:end, :);

signal_total = signal(:,1);

%% estimations

modelfun = fittype(@(Di, x) t2term*(exp(-x*Di)));

for i=1:30

Dtemp{i} = ...

fit(b_value(i,1),signal_total(i,1),modelfun,'StartPoint', ...

0,'Lower', 0,'Upper', 0.01);

Di(i,1) = Dtemp{i}.Di;

end

R = lsqcurvefit(@DTfun, t_guess, [], Di, opts.dti_nls.lsq_opts);

% using cholesky factorisation to get positive eigen values

DT = [R(1)^2 R(1)*R(2) R(1)*R(3);

R(1)*R(2) R(2)^2+R(4)^2 R(2)*R(3)+R(4)*R(5);

R(1)*R(3) R(2)*R(3)+R(4)*R(5) R(3)^2+R(5)^2+R(6)^2];

e = eig(DT);

e = sort(e, 'descend');

FA = sqrt(0.5 * ( (e(1)-e(2))^2 ...

+ (e(1)-e(3))^2 ...

+ (e(2)-e(3))^2) ...

/(sum(e.*e)));

MD = (e(1) + e(2) + e(3))/3;

RD = (e(2) + e(3))/2;

AxD = e(1);

L1results(modelnumber,1) = e(1);

L2results(modelnumber,1) = e(2);

L3results(modelnumber,1) = e(3);

FAresults(modelnumber, 1) = FA;

MDresults(modelnumber, 1) = MD;

RDresults(modelnumber, 1) = RD;

AxDresults(modelnumber, 1) = AxD;
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end

function Di = DTfun(t,varargin)

global xps; global Gi; global b;

C = [t(1) t(2) t(3);

0 t(4) t(5);

0 0 t(6)];

m(1:6) = tm_3x3_to_1x6(C' * C); % function from fanDTasia toolbox

dt = zeros(1,6);

dt(1:6) = m(1:6);

Di = Gi*dt';

end

A.7.3.2 Multi compartment fitting, with T2 relaxation terms

clc; clear; format longG;

b = [1004 4000 8000];

file_location = "../seed200/";

bval_filename = sprintf("../bvals_");

bvec_filename = "../bvecs_all.txt";

f = 0.8;

ra = 0.7;

gratio = 0.65;

De = 2*10^-5*100;

rm = ra/gratio;

L = sqrt((2*pi*rm*rm)/(sqrt(3)*f));

f_a = (2*pi*ra*ra)/(sqrt(3)*L*L);

f_m = (2*pi*((rm*rm)-(ra*ra)))/(sqrt(3)*L*L);

f_e = 1 - f;

TE = 100; %ms

T1a = 965; %ms

T1m = 465; %ms

T1e = 965; %ms

T2a = 90; %ms

T2m = 12; %ms

T2e = 90; %ms

Da = 2*10^-5*100;

Dm = 0.3*10^-5*100;
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axon = f_a * exp(-TE/T2a);

myelin = f_m * exp(-TE/T2m);

ecs = f_e * exp(-TE/T2e);

%% signal - 1: total 2: myelin 3: axon 4:ecs

g = importdata(bvec_filename);

global Gi;

Gi = zeros(30,6);

for i=1:30

Gi(i,:) = [g(i,1)^2 g(i,2)^2 g(i,3)^2 2*g(i,1)*g(i,2) ...

2*g(i,1)*g(i,3) 2*g(i,2)*g(i,3)];

end

models = ["1" "2" "3" "69" "70"]; % array carrying all 70 model names

FAresults = zeros(size(models, 2),1);

MDresults = zeros(size(models, 2),1);

RDresults = zeros(size(models, 2),1);

AxDresults = zeros(size(models, 2),1);

L1results = zeros(size(models, 2),1);

L2results = zeros(size(models, 2),1);

L3results = zeros(size(models, 2),1);

b_value = [];

for i=1:3

bvalue_file = sprintf("%s%d.txt",bval_filename,b(i));

bvalue = importdata(bvalue_file);

bvalue = bvalue(2:end, 1);

b_value = [b_value; bvalue];

end

xdata = [[60, 1004], [80, 4000], [100, 8000]];

for modelnumber = 1:size(models,2)

signal_total = [];

for i=1:3

signal_file = sprintf("%s%s/signal_%d.dat",file_location, ...

models(1,modelnumber), b(i));

signal = importdata(signal_file).data;

signal = signal(2:end, :);

T = signal(:,1);

signal_total = [signal_total; T];

end

modelD = fittype(@(Da, Dm, De, x) ...

axon * exp(-x*Da) + ...

myelin * exp(-x*Dm) +...
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ecs * exp(-x*De));

for i=1:30

signal_all = [signal_total(i,1) signal_total(i+30, 1) ...

signal_total(i+60, 1)];

CompDiff{i} = fit(b',signal_all',modelD,'StartPoint',[Da Dm ...

De],'Lower',[0 0 0],'Upper',[0.01 0.01 0.01]);

Dia(i,modelnumber) = CompDiff{i}.Da;

Dim(i,modelnumber) = CompDiff{i}.Dm;

Die(i,modelnumber) = CompDiff{i}.De;

end

end

% fanDTasia toolbox

fields = {'bt'} ; c = cell(length(fields),1); global xps; xps = ...

cell2struct(c,fields);

type = {'dti_nls'}; c=cell(length(type),1); opts = cell2struct(c, type);

opts.dti_nls.do_plot = 1; opts.dti_nls.lsq_opts=[]; %xps.bt = Bm;

t_guess = [1 1 1 1 1 1];

t_lb = [0 0 0 0 -9 -9 -9];

t_ub = [2 9 9 9 +9 +9 +9];

for modelnumber = 1:size(models, 2)

%change Die to Dia or Dim to obtain results of other compartments

R = lsqcurvefit(@DTfun, t_guess, [], Die(:, modelnumber), ...

opts.dti_nls.lsq_opts);

%cholesky factorisation to obtain positive eigen values

DT = [R(1)^2 R(1)*R(2) R(1)*R(3);

R(1)*R(2) R(2)^2+R(4)^2 R(2)*R(3)+R(4)*R(5);

R(1)*R(3) R(2)*R(3)+R(4)*R(5) R(3)^2+R(5)^2+R(6)^2];

e = eig(DT);

e = sort(e, 'descend');

FA = sqrt(0.5 * ( (e(1)-e(2))^2 ...

+ (e(1)-e(3))^2 ...

+ (e(2)-e(3))^2) ...

/(sum(e.*e)));

MD = (e(1) + e(2) + e(3))/3;

RD = (e(2) + e(3))/2;

AxD = e(1);

L1results(modelnumber,1) = e(1);

L2results(modelnumber,1) = e(2);

L3results(modelnumber,1) = e(3);

FAresults(modelnumber, 1) = FA;

MDresults(modelnumber, 1) = MD;

RDresults(modelnumber, 1) = RD;

AxDresults(modelnumber, 1) = AxD;

end
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function Di = DTfun(t,varargin)

global xps; global Gi; global b;

C = [t(1) t(2) t(3);

0 t(4) t(5);

0 0 t(6)];

m(1:6) = tm_3x3_to_1x6(C' * C); % function from fanDTasia toolbox

dt = zeros(1,6);

dt(1:6) = m(1:6);

Di = Gi*dt';

end

A.7.4 White matter model

For the main study in chapter 6, 70 models of the white matter were simulated, with
each of them representing one of four scenarios: healthy tissue, acute or chronic
demyelination, or neuroinflammation. Each model represented a specific combination
of parameters, signifying a specific fibre size and disease state. The parameter values
of these models have been given in the table below, along with the table legend.

• Chronic Dem. - Chronic Demyeli-
nation

• Acute Dem. - Acute Demyelination

• Inflamm. - Inflammation

• ra - Axon radius in µm

• g - g-ratio

• rm - Myelin radius in µm

• L - Fibre spacing in µm

• f - Fibre packing density

• Cm - Myelin water concentration

• C - Base concentration (100
molecules per µm3)

• De - Diffusion coefficient of water
in the extra-cellular space in 10-5

cm2/s
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Model r a Type g r m L f C m /C D e 

1 Normal 0.65 1.076 2.290 0.80 0.130 2.00

2 Chronic Dem. 0.70 1.000 2.129 0.80 0.118 2.00

3 Chronic Dem. 0.75 0.930 1.980 0.80 0.106 2.00

4 Chronic Dem. 0.80 0.875 1.863 0.80 0.094 2.00

5 Chronic Dem. 0.85 0.823 1.752 0.80 0.082 2.00

6 Acute Dem. 0.70 1.000 2.290 0.69 0.118 2.00

7 Acute Dem. 0.75 0.930 2.290 0.60 0.106 2.00

8 Acute Dem. 0.80 0.875 2.290 0.53 0.094 2.00

9 Acute Dem. 0.85 0.823 2.290 0.47 0.082 2.00

10 Inflamm. 0.65 1.076 2.370 0.75 0.130 1.50

11 Inflamm. 0.65 1.076 2.450 0.70 0.130 1.00

12 Inflamm. 0.65 1.076 2.540 0.65 0.130 0.50

13 Inflamm. 0.65 1.076 2.640 0.60 0.130 0.10

14 Inflamm. 0.65 1.076 2.760 0.55 0.130 0.05

15 Normal 0.65 1.850 3.940 0.80 0.130 2.00

16 Chronic Dem. 0.70 1.710 3.640 0.80 0.118 2.00

17 Chronic Dem. 0.75 1.600 3.400 0.80 0.106 2.00

18 Chronic Dem. 0.80 1.500 3.190 0.80 0.094 2.00

19 Chronic Dem. 0.85 1.410 3.000 0.80 0.082 2.00

20 Acute Dem. 0.70 1.710 3.940 0.68 0.118 2.00

21 Acute Dem. 0.75 1.600 3.940 0.60 0.106 2.00

22 Acute Dem. 0.80 1.500 3.940 0.53 0.094 2.00

23 Acute Dem. 0.85 1.410 3.940 0.46 0.082 2.00

24 Inflamm. 0.65 1.850 4.060 0.75 0.130 1.50

25 Inflamm. 0.65 1.850 4.210 0.70 0.130 1.00

26 Inflamm. 0.65 1.850 4.370 0.65 0.130 0.50

27 Inflamm. 0.65 1.850 4.540 0.60 0.130 0.10

28 Inflamm. 0.65 1.850 4.750 0.55 0.130 0.05

29 Normal 0.65 2.700 5.750 0.80 0.130 2.00

30 Chronic Dem. 0.70 2.500 5.320 0.80 0.118 2.00

31 Chronic Dem. 0.75 2.330 4.960 0.80 0.106 2.00

32 Chronic Dem. 0.80 2.180 4.640 0.80 0.094 2.00

33 Chronic Dem. 0.85 2.050 4.360 0.80 0.082 2.00

34 Acute Dem. 0.70 2.500 5.750 0.68 0.118 2.00

35 Acute Dem. 0.75 2.330 5.750 0.60 0.106 2.00

36 Acute Dem. 0.80 2.180 5.750 0.52 0.094 2.00

37 Acute Dem. 0.85 2.050 5.750 0.46 0.082 2.00

38 Inflamm. 0.65 2.700 5.940 0.75 0.130 1.50

39 Inflamm. 0.65 2.700 6.150 0.70 0.130 1.00

40 Inflamm. 0.65 2.700 6.380 0.65 0.130 0.50

41 Inflamm. 0.65 2.700 6.640 0.60 0.130 0.10

42 Inflamm. 0.65 2.700 6.930 0.55 0.130 0.05

43 Normal 0.65 3.380 7.190 0.80 0.130 2.00

44 Chronic Dem. 0.70 3.140 6.680 0.80 0.118 2.00

45 Chronic Dem. 0.75 2.930 6.240 0.80 0.106 2.00

46 Chronic Dem. 0.80 2.750 5.850 0.80 0.094 2.00

47 Chronic Dem. 0.85 2.600 5.540 0.80 0.082 2.00

48 Acute Dem. 0.70 3.140 7.190 0.69 0.118 2.00

49 Acute Dem. 0.75 2.930 7.190 0.60 0.106 2.00
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50 Acute Dem. 0.80 2.750 7.190 0.53 0.094 2.00

51 Acute Dem. 0.85 2.600 7.190 0.47 0.082 2.00

52 Inflamm. 0.65 3.380 7.430 0.75 0.130 1.50

53 Inflamm. 0.65 3.380 7.700 0.70 0.130 1.00

54 Inflamm. 0.65 3.380 7.980 0.65 0.130 0.50

55 Inflamm. 0.65 3.380 8.300 0.60 0.130 0.10

56 Inflamm. 0.65 3.380 8.680 0.55 0.130 0.05

57 Normal 0.65 4.615 9.827 0.80 0.130 2.00

58 Chronic Dem. 0.70 4.280 9.114 0.80 0.118 2.00

59 Chronic Dem. 0.75 4.000 8.517 0.80 0.106 2.00

60 Chronic Dem. 0.80 3.750 7.980 0.80 0.094 2.00

61 Chronic Dem. 0.85 3.530 7.517 0.80 0.082 2.00

62 Acute Dem. 0.70 4.280 9.827 0.69 0.118 2.00

63 Acute Dem. 0.75 4.000 9.827 0.60 0.106 2.00

64 Acute Dem. 0.80 3.750 9.827 0.53 0.094 2.00

65 Acute Dem. 0.85 3.530 9.827 0.47 0.082 2.00

66 Inflamm. 0.65 4.615 10.150 0.75 0.130 1.50

67 Inflamm. 0.65 4.615 10.500 0.70 0.130 1.00

68 Inflamm. 0.65 4.615 10.900 0.65 0.130 0.50

69 Inflamm. 0.65 4.615 11.350 0.60 0.130 0.10

70 Inflamm. 0.65 4.615 11.850 0.55 0.130 0.05
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Appendix B

ADNI-2 participant data

The tables given here contain the measurements taken from the corpus callosum
ROI described in the feasibility study in chapter 3. Table B.1 contains FA, MD,
RD, and AxD values and table B.2 contains volumes of the manually segmented
ROI, the brain mask (‘Total’), and the normalised volume (‘Norm.’). Diffusivities
are of unit 10−3 mm2/s and volumes in mm3.
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B.1 DTI parameters

ID Age Gender Group FA MD RD AxD
003_S_4136 67 M AD 0.62 0.93 0.54 1.79
003_S_4892 75 F AD 0.64 0.88 0.48 1.74
007_S_4911 75 M AD 0.63 0.89 0.5 1.71
007_S_5196 73 F AD 0.56 0.97 0.61 1.71
016_S_4591 66 F AD 0.64 0.85 0.49 1.7
016_S_4887 74 M AD 0.58 0.97 0.6 1.78
016_S_4963 72 F AD 0.59 0.89 0.55 1.69
016_S_5057 76 M AD 0.69 0.85 0.44 1.74
094_S_4089 74 M AD 0.59 0.9 0.55 1.69
094_S_4737 74 F AD 0.49 1.12 0.77 1.83
003_S_4839 66 M HC 0.65 0.8 0.44 1.58
007_S_4387 76 F HC 0.64 0.87 0.49 1.77
007_S_4516 71 M HC 0.61 0.92 0.53 1.74
007_S_4620 77 M HC 0.61 0.92 0.56 1.69
007_S_4637 71 F HC 0.65 0.82 0.45 1.59
016_S_4097 71 F HC 0.65 0.8 0.44 1.55
094_S_4234 70 M HC 0.68 0.85 0.44 1.71
094_S_4460 67 F HC 0.7 0.84 0.43 1.7
094_S_4560 70 F HC 0.7 0.87 0.44 1.77
131_S_0123 80 M HC 0.65 0.9 0.5 1.8
007_S_4272 71 M MCI 0.59 0.88 0.54 1.66
007_S_4611 67 M MCI 0.74 0.83 0.39 1.71
016_S_2031 73 M MCI 0.53 1.07 0.69 1.85
016_S_4584 78 F MCI 0.67 0.88 0.48 1.73
016_S_4601 73 M MCI 0.68 0.84 0.45 1.72
016_S_5007 72 M MCI 0.63 0.95 0.56 1.88
027_S_2336 74 F MCI 0.57 0.96 0.59 1.71
027_S_4729 78 F MCI 0.63 0.91 0.54 1.76
027_S_4869 77 M MCI 0.66 0.85 0.47 1.67
094_S_4434 67 M MCI 0.68 0.79 0.42 1.62
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B.2 Volume

ID Age Gender Group ROI Total Norm.
003_S_4136 67 M AD 3957 2301326.235 1.72E-03
003_S_4892 75 F AD 2902 1607380.632 1.81E-03
007_S_4911 75 M AD 3624 2185074.684 1.66E-03
007_S_5196 73 F AD 3270 2028034.476 1.61E-03
016_S_4591 66 F AD 3240 1486374.435 2.18E-03
016_S_4887 74 M AD 3089 2054737.152 1.50E-03
016_S_4963 72 F AD 3184 1675894.077 1.90E-03
016_S_5057 76 M AD 3351 2180215.089 1.54E-03
094_S_4089 74 M AD 3518 2313550.512 1.52E-03
094_S_4737 74 F AD 3144 1662150.321 1.89E-03
003_S_4839 66 M HC 3180 1546756.614 2.06E-03
007_S_4387 76 F HC 3210 1866828.249 1.72E-03
007_S_4516 71 M HC 3291 1820230.893 1.81E-03
007_S_4620 77 M HC 3341 1886855.256 1.77E-03
007_S_4637 71 F HC 2963 1746611.451 1.70E-03
016_S_4097 71 F HC 3003 1646919.027 1.82E-03
094_S_4234 70 M HC 2887 1948834.485 1.48E-03
094_S_4460 67 F HC 2619 1690066.755 1.55E-03
094_S_4560 70 F HC 2816 1791014.004 1.57E-03
131_S_0123 80 M HC 2619 1760752.188 1.49E-03
007_S_4272 71 M MCI 3180 1902291.885 1.67E-03
007_S_4611 67 M MCI 3159 2131933.986 1.48E-03
016_S_2031 73 M MCI 3018 3491753.616 8.64E-04
016_S_4584 78 F MCI 2947 1862119.233 1.58E-03
016_S_4601 73 M MCI 2958 1941871.347 1.52E-03
016_S_5007 72 M MCI 2947 2203846.866 1.34E-03
027_S_2336 74 F MCI 3205 1672896.186 1.92E-03
027_S_4729 78 F MCI 3200 1755308.529 1.82E-03
027_S_4869 77 M MCI 2705 2083931.226 1.30E-03
094_S_4434 67 M MCI 3295 1933694.451 1.70E-03
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Appendix C

ADNI-3 participant data

The tables given here contain the measurements taken from the corpus callosum
ROI in the studies described in chapters 4 and 5. Table C.1 contains FA, MD,
RD, and AxD measured in the whole corpus callosum ROI. Table C.2 contains
these measurements in the corpus callosum sub-regions. All diffusivities are of unit
10−3 mm2/s. Tables C.3 and C.4 contain estimates of neurite density (ND) and
orientation dispersion index (OD) in the whole corpus callosum and sub-regions.
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C.1 DTI parameters

ID Age Gender Group FA MD RD AxD
002_S_0413 87 F HC 0.64 0.91 0.51 1.79
002_S_1261 82 F HC 0.64 0.91 0.52 1.79
002_S_1280 81 F HC 0.61 0.89 0.51 1.77
002_S_4213 84 F HC 0.56 0.93 0.64 1.78
002_S_6007 78 F HC 0.63 0.89 0.5 1.76
002_S_6009 68 M HC 0.65 0.83 0.46 1.64
002_S_6030 65 F HC 0.7 0.78 0.4 1.63
002_S_6053 66 M HC 0.67 0.87 0.46 1.73
002_S_6066 68 F HC 0.64 0.86 0.5 1.67
002_S_6103 70 F HC 0.56 0.96 0.61 1.74
002_S_6456 86 M HC 0.63 0.93 0.52 1.78
003_S_4288 78 F HC 0.66 0.92 0.5 1.84
003_S_4644 73 F HC 0.67 0.89 0.47 1.84
003_S_6014 67 M HC 0.69 0.82 0.42 1.79
003_S_6067 63 F HC 0.72 0.79 0.38 1.67
003_S_6092 65 F HC 0.64 0.85 0.48 1.6
003_S_6256 66 F HC 0.67 0.8 0.44 1.62
003_S_6257 62 M HC 0.69 0.8 0.41 1.67
003_S_6259 71 M HC 0.67 0.88 0.47 1.8
003_S_6260 69 M HC 0.7 0.79 0.39 1.67
003_S_6307 76 M HC 0.67 0.83 0.46 1.66
011_S_0021 85 F HC 0.63 0.92 0.54 1.75
011_S_4105 77 F HC 0.63 0.91 0.51 1.77
011_S_4278 81 M HC 0.58 1.04 0.63 1.91
011_S_6367 81 F HC 0.63 0.9 0.51 1.72
011_S_6418 67 M HC 0.67 0.85 0.45 1.68
020_S_6185 83 M HC 0.69 0.88 0.46 1.9
020_S_6227 62 F HC 0.67 0.84 0.45 1.67
020_S_6282 76 M HC 0.64 0.9 0.5 1.76
020_S_6449 66 F HC 0.62 0.89 0.51 1.7
020_S_6470 69 M HC 0.68 0.91 0.46 1.88
020_S_6504 69 M HC 0.68 0.82 0.43 1.66
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020_S_6513 66 F HC 0.63 0.92 0.52 1.75
024_S_6005 67 F HC 0.6 0.9 0.53 1.72
024_S_6184 71 F HC 0.67 0.84 0.45 1.73
024_S_6472 68 F HC 0.62 0.84 0.48 1.59
032_S_0677 82 M HC 0.68 0.85 0.44 1.74
032_S_1169 83 F HC 0.65 0.94 0.52 1.78
032_S_4277 78 F HC 0.72 0.84 0.4 1.76
032_S_4429 83 M HC 0.72 0.83 0.39 1.75
032_S_6211 81 M HC 0.68 0.89 0.47 1.77
032_S_6279 89 M HC 0.69 0.9 0.46 1.8
032_S_6293 86 F HC 0.7 0.82 0.41 1.65
032_S_6294 82 M HC 0.69 0.86 0.45 1.8
035_S_0156 86 M HC 0.62 1.01 0.59 1.89
035_S_0555 88 M HC 0.57 0.97 0.6 1.79
035_S_4464 76 M HC 0.63 0.93 0.53 1.8
035_S_6156 76 M HC 0.64 0.88 0.49 1.71
035_S_6160 61 M HC 0.68 0.83 0.45 1.69
037_S_0303 95 M HC 0.61 1.03 0.62 1.89
037_S_0454 93 F HC 0.65 0.91 0.5 1.8
037_S_4028 70 F HC 0.73 0.78 0.36 1.7
037_S_4071 90 M HC 0.58 1.06 0.66 1.89
037_S_4308 80 M HC 0.59 1 0.6 1.88
037_S_4410 74 F HC 0.75 0.79 0.36 1.76
037_S_6031 67 F HC 0.63 0.88 0.49 1.7
037_S_6032 66 F HC 0.66 0.85 0.47 1.72
037_S_6046 76 M HC 0.7 0.85 0.43 1.7
037_S_6115 71 F HC 0.71 0.82 0.41 1.71
037_S_6144 65 F HC 0.63 0.89 0.51 1.74
041_S_4037 82 M HC 0.6 0.91 0.53 1.74
041_S_4200 76 F HC 0.64 0.89 0.51 1.74
041_S_4427 77 M HC 0.72 0.81 0.38 1.78
041_S_6136 61 M HC 0.71 0.79 0.38 1.65
041_S_6159 76 M HC 0.65 0.84 0.47 1.65
041_S_6192 83 F HC 0.68 0.87 0.45 1.82
041_S_6226 66 F HC 0.68 0.82 0.43 1.66
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041_S_6292 77 M HC 0.68 0.9 0.48 1.83
041_S_6314 74 M HC 0.67 0.9 0.48 1.78
068_S_0127 82 M HC 0.58 1.01 0.62 1.85
068_S_0210 84 F HC 0.68 0.84 0.44 1.69
068_S_4340 72 F HC 0.69 0.86 0.44 1.7
068_S_4424 72 F HC 0.73 0.78 0.37 1.68
094_S_4649 71 M HC 0.61 0.87 0.52 1.67
094_S_6250 72 F HC 0.72 0.83 0.4 1.72
094_S_6269 70 F HC 0.69 0.84 0.44 1.72
094_S_6419 76 M HC 0.66 0.85 0.47 1.69
168_S_6049 73 F HC 0.7 0.81 0.41 1.64
168_S_6051 66 F HC 0.7 0.88 0.45 1.85
168_S_6059 65 F HC 0.7 0.83 0.42 1.71
168_S_6062 67 F HC 0.67 0.83 0.45 1.64
168_S_6064 69 F HC 0.69 0.91 0.46 1.88
168_S_6065 71 F HC 0.66 0.84 0.45 1.62
168_S_6085 56 F HC 0.69 0.8 0.41 1.63
168_S_6086 70 F HC 0.67 0.87 0.47 1.75
168_S_6098 63 M HC 0.64 0.88 0.51 1.73
168_S_6107 65 F HC 0.68 0.78 0.41 1.55
168_S_6108 72 M HC 0.66 0.83 0.45 1.66
168_S_6121 69 F HC 0.7 0.87 0.44 1.77
168_S_6128 70 F HC 0.72 0.81 0.39 1.68
168_S_6131 68 F HC 0.69 0.85 0.43 1.73
168_S_6151 65 M HC 0.63 0.86 0.49 1.62
168_S_6233 76 F HC 0.66 0.84 0.46 1.69
168_S_6281 80 F HC 0.6 0.89 0.53 1.65
168_S_6285 67 F HC 0.69 0.78 0.4 1.6
168_S_6318 69 F HC 0.69 0.84 0.43 1.68
168_S_6320 65 F HC 0.64 0.83 0.46 1.68
168_S_6321 73 M HC 0.64 0.94 0.53 1.78
168_S_6492 70 F HC 0.68 0.81 0.43 1.64
941_S_4100 85 F HC 0.6 0.98 0.6 1.8
941_S_4292 77 M HC 0.65 0.82 0.46 1.64
941_S_4365 86 M HC 0.67 0.91 0.49 1.88
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941_S_6044 75 F HC 0.68 0.75 0.39 1.55
941_S_6054 79 F HC 0.66 0.88 0.47 1.74
941_S_6058 68 F HC 0.72 0.77 0.37 1.63
941_S_6080 77 F HC 0.59 0.97 0.59 1.84
941_S_6094 70 F HC 0.72 0.83 0.41 1.74
002_S_1155 68.2 M MCI 0.7 0.85 0.43 1.79
003_S_0908 74 F MCI 0.73 0.83 0.39 1.72
003_S_1074 95.9 F MCI 0.68 0.89 0.47 1.74
003_S_1122 87.2 F MCI 0.71 0.86 0.43 1.83
003_S_6258 79.8 M MCI 0.69 0.87 0.45 1.81
003_S_6268 69.6 M MCI 0.67 0.85 0.45 1.67
003_S_6432 67.3 F MCI 0.76 0.82 0.36 1.76
003_S_6606 73.6 F MCI 0.68 0.9 0.48 1.83
003_S_6678 76 F MCI 0.71 0.89 0.44 1.83
011_S_6618 84.8 M MCI 0.69 0.95 0.49 1.97
012_S_6073 63 M MCI 0.7 0.88 0.44 1.78
024_S_6033 58.4 F MCI 0.73 0.77 0.36 1.69
032_S_6055 75.2 M MCI 0.69 0.82 0.42 1.66
037_S_6083 72.2 M MCI 0.7 0.84 0.42 1.72
037_S_6125 71 F MCI 0.7 0.85 0.43 1.79
037_S_6141 60.2 F MCI 0.67 0.86 0.46 1.73
041_S_0679 74 M MCI 0.74 0.77 0.36 1.63
041_S_1418 91.6 M MCI 0.65 0.94 0.51 1.83
068_S_0802 91.8 F MCI 0.68 0.88 0.46 1.75
168_S_6180 86.8 M MCI 0.74 0.8 0.36 1.69
168_S_6426 79.5 F MCI 0.73 0.8 0.38 1.68
168_S_6467 71.3 F MCI 0.72 0.83 0.4 1.71
168_S_6591 76.7 F MCI 0.59 1.02 0.61 1.84
168_S_6619 71.9 M MCI 0.71 0.86 0.42 1.75
168_S_6634 80.3 F MCI 0.76 0.82 0.36 1.81
941_S_6017 76.7 M MCI 0.7 0.91 0.47 1.83
941_S_6052 88.2 F MCI 0.6 0.99 0.6 1.85
941_S_6068 75.8 M MCI 0.73 0.85 0.4 1.82
003_S_6264 55.3 M AD 0.72 0.82 0.4 1.7
011_S_4827 76.2 M AD 0.66 0.95 0.51 1.83
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011_S_6303 70.4 M AD 0.68 0.88 0.46 1.75
032_S_6600 71.3 F AD 0.73 0.8 0.39 1.67
168_S_6142 86.1 F AD 0.66 0.89 0.49 1.73
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C.2 DTI parameters by region

ID Age Gender Group Region FA MD RD AxD
002_S_0413 87 F HC 1 0.69 0.84 0.44 1.7
002_S_1261 82 F HC 1 0.77 0.82 0.34 1.71
002_S_1280 81 F HC 1 0.65 0.95 0.58 1.78
002_S_4213 84 F HC 1 0.6 0.87 0.54 1.53
002_S_6007 78 F HC 1 0.75 0.82 0.36 1.66
002_S_6009 68 M HC 1 0.79 0.76 0.31 1.64
002_S_6030 65 F HC 1 0.79 0.75 0.29 1.65
002_S_6053 66 M HC 1 0.74 0.79 0.37 1.74
002_S_6066 68 F HC 1 0.72 0.81 0.39 1.66
002_S_6103 70 F HC 1 0.65 0.79 0.45 1.55
002_S_6456 86 M HC 1 0.69 0.84 0.42 1.84
003_S_4288 78 F HC 1 0.75 0.8 0.37 1.72
003_S_4644 73 F HC 1 0.75 0.83 0.38 1.76
003_S_6014 67 M HC 1 0.81 0.8 0.3 1.79
003_S_6067 63 F HC 1 0.83 0.76 0.26 1.7
003_S_6092 65 F HC 1 0.65 0.84 0.46 1.61
003_S_6256 66 F HC 1 0.75 0.77 0.36 1.66
003_S_6257 62 M HC 1 0.75 0.78 0.34 1.69
003_S_6259 71 M HC 1 0.59 0.91 0.54 1.61
003_S_6260 69 M HC 1 0.74 0.78 0.36 1.65
003_S_6307 76 M HC 1 0.65 0.78 0.44 1.51
011_S_0021 85 F HC 1 0.68 0.91 0.58 1.78
011_S_4105 77 F HC 1 0.76 0.78 0.34 1.63
011_S_4278 81 M HC 1 0.57 1.04 0.57 1.95
011_S_6367 81 F HC 1 0.74 0.82 0.37 1.7
011_S_6418 67 M HC 1 0.7 0.83 0.41 1.65
020_S_6185 83 M HC 1 0.75 0.81 0.39 1.79
020_S_6227 62 F HC 1 0.74 0.83 0.37 1.72
020_S_6282 76 M HC 1 0.66 0.9 0.47 1.73
020_S_6449 66 F HC 1 0.69 0.83 0.42 1.64
020_S_6470 69 M HC 1 0.79 0.77 0.31 1.71
020_S_6504 69 M HC 1 0.72 0.84 0.41 1.72
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020_S_6513 66 F HC 1 0.74 0.82 0.39 1.74
024_S_6005 67 F HC 1 0.72 0.82 0.41 1.65
024_S_6184 71 F HC 1 0.7 0.83 0.41 1.84
024_S_6472 68 F HC 1 0.68 0.78 0.39 1.57
032_S_0677 82 M HC 1 0.71 0.85 0.41 1.71
032_S_1169 83 F HC 1 0.64 0.92 0.5 1.75
032_S_4277 78 F HC 1 0.74 0.81 0.37 1.67
032_S_4429 83 M HC 1 0.76 0.81 0.35 1.71
032_S_6211 81 M HC 1 0.73 0.87 0.41 1.79
032_S_6279 89 M HC 1 0.65 0.95 0.52 1.88
032_S_6293 86 F HC 1 0.68 0.84 0.42 1.62
032_S_6294 82 M HC 1 0.76 0.81 0.36 1.81
035_S_0156 86 M HC 1 0.52 1.15 0.79 2.03
035_S_0555 88 M HC 1 0.72 0.81 0.4 1.67
035_S_4464 76 M HC 1 0.61 0.92 0.54 1.72
035_S_6156 76 M HC 1 0.7 0.87 0.47 1.77
035_S_6160 61 M HC 1 0.72 0.83 0.4 1.75
037_S_0303 95 M HC 1 0.59 1.09 0.65 1.9
037_S_0454 93 F HC 1 0.73 0.87 0.41 1.77
037_S_4028 70 F HC 1 0.73 0.74 0.33 1.6
037_S_4071 90 M HC 1 0.59 1.06 0.65 1.91
037_S_4308 80 M HC 1 0.73 0.91 0.42 1.9
037_S_4410 74 F HC 1 0.8 0.76 0.29 1.66
037_S_6031 67 F HC 1 0.72 0.85 0.42 1.74
037_S_6032 66 F HC 1 0.69 0.8 0.42 1.72
037_S_6046 76 M HC 1 0.71 0.8 0.4 1.67
037_S_6115 71 F HC 1 0.78 0.8 0.37 1.75
037_S_6144 65 F HC 1 0.66 0.85 0.45 1.72
041_S_4037 82 M HC 1 0.7 0.86 0.45 1.83
041_S_4200 76 F HC 1 0.68 0.91 0.52 1.8
041_S_4427 77 M HC 1 0.82 0.74 0.26 1.7
041_S_6136 61 M HC 1 0.77 0.74 0.31 1.57
041_S_6159 76 M HC 1 0.69 0.82 0.43 1.66
041_S_6192 83 F HC 1 0.83 0.78 0.29 1.78
041_S_6226 66 F HC 1 0.79 0.77 0.3 1.7
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041_S_6292 77 M HC 1 0.74 0.89 0.4 1.84
041_S_6314 74 M HC 1 0.69 0.88 0.44 1.71
068_S_0127 82 M HC 1 0.6 0.98 0.57 1.85
068_S_0210 84 F HC 1 0.65 0.82 0.47 1.67
068_S_4340 72 F HC 1 0.72 0.84 0.41 1.72
068_S_4424 72 F HC 1 0.77 0.7 0.3 1.5
094_S_4649 71 M HC 1 0.63 0.84 0.5 1.57
094_S_6250 72 F HC 1 0.73 0.74 0.35 1.58
094_S_6269 70 F HC 1 0.69 0.76 0.4 1.57
094_S_6419 76 M HC 1 0.73 0.82 0.39 1.72
168_S_6049 73 F HC 1 0.74 0.74 0.36 1.57
168_S_6051 66 F HC 1 0.77 0.84 0.36 1.79
168_S_6059 65 F HC 1 0.76 0.79 0.33 1.74
168_S_6062 67 F HC 1 0.69 0.8 0.42 1.57
168_S_6064 69 F HC 1 0.76 0.85 0.39 1.8
168_S_6065 71 F HC 1 0.7 0.79 0.42 1.57
168_S_6085 56 F HC 1 0.77 0.76 0.32 1.64
168_S_6086 70 F HC 1 0.73 0.78 0.37 1.62
168_S_6098 63 M HC 1 0.65 0.84 0.47 1.61
168_S_6107 65 F HC 1 0.75 0.75 0.33 1.58
168_S_6108 72 M HC 1 0.7 0.81 0.42 1.65
168_S_6121 69 F HC 1 0.73 0.87 0.4 1.76
168_S_6128 70 F HC 1 0.73 0.81 0.36 1.66
168_S_6131 68 F HC 1 0.67 0.79 0.42 1.65
168_S_6151 65 M HC 1 0.64 0.85 0.46 1.65
168_S_6233 76 F HC 1 0.7 0.87 0.46 1.71
168_S_6281 80 F HC 1 0.71 0.82 0.4 1.7
168_S_6285 67 F HC 1 0.76 0.77 0.33 1.67
168_S_6318 69 F HC 1 0.72 0.8 0.36 1.74
168_S_6320 65 F HC 1 0.7 0.79 0.41 1.65
168_S_6321 73 M HC 1 0.69 0.9 0.49 1.82
168_S_6492 70 F HC 1 0.73 0.8 0.38 1.64
941_S_4100 85 F HC 1 0.58 1.05 0.68 1.96
941_S_4292 77 M HC 1 0.73 0.82 0.39 1.66
941_S_4365 86 M HC 1 0.68 0.84 0.43 1.65

188



941_S_6044 75 F HC 1 0.76 0.75 0.33 1.57
941_S_6054 79 F HC 1 0.74 0.82 0.38 1.69
941_S_6058 68 F HC 1 0.72 0.74 0.37 1.53
941_S_6080 77 F HC 1 0.65 0.91 0.51 1.77
941_S_6094 70 F HC 1 0.75 0.8 0.36 1.69
002_S_0413 87 F HC 2 0.63 0.97 0.52 1.82
002_S_1261 82 F HC 2 0.73 0.91 0.44 1.89
002_S_1280 81 F HC 2 0.61 0.85 0.48 1.7
002_S_4213 84 F HC 2 0.65 0.89 0.49 1.73
002_S_6007 78 F HC 2 0.64 0.8 0.45 1.54
002_S_6009 68 M HC 2 0.73 0.81 0.37 1.66
002_S_6030 65 F HC 2 0.71 0.79 0.38 1.63
002_S_6053 66 M HC 2 0.65 0.8 0.45 1.46
002_S_6066 68 F HC 2 0.68 0.93 0.49 1.84
002_S_6103 70 F HC 2 0.54 0.88 0.59 1.52
002_S_6456 86 M HC 2 0.67 0.97 0.52 1.83
003_S_4288 78 F HC 2 0.62 1.06 0.61 1.91
003_S_4644 73 F HC 2 0.71 0.92 0.45 1.82
003_S_6014 67 M HC 2 0.8 0.79 0.32 1.84
003_S_6067 63 F HC 2 0.73 0.78 0.37 1.64
003_S_6092 65 F HC 2 0.59 0.82 0.51 1.43
003_S_6256 66 F HC 2 0.67 0.9 0.48 1.75
003_S_6257 62 M HC 2 0.66 0.83 0.44 1.7
003_S_6259 71 M HC 2 0.65 0.86 0.45 1.71
003_S_6260 69 M HC 2 0.73 0.86 0.41 1.76
003_S_6307 76 M HC 2 0.59 0.89 0.58 1.51
011_S_0021 85 F HC 2 0.52 1.01 0.69 1.66
011_S_4105 77 F HC 2 0.71 0.8 0.4 1.61
011_S_4278 81 M HC 2 0.55 1.14 0.72 1.98
011_S_6367 81 F HC 2 0.64 0.77 0.42 1.42
011_S_6418 67 M HC 2 0.67 0.93 0.52 1.74
020_S_6185 83 M HC 2 0.72 0.86 0.39 1.84
020_S_6227 62 F HC 2 0.64 0.81 0.45 1.49
020_S_6282 76 M HC 2 0.59 0.84 0.54 1.55
020_S_6449 66 F HC 2 0.61 0.94 0.56 1.7
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020_S_6470 69 M HC 2 0.77 0.85 0.35 1.88
020_S_6504 69 M HC 2 0.72 0.84 0.39 1.75
020_S_6513 66 F HC 2 0.58 0.88 0.54 1.48
024_S_6005 67 F HC 2 0.58 0.83 0.52 1.48
024_S_6184 71 F HC 2 0.73 0.79 0.38 1.66
024_S_6472 68 F HC 2 0.6 0.88 0.51 1.62
032_S_0677 82 M HC 2 0.65 0.8 0.45 1.57
032_S_1169 83 F HC 2 0.6 1.03 0.62 1.83
032_S_4277 78 F HC 2 0.71 0.82 0.4 1.62
032_S_4429 83 M HC 2 0.71 0.87 0.42 1.79
032_S_6211 81 M HC 2 0.67 0.97 0.51 1.87
032_S_6279 89 M HC 2 0.57 1.04 0.67 1.74
032_S_6293 86 F HC 2 0.64 0.83 0.47 1.53
032_S_6294 82 M HC 2 0.67 0.92 0.51 1.8
035_S_0156 86 M HC 2 0.58 1.09 0.7 1.9
035_S_0555 88 M HC 2 0.51 0.96 0.63 1.62
035_S_4464 76 M HC 2 0.63 0.89 0.47 1.65
035_S_6156 76 M HC 2 0.67 0.91 0.48 1.75
035_S_6160 61 M HC 2 0.61 0.88 0.52 1.62
037_S_0303 95 M HC 2 0.55 1.12 0.76 1.81
037_S_0454 93 F HC 2 0.75 0.85 0.39 1.83
037_S_4028 70 F HC 2 0.7 0.79 0.39 1.6
037_S_4071 90 M HC 2 0.48 1.25 0.93 1.99
037_S_4308 80 M HC 2 0.54 1.1 0.74 1.87
037_S_4410 74 F HC 2 0.76 0.84 0.39 1.81
037_S_6031 67 F HC 2 0.67 0.9 0.47 1.85
037_S_6032 66 F HC 2 0.62 0.84 0.47 1.52
037_S_6046 76 M HC 2 0.61 0.97 0.63 1.75
037_S_6115 71 F HC 2 0.61 0.81 0.5 1.55
037_S_6144 65 F HC 2 0.6 0.84 0.52 1.51
041_S_4037 82 M HC 2 0.6 0.99 0.64 1.76
041_S_4200 76 F HC 2 0.55 0.95 0.61 1.64
041_S_4427 77 M HC 2 0.78 0.81 0.33 1.86
041_S_6136 61 M HC 2 0.73 0.76 0.37 1.58
041_S_6159 76 M HC 2 0.63 0.87 0.5 1.61
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041_S_6192 83 F HC 2 0.81 0.83 0.33 1.87
041_S_6226 66 F HC 2 0.75 0.79 0.36 1.68
041_S_6292 77 M HC 2 0.76 0.88 0.38 1.88
041_S_6314 74 M HC 2 0.57 0.99 0.62 1.71
068_S_0127 82 M HC 2 0.53 1.23 0.81 2.03
068_S_0210 84 F HC 2 0.63 0.91 0.51 1.69
068_S_4340 72 F HC 2 0.73 0.88 0.41 1.81
068_S_4424 72 F HC 2 0.73 0.71 0.34 1.48
094_S_4649 71 M HC 2 0.57 0.89 0.56 1.57
094_S_6250 72 F HC 2 0.7 0.76 0.39 1.55
094_S_6269 70 F HC 2 0.65 0.82 0.45 1.53
094_S_6419 76 M HC 2 0.65 0.86 0.47 1.62
168_S_6049 73 F HC 2 0.67 0.79 0.42 1.48
168_S_6051 66 F HC 2 0.67 0.95 0.52 1.89
168_S_6059 65 F HC 2 0.68 0.79 0.42 1.58
168_S_6062 67 F HC 2 0.61 0.81 0.48 1.48
168_S_6064 69 F HC 2 0.75 0.95 0.43 1.98
168_S_6065 71 F HC 2 0.66 0.79 0.42 1.5
168_S_6085 56 F HC 2 0.69 0.78 0.4 1.57
168_S_6086 70 F HC 2 0.77 0.85 0.38 1.8
168_S_6098 63 M HC 2 0.53 0.91 0.6 1.58
168_S_6107 65 F HC 2 0.57 0.77 0.49 1.38
168_S_6108 72 M HC 2 0.61 0.89 0.5 1.59
168_S_6121 69 F HC 2 0.63 0.9 0.54 1.64
168_S_6128 70 F HC 2 0.66 0.82 0.43 1.57
168_S_6131 68 F HC 2 0.64 0.8 0.47 1.51
168_S_6151 65 M HC 2 0.57 0.84 0.55 1.5
168_S_6233 76 F HC 2 0.56 0.84 0.56 1.52
168_S_6281 80 F HC 2 0.55 0.87 0.52 1.5
168_S_6285 67 F HC 2 0.72 0.81 0.39 1.62
168_S_6318 69 F HC 2 0.57 0.84 0.55 1.49
168_S_6320 65 F HC 2 0.55 0.78 0.51 1.37
168_S_6321 73 M HC 2 0.55 0.98 0.65 1.59
168_S_6492 70 F HC 2 0.75 0.78 0.39 1.62
941_S_4100 85 F HC 2 0.54 0.97 0.65 1.67
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941_S_4292 77 M HC 2 0.62 0.88 0.51 1.61
941_S_4365 86 M HC 2 0.71 0.82 0.42 1.74
941_S_6044 75 F HC 2 0.72 0.77 0.38 1.56
941_S_6054 79 F HC 2 0.66 0.88 0.55 1.56
941_S_6058 68 F HC 2 0.7 0.73 0.37 1.49
941_S_6080 77 F HC 2 0.57 1 0.61 1.81
941_S_6094 70 F HC 2 0.73 0.87 0.41 1.84
002_S_0413 87 F HC 3 0.71 0.93 0.51 1.86
002_S_1261 82 F HC 3 0.77 0.88 0.38 1.85
002_S_1280 81 F HC 3 0.69 0.89 0.4 1.93
002_S_4213 84 F HC 3 0.69 0.79 0.4 1.71
002_S_6007 78 F HC 3 0.6 0.91 0.54 1.58
002_S_6009 68 M HC 3 0.6 0.85 0.53 1.55
002_S_6030 65 F HC 3 0.65 1 0.58 1.82
002_S_6053 66 M HC 3 0.53 0.87 0.59 1.46
002_S_6066 68 F HC 3 0.68 0.95 0.54 1.87
002_S_6103 70 F HC 3 0.61 0.85 0.54 1.56
002_S_6456 86 M HC 3 0.7 1.02 0.5 2.03
003_S_4288 78 F HC 3 0.66 0.92 0.48 1.98
003_S_4644 73 F HC 3 0.72 0.86 0.42 1.81
003_S_6014 67 M HC 3 0.83 0.82 0.28 1.9
003_S_6067 63 F HC 3 0.74 0.75 0.34 1.58
003_S_6092 65 F HC 3 0.62 0.79 0.46 1.43
003_S_6256 66 F HC 3 0.52 1.38 0.97 2.22
003_S_6257 62 M HC 3 0.74 0.84 0.39 1.74
003_S_6259 71 M HC 3 0.79 0.94 0.4 2.03
003_S_6260 69 M HC 3 0.77 0.83 0.35 1.79
003_S_6307 76 M HC 3 0.52 0.9 0.66 1.57
011_S_0021 85 F HC 3 0.58 0.94 0.61 1.68
011_S_4105 77 F HC 3 0.76 0.79 0.35 1.67
011_S_4278 81 M HC 3 0.68 0.95 0.45 1.95
011_S_6367 81 F HC 3 0.63 0.78 0.44 1.49
011_S_6418 67 M HC 3 0.69 0.86 0.42 1.75
020_S_6185 83 M HC 3 0.77 0.84 0.36 1.89
020_S_6227 62 F HC 3 0.67 0.8 0.43 1.5
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020_S_6282 76 M HC 3 0.56 0.86 0.56 1.54
020_S_6449 66 F HC 3 0.6 0.92 0.56 1.64
020_S_6470 69 M HC 3 0.78 0.89 0.33 2.08
020_S_6504 69 M HC 3 0.66 0.92 0.5 1.78
020_S_6513 66 F HC 3 0.58 0.87 0.54 1.53
024_S_6005 67 F HC 3 0.63 0.77 0.45 1.54
024_S_6184 71 F HC 3 0.66 0.87 0.46 1.77
024_S_6472 68 F HC 3 0.65 0.89 0.5 1.62
032_S_0677 82 M HC 3 0.68 0.79 0.42 1.54
032_S_1169 83 F HC 3 0.65 0.97 0.57 1.81
032_S_4277 78 F HC 3 0.77 0.79 0.35 1.73
032_S_4429 83 M HC 3 0.77 0.8 0.31 1.79
032_S_6211 81 M HC 3 0.71 0.89 0.44 1.78
032_S_6279 89 M HC 3 0.67 0.85 0.45 1.59
032_S_6293 86 F HC 3 0.55 0.88 0.55 1.52
032_S_6294 82 M HC 3 0.64 0.94 0.53 1.81
035_S_0156 86 M HC 3 0.7 1 0.51 1.98
035_S_0555 88 M HC 3 0.61 0.94 0.56 1.7
035_S_4464 76 M HC 3 0.62 0.85 0.5 1.58
035_S_6156 76 M HC 3 0.71 0.89 0.44 1.75
035_S_6160 61 M HC 3 0.72 0.82 0.41 1.66
037_S_0303 95 M HC 3 0.52 0.97 0.62 1.68
037_S_0454 93 F HC 3 0.71 0.87 0.44 1.78
037_S_4028 70 F HC 3 0.78 0.82 0.34 1.79
037_S_4071 90 M HC 3 0.55 1.13 0.73 1.89
037_S_4308 80 M HC 3 0.56 1.16 0.77 1.93
037_S_4410 74 F HC 3 0.82 0.82 0.29 1.91
037_S_6031 67 F HC 3 0.76 0.87 0.38 1.89
037_S_6032 66 F HC 3 0.7 0.84 0.42 1.64
037_S_6046 76 M HC 3 0.65 0.84 0.45 1.6
037_S_6115 71 F HC 3 0.64 0.81 0.49 1.57
037_S_6144 65 F HC 3 0.59 0.83 0.52 1.47
041_S_4037 82 M HC 3 0.46 1.12 0.82 1.67
041_S_4200 76 F HC 3 0.54 0.91 0.63 1.48
041_S_4427 77 M HC 3 0.75 0.81 0.35 1.91
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041_S_6136 61 M HC 3 0.73 0.73 0.35 1.49
041_S_6159 76 M HC 3 0.73 0.83 0.38 1.7
041_S_6192 83 F HC 3 0.81 0.84 0.31 1.91
041_S_6226 66 F HC 3 0.75 0.79 0.35 1.66
041_S_6292 77 M HC 3 0.8 0.84 0.33 1.95
041_S_6314 74 M HC 3 0.69 0.87 0.44 1.7
068_S_0127 82 M HC 3 0.54 1.15 0.76 2
068_S_0210 84 F HC 3 0.59 0.82 0.48 1.54
068_S_4340 72 F HC 3 0.75 0.81 0.38 1.71
068_S_4424 72 F HC 3 0.72 0.73 0.35 1.5
094_S_4649 71 M HC 3 0.65 0.92 0.52 1.66
094_S_6250 72 F HC 3 0.73 0.72 0.35 1.47
094_S_6269 70 F HC 3 0.71 0.83 0.43 1.7
094_S_6419 76 M HC 3 0.56 0.84 0.53 1.51
168_S_6049 73 F HC 3 0.65 0.92 0.52 1.7
168_S_6051 66 F HC 3 0.75 0.82 0.36 1.85
168_S_6059 65 F HC 3 0.71 0.79 0.39 1.62
168_S_6062 67 F HC 3 0.6 0.89 0.56 1.55
168_S_6064 69 F HC 3 0.77 0.92 0.41 2.05
168_S_6065 71 F HC 3 0.66 0.8 0.42 1.53
168_S_6085 56 F HC 3 0.7 0.76 0.4 1.48
168_S_6086 70 F HC 3 0.78 0.86 0.36 1.83
168_S_6098 63 M HC 3 0.65 0.87 0.49 1.65
168_S_6107 65 F HC 3 0.65 0.79 0.45 1.52
168_S_6108 72 M HC 3 0.64 0.8 0.46 1.49
168_S_6121 69 F HC 3 0.59 0.95 0.59 1.68
168_S_6128 70 F HC 3 0.72 0.74 0.36 1.49
168_S_6131 68 F HC 3 0.65 0.8 0.45 1.51
168_S_6151 65 M HC 3 0.53 0.83 0.55 1.41
168_S_6233 76 F HC 3 0.64 0.86 0.5 1.67
168_S_6281 80 F HC 3 0.53 0.83 0.56 1.33
168_S_6285 67 F HC 3 0.71 0.74 0.36 1.49
168_S_6318 69 F HC 3 0.55 0.86 0.61 1.47
168_S_6320 65 F HC 3 0.61 0.79 0.49 1.39
168_S_6321 73 M HC 3 0.58 0.86 0.61 1.44
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168_S_6492 70 F HC 3 0.77 0.76 0.35 1.58
941_S_4100 85 F HC 3 0.51 1.16 0.82 1.8
941_S_4292 77 M HC 3 0.62 0.8 0.45 1.51
941_S_4365 86 M HC 3 0.75 0.87 0.37 1.93
941_S_6044 75 F HC 3 0.71 0.79 0.4 1.54
941_S_6054 79 F HC 3 0.73 0.84 0.44 1.73
941_S_6058 68 F HC 3 0.72 0.76 0.36 1.59
941_S_6080 77 F HC 3 0.63 1.22 0.78 2.1
941_S_6094 70 F HC 3 0.79 0.82 0.33 1.81
002_S_0413 87 F HC 4 0.65 1.06 0.63 1.98
002_S_1261 82 F HC 4 0.67 0.93 0.52 1.94
002_S_1280 81 F HC 4 0.71 1 0.5 2.01
002_S_4213 84 F HC 4 0.72 0.86 0.36 1.87
002_S_6007 78 F HC 4 0.53 0.92 0.62 1.57
002_S_6009 68 M HC 4 0.52 0.85 0.55 1.45
002_S_6030 65 F HC 4 0.59 1.04 0.64 1.77
002_S_6053 66 M HC 4 0.55 0.9 0.62 1.42
002_S_6066 68 F HC 4 0.65 0.92 0.53 1.71
002_S_6103 70 F HC 4 0.57 1.03 0.68 1.74
002_S_6456 86 M HC 4 0.6 1.11 0.63 2.07
003_S_4288 78 F HC 4 0.68 0.89 0.43 1.87
003_S_4644 73 F HC 4 0.68 0.96 0.51 1.96
003_S_6014 67 M HC 4 0.79 0.82 0.31 1.93
003_S_6067 63 F HC 4 0.68 0.85 0.45 1.59
003_S_6092 65 F HC 4 0.61 0.86 0.51 1.54
003_S_6256 66 F HC 4 0.55 0.96 0.59 1.91
003_S_6257 62 M HC 4 0.65 1.01 0.57 1.78
003_S_6259 71 M HC 4 0.65 1.13 0.69 2.03
003_S_6260 69 M HC 4 0.66 0.99 0.52 1.94
003_S_6307 76 M HC 4 0.46 1.19 0.9 1.75
011_S_0021 85 F HC 4 0.44 1.22 0.96 1.75
011_S_4105 77 F HC 4 0.68 0.87 0.45 1.74
011_S_4278 81 M HC 4 0.47 1.27 0.93 2.14
011_S_6367 81 F HC 4 0.66 0.89 0.47 1.73
011_S_6418 67 M HC 4 0.72 0.9 0.45 1.79
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020_S_6185 83 M HC 4 0.68 1.04 0.52 2.1
020_S_6227 62 F HC 4 0.67 0.81 0.42 1.61
020_S_6282 76 M HC 4 0.55 1.06 0.73 1.68
020_S_6449 66 F HC 4 0.55 1.1 0.73 1.8
020_S_6470 69 M HC 4 0.66 1.1 0.58 2.15
020_S_6504 69 M HC 4 0.57 1.08 0.66 1.93
020_S_6513 66 F HC 4 0.49 0.94 0.65 1.53
024_S_6005 67 F HC 4 0.53 0.94 0.63 1.55
024_S_6184 71 F HC 4 0.57 1.18 0.8 2.06
024_S_6472 68 F HC 4 0.63 0.9 0.51 1.67
032_S_0677 82 M HC 4 0.47 0.89 0.63 1.41
032_S_1169 83 F HC 4 0.61 1.04 0.63 1.83
032_S_4277 78 F HC 4 0.8 0.83 0.35 1.95
032_S_4429 83 M HC 4 0.72 0.9 0.44 1.85
032_S_6211 81 M HC 4 0.71 0.9 0.46 1.79
032_S_6279 89 M HC 4 0.63 0.95 0.58 1.72
032_S_6293 86 F HC 4 0.48 0.85 0.6 1.47
032_S_6294 82 M HC 4 0.55 1 0.67 1.75
035_S_0156 86 M HC 4 0.56 1.32 0.87 2.12
035_S_0555 88 M HC 4 0.57 1.08 0.68 1.85
035_S_4464 76 M HC 4 0.59 0.83 0.51 1.56
035_S_6156 76 M HC 4 0.67 0.89 0.48 1.8
035_S_6160 61 M HC 4 0.7 0.78 0.39 1.67
037_S_0303 95 M HC 4 0.43 1.07 0.82 1.6
037_S_0454 93 F HC 4 0.72 0.86 0.44 1.73
037_S_4028 70 F HC 4 0.8 0.83 0.32 1.84
037_S_4071 90 M HC 4 0.4 1.19 0.88 1.81
037_S_4308 80 M HC 4 0.45 1.2 0.88 1.84
037_S_4410 74 F HC 4 0.81 0.8 0.35 1.89
037_S_6031 67 F HC 4 0.74 0.92 0.41 1.95
037_S_6032 66 F HC 4 0.77 0.78 0.33 1.65
037_S_6046 76 M HC 4 0.56 0.96 0.65 1.56
037_S_6115 71 F HC 4 0.61 0.87 0.56 1.59
037_S_6144 65 F HC 4 0.56 0.98 0.66 1.7
041_S_4037 82 M HC 4 0.38 1.09 0.86 1.53
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041_S_4200 76 F HC 4 0.44 1.04 0.74 1.69
041_S_4427 77 M HC 4 0.54 1.15 0.8 1.96
041_S_6136 61 M HC 4 0.73 0.78 0.38 1.55
041_S_6159 76 M HC 4 0.62 0.98 0.59 1.77
041_S_6192 83 F HC 4 0.71 0.95 0.5 1.95
041_S_6226 66 F HC 4 0.78 0.75 0.31 1.58
041_S_6292 77 M HC 4 0.81 0.88 0.33 1.98
041_S_6314 74 M HC 4 0.6 1.05 0.68 1.8
068_S_0127 82 M HC 4 0.41 1.24 0.94 1.91
068_S_0210 84 F HC 4 0.53 0.94 0.64 1.67
068_S_4340 72 F HC 4 0.64 0.91 0.53 1.73
068_S_4424 72 F HC 4 0.61 0.84 0.5 1.56
094_S_4649 71 M HC 4 0.52 1.02 0.68 1.7
094_S_6250 72 F HC 4 0.73 0.79 0.38 1.62
094_S_6269 70 F HC 4 0.65 0.94 0.53 1.78
094_S_6419 76 M HC 4 0.4 0.99 0.77 1.43
168_S_6049 73 F HC 4 0.61 0.97 0.61 1.71
168_S_6051 66 F HC 4 0.74 0.93 0.49 1.97
168_S_6059 65 F HC 4 0.52 1.2 0.88 1.94
168_S_6062 67 F HC 4 0.41 0.97 0.73 1.44
168_S_6064 69 F HC 4 0.72 0.94 0.48 1.98
168_S_6065 71 F HC 4 0.68 0.82 0.43 1.59
168_S_6085 56 F HC 4 0.59 0.8 0.5 1.39
168_S_6086 70 F HC 4 0.75 0.93 0.42 1.92
168_S_6098 63 M HC 4 0.68 0.86 0.47 1.66
168_S_6107 65 F HC 4 0.67 0.79 0.44 1.5
168_S_6108 72 M HC 4 0.59 0.95 0.59 1.63
168_S_6121 69 F HC 4 0.59 0.98 0.59 1.76
168_S_6128 70 F HC 4 0.66 0.79 0.43 1.52
168_S_6131 68 F HC 4 0.61 0.88 0.53 1.65
168_S_6151 65 M HC 4 0.49 0.93 0.63 1.46
168_S_6233 76 F HC 4 0.65 0.91 0.52 1.7
168_S_6281 80 F HC 4 0.27 1.17 1.02 1.49
168_S_6285 67 F HC 4 0.69 0.83 0.45 1.61
168_S_6318 69 F HC 4 0.44 0.98 0.75 1.49
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168_S_6320 65 F HC 4 0.5 0.95 0.67 1.49
168_S_6321 73 M HC 4 0.42 1.07 0.74 1.54
168_S_6492 70 F HC 4 0.7 0.92 0.57 1.66
941_S_4100 85 F HC 4 0.45 1.13 0.84 1.7
941_S_4292 77 M HC 4 0.52 0.83 0.53 1.48
941_S_4365 86 M HC 4 0.79 0.91 0.37 1.98
941_S_6044 75 F HC 4 0.58 0.95 0.62 1.61
941_S_6054 79 F HC 4 0.66 1.07 0.72 1.81
941_S_6058 68 F HC 4 0.71 0.82 0.4 1.62
941_S_6080 77 F HC 4 0.58 1.01 0.63 1.77
941_S_6094 70 F HC 4 0.81 0.8 0.31 1.89
002_S_0413 87 F HC 5 0.79 0.76 0.32 1.7
002_S_1261 82 F HC 5 0.75 0.78 0.36 1.68
002_S_1280 81 F HC 5 0.8 0.74 0.29 1.63
002_S_4213 84 F HC 5 0.68 0.84 0.43 1.75
002_S_6007 78 F HC 5 0.8 0.74 0.28 1.67
002_S_6009 68 M HC 5 0.77 0.75 0.34 1.62
002_S_6030 65 F HC 5 0.78 0.75 0.31 1.67
002_S_6053 66 M HC 5 0.79 0.78 0.32 1.75
002_S_6066 68 F HC 5 0.74 0.78 0.36 1.68
002_S_6103 70 F HC 5 0.79 0.83 0.35 1.8
002_S_6456 86 M HC 5 0.72 0.81 0.4 1.73
003_S_4288 78 F HC 5 0.76 0.83 0.36 1.79
003_S_4644 73 F HC 5 0.8 0.84 0.33 1.82
003_S_6014 67 M HC 5 0.85 0.69 0.22 1.66
003_S_6067 63 F HC 5 0.78 0.72 0.3 1.56
003_S_6092 65 F HC 5 0.7 0.86 0.43 1.68
003_S_6256 66 F HC 5 0.77 0.7 0.29 1.53
003_S_6257 62 M HC 5 0.72 0.77 0.37 1.7
003_S_6259 71 M HC 5 0.78 0.75 0.29 1.69
003_S_6260 69 M HC 5 0.74 0.71 0.31 1.42
003_S_6307 76 M HC 5 0.77 0.78 0.33 1.7
011_S_0021 85 F HC 5 0.71 0.81 0.39 1.67
011_S_4105 77 F HC 5 0.78 0.75 0.33 1.69
011_S_4278 81 M HC 5 0.73 0.91 0.42 1.81
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011_S_6367 81 F HC 5 0.71 0.78 0.38 1.68
011_S_6418 67 M HC 5 0.71 0.79 0.4 1.56
020_S_6185 83 M HC 5 0.83 0.81 0.27 1.84
020_S_6227 62 F HC 5 0.76 0.81 0.36 1.7
020_S_6282 76 M HC 5 0.67 0.83 0.46 1.59
020_S_6449 66 F HC 5 0.69 0.81 0.4 1.65
020_S_6470 69 M HC 5 0.78 0.8 0.33 1.78
020_S_6504 69 M HC 5 0.73 0.75 0.37 1.59
020_S_6513 66 F HC 5 0.73 0.8 0.37 1.7
024_S_6005 67 F HC 5 0.79 0.83 0.34 1.75
024_S_6184 71 F HC 5 0.7 0.84 0.42 1.71
024_S_6472 68 F HC 5 0.77 0.73 0.32 1.68
032_S_0677 82 M HC 5 0.66 0.79 0.43 1.6
032_S_1169 83 F HC 5 0.73 0.78 0.37 1.67
032_S_4277 78 F HC 5 0.81 0.79 0.29 1.72
032_S_4429 83 M HC 5 0.81 0.77 0.29 1.77
032_S_6211 81 M HC 5 0.72 0.83 0.4 1.72
032_S_6279 89 M HC 5 0.79 0.82 0.32 1.82
032_S_6293 86 F HC 5 0.73 0.76 0.36 1.53
032_S_6294 82 M HC 5 0.72 0.76 0.37 1.56
035_S_0156 86 M HC 5 0.72 0.93 0.47 1.76
035_S_0555 88 M HC 5 0.67 0.96 0.53 1.69
035_S_4464 76 M HC 5 0.74 0.85 0.38 1.82
035_S_6156 76 M HC 5 0.69 0.84 0.44 1.67
035_S_6160 61 M HC 5 0.75 0.77 0.35 1.65
037_S_0303 95 M HC 5 0.67 0.98 0.55 1.9
037_S_0454 93 F HC 5 0.78 0.83 0.34 1.83
037_S_4028 70 F HC 5 0.79 0.71 0.3 1.57
037_S_4071 90 M HC 5 0.67 0.94 0.51 1.72
037_S_4308 80 M HC 5 0.74 0.89 0.4 1.89
037_S_4410 74 F HC 5 0.85 0.77 0.24 1.8
037_S_6031 67 F HC 5 0.72 0.77 0.37 1.6
037_S_6032 66 F HC 5 0.8 0.79 0.3 1.76
037_S_6046 76 M HC 5 0.77 0.74 0.32 1.62
037_S_6115 71 F HC 5 0.78 0.76 0.31 1.63
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037_S_6144 65 F HC 5 0.73 0.82 0.36 1.79
041_S_4037 82 M HC 5 0.66 0.83 0.45 1.59
041_S_4200 76 F HC 5 0.75 0.81 0.34 1.69
041_S_4427 77 M HC 5 0.78 0.77 0.32 1.63
041_S_6136 61 M HC 5 0.87 0.79 0.23 1.9
041_S_6159 76 M HC 5 0.71 0.79 0.41 1.58
041_S_6192 83 F HC 5 0.78 0.74 0.32 1.6
041_S_6226 66 F HC 5 0.81 0.75 0.28 1.71
041_S_6292 77 M HC 5 0.79 0.77 0.3 1.75
041_S_6314 74 M HC 5 0.7 0.86 0.44 1.77
068_S_0127 82 M HC 5 0.66 0.9 0.45 1.8
068_S_0210 84 F HC 5 0.8 0.81 0.3 1.77
068_S_4340 72 F HC 5 0.68 0.82 0.44 1.58
068_S_4424 72 F HC 5 0.81 0.76 0.28 1.78
094_S_4649 71 M HC 5 0.65 0.81 0.44 1.54
094_S_6250 72 F HC 5 0.84 0.8 0.27 1.85
094_S_6269 70 F HC 5 0.74 0.71 0.34 1.48
094_S_6419 76 M HC 5 0.7 0.78 0.4 1.56
168_S_6049 73 F HC 5 0.78 0.81 0.33 1.83
168_S_6051 66 F HC 5 0.82 0.78 0.29 1.78
168_S_6059 65 F HC 5 0.76 0.74 0.32 1.56
168_S_6062 67 F HC 5 0.7 0.76 0.39 1.51
168_S_6064 69 F HC 5 0.83 0.76 0.28 1.76
168_S_6065 71 F HC 5 0.72 0.77 0.37 1.59
168_S_6085 56 F HC 5 0.82 0.75 0.28 1.68
168_S_6086 70 F HC 5 0.74 0.74 0.34 1.55
168_S_6098 63 M HC 5 0.74 0.83 0.39 1.73
168_S_6107 65 F HC 5 0.81 0.72 0.27 1.6
168_S_6108 72 M HC 5 0.78 0.77 0.31 1.7
168_S_6121 69 F HC 5 0.79 0.85 0.34 1.89
168_S_6128 70 F HC 5 0.77 0.77 0.34 1.67
168_S_6131 68 F HC 5 0.77 0.79 0.33 1.76
168_S_6151 65 M HC 5 0.7 0.81 0.41 1.61
168_S_6233 76 F HC 5 0.74 0.8 0.37 1.67
168_S_6281 80 F HC 5 0.69 0.83 0.41 1.65
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168_S_6285 67 F HC 5 0.71 0.75 0.37 1.53
168_S_6318 69 F HC 5 0.74 0.71 0.33 1.48
168_S_6320 65 F HC 5 0.72 0.83 0.46 1.71
168_S_6321 73 M HC 5 0.77 0.78 0.33 1.67
168_S_6492 70 F HC 5 0.78 0.77 0.32 1.68
941_S_4100 85 F HC 5 0.74 0.9 0.41 1.79
941_S_4292 77 M HC 5 0.7 0.76 0.38 1.51
941_S_4365 86 M HC 5 0.82 0.76 0.26 1.73
941_S_6044 75 F HC 5 0.73 0.73 0.34 1.51
941_S_6054 79 F HC 5 0.75 0.78 0.37 1.63
941_S_6058 68 F HC 5 0.77 0.76 0.34 1.64
941_S_6080 77 F HC 5 0.72 0.83 0.38 1.68
941_S_6094 70 F HC 5 0.83 0.77 0.27 1.74
002_S_1155 68 M MCI 1 0.71 0.87 0.44 1.82
003_S_0908 74 F MCI 1 0.75 0.82 0.36 1.7
003_S_1074 96 F MCI 1 0.68 0.89 0.48 1.75
003_S_1122 87 F MCI 1 0.75 0.82 0.37 1.72
003_S_6258 80 M MCI 1 0.75 0.83 0.4 1.75
003_S_6268 70 M MCI 1 0.69 0.84 0.44 1.69
003_S_6432 67 F MCI 1 0.74 0.89 0.41 1.8
003_S_6606 74 F MCI 1 0.72 0.86 0.39 1.86
003_S_6678 76 F MCI 1 0.76 0.8 0.37 1.76
011_S_6618 85 M MCI 1 0.75 0.91 0.43 1.85
012_S_6073 63 M MCI 1 0.7 0.87 0.46 1.76
024_S_6033 58 F MCI 1 0.76 0.71 0.32 1.54
032_S_6055 75 M MCI 1 0.67 0.82 0.46 1.61
037_S_6083 72 M MCI 1 0.73 0.86 0.4 1.73
037_S_6125 71 F MCI 1 0.8 0.83 0.35 1.77
037_S_6141 60 F MCI 1 0.7 0.83 0.41 1.7
041_S_0679 74 M MCI 1 0.74 0.74 0.35 1.57
041_S_1418 92 M MCI 1 0.66 0.98 0.54 1.85
068_S_0802 92 F MCI 1 0.67 0.86 0.48 1.71
168_S_6180 87 M MCI 1 0.75 0.81 0.37 1.68
168_S_6426 80 F MCI 1 0.67 0.76 0.41 1.45
168_S_6467 71 F MCI 1 0.71 0.79 0.39 1.61
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168_S_6591 77 F MCI 1 0.57 1.03 0.64 1.89
168_S_6619 72 M MCI 1 0.66 0.83 0.45 1.61
168_S_6634 80 F MCI 1 0.7 0.84 0.44 1.82
941_S_6017 77 M MCI 1 0.73 0.92 0.47 1.88
941_S_6052 88 F MCI 1 0.6 0.98 0.56 1.73
941_S_6068 76 M MCI 1 0.72 0.83 0.4 1.72
002_S_1155 68 M MCI 2 0.69 0.91 0.46 1.88
003_S_0908 74 F MCI 2 0.67 0.88 0.49 1.7
003_S_1074 96 F MCI 2 0.63 0.91 0.54 1.65
003_S_1122 87 F MCI 2 0.77 0.82 0.35 1.84
003_S_6258 80 M MCI 2 0.62 0.99 0.56 1.87
003_S_6268 70 M MCI 2 0.62 0.89 0.53 1.62
003_S_6432 67 F MCI 2 0.63 1.01 0.59 1.86
003_S_6606 74 F MCI 2 0.64 0.99 0.55 1.87
003_S_6678 76 F MCI 2 0.74 0.92 0.43 1.97
011_S_6618 85 M MCI 2 0.66 1.15 0.6 2.16
012_S_6073 63 M MCI 2 0.65 1.01 0.56 1.88
024_S_6033 58 F MCI 2 0.79 0.78 0.32 1.78
032_S_6055 75 M MCI 2 0.57 0.79 0.5 1.43
037_S_6083 72 M MCI 2 0.66 0.92 0.5 1.73
037_S_6125 71 F MCI 2 0.69 0.91 0.52 1.8
037_S_6141 60 F MCI 2 0.6 0.83 0.51 1.48
041_S_0679 74 M MCI 2 0.65 0.78 0.42 1.49
041_S_1418 92 M MCI 2 0.51 1.2 0.83 1.86
068_S_0802 92 F MCI 2 0.59 0.95 0.62 1.65
168_S_6180 87 M MCI 2 0.72 0.9 0.44 1.85
168_S_6426 80 F MCI 2 0.64 0.87 0.49 1.55
168_S_6467 71 F MCI 2 0.68 0.82 0.42 1.6
168_S_6591 77 F MCI 2 0.45 1.39 1.04 2.1
168_S_6619 72 M MCI 2 0.61 0.92 0.54 1.67
168_S_6634 80 F MCI 2 0.62 0.87 0.56 1.63
941_S_6017 77 M MCI 2 0.66 0.98 0.54 1.85
941_S_6052 88 F MCI 2 0.49 1.27 0.92 1.93
941_S_6068 76 M MCI 2 0.74 0.85 0.4 1.86
002_S_1155 68 M MCI 3 0.71 0.91 0.43 1.9
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003_S_0908 74 F MCI 3 0.68 0.87 0.48 1.69
003_S_1074 96 F MCI 3 0.59 0.93 0.58 1.62
003_S_1122 87 F MCI 3 0.84 0.77 0.27 1.83
003_S_6258 80 M MCI 3 0.66 0.88 0.46 1.92
003_S_6268 70 M MCI 3 0.54 0.88 0.56 1.54
003_S_6432 67 F MCI 3 0.74 0.89 0.42 1.88
003_S_6606 74 F MCI 3 0.67 1.02 0.52 2.02
003_S_6678 76 F MCI 3 0.72 1.03 0.51 2.07
011_S_6618 85 M MCI 3 0.7 1.03 0.48 2.06
012_S_6073 63 M MCI 3 0.67 0.96 0.53 1.85
024_S_6033 58 F MCI 3 0.8 0.82 0.31 1.91
032_S_6055 75 M MCI 3 0.63 0.74 0.42 1.39
037_S_6083 72 M MCI 3 0.8 0.84 0.34 1.81
037_S_6125 71 F MCI 3 0.72 1.19 0.82 1.95
037_S_6141 60 F MCI 3 0.62 0.82 0.49 1.56
041_S_0679 74 M MCI 3 0.71 0.8 0.41 1.56
041_S_1418 92 M MCI 3 0.52 1.05 0.73 1.72
068_S_0802 92 F MCI 3 0.7 0.82 0.41 1.64
168_S_6180 87 M MCI 3 0.79 0.86 0.37 1.83
168_S_6426 80 F MCI 3 0.71 0.84 0.43 1.66
168_S_6467 71 F MCI 3 0.68 0.81 0.42 1.55
168_S_6591 77 F MCI 3 0.5 1.01 0.69 1.66
168_S_6619 72 M MCI 3 0.65 0.99 0.57 1.73
168_S_6634 80 F MCI 3 0.7 0.82 0.41 1.7
941_S_6017 77 M MCI 3 0.67 0.92 0.5 1.82
941_S_6052 88 F MCI 3 0.57 1.1 0.71 1.93
941_S_6068 76 M MCI 3 0.77 0.84 0.35 1.89
002_S_1155 68 M MCI 4 0.76 0.89 0.4 1.92
003_S_0908 74 F MCI 4 0.72 0.8 0.39 1.68
003_S_1074 96 F MCI 4 0.52 1.11 0.79 1.81
003_S_1122 87 F MCI 4 0.74 0.98 0.47 1.9
003_S_6258 80 M MCI 4 0.71 0.83 0.4 1.81
003_S_6268 70 M MCI 4 0.53 0.86 0.57 1.45
003_S_6432 67 F MCI 4 0.62 1.13 0.66 2.08
003_S_6606 74 F MCI 4 0.55 1.24 0.8 2.13
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003_S_6678 76 F MCI 4 0.54 1.23 0.85 1.99
011_S_6618 85 M MCI 4 0.52 1.18 0.77 1.93
012_S_6073 63 M MCI 4 0.66 1.01 0.57 1.88
024_S_6033 58 F MCI 4 0.78 0.77 0.35 1.85
032_S_6055 75 M MCI 4 0.52 0.86 0.57 1.43
037_S_6083 72 M MCI 4 0.64 1.03 0.63 1.92
037_S_6125 71 F MCI 4 0.58 1.29 0.96 1.95
037_S_6141 60 F MCI 4 0.63 0.88 0.51 1.59
041_S_0679 74 M MCI 4 0.68 0.79 0.42 1.55
041_S_1418 92 M MCI 4 0.64 0.86 0.48 1.63
068_S_0802 92 F MCI 4 0.67 0.93 0.52 1.81
168_S_6180 87 M MCI 4 0.76 0.79 0.37 1.67
168_S_6426 80 F MCI 4 0.71 0.91 0.45 1.82
168_S_6467 71 F MCI 4 0.66 0.88 0.5 1.65
168_S_6591 77 F MCI 4 0.52 1.05 0.73 1.69
168_S_6619 72 M MCI 4 0.62 0.92 0.54 1.64
168_S_6634 80 F MCI 4 0.72 0.82 0.4 1.72
941_S_6017 77 M MCI 4 0.71 0.87 0.44 1.74
941_S_6052 88 F MCI 4 0.49 1.21 0.77 2.15
941_S_6068 76 M MCI 4 0.74 0.84 0.39 1.89
002_S_1155 68 M MCI 5 0.78 0.8 0.34 1.79
003_S_0908 74 F MCI 5 0.74 0.85 0.4 1.72
003_S_1074 96 F MCI 5 0.72 0.78 0.39 1.58
003_S_1122 87 F MCI 5 0.81 0.76 0.29 1.73
003_S_6258 80 M MCI 5 0.76 0.77 0.34 1.67
003_S_6268 70 M MCI 5 0.67 0.82 0.43 1.58
003_S_6432 67 F MCI 5 0.81 0.77 0.29 1.7
003_S_6606 74 F MCI 5 0.73 0.8 0.37 1.71
003_S_6678 76 F MCI 5 0.76 0.83 0.37 1.77
011_S_6618 85 M MCI 5 0.72 0.86 0.43 1.73
012_S_6073 63 M MCI 5 0.75 0.83 0.39 1.74
024_S_6033 58 F MCI 5 0.74 0.69 0.33 1.46
032_S_6055 75 M MCI 5 0.75 0.82 0.36 1.73
037_S_6083 72 M MCI 5 0.7 0.78 0.41 1.54
037_S_6125 71 F MCI 5 0.81 0.81 0.45 1.78
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037_S_6141 60 F MCI 5 0.76 0.82 0.37 1.72
041_S_0679 74 M MCI 5 0.77 0.75 0.32 1.66
041_S_1418 92 M MCI 5 0.75 0.84 0.38 1.78
068_S_0802 92 F MCI 5 0.71 0.89 0.47 1.75
168_S_6180 87 M MCI 5 0.75 0.75 0.35 1.55
168_S_6426 80 F MCI 5 0.8 0.77 0.29 1.75
168_S_6467 71 F MCI 5 0.82 0.78 0.28 1.76
168_S_6591 77 F MCI 5 0.67 0.88 0.46 1.73
168_S_6619 72 M MCI 5 0.71 0.85 0.45 1.65
168_S_6634 80 F MCI 5 0.85 0.78 0.24 1.78
941_S_6017 77 M MCI 5 0.75 0.85 0.4 1.8
941_S_6052 88 F MCI 5 0.73 0.85 0.42 1.81
941_S_6068 76 M MCI 5 0.71 0.74 0.37 1.5
003_S_6264 55 M AD 1 0.71 0.81 0.42 1.7
011_S_4827 76 M AD 1 0.65 0.91 0.52 1.8
011_S_6303 70 M AD 1 0.72 0.9 0.44 1.85
032_S_6600 71 F AD 1 0.72 0.81 0.4 1.65
168_S_6142 86 F AD 1 0.67 0.87 0.47 1.71
003_S_6264 55 M AD 2 0.58 0.9 0.58 1.59
011_S_4827 76 M AD 2 0.55 0.98 0.64 1.78
011_S_6303 70 M AD 2 0.59 1.07 0.67 1.91
032_S_6600 71 F AD 2 0.72 0.89 0.44 1.81
168_S_6142 86 F AD 2 0.57 0.94 0.59 1.61
003_S_6264 55 M AD 3 0.64 0.82 0.47 1.51
011_S_4827 76 M AD 3 0.54 0.95 0.61 1.53
011_S_6303 70 M AD 3 0.64 0.94 0.54 1.74
032_S_6600 71 F AD 3 0.72 0.86 0.42 1.72
168_S_6142 86 F AD 3 0.57 0.88 0.58 1.58
003_S_6264 55 M AD 4 0.6 0.77 0.47 1.38
011_S_4827 76 M AD 4 0.42 0.98 0.76 1.56
011_S_6303 70 M AD 4 0.63 0.92 0.55 1.63
032_S_6600 71 F AD 4 0.56 0.91 0.58 1.56
168_S_6142 86 F AD 4 0.48 1.05 0.74 1.72
003_S_6264 55 M AD 5 0.74 0.77 0.36 1.57
011_S_4827 76 M AD 5 0.71 0.92 0.47 1.79
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011_S_6303 70 M AD 5 0.7 0.85 0.45 1.69
032_S_6600 71 F AD 5 0.8 0.75 0.31 1.69
168_S_6142 86 F AD 5 0.75 0.8 0.38 1.67
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C.3 ND and OD

ID Age Gender Group ND OD
002_S_0413 87 F HC 0.33 1
002_S_1261 82 F HC 0.34 1
002_S_1280 81 F HC 0.35 1
002_S_4213 84 F HC 0.32 1
002_S_6007 78 F HC 0.35 1
002_S_6009 68 M HC 0.41 0.95
002_S_6030 65 F HC 0.45 0.95
002_S_6053 66 M HC 0.37 1
002_S_6066 68 F HC 0.38 0.98
002_S_6103 70 F HC 0.29 1
002_S_6456 86 M HC 0.32 1
003_S_4288 78 F HC 0.32 1
003_S_4644 73 F HC 0.35 1
003_S_6014 67 M HC 0.41 1
003_S_6067 63 F HC 0.45 0.98
003_S_6092 65 F HC 0.39 0.92
003_S_6256 66 F HC 0.43 0.93
003_S_6257 62 M HC 0.43 0.97
003_S_6259 71 M HC 0.36 1
003_S_6260 69 M HC 0.44 0.97
003_S_6307 76 M HC 0.4 0.97
011_S_0021 85 F HC 0.32 1
011_S_4105 77 F HC 0.33 1
011_S_4278 81 M HC 0.23 1
011_S_6367 81 F HC 0.35 1
011_S_6418 67 M HC 0.39 0.99
020_S_6185 83 M HC 0.35 1
020_S_6227 62 F HC 0.39 0.98
020_S_6282 76 M HC 0.34 1
020_S_6449 66 F HC 0.36 1
020_S_6470 69 M HC 0.33 1
020_S_6504 69 M HC 0.41 0.96
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020_S_6513 66 F HC 0.33 1
024_S_6005 67 F HC 0.34 1
024_S_6184 71 F HC 0.39 1
024_S_6472 68 F HC 0.4 0.92
032_S_0677 82 M HC 0.39 1
032_S_1169 83 F HC 0.31 1
032_S_4277 78 F HC 0.4 1
032_S_4429 83 M HC 0.4 1
032_S_6211 81 M HC 0.35 1
032_S_6279 89 M HC 0.34 1
032_S_6293 86 F HC 0.42 0.96
032_S_6294 82 M HC 0.37 1
035_S_0156 86 M HC 0.25 1
035_S_0555 88 M HC 0.28 1
035_S_4464 76 M HC 0.31 1
035_S_6156 76 M HC 0.36 1
035_S_6160 61 M HC 0.4 0.99
037_S_0303 95 M HC 0.24 1
037_S_0454 93 F HC 0.33 1
037_S_4028 70 F HC 0.45 0.99
037_S_4071 90 M HC 0.22 1
037_S_4308 80 M HC 0.26 1
037_S_4410 74 F HC 0.43 1
037_S_6031 67 F HC 0.36 0.99
037_S_6032 66 F HC 0.38 1
037_S_6046 76 M HC 0.39 0.99
037_S_6115 71 F HC 0.42 1
037_S_6144 65 F HC 0.34 1
041_S_4037 82 M HC 0.33 0.98
041_S_4200 76 F HC 0.35 1
041_S_4427 77 M HC 0.42 1
041_S_6136 61 M HC 0.44 0.96
041_S_6159 76 M HC 0.4 0.95
041_S_6192 83 F HC 0.36 1
041_S_6226 66 F HC 0.42 0.97
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041_S_6292 77 M HC 0.34 1
041_S_6314 74 M HC 0.34 1
068_S_0127 82 M HC 0.25 1
068_S_0210 84 F HC 0.4 1
068_S_4340 72 F HC 0.38 1
068_S_4424 72 F HC 0.45 0.98
094_S_4649 71 M HC 0.37 0.97
094_S_6250 72 F HC 0.41 1
094_S_6269 70 F HC 0.4 1
094_S_6419 76 M HC 0.38 0.99
168_S_6049 73 F HC 0.42 0.95
168_S_6051 66 F HC 0.36 1
168_S_6059 65 F HC 0.41 1
168_S_6062 67 F HC 0.41 0.95
168_S_6064 69 F HC 0.33 1
168_S_6065 71 F HC 0.4 0.94
168_S_6085 56 F HC 0.43 0.95
168_S_6086 70 F HC 0.37 1
168_S_6098 63 M HC 0.36 1
168_S_6107 65 F HC 0.46 0.9
168_S_6108 72 M HC 0.41 0.96
168_S_6121 69 F HC 0.36 1
168_S_6128 70 F HC 0.42 0.99
168_S_6131 68 F HC 0.39 1
168_S_6151 65 M HC 0.39 0.93
168_S_6233 76 F HC 0.39 0.99
168_S_6281 80 F HC 0.36 0.96
168_S_6285 67 F HC 0.45 0.93
168_S_6318 69 F HC 0.39 0.97
168_S_6320 65 F HC 0.41 0.97
168_S_6321 73 M HC 0.3 1
168_S_6492 70 F HC 0.42 0.95
941_S_4100 85 F HC 0.27 1
941_S_4292 77 M HC 0.41 0.94
941_S_4365 86 M HC 0.33 1
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941_S_6044 75 F HC 0.48 0.89
941_S_6054 79 F HC 0.36 1
941_S_6058 68 F HC 0.46 0.95
941_S_6080 77 F HC 0.28 1
941_S_6094 70 F HC 0.4 1
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C.4 ND and OD by region

ID Age Gender Group Region ND OD
002_S_0413 87 F HC 1 0.36 0.97
002_S_1261 82 F HC 1 0.39 1
002_S_1280 81 F HC 1 0.28 0.98
002_S_4213 84 F HC 1 0.37 0.87
002_S_6007 78 F HC 1 0.38 0.97
002_S_6009 68 M HC 1 0.44 0.97
002_S_6030 65 F HC 1 0.45 0.97
002_S_6053 66 M HC 1 0.4 1
002_S_6066 68 F HC 1 0.38 0.97
002_S_6103 70 F HC 1 0.43 0.9
002_S_6456 86 M HC 1 0.37 1
003_S_4288 78 F HC 1 0.4 0.98
003_S_4644 73 F HC 1 0.38 1
003_S_6014 67 M HC 1 0.41 1
003_S_6067 63 F HC 1 0.44 1
003_S_6092 65 F HC 1 0.36 0.94
003_S_6256 66 F HC 1 0.42 0.97
003_S_6257 62 M HC 1 0.42 0.94
003_S_6259 71 M HC 1 0.31 0.9
003_S_6260 69 M HC 1 0.41 0.95
003_S_6307 76 M HC 1 0.43 0.87
011_S_0021 85 F HC 1 0.33 1
011_S_4105 77 F HC 1 0.43 0.95
011_S_4278 81 M HC 1 0.24 1
011_S_6367 81 F HC 1 0.4 1
011_S_6418 67 M HC 1 0.37 0.94
020_S_6185 83 M HC 1 0.39 1
020_S_6227 62 F HC 1 0.37 1
020_S_6282 76 M HC 1 0.32 0.95
020_S_6449 66 F HC 1 0.37 0.96
020_S_6470 69 M HC 1 0.43 1
020_S_6504 69 M HC 1 0.37 0.98
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020_S_6513 66 F HC 1 0.38 1
024_S_6005 67 F HC 1 0.38 0.97
024_S_6184 71 F HC 1 0.41 0.95
024_S_6472 68 F HC 1 0.42 0.85
032_S_0677 82 M HC 1 0.36 1
032_S_1169 83 F HC 1 0.3 0.95
032_S_4277 78 F HC 1 0.39 0.97
032_S_4429 83 M HC 1 0.39 0.99
032_S_6211 81 M HC 1 0.34 1
032_S_6279 89 M HC 1 0.28 1
032_S_6293 86 F HC 1 0.37 0.93
032_S_6294 82 M HC 1 0.4 1
035_S_0156 86 M HC 1 0.22 1
035_S_0555 88 M HC 1 0.39 0.98
035_S_4464 76 M HC 1 0.31 0.96
035_S_6156 76 M HC 1 0.34 1
035_S_6160 61 M HC 1 0.38 1
037_S_0303 95 M HC 1 0.24 1
037_S_0454 93 F HC 1 0.34 1
037_S_4028 70 F HC 1 0.45 0.93
037_S_4071 90 M HC 1 0.24 1
037_S_4308 80 M HC 1 0.32 1
037_S_4410 74 F HC 1 0.44 0.97
037_S_6031 67 F HC 1 0.35 1
037_S_6032 66 F HC 1 0.4 1
037_S_6046 76 M HC 1 0.4 0.96
037_S_6115 71 F HC 1 0.39 1
037_S_6144 65 F HC 1 0.36 0.95
041_S_4037 82 M HC 1 0.35 1
041_S_4200 76 F HC 1 0.31 0.98
041_S_4427 77 M HC 1 0.47 0.99
041_S_6136 61 M HC 1 0.45 0.91
041_S_6159 76 M HC 1 0.38 0.94
041_S_6192 83 F HC 1 0.42 1
041_S_6226 66 F HC 1 0.43 0.99
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041_S_6292 77 M HC 1 0.33 1
041_S_6314 74 M HC 1 0.34 1
068_S_0127 82 M HC 1 0.27 1
068_S_0210 84 F HC 1 0.37 0.93
068_S_4340 72 F HC 1 0.36 1
068_S_4424 72 F HC 1 0.56 0.86
094_S_4649 71 M HC 1 0.37 0.92
094_S_6250 72 F HC 1 0.47 0.92
094_S_6269 70 F HC 1 0.43 0.9
094_S_6419 76 M HC 1 0.38 1
168_S_6049 73 F HC 1 0.46 0.88
168_S_6051 66 F HC 1 0.38 1
168_S_6059 65 F HC 1 0.41 1
168_S_6062 67 F HC 1 0.41 0.91
168_S_6064 69 F HC 1 0.36 1
168_S_6065 71 F HC 1 0.43 0.91
168_S_6085 56 F HC 1 0.43 0.96
168_S_6086 70 F HC 1 0.42 0.94
168_S_6098 63 M HC 1 0.36 0.89
168_S_6107 65 F HC 1 0.44 0.91
168_S_6108 72 M HC 1 0.4 0.96
168_S_6121 69 F HC 1 0.34 1
168_S_6128 70 F HC 1 0.42 0.99
168_S_6131 68 F HC 1 0.4 0.92
168_S_6151 65 M HC 1 0.36 0.95
168_S_6233 76 F HC 1 0.34 1
168_S_6281 80 F HC 1 0.38 1
168_S_6285 67 F HC 1 0.42 0.98
168_S_6318 69 F HC 1 0.4 0.99
168_S_6320 65 F HC 1 0.41 0.94
168_S_6321 73 M HC 1 0.32 1
168_S_6492 70 F HC 1 0.4 0.95
941_S_4100 85 F HC 1 0.23 1
941_S_4292 77 M HC 1 0.39 0.97
941_S_4365 86 M HC 1 0.36 0.97
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941_S_6044 75 F HC 1 0.45 0.91
941_S_6054 79 F HC 1 0.39 0.97
941_S_6058 68 F HC 1 0.48 0.88
941_S_6080 77 F HC 1 0.3 1
941_S_6094 70 F HC 1 0.41 0.99
002_S_0413 87 F HC 2 0.26 1
002_S_1261 82 F HC 2 0.32 1
002_S_1280 81 F HC 2 0.36 0.97
002_S_4213 84 F HC 2 0.32 0.98
002_S_6007 78 F HC 2 0.43 0.88
002_S_6009 68 M HC 2 0.4 0.9
002_S_6030 65 F HC 2 0.4 0.95
002_S_6053 66 M HC 2 0.4 0.83
002_S_6066 68 F HC 2 0.29 1
002_S_6103 70 F HC 2 0.34 0.87
002_S_6456 86 M HC 2 0.26 1
003_S_4288 78 F HC 2 0.25 1
003_S_4644 73 F HC 2 0.3 1
003_S_6014 67 M HC 2 0.42 1
003_S_6067 63 F HC 2 0.42 0.95
003_S_6092 65 F HC 2 0.46 0.8
003_S_6256 66 F HC 2 0.32 1
003_S_6257 62 M HC 2 0.38 0.91
003_S_6259 71 M HC 2 0.35 1
003_S_6260 69 M HC 2 0.36 1
003_S_6307 76 M HC 2 0.37 0.85
011_S_0021 85 F HC 2 0.24 0.95
011_S_4105 77 F HC 2 0.4 0.94
011_S_4278 81 M HC 2 0.24 0.98
011_S_6367 81 F HC 2 0.47 0.79
011_S_6418 67 M HC 2 0.3 1
020_S_6185 83 M HC 2 0.36 1
020_S_6227 62 F HC 2 0.44 0.84
020_S_6282 76 M HC 2 0.37 0.88
020_S_6449 66 F HC 2 0.28 1
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020_S_6470 69 M HC 2 0.36 1
020_S_6504 69 M HC 2 0.37 1
020_S_6513 66 F HC 2 0.4 0.83
024_S_6005 67 F HC 2 0.44 0.84
024_S_6184 71 F HC 2 0.34 1
024_S_6472 68 F HC 2 0.33 0.91
032_S_0677 82 M HC 2 0.41 0.87
032_S_1169 83 F HC 2 0.24 1
032_S_4277 78 F HC 2 0.38 0.94
032_S_4429 83 M HC 2 0.34 1
032_S_6211 81 M HC 2 0.28 1
032_S_6279 89 M HC 2 0.23 0.97
032_S_6293 86 F HC 2 0.37 0.89
032_S_6294 82 M HC 2 0.3 1
035_S_0156 86 M HC 2 0.23 1
035_S_0555 88 M HC 2 0.28 0.84
035_S_4464 76 M HC 2 0.33 0.96
035_S_6156 76 M HC 2 0.31 1
035_S_6160 61 M HC 2 0.32 0.92
037_S_0303 95 M HC 2 0.23 0.99
037_S_0454 93 F HC 2 0.34 1
037_S_4028 70 F HC 2 0.4 0.93
037_S_4071 90 M HC 2 0.2 0.94
037_S_4308 80 M HC 2 0.22 1
037_S_4410 74 F HC 2 0.36 1
037_S_6031 67 F HC 2 0.32 1
037_S_6032 66 F HC 2 0.39 0.87
037_S_6046 76 M HC 2 0.26 0.99
037_S_6115 71 F HC 2 0.39 0.87
037_S_6144 65 F HC 2 0.37 0.86
041_S_4037 82 M HC 2 0.24 0.93
041_S_4200 76 F HC 2 0.27 0.91
041_S_4427 77 M HC 2 0.39 1
041_S_6136 61 M HC 2 0.42 0.92
041_S_6159 76 M HC 2 0.34 0.93
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041_S_6192 83 F HC 2 0.38 1
041_S_6226 66 F HC 2 0.4 0.99
041_S_6292 77 M HC 2 0.34 1
041_S_6314 74 M HC 2 0.24 0.94
068_S_0127 82 M HC 2 0.21 1
068_S_0210 84 F HC 2 0.3 0.96
068_S_4340 72 F HC 2 0.34 1
068_S_4424 72 F HC 2 0.57 0.85
094_S_4649 71 M HC 2 0.34 0.89
094_S_6250 72 F HC 2 0.45 0.9
094_S_6269 70 F HC 2 0.38 0.87
094_S_6419 76 M HC 2 0.36 0.94
168_S_6049 73 F HC 2 0.49 0.87
168_S_6051 66 F HC 2 0.29 1
168_S_6059 65 F HC 2 0.4 0.91
168_S_6062 67 F HC 2 0.47 0.84
168_S_6064 69 F HC 2 0.29 1
168_S_6065 71 F HC 2 0.44 0.86
168_S_6085 56 F HC 2 0.42 0.9
168_S_6086 70 F HC 2 0.36 1
168_S_6098 63 M HC 2 0.3 0.89
168_S_6107 65 F HC 2 0.5 0.78
168_S_6108 72 M HC 2 0.33 0.9
168_S_6121 69 F HC 2 0.31 0.95
168_S_6128 70 F HC 2 0.38 0.9
168_S_6131 68 F HC 2 0.4 0.88
168_S_6151 65 M HC 2 0.39 0.84
168_S_6233 76 F HC 2 0.4 0.87
168_S_6281 80 F HC 2 0.37 0.84
168_S_6285 67 F HC 2 0.38 0.94
168_S_6318 69 F HC 2 0.4 0.81
168_S_6320 65 F HC 2 0.49 0.75
168_S_6321 73 M HC 2 0.27 0.93
168_S_6492 70 F HC 2 0.42 0.95
941_S_4100 85 F HC 2 0.25 0.91
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941_S_4292 77 M HC 2 0.33 0.94
941_S_4365 86 M HC 2 0.37 1
941_S_6044 75 F HC 2 0.42 0.91
941_S_6054 79 F HC 2 0.35 0.97
941_S_6058 68 F HC 2 0.56 0.86
941_S_6080 77 F HC 2 0.25 1
941_S_6094 70 F HC 2 0.34 1
002_S_0413 87 F HC 3 0.29 1
002_S_1261 82 F HC 3 0.34 1
002_S_1280 81 F HC 3 0.33 1
002_S_4213 84 F HC 3 0.41 0.97
002_S_6007 78 F HC 3 0.3 0.87
002_S_6009 68 M HC 3 0.35 0.9
002_S_6030 65 F HC 3 0.24 1
002_S_6053 66 M HC 3 0.4 0.83
002_S_6066 68 F HC 3 0.28 1
002_S_6103 70 F HC 3 0.37 0.88
002_S_6456 86 M HC 3 0.25 1
003_S_4288 78 F HC 3 0.31 1
003_S_4644 73 F HC 3 0.34 1
003_S_6014 67 M HC 3 0.39 1
003_S_6067 63 F HC 3 0.44 0.91
003_S_6092 65 F HC 3 0.49 0.8
003_S_6256 66 F HC 3 0.12 1
003_S_6257 62 M HC 3 0.38 0.94
003_S_6259 71 M HC 3 0.3 1
003_S_6260 69 M HC 3 0.38 1
003_S_6307 76 M HC 3 0.38 0.83
011_S_0021 85 F HC 3 0.28 0.98
011_S_4105 77 F HC 3 0.41 0.98
011_S_4278 81 M HC 3 0.29 1
011_S_6367 81 F HC 3 0.48 0.83
011_S_6418 67 M HC 3 0.35 1
020_S_6185 83 M HC 3 0.37 1
020_S_6227 62 F HC 3 0.43 0.86
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020_S_6282 76 M HC 3 0.33 0.86
020_S_6449 66 F HC 3 0.29 0.93
020_S_6470 69 M HC 3 0.34 1
020_S_6504 69 M HC 3 0.29 1
020_S_6513 66 F HC 3 0.36 0.85
024_S_6005 67 F HC 3 0.48 0.89
024_S_6184 71 F HC 3 0.38 1
024_S_6472 68 F HC 3 0.32 0.96
032_S_0677 82 M HC 3 0.41 0.9
032_S_1169 83 F HC 3 0.26 1
032_S_4277 78 F HC 3 0.41 1
032_S_4429 83 M HC 3 0.4 1
032_S_6211 81 M HC 3 0.33 1
032_S_6279 89 M HC 3 0.35 0.91
032_S_6293 86 F HC 3 0.34 0.86
032_S_6294 82 M HC 3 0.29 1
035_S_0156 86 M HC 3 0.26 1
035_S_0555 88 M HC 3 0.29 0.96
035_S_4464 76 M HC 3 0.39 0.84
035_S_6156 76 M HC 3 0.33 1
035_S_6160 61 M HC 3 0.38 0.98
037_S_0303 95 M HC 3 0.25 0.93
037_S_0454 93 F HC 3 0.35 1
037_S_4028 70 F HC 3 0.38 1
037_S_4071 90 M HC 3 0.23 1
037_S_4308 80 M HC 3 0.22 1
037_S_4410 74 F HC 3 0.39 1
037_S_6031 67 F HC 3 0.35 1
037_S_6032 66 F HC 3 0.36 0.95
037_S_6046 76 M HC 3 0.41 0.9
037_S_6115 71 F HC 3 0.39 0.88
037_S_6144 65 F HC 3 0.43 0.84
041_S_4037 82 M HC 3 0.21 0.85
041_S_4200 76 F HC 3 0.37 0.85
041_S_4427 77 M HC 3 0.39 1
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041_S_6136 61 M HC 3 0.47 0.86
041_S_6159 76 M HC 3 0.37 1
041_S_6192 83 F HC 3 0.38 1
041_S_6226 66 F HC 3 0.41 0.97
041_S_6292 77 M HC 3 0.37 1
041_S_6314 74 M HC 3 0.34 1
068_S_0127 82 M HC 3 0.23 1
068_S_0210 84 F HC 3 0.41 0.9
068_S_4340 72 F HC 3 0.39 1
068_S_4424 72 F HC 3 0.49 0.86
094_S_4649 71 M HC 3 0.3 0.94
094_S_6250 72 F HC 3 0.56 0.85
094_S_6269 70 F HC 3 0.37 1
094_S_6419 76 M HC 3 0.38 0.85
168_S_6049 73 F HC 3 0.3 1
168_S_6051 66 F HC 3 0.38 1
168_S_6059 65 F HC 3 0.4 0.95
168_S_6062 67 F HC 3 0.32 0.89
168_S_6064 69 F HC 3 0.32 1
168_S_6065 71 F HC 3 0.4 0.88
168_S_6085 56 F HC 3 0.52 0.84
168_S_6086 70 F HC 3 0.36 1
168_S_6098 63 M HC 3 0.34 0.89
168_S_6107 65 F HC 3 0.43 0.87
168_S_6108 72 M HC 3 0.41 0.85
168_S_6121 69 F HC 3 0.28 0.98
168_S_6128 70 F HC 3 0.48 0.85
168_S_6131 68 F HC 3 0.41 0.88
168_S_6151 65 M HC 3 0.45 0.78
168_S_6233 76 F HC 3 0.34 0.98
168_S_6281 80 F HC 3 0.43 0.73
168_S_6285 67 F HC 3 0.5 0.85
168_S_6318 69 F HC 3 0.37 0.82
168_S_6320 65 F HC 3 0.48 0.77
168_S_6321 73 M HC 3 0.4 0.83
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168_S_6492 70 F HC 3 0.44 0.95
941_S_4100 85 F HC 3 0.21 0.94
941_S_4292 77 M HC 3 0.44 0.86
941_S_4365 86 M HC 3 0.36 1
941_S_6044 75 F HC 3 0.45 0.89
941_S_6054 79 F HC 3 0.37 1
941_S_6058 68 F HC 3 0.43 0.92
941_S_6080 77 F HC 3 0.22 1
941_S_6094 70 F HC 3 0.39 1
002_S_0413 87 F HC 4 0.24 1
002_S_1261 82 F HC 4 0.29 1
002_S_1280 81 F HC 4 0.25 1
002_S_4213 84 F HC 4 0.36 1
002_S_6007 78 F HC 4 0.29 0.9
002_S_6009 68 M HC 4 0.43 0.82
002_S_6030 65 F HC 4 0.24 1
002_S_6053 66 M HC 4 0.38 0.8
002_S_6066 68 F HC 4 0.3 1
002_S_6103 70 F HC 4 0.23 0.98
002_S_6456 86 M HC 4 0.24 1
003_S_4288 78 F HC 4 0.34 1
003_S_4644 73 F HC 4 0.27 1
003_S_6014 67 M HC 4 0.39 1
003_S_6067 63 F HC 4 0.35 0.92
003_S_6092 65 F HC 4 0.34 0.88
003_S_6256 66 F HC 4 0.27 0.97
003_S_6257 62 M HC 4 0.25 1
003_S_6259 71 M HC 4 0.23 1
003_S_6260 69 M HC 4 0.26 1
003_S_6307 76 M HC 4 0.2 0.89
011_S_0021 85 F HC 4 0.21 0.89
011_S_4105 77 F HC 4 0.34 1
011_S_4278 81 M HC 4 0.19 0.98
011_S_6367 81 F HC 4 0.32 0.96
011_S_6418 67 M HC 4 0.33 1
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020_S_6185 83 M HC 4 0.25 1
020_S_6227 62 F HC 4 0.39 0.9
020_S_6282 76 M HC 4 0.24 0.86
020_S_6449 66 F HC 4 0.23 1
020_S_6470 69 M HC 4 0.25 1
020_S_6504 69 M HC 4 0.23 1
020_S_6513 66 F HC 4 0.28 0.87
024_S_6005 67 F HC 4 0.31 0.83
024_S_6184 71 F HC 4 0.22 1
024_S_6472 68 F HC 4 0.31 0.97
032_S_0677 82 M HC 4 0.35 0.76
032_S_1169 83 F HC 4 0.24 1
032_S_4277 78 F HC 4 0.37 1
032_S_4429 83 M HC 4 0.32 1
032_S_6211 81 M HC 4 0.32 1
032_S_6279 89 M HC 4 0.28 0.99
032_S_6293 86 F HC 4 0.42 0.78
032_S_6294 82 M HC 4 0.23 1
035_S_0156 86 M HC 4 0.21 1
035_S_0555 88 M HC 4 0.24 0.99
035_S_4464 76 M HC 4 0.38 0.91
035_S_6156 76 M HC 4 0.32 1
035_S_6160 61 M HC 4 0.41 0.97
037_S_0303 95 M HC 4 0.21 0.84
037_S_0454 93 F HC 4 0.35 1
037_S_4028 70 F HC 4 0.38 1
037_S_4071 90 M HC 4 0.21 0.88
037_S_4308 80 M HC 4 0.21 0.86
037_S_4410 74 F HC 4 0.4 1
037_S_6031 67 F HC 4 0.31 1
037_S_6032 66 F HC 4 0.42 0.96
037_S_6046 76 M HC 4 0.26 0.96
037_S_6115 71 F HC 4 0.34 0.82
037_S_6144 65 F HC 4 0.25 1
041_S_4037 82 M HC 4 0.25 0.78

221



041_S_4200 76 F HC 4 0.22 0.89
041_S_4427 77 M HC 4 0.23 1
041_S_6136 61 M HC 4 0.42 0.9
041_S_6159 76 M HC 4 0.26 1
041_S_6192 83 F HC 4 0.28 1
041_S_6226 66 F HC 4 0.45 0.92
041_S_6292 77 M HC 4 0.35 1
041_S_6314 74 M HC 4 0.25 1
068_S_0127 82 M HC 4 0.2 0.91
068_S_0210 84 F HC 4 0.27 0.93
068_S_4340 72 F HC 4 0.3 1
068_S_4424 72 F HC 4 0.35 0.88
094_S_4649 71 M HC 4 0.23 0.97
094_S_6250 72 F HC 4 0.4 0.94
094_S_6269 70 F HC 4 0.28 1
094_S_6419 76 M HC 4 0.31 0.78
168_S_6049 73 F HC 4 0.26 1
168_S_6051 66 F HC 4 0.3 1
168_S_6059 65 F HC 4 0.22 0.96
168_S_6062 67 F HC 4 0.33 0.79
168_S_6064 69 F HC 4 0.29 1
168_S_6065 71 F HC 4 0.37 0.92
168_S_6085 56 F HC 4 0.48 0.77
168_S_6086 70 F HC 4 0.31 1
168_S_6098 63 M HC 4 0.34 0.95
168_S_6107 65 F HC 4 0.45 0.86
168_S_6108 72 M HC 4 0.28 0.93
168_S_6121 69 F HC 4 0.25 0.99
168_S_6128 70 F HC 4 0.44 0.88
168_S_6131 68 F HC 4 0.31 0.96
168_S_6151 65 M HC 4 0.32 0.82
168_S_6233 76 F HC 4 0.3 1
168_S_6281 80 F HC 4 0.27 0.64
168_S_6285 67 F HC 4 0.37 0.92
168_S_6318 69 F HC 4 0.24 0.83
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168_S_6320 65 F HC 4 0.35 0.81
168_S_6321 73 M HC 4 0.22 0.77
168_S_6492 70 F HC 4 0.3 1
941_S_4100 85 F HC 4 0.21 0.86
941_S_4292 77 M HC 4 0.45 0.83
941_S_4365 86 M HC 4 0.32 1
941_S_6044 75 F HC 4 0.27 0.98
941_S_6054 79 F HC 4 0.25 1
941_S_6058 68 F HC 4 0.38 0.94
941_S_6080 77 F HC 4 0.28 0.94
941_S_6094 70 F HC 4 0.4 1
002_S_0413 87 F HC 5 0.45 0.99
002_S_1261 82 F HC 5 0.41 0.98
002_S_1280 81 F HC 5 0.46 0.96
002_S_4213 84 F HC 5 0.37 1
002_S_6007 78 F HC 5 0.46 0.97
002_S_6009 68 M HC 5 0.46 0.92
002_S_6030 65 F HC 5 0.44 0.97
002_S_6053 66 M HC 5 0.43 1
002_S_6066 68 F HC 5 0.42 0.98
002_S_6103 70 F HC 5 0.38 1
002_S_6456 86 M HC 5 0.39 1
003_S_4288 78 F HC 5 0.36 1
003_S_4644 73 F HC 5 0.37 1
003_S_6014 67 M HC 5 0.51 0.98
003_S_6067 63 F HC 5 0.48 0.91
003_S_6092 65 F HC 5 0.36 0.97
003_S_6256 66 F HC 5 0.5 0.9
003_S_6257 62 M HC 5 0.44 0.96
003_S_6259 71 M HC 5 0.44 0.96
003_S_6260 69 M HC 5 0.53 0.82
003_S_6307 76 M HC 5 0.42 0.99
011_S_0021 85 F HC 5 0.39 0.95
011_S_4105 77 F HC 5 0.46 0.98
011_S_4278 81 M HC 5 0.31 1
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011_S_6367 81 F HC 5 0.43 0.95
011_S_6418 67 M HC 5 0.41 0.9
020_S_6185 83 M HC 5 0.41 1
020_S_6227 62 F HC 5 0.39 1
020_S_6282 76 M HC 5 0.37 0.92
020_S_6449 66 F HC 5 0.41 0.94
020_S_6470 69 M HC 5 0.4 1
020_S_6504 69 M HC 5 0.45 0.91
020_S_6513 66 F HC 5 0.41 0.99
024_S_6005 67 F HC 5 0.38 1
024_S_6184 71 F HC 5 0.39 0.98
024_S_6472 68 F HC 5 0.48 0.93
032_S_0677 82 M HC 5 0.44 0.91
032_S_1169 83 F HC 5 0.41 0.96
032_S_4277 78 F HC 5 0.41 1
032_S_4429 83 M HC 5 0.43 1
032_S_6211 81 M HC 5 0.37 1
032_S_6279 89 M HC 5 0.39 1
032_S_6293 86 F HC 5 0.44 0.89
032_S_6294 82 M HC 5 0.46 0.89
035_S_0156 86 M HC 5 0.29 0.99
035_S_0555 88 M HC 5 0.28 0.94
035_S_4464 76 M HC 5 0.36 1
035_S_6156 76 M HC 5 0.37 0.97
035_S_6160 61 M HC 5 0.42 0.95
037_S_0303 95 M HC 5 0.25 1
037_S_0454 93 F HC 5 0.38 1
037_S_4028 70 F HC 5 0.49 0.92
037_S_4071 90 M HC 5 0.29 0.99
037_S_4308 80 M HC 5 0.33 1
037_S_4410 74 F HC 5 0.43 1
037_S_6031 67 F HC 5 0.44 0.93
037_S_6032 66 F HC 5 0.41 1
037_S_6046 76 M HC 5 0.46 0.95
037_S_6115 71 F HC 5 0.44 0.94
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037_S_6144 65 F HC 5 0.39 1
041_S_4037 82 M HC 5 0.38 0.91
041_S_4200 76 F HC 5 0.4 0.96
041_S_4427 77 M HC 5 0.43 0.95
041_S_6136 61 M HC 5 0.42 1
041_S_6159 76 M HC 5 0.41 0.9
041_S_6192 83 F HC 5 0.47 0.92
041_S_6226 66 F HC 5 0.45 1
041_S_6292 77 M HC 5 0.43 1
041_S_6314 74 M HC 5 0.37 1
068_S_0127 82 M HC 5 0.32 0.94
068_S_0210 84 F HC 5 0.4 1
068_S_4340 72 F HC 5 0.37 0.9
068_S_4424 72 F HC 5 0.45 1
094_S_4649 71 M HC 5 0.4 0.88
094_S_6250 72 F HC 5 0.41 1
094_S_6269 70 F HC 5 0.57 0.85
094_S_6419 76 M HC 5 0.43 0.9
168_S_6049 73 F HC 5 0.4 1
168_S_6051 66 F HC 5 0.43 1
168_S_6059 65 F HC 5 0.45 0.91
168_S_6062 67 F HC 5 0.46 0.86
168_S_6064 69 F HC 5 0.44 1
168_S_6065 71 F HC 5 0.43 0.92
168_S_6085 56 F HC 5 0.47 0.98
168_S_6086 70 F HC 5 0.47 0.9
168_S_6098 63 M HC 5 0.37 0.98
168_S_6107 65 F HC 5 0.47 0.93
168_S_6108 72 M HC 5 0.43 1
168_S_6121 69 F HC 5 0.36 1
168_S_6128 70 F HC 5 0.43 0.96
168_S_6131 68 F HC 5 0.41 1
168_S_6151 65 M HC 5 0.39 0.93
168_S_6233 76 F HC 5 0.4 0.98
168_S_6281 80 F HC 5 0.38 0.95
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168_S_6285 67 F HC 5 0.45 0.88
168_S_6318 69 F HC 5 0.55 0.84
168_S_6320 65 F HC 5 0.37 0.98
168_S_6321 73 M HC 5 0.42 0.96
168_S_6492 70 F HC 5 0.42 0.97
941_S_4100 85 F HC 5 0.32 1
941_S_4292 77 M HC 5 0.46 0.87
941_S_4365 86 M HC 5 0.44 1
941_S_6044 75 F HC 5 0.48 0.87
941_S_6054 79 F HC 5 0.42 0.99
941_S_6058 68 F HC 5 0.43 0.95
941_S_6080 77 F HC 5 0.39 0.97
941_S_6094 70 F HC 5 0.44 1
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254 - DIFFUSION TENSOR IMAGING CHARACTERISATION OF THE NORMALLY AGEING254 - DIFFUSION TENSOR IMAGING CHARACTERISATION OF THE NORMALLY AGEING
CORPUS CALLOSUM VERSUS INDIVIDUALS WITH MILD COGNITIVE IMPAIRMENT ANDCORPUS CALLOSUM VERSUS INDIVIDUALS WITH MILD COGNITIVE IMPAIRMENT AND
ALZHEIMER’S DISEASEALZHEIMER’S DISEASE

S. Rajan S. Rajan 11
11University of Warwick, School of Engineering, Coventry, United KingdomUniversity of Warwick, School of Engineering, Coventry, United Kingdom
J. Brettschneider J. Brettschneider 22
22University of Warwick, Department of Statistics, Coventry, United KingdomUniversity of Warwick, Department of Statistics, Coventry, United Kingdom
J.F. Collingwood J.F. Collingwood 33
33University of Warwick, School of Engineering, Coventry, United KingdomUniversity of Warwick, School of Engineering, Coventry, United Kingdom

Abstract bodyAbstract body

Objectives:Objectives: Degeneration of the corpus callosum is suspected in the early stages of Alzheimer’s Degeneration of the corpus callosum is suspected in the early stages of Alzheimer’s
disease. To differentiate changes occurring in corpus callosum with age from disease,disease. To differentiate changes occurring in corpus callosum with age from disease,
characterisation of detectable changes in normal ageing is necessary.characterisation of detectable changes in normal ageing is necessary.

Methods: Methods: Analysis was performed on diffusion weighted MRI scans of healthy controls (HC,Analysis was performed on diffusion weighted MRI scans of healthy controls (HC,
n=277) and the available population of age-matched Alzheimer’s disease (AD, n=39) and mildn=277) and the available population of age-matched Alzheimer’s disease (AD, n=39) and mild
cognitive impairment (MCI, n=39) patients from the Alzheimer’s Disease Neuroimaging Initiative.cognitive impairment (MCI, n=39) patients from the Alzheimer’s Disease Neuroimaging Initiative.
For every subject, four maps (fractional anisotropy, mean, radial and axial diffusivities) wereFor every subject, four maps (fractional anisotropy, mean, radial and axial diffusivities) were
calculated, and the corpus callosum manually segmented. Regression trends of healthy controlscalculated, and the corpus callosum manually segmented. Regression trends of healthy controls
were analysed with ageing and compared with AD and MCI groups.were analysed with ageing and compared with AD and MCI groups.

Results: Results: Preliminary box plot analysis reveals significant differences at p<0.05 between groups.Preliminary box plot analysis reveals significant differences at p<0.05 between groups.
Weak regression trends with age are observed for HC, consistent with the literature. This is due toWeak regression trends with age are observed for HC, consistent with the literature. This is due to
an established wide range of values for these parameters in the normal adult population. Groupedan established wide range of values for these parameters in the normal adult population. Grouped
regression plots show differences in trends indicating a different path of progression for AD andregression plots show differences in trends indicating a different path of progression for AD and
MCI compared to HC.MCI compared to HC.

Figure 1: (a) Manual segmentation of corpus callosum (b) box plot illustrating the fractionalFigure 1: (a) Manual segmentation of corpus callosum (b) box plot illustrating the fractional
anisotropy distribution for the HC, MCI and AD corpus callosumanisotropy distribution for the HC, MCI and AD corpus callosum

Conclusions: Conclusions: The data are consistent with evidence that degeneration in corpus callosum occursThe data are consistent with evidence that degeneration in corpus callosum occurs
with age but is greater in AD and MCI. Longitudinal tracking of the diffusion tensor metrics, at thewith age but is greater in AD and MCI. Longitudinal tracking of the diffusion tensor metrics, at the
level of the individual developing MCI, may support clinical bio-marker development for the earlylevel of the individual developing MCI, may support clinical bio-marker development for the early
stages of AD.stages of AD.
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Research Article

Synchrotron XRF imaging of Alzheimer’s disease basal ganglia reveals linear
dependence of high-field magnetic resonance microscopy on tissue iron
concentration
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A B S T R A C T

Background: Chemical imaging of the human brain has great potential for diagnostic and monitoring purposes.
The heterogeneity of human brain iron distribution, and alterations to this distribution in Alzheimer’s disease,
indicate iron as a potential endogenous marker. The influence of iron on certain magnetic resonance imaging
(MRI) parameters increases with magnetic field, but is under-explored in human brain tissues above 7 T.
New Method: Magnetic resonance microscopy at 9.4 T is used to calculate parametric images of chemically-
unfixed post-mortem tissue from Alzheimer’s cases (n=3) and healthy controls (n= 2). Iron-rich regions in-
cluding caudate nucleus, putamen, globus pallidus and substantia nigra are analysed prior to imaging of total
iron distribution with synchrotron X-ray fluorescence mapping. Iron fluorescence calibration is achieved with
adjacent tissue blocks, analysed by inductively coupled plasma mass spectrometry or graphite furnace atomic
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absorption spectroscopy.
Results: Correlated MR images and fluorescence maps indicate linear dependence of R2, R2* and R2’ on iron at
9.4 T, for both disease and control, as follows: [R2(s−1)= 0.072[Fe] + 20]; [R2*(s−1)= 0.34[Fe] + 37];
[R2’(s−1)= 0.26[Fe] + 16] for Fe in μg/g tissue (wet weight).
Comparison with Existing Methods: This method permits simultaneous non-destructive imaging of most bioa-
vailable elements. Iron is the focus of the present study as it offers strong scope for clinical evaluation; the
approach may be used more widely to evaluate the impact of chemical elements on clinical imaging parameters.
Conclusion: The results at 9.4 T are in excellent quantitative agreement with predictions from experiments
performed at lower magnetic fields.

1. Introduction

1.1. The need for biomarkers of Alzheimer’s disease

Despite recent improvement in the proportion of individuals with
dementia receiving a diagnosis, confirmation of a diagnosis of
Alzheimer’s disease is generally dependent on post mortem examination
of the underlying disease pathology. Developments in imaging, in-
cluding PET (positron emission tomography) imaging of amyloid de-
position, volumetric MRI (magnetic resonance imaging) of brain
atrophy and measurement of amyloid in the cerebral spinal fluid (CSF)
have led to a series of proposals and recommendations to update AD
diagnostic criteria e.g. (Dubois et al., 2010; McKhann et al., 2011;
Dubois et al., 2016; Morris et al., 2014; Jack et al., 2013). The identi-
fication and monitoring of markers, and characterising marker profiles
as a function of disease progression, remain major challenges in Alz-
heimer’s research.

MRI is a particularly attractive diagnostic tool as it is non-invasive
and does not require exposure to ionising radiation. Studies of volu-
metric changes in the brain have shown greater atrophy in AD subjects,
but also a significant overlap with normal aging (Laakso et al., 1995;
Doan et al., 2017; Habes et al., 2016; Pini et al., 2016; Wisse et al.,
2014). Furthermore, atrophy indicates significant cell death has already
occurred. For this reason, it is a priority to identify changes that are a
precursor to irreversible atrophy, including those changes that may be
detected by chemical imaging, to enable earlier diagnosis and possible
future protective intervention.

1.2. Brain iron in Alzheimer’s disease

Over a century ago, developments in histological methods allowed
demonstration of iron in mammalian tissues, underpinning the sub-
sequent investigation of iron and other transition metals in the human
brain in health and disease (Perls, 1867). The descriptions of metal
distributions throughout the cellular architecture of the brain are ac-
companied by quantitative post-mortem measurements of metal con-
centrations, such as the study of iron levels in the healthy human brain
as a function of age by Hallgren and Sourander in 1958 (Hallgren and
Sourander, 1958). The concentration and distribution of transition
metals, including iron, are of particular interest in the context of neu-
rodegenerative diseases. In certain rare disorders, iron dysregulation is
a primary cause of mortality (Kumar et al., 2016), but in other neuro-
degenerative disorders the impact of observed iron dysregulation is less
clear. Many studies have shown altered non-haem brain iron in specific
regions of the AD brain (Samudralwar et al., 1995; Cornett et al., 1998;
Loeffler et al., 1995; House et al., 2008; Thompson et al., 1988; Dedman
et al., 1992; Connor et al., 1992; Deibel et al., 1996; Tao et al., 2014;
Pankhurst et al., 2008; House et al., 2007; Akatsu et al., 2012; Graham
et al., 2014; Hare et al., 2016; van Duijn et al., 2017), also in Parkin-
son’s disease (Dexter et al., 1991; Oakley et al., 2007; Wang et al.,
2016) and Wilson’s disease (Dusek et al., 2017) amongst others. Con-
flicting results in the literature may be at least in part due to variability
in sample archiving conditions and analytical methods, but there is
undoubtedly a spectrum of ‘normal’ regional brain iron concentrations

even taking into account variables such as health and age. The disparity
is likely not fully captured in the current literature, given that studies
where no significant differences between populations are observed may
be unpublished or less frequently cited. In an analysis of the literature
only the putamen was found to have significantly elevated iron in AD
(Schrag et al., 2011). A subsequent meta-analysis by Tao and co-
workers (Tao et al., 2014) evidenced elevated iron concentration in
eight regions of the AD brain compared with healthy controls, specifi-
cally: frontal lobe, parietal lobe, temporal lobe, amygdala, putamen,
globus pallidus, cingulate cortex, and caudate nucleus.

1.3. MRI evaluation of brain iron in Alzheimer’s disease

Since the contribution of iron to MRI contrast was recognised and
explored in the 1980s (Drayer et al., 1986), a number of different
techniques have been developed to calculate tissue iron content in or-
gans, including liver and heart, so that this can be used in the evalua-
tion of patients, especially those with iron-overload disorders (St Pierre
et al., 2004; Wood, 2011). Changes in non-haem iron have the potential
to act as a marker of AD, because of the impact of brain tissue iron on
MRI, affecting tissue susceptibility and relaxation parameters (Haacke
et al., 2005). This has been demonstrated in various systems ranging
from phantoms and animal models (Vymazal et al., 1992; Yang et al.,
2013; Tan et al., 2014; Gossuin et al., 2004) to human post mortem
tissue (House et al., 2008; Langkammer et al., 2010; Bulk et al., 2018;
Antharam et al., 2012; Langkammer et al., 2012).

MR relaxometry techniques allow the quantitative mapping of the
relaxation rates R1, R2, R2*and related parameters (e.g. R2’). As the
transverse relaxation rate R2, and to a lesser extent the longitudinal
relaxation rate R1, have been shown to be linearly proportional to the
iron concentration at field strengths up to 7 T (Gossuin et al., 2004), MR
relaxometry can provide a tool for investigating brain iron in vivo
(Langkammer et al., 2014; Ghadery et al., 2015; Tang et al., 2018). A
linear correlation has also been shown between R2* and iron con-
centration at fields of 1.5 T – 7 T (Yao et al., 2009), with a steeper
gradient (and therefore greater sensitivity) than R2 at 3 T, the field
typically used in clinical neuroimaging (Langkammer et al., 2010). As
alternative and more sophisticated MRI measures of iron are developed,
the well-established clinically-accessible R2 and R2* sequences that
have been validated post-mortem retain value for the determination of
iron, and offer potential to detect changes in brain iron distribution and
concentration as a function of AD in critical regions such as the hip-
pocampus and amygdala (Langkammer et al., 2014; Tang et al., 2018).

The field dependent R2 increase (FDRI) is the degree to which the
value of R2 depends on the external magnetic field. Bartzokis and co-
workers used this property to develop a means of examining iron
content in R2 MRI scans (Bartzokis et al., 1993). R2 was obtained from
dual echo sequences measured at two different field strengths; the
difference calculated determined the FDRI. They showed that FDRI of
the frontal white matter, caudate nucleus, putamen, and globus pallidus
correlated strongly with published iron concentration values in healthy
adults and with phantoms of ferritin containing agarose gels (Bartzokis
et al., 1993). FDRI has since been used to study ferritin iron con-
centration in AD compared to control (Bartzokis et al., 1994) and also
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in other neurodegenerative diseases such as Parkinson’s disease and
Huntington’s disease (Bartzokis et al., 2004; Bartzokis and Tishler,
2000). The obvious disadvantage of FDRI is that it requires MRI map-
ping with two different instruments, increasing the cost and time of the
imaging. It also requires careful matching of anatomical features across
the two data sets. A recent publication compared FDRI obtained at 1.5 T
and 4.7 T to predicted iron content from a single T2* measurement at
4.7 T and concluded that FDRI offered few advantages over measure-
ments at a single field (Uddin et al, 2016). Similarly, in R2 measure-
ments that used four single-echo acquisitions in a study of 10 healthy
adults, we found that the quality of the linear relationship between R2

and predicted iron values was only slightly more robust for FDRI using
3 T and 1.5 T, than for just the R2 data obtained at 3 T (Collingwood
et al., 2014).

Tissue degeneration, which occurs in AD, causes increased water
concentration in the tissue and reduces R2 (Bondareff et al., 1988;
Bartzokis et al., 1994) in opposition to the effect of increased iron
concentration. R2’ is the portion of R2* that is caused by the dephasing
of spins due to inhomogeneity of the local field, and is independent of
water concentration (Yablonskiy and Haacke, 1994; Jensen and
Chandra, 2000). Ordidge and co-workers developed a method for
mapping R2’ that reduces the influence of background field variations
and used this technique to measure an increase in iron in the SN of
Parkinson’s disease patients that agrees with post mortem studies, but
that had not been observed in R2 mapping (Ordidge et al., 1994).
Susceptibility weighted imaging (SWI) uses a mask of phase informa-
tion to enhance the contrast in an MR image. The mask can be chosen to
highlight particular phases (features), so that the combined magnitude
and phase information can be used, for example, to enhance contrast
between grey and white matter (Haacke et al., 2004), resolve structures
not observable with T2 or T1 weighted imaging (Manova et al., 2009)
and examine the iron concentration distribution of brain tissue (Yao
et al., 2009). SWI alone does not allow for quantification of the mag-
netic susceptibility of the tissue, and suffers from blooming artefacts
(Kim et al., 2017), and developments in post-acquisition processing are
enabling quantitative susceptibility mapping (QSM) to become estab-
lished as a method with excellent sensitivity to iron distribution in
tissue in vivo, including for the evaluation of brain iron in AD at
clinically-routine field strengths (Langkammer et al., 2012; Kim et al.,
2017).

The past decade has seen a significant shift from 1.5 T to 3 T MRI in
clinical neuroimaging, and the ongoing move to higher field strengths
brings access to increased tissue iron contrast. Early work in primate
brain at fields up to 4.7 T suggested that the increased contrast would
reach a threshold where the magnetisation of ferritin-bound iron be-
came saturated (Bizzi et al., 1990). Subsequent studies in post-mortem
human tissue reported a strong linear relationship was sustained be-
tween iron and R2 at 4.7 T (House et al., 2007), and between iron and
R2* at 7 T post-mortem and in-vivo (Yao et al., 2009). More recent post-
mortem human tissue analysis supports the use of QSM and R2* for iron
quantification in tissue at 7 T (Hametner et al., 2018; Betts et al., 2016).

We found evidence of a linear dependence of R2 and R2* on nor-
malized iron concentration in post-mortem human hippocampus im-
aged at 14 T (Antharam et al., 2012), using synchrotron XRF (SXRF)
maps to evaluate the relationship between iron distribution and these
MRI parameters. As relative (rather than absolute) iron concentration
was obtained, the magnitude of the field-dependent increase in R2 and
R2* could not be tested at 14 T to determine if the effect was saturating.
The present study, utilizing adjacent tissue blocks to calibrate SXRF
iron maps, demonstrates one route to overcome this constraint. In the
following sections, we discuss approaches to validate the relationship
between clinical imaging parameters (typically MRI) and iron content
in tissue.

1.4. Validating iron contrast in MRI data

Reported values for regional brain iron concentrations vary con-
siderably, as evidenced in the landmark review by Haacke and co-
workers (Haacke et al., 2005). This likely reflects a combination of
natural heterogeneity in the population, and differences attributable to
experimental method and study design. The field continues to be con-
strained by an absence of iron concentration data from large well-de-
scribed cohorts. When validating MRI methods for sensitivity to iron in
the brain, many studies (Bartzokis et al., 2000; Gelman et al., 1999;
Persson et al., 2015; Liu et al., 2015; Gao et al., 2017; Collingwood
et al., 2014) have used the data published by Hallgren and Sourander in
1958 (Hallgren and Sourander, 1958) as the definitive source of in-
formation on regional iron concentration as a function of age in the
normal human brain. Comparatively few studies have quantified iron in
post-mortem tissue to validate directly the relationship with the MRI
parameters. To date, this has been done for R2 and/or R2* in studies
including post-mortem human brain at fields from<1 T up to 7 T
(Vymazal et al., 1996; House et al., 2008, 2007; Langkammer et al.,
2010; Yao et al., 2009; Hametner et al., 2018; Bulk et al., 2018). These
studies are critical, as they do not rely on the assumption that the
average iron concentration quoted in the literature accurately re-
presents the iron in the individual(s) they are studying. However, post-
mortem sample archiving and processing presents additional chal-
lenges. It is extremely rare to be in a position to work rapidly and safely
with fresh human brain tissue at body temperature, and the majority of
samples are either fresh-frozen and archived at −80 °C or stored in an
appropriately buffered solution containing a chemical fixative such as
formalin to prevent tissue deterioration. Both freezing and chemical
fixation impact absolute relaxation parameters in MRI (Vymazal et al.,
1996; Thelwall et al., 2006; Antharam et al., 2012), and a further
complication of chemical fixation is that it can result in unpredictable
levels of mineral transformation and/or metal leaching from the sam-
ples (Gellein et al., 2008; Dobson and Grassi, 1996). Some have sought
to quantify the impact of iron loss in this context: Hametner and co-
workers report 20% loss from in white matter, and 27% loss from pu-
tamen, after 24 days in fixative (Hametner et al., 2018). In the present
study only fresh-frozen tissues were used, by following previously es-
tablished protocols to enable sequential imaging analysis by MRI and
SXRF (Antharam et al., 2012).

1.4.1. Validation by synchrotron X-ray fluorescence mapping
Synchrotron X-ray fluorescence mapping of biological tissues can be

used to produce highly sensitive and specific maps of elemental dis-
tributions in tissue at high spatial resolution (Collingwood et al., 2005;
Ugarte et al., 2012; Gallagher et al., 2012). The method offers sig-
nificant advantages over histochemical staining with sensitivity to trace
concentrations, specificity for the chemical elements present (e.g. un-
ambiguous distinction between copper and zinc), and no requirement
for any labelling or contrast agent. Simultaneous acquisition of the
elemental spectra within a pixel, enabling a full analysis of the chemical
elements present within the energy range of the instrument used, can be
performed for a single tissue section (Collingwood and Adams, 2017). A
number of studies have now sought to correlate MRI maps (either
contrast-weighted or parametric) with post-mortem tissue sections
(either chemically-fixed or fresh-frozen) analysed by SXRF, for example
(Hopp et al., 2010; Antharam et al., 2012; House et al., 2014). This has
enabled direct comparison of the spatial distribution of iron with MRI
data. One approach is to use rapid scanning SXRF, where this is cali-
brated with metal foils to compare iron distribution with SWI obtained
at clinical spatial resolutions at 1.5 T, evidencing a linear relationship
between SWI and iron concentration in 1mm thick fixed brain tissue
(McCrea et al., 2008; Hopp et al., 2010). This approach offers the ad-
vantage of being able to cover a spatial area encompassing multiple
regions of the human brain (which is not normally viable with the
micro-focussed SXRF beam). However, it requires chemically fixed
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samples or a cryo-environment that can accommodate large area ras-
tering of a frozen tissue sample, and the calibration with metal foils is
constrained by matrix differences between the foils and the tissues.

In the present study we incorporate a method previously developed
by our group to obtain MRI and SXRF data from fresh-frozen human
hippocampus at high spatial resolution (60 μm in-plane) at 14 T
(Antharam et al., 2012). Here, equivalent measurements are performed
for a series of brain regions from AD and healthy control cases, with the
MRI analysis performed at 9.4 T. The additional step of calibrating the
iron SXRF signal intensity using high precision bulk analysis of re-
presentative adjacent tissue samples permits determination of the de-
pendence of R2, R2* and R2’ as a function of iron concentration, and to
test the dependence of these relationships at a field exceeding 7 T.

2. Materials and methods

2.1. Samples

All tissues used in this study were from donated human brain pro-
vided by the Canadian Brain Tissue Bank and studied under ethical
approval 07/MRE08/12. Tissue samples from two control (males, aged
76 and 78) and three confirmed AD cases (male, aged 73, females, aged
75 and 95) were investigated with samples taken from regions of the
basal ganglia: primarily the caudate nucleus (CN), putamen (Pu),
globus pallidus (GP) and substantia nigra (SN). Based on prior meta-
analyses, the Pu is most likely to show increased iron concentration in
AD. Where additional adjacent structures were included in MRI sam-
ples, such as the anterior limb of the internal capsule which is adjacent
to the caudate nucleus, these have been segmented and included in the
analysis. Case details and the samples measured for each case are given
in Table 1; all samples had been stored at −80 °C. Each SXRF map took
upwards of 6 h to collect, and as synchrotron beam time is limited only
one section was imaged for each region per individual.

The experimental strategy was to cut pairs of blocks (adjacent
tissue) from within each anatomical structure. Examples of the frozen
blocks, prior to dissection, are given in Fig. 1. The first block (A) was
used for MRI quantitative relaxometry and SXRF mapping, and was cut
to fit inside a 20mm diameter NMR tube. Dissection included tissue
from surrounding structures to aid anatomical orientation. Block B, for
iron quantification in this study by ICP-MS (where GFAAS might be
used as an alternative), was selected to include only the target struc-
ture. The quantitative iron information from block B was used to cali-
brate the iron distribution maps from block A. As the SN anatomy is
difficult to define with precision in unstained tissue, the cerebral crus
was included in both samples. Where available sample volume or
asymmetry prevented block B from being representative of block A (in
the present study this was the case for the GP samples), the relationship
between absolute iron content and SXRF signal was used to calibrate
the GP images as described in section 3.1.

Before dissection, samples were warmed from archive conditions at
−80 °C to a few degrees below 0 °C. They were then dissected in the
temperature-controlled environment of a cryomicrotome. All sample
handling was performed using acid-washed non-ferrous surfaces and
tools, including ceramic blades for dissection to avoid metal particulate
contamination.

2.2. Bulk iron quantification

There are several methods by which the concentration of a chemical
element may be determined with great accuracy. Here we include data
from two example methods that are suitable for iron determination in
brain tissue. The first is inductively coupled plasma mass spectrometry
(ICP-MS), here used to determine iron concentration in block B for the
CN and Pu samples, and the second is graphite furnace atomic ab-
sorption spectroscopy (GFAAS) used for the equivalent blocks of SN
tissue. Each method presents its own challenges, and is described in

detail in the supporting references. The SN block B samples were ana-
lysed by GFAAS (instead of ICP-MS) as they were measured in the
context of a study parallel to the main MRI-SXRF investigation (Visanji
et al., 2013; Finnegan, 2013). Ideally the same technique and instru-
ment would have been used to measure all the bulk iron concentrations,
but the sensitivity and accuracy of these methods were sufficient (as
discussed in Section 3.3.1 Method Assumptions), that here it was ap-
propriate to pool the data for the purpose of the regression analysis.

2.2.1. Inductively coupled plasma mass spectrometry (ICP-MS)
Iron concentration was determined for the individual tissue blocks

by ICP-MS, using the ICP-MS Agilent technologies 7500 series as pre-
viously described (Finnegan, 2013). Briefly, the samples were freeze
dried and transferred into acid washed 3ml capacity glass Wheaton v-
vials for digestion in 72% double distilled nitric acid. A total of 1.5 ml of
nitric acid was added to the vials in aliquots of 0.5ml and then the
samples were dissolved in a 55 °C oven for approximately 20 h. Each
sample was diluted to 1:100 using Milli-Q® grade water (18.2 MΩ).
Blanks consisting of a 1:100 dilution of the 72% nitric acid used for
digestion were run after every 4 samples and consistently produced an
iron concentration below the detection limit of the spectrometer.

2.2.2. Graphite furnace atomic absorption spectroscopy (GFAAS)
GFAAS was used to measure the iron concentration of the substantia

nigra samples as previously described (Visanji et al., 2013). Briefly, a
Mars Xpress microwave was used to digest the tissue samples in 1ml
HNO3 and 1ml H2O2 using a CEM-provided Tissue Xpress program.
Ultrapure water (3 ml) was added and the digest volume corrected for
venting. The iron concentration was determined from 800-fold dilu-
tions using a hollow-cathode lamp at 30mA and atomic absorption
measured at 248.3 nm.

2.3. MRI relaxometry

MRI was performed using a Bruker micro-imaging MicWB40 probe
and a 400MHz vertical wide bore Bruker spectrometer. Each tissue
sample, initially frozen, was suspended in Fluorinert in a standard glass
NMR tube (Antharam et al., 2012; Finnegan, 2013). Samples were
warmed to and maintained at 2 °C throughout the image acquisition,
and re-frozen directly afterwards.

Before imaging, the probe was tuned and matched to the 1H
channel. TopSpin was used to manually shim the gradients and achieve
a smooth free induction decay (FID) of maximum size, and a symme-
trical, as narrow as possible water peak with a full-width-half-max-
imum (FWHM) of< 60 Hz. The Bruker relaxometry scans from
Paravision 4.0 were used: a multi-spin, multi-echo (MSME) sequence to
map T2 and a multi-gradient echo sequence (MGE) to map T2*. The
number of averages, slice thickness and echo times were optimised to

Table 1
Case details for the samples used in this project. The sex and age of each in-
dividual at death is given. For the control cases the cause of death is stated. For
the Alzheimer’s Disease (AD) cases the Braak stage of the disease pathology is
given (Braak and Braak, 1991). The Case References are not linked with the
original numbers issued by the brain bank, they are the identifiers corre-
sponding to the supporting analytical information for this study (Finnegan,
2013).

Case Reference Brain regions Sex Age Pathology

C2 Caudate nucleus
Substantia nigra

M 78 Lung cancer

C3 Putamen
Globus pallidus

M 76 Cardiac infarction

AD1 Caudate nucleus M 73 Braak vi
AD2 Globus pallidus

Substantia nigra
F 75 Braak vi

AD3 Putamen F 98 Braak v
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give a good signal to noise ratio for even the rapid decays shown in
tissue with a high iron content. The scan parameters are summarized in
Table 2. Careful shimming was required to ensure optimum signal from
the region of interest.

Scan geometry and workflow was similar to that described pre-
viously (Collingwood et al., 2008; Antharam et al., 2012). Low re-
solution scans were used first to measure the majority of the tissue
sample volume. Data from these scans were then used to choose the
part of the tissue to image at high resolution in order to obtain the best
representation of the brain region of interest. Low resolution data were
collected by three sets of scans with interleaving geometry. Two sets of
interleaved high resolution scans were used to map a 7mm thick vo-
lume of tissue.

The decays were fitted to create T2 and T2* maps using the open
source software Image J with the plugins ‘Bruker Opener’ and ‘MRI
Processor’. The MRI Processor plugin was used to fit the T2 and T2*
decays for the voxels in each respective dataset to mono-exponential
Equation 1 using a Levenberg-Marquardt algorithm.

= +
−y A Ce

t
T( )

2 (1)

where the constant A takes into account a finite background. The re-
ciprocal of the T2 and T2*images provided the R2 and R2* images re-
spectively.

2.4. Histology

The tissue blocks that had been initially imaged by MRI microscopy
were subsequently mounted to permit cryosectioning in the same plane
as the virtual slices in the MRI acquisition. Sectioning was performed in
a Leica cryomicrotome (Jung CM3000) at an angle of 10 ° and a nom-
inal thickness of 30 μm. Sections were cut with an acid-washed sapphire
blade to avoid metal particulate contamination from the stainless steel
blades used in routine sectioning. Serial sectioning was performed, with
sections for SXRF analysis mounted on spectroscopically clean quartz
slides, and adjacent sections mounted on glass histology slides and
stained with a standard haematoxylin and Congo red protocol
(Finnegan, 2013). Only haematoxylin staining was used for the quartz
sections after SXRF imaging, and initial fixation required in ice-cold
ethanol (Gallagher et al., 2012), as extended imaging can render the
organic material in the tissue section very fragile. This, combined with
the absence of an adherent coating on the slides (to avoid a potential
source of contamination) resulted in development of a staining protocol
using a liquid blocking PAP pen so that sections could be individually
stained with the slide maintained in a horizontal position (Finnegan,
2013).

2.5. Synchrotron X-ray fluorescence microfocus imaging

SXRF mapping of elemental metal ion distributions was performed
at the microfocus beamline I18 at Diamond Light Source, following
previously described protocols (Antharam et al., 2012; Gallagher et al.,
2012). Briefly, a 10 keV primary beam was used to excite fluorescence
from the unstained tissue section, with the incident flux I0 limited to
avoid saturation of the nine element Ge detector. The quartz-mounted
sections were protected during measurement under an X-ray trans-
parent Kapton film, and mounted with the imaging plane at 45° to I0
and the detector at 90° to I0. The quartz has a spatially uniform fluor-
escence signal making it straightforward to subtract it as a contribution
to background noise in the acquired spectrum. It is also very rigid
which is an advantage during SXRF measurement, and tolerates ex-
posure typically required for supporting histological analysis. However,
as it blocks transmission of much of the hard X-ray beam, it is helpful to
use a transparent support film for samples where analyte concentrations
approaches the detection limits at the beamline. This permits a pair of
detectors to be positioned, each at 90° to I0, to maximise the solid angle
over which fluorescence from the sample is acquired (Mosselmans
et al., 2009; Collingwood and Adams, 2017).

To enable correlation with the MRI R2 and R2* maps, tissue sections
corresponding to the higher resolution MRI images were mapped over
the full slice area of interest, and the adjacent (glass-mounted) section
which had been histochemically stained was used to confirm the area
required. Rastering in the focused X-ray beam provided in-plane
60× 60 μm pixels where the X-ray beam sampled the full depth of the
tissue section; the acquisition rate corresponded to a 1 s dwell per point
in the image matrix. A full SXRF spectrum was acquired for each pixel,
and these spectra were processed using the open source software
PyMCA (Solé et al., 2007), which was used to fit all detectable elements
within the accessible energy range and compute the signal intensity
from the primary fluorescence peak for each element. The spectrum in
each pixel was normalised to the corresponding I0 value to remove the
effect of changing incident flux over the period of measurement, and
the signal from a blank area on each quartz slide was used to correct for
any difference in sample-detector distance. The resulting spectra were
processed to produce precise maps of the normalized concentration
distribution of the primary transition metals present in each tissue
section (Finnegan, 2013).

2.6. Correlating SXRF and MRI images

The SXRF iron maps acquired from the 30 μm thick sections were
correlated with the MRI microscopy data obtained with slightly lower
(86×86 μm) in-plane spatial resolution and 150 μm thick virtual
slices. By taking thinner sections for SXRF, this ensured that several
serial cryosections could be well-matched to each virtual MRI slice.
Image J was used to rotate the images from the different modalities to
achieve a common orientation, and this was achieved by comparing

Fig. 1. Examples of the tissue blocks from the Canadian Brain Tissue Bank prior
to dissection for imaging and bulk analysis, with anatomical orientations in-
dicated (A/P: anterior/posterior; L/M: lateral/medial; S/I: superior/inferior).

Table 2
Scan parameters for MRI relaxometry at 9.4 T for the low-spatial-resolution and
high-spatial-resolution imaging of the tissue blocks. MSME=multi-slice multi-
echo; MGE=multi-gradient-echo. TR = repetition time. TE = echo spacing.

Measurement: T2

(low res)
T2

(high res)
T2*
(low res)

T2*
(high res)Parameter:

Resolution (μm) 195×195 86×86 195×195 86×86
Slice thickness (μm) 250 150 250 150
Scan sequence MSME MSME MGE MGE
Attenuators: A0, A1 16, 3 16, 3 22.5, - 22.5, -
TR (ms) 7000 7000 3500 4000
TE [T first echo] (ms) 7.248 9.783 6.0 [3.08] 6.0 [3.90]
No. of echoes 16 16 16 16
No. of averages 2 4 2 4
Scan time 22m24s 1h29m36s 11m12s 51m12s
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anatomical features in the SXRF and MRI images, and microscope
camera images of the stained and unstained SXRF section and the ad-
jacent histochemically stained tissue sections. Factors that occasionally
compromised correlation of the images included any misalignment of
the block for sectioning, slight deformation of the tissue by the
Fluorinert during MRI analysis, or sectioning artefacts such as cracks or
folds in the unembedded tissue. This approach, in combination with the
careful preservation of tissue architecture, made manual correlation
viable at the level of individual brain regions.

2.7. Statistical analysis

SSPS Statistics Version 21 was used to carry out linear regression
analysis, creating simple linear regression models to describe the re-
lationship between the measured MRI parameters (dependent variables:
R2, R2*, R2’) and the predictor (independent variable: iron). The cor-
relation coefficient, r, described the linear relationship, and the good-
ness of fit was reported as r-squared. SSPS was used to calculate a p-
value for the predictor in each case, testing for violation of the null
hypothesis, that there was no dependence of each measured MRI
parameter (R2, R2*, R2’) on iron, at a significance level of p < 0.05.

3. Results and discussion

Examples of matched SXRF and R2 images, showing the approx-
imate boundaries for segmentation, are given in Fig. 2, and the struc-
tures segmented for analysis are detailed in Table 3; those structures

adjacent to the main regions of interest were segmented where possible.
The correspondence between the SXRF and MRI images permitted de-
termination of the relationship between the MR relaxation values and
the associated iron concentration in each region. One section included
elevated iron directly associated with a major blood vessel; the affected
region was excluded from the analysis.

3.1. Calibration of SXRF maps

The iron concentration represented by one unit of normalised SXRF
signal intensity was calculated for each sample by dividing the mean
SXRF signal for that region by the mean bulk iron concentration mea-
sured in the adjacent tissue block. The mean and standard deviation for
each sample was calculated and then averaged for all samples giving a
mean of 7.3 ± 12% μg Fe / g hydrated tissue for every unit of nor-
malised SXRF intensity.

3.2. The dependence of R2, R2*, and R2’ on iron concentration

Fig. 3 shows the mean iron concentration versus R2 and R2* for each
of the main segmented regions from the correlated SXRF and MRI
image data, for the pooled data, and separately for the grey matter
(GM) and white matter (WM). The prediction bands show the range
within which 95% of any new measurements would be expected to fall.

The linear regression analysis described in Fig. 3, and the results of
this analysis set out in Table 4, produced the following equations re-
lating R2 and R2* (s−1) to iron concentration ([Fe] in μg/g, with an

Fig. 2. Matched and segmented SXRF transition metal maps and MRI R2 and R2* maps from a) the substantia nigra and b) the globus pallidus regions in case AD2.
During segmentation the intensity maps for the high abundance elements as well as the individual transition metals, were used to aid boundary identification. Here,
RBG images are shown to illustrate how there are distinct distributions of Fe, Zn, and Cu at this level of structural organisation. In the multi-metal maps these are
represented as Fe (red), Cu (green), Zn (blue). The accompanying scale bars show the computed R2 and R2* values for the MRI maps, and the temperature scale bars
for the transition metal maps show the normalized fluorescence intensity. Labels for the segmented regions are defined in Table 3.
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estimated experimental uncertainty of± 12%:

= +R 0.072 [Fe] 202 (2)

= +R 0.34 [Fe] 372
* (3)

The linear relationship proved robust, regardless of whether the
data were grouped by disease, or tissue type (grey or white matter).
Furthermore, the slope and intercept of the fitted lines agree within
error for each model for both R2 and R2*. In a prior study of the hip-
pocampus (Antharam et al., 2012), we previously demonstrated that
areas of increased iron concentration corresponded to increased R2 and
R2* in matched MRI and SXRF maps at 14.1 T, but here the relationship
was not quantified. Although a strong linear relationship has previously
been shown between iron and R2* at lower fields (between 1.5 T and
7 T (Yao et al., 2009)), this present study provides, to the best of our
knowledge, the first demonstration of the linear relationship between
iron concentration and R2 and R2* in human brain tissue at 9.4 T and
the first demonstration, with quantified iron values, above 7 T.

In clinical MRI imaging the different relaxation rates of grey and
white matter tissues provide contrast in the image and this is attributed
to their differing fat and water content in addition to iron content.
However, in this study the agreement of the linear relationship between
iron and R2 and R2* for both grey and white matter suggests that at
9.4 T, iron is the most significant factor in determining the value of R2

and R2*. The r-squared values obtained in the regression analysis in-
dicate that> 65% of variation in the data is accounted for by this linear
relationship. The evidence for this has not always previously been ap-
parent in studies including white matter (House et al., 2008), and here
the inclusion of white matter regions with higher iron levels than ty-
pically observed in cortical regions may be a factor. The linear re-
lationship we report at 9.4 T is not observed below a threshold of
100 μg/g, and this observation is in keeping with prior work at 4.7 T
reporting a threshold of 55 μg/g for R2 (House et al., 2007). We con-
sider the relationship between R2, iron, and field strength in the fol-
lowing section.

The effect of iron on R2 increases linearly with field strength (B,
Tesla), as formerly described empirically by Vymazal and co-workers
(Eq. (4)). They derived this from iron and R2 data measured at multiple
field strengths (0.05 to 1.5 T) at 37 °C in primate brain tissue (Vymazal
et al., 1996).

= +
−slope 14.1 6.2B s /mg/g1 (4)

When Eq. (4) is solved for an imaging field of 9.4 T (400MHz), it
gives a slope of 0.0724 s−1/μg/g. This compares extremely well with
the gradient of Eq. (2) above, 0.072 ± 0.008 s−1/μg/g, with no evi-
dence of saturation of the field dependent R2 increase at 9.4 T.

House and co-workers also compared their observations at 4.7 T to
Vymazal’s prediction and noted good agreement after accounting for
differences in experiment design (House et al., 2007). Therefore, while

the agreement we observe between our findings for R2 and Vymazal’s
prediction is excellent, it is important to note differences in experiment
design that may contribute experimental uncertainty in addition
to± 12% arising from calibration of the iron images with the SXRF
data:

1 R2 may be increased in tissue which has been frozen and defrosted
(Vymazal et al., 1996), and the samples used to determine Eq. (4)
were fresh compared with the defrosted post-mortem human brain
used in the present study.

2 R2 has been shown to decrease with temperature (Kamman et al.,
1988) and Eq. (4) is for tissue at 37 °C compared for the present
study performed at 2 °C.

3 The inter-echo time used in the sequence to obtain R2 may influence
the effect of iron content on R2 (Vymazal et al., 1996).

The susceptibility related relaxation rate R2* is generally under-
stood to represent the combination of the transverse relaxation rate R2

and the field inhomogeneity induced R2’. R2* is reportedly more sen-
sitive to changes in tissue iron concentration than R2 (Langkammer
et al., 2010), and this is reflected in the present results (Fig. 3, Eq. (3)).
The approximate mean R2’ was subsequently calculated for each seg-
mented region, using Eq. (5):

= −R ' R R2 2
*

2 (5)

and plotted against iron concentration as shown in Fig. 4 with the re-
sults of linear regression analysis for the combined and separated
control and AD data, confirming a strong linear dependence of R2’,
consistent with the earlier results for R2 and R2*. We note that the
gradient for this relationship for R2’ is 3.75 times larger than the gra-
dient for R2 (Fig. 3, Eq. (2)). These gradients have been reported ap-
proximately equivalent at 3 T (Gelman et al., 1999), so these new data
at 9.4 T indicate that not only is there a B-field-dependent contribution
to the relationship between of R2 with iron (Vymazal et al., 1996); there
is also a field-dependent contribution arising from the dependence of
R2’ on iron concentration. It is reasonable to assume a linear relation-
ship between the magnitude of the field B and R2’, as this has previously
been shown for the field-dependence of R2* (Yao et al., 2009). The
present result obtained at 9.4 T and the prior result from Gelman and
co-workers at 3 T can then be used to compute the gradient (slope) for
the dependence of R2’ on iron concentration at a particular imaging
field B as follows:

= − +
−slope 51.1 34.4B s /mg/g1 (6)

It is long-postulated that MRI-detectable changes in iron con-
centration may aid diagnosis of neurodegenerative disorders, including
AD (Antharam et al., 2012; Haacke et al., 2005; Langkammer et al.,
2014; Bartzokis et al., 1994). In the present study, despite the strong
linear relationships established with a very small sample size, the

Table 3
Summary of the regions segmented in the SXRF and MRI R2 maps.

Region Main Structures Additional Structures

Caudate Nucleus caudate nucleus (CN);
anterior limb of the internal capsule (AIC-CN);
white matter medial to the caudate nucleus (WM-CN)

n/a

Putamen putamen with high iron concentration (Pu_high);
putamen with low iron concentration (Pu_low);
white matter lateral to the putamen (Pu-WM)

Control sample only: anterior limb of the internal capsule (AIC-Pu)

Globus Pallidus external globus pallidus (GPe);
putamen with high iron concentration (Pu_high-GP);
lamina of white matter separating the external globus pallidus and putamen (WM-
GP)

Control sample only: internal capsule (IC); internal globus pallidus
(GPi)
AD sample only: putamen with low iron concentration (Pu_low-GP)

Substantia Nigra substantia nigra (SN);
cerebral crus (CC)

n/a
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indications are that a substantial increase in tissue iron would be re-
quired to be reliably detected as a deviation from normal levels ob-
served in cross-sectional studies, even at the highest clinically-available
fields. The evaluation of multiple regions, and of more than one marker
of iron status, offers scope to discriminate between disease states even
in small cohorts (Visanji et al., 2013). Given the heterogeneity in
normal regional iron concentration, it is likely that longitudinal ima-
ging to track change in individuals may provide the greatest sensitivity

and specificity to detect changes in the chemistry of the brain.

3.3. Method assumptions

3.3.1. ICP-MS and GFAAS determination of iron concentration are
equivalent

As noted in Section 2.2, practical constraints in the present study
resulted in most of the bulk analyses being performed using ICP-MS,

Fig. 3. Iron concentration versus R2 and R2* at 9.4 T. Results from linear regression analysis are shown in graphs a) and b) for the dependence of R2 and R2*
respectively on iron concentration in the pooled control and AD data. The light grey error bars represent the standard deviation within each the segmented region,
and are primarily a measure of signal heterogeneity rather than experimental uncertainty. The upper x-axis shows normalised SXRF iron signal intensity and the
lower x-axis shows the calibrated iron concentration. The prediction bands show the region in which 95% of any new measurements would be predicted to fall.
Graphs c) and d) show the dependence of R2 and R2* respectively on iron for control GM (filled symbol) and WM (open symbol) samples; e) and f) show the
equivalent data from the AD cases. The results support a linear relationship, with r> 0.85 in all examples.
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with the exception of the SN blocks which were analysed by GFAAS. In
order for the equivalence of these measures to be a justified assumption,
careful calibration and quantification were performed for both methods
(Finnegan, 2013; Visanji et al., 2013). In each case, signal is obtained
from the analyte following dissolution of the complete tissue block,

rather than selectively sampling within a volume of interest, and there
is no reason to expect any deviation in accuracy given that both pro-
cesses included careful calibration. An extensive review of post-mortem
iron quantification by Haacke and colleagues (Haacke et al., 2005),
which is summarized in Table 3.2 in (Finnegan, 2013), includes re-
ported values for these same regions of the brain obtained by both ICP-
MS and atomic absorption spectroscopy (AAS). There is no systematic
difference in the reported values as a function of analytical technique:
in some cases AAS returns higher concentrations, in other cases ICP-MS
is higher. We suggest that the greatest source of experimental un-
certainty will be in the method of dissection, and that having a single
team perform all the dissections in a consistent manner (as was the case
for the present study) is a critical factor in minimising experimental
uncertainty.

3.3.2. Adjacent tissue blocks for bulk and SXRF analysis have equivalent
iron concentrations

The method of calibrating the SXRF maps assumes that the tissue
samples measured with ICP-MS or GFAAS and the corresponding ROIs
mapped by SXRF have an equal concentration of iron. The dissection of
each block was carefully planned in order to best achieve this, for ex-
ample, the substantia nigra shown in Fig. 1 (AD2) was bisected parallel
to the plane of the image to obtain SNpc and SNpr in both blocks. Tissue
samples were approximately 1 cm thick, with the centre of adjacent
samples (for bulk iron concentration and SXRF) approximately
0.5–1 cm apart. The validity of the assumption of equivalent iron con-
centrations was tested for relative levels, not absolute concentrations,
by calculating the ratio of AD to control iron concentration for the bulk
tissue iron measurements and the mean relative iron concentration
measured by SXRF mapping. The ratios were in good agreement [CN:
bulk tissue iron 3.04 versus SXRF 2.80 (8% difference); Pu: bulk tissue
iron 1.28 versus SXRF 1.24 (3% difference); SN: bulk tissue 1.50 versus
SXRF 1.41 (6% difference)]. Agreement of these ratios within 10% in-
dicates that the relative iron concentrations are well-preserved across
the tissue volumes sampled.

Table 4
Results of linear regression analysis of iron versus R2 or R2*. a) The linear relationship between iron and R2. b) The linear relationship between iron and R2*. The
relationship is examined for the control and AD data separately and with both sets of data pooled. Data from grey and white matter regions is also examined
separately. In all cases there a statistically significant, strong linear relationship. The r-squared values show that at least 67% of the variation in the data is explained
by the linear relationship. All R2 models show a slope and intercept which agree within error. The same is true for all of the fits to the R2* data. *p < 0.05;
**p < 0.01; ***p < 0.001.

a) Iron vs. R2

Tissue regions Disease n Slope
(s−1/(μg/g))

Intercept (s-1) r r2 p

All pooled 22 0.072± 0.008 19±2 0.87 0.75 ***
Control 11 0.072± 0.009 21±2 0.93 0.87 ***
AD 11 0.079± 0.012 17±4 0.88 0.77 ***

GM Control 6 0.072± 0.011 19±2 0.96 0.92 **
AD 6 0.076± 0.027 16±8 0.82 0.67 *

WM Control 5 0.076± 0.013 22±3 0.96 0.91 *
AD 5 0.094± 0.016 18±3 0.96 0.92 **

b) Iron vs. R2*

Tissue regions Disease n Slope
(s−1/(μg/g))

Intercept (s-1) r r2 p

All pooled 22 0.34± 0.04 37±9 0.87 0.75 ***
Control 11 0.35± 0.05 38±10 0.93 0.87 ***
AD 11 0.35± 0.07 30±17 0.87 0.75 ***

GM Control 6 0.35± 0.10 35±21 0.87 0.76 *
AD 6 0.35± 0.12 16±35 0.82 0.7 *

WM Control 5 0.36± 0.06 41±120 0.97 0.93 **
AD 5 0.42± 0.07 33±150 0.96 0.92 **

Fig. 4. Iron concentration versus approximate R2’. The x-axis at the top of the
graphs shows the normalised iron SXRF signal intensity and the lower axis
shows the calibrated iron concentration. Simple linear regression analysis
shows a strong (r > 0.85) linear relationship between iron concentration and
R2’. The prediction bands show where 95% of any new measurements are
predicted to fall. The slope and the intercept of the fit agree within error for
both the pooled and separated control and AD data, representing 22 samples
from two control and three Alzheimer’s disease cases, encompassing the regions
detailed in Table 3. **p < 0.01; ***p < 0.001.
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3.3.3. SXRF and MRI slices can be correlated despite different thicknesses
The difference in SXRF (30 μm) and MRI (150 μm) slice thicknesses,

despite similar in-plane resolution, means that the SXRF maps account
for iron signal from approximately 20% of the corresponding MRI slice
volume. The properties of the tissue precluded cutting significantly
thicker sections for SXRF, and the signal recovery in the MRI would
have been compromised if thinner slices had been obtained. Cutting up
to five sections for SXRF from within each MRI slice accommodated
minor misalignment of the tissue block, and provided one or more
adjacent sections for staining to confirm tissue architecture. Although
this means the matching between the SXRF and MRI is imperfect, the
method did allow examination of the relationship between iron, R2 and
R2

* in unfixed samples at higher spatial resolution than in most prior
work, with the anatomical structures of interest substantially unaltered
over the 150 μm length-scale. The spatial resolution made it viable to
explore contrast variation within anatomically defined regions, redu-
cing the need to attempt bulk dissection within subfields. Indeed the
difficulty in precisely excising brain structures has been commented on
in the literature (House et al., 2007). The scope for pixel-by-pixel cor-
relation in the ROIs was explored for these datasets, incorporating a
protocol to rescale the MRI data relative to the SXRF data to bring them
into a shared matrix using Matlab. In practice this approach did not
provide such a robust outcome as the method applied in the current
study, which takes the average signal intensity value from segmented
ROIs where each sampled area includes thousands of pixels. This ap-
proach is more robust and pragmatic in studies where sections are
imperfectly matched, as it is less prone to distortions arising from the
experimental uncertainties.

3.3.4. Approaches to quantifying tissue iron distribution
Evaluation of total iron concentration in adjacent tissue blocks was

used here as a pragmatic method to estimate brain iron concentration
distribution in the SXRF iron maps. This was successful, with an ex-
perimental uncertainty± 12% that is equivalent to or is better than the
accuracy typically achieved with SXRF reference foils for tissue samples
due to issues with matrix matching (Collingwood and Davidson, 2014).
It is technically possible to achieve fully quantitative SXRF mapping of
elemental distributions where the phase contrast information can be
measured to perform the necessary mass correction (Kosior et al.,
2012), but this is not yet routinely available at SXRF beamlines. The
rationale for using SXRF here is that it is non-destructive, has a sensi-
tivity that increases with spatial resolution as it is a flux- (rather than
mass-) limited technique, and permits simultaneous acquisition of a rich
multi-element spectral image (Collingwood and Adams, 2017). There
are several excellent alternative beam methods (which by contrast to
SXRF are destructive), including laser ablation ICP-MS imaging and
others reviewed elsewhere (Collingwood and Adams, 2017); for these
alternatives the concentration detection limit decreases as the spatial
resolution of the imaging is increased.

We observed distinct variations in iron distribution both between
and within the primary regions studied. This marked heterogeneity of
iron distribution within the sub-fields of the brain may in part account
for wide variations in the experimental reports of healthy adult brain
levels (Haacke et al., 2005), along with variations due to the analytical
approach used.

In the study from Frisoni and co-workers: ‘Imaging markers for
Alzheimer disease: Which vs how’, a large number of candidate imaging
markers for AD were evaluated, including volumetric MRI. They con-
cluded that the way in which an imaging marker is measured is at least
as important to its success as the marker itself (Frisoni et al., 2013). This
would certainly apply to the measurement of tissue iron concentration
by MRI.

4. Conclusion

A linear dependence of R2, R2* and R2’ on iron concentration was

observed at 9.4 T, independent of disease state or tissue type. The
gradient of the relationship between iron and R2 agrees with the pre-
dicted relationship at 9.4 T, with no indication of saturation of the field
dependent R2 increase. Iron is the focus of the present study as it offers
strong scope for clinical evaluation, but the approach may be used more
widely to evaluate other elements in Alzheimer’s and related disorders,
and to test their relative impact on candidate imaging parameters in-
cluding quantitative susceptibility mapping and other clinically ap-
plicable modalities.
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A B S T R A C T

Background: The corpus callosum is the largest white matter tract in the human brain, involved in inter-hemi-
spheric transfer and integration of lateralised visual, sensory-motor, language, and cognitive information.
Microstructural alterations are implicated in ageing as well as various neurological conditions.
New method: Cross-sectional diffusion-weighted images of 107 healthy adults were used to create a linear re-
gression model of the ageing corpus callosum and its sub-regions to evaluate the impact of analysis by sub-
region, and to test for deviations from healthy ageing parameters in 28 subjects with mild cognitive impairment
(MCI). Alterations in diffusion properties including fractional anisotropy, mean, radial and axial diffusivities
were investigated as a function of age.
Results: Changes in DTI parameters showed age-dependent regional differences, likely arising from axonal
diameter variation across cross-sectional regions of interest in the corpus callosum. Patterns suggestive of de-
generation with healthy ageing were observed in all regions. Diffusion parameters in sub-regions projecting to
pre-motor, primary, and supplementary motor areas of the brain differed for MCI versus healthy controls, and
MCI subjects were more likely than healthy controls to experience a reduction in motor skills.
Comparison with existing methods: : Statistical analyses of the corpus callosum by five manually-defined sub-
regions, instead of a single manually-defined region of interest, revealed region-specific changes in
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microstructure in healthy ageing and MCI, and accounted for clinically-evaluated differences in motor skills
between cohorts.
Conclusion: : This method will support future studies of corpus callosum, enabling identification and measure-
ment of white matter changes that are undetectable with the single ROI approach.

1. Introduction

The topology of the human brain is constantly changing from birth,
plateauing in adulthood and degenerating in later life. Both grey matter
and white matter tissues in the brain are susceptible to ageing, with
observations in post-mortem studies of healthy human brains of more
severe age-related changes in white matter than in grey matter (Marner
et al., 2003; Piguet et al., 2009). The corpus callosum is the largest
white matter tract in the human brain, with more than 300 million
fibres interconnecting the two cerebral hemispheres. Recent technolo-
gical advances have found fibres of the corpus callosum projecting into
prefrontal, pre-motor, supplementary and primary motor, and sensory
areas of the brain (Hofer and Frahm, 2006), and involved in inter-
hemispheric transfer and integration of lateralised visual, sensory-
motor, language and cognitive information (van der Knaap and van der
Ham, 2011). Corpus callosum anatomy has been divided into sub-re-
gions based on geometry (Clarke and Zaidel, 1994; Witelson, 1989),
connectivity (Hofer and Frahm, 2006), and statistically derived cohe-
siveness (Denenberg et al., 1991; Peters et al., 2002). Studies on effects
of age, sex and handedness in the healthy brain have reported differ-
ences in these properties in the corpus callosum by sub-region (Peters
et al., 2002; Prendergast et al., 2015; Reuter-Lorenz and Stanczak,
2000; Sullivan et al., 2001a, 2001b; Witelson, 1989).

Post-mortem studies have linked altered properties of the corpus
callosum to normal ageing (Hou and Pakkenberg, 2012) as well as
neurological disorders including schizophrenia (Woodruff et al., 1995),
multiple sclerosis (Evangelou et al., 2000), Huntington's disease and
progressive supranuclear palsy (Mann et al., 1993). Recent magnetic
resonance imaging (MRI) studies have strengthened these conclusions
with evidence of atrophy (Goldman et al., 2017; Granberg et al., 2015;
Lee et al., 2016; Wang et al., 2015a), morphological changes (Ardekani
et al., 2014; Pardoe et al., 2015; Wolff et al., 2015), and demyelination
in the human corpus callosum (Decker et al., 2018; Køster et al., 2018)
and mouse models (Xiu et al., 2015). Diffusion tensor magnetic re-
sonance imaging (DT-MRI or DTI) has also been applied to study the
corpus callosum. DTI is an advanced technique that is used to image the
diffusion properties of water molecules in tissue, providing a means to
interpret the presence or absence of barriers to this diffusion (Le Bihan
et al., 2001). DTI has been previously used to study the microstructural
properties of the corpus callosum in healthy ageing and various neu-
rological disorders (Hasan et al., 2005; Shahab et al., 2018; Sullivan
and Pfefferbaum, 2003).

The corpus callosum is reportedly the white matter structure most
affected by age (Sala et al., 2012), with some studies also revealing
differences in the extent to which its sub-regions are affected (Ota et al.,
2006). These variations between the sub-regions have been suggested
as indicative of the differing effects of age in the corresponding parts of
the brain they project to (Lebel et al., 2010; Ota et al., 2006). However,
there are conflicting study results in the literature with some indicating
a larger effect of age in the anterior corpus callosum than in the pos-
terior (Hasan et al., 2005; Lebel et al., 2010; Ota et al., 2006; Sullivan
et al., 2001a, 2001b), and a few suggesting the opposite (Bennett et al.,
2017). MRI and DTI studies of the corpus callosum have also been
carried out for various neurological disorders including mild cognitive
impairment (MCI) and Alzheimer's disease (AD) (Ardekani et al., 2014;
Lee et al., 2016; Wang et al., 2015b). Results of these studies indicate
degeneration of the corpus callosum in disease that exceeds changes
arising from healthy ageing.

The corpus callosum incorporates a heterogeneous bundle of fibres

connecting the hemispheres of the brain. Different segments of this
fibre bundle have been observed to be of different sizes or diameters,
likely depending on the region of the brain they project to (Aboitiz
et al., 1992). This may have an impact on the quantitative parameters
measured in vivo, particularly in DTI. In previous DTI investigations of
the corpus callosum in healthy ageing and disease, it has been treated as
a single region of interest (ROI), and/or by sub-region (Ma et al., 2009;
Bennett et al., 2017; Feng et al., 2018; Ota et al., 2006, Lebel et al.,
2010). While a single ROI approach is easier to implement, the het-
erogeneity of the corpus callosum may be better represented through a
region-wise analysis. This, in turn, may be influenced by the choice of
scheme used to define the sub-regions. Here, we investigated DTI
properties of the corpus callosum as a function of age and tested for
cohort differences between ageing healthy controls (HC) and in-
dividuals with MCI, examining how this is influenced by segmenting
the corpus callosum as a single ROI and by sub-region. Strategies for
segmentation of the corpus callosum were explored. The data available
to this study were acquired in the axial plane, but the corpus callosum is
better delineated in the sagittal plane, so at the outset comparisons
were made between atlas-based and manual delineation of the corpus
callosum to determine the most appropriate strategy for this study.
Having selected a manual delineation approach, the Hofer and Frahm
scheme (segmenting in the sagittal plane to create pre-defined frac-
tions), was used to divide the corpus callosum into five sub-regions for
analysis (Hofer and Frahm, 2006).

2. Materials and methods

Data used in this study were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu).
ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of
ADNI has been to test whether serial MRI, positron emission tomo-
graphy, other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of MCI and
early AD. ADNI consists of a series of multi-site data acquisition studies,
with ADNI-1, ADNI-2, and ADNI-GO completed to date; ADNI-3 is on-
going. This study used data from ADNI-3, in order to utilize DTI data
acquired at higher spatial resolution than in the previous ADNI studies.
The primary inclusion criterion was that the image data were acquired
with a set of fully-matched scan parameters. Prior studies confirm the
importance of ensuring a consistent set of acquisition scan parameters
to avoid introducing experimental uncertainty into the quantitative
results, where their selection reportedly affects diffusion tensor esti-
mation in DTI (Landman et al., 2007; Zavaliangos-Petropulu et al.,
2019; Zhu et al., 2009). Application of this criterion to the full cohort in
ADNI-3 produced a choice of three study cohorts (Siemens, GE, or
Philips), and the largest of these at the time of analysis (Siemens) was
selected, providing 140 subjects (107 HC, 28 MCI, 5 AD). All these HC
and MCI subjects were included in the present study. Although the
sample sizes for HC and MCI differed, this was carefully considered and
accommodated for in the choice of statistical methods for comparison
between the groups. The 5 AD cases were excluded because power
calculations to determine study group size, based on prior-published
ADNI-2 data, indicated that the AD group was too small to include for
comparison with the HC and MCI.

The scan sequence details of images included in this study are: field
strength = 3 T, echo time (TE) =56 ms, repetition time (TR) =7200
ms, b = 0, 1000s/mm2, number of diffusion weighted images = 48,
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number of non-diffusion weighted images = 7, voxel size = 2 mm x 2
mm x 2 mm and approximate scan time =7 min 30 s.

The ADNI-3 subject images selected for use in this study were col-
lected at the baseline visit for each participant. Ideally, longitudinal
data from individuals would be used to analyse changes in DTI para-
meters as a function of age. In practice, a preliminary analysis (using
the lower-spatial-resolution longitudinal data sets from ADNI-2
(Supplementary Figure S1) confirmed an insufficient number of parti-
cipants in the ADNI-3 study cohort to support a longitudinal analysis.
Instead, a cross-sectional analysis of the data from ADNI-3 was per-
formed; this had the advantage of enabling inclusion of all HC and MCI
subjects imaged using Siemens scanners during ADNI-3.

Gender has been reported to be a significant risk factor for MCI and
AD, with the longitudinal rate of cognitive decline in MCI observed to
be greater in women than in men (Laws et al., 2018; Lin et al., 2015).
Gender-dependence of the patterns of change in DTI parameters of the
white matter have also been observed (Kanaan et al., 2012); however,
this finding is contradicted by others where no gender differences were
observed (Inano et al., 2011). This apparent difference may be ac-
counted for by factors other than gender dominating the white matter
changes (de Schotten et al., 2011). For this reason, differences in DTI
parameters as a function of gender were specifically tested for in the
ADNI-3 cohorts studied here.

To understand if gender influenced DTI parameters with ageing,
HCsub (74 age- and gender-matched healthy subjects (37 F; 37 M)) was
created as a subset of the main HC study group. Subject demographics
are summarised in Table 1. The rationale for creating HCsub was to test,
using multiple regression, whether the DTI parameters were influenced
by gender, and thereby to determine whether the main cohort HC or the
subset HCsub was most appropriate for use in the study of the re-
lationship between DTI parameters and ageing.

DTI scans were processed in the subject space using FSL (FMRIB
Software Library, University of Oxford) which is a comprehensive li-
brary of tools for brain imaging data analysis (Smith et al., 2004). Eddy-
current-induced artefacts in the scans were corrected using the ‘eddy_-
correct’ command (Jenkinson et al., 2002). The skull was removed, and
the brain extracted from the artefact-corrected image using the ‘bet’ tool
of FSL and visually verifying the output. Weighted fitting of the diffu-
sion tensor on the brain was achieved using the ‘dtifit’ command
(Jenkinson et al., 2012) and four scalar maps – fractional anisotropy
(FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity
(AxD) – were computed from the Eigen values of the tensor.

2.1. Selection of corpus callosum segmentation strategy

The ADNI DTI data were acquired in the axial plane, so ROI deli-
neation to segment the corpus callosum would ideally be performed in
the same plane to obtain the most accurate measurements. However,
the corpus callosum is not easily visualised in the axial plane, and in
previous studies it has been segmented in the sagittal plane (Ardekani
et al., 2014; Ota et al., 2006; Westerhausen et al., 2004). To address this
constraint, we tested several strategies to segment the corpus callosum,
comparing the results for atlas-based and manual segmentation in the
sagittal plane with the data obtained from the axial acquisition plane
(considered ground truth). A small group of ten subjects was sampled
from the cohort for this purpose, to enable comparisons between stra-
tegies at an individual level. The result from this process was used to
select the strategy for use with the full cohort.

Step 1: Measurement in the axial (acquisition) plane using circular
ROIs on axial FA image: The corpus callosum was identified on axial FA
maps using anatomical landmarks such as the ventricles. Segmenting
the whole structure in the axial plane was not attempted, because poor
boundary definition had strong potential to increase experimental un-
certainty in the results. Instead, using the method illustrated in prior
studies (Bartzokis et al., 2010; Li et al., 2009), FA values were sampled
with circular ROIs of varying radii (to avoid partial volume effects),

placed throughout all axial slices where the corpus callosum was clearly
identifiable (Fig. 1a, inset). Although previous studies have used the
mean value from these ROIs, the heterogeneous distribution does not
necessarily follow a normal distribution. Although mean and median
values were very similar, checks on the individual distributions for the
10 subjects sampled for this step supported our use of the median to
accommodate non-normal distributions of pixel FA values.

Step 2: Measurement using atlas-based delineation of ROI: The
ICBM-DTI-81 atlas (Mori et al., 2008) provided with FSL, was used to
obtain a mask of the corpus callosum using the labelled regions corre-
sponding to the genu, the body and the splenium. Each subject’s FA
map was registered to the Montreal Neurological Institute (MNI) co-
ordinate system (Fig. 1b), and the mean and median values of FA were
measured in the ROI using the mask.

Step 3: Measurement using manual delineation in the sagittal plane:
In the manual segmentation approach, the FA image was first re-
constructed in the sagittal plane, and the mid-sagittal slice of the brain
was estimated using the method developed by Freitas et al., 2011. Two
slices each on either side of the mid-sagittal slice were segmented along
with it to yield a volume of the corpus callosum consisting of five mid-
sagittal slices (Fig. 1c). The mean and the median of the FA values of
the pixels in this ROI were estimated.

Fractional anisotropy (FA) values measured using the strategies of
manual segmentation in the sagittal plane, and atlas-based segmenta-
tion, were compared to determine which gave values in best agreement
with those obtained manually from the axial plane (which, as the plane
of data acquisition, was treated as ground truth for the purpose of these
comparisons).

For subsequent region-wise analysis, the corpus callosum was seg-
mented into sub-regions in ImageJ, using the pre-defined fractions for
the sagittal plane indicated in the Hofer and Frahm scheme (Hofer and
Frahm, 2006) (Fig. 1d). It is noted that while the corpus callosum is a
bundle of fibres connecting the left and right hemispheres of the brain
(Fig. 1a), analysis using segmentation performed in the sagittal plane
parsed this bundle of fibres cross-sectionally from anterior to posterior
(Fig. 1c), sampling its properties within a window of five sagittal slices.

Manual segmentation was performed in ROIEditor (Region of
Interest Editing Tools v. 1.8). Statistical tests, including linear regres-
sion and ANCOVA for the variation in FA, MD, RD, and AxD with age,
were conducted using software package R using other relevant factors
such as gender and disease group as covariates. For region-wise

Table 1
Age and gender distribution of subjects in the main healthy control (HC) and
mild cognitive impairment (MCI) cohorts, and the gender- and age-matched HC
subgroup (HCsub) as a subset of the HC cohort; M: male, F: female.

Age range (years) Healthy controls Mild cognitive impairment

Cohort M F M F

55−60 HC – 1 – 2
HCsub – –

61−65 HC 5 8 1 –
HCsub 5 5

66−70 HC 7 24 2 1
HCsub 7 7

71−75 HC 5 10 4 4
HCsub 5 5

76−80 HC 11 9 3 4
HCsub 9 9

81−85 HC 8 9 1 –
HCsub 8 8

86−90 HC 6 2 1 2
HCsub 2 2

90−96 HC 1 1 1 2
HCsub 1 1

Total HC 43 64 13 15
HCsub 37 37
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Fig. 1. (a) Segmentation in the axial acquisition plane: circular
ROIs (see inset) placed in the corpus callosum in the axial plane to
sample median FA values to be used as ground truth; (b) Strategy
using atlas-based mask of corpus callosum (ICBM-DTI-81 atlas) to
estimate mean and median of pixel-wise values; (c) Strategy using
manual segmentation of the corpus callosum on FA image re-
constructed in the sagittal plane to estimate mean and median of
pixel-wise values; (d) Extended manual segmentation of the corpus
callosum in the sagittal plane into five pre-determined regions
based on the Hofer and Frahm scheme (schematic adapted with
permission from Hofer and Frahm (2006)).

Fig. 2. Measured values of FA in 10 subjects, using different seg-
mentation schemes. Median of pixel-wise FA from multiple cir-
cular ROIs placed in the axial corpus callosum (Fig. 1a) are con-
sidered ground truth. Corresponding box plots for each strategy
show the distribution of offsets from ground truth for the 10
subjects. The experimental uncertainty in the data that can arise in
subject comparisons from differences in scan sequence parameters
(Zhu et al., 2009) has been avoided by only using images acquired
using fully matched parameters; experimental uncertainty from
other sources such as eddy current artefacts have been reduced by
post-processing. In regions with high FA such as the corpus cal-
losum, the reported experimental uncertainty in FA has been very
small (Zhu et al., 2009).
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analysis, measurements from each sub-region were tested separately.
Measured parameter values and codes written in R to carry out the
analyses are available at http://wrap.warwick.ac.uk/138931.

3. Results and discussion

3.1. Effects of gender on age-related changes not found significant in the
cohort studied

To test for the effects of gender, multiple linear regression analyses
of FA, MD, RD and AxD were carried out on cohort HCsub. Age, gender,
and the effect of their interaction were considered as factors. All four
parameters exhibited linear trends with age in the age range analysed,
in agreement with previously reported observations in the literature
(Lebel et al., 2010; Ota et al., 2006). A consistent difference was ob-
served between male and female patterns of changes with age, in re-
gression plots of MD, RD and AxD, although this was not statistically
significant. Such an offset was not observed for FA. The corresponding

figures and regression equations are given in Figure S2 and Table S1 in
Supplementary Materials. Since analysis of the HCsub cohort did not
indicate that gender was a statistically significant factor for DTI para-
meters as a function of age, subsequent analyses were conducted on the
larger cohort HC using methods appropriate for application to differ-
ently sized study groups.

3.2. Comparison of corpus callosum segmentation methods

The results from the comparison of strategies for segmentation of
the corpus callosum are shown in Fig. 2. The primary constraint of the
atlas-based ROI approach is evident in Fig. 1b, where the mask of the
corpus callosum is misaligned with the target structure evident in the
image contrast. The mean and median of the FA in this ROI (Fig. 2:
Atlas ROI (mean) and Atlas ROI (median)) were estimated and com-
pared with the manually-segmented axial data (ground truth) and
manually-segmented regions in the reconstructed sagittal plane. Atlas-
based measurements resulted in a significant reduction in the estimated

Fig. 3. Scatter plots of DTI parameters versus age with linear regression lines: (a) fractional anisotropy, (b) mean diffusivity, (c) radial diffusivity, and (d) axial
diffusivity in the whole corpus callosum. Figures (e)-(h) are the same type of scatter plots but stratified by corpus callosum sub-region. The significance of age as a
contributing factor to the observed trends, and the r-squared values, have been given in the Supplementary Tables S2 and S3. Figures (i)-(l) show the results of
Tukey’s multiple comparison tests between regions, with colours indicating corresponding significance levels. Values of MD, RD, and AxD are in 10−3 mm2/s.
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mean and median FA, likely due to partial volume effects. Potential
issues with accuracy in the ICBM-DTI-81 atlas are addressed in a prior
study (Rohlfing, 2013).

By contrast, as shown in Fig. 2, median values from the manually
segmented ROI in the sagittal plane were closest to ground truth for the
10 sampled subjects. The slight offset of the FA values obtained
manually in the sagittal plane compared to those from the axial plane
may have arisen from i) the constrained sampling in the axial plane
(reinforcing the need for ROI delineation in the sagittal plane), and/or
from ii) interpolation errors arising from the sagittal reconstruction
process. However, the similarity of the values, and the consistency of
their distribution, indicated that this slight offset in the measured FA
value would not affect the cohort-level relationships observed in sub-
sequent regression analysis, and manual segmentation in the sagittal
plane was subsequently used to obtain MD, RD, and AxD for the full
cohort study.

3.3. Linear regression analysis of HC reveals age-related changes that vary
between sub-regions, with evidence that axon diameters are a factor

Plots of linear regression analysis of FA, MD, RD and AxD on cohort
HC, are shown in Fig. 3. For all four diffusion parameters, age was a
significant factor contributing to the changes observed (p < 0.001).
Similar analyses were performed to investigate whether patterns of
change with age were different in the sub-regions of corpus callosum
(Fig. 3e-h). (See Supplementary Materials for the corresponding re-
gression equations.) Analysis of covariance (ANCOVA) revealed that the
measured values of FA, MD, and RD differed significantly (p < 0.001)
between the sub-regions when controlling for age (Table 2). Tukey's
tests were performed for pairwise comparisons between the sub-regions
for significantly differing values of the measured parameters (Figs. 3
i–l). Estimates of the effect size of region on the distribution of FA, MD,
RD, and AxD are shown in Table 2. Partial omega-squared (ω2), being a
bias-corrected effect size estimator, has been used to describe the effect
sizes in this study. When the effect or the sample size is small, ω2 may
carry negative values resulting from the bias correction (Okada, 2016).

A post-mortem study (Aboitiz et al., 1992) has shown that when
parsing the corpus callosum cross-sectionally, the anterior region has
the highest density of thin fibres. This starts decreasing towards the
posterior regions and reaches a minimum before increasing again to-
wards the posterior end. An opposite trend is observed for the density of
fibres with a larger diameter. This density distribution of axonal dia-
meter has been visualised in Fig. 4a, in an ROI that provides a cross-
sectional view of the corpus callosum. Another study (Barazany et al.,
2009) has reported a positive correlation between RD and axon dia-
meter in the corpus callosum of rat brain, potentially due to larger
diameters leading to lower packing density and a subsequent increase
in perpendicular diffusion. This relationship has been found to hold true
in our study in the human corpus callosum as visualised in Fig. 4b, even
though we followed a different scheme of sub-division. The regional
variations observed in DTI parameters in the cross-sectional corpus
callosum ROI (Table 2) could likely be due to the varying density of
axons with larger and smaller diameters that connect different regions
of the two brain hemispheres (Fig. 4a). An interesting finding here was
that regional variations did not affect AxD values of the corpus cal-
losum; this may be due to the relatively simpler and unidirectional
nature of axons in the regions analysed. Our analysis suggests that
variations in DTI properties between sub-regions in the corpus callosum
are significant. Therefore, studies investigating the diffusion properties
of corpus callosum in ageing or disease may be better served by ana-
lysing each sub-region separately. This has scope to reduce the variance
observed in measured data, since our analysis indicates that at least 25
% of variance can be explained by region-wise differences in the case of
the parameters FA, MD, and RD (Table 2).

3.4. Comparison between MCI and healthy ageing: data indicating motor-
related impairment in MCI reveal merits of corpus callosum analysis by sub-
region

The effects of MCI on the corpus callosum and its sub-regions were
investigated using data from cohorts HC and MCI (Fig. 5). Initial tests
were carried out on the whole corpus callosum ROI using ANCOVA
(Fig. 5a); they revealed subtle but significant differences between HC
and MCI groups in FA, RD, and AxD, after controlling for the effects of
age (Supplementary Table S4). Opposing changes in the magnitudes of
RD and AxD (decrease and increase respectively), for patients with MCI
compared to HC, may have masked any changes in MD (Supplementary
Material Figure S3).

It is worth noting that the measured values for FA in MCI were
higher than those for HC, and that the values for MD and RD were lower
in MCI than for HC. This contradicts previous reports which showed
trends of lower FA and higher diffusivities in degeneration (Amlien
et al., 2013; Liu et al., 2013; Nowrangi et al., 2013; Wang et al., 2013),
but seems to suggest a role for inflammation in MCI as indicated by
increasing FA and decreasing diffusivities (Gupta et al., 2008; Nath
et al., 2007; Renoux et al., 2006). This reportedly suggests either in-
tracellular inflammation with inflow of extracellular water in the axons
or decreased extracellular space due to cellular infiltration by in-
flammatory cells (Renoux et al., 2006). Neuroinflammation in MCI and
Alzheimer's disease has not been extensively studied in this context.
Advanced diffusion models of the brain such as those quantifying ex-
tracellular free-water volume are emerging markers being used to study
neuro-inflammation (Pasternak et al., 2016, 2012), but are outside the
scope of this study.

Investigation of region-specific measurements provided a better
insight into differences between HC and MCI subjects (Fig. 5b). Sup-
plementary Table S5 summarises the results of analysis using ANCOVA,
controlling for the effects of age. Values of MD, RD, and AxD differed
significantly (p < 0.05) between HC and MCI in region 2, and that of
AxD differed significantly (p < 0.05) in region 3. This indicates that
degenerative changes observed in MCI are dominant in regions 2 and 3
of the corpus callosum; and that they may be more extensive in region 2
than in region 3. It must be noted that although the effect sizes of MCI
in regions 2 and 3 for the significantly different DTI parameters (Sup-
plementary Table S5) were higher than in other regions, their values
were still small. This might be accounted for by subtle differences be-
tween HC and MCI during the early stages of cognitive impairment.

Physiological interpretations for RD have included demyelination,
and that for AxD have included axonal degeneration (Song et al., 2002,
2003). They suggest that the corpus callosum integrity is likely to be
diminished in MCI, potentially playing a role in progression to Alz-
heimer's disease. In a prior study with data from ADNI-2 participants,
DTI properties in several white matter structures were compared for
patients with MCI, Alzheimer’s disease patients, and healthy controls
(Nir et al., 2013). They found widespread anisotropy and diffusivity
alterations in elderly patients with Alzheimer’s disease. They also re-
ported that diffusivity measures were more sensitive to microstructural
alterations than FA and could detect subtle differences in patients with
MCI compared to controls. This was supported by the results from the
analysis of corpus callosum sub-regions in the present study that

Table 2
Results of ANCOVA between regions 1 – 5 in HC, testing for the effects of re-
gional differences after controlling for the effects of age.

Parameter Cumulative p-value (ANCOVA) ω2

FA < 0.001 0.295
MD < 0.001 0.291
RD < 0.001 0.330
AxD 0.006 0.019
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Fig. 4. (a) Density distribution of small and
large diameter axons in the corpus callosum;
picture adapted with permission (Aboitiz et al.,
1992). (b) Distribution of FA and RD values in
the corpus callosum sub-regions were observed
to follow a similar trajectory. Although the sub-
division scheme used in this study is different
to that used in (a), it can be observed that the
minimum and maximum density for smaller
and larger diameter fibres occur in region B3
(isthmus) which is approximately the same as
region 4 in the Hofer scheme; where the
minimum and maximum for FA and RD dis-
tributions have respectively been observed.

Fig. 5. (a) Linear trends of FA, MD, RD and AxD, for HC and MCI groups, in the whole corpus callosum, with corresponding density plots (smoothed histograms) (b)
Density plots of FA, MD, RD and AxD visualised separately in the corpus callosum sub-regions. Values of ω2 and their p-values for differences in measurements
between HC and MCI are shown on the plots where they were observed to be statistically significant. * denotes p < 0.05 and ** denotes p < 0.01. ω2 and their p-
values for the remaining figures have been given in Supplementary Tables S4 and S5. Values of MD, RD, and AxD are in 10−3 mm2/s.
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revealed alterations in MD, RD, and AxD between MCI and HC.
Region 2 of the corpus callosum projects to pre-motor and supple-

mentary motor areas, and region 3 to primary motor areas of the brain
(Hofer and Frahm, 2006). An effect of MCI, indicated by significantly
different diffusivity measurements in regions 2 and 3 as reported in this
study, may help explain motor impairments seen in MCI and pre-clin-
ical Alzheimer’s disease (Buchman and Bennett, 2011; de Paula et al.,
2016; Förstl and Kurz, 1999; Wirths and Bayer, 2008). Neurophysio-
logical examination data, accompanying individual ADNI-3 participant
scans, was used to test this hypothesis. These data were collected as part
of the screening process and provide preliminary information about a
range of functional networks including motor, visual and auditory
systems. They are summarised in Table 3 and show that a higher pro-
portion of MCI subjects than HC were reported to show tremors, ab-
normal reflexes and impaired gait. It is interesting to note that this
pattern was observed only in motor-related functions, and not in the
results of visual or auditory examinations. This suggests that an im-
pairment in motor skills is observed for MCI, supporting our results that
indicate alterations in the corpus callosum regions projecting to motor
areas of the brain.

The results of our study agree with data from previous studies (Snir
et al., 2019; de Laat et al., 2011; Bhadelia et al., 2009) that show sig-
nificant correlations between altered FA in the genu of the corpus
callosum and abnormal gait function. It must be noted that our study
found an increase in FA in these regions of interest whereas these stu-
dies report a decrease in FA. Due to the non-specific nature of DTI, it is
difficult to establish the exact nature of pathological changes that may
be occurring in the corpus callosum in MCI. A decrease in diffusivity
values in regions 2 and 3 of the corpus callosum may indicate demye-
lination or axonal degeneration (Song et al., 2002, 2003), in the com-
missural tracts in the anterior parts of the corpus callosum, resulting in
diminished processing of information in the pre-motor, supplementary
motor and primary motor areas of the brain.

4. Conclusions

Analysis of FA, MD, RD and AxD revealed that the properties of the
corpus callosum are better characterised when segmented as five sub-
regions, as opposed to as a single structure. Using this approach re-
vealed changes in corpus callosum regions 2 and 3 of MCI subjects
compared to HC, changes which were undetectable using the single ROI
approach. The significance of the MCI-associated change is that regions
2 and 3 project to pre-motor, supplementary motor and motor areas of
the brain. The DTI alterations in these regions were supported with
evidence from ADNI-documented neurophysiological exams of these
subjects, confirming that patients with MCI were more likely than HC to
experience motor-related deficits, compared to other impairments. A
limitation to the interpretation of the neuroscience findings, enabled by
the method adopted for this study, is the lack of detailed information
about motor functions in the ADNI neurophysiological exams con-
ducted as part of screening. The ADNI evaluations only indicate the
presence or absence of abnormalities. Availability of detailed test re-
sults in the future may help estimate the correlation between DTI

parameters, tremors, reflexes and gait, providing insight into the extent
of the role of corpus callosum in motor impairment as observed in MCI
and potentially, pre-clinical Alzheimer’s disease.

In summary, we anticipate that the method demonstrated in this
study will advance the detection in a clinical setting of alterations to the
structure of the corpus callosum, and corresponding impacts on brain
function, using this comparatively simple method to obtain the ROIs
and supporting statistical analysis.
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