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Abstract

This thesis makes contributions in two main areas relating to sequential Monte Carlo
(SMC) samplers, a class of sequential simulation algorithms used to approximate sequences
of probability distributions de�ned on a common space. Firstly, we consider settings in
which one has a single distribution of interest, from which obtaining samples using sim-
ple Markov chain Monte Carlo techniques may not be straightforward. We consider the
problem of tuning an SMC sampler in this context, selecting an appropriate sequence
of distributions to ensure e�cient exploration of the space and to control the variance
of the resulting estimators. We formalise this as a minimisation problem relating to an
asymptotic variance, deriving expressions for a number of relevant quantities and solving
this problem for some simple models. We also investigate procedures for selecting such
a sequence in practice, utilising recently-proposed methods for cheaply estimating the
variances of SMC-based estimators. Secondly, we consider the problem of approximating
Bayesian posterior distributions, when these depend on large data sets distributed across
multiple computers. Inspired by global variable consensus optimisation, we introduce a
novel framework for simulation in distributed settings, proposing a Markov chain Monte
Carlo algorithm on an extended state space. Based on the construction of an instrumental
hierarchical model, a tuning parameter controls the �delity to the original model. We also
propose the use of these Markov kernels within an SMC sampler. We propose a method
for using SMC variance estimators within a bias correction procedure, and propose a stop-
ping rule for the SMC sampler, allowing the automatic selection of the tuning parameter.
In contrast to similar distributed Monte Carlo algorithms, this approach requires few dis-
tributional assumptions. The performance of the algorithms is illustrated with a number
of simulated examples.
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Introduction

Context

Since the introduction of the bootstrap particle �lter by Gordon et al. (1993), sequential
Monte Carlo (SMC) methods have been widely used for the purpose of approximating se-
quences of recursively-de�ned probability distributions. Based on sequential importance
sampling, SMC algorithms have found application in wide variety of areas, including mo-
tion tracking, �nancial time series analysis and signal processing (see Doucet et al., 2001,
for a comprehensive review). Within this framework, Del Moral et al. (2006) proposed a
methodology allowing such methods to be used for approximating arbitrary sequences of
probability measures de�ned on some common space. The resulting algorithms are known
as sequential Monte Carlo samplers and have been applied to a number of inference set-
tings, which we will explore throughout this work.

Sequential Monte Carlo algorithms possess a number of convenient properties. They
do not require the imposition of strict distributional assumptions (cf. the Kalman �lter of
Kalman, 1960, which is exact only for linear Gaussian models), and many of the resulting
estimators have bene�cial convergence properties (e.g. central limit theorems). However,
they can be computationally expensive, and there are a number of open problems relating
to the tuning of such methods. We consider some such problems within this thesis.

Recently-proposed variance estimation procedures for SMC algorithms provide a key
motivation for this work. Speci�cally, a number of authors (Chan and Lai, 2013; Lee and
Whiteley, 2018; Olsson and Douc, 2019) have proposed procedures for numerically assess-
ing the Monte Carlo error of estimates formed by such algorithms, as a simple by-product
of the execution of the SMC algorithm. Given the simplicity and low computational cost
of these variance estimators, there is great potential for these techniques to be used within
practical procedures for the tuning of SMC methods.

This thesis considers such tuning problems in two main areas. Firstly, we consider set-
tings in which there is a single distribution of interest from which it may be di�cult to
draw samples using simple Markov chain Monte Carlo techniques; for example, a distri-
bution with well-separated modes. A common approach in such cases is to construct an
SMC sampler to approximate a sequence of distributions ending with this distribution of
interest, in order to facilitate exploration of the space. While such constructions have been
applied in a number of areas (we later provide a review), the question remains of how best

1
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to choose this sequence in order to control the variance of the resulting estimators. We
make a number of contributions to this open problem, including:

• We propose a formalisation of this problem as a transdimensional minimisation
problem, of a quantity involving an asymptotic variance;

• We derive expressions for such asymptotic variances in this speci�c setting;

• Considering the case in which it it is possible to draw independent and identically
distributed values from each distribution in the sequence, we derive properties of
the solutions to this problem for some commonly-used models, proposing heuristic
procedures for use in more realistic settings;

• We present results from investigations into the application of SMC variance estima-
tion procedures to this problem.

Secondly, we consider the problem of approximating a probability distribution depen-
dent on data distributed across multiple machines, a setting that is increasingly common
in modern Bayesian inference. The role of communication latency presents serious chal-
lenges for standard computational techniques, which require repeated evaluations of the
likelihood function. Our contributions in this area include the following:

• We introduce a novel framework for simulation in these distributed settings, based
on the construction of an instrumental hierarchical model;

• We propose a distributed Metropolis-within-Gibbs algorithm within this framework,
providing guidance on its practical implementation;

• We propose an SMC implementation of the framework and several heuristic proce-
dures for the tuning of the resulting algorithm, including a novel application of SMC
variance estimation procedures;

• We provide theoretical and empirical analyses of our proposed algorithms, demon-
strating their behaviour in practical settings and comparing their performance with
alternative approaches.

Outline

This thesis is divided into three parts, of which Parts II and III contain novel results,
methodology and analysis. We provide below a summary of the main themes and results
in each chapter. A detailed list of novel contributions is included within the conclusion of
the thesis, and can be found on page 180.

2



outline

Part I serves as a review of sequential Monte Carlo methods and their applications,
introducing concepts and notation that will be used throughout the thesis.

• Chapter 1 reviews the basics of importance sampling and its application to sequen-
tial simulation, which we introduce in the context of discrete time Feynman–Kac
models. This provides a framework through which we describe the canonical SMC
algorithm and some common variants. We also review properties of estimators re-
sulting from these algorithms, and recently-proposed approaches to estimating the
variances of these random quantities.

• Chapter 2 introduces sequential Monte Carlo samplers. We describe their general
form and construction within the SMC framework, and review their applications in
several common settings.

Part II focuses on the problem of selecting an appropriate sequence of distributions for
use in an SMC sampler, when there is a single distribution of primary interest.

• Chapter 3 describes this problem and reviews some previous approaches to select-
ing such a sequence. As earlier indicated, we propose a formulation of this problem
in terms of the minimisation of a quantity involving an asymptotic variance. To as-
sist later analysis of this optimisation problem we then derive expressions for the
asymptotic variances of estimators resulting from SMC algorithms.

• Chapter 4 provides theoretical analyses of this problem in some perfectly-mixing
settings, in which the resulting expressions have tractable forms. We derive some
properties of the optimal sequences of distributions for these models, providing sev-
eral novel results from which we propose heuristics for practical applications.

• Chapter 5 considers approaches to solving this problem in more realistic settings,
in which the Markov kernels used mix more poorly. We demonstrate the behaviour
of some relevant quantities and investigate procedures that may be used to select a
sequence of distributions automatically, employing the previously-mentioned SMC
variance estimators.

Part III considers the problem of simulating from a Bayesian posterior distribution,
when this depends on a large data set distributed across multiple computers.

• Chapter 6 reviews Markov chain Monte Carlo methods and the computational is-
sues with their implementation in such settings, describing a number of alternative
approaches that may be advantageous in such cases. We also describe the issue of
communication latency when the wall-clock time available for simulation is limited.

3
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• Chapter 7 introduces a novel framework for simulation in distributed settings. Mo-
tivated by ideas from the distributed optimisation literature we describe the con-
struction of an instrumental hierarchical model, from which we propose a Markov
chain Monte Carlo algorithm on an extended state space. We describe a number of
settings in which our approach may be bene�cial, discussing considerations in its
implementation and providing a theoretical analysis of its properties when applied
to a simple model.

• Chapter 8 proposes the use of an SMC sampler employing the Markov kernels
formed using our framework. Within this context we propose a method for using
many of the resulting estimators within a bias correction procedure, which includes
an application of SMC variance estimators. We also describe a procedure for deter-
mining automatically when to terminate the algorithm, with the aim of achieving a
bias–variance trade-o�.

• Chapter 9 presents a number of simulated examples, demonstrating the role of
various tuning parameters in our proposed algorithms and the performance of our
heuristic procedures for the SMC sampler. We also compare our algorithms with
a straightforward Markov chain Monte Carlo approach and some simple embar-
rassingly parallel approaches, demonstrating regimes in which our framework may
result in estimators of lower mean squared error for a �xed time budget.

We conclude by summarising the main contributions of the thesis, and proposing a
number of directions for future research.

Notation

We introduce some of the notation that will be used throughout this thesis. In the following
de�nitions (X,X ), (Y,Y) and (Z,Z) represent generic Polish spaces.

Sets and vectors

The set of real numbers is denoted by ℝ; the set of positive real numbers is denoted by ℝ+.
For integers a and b, {a,… , b} denotes the set of integers n such that a ≤ n ≤ b. For any

sequence of integer-indexed objects xn, we denote by xa∶b the vector of values (xa,… , xb);
that is, the vector of those xn for which a ≤ n ≤ b.

For a collection of measurable spaces (Xi ,Xi), i ∈ {1,… , n}, we denote the product space
by ∏n

i=1 Xi and the corresponding product �-algebra by ⨂n
i=1Xi . If (Xi ,Xi) = (X,X ) for

all i ∈ {1,… , n}, we write Xn and X ⊗n respectively.
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notation

Functions

For any A ∈ X , 1A ∶ X → ℝ denotes the indicator function on A; that is, for x ∈ X,

1A(x) ≔

{
1 x ∈ A,
0 otherwise.

Without a subscript we de�ne 1 ≔ 1X, so that 1 ∶ X → ℝ denotes the constant function
equal to 1; that is, 1(x) = 1 for all x ∈ X. The identity function, denoted Id ∶ X → X, is
de�ned by Id(x) ≔ x for all x ∈ X.

For two X -measurable bounded functions f , g ∶ X → ℝ, we denote the pointwise
product by f ⋅ g ∶ X → ℝ, de�ned such that (f ⋅ g)(x) ≔ f (x)g(x) for all x ∈ X. For c ∈ ℝ,
we de�ne (f + c)(x) = f (x) + c and (cf )(x) = c ⋅ f (x) for all x ∈ X.

Measures and kernels

For any �-�nite measure � with domain X , �-�nite integral kernel K with domain X ×Y ,
X -measurable function ' ∶ X → ℝ and Y-measurable function  ∶ Y → ℝ, we de�ne

�(') ≔ ∫
X
'(x)�(dx),

K ( )(x) ≔ ∫
Y
K (x, dy) (y) for x ∈ X,

�K (A) ≔ ∫
X
�(dx)K (x, A) for A ∈ Y ,

'K (x, A) ≔ '(x)K (x, A) for x ∈ X, A ∈ Y .

We allow the obvious extensions of these de�nitions to cases in which the functions ' and
 have codomain ℝd , where d is a positive integer. For a �-�nite integral kernel L with
domain Y × Z , the composition of K with L is denoted by

KL(x, B) ≔ ∫
Y
K (x, dy)L(y, B) for x ∈ X, B ∈ Z .

For any signed measure � and �-�nite measure �, we write � ≪ � if � is absolutely
continuous with respect to �; that is, for all A ∈ X , if �(A) = 0 then � (A) = 0. We denote
by d�/d� the corresponding Radon–Nikodym derivative of � with respect to �. This is
an X -measurable function taking values in the extended real numbers, with the property
that for any A ∈ X ,

∫
A

d�
d�

(x)�(dx) = � (A).

By the Radon–Nikodym theorem this exists when � ≪ �, and is unique up to a �-null set
(Shiryaev, 1996, page 196).
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The Dirac measure at x ∈ X is denoted �x ∶ X → [0, 1], and de�ned by �x (A) ≔ 1A(x)
for all A ∈ X . The identity kernel, denoted Id ∶ X×X → [0, 1], is such that Id(x, ⋅) ≔ �x (⋅)
for all x ∈ X.

Distributions and densities

For � ∈ ℝd and some positive de�nite matrix � ∈ ℝd×d , we denote by N (�, �) the normal
distribution onℝd with mean � and covariance matrix �. This distribution admits a density
with respect to the Lebesgue measure that we shall denote by

N (x ; �, �) ≔
1

√
det(2��)

exp(−
1
2
(x − �)T�−1(x − �)) , x ∈ ℝd .

For a positive integer n and a vector of non-negative values p1∶n with ∑n
i=1 pi > 0,

Categorical (p1∶n) denotes the categorical distribution over {1,… , n} with probabilities
proportional to p1∶n. That is to say, the probability mass of this distribution at i ∈ {1,… , n}
is pi/∑n

j=1 pj .
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Part I.

A review of sequential Monte Carlo
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1. Sequential Monte Carlo methods

1.1. Importance sampling

Before introducing the sequential simulation algorithms that form the focus of this thesis,
we begin by reviewing the fundamental concepts from which they are derived. The term
‘Monte Carlo methods’ describes a class of algorithms that employ random sampling for
the purpose of estimating �xed quantities. In most non-trivial settings, the quantities of
interest may be expressed as integrals with respect to some probability distribution; to
this end we may see the role of a Monte Carlo method as forming an empirical measure
approximating this distribution.

Suppose � is a probability measure de�ned on a measurable space (X,X ), for which one
looks to estimate the integral � (') = ∫X '(x)� (dx) for some X -measurable function '; that
is, the expected value of '(X ) when X is distributed according to � . If one can simulate
observations of random variables (X i)Ni=1 that are independent and identically distributed
(IID) according to � , then an approximation of � may be constructed as

�N ≔
1
N

N
∑
i=1
�X i . (1.1)

This empirical measure places equal probability mass at each simulated value; the canon-
ical Monte Carlo estimator of � (') is then obtained as the integral

�N (') =
1
N

N
∑
i=1
'(X i).

Such estimators exhibit a number of useful properties: for example, �N (') is unbiased as
an estimator of � ('), and obeys a strong law of large numbers. However, the main appeal of
Monte Carlo estimators of integrals is their rate of convergence. If '(X ) has �nite variance
when X ∼ � then a central limit theorem (CLT) holds, from which it follows that �N (')
converges to � (') at rate O(N −1/2), independently of the dimension of X. This stands in
contrast to estimates formed using numerical quadrature approaches; as a function of the
number of evaluations of the integrand, such estimates generally converge at a rate that
decreases with the dimension of the space (see e.g. Kuo and Sloan, 2005).

A limitation of this approach is that in many settings of interest, producing IID samples
from the distribution of interest � is computationally infeasible. In such cases importance
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1. seqential monte carlo methods

sampling provides a means of forming an empirical measure approximating � , by drawing
samples from another measure � de�ned on the same space. In the most general setting we
require � to be absolutely continuous with respect to �; in this case the Radon–Nikodym
derivative of � with respect to � is de�ned (uniquely, up to a �-null set) and we may write

� (A) = ∫
A

d�
d�

(x)�(dx). (1.2)

The distribution �, termed the importance distribution, is chosen in order that observa-
tions of IID random variables (X i)Ni=1 may readily be simulated. An importance sampling
approximation of � may then be formed using a Monte Carlo approximation of (1.2), as

�N ≔
1
N

N
∑
i=1
w(X i)�X i , (1.3)

where w ≔ d�/d�. The evaluations w(X i) of this Radon–Nikodym derivative are known
as importance weights. If � and � admit densities with respect to a common dominating
measure, then d�/d� is simply the ratio of these densities.

Having simulated IID random variables (X i)Ni=1 according to �, the computation of esti-
mators �N (') requires the evaluation of these importance weights. However, it may only
be feasible to evaluate the Radon–Nikodym derivative up to some multiplicative normal-
ising constant, of which computation is intractable. This is the case when one can only
evaluate some unnormalised density �̄ of � , such that � (A) = ∫A �̄ (x) dx/Z for all A ∈ X ,
and the integral Z ≔ ∫X �̄ (x) dx is unknown.

By abuse of notation, henceforth let �̄ also denote the measure given by �̄ (A) = ∫A �̄ (x) dx
for A ∈ X , so that � = �̄/Z . An approximation of �̄ may be formed analogously to (1.3) as

�̄N ≔
1
N

N
∑
i=1
w̄(X i)�X i , (1.4)

where w̄ ≔ d�̄/d�, so that the importance weights may be evaluated using the ratio of the
(unnormalised) densities of �̄ and �. Since Z = � (X), this normalising constant may be
estimated as

ZN ≔ �̄N (X) =
1
N

N
∑
i=1
w̄(X i). (1.5)

Taking the ratio of (1.4) and (1.5) gives a self-normalised importance sampling approxima-
tion of � , as the weighted empirical measure

�N ≔
∑N
i=1W i�X i

∑N
i′=1W i′

, (1.6)

where W i ≔ w̄(X i). While estimators �N (') formed using (1.6) are biased, they are con-
sistent in the number of samples N and obey a CLT (see Geweke, 1989, for a summary of
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these and other properties).
Importance sampling techniques are ubiquitous in statistical inference, forming the ba-

sic elements of many common Monte Carlo methods. Indeed, as shown by Finke (2015),
a wide range of such simulation algorithms may be viewed as applications of importance
sampling, to approximate appropriately-de�ned distributions on an extended space.

1.2. Sequential importance sampling

The Monte Carlo methods presented so far may be used to approximate a single distri-
bution of interest � . However, Monte Carlo techniques are also commonly employed to
approximate each in a sequence of recursively-de�ned probability measures, which may
not admit closed-form expressions. Such sequential simulation algorithms are collectively
known as sequential Monte Carlo (SMC) methods, and are the primary focus of this work.

In this chapter we will introduce the canonical SMC algorithm and discuss the proper-
ties of the resulting particle approximations. To facilitate this exposition we �rst describe
a general framework for recursively de�ning a sequence of probability measures, intro-
ducing notation that will be used throughout this thesis.

1.2.1. Discrete time Feynman–Kac models

For some non-negative integer n, consider a collection of measurable spaces (Xp ,Xp), p ∈
{0,… , n}. Let M0 ∶ X0 → [0, 1] be a probability measure on (X0,X0), and let (Mp)np=1 be a
sequence of Markov kernels, such that each Mp ∶ Xp−1 × Xp → [0, 1] is a Markov kernel
from (Xp−1,Xp−1) to (Xp ,Xp). Additionally, de�ne a sequence of functions (Gp)n−1p=0, such
that each Gp ∶ Xp → [0,∞) is a non-negative bounded Xp-measurable function; these
shall henceforth be referred to as potential functions.

De�ne a sequence of measures (
p)np=0 such that 
0 ≔ M0 is a measure on (X0,X0), and
for p ∈ {1,… , n}, 
p is a measure on (Xp ,Xp) de�ned recursively by


p(A) ≔ ∫
Xp−1


p−1(dx)Gp−1(x)Mp(x, A), A ∈ Xp . (1.7)

We make the following assumption about the supports of the potential functions.

Assumption 1.1. For each p ∈ {0,… , n − 1}, 
p(Gp) > 0.

A su�cient condition for this is to hold that each potential function Gp is strictly pos-
itive. Under Assumption 1.1, 
p(Xp) > 0 for all p ∈ {0,… , n}, and so one may normalise
each 
p to obtain a sequence of probability measures (�p)np=0. That is, for each p ∈ {0,… , n},
de�ne

�p ≔

p


p(Xp)
. (1.8)
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1. seqential monte carlo methods

The sequences (
p)np=0 and (�p)np=0 are respectively referred to as the unnormalised and nor-
malised prediction Feynman–Kac models associated with (Gp)n−1p=0 and (Mp)np=0 (Del Moral,
2004).

The normalising constant 
p(Xp) in (1.8) may be expressed in terms of the normalised
models and potential functions as


p(Xp) =
p−1
∏
q=0

�q(Gq),

which follows inductively from the observations that 
0(X0) = 1, and


p(Xp) = �p−1(Gp−1)
p−1(Xp−1).

It further follows that the unnormalised models may be expressed as


p = (
p−1
∏
q=0

�q(Gq)) �p . (1.9)

One may de�ne a further sequence of measures (
̂p)n−1p=0, where each 
̂p is a measure on
(Xp ,Xp) de�ned by


̂p(A) ≔ ∫
A
Gp(x)
p(dx), A ∈ Xp . (1.10)

Assumption 1.1 ensures that 
̂p(Xp) > 0 for all p ∈ {0,… , n − 1}, and so analogously to the
prediction models we may de�ne for each p ∈ {0,… , n − 1}

�̂p ≔

̂p


̂p(Xp)
. (1.11)

The sequences (
̂p)n−1p=0 and (�̂p)n−1p=0 are, respectively, the unnormalised and normalised up-

dated Feynman–Kac models associated with (Gp)n−1p=0 and (Mp)np=0. These de�nitions may be
extended to the case p = n in the case that an additional potential function is de�ned. That
is to say, if we have a non-negative bounded Xn-measurable function Gn ∶ Xn → [0,∞),
then one may analogously de�ne 
̂n and, if Assumption 1.1 holds for p = n, �̂n.

Feynman–Kac models �nd application in such varied �elds as particle physics, engi-
neering science and industrial chemistry (see Del Moral, 2004 and references therein).
Alongside the sequential simulation problems we shall go on to consider, within statistics
they are important in the context of hidden Markov models. The application of such mod-
els to �ltering problems is widespread in such areas as signal processing and time series
analysis; a review is provided by Murphy (2012, Sections 17.3.1, 18.2, 23.5).
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1.2.2. Particle approximations

Owing to the recursive de�nition (1.7) of 
p as earlier mentioned, Feynman–Kac models
do not typically admit closed-form expressions. A notable exception is the case in which
(Gp)n−1p=0 and (Mp)np=0 describe a linear Gaussian model, so that all the resulting measures
are Gaussian and may be computed exactly using the Kalman �lter (Kalman, 1960). While
Feynman–Kac models may be approximated via appropriate functional approximations
(the extended Kalman �lter, for example, produces Gaussian approximations using a lin-
earisation technique), Monte Carlo methods provide a more widely-applicable approach.

We may employ importance sampling by considering the problem of approximating an
appropriate measure on the product space X̃ ≔ ∏n

p=0 Xp . For some set Ã belonging to the
product �-algebra X̃ ≔ ⨂n

p=0Xp , consider the probability measure de�ned by �̃n(Ã) ≔

̃n(Ã)/
̃n(X̃), where


̃n(Ã) ≔ ∫
Ã
M0(dx0)

n
∏
p=1

Gp−1(xp−1)Mp(xp−1, dxp). (1.12)

This probability measure is seen to admit �n as a marginal distribution.

To draw samples from an importance distribution, one can sample a value �0 from the
probability measure M0, and draw each successive �p by applying each Markov kernel Mp

in turn. This is equivalent to sampling the whole ‘path’ (�0,… , �n) from the probability
measure given by

�n(Ã) ≔ ∫
Ã
M0(dx0)

n
∏
p=1

Mp(xp−1, dxp).

For computing the necessary importance weights, it may be seen that the Radon–Nikodym
derivative of the unnormalised measure 
̃n with respect to �n is the pointwise product
of the potential functions (Gp)n−1p=0. We may thereby form a self-normalised importance
sampling approximation of �̃n according to (1.6); an approximation of the Feynman–Kac
model �n is obtained as the marginal on Xn of the resulting weighted empirical measure.

This suggests the use of a sequential procedure for generating estimates of each �p . In
the case p = 0, an approximation of �0 is produced by sampling a number of particles (� i0)Ni=1
from M0, and forming a Monte Carlo approximation of the form (1.1). This may be seen
as a weighted empirical measure of the form (1.6), in which each particle has an initial
weight W i

0 = 1. One continues sequentially: for each p ∈ {1,… , n}, the next ‘generation’
of particles is sampled as � ip ∼ Mp(� ip−1, ⋅). The weight W i

p of each particle is computed as
the product of the previous weightW i

p−1 and the incremental weight given by Gp−1(� ip−1). A
weighted empirical measure approximating �p may then be constructed according to (1.6).

This procedure is known as sequential importance sampling (SIS), and forms the simplest
SMC method. We present this as Algorithm 1.1; a detailed summary of the algorithm and
its properties is provided by Doucet and Johansen (2011).
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Algorithm 1.1 Sequential importance sampling

1. At time p = 0:
• For i ∈ {1,… , N} set W i

0 ← 1 and independently sample � i0 ∼ M0(⋅).

2. At time p = 1,… , n:
• For i ∈ {1,… , N} set W i

p ← W i
p−1Gp−1(� ip−1) and independently sample � ip ∼

Mp(� ip−1, ⋅).

We de�ne

�Nn ≔
∑N
i=1W i

n�� in
∑N
i′=1W i′

n

as the weighted empirical measure (1.6) approximating �n. Since this approximation is
formed via self-normalised importance sampling we may also estimate the unnormalised
model 
n according to (1.4), as


Nn ≔
1
N

N
∑
i=1
W i

n�� in = (
1
N

N
∑
i=1
W i

n) �Nn .

An estimator of the normalising constant 
n(Xn) is thereby obtained as 
Nn (Xn) = ∑N
i=1W i

n/N ,
as in (1.5).

For the updated measures, note that for anyXn-measurable bounded function ' ∶ Xn →
ℝ, one has the following relationships (Del Moral, 2004, page 60):


̂n(') = 
n(' ⋅ Gn), �̂n(') =
�n(' ⋅ Gn)
�n(Gn)

. (1.13)

By replacing 
n and �n by their particle approximations, one obtains the appropriate par-
ticle approximations of the given functionals. For A ∈ Xn, estimators for 
̂n(A) and �̂n(A)
may be obtained by taking ' = 1A, the indicator function on A.

1.3. Resampling

A signi�cant problem with SIS as presented in Algorithm 1.1 is that the algorithm generally
exhibits degeneracy in practice. In a great number of settings the variance of estimators
such as �Np (') increases with p, due to increasing variability in the weights W i

p (see for
example Doucet et al., 2000, Proposition 1 for a hidden Markov model setting). If a small
number of these weights take relatively large values, then the empirical measure �Np places
most of its mass on the corresponding particles. The number of particles making a non-
negligible contribution to such estimators is therefore much smaller than the true sample
size N . This notion may be formalised; we discuss this in Section 1.3.2.

14



1.3. resampling

A solution to this problem uses a resampling technique, rejuvenating the set of particles
by stochastically replicating those with the highest weights and removing those with the
lowest weights. Formally, following the computation of each particle’s updated weight
(by the multiplication of its previous weight by its incremental weight), a new set of N
particles is sampled with replacement from the current set. For this resampling step, a
requirement is imposed that the expected number of replicates of each particle in the new
set is proportional to its updated weight. Having generated this resampled set of particles,
each such particle is assigned an equal weight of 1.

The resulting procedure is known as sequential importance sampling with resampling.
The use of resampling in every iteration results in the canonical SMC algorithm, which
we present as Algorithm 1.2. In this case the collection of particles obtained following
each iteration is equally-weighted, and so the resampling step only requires consideration
of the incremental weights (Gp−1(� ip−1))Ni=1.

We present this resampling step in terms of the sampling of random indices Aip−1. The

particle �A
i
p−1

p−1 may be interpreted as the ancestor of the particle � ip , so that (�A
i
p−1

p−1 )Ni=1 is the
set of particles obtained by resampling from (� ip−1)Ni=1.

Algorithm 1.2 Sequential importance sampling with resampling

1. At time p = 0:
• For i ∈ {1,… , N} independently sample � i0 ∼ M0(⋅).

2. At time p = 1,… , n:
• For i ∈ {1,… , N} independently sample

Aip−1 ∼ Categorical(Gp−1(� 1p−1),… , Gp−1(�Np−1)) .

• For i ∈ {1,… , N} independently sample � ip ∼ Mp(�
Aip−1
p−1 , ⋅).

Here, each ancestor index Aip−1 is sampled independently from the appropriate categor-
ical distribution on {1,… , N}; that is, Aip−1 takes the value j ∈ {1,… , N} with probability
proportional to Gp−1(� jp−1). This resampling scheme is known as multinomial resampling

and was �rst proposed within the ‘bootstrap particle �lter’ of Gordon et al. (1993), a form
of Algorithm 1.2 for approximating �ltering distributions of hidden Markov models. Other
schemes are possible (see Douc et al., 2005; Gerber et al., 2019, for a summary of some
schemes and their properties), though within this thesis we shall solely consider the use
of multinomial resampling. The use of this simple scheme facilitates analysis of the algo-
rithm, validating the results and estimators we shall introduce in Sections 1.4 and 1.5.

For the setting of Algorithm 1.2 in which resampling takes place in every time step, the
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particle approximations of �n and 
n are given by

�Nn ≔
1
N

N
∑
i=1
�� in , 
Nn ≔ (

n−1
∏
p=0

�Np (Gp)) �Nn . (1.14)

The latter is seen to take a form directly comparable with (1.9); re-expressing this as


Nn = (
n−1
∏
p=0

1
N

N
∑
i=1
Gp(� ip)) �Nn , (1.15)

we see that this may be computed by storing the evaluations of the potential functions, as
used in each resampling step.

1.3.1. Occasional resampling

As noted, the purpose of resampling the particles is to prevent the estimators resulting
from SIS from becoming dominated by a small subset of the particles, due to high variance
of the importance weights. However, resampling the particles carries a computational
cost, and indeed introduces some additional variance. This may be observed in the central
limit theorem of Chopin (2004), for example, in which each resampling step contributes
a term to the asymptotic variance expression; the same phenomenon may be observed in
the expressions we consider in Section 1.4.1.

One may therefore choose to conduct resampling in only a subset of the n iterations
of Algorithm 1.2. The result is that one maintains a collection of weighted particles as in
SIS, with the particles only being equally-weighted following those iterations in which
resampling is used. The subset of iterations in which to resample could be chosen in
advance (i.e. deterministically), though adaptive approaches are common in practice, as
will be discussed in Section 1.3.2.

An SMC algorithm using such ‘occasional resampling’ is presented as Algorithm 1.3.
By resampling in every iteration one recovers Algorithm 1.2; choosing never to resample
results in the form of SIS presented in Algorithm 1.1.

Using notation from Del Moral et al. (2006), let rn be the number of times resampling
occurs between times 0 and n. For j ∈ {1,… , rn} (which may be empty), let kj denote
the time index at which the jth resampling step occurs; additionally de�ne k0 ≔ 0 and
krn+1 ≔ n + 1. Then the particle approximations of �n and 
n are given by

�Nn ≔
∑N
i=1W i

n�� in
∑N
i′=1W i′

n
, 
Nn ≔ (

rn
∏
j=1

1
N

N
∑
i=1
W̃ i

kj)(
1
N

N
∑
i=1
W i

n) �Nn . (1.16)
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Algorithm 1.3 Sequential importance sampling with occasional resampling

1. At time p = 0:
• For i ∈ {1,… , N} set W i

0 ← 1 and independently sample � i0 ∼ M0(⋅).

2. At time p = 1,… , n,
• For i ∈ {1,… , N} set W̃ i

p ← W i
p−1Gp−1(� ip−1).

• If resampling in the pth iteration:
– For i ∈ {1,… , N} independently sample Aip−1 ∼ Categorical(W̃ 1

p ,… , W̃ N
p )

and set W i
p ← 1.

• Else:
– For i ∈ {1,… , N} set Aip−1 ← i and set W i

p ← W̃ i
p .

• For i ∈ {1,… , N} independently sample � ip ∼ Mp(�
Aip−1
p−1 , ⋅).

These may be expressed explicitly in terms of the potential functions as

�Nn =
∑N
i=1 [∏

n−1
p=krn Gp(�

i
p)] �� in

∑N
i′=1 [∏

n−1
p=krn Gp(�

i′
p )]

, (1.17)


Nn =
(

rn−1
∏
j=0

1
N

N
∑
i=1 [

kj+1−1
∏
p=kj

Gp(� ip)])(
1
N

N
∑
i=1 [

n−1
∏
p=krn

Gp(� ip)])
�Nn . (1.18)

1.3.1.1. Excursion Feynman–Kac models

The particle approximations (1.14) formed when resampling in every iteration are a special
case of the more general forms (1.17)–(1.18). However, we also notice that (1.17)–(1.18) may
be viewed as instances of the ‘always resampling’ particle approximations (1.14). This is
clearest in the case krn = n; that is, when resampling occurs in the nth step. In this case,
�Nn is an unweighted empirical measure. Regarding 
Nn , the last factor in (1.18) evaluates to
1; comparing with (1.15), we see that the n individual potential functions Gp are replaced
by rn products of such functions between resampling steps.

Indeed, suppose the times at which resampling takes place are chosen deterministically.
Then we may view Algorithm 1.3 as an instance of Algorithm 1.2, by considering the ten-
sor products of Markov kernels applied between resampling points, and the corresponding
products of potential functions. We may thereby assert that results for particle approxi-
mations generated by the simpler Algorithm 1.2 will also hold for those generated using
other deterministic choices of resampling times.

We formalise this as follows. Retaining the stated de�nitions of rn and k0∶rn+1, for each
j ∈ {0,… , rn} de�ne the excursion space X′

j ≔ ∏kj+1−1
p=kj Xp , with corresponding product �-

algebra X ′
j ≔ ⨂kj+1−1

p=kj Xp . In the following descriptions, an arbitrary element of X′
j shall
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1. seqential monte carlo methods

be denoted by x ′j ≔ (xkj ,… , xkj+1−1).
De�ne a probability measure M ′

0 on (X′
0,X ′

0 ) by

M ′
0(dx

′
0) ≔ M0(dx0)

k1−1
∏
p=1

Mp(xp−1, dxp).

For j ∈ {1,… , rn}, let M ′
j be a Markov kernel from (X′

j−1,X ′
j−1) to (X′

j ,X ′
j ) de�ned by

M ′
j (x

′
j−1, dx

′
j ) ≔

kj+1−1
∏
p=kj

Mp(xp−1, dxp). (1.19)

De�ne also a sequence of non-negative functions (G′
j )
rn
j=0, where G′

j ∶ X′
j → [0,∞) is given

by

G′
j (x

′
j ) ≔

kj+1−1
∏
p=kj

Gp(xp), j ∈ {0,… , rn − 1}; G′
rn (x

′
rn ) ≔

n−1
∏
p=krn

Gp(xp). (1.20)

For these measures and potential functions, let (
 ′j )
rn
j=0 and (�′j )

rn
j=0 be the associated un-

normalised and normalised prediction Feynman–Kac models, as de�ned in (1.7)–(1.8); simi-
larly, let (
̂ ′j )

rn
j=0 and (�̂′j )

rn
j=0 be the corresponding updated measures, de�ned by (1.10)–(1.11).

Such measures, de�ned on the sequence of excursion spaces, may be termed excursion

Feynman–Kac models. Retain (
p)np=0 and (�p)np=0 as notation for the unnormalised and
normalised Feynman–Kac models associated with (Gp)n−1p=0 and (Mp)np=0.

To view the connection between these sets of measures, �rst consider the case in which
krn = n (corresponding to resampling occurring in the nth step). In this case, the �nal
excursion space is X′

rn = Xn, so that 
 ′rn and �′rn are measures on (Xn,Xn). Indeed, we have


n = 
 ′rn , �n = �′rn ,

which may be shown simply by expressing each measure in terms of integrals, using their
de�nitions (1.7) and (1.8).

In the more general case the �nal excursion space is X′
rn = ∏n

p=krn Xp ; this requires
consideration of the updated excursion models de�ned on this space, in order to account
for the particles’ �nal weights when resampling does not take place in the �nal iteration.
For any A ∈ Xn, let A′ ∈ X ′

rn be de�ned by A′ ≔ [∏n−1
p=krn Xp] × A. Then we have that


n(A) = 
̂ ′rn (A
′), �n(A) = �̂′rn (A

′),

so that �n may e�ectively be seen as the marginal distribution of �̂′rn on Xn.
As previously stated, the consequence is that for deterministic choices of resampling

times, particle approximations generated by Algorithm 1.3 may be seen as having been
generated by a form of Algorithm 1.2 in which di�erent Markov kernels and potential
functions are used. We shall exploit this connection in several of the results that follow.
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1.3. resampling

1.3.2. Adaptive resampling

While the choice of iterations in which to conduct resampling may be pre-determined, it
is common in practice for these resampling times to be determined adaptively. That is to
say, the decision of whether to conduct resampling during each iteration of Algorithm 1.3
is made only immediately before that resampling step would take place, based on the evo-
lution of the algorithm up to that point. Given that the purpose of resampling is to avoid
high variance in the importance weights, it follows that one can choose to resample only
when the variance of the current set of importance weights is su�ciently high.

The most widely-used adaptive resampling approach, proposed by Liu and Chen (1995),
employs a quantity known as the e�ective sample size (ESS). The name of this quantity
relates to the problem of estimating integrals � ('), for some probability measure � and
function of interest '. In general, one cannot obtain IID samples distributed according to
� , and so one forms an estimator using N samples generated by some other method (e.g.
from an importance distribution). The ESS represents the number of IID samples from �
that would be required to create a simple Monte Carlo estimator (1.1) of the same variance.

In the setting of importance sampling, consider the approximation (1.6) of some distri-
bution � , formed by drawing N samples from an importance distribution �. Kong et al.
(1994) de�ne the corresponding e�ective sample size to be

ESS ≔
N

1 + var�(d�/d�) , (1.21)

where var�(d�/d�) denotes the variance of the given Radon–Nikodym derivative when its
argument is distributed according to �. This expression is motivated by considering two
estimators of integrals � ('): that formed using this importance sampling procedure, and
that using the approximation (1.1), formed using N IID samples distributed according to � .
The denominator of (1.21) represents a simple approximation of the ratio of the variances
of these estimators, that is independent of '.

For the self-normalised importance sampling approximation (1.6), the e�ective sample
size (1.21) may be estimated empirically by

ESSN ≔
N

1 +
1
N

N
∑
i=1(

NW i

∑N
i′=1W i′

− 1)

2 =
[

N
∑
i=1(

W i

∑N
i′=1W i′ )

2

]

−1

. (1.22)

As is intuitive, if all the weights W i were equal (e.g. because � = � ), this empirical ESS
would equal N . If instead the normalised weights of all but one particle were to tend to 0,
the ESS would tend to 1.

In Algorithm 1.3, the updated weight W̃ i
p of each particle is computed immediately before

each (possible) resampling step. The empirical ESS may then be computed according to
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1. seqential monte carlo methods

(1.22) as

ESSNp ≔
[

N
∑
i=1(

W̃ i
p

∑N
i′=1 W̃ i′

p )

2

]

−1

= (∑N
i′=1W i′

p−1Gp−1(� i
′
p−1))

2

∑N
i=1 (W i

p−1Gp−1(� ip−1))
2 (1.23)

The proposal of Liu and Chen (1995) is to carry out resampling only when this e�ective
sample size falls below a pre-determined threshold. That is, for some � ∈ [1, N ], resampling
is conducted in the pth iteration only if ESSNp < � . A number of convergence results
have been derived for this adaptive setting by Del Moral et al. (2012b), by considering
the asymptotic behaviour of the resulting sequence of resampling times; we discuss these
results and their consequences in Sections 1.4 and 1.5.

Finally, while the ESS-based form of adaptive resampling is by far the most common
in the literature, other schemes are certainly possible, by making the decision of whether
(and how) to resample based on some generic functional of all previous particle values
(Whiteley et al., 2016).

1.4. Properties of particle approximations

The following summarises some key properties of the particle approximations 
Nn and �Nn
resulting from such SMC algorithms. We present the results below in the context of Algo-
rithm 1.2, in which resampling is always used, and thereafter describe their applicability
to the more general setting of occasional resampling.

For all results in this section, we take ' ∶ Xn → ℝ to be a bounded Xn-measurable func-
tion. We �rst present an unbiasedness result for particle approximations of unnormalised
Feynman–Kac models:

Proposition 1.2. E[
Nn (')] = 
n(') (Del Moral, 2004, Proposition 7.4.1).

Considering ' = 1, this implies that the normalising constant 
n(1) = 
n(Xn) may be
estimated unbiasedly. No such result holds for the normalised models; that is, �Nn (') is not
unbiased as an estimator of �n('). However, the corresponding estimates are consistent in
the number of particles:

Proposition 1.3. For any r ≥ 1,

sup
N≥1

√
N E[

|||

N
n (') − 
n(')

|||
r

]
1/r

< ∞ and sup
N≥1

√
N E[

|||�
N
n (') − �n(')

|||
r

]
1/r

< ∞

(Del Moral, 2004, Theorems 7.4.2 and 7.4.4 respectively). Therefore, 
Nn (') and �Nn (') converge
almost surely to 
n(') and �n(') respectively as the number of particles N tends to in�nity.

A central limit theorem (CLT) also holds for 
Nn (') and �Nn ('):
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1.4. properties of particle approximations

Proposition 1.4. As N → ∞,
√
N (
Nn (') − 
n(')) and

√
N (�Nn (') − �n(')) both converge

weakly to normal distributions with mean zero and �nite variance (Del Moral, 2004, Propo-

sitions 9.4.1 and 9.4.2 respectively).

For all of these propositions, analogous results may be shown to hold for particle approx-
imations 
̂Nn and �̂Nn of the updated Feynman–Kac models by consideration of the identities
(1.13) and, in the case of �̂Nn , application of results such as Minkowski’s inequality. As a con-
sequence, when resampling occurs at deterministically-chosen times the same results may
be seen to hold for particle approximations formed by Algorithm 1.3. This follows from
the discussion in Section 1.3.1.1, since these may be viewed as particle approximations of
suitably-de�ned (updated) excursion models.

This does not apply when adaptive resampling is employed, in which case the sequence
of resampling times is random. In particular the arguments used to prove Proposition 1.2
do not hold, so that when adaptive resampling is used, 
Nn (') is not unbiased as an es-
timator of 
n('). However one may prove analogues of Propositions 1.3 and 1.4, which
consider asymptotic behaviour in N rather than �xed N . This follows from the results of
Del Moral et al. (2012b), who show that under certain assumptions, the sequence of random
resampling times converges almost surely to some deterministic sequence as the number
of particles tends to in�nity. By considering this limiting behaviour one can show that a
number of asymptotic results assuming deterministically-chosen resampling also apply in
adaptive settings, including the above consistency and CLT results.

1.4.1. Asymptotic variances

In the CLT for 
Nn (') presented in Proposition 1.4, the variance of the limiting normal
distribution is known as the asymptotic variance of 
Nn (') as N → ∞, which may be
de�ned as

lim
N→∞

N var(
Nn (')) .

In practice, it is often numerically simpler to deal with a ‘normalised’ form of this asymp-
totic variance: we de�ne the relative asymptotic variance of 
Nn (') as N → ∞ as

lim
N→∞

N var(

Nn (')

n(1) )

, (1.24)

noting again that 
n(1) = 
n(Xn) is the normalising constant of 
n.
For the normalised models, the asymptotic variance of �Nn (') as N → ∞ is similarly

de�ned as
lim
N→∞

N var(�Nn (')) . (1.25)

By Lee and Whiteley (2018), this may be expressed in the form (1.24) as the relative asymp-
totic variance as N → ∞ of 
Nn (' − �n(')).
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1. seqential monte carlo methods

The relative asymptotic variance (1.24) admits a decomposition that is convenient for the
purposes of analysis. This has been studied by Del Moral (2004, Section 9.4) and Chopin
(2004); in the latter case, a collection of recursively-de�ned terms is derived by applying
CLT arguments to the particle set at each iteration of the algorithm, conditional on past
iterations. We here summarise the derivation presented by Lee and Whiteley (2018), de-
scribing this in the setting that Algorithm 1.2 is used (i.e. resampling takes place in every
iteration), so that 
Nn is of the form (1.15). The generalisation to occasional resampling
follows by consideration of the corresponding excursion models, and we discuss this sub-
sequently.

For �xed N , Cérou et al. (2011) provide an expression for the ‘non-asymptotic’ variance
var(
Nn (')/
n(1)) as a sum of 2n+1 terms. These may be thought of as empirical measures
on the joint path space of two particles, conditioned to exhibit a form of coalescence at each
in a subset of the n + 1 time steps, in a manner similar to the doubly conditional particle
�lter of Andrieu et al. (2018). After multiplying by N and taking the limit as N → ∞, all
but n +2 of these terms vanish. Regrouping these remaining values into n +1 terms allows
the relative asymptotic variance of 
Nn (') to be expressed as

lim
N→∞

N var(

Nn (')

n(1) )

=
n
∑
p=0

vp,n('). (1.26)

Each term vp,n(') is formed in part from a measure on the joint path space of two Feynman–
Kac models conditioned to exhibit interdependence at the pth time step.

Expressing each vp,n(') in terms of the potential functions (Gp)n−1p=0 and Markov kernels
(Mp)np=1 is facilitated by �rst de�ning a collection of integral kernels (Qp)np=1, where for
p ∈ {1,… , n}, Qp ∶ Xp−1 × Xp → [0,∞) is de�ned such that

Qp(xp−1, A) ≔ Gp−1(xp−1)Mp(xp−1, A), xp ∈ Xp−1, A ∈ Xp . (1.27)

Compositions of these kernels give a second sequence of kernels (Qp,n)np=0. For p ∈ {0,… , n},
de�ne Qp,n ∶ Xp × Xn → [0,∞) by

Qn,n ≔ Id, Qp,n ≔ Qp+1⋯Qn, p ∈ {0,… , n − 1}. (1.28)

Similar constructions are employed by Del Moral (2004, Section 7.2) and Chopin (2004,
Equation 9), allowing these authors’ recursive formulae to be expressed in closed form.
Then it may be shown (Lee and Whiteley, 2018, Remark 2) that

vp,n(') =
�p(Qp,n(')2)
�p(Qp,n(1))2

− �n(')2. (1.29)

We shall return to this result in Chapter 3.
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1.4. properties of particle approximations

1.4.1.1. Updated Feynman–Kac models

For the updated Feynman–Kac models 
̂n and �̂n the (relative) asymptotic variances of es-
timators 
̂Nn (') and �̂Nn (') may be de�ned similarly, and admit analogous decompositions.
For completeness, and in preparation for the subsequent discussion on occasional resam-
pling, we here restate the above results as they relate to updated Feynman–Kac models.
These results form a summary of those presented in Section 5 of Lee and Whiteley (2018).

The asymptotic variance of 
̂Nn (') as N → ∞ is de�ned as limN→∞ N var(
̂Nn (')), and
its relative asymptotic variance as N → ∞ is

lim
N→∞

N var(

̂Nn (')

̂n(1) )

. (1.30)

The asymptotic variance of �̂Nn (') asN → ∞ is similarly de�ned as limN→∞ N var(�̂Nn (')),
and may be expressed in the form (1.30) as the relative asymptotic variance as N → ∞ of

̂Nn (' − �̂n(')).

The relative asymptotic variance (1.30) may be expressed as sum of n + 1 terms:

lim
N→∞

N var(

̂Nn (')

̂n(1) )

=
n
∑
p=0

v̂p,n('). (1.31)

By consideration of the identities (1.13), we may obtain a relationship between these terms
v̂p,n('), and the terms vp,n(') in the decomposition (1.26) corresponding to the ‘non-updated’
model 
n. Speci�cally, we have for each p ∈ {0,… , n} that

v̂p,n(') =
vp,n(' ⋅ Gn)
�n(Gn)2

. (1.32)

An expression for v̂p,n(') analogous to (1.29) may be obtained by substituting that expres-
sion for vp,n(') into (1.32), giving

v̂p,n(') =
�p(Qp,n(' ⋅ Gn)2)
�p(Qp,n(Gn))2

− �̂n(')2. (1.33)

1.4.1.2. Occasional resampling

Consider now an SMC algorithm employing occasional resampling as in Algorithm 1.3,
and the resulting estimators 
Nn ('), de�ned according to (1.18). Recall the de�nition of
rn as the number of instances of resampling between times 0 and n. For 
Nn (') de�ned
according to (1.18), the relative asymptotic variance as N → ∞ admits a decomposition
analogous to (1.26), as a sum of rn + 1 terms, each of which may be expressed in a manner
comparable to (1.29). The derivation of such a result follows directly from consideration
of the appropriate excursion Feynman–Kac models as introduced in Section 1.3.1.1. Since
the relevant expressions do not appear to have been explicitly stated elsewhere in the
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1. seqential monte carlo methods

literature, we present these in full below.
In the following exposition of results we consider a �xed sequence of resampling times

k1∶rn . However, these results also apply to estimators formed using adaptive resampling,
due to the previously-discussed results of Del Moral et al. (2012b). In this case the sequence
k1∶rn , which determines the collection of excursion models, corresponds to the almost sure
limit of the sequence of resampling times as N → ∞.

Recall that when occasional resampling is used, the resulting particle approximations
correspond to approximations of updated Feynman–Kac models on such a sequence of ex-
cursion spaces. Appropriate analogues of the previous results for updated models therefore
hold in this setting. Speci�cally, the relative asymptotic variance of 
Nn ('), de�ned as in
(1.18), may be decomposed in the manner of (1.31); extending the notation introduced in
Section 1.3.1.1, we may write

lim
N→∞

N var(

̂Nn (')

̂n(1) )

=
rn
∑
j=0
v̂′j,rn ('). (1.34)

We proceed to derive an expression of the form (1.33) for each of the terms in this decom-
position. Using the potential functions (G′

j )
rn
j=0 and Markov kernels (M ′

j )
rn
j=1, we may de�ne

a collection of integral kernels (Q′
j )
rn
j=1 analogously to (1.27). That is, for j ∈ {1,… , rn},

de�ne Q′
j ∶ X′

j−1 × X ′
j → [0,∞) such that

Q′
j (x

′
j−1, A) ≔ G′

j−1(x
′
j−1)M

′
j (x

′
j−1, A), x ′j ∈ X′

j−1, A ∈ X ′
j . (1.35)

Compositions of these kernels give a second sequence of kernels (Q′
j,rn )

rn
j=0, as in (1.28): for

j ∈ {0,… , rn}, de�ne Q′
j,rn ∶ X′

j × X ′
rn → [0,∞) by

Q′
rn ,rn ≔ Id, Q′

j,rn ≔ Q′
j+1⋯Q′

rn , j ∈ {0,… , rn − 1}. (1.36)

As in Section 1.3.1.1, let (�′j )
rn
j=0 denote the normalised prediction Feynman–Kac models

associated with (G′
j )
rn
j=0 and (M ′

j )
rn
j=0, and (�̂′j )

rn
j=0 the corresponding updated models. Fur-

thermore, for any bounded Xn-measurable function ' ∶ Xn → ℝ, let '̄ ∶ X′
rn → ℝ denote

the function given by
'̄(x ′rn ) = '̄(xkrn ,… , xn) ≔ '(xn). (1.37)

Then an analogue of (1.33) is given by

v̂′j,rn (') ≔
�′j (Q′

j,rn (G
′
rn ⋅ '̄)

2)
�′j (Q′

j,rn (G
′
rn ))

2 − �̂′rn ('̄)
2 (1.38)

for j ∈ {0,… , rn}. The subtrahend at the end of this expression may be simpli�ed by
observing that �̂′rn ('̄) = �n(').

In the special case that krn = n, corresponding to resampling occurring in the nth step,
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1.5. variance estimation

the �nal potential function is G′
rn = 1. The �nal updated measure �̂′rn is therefore equal to

its ‘non-updated’ form �′rn ; additionally, '̄ = '. We may therefore simplify (1.38), obtaining

v′j,rn (') ≔
�′j (Q′

j,rn (')
2)

�′j (Q′
j,rn (1)

2 − �′rn (')
2 (1.39)

for j ∈ {0,… , rn}, with the relative asymptotic variance of (1.18) being equal to ∑rn
j=0 v′j,rn (').

This expression is directly comparable to (1.29). A further simpli�cation to the �nal sub-
tracted term in (1.39) is possible, since �′rn = �n.

1.5. Variance estimation

In order to quantify the Monte Carlo error of such estimators as 
Nn (') and �Nn ('), it is
useful to estimate their variance. A simple approach would require running the SMC al-
gorithm many times to obtain IID replicates of the estimator of interest, and computing
their sample variance. Since this may be computationally costly, several alternative ap-
proaches to variance estimation have been proposed in the literature. These commonly
focus on estimating the variance of 
Nn (Xn), the estimator of the normalising constant of

n. For example, Bhadra and Ionides (2016) propose a method based on �tting an AR(1)
‘meta-model’ to the estimation errors of each 
Np (Xp), and Kostov and Whiteley (2017)
utilise a ‘pairs algorithm’ to form an unbiased estimator of the second moment of 
Nn (Xn).

In several settings it is also convenient to estimate the asymptotic variances of SMC
estimators as N → ∞. A notable work in this �eld is that of Chan and Lai (2013), who
propose an estimator of the asymptotic variance of �̂Nn ('), corresponding to the updated
normalised Feynman–Kac model. This estimator is consistent in N and may be computed
using the same run of the SMC algorithm used to generate �̂Nn (') itself, by considering
the sequence of ancestors of each particle as generated by the resampling process. This
assumes the use of the multinomial resampling scheme described in Section 1.3.

Building on this work, Lee and Whiteley (2018) propose a collection of variance estima-
tors that may similarly be computed using a single realisation of Algorithm 1.2 (i.e. using
resampling in every iteration), by considering the ‘genealogy’ of the particles. These esti-
mators are presented in the context of estimating the relative asymptotic variance (1.24) of

Nn ('), though the authors give several results validating their use in estimating more gen-
eral asymptotic variances. We here introduce the authors’ notation for these estimators,
in order to facilitate reference to these throughout this thesis.

For i ∈ {1,… , N}, one may retrace the ancestry of the ith particle � in to determine its
ancestor among the initial set of particles sampled at time 0. Let Ein denote the index of
this zeroth-generation ancestor; if these are recorded during the running of the algorithm,
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then for any bounded Xn-measurable function ' ∶ Xn → ℝ one may compute

V N
n (') ≔

1
N 2 [(

N
∑
i=1
'(� in))

2

−(
N

N − 1)

n+1

∑
i,j∶Ein≠E

j
n

'(� in)'(�
j
n)]

, (1.40)

given as Equation 4 in Lee and Whiteley (2018).
This quantity may be used to construct unbiased or consistent estimators of several

(asymptotic) variances. By Theorem 1 in that work,

• 
Nn (Xn)2V N
n (') is an unbiased estimator of var(
Nn (')) for any N ;

• NV N
n (') converges in probability as N → ∞ to (1.24), the relative asymptotic vari-

ance of 
Nn (') as N → ∞;

• NV N
n ('−�Nn (')) converges in probability asN → ∞ to (1.25), the asymptotic variance

of �Nn (') as N → ∞.

Since V N
n (') may be computed as a by-product of the SMC algorithm, the (asymptotic)

variances of estimators such as 
Nn (') and �Nn (') may be estimated and returned alongside
the estimators themselves. The ease of computing such variance estimators presents many
opportunities for their use in tuning the SMC algorithm, and we will consider some such
ideas in this thesis.

In settings where n is large, this estimator may exhibit numerical instability. As n in-
creases, all N particles will eventually share a common zeroth-generation ancestor with
probability 1, since the number of unique zeroth-generation ancestors among the par-
ticle set decreases (non-strictly) with each resampling step. If this occurs, then we see
from (1.40) that V N

n (') collapses to zero. To avoid this Olsson and Douc (2019) propose a
modi�ed estimator, utilising not the zeroth-generation ancestors, but rather the ancestors
belonging to some more recent generation. The improved numerical stability comes at the
cost of an asymptotic bias, for which the authors provide bounds.

Lee and Whiteley (2018, Section 4.2) additionally propose a collection of quantities that
may be used to estimate the terms vp,n(') in the decomposition (1.26) of the relative asymp-
totic variance of 
Nn ('). These estimators are denoted vNp,n(') for p ∈ {0,… , n}, and may
similarly be computed as a by-product of a single realisation of the SMC algorithm. We
omit the de�nition here; full pseudocode for computing these quantities is provided by
the authors. Theorem 3 of that work presents results relating to unbiasedness and consis-
tency, comparable to those for V N

n ('); in particular, each vNp,n(') converges in probability
to vp,n(') as N → ∞.

Generalisations of these variance estimators to settings involving the updated Feynman–
Kac models 
̂n and �̂n are also proposed (Lee and Whiteley, 2018, Section 5), based on the
identities (1.13). These include V̂ N

n ('), de�ned in terms of (1.40) as V N
n (')/�Nn (Gn)2; the

properties of this quantity are analogous to those of V N
n ('), and are detailed in Theorem 4
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of the authors’ work. Similarly, a collection of estimators v̂Np,n(') is derived, which are
convergent in probability to each term v̂p,n(') in the asymptotic variance decomposition
(1.31).

1.5.1. Occasional resampling

Variance estimators such as these may also be used in settings where occasional resam-
pling is employed; again, this follows from considering the resulting particle approxima-
tions in terms of updated Feynman–Kac models de�ned on a sequence of excursion spaces.
To this end, the (relative) asymptotic variance of such estimators as 
Nn (') and �Nn (') may
be estimated as a by-product of Algorithm 1.3.

The terms (1.38) or (1.39) in the decomposition of the relative asymptotic variance of

Nn (') may be estimated similarly, using an appropriate form of the estimators v̂Np,n(') or
vNp,n('). However, when adaptive resampling is used the sequence of resampling times re-
sulting from a single realisation of the algorithm may not correspond to the almost sure
limit of this sequence as N → ∞, which is generally unknown. Consequently there is
not necessarily a one-to-one correspondence between the realisations of estimates of the
form vNp,n(') and the terms in the true decomposition of the relative asymptotic variance
of 
Nn ('). Caution must therefore be exercised when using the term-by-term estimators
vNp,n(') in adaptive settings, ensuring that N is su�ciently large that the sequence of re-
sampling times is equal to its almost sure limit with high probability.

1.6. Summary

This chapter serves as a review of the structure and properties of sequential Monte Carlo
algorithms, a class of simulation-based methods that may be used to approximate se-
quences of recursively-de�ned probability measures. The concepts and initial results in-
troduced here will be fundamental to the ideas we later discuss, and so we shall frequently
refer back to sections of this chapter. In particular, the notation we have de�ned in this
chapter will be used throughout this thesis.

The ideas reviewed here will primarily be considered in the context of sequential Monte
Carlo samplers, a subclass of SMC algorithms that we introduce in the next chapter.
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2. Sequential Monte Carlo samplers

2.1. Methodology

The SMC algorithms presented so far are clearly suited to producing particle approxima-
tions of Feynman–Kac models (
p)np=0 and (�p)np=0. However, it is not immediately clear
how they may be exploited to produce empirical approximations of probability measures
that do not readily conform to the Feynman–Kac framework. We consider in this chapter
the problem of approximating a sequence of probability measures (�p)np=0, de�ned on a
common measurable space (X,X ). It shall be assumed that these measures admit densities
with respect to some common dominating measure dx . That is, for A ∈ X ,

�p(A) =
1
Zp ∫

A
�̄p(x) dx,

where �̄p is an unnormalised density that can be computed at each x ∈ X, and the normal-
ising constant Zp ≔ ∫X �̄p(x) dx may be unknown.

A methodology allowing such sequential sampling using SMC methods was proposed
by Del Moral et al. (2006), in the form of sequential Monte Carlo samplers. The generic
form that we shall describe was �rst proposed by Gilks and Berzuini (2001) and Chopin
(2002) in di�erent settings, building upon ideas in Crooks (1998) and Neal (2001). The
basis of these algorithms lies in the view of SIS described in Section 1.2.2, as a form of
importance sampling for approximating the joint distribution of the entire ‘path’ (� i0 ,… , � in)
of each particle. These joint distributions are de�ned in terms of the potential functions
and Markov kernels, as in (1.12); the idea is therefore to specify these appropriately in order
that the distributions of interest �p are admitted as marginal distributions.

Speci�cally, one constructs a sequence of recursively-de�ned target distributions on
joint spaces of increasing dimension. To achieve this, one de�nes a sequence of ‘backward-
in-time’ Markov kernels (Lp)n−1p=0. For each p ∈ {0,… , n} we de�ne a probability measure
�̃p on the joint space Xp+1 by taking the tensor product of �p with a subsequence of these
backward kernels; for some set Ã belonging to the product �-algebra X ⊗p+1, we have

�̃p(Ã) ≔ ∫
Ã
�p(dxp)

p−1
∏
q=0

Lq(xq+1, dxq). (2.1)

This is seen to admit �p as a marginal distribution. The choice of backward kernels is
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2. seqential monte carlo samplers

formally arbitrary, though greatly a�ects the e�ciency of the algorithm. In practice one
chooses backward kernels ‘close to’ an optimal choice given in Proposition 1 of Del Moral
et al. (2006), which minimises the variance of the importance weights.

In the case that M0 = �0, and Mp is a Markov kernel invariant with respect to �p for
each p ∈ {1,… , n}, a popular choice is to take the backward kernels (Lp)n−1p=0 to be the time
reversals of the Markov kernels (Mp)np=1, as shall later be formally introduced in De�ni-
tion 3.2. The joint distribution (2.1) then corresponds to the form (1.12), introduced in the
motivation of sequential importance sampling, with potential functions given by

Gp(x) =
�̄p+1(x)
�̄p(x)

=
Zp+1
Zp

d�p+1
d�p

(x), x ∈ X, p ∈ {0,… , n − 1}. (2.2)

Such a de�nition is possible as long as the sequence of supports of the distributions (�p)np=0
is non-increasing, so that �p ≪ �p−1 for all p ∈ {1,… , n}. This allows the construction of
an SIS algorithm of the structure presented in Algorithm 1.1, with incremental weights
computed using ratios of successive unnormalised density functions.

Assuming that �p−1 ≈ �p , the resulting incremental weights should have reasonably low
variance. A number of other ways to specify the required backward kernels are proposed
Del Moral et al. (2006), which may yield incremental weights of a lower variance in spe-
cialised settings. However, these typically have a form that depends on the Markov kernels
Mp ; such expressions may be intractable, for example if each Mp is a Markov chain Monte
Carlo (MCMC) kernel, which does not admit a density with respect to the Lebesgue mea-
sure. Furthermore, such incremental weights cannot be expressed as potential functions
evaluated on the current particle set, necessitating a form of SIS that is subtly di�erent to
that presented in Chapter 1 in the context of Feynman–Kac models.

For this reason, throughout this thesis we shall solely consider SMC samplers employing
potential functions of the form (2.2). The resulting Feynman–Kac models are such that,
for p ∈ {0,… , n},

�p = �p , 
p(X) =
Zp
Z0
.

Particle approximations of these quantities may be formed using any of the SMC algo-
rithms previously described, for these choices of (Gp)n−1p=0 and (Mp)np=0. To make this explicit,
we present here as Algorithm 2.1 an SMC sampler using occasional resampling (i.e. in the
form of Algorithm 1.3).

We see that approximations of each �p may be formed as the empirical measures �Np ,
computed as in (1.17). The ratio of normalising constants Zp/Z0 may be estimated by 
Np (X),
according to (1.18). This is particularly advantageous since in several applications, normal-
ising constants Zp (or ratios thereof) are the primary objects of inference. We shall describe
some such settings in the review that follows.
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2.2. tempering

Algorithm 2.1 Sequential Monte Carlo sampler

1. At time p = 0:
• For i ∈ {1,… , N} set W i

0 ← 1 and independently sample � i0 ∼ �0(⋅).

2. At time p = 1,… , n,

• For i ∈ {1,… , N} set W̃ i
p ← W i

p−1
�̄p(� ip−1)
�̄p−1(� ip−1)

.

• If resampling in the pth iteration:
– For i ∈ {1,… , N} independently sample Aip−1 ∼ Categorical(W̃ 1

p ,… , W̃ N
p )

and set W i
p ← 1.

• Else:
– For i ∈ {1,… , N} set Aip−1 ← i and set W i

p ← W̃ i
p .

• For i ∈ {1,… , N} independently sample � ip ∼ Mp(�
Aip−1
p−1 , ⋅), whereMp is a Markov

kernel admitting �p as an invariant distribution.

2.2. Tempering

While the methodology of SMC samplers is based on sampling from each in a sequence
of distributions, in many settings there is only one distribution �⋆ of direct interest. If �⋆
has multiple well-separated modes, or has a non-trivial covariance structure, then it may
be di�cult to produce adequate approximations using a single �⋆-invariant Markov chain.
For example, a random walk Metropolis sampler (Metropolis et al., 1953) may struggle to
explore the space X e�ciently in such scenarios and may therefore exhibit high autocor-
relation. In such cases it is common to construct a sequence of distributions (�p)np=0 in
which �n ≔ �⋆ is the �nal such distribution. One chooses an initial distribution �0 that
is relatively tractable compared to �⋆, and from which one may readily produce samples.
The intermediate distributions form a gradual transition between �0 and �⋆.

The bene�t of using SMC samplers to produce samples from each of these distributions
in turn is that the problem of constructing a suitably well-mixing Markov kernel is re-
duced. By �rst sampling a collection of particles from the benign distribution �0, and then
applying each Markov kernel Mp (resampling as necessary), these particles are ‘moved
through’ the sequence of distributions �p . Their nth-generation incarnations may be used
to form a particle approximation �Nn of �n = �⋆.

Constructing well-mixing Markov kernels Mp (e.g. MCMC kernels) targeting those dis-
tributions later in the sequence may be di�cult, though may be easier for earlier distri-
butions if �0 is su�ciently simple. The application of these well-mixing kernels helps to
distribute the particles throughout the space in all areas of high density. By constructing
the sequence of distributions (�p)np=0 so that consecutive distributions �p−1 and �p are suf-

31



2. seqential monte carlo samplers

�ciently ‘similar’, it will be straightforward to move the particles from the areas of high
density of �p−1 to those of �p , by application of Mp .

In particular, the features of �⋆ that make it di�cult to form a well-mixing �⋆-invariant
Markov kernel may be gradually introduced to each of the intermediate distributions. For
example, in the case that �⋆ is highly multimodal one can choose �0 be a broad unimodal
distribution, with its mass gradually separating out into the modes of �⋆ as one progresses
through the sequence. This behaviour is illustrated in Figure 2.1, for a sequence of uni-
variate distributions interpolating between �0 = N (0, 102) and �⋆ = 0.3N (−10, 0.42) +
0.7N (10, 0.82). Although �⋆ has modes that are separated by a region of negligible prob-
ability mass, earlier distributions in the sequence place non-negligible mass on a large
connected set, making it straightforward to construct well-mixing MCMC kernels target-
ing these distributions.

Analogously to each �p , assume that for A ∈ X

�⋆(A) =
1
Z⋆ ∫

A
�̄⋆(x) dx,

where �̄⋆ is an unnormalised density with respect to a dominating measure dx that can be
computed at each x ∈ X, and the normalising constant Z⋆ ≔ ∫X �̄⋆(x) dx may be unknown.
For a given sequence of distributions (�p)np=0 we therefore have �⋆ = �n, �̄⋆ = �̄n, and
Z⋆ = Zn.

A commonly-used approach in the literature for producing such a sequence of distribu-
tions is known as tempering. This is so named by analogy with the technique in metallurgy,
in which alloys are toughened by being heated to high temperatures and slowly cooled.
This allows the atoms within to redistribute themselves, in order that they may ultimately
settle in a more stable arrangement. In a comparable way, sampling from �0 distributes
particles across the state space, with these gradually settling in the areas of high mass of
�⋆.

Within the tempering framework, one considers functions on X of the form

�̄0(⋅)1−� �̄⋆(⋅)� , (2.3)

where � ∈ [0, 1]. This de�nes a collection of unnormalised densities that smoothly interpo-
late between �̄0 and �̄⋆ as � increases from 0 to 1. An appropriate sequence of distributions
may therefore be obtained by evaluating (2.3) at a discrete set of values of � . Formally, one
de�nes a temperature schedule (�p)np=0 such that

0 ≕ �0 < �1 < ⋯ < �n ≔ 1.

Each value �p is known as an inverse temperature, by analogy with metallurgical temper-
ing. The resulting sequence of tempered distributions (�p)np=0 is de�ned in terms of the
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�6 (�6 = 0.2) �7 = �⋆ (�7 = 1)

�4 (�4 = 0.02) �5 (�5 = 0.05)

�2 (�2 = 0.005) �3 (�3 = 0.01)

�0 (�0 = 0) �1 (�1 = 0.002)

−15 −10 −5 0 5 10 15 −15 −10 −5 0 5 10 15

Figure 2.1.: Density functions of each in a tempered sequence of distributions, with �0 =
N (0, 102), �⋆ = 0.3N (−10, 0.42) + 0.7N (10, 0.82), and intermediate distributions
speci�ed by the stated inverse temperatures �0∶7.
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2. seqential monte carlo samplers

corresponding unnormalised density functions, given by

�̄p(x) = �̄0(x)1−�p �̄⋆(x)�p , x ∈ X. (2.4)

The density functions depicted in Figure 2.1 are an example of such a tempered sequence,
speci�ed by the temperature schedule �0∶7 = (0, 0.002, 0.005, 0.01, 0.02, 0.05, 0.2, 1).

Using these distributions in the previously-described framework of the SMC sampler
requires M0 = �0, and Mp to be a �p-invariant Markov kernel for p ∈ {1,… , n}, typically
an MCMC kernel. The potential functions (2.2) may conveniently be expressed as

Gp(x) = (
�̄⋆(x)
�̄0(x))

�p+1−�p
, x ∈ X, p ∈ {0,… , n − 1}. (2.5)

As previously mentioned, the resulting Feynman–Kac measures are such that �n = �n = �⋆.
Additionally, 
n(X) is equal to the ratio of normalising constants Zn/Z0 = Z⋆/Z0.

The use of SMC samplers with tempered sequences of distributions bears many simi-
larities to annealed importance sampling (Neal, 2001), an earlier algorithm which may be
viewed as a special case of this framework. We discuss this connection in Section 3.2.1.

2.2.1. Bayesian posteriors

A common setting to which SMC-based tempering is applied is that of sampling from a
Bayesian posterior distribution on some parameter space X. For example, in Bayesian
mixture modelling the use of exchangeable priors results in non-identi�able mixture com-
ponents, yielding highly multimodal posteriors from which sampling via simple MCMC
methods is di�cult. Jasra et al. (2005) provide a full description of this ‘label switching’
problem, and Del Moral et al. (2006, Section 4) present an SMC sampler for use in this
setting. In another application, Fan et al. (2008) describe how tempering may be used in
an SMC approach to the Bayesian analysis of generalised linear mixed models.

Writing p(x) for the prior density, and p(y ∣ x) for the likelihood of the observations y
given x , a common choice is to take �̄0(x) = p(x) and �̄⋆(x) = p(x)p(y ∣ x). This gives
the posterior distribution of x given y as the target �⋆, with 
n(X) = Z⋆/Z0 = Z⋆ being
the marginal likelihood of the observations y. The resulting procedure is known as like-
lihood tempering; the intermediate distributions have unnormalised densities that may be
expressed as

�̄p(x) = p(x)p(y ∣x)�p .

Such expressions have been termed power posteriors by Friel and Pettitt (2008) and have
been widely studied, particularly with regard to path sampling (as shall be further dis-
cussed in Section 3.2.3).

A similar approach may be used for the purposes of assessing model �t. Suppose p(x ∣
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M) is a prior density on X given some model M , and p(y ∣ x,M) is the corresponding
likelihood function. Taking �̄0(x) = p(x ∣ M) and �̄⋆(x) = p(x ∣ M)p(y ∣ x,M) results in
the normalising constant ratio 
n(X) = Z⋆/Z0 = Z⋆ being the marginal likelihood of y
under the model M ; that is, the evidence for model M . This forms the basis of the ‘SMC2’
algorithm of Zhou et al. (2016). The same authors provide an additional algorithm, albeit
not employing tempering, for the purposes of directly estimating evidence ratios between
models (Bayes factors), exploiting the ability of SMC samplers to unbiasedly estimate ratios
of normalising constants.

In the case of sampling from a Bayesian posterior with likelihood p(y ∣ x) = p(y1∶m ∣ x),
an alternative to likelihood tempering has been suggested by Chopin (2002): de�ning a
sequence

0 ≕ m0 < m1 < ⋯ < mn ≔ m,

one takes �̄p(x) = p(x)p(y1∶mp ∣ x). That is, one uses the prior as the initial distribution,
with successive distributions incorporating the likelihood contribution of a batch of obser-
vations. Although these densities are not of the form (2.4), this approach is known as data
tempering by analogy. If the batches of observations are conditionally independent given
the parameter x , then incremental weights of the form (2.2) correspond to the likelihood
contributions of each such batch.

2.2.2. Tempering outside the SMC framework

Tempering is a general technique for which application is not restricted to SMC samplers.
Several methods have been proposed for using tempered distributions in MCMC settings,
in order to bene�t from the better mixing of Markov kernels targeting distributions corre-
sponding to lower inverse temperatures. We here provide a brief summary of some such
methods, though note that these are outside the scope of this thesis.

Simulated tempering (Marinari and Parisi, 1992; Geyer and Thompson, 1995) is an MCMC
technique proposed as a solution to the poor mixing observed when using a single �⋆-
invariant MCMC kernel. By de�ning an arti�cial joint distribution over the state space
X and the space of temperatures, an MCMC kernel is constructed with the true target as
its invariant distribution (after marginalising over the temperature space). The resulting
sampler bene�ts from more e�cient mixing at lower inverse temperatures. Motivated
by this approach but avoiding the need to extend the state space, Neal (1996) proposed
the use of ‘tempered transitions’, in which a new state is proposed by applying to the
current state a sequence of Markov kernels (and their time reversals) leaving invariant each
distribution in a tempered sequence. Considering the corresponding inverse temperatures,
these Markov kernels may be be seen to apply a repeated ‘heating and cooling’ e�ect.

Parallel tempering (Geyer, 1991) has similar aims, running several Markov chains in
parallel, targeting each distribution �0,… , �n in a tempered sequence. As well as new
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values for each chain being proposed and accepted or rejected in the usual manner, the
algorithm also occasionally proposes the swapping of values between two chains targeting
consecutive distributions. This may be done using an appropriately-de�ned Metropolis–
Hastings acceptance probability, without altering the invariant distribution of either chain.
A full review of this technique is given by Earl and Deem (2005).

We �nally note that tempered sequences of distributions play a key role in path sampling
and thermodynamic integration, which we discuss in Section 3.2.3.

2.3. Other applications

De�ning a sequence of intermediate distributions by means of a temperature schedule is
a common approach in the literature, and is often favoured for its generality. In principle
however, any appropriate sequence of distributions may be chosen to interpolate between
�0 and �⋆. We here review some proposed applications of SMC samplers in which alter-
native parametric approaches are employed for the purpose of specifying this sequence.

2.3.1. Bayesian inference

Alongside the widespread use of tempering as described in Section 2.2.1, a number of
specially-tailored SMC samplers have been proposed for problems in Bayesian inference.
For example, an SMC sampler for a Bayesian binary probit regression model is considered
by Del Moral et al. (2007, Section 4.2), in which the variance of the error term decreases
between successive distributions until reaching its true value. Del Moral et al. (2006, Sec-
tion 5) apply the methodology to the problem of estimating the intensity function of an
inhomogeneous Poisson process sequentially in time, since the generic SMC framework
can easily accommodate transdimensional parameter spaces.

In settings where the likelihood is intractable or expensive to compute, the framework
of approximate Bayesian computation (ABC) provides a means of approximating a poste-
rior distribution via the simulation of pseudo-data (see Marin et al., 2012, for a review).
In its simplest form this takes the role of a rejection sampler, with an empirical measure
formed from those parameter values for which the resulting pseudo-observations are suf-
�ciently ‘similar to’ the true observations. A �rst SMC sampler for use in ABC contexts
was proposed by Sisson et al. (2007), in which the tolerance level used in this rejection step
decreases in each iteration, so that successive distributions form closer approximations of
the true posterior. Later proposals include that of Del Moral et al. (2012a), in which this
decreasing sequence of tolerance levels may be chosen adaptively.

36



2.3. other applications

2.3.2. Rare events

For a probability distribution � , a rare event E ∈ X is such that � (E) ≪ 1; for example, the
tail E = [c,∞) of a distribution on the real line. Estimation of � (E) can be di�cult using
simple Monte Carlo techniques, even in settings where it is straightforward to sample from
� . For example, a simple estimator using (1.1) may require very large numbers of samples
to be drawn for the resulting estimate to be non-zero.

Del Moral et al. (2006) describe the basis of an approach using SMC samplers, requiring
the speci�cation of a decreasing sequence in X given by

X ≕ E0 ⊇ E1 ⊇ ⋯ ⊇ En ≔ E.

Given E0∶n, one may construct a sequence of distributions �p by considering the restriction
of � to each of these sets in turn (normalised appropriately, so that each is a probability
measure). Suppose � admits a (possibly unnormalised) density �̄ with respect to some
dominating measure; then an unnormalised density for each distribution in this sequence
is given by �̄p = �̄ ⋅1Ep . Therefore � (E) is equal to the ratio of normalising constants Zn/Z0,
for which the SMC sampler framework provides an unbiased estimator.

We consider this setting more fully in Section 4.2, where we derive conditions under
which the sequence of sets E0∶n may be considered optimal; the same setting is investigated
by Cérou et al. (2012) in the parametric setting in which E0∶n are chosen as superlevel
sets of a given function. SMC samplers for use in this context have also been proposed
by Johansen et al. (2006), who describe two such procedures for estimating rare event
probabilities in relation to the trajectories of Markov chains.

These SMC approaches to rare event estimation bear close similarities to multilevel
splitting algorithms, including the RESTART algorithm (Villén-Altamirano and Villén-
Altamirano, 1991). Such procedures also exhibit a clear genealogical structure, requiring
the simulation of many Markov chains that are then cloned or discarded depending on
their trajectories. A recent review of adaptive multilevel splitting, including a discussion
of its links to sequential Monte Carlo, is provided by Cérou et al. (2019).

2.3.3. Interpolation to independence

A general method for constructing sequences of intermediate distributions in multidimen-
sional settings was proposed by Paulin et al. (2019). Speci�cally, suppose that the distribu-
tion of interest �⋆ is de�ned on X = En, where E is some space of �nite volume. Suppose
also that we may construct a sequence of distributions ($p)np=1 that are respectively de�ned
on product spaces (Ep)np=1, with $n = �⋆.

To construct a sequence of interpolating distributions (�p)np=0 de�ned on X, one takes �0
to be the uniform distribution on X, and �n = $n = �⋆. For p ∈ {1,… , n − 1}, one de�nes
�p such that for any X ∼ �p , the �rst p components of X are distributed according to $p ,
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and the remaining n − p components are each distributed uniformly on E, independently
of all other components. This construction, previously introduced in the context of Stein’s
method (Chen and Röllin, 2010, Section 3.4), is known as interpolation to independence.

In settings where the target distribution �⋆ is multimodal, Paulin et al. (2019) describe
how the resulting interpolating sequence allows Markov kernels Mp with good mixing
properties to be constructed. The authors describe this for an example based on a Potts
model, proving an upper bound on the asymptotic variances of the resulting estimators
�Nn (').

2.3.4. Simulated annealing

Simulated annealing is a general-purpose optimisation algorithm, �rst proposed by Kirk-
patrick et al. (1983) for the purpose of �nding the argument that maximises a continuous
bounded function f ∶ X → ℝ. The algorithm, using concepts from statistical mechanics,
requires an increasing sequence of non-negative inverse temperatures (�p)p≥0 such that
�p → ∞ as p → ∞.

For each p ≥ 0, one de�nes a Markov kernel Mp for which the invariant distribution
admits a density at x ∈ X proportional to exp(�pf (x)). One may thereby construct an
inhomogeneous Markov chain (Xp)p≥0 such that Xp ∣ Xp−1 ∼ Mp(Xp−1, ⋅). Under certain
conditions, Xp converges in probability to the argument that maximises f as p → ∞.
Locatelli (2000) provides a review of several such convergence results.

As suggested by Del Moral et al. (2006), global optimisation of a density function � on
X may be carried out in an SMC framework by taking each �p to have a density at x ∈ X

proportional to � (x)�p . Zhou and Chen (2013) investigate such a setup for the optimisation
of compactly-supported functions f , obtaining various convergence results in a setting in
which �p admits a density at x proportional to exp(�pf (x)), with �0 = 0.

2.4. Summary

The SMC sampler framework reviewed here may in theory be used to generate approxima-
tions of arbitrary sequences of probability measures de�ned on a common space. However,
we shall primarily consider the setting introduced in Section 2.2, in which only a single
distribution �⋆ is of direct interest. The problem of tuning SMC samplers, in particular
that of choosing the sequence of distributions (�p)np=0, shall be the focus of the next part
of this thesis.
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Schedule selection for sequential
Monte Carlo samplers
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3. The schedule selection problem

3.1. Overview

Consider the previously-described SMC sampler framework as used to form a particle
approximation of some target distribution �⋆. A sequence of distributions (�p)np=0 is chosen
to interpolate between some initial distribution �0 and the �nal distribution �n ≔ �⋆; by
analogy with temperature schedules as introduced in Section 2.2, we shall refer to such
a sequence as a distribution schedule. An open question, which shall form a focus of this
part of the thesis, is: how is such a distribution schedule best chosen?

In the discussion that follows, we shall assume some �xed predetermined choice of the
initial distribution �0. Although in theory this may be chosen freely, for several infer-
ence problems a natural choice of �0 presents itself: for example, the prior distribution
in Bayesian problems (as discussed in Section 2.2.1), or the distribution of interest when
estimating rare event probabilities (see Section 2.3.2). More generally, in order to construct
an SMC sampler using incremental weights of the form (2.2), we require that the sequence
of supports of the distributions (�p)np=0 is non-increasing. In order that this may hold, and
in order to assist the e�cient movement of particles to the areas of high mass of �⋆ via
application of the Markov kernels, one typically chooses �0 to assign non-negligible mass
to a large connected subset of the space. To this end, the practitioner’s choice of �0 may
be seen to represent their prior beliefs about where the mass of �⋆ lies, and is therefore
problem-speci�c.

Given �0 and �⋆, the intermediate distributions may be chosen in any convenient way;
the use of tempering is one such approach, with this sequence speci�ed via a temperature
schedule. However, the choice of sequence can have a signi�cant impact on the e�ciency
of the algorithm, as we shall proceed to explore. In essence, the problem of choosing a
distribution schedule is that of answering the following two questions:

• How many intermediate distributions should there be (i.e. what should n be chosen
as)?

• What should these intermediate distributions �1,… , �n−1 be chosen as?

Given that estimators �Nn (') and 
Nn (') resulting from SMC samplers are consistent inN
by Proposition 1.3 (and in the latter case unbiased, by Proposition 1.2), a particular consid-
eration is how the choice of this sequence a�ects the variance of such estimators. Within
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the SMC sampler presented in Algorithm 2.1, the incremental weights (2.2) correspond
to ratios of unnormalised density functions belonging to consecutive distributions in the
schedule. It follows that consecutive distributions should be su�ciently ‘similar’ in order
to control the variance of such incremental weights. This naturally raises the question of
how to de�ne ‘similarity’ in this context.

Furthermore, by increasing n so that there are more distributions separating �0 and �⋆, it
becomes possible to make consecutive distributions more similar. This may in turn result
in a lower variance of the incremental weights and resulting estimators. However, by
inspection of Algorithm 2.1 we see that the time complexity of the SMC sampler is O(nN ),
since each additional distribution adds an extra iteration. For a �xed computational budget,
an increase in n must therefore be carefully balanced with the number of particles N .

Another issue relates to the Markov kernels: recall that for each p ∈ {1,… , n}, Mp is
invariant with respect to �p , typically an MCMC kernel. As described in Chapter 2 in most
settings of practical interest it is more di�cult to construct well-mixing Markov kernels
targeting �⋆ than �0. Consequently, for any given schedule (�p)np=0, Markov kernels Mp

corresponding to distributions later in the sequence will typically exhibit poorer mixing.
The advantage of an SMC sampler is that one bene�ts from the better mixing of kernels
targeting distributions more similar to �0; therefore, it may be useful to have a large num-
ber of such distributions that are ‘closer to’ �0 than �⋆. For example, if the distributions
(�p)np=0 are determined by a temperature schedule, it may be bene�cial for many of the
inverse temperatures to be close to 0, rather than uniformly spacing these values between
0 and 1. Figure 2.1 exempli�es this; by choosing many small inverse temperatures, the
multimodality of �⋆ is introduced gradually.

In practical settings the distribution schedule is typically speci�ed parametrically, for
example via a temperature schedule or, for the rare event estimation procedure described
in Section 2.3.2, via a decreasing sequence of sets. While we shall frequently consider
such speci�cations over the course of the next chapters, the problem de�ned by the two
previously-stated questions is fundamentally nonparametric in nature.

A third related question is:

• In which iterations of the SMC sampler should resampling take place?

For the SMC sampler presented in Algorithm 2.1, in which the iterations are indexed
{1,… , n}, we shall refer to the subset of iterations in which resampling takes place as
the resampling schedule.

As discussed in Section 1.3.1, the choice of this resampling schedule determines the form
of estimators �Nn (') and 
Nn ('). It follows that if one wishes to minimise the variance of any
such estimator, for any choice of distribution schedule (�p)np=0 there is an optimal choice
of resampling schedule, and therefore these two schedules should be chosen concurrently.
Although adaptive resampling is commonly used in practice, for example using the ef-
fective sample size as described in Section 1.3.2, there is no guarantee that the resulting
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resampling schedule is optimal, nor it is clear how the ESS threshold � should be chosen
optimally.

Given the interplay between these two problems, we shall refer to the problem of jointly
selecting a distribution schedule and resampling schedule as the schedule selection prob-

lem for SMC samplers. Within this chapter, we shall formally formulate this as a transdi-
mensional optimisation problem, by introducing a quantity that may be used to compare
choices of distribution and resampling schedules. We shall then proceed to derive a de-
composition of this quantity, in order to facilitate its theoretical and empirical analysis
over the following chapters.

3.2. Approaches to temperature schedule selection

We begin with a review of some proposed approaches to parametric schedule selection
in practice. In the setting of tempering, the problem of selecting a distribution schedule
reduces to that of selecting a temperature schedule of increasing values between 0 and 1.
Given the simplicity and wide applicability of this approach, many existing proposals for
selecting (�p)np=0 consider this speci�c problem. We here provide a summary of relevant
results from the literature.

3.2.1. Annealed importance sampling

Annealed importance sampling (Neal, 2001) is a procedure for sampling from a tempered
sequence of distributions that predates the more general framework of SMC samplers. It
corresponds exactly, however, to an SMC sampler applied to a tempered sequence of dis-
tributions (�p)np=0 using no resampling (i.e. using SIS as in Algorithm 1.1), with incremental
weights given by (2.5). Since no resampling is employed, minimising the variance of the
resulting estimators amounts to minimising the variance of the importance weights.

This work follows a previous article by the same author on ‘tempered transitions’ (Neal,
1996), which employ tempered distributions in an MCMC setting (see Section 2.2.2 for
a brief description). Based on arguments from this previous work, the author describes
an approach to selecting a temperature schedule in a setting in which �̄0(x)1−� �̄⋆(x)� is
approximately Gaussian over a certain range of � ∈ [0, 1], and �̄0 is approximately constant
in those regions in which these unnormalised densities are high. It is argued that, in order
to minimise the variance of the importance weights, the inverse temperatures in this range
should be geometrically spaced; that is, �p+1/�p should be constant. Such an argument
assumes the use of perfectly-mixing Markov kernels, as we shall consider in Chapter 4.
The accompanying empirical studies use experimentally-chosen temperature schedules
based on this heuristic.
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3.2.2. Adaptive temperature selection

A temperature schedule may be generated in an automated manner by using an adaptive
procedure: rather than specifying the schedule in advance, each successive inverse tem-
perature is chosen online using the sampled particles. Speci�cally, one sets �0 = 0, and then
for each p ≥ 1 the value of �p is determined at pth step of the SMC sampler. Beskos et al.
(2016) present a number of convergence results for such adaptive tempering procedures.

Jasra et al. (2011) propose such a procedure in which the choice of each inverse temper-
ature is made using the ESS, a quantity usually employed for the purpose of assessing the
variance of the importance weights as described in Section 1.3.2. Recalling its empirical
de�nition (1.23) at the pth time step, it may be noted that this depends on the weights
(W i

p−1)Ni=1 from the previous time step and the incremental weights (Gp−1(� ip−1))Ni=1. From
the form of (2.5) it may be seen that these incremental weights depend only on �p−1 and
�p , of which the former will have already been determined.

The suggestion is to �x the decay of the ESS in each iteration, by selecting the next value
�p in order that ESSNp = ESS⋆p for an appropriately-chosen ESS⋆p ∈ [1, N ]. The solution to
this equation must be found numerically, for example using the bisection method; if the
solution is greater than 1, then one sets �p = 1 (and so the algorithm terminates following
this time step). The aim of this procedure, when used with adaptive resampling based on
the ESS, is to control the frequency at which resampling occurs (that is, how often the ESS
falls below the resampling threshold � ). A similar technique is employed by Schäfer and
Chopin (2013).

An alternative approach by Zhou et al. (2016) aims to allow direct control over the
dissimilarity between consecutive distributions, where this is measured by the following
quantity.

De�nition 3.1. For two probability measures � and � de�ned on (X,X ) such that � ≪ �,
the chi-squared distance of � from � (also known as the chi-squared divergence or Pearson
divergence) is de�ned as

D� 2(� ∥�) ≔ ∫
X (

d�
d�

(x) − 1)

2

�(dx).

This measure of dissimilarity does not de�ne a metric, though may be seen as a measure
of the di�erence between the two distributions, being an instance of an f -divergence as
introduced by Csiszár (1963). Its de�nition may be formulated in a number of equivalent
ways; for example, we may also write

D� 2(� ∥�) = ∫
X (

d�
d�

(x))

2

�(dx) − 1 (3.1)
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and
D� 2(� ∥�) = ∫

X

d�
d�

(x)� (dx) − 1. (3.2)

Another useful formulation is

D� 2(� ∥�) = var� (
d�
d�)

; (3.3)

that is to say, the variance of the Radon–Nikodym derivative d�/d� when its argument is
distributed according to �. As noted by Chen (2005), this is equal to the variance of the
importance weights when � is used as an importance distribution, in order to compute
estimates of expectations with respect to � . As such, the chi-squared distance provides a
useful measure of the e�ciency of an importance sampling algorithm.

The variance (3.3) has previously been encountered in the exact form (1.21) of the e�ec-
tive sample size of an importance sample, which may therefore be viewed as a function of
this chi-squared distance. Within the context of SIS, Zhou et al. (2016, and supplementary
material) propose estimating this variance in the exact ESS by directly using the weighted
particle approximation of �p−1 = �p−1. This results in a quantity that the authors de�ne as
the conditional e�ective sample size (CESS). In the pth time step this is computed as

CESSNp ≔
N (∑N

i′=1W i′
p−1Gp−1(� i

′
p−1))

2

∑N
i=1W i

p−1 (Gp−1(� ip−1))
2 (3.4)

=
[

N
∑
i=1
NW i

p−1 (
Gp−1(� ip−1)

∑N
i′=1 NW i′

p−1Gp−1(� i
′
p−1))

2

]

−1

.

In general, this di�ers from the empirical e�ective sample size ESSNp de�ned in (1.23): for
p > 1, the equality CESSNp = ESSNp holds only if resampling has been carried out in the
previous (p − 1)th time step.

Similarly to ESS-based adaptive temperature selection, the idea is to choose each �p such
that CESSNp = CESS⋆, for some value CESS⋆ ∈ [1, N ]. The bene�t of using such a criterion
is that the discrepancy between successive distributions may be controlled directly, such
that the chi-squared distance between each pair of distributions is roughly constant. Larger
values of CESS⋆ result in lower chi-squared distances (and therefore, in practice, a longer
sequence of tempered distributions). In contrast it is noted by Zhou et al. (2016) that, unless
resampling is used in every iteration, the ESS-based adaptive procedure does not result in
an approximately constant discrepancy between successive distributions. It is therefore
proposed to utilise the ESS only for the purposes of adaptive resampling, alongside use of
the CESS for adaptive temperature selection.

We �nally comment that in order to form a weighted empirical measure �Nn approxi-
mating �⋆, for example as in (1.17), there are two possible applications of adaptive SMC

45



3. the schedule selection problem

procedures (including those described here, as well as the adaptive resampling methods
described in Section 1.3.2). The methods could be used ‘as is’, with particle approximations
formed directly from the output of the resulting adaptive SMC sampler. Alternatively, such
methods could be used in a ‘pilot run’ purely for the purpose of generating a distribution
and/or resampling schedule, which can then be used in a second (non-adaptive) SMC sam-
pler. This has some advantages; for example, given the �xed choice of schedules obtained
in the pilot run, the normalising constant estimator 
Nn (X) obtained from the �nal run is
unbiased, following Proposition 1.2.

3.2.3. Path sampling

Consider a family of probability measures {%� ∶ � ∈ [0, 1]} that smoothly interpolate
between %0 ≔ �0 and %1 ≔ �⋆ as � increases from 0 to 1. For each � ∈ [0, 1] let %̄� be the
corresponding unnormalised density (with respect to a common dominating measure dx),
so that

%� (A) =
1
Z�

∫
A
%̄� (x) dx,

where Z� ≔ ∫X %̄� (x) dx is unknown. Within the context of tempering, each density %̄�
takes the form (2.3); that is,

%̄� (x) = �̄0(x)1−� �̄⋆(x)� , x ∈ X, � ∈ [0, 1], (3.5)

so that %̄0 = �̄0, %̄1 = �̄⋆, Z0 = Z0, Z1 = Z⋆.
As previously described, there are many settings in which one wishes to perform infer-

ence on (ratios of) normalising constants, such as model comparison. A general method
for obtaining suitable estimators relies on the path sampling identity (Gelman and Meng,
1998); this states that, if each %̄� (x) is di�erentiable with respect to � , then the logarithm
of the ratio of normalising constants satis�es

log(
Z⋆
Z0)

= log(
Z1

Z0)
= ∫

1

0 [
1
Z�

∫
X

d log %̄� (x)
d�

%̄� (x) dx] d�

= ∫
1

0
%� (

d log %̄�
d� ) d�. (3.6)

For each � in a ‘path’ of discrete values between 0 and 1, one may form a Monte Carlo es-
timator of the integrand of (3.6) by generating samples distributed according to %� . Using
numerical integration (for example, the ‘trapezium’ quadrature rule), a biased estimator of
log(Z⋆/Z0) may therefore be obtained. Such an estimation procedure is known as thermo-

dynamic integration, owing to its applications in theoretical physics.
Although the SMC sampler framework naturally provides an unbiased estimator of

Z⋆/Z0, estimators based on the path sampling identity can also be computed. For un-
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normalised densities of the form (3.5), the identity (3.6) may be expressed as

log(
Z⋆
Z0)

= ∫
1

0
%� (log

�̄⋆(⋅)
�̄0(⋅))

d�. (3.7)

Running an SMC sampler for the sequence of tempered distributions de�ned by (2.4) gives
particle approximations of each distribution �p = %�p , so that the integrand of (3.7) may be
estimated at values of � provided by the temperature schedule. Applications of the path
sampling estimator in an SMC setting may be seen in Johansen et al. (2006) and Zhou et al.
(2016), among others. In general, however, this approach may be used with any scheme
that permits sampling from %� at given values of � ∈ [0, 1].

Many approaches to temperature schedule selection for path sampling are aimed at
minimising the bias of the resulting estimator, rather than the variance: such approaches
frequently assume that arbitrarily many IID samples from each tempering distribution may
be obtained, and solely consider the bias due to the discretisation error of the quadrature
rule. While these results are therefore not necessarily directly applicable to SMC samplers
(for which an unbiased estimator exists, and for which the samples are not IID), a brief
review is provided here for completeness.

In an application of power posteriors (introduced in Section 2.2.1), Lartillot and Philippe
(2006) only considered the use of uniformly-spaced � ; that is, �p = p/n for p ∈ {0,… , n}.
Friel and Pettitt (2008, Section 4.1), using power posteriors for the purpose of computing
a Bayes factor, empirically investigated a number of temperature schedules generated by
�p = (p/n)c for c > 0. For a speci�c linear regression problem, the best results (in terms of
a low bias and standard error) were obtained using c = 3 or 5, and n between 20 and 100.

Schedules of this form were considered further by Calderhead and Girolami (2009, Sec-
tion 3.2.1), with the aim of minimising a sum of symmetrised Kullback–Leibler divergences,
corresponding to biases in marginal likelihood estimates. The best empirical results were
found when �p = (p/n)c with c = 5; other schedules considered included those of the form
�p = 1 − (p/n)c , which place more inverse temperatures close to 1 (and performed much
less favourably). With similar aims, Friel et al. (2014) propose an adaptive temperature
selection procedure requiring computation of the integrand of (3.6), empirically showing
improvements over the schedule given by �p = (p/n)5 at little extra computational cost.

3.3. A criterion for optimality

We now return to the more general nonparametric problem of selecting a distribution
schedule, rather than solely considering the constrained problem associated with temper-
ing. In the remainder of this chapter we present a mathematical formulation of the sched-
ule selection problem introduced in Section 3.1, which shall form the focus of subsequent
chapters.
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To construct a quantity that may be used to compare di�erent sequences of distributions
(�p)np=0, we consider the problem of estimating the normalising constant 
n(X) = 
n(1).
Using Algorithm 2.1, this may be estimated by


Nn (1) =
(

rn−1
∏
j=0

1
N

N
∑
i=1 [

kj+1−1
∏
p=kj

�̄p+1(� ip)
�̄p(� ip) ])(

1
N

N
∑
i=1 [

n−1
∏
p=krn

�̄p+1(� ip)
�̄p(� ip) ])

. (3.8)

This follows directly from (1.18), expressing each potential function Gp according to (2.2).
By Proposition 1.2, this estimator is unbiased for any number of particles N , at least when
the distribution and resampling schedules are chosen deterministically (i.e. not using adap-
tive procedures).

Recall that in the setting of an SMC sampler targeting �⋆ with an initial distribution
�0, 
n(1) is equal to Z⋆/Z0, the ratio of the normalising constants of these distributions’
unnormalised densities. As discussed in Chapter 2, normalising constants and their ratios
are the primary objects of inference in many settings, such as Bayes factors in model com-
parison problems, or the probabilities of rare events. In these cases, a clear objective in
schedule selection is to minimise the variance of 
Nn (1).

We argue that such an objective may be useful more generally, even when other esti-
mators 
Nn (') and �Nn (') are of more direct interest. Noting that (3.8) depends on all the
incremental weights computed throughout the procedure, a low variance of this estimator
may be suggestive of low variances of more general estimators. Similarly, if 
n(1) = 
n(X)
is estimated with low variance, then this may indicate that the space X has been well
explored, with particles in all areas of high mass of �⋆.

Let us introduce some notation. Denote by �2
1(�0∶n, Rn) the relative asymptotic variance

(1.24) of the normalising constant estimator 
Nn (1) when the distribution schedule is �0∶n,
and the subset of time indices in which resampling takes place is Rn ⊆ {1,… , n}. Formally,
de�ning 
Nn (1) as in (3.8), we denote

�2
1(�0∶n, Rn) ≔ lim

N→∞
N var(


Nn (1)

n(1) )

, (3.9)

where Rn ≔ {kj ∶ j ∈ {1,… , rn}}. Although such a quantity also depends on the Markov
kernels Mp , we omit this from the notation, assuming some �xed method of construct-
ing these kernels to leave each �p invariant. When it is clear from the context, we shall
sometimes suppress the dependence of this quantity on the distribution and resampling
schedules, writing �2

1 ≔ �2
1(�0∶n, Rn).

From the de�nition of the relative asymptotic variance as a limit in the number of par-
ticles N , a useful approximation when N is su�ciently large is

var(
Nn (1)) ∝ var(

Nn (1)

n(1) )

≈
�2
1

N
=
n�2

1

nN
.
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As earlier mentioned, the time complexity of Algorithm 2.1 is O(nN ). Therefore if the
total computational time available is �xed, and N is su�ciently large, the variance of the
normalising constant estimator is minimised approximately when n�2

1 is minimised.
The relevance of this quantity is further motivated by the notion of algorithmic e�-

ciency. A metric commonly used to compare simulation algorithms is the variance of some
estimator of interest, multiplied by the cost of its computation. Hammersley and Hand-
scomb (1964, page 22) de�ne the e�ciency of a Monte Carlo method to be the reciprocal
of this cost–variance product; this de�nition was formalised and extended by Glynn and
Whitt (1992), who consider the asymptotic e�ciency as the computational budget tends to
in�nity.

For a �xed choice of distribution schedule and resampling schedule, the time cost of
the SMC sampler is determined by the number of particles N . For large N , we see that
this computational cost is approximately proportional to nN , and the variance of 
Nn (1) is
approximately proportional to �2

1/N . The reciprocal of the cost–variance product n�2
1 may

therefore be viewed as an approximate ‘asymptotic e�ciency value’, as de�ned by Glynn
and Whitt (1992, Section 2), which may be used to compare the asymptotic e�ciency of
estimators of the normalising constant.

We therefore propose using exactly this quantity to assess the performance of distribu-
tion schedules and resampling schedules; that is, n times the relative asymptotic variance
as N → ∞ of 
Nn (1). Correspondingly we propose that �nding the optimal solution to
the schedule selection problem, as described through the questions posed in Section 3.1, is
equivalent to determining

argmin
(n, �1∶n−1, Rn)

n�2
1(�0∶n, Rn).

This criterion has a number of advantages. The use of the asymptotic variance is bene-
�cial because, by de�nition, it is independent of the number of particles used. This allows
the performance of a sequence of distributions to be measured in a way that is not in�u-
enced by the choice of N , which may then simply be chosen to be as large as is feasible.
Furthermore, as described in Section 1.4.1 relative asymptotic variances of the form (1.24)
admit a decomposition that facilitates their analysis; we shall exploit this in the following
section.

On a closely related note, as discussed in Section 3.1 the speci�cation of a distribution
schedule requires a choice of the length n. By increasing n it is possible to make consecu-
tive distributions more similar (in a manner that we shall formalise), which may result in
lower variances of the incremental weights, and of estimators such as 
Nn (1). The chosen
quantity accounts for this, while appropriately penalising longer (and more computation-
ally costly) sequences.

Finally, as discussed in Section 1.5 a number of techniques have been proposed for es-
timating relative asymptotic variances of 
Nn ('). These include the previously-introduced
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variance estimators of Lee and Whiteley (2018), which may be computed as a by-product
of running the SMC sampler. For any given schedule, the quantity n�2

1 may therefore be
estimated at low computational cost. This raises the possibility of using such estimators in
practical procedures for schedule selection; we will explore this idea further in Section 5.2.

3.4. The relative asymptotic variance decomposition

We now proceed to derive some properties of the relative asymptotic variance as N → ∞
of estimators 
Nn ('), in the setting of SMC samplers. Within this thesis the results we
obtain will be of direct interest only when ' = 1, in which case this asymptotic variance
corresponds to the quantity �2

1 introduced above. Nevertheless, for purposes of exposition
we shall derive all results in this section in the general case, before explicitly stating the
results when ' = 1 in Section 3.4.2.

We note that similar calculations to those considered in this section have previously
been encountered by other authors in smoothing contexts; these include the results of
Del Moral et al. (2010) and Douc et al. (2011). The expressions we derive are speci�c to the
SMC sampler setting we consider, and will be used extensively in later chapters.

We begin by considering the setting in which resampling is used in every iteration of the
SMC sampler, i.e. using a resampling schedule Rn = {1,… , n}, equivalent to a form of Al-
gorithm 1.2. The generalisation to settings in which occasional resampling is used follows
by consideration of excursion models as in Section 1.3.1.1, and is discussed subsequently.

Recall that in this case, the SMC particle approximation 
Nn is of the form (1.15). For a
bounded X -measurable function ' ∶ X → ℝ, the relative asymptotic variance of 
Nn (')
may be decomposed according to (1.26) as ∑n

p=0 vp,n('). Each term vp,n(') admits an ex-
pression (1.29); since �p = �p for an SMC sampler, we may initially re-express this as

vp,n(') =
�p(Qp,n(')2)
�p(Qp,n(1))2

− �n(')2. (3.10)

Within the remainder of this section we simplify this further, by deriving a more explicit
expression for Qp,n(')(xp) ≔ ∫X Qp,n(xp , dxn)'(xn).

As previously mentioned, within this thesis we shall only consider SMC samplers of
the form presented in Algorithm 2.1. That is, we consider the case where M0 = �0, each
Markov kernel Mp admits �p as an invariant distribution, and the potential functions Gp
take the form (2.2). In this common setting we may express Qp,n('), and therefore vp,n('),
in terms of the Markov kernels (Mp)np=1.

Many of the expressions that we derive exhibit similarities to the smoothing results
of Del Moral et al. (2010) and Douc et al. (2011), which are based on appropriately-de�ned
‘backward kernels’. We also begin by introducing such a de�nition. LetK ∶ X×X → [0, 1]
be a Markov kernel on (X,X ) that leaves some probability measure � invariant; that is,
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�K = � . For anyA ∈ X , consider also the integral kernel 1AK , recalling that this is de�ned
such that for any x ∈ X and B ∈ X ,

1AK (x, B) ≔ 1A(x)K (x, B).

The measure � (1AK ) on (X,X ) is then given by, for any B ∈ X ,

� (1AK )(B) = ∫
X
� (dx)1A(x)K (x, B) = ∫

A
� (x)K (x, B).

We see straightforwardly that for any A ∈ X , � (1AK ) is absolutely continuous with
respect to �K = � . It follows that the Radon–Nikodym derivative d� (1AK )/d� is well
de�ned, allowing us to de�ne the following Markov kernel.

De�nition 3.2. Let K ∶ X × X → [0, 1] be a Markov kernel on (X,X ) that leaves some
probability measure � invariant. The time reversal of K , denoted K ∗ ∶ X × X → [0, 1], is
de�ned for x ∈ X, A ∈ X by

K ∗(x, A) ≔
d� (1AK )

d�
(x).

The time reversal is so named since it satis�es the property

∫
A
� (dx)∫

B
K (x, dx ′) = ∫

B
� (dx ′)∫

A
K ∗(x ′, dx) for all A, B ∈ X . (3.11)

Taking B = X in this expression gives � (A) = ∫X � (dx
′)K ∗(x ′, A), from which we see that

K ∗ leaves � invariant.

We now return to the problem of deriving an expression for Qp,n('), as appears in the
terms (3.10) of the relative asymptotic variance decomposition. In preparation, we �rst
present a lemma relating to the kernels (Qp)np=1 de�ned in (1.27), recalling from (1.28) that
Qp,n = Qp+1⋯Qn for p < n, and Qn,n = Id. Considering the time reversals (M ∗

p)np=1 of the
Markov kernels (Mp)np=1 used in the SMC sampler, we obtain the following result.

Lemma 3.3. Let M0 = �0, Mp be a Markov kernel admitting �p as an invariant distribution

(for p ≥ 1), and each Gp take the form (2.2). For p ∈ {1,… , n} let Qp be de�ned as in (1.27).
Then for all A, B ∈ X ,

∫
A
�p−1(dxp−1)∫

B
Qp(xp−1, dxp) =

Zp
Zp−1 ∫

B
�p(dxp)∫

A
M ∗
p(xp , dxp−1).
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Proof. Let p ∈ {1,… , n} and A, B ∈ X . Using the de�nition (1.27) of Qp , we have

∫
A
�p−1(dxp−1)∫

B
Qp(xp−1, dxp)

= ∫
A
�p−1(dxp−1)Gp−1(xp−1)∫

B
Mp(xp−1, dxp).

Writing Gp−1(xp−1) in the form (2.2), this is equal to

Zp
Zp−1 ∫

A
�p−1(dxp−1)

d�p
d�p−1

(xp−1)∫
B
Mp(xp−1, dxp)

=
Zp
Zp−1 ∫

A
�p(dxp−1)∫

B
Mp(xp−1, dxp)

=
Zp
Zp−1 ∫

B
�p(dxp)∫

A
M ∗
p(xp , dxp−1),

where the last step follows from property (3.11) of the time reversal kernel M ∗
p . ■

We may now use this result to derive an expression for the function Qp,n(') ∶ X → ℝ,
as appears in (3.10). To facilitate this, we de�ne a sequence of kernels (Mn,p)np=0 by taking
compositions of the time reversal kernels (M ∗

p)np=1. Speci�cally, for p ∈ {0,… , n} de�ne
Mn,p ∶ X × X → [0, 1] by

Mn,n ≔ Id; Mn,p ≔ M ∗
n ⋯M ∗

p+1, p ∈ {0,… , n − 1}. (3.12)

This allows us to express Qp,n(') in terms of a Radon–Nikodym derivative.

Proposition 3.4. Let M0 = �0, Mp be a Markov kernel admitting �p as an invariant dis-

tribution (for p ≥ 1), and each Gp take the form (2.2). For p ∈ {0,… , n} let Qp,n be de�ned
as in (1.28), and let ' ∶ X → ℝ be a bounded X -measurable function. Then the function

Qp,n(') ∶ X → ℝ, de�ned such that Qp,n(')(xp) ≔ ∫X Qp,n(xp , dxn)'(xn) for xp ∈ X, is

�p-almost everywhere of the form

Qp,n(')(xp) =
Zn
Zp

d�n('Mn,p)
d�p

(xp),

where the signed measure �n('Mn,p) is given by, for A ∈ X ,

�n('Mn,p)(A) = ∫
X
�n(dxn)'(xn)Mn,p(xn, A).

Proof. We begin with the case p = n. Since Qn,n ≔ Id one has that for all xn ∈ X,

Qn,n(')(xn) = Id(')(xn) = '(xn). (3.13)

52



3.4. the relative asymptotic variance decomposition

Now for some A ∈ X , consider the integral

∫
A
�n(dxn) [

Zn
Zn

d�n('Mn,n)
d�n

(xn)] = �n('Mn,n)(A) = ∫
X
�n(dxn)'(xn)Mn,n(xn, A). (3.14)

Since Mn,n ≔ Id, we have Mn,n(xn, A) = Id(xn, A) = �xn (A) = 1A(xn). Therefore we may
re-express (3.14) as

∫
X
�n(dxn)'(xn)1A(xn) = ∫

A
�n(dxn)'(xn).

It follows that for �n-almost all xn ∈ X the bracketed expression in (3.14) is equal to '(xn).
Following (3.13), this is equal to Qn,n(')(xn). The statement therefore holds for p = n.

Proceeding inductively, suppose that the statement is true for p = q ≥ 1. For some
A ∈ X , consider the integral

∫
A
�q−1(dxq−1)Qq−1,n(')(xq−1) (3.15)

= ∫
A
�q−1(dxq−1)∫

X
Qq−1,n(xq−1, dxn)'(xn).

By (1.28) we have Qq−1,n = QqQq,n, and so we may re-express this as

∫
A
�q−1(dxq−1)∫

X
Qq(xq−1, dxq)∫

X
Qq,n(xq , dxn)'(xn)

= ∫
A
�q−1(dxq−1)∫

X
Qq(xq−1, dxq)Qq,n(')(xq).

Applying Lemma 3.3, this is equal to

Zq
Zq−1 ∫

X
�q(dxq)Qq,n(')(xq)∫

A
M ∗
q(xq , dxq−1).

Applying the inductive assumption, we see that this is equal to

Zq
Zq−1

Zn
Zq ∫

X
�q(dxq)

d�n('Mn,q)
d�q

(xq)∫
A
M ∗
q(xq , dxq−1)

=
Zn
Zq−1 ∫

X
�n('Mn,q)(dxq)M ∗

q(xq , A)

=
Zn
Zq−1 ∫

X
�n(dxn)'(xn)∫

X
Mn,q(xn, dxq)M ∗

q(xq , A);

by (3.12) we have that Mn,qM ∗
q = Mn,q−1, and so (3.15) may be �nally simpli�ed as

Zn
Zq−1 ∫

X
�n(dxn)'(xn)Mn,q−1(xn, A) =

Zn
Zq−1

�n('Mn,q−1)(A). (3.16)

Now suppose �q−1(A) = 0. Then the integral (3.15) equals zero, and so (3.16) is also zero.
It follows that �n('Mn,q−1) ≪ �q−1. Comparing (3.15) and (3.16) we see that Qq−1,n(') is
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3. the schedule selection problem

equal to Zn/Zq−1 times the corresponding Radon–Nikodym derivative, as required.
The result therefore holds for all p ∈ {0,… , n}. ■

Using this result, we may re-express (3.10) to obtain a more explicit expression for each
vp,n(') term in this SMC sampler setting.

Proposition 3.5. LetM0 = �0,Mp be a Markov kernel admitting �p as an invariant distribu-
tion (for p ≥ 1), and each Gp take the form (2.2). Let ' ∶ X → ℝ be a boundedX -measurable

function. Then for p ∈ {0,… , n},

vp,n(') = ∫
X (

d�n('Mn,p)
d�p

(xp))

2

�p(dxp) − �n(')2,

where the signed measure �n('Mn,p) is as given in Proposition 3.4.

Proof. Consider the expression (3.10) for vp,n(') in this SMC sampler setting. Using the
form of Qp,n(') from Proposition 3.4, the numerator of the fraction in this expression may
be rewritten as

�p(Qp,n(')2) = ∫
X
Qp,n(')(xp)2�p(dxp)

= (
Zn
Zp)

2

∫
X (

d�n('Mn,p)
d�p

(xp))

2

�p(dxp). (3.17)

Now consider the denominator of the fraction in (3.10), which is the square of �p(Qp,n(1)).
Again using Proposition 3.4, and noting that 1Mn,p = Mn,p , we have that

�p(Qp,n(1)) = ∫
X
Qp,n(1)(xp)�p(dxp)

=
Zn
Zp ∫

X

d�nMn,p

d�p
(xp)�p(dxp)

=
Zn
Zp ∫

X
�nMn,p(dxp).

Using the de�nition (3.12) of Mn,p , we therefore have

�p(Qp,n(1)) =
Zn
Zp ∫

X
�n(dxn)∫

X
M ∗
n(xn, dxn−1) ⋯∫

X
M ∗
p+1(xp+1, dxp) =

Zn
Zp
. (3.18)

The stated result follows directly from substituting (3.17) and (3.18) into (3.10). ■

This expression for vp,n(') admits a particularly convenient form when ' = 1, in which
case the terms vp,n(1) are those in the decomposition of the relative asymptotic variance
�2
1, introduced in Section 3.3. We will detail this result in Section 3.4.2 (where it is presented

as Proposition 3.10), and discuss its relevance in the context of schedule selection.
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3.4. the relative asymptotic variance decomposition

3.4.1. Occasional resampling

We now discuss estimators of the form 
Nn (') resulting from the use of other resampling
schedules Rn ⊆ {1,… , n} within the SMC sampler, i.e. by using a form of Algorithm 1.3. To
present the results for this setting, we continue using the notation for excursion Feynman–
Kac models employed in Section 1.3.1.1; for example, we denote the resampling schedule
by Rn ≔ {kj ∶ j ∈ {1,… , rn}}.

Since in an SMC sampler all the distributions �p are de�ned on a common space X, the
excursion spaces are of the form X′

j = Xkj+1−kj . One may also show that for j ∈ {0,… , rn},
the normalised excursion Feynman–Kac models are of the form

�′j (dx
′
j ) = �kj (dxkj )

kj+1−1
∏

p=kj+1
Mp(xp−1, dxp), (3.19)

with the corresponding normalising constants being 
 ′j (X′
j ) = Zkj/Z0.

When occasional resampling is used, the particle approximation 
Nn takes the general
form (1.18). Recall from Section 1.4.1.2 that the relative asymptotic variance of the associated
estimator 
Nn (') may be decomposed according to (1.34), as ∑rn

j=0 v̂′j,rn ('). As previously
stated in (1.38), each of these rn + 1 terms may be expressed as

v̂′j,rn (') =
�′j (Q′

j,rn (G
′
rn ⋅ '̄)

2)
�′j (Q′

j,rn (G
′
rn ))

2 − �̂′rn ('̄)
2,

where '̄ ∶ X′
rn → ℝ is de�ned as in (1.37), being such that '̄(xkrn ,… , xn) ≔ '(xn).

We shall proceed to derive results relating to this decomposition, analogous to those
derived in the setting in which resampling always occurs. Again, we consider the use of
an SMC sampler with potential functionsGp of the form (2.2); in this case each term v̂′j,rn (')
may be expressed in terms of a chi-squared distance, similar to the ‘always resampling’
case. We follow a similar approach to achieve this result, �rst providing a lemma relating
to the kernels Q′

j de�ned in (1.35).
Within Lemma 3.3, we considered the time reversals (M ∗

p)np=1 of the Markov kernels
(Mp)np=1 used in the SMC sampler, de�ning these according to De�nition 3.2. Considering
the Markov kernels introduced in the construction of the excursion Feynman–Kac models,
recall from (1.19) that for j ∈ {1,… , rn}, M ′

j is a Markov kernel from (X′
j−1,X ′

j−1) to (X′
j ,X ′

j ).
Since these two spaces may di�er in dimension, the time reversal of M ′

j is not well-de�ned
according to De�nition 3.2. However, considering the de�nition (1.19) ofM ′

j we may de�ne
an appropriate ‘reversal’ (M ′

j )∗ ∶ X′
j × X ′

j−1 → [0, 1] by

(M ′
j )
∗(x ′j , dx

′
j−1) ≔

kj−1+1
∏
p=kj

M ∗
p(xp , dxp−1). (3.20)

This allows us to derive the following analogue of Lemma 3.3.
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3. the schedule selection problem

Lemma 3.6. Let M0 = �0, Mp be a Markov kernel admitting �p as an invariant distribution

(for p ≥ 1), and each Gp take the form (2.2). For j ∈ {1,… , rn} let Q′
j be de�ned as in (1.35).

Then for all A ∈ X ′
j−1 and B ∈ X ′

j ,

∫
A
�′j−1(dx

′
j−1)∫

B
Q′
j (x

′
j−1, dx

′
j ) =

Zkj
Zkj−1 ∫B

�′j (dx
′
j )∫

A
(M ′

j )
∗(x ′j , dx

′
j−1).

Proof. Let j ∈ {1,… , rn}, A ∈ X ′
j−1 and B ∈ X ′

j . Using the de�nition (1.35) of Q′
j , we have

∫
A
�′j−1(dx

′
j−1)∫

B
Q′
j (x

′
j−1, dx

′
j ) (3.21)

= ∫
A
�′j−1(dx

′
j−1)G

′
j−1(x

′
j−1)∫

B
M ′
j (x

′
j−1, dx

′
j ).

For notational simplicity, let us now consider the integrand of this expression; that is,
�′j−1(dx ′j−1)G′

j−1(x ′j−1)M ′
j (x ′j−1, dx ′j ). Using the form (3.19) of �′j−1, the form (1.20) of G′

j−1 and
the form (1.19) of M ′

j , this is

[
�kj−1(dxkj−1)

kj−1
∏

p=kj−1+1
Mp(xp−1, dxp)] [

kj−1
∏

p=kj−1
Gp(xp)] [

kj+1−1
∏
p=kj

Mp(xp−1, dxp)]

= �kj−1(dxkj−1) [

kj
∏

p=kj−1+1
Gp−1(xp−1)Mp(xp−1, dxp)] [

kj+1−1
∏

p=kj+1
Mp(xp−1, dxp)]

= �kj−1(dxkj−1) [

kj
∏

p=kj−1+1
Qp(xp−1, dxp)] [

kj+1−1
∏

p=kj+1
Mp(xp−1, dxp)]

,

where, after regrouping the terms, we have used the de�nition (1.27) of Qp .

By repeatedly applying Lemma 3.3 for p ∈ {kj−1 + 1,… , kj}, we �nd that the integral
(3.21) of this expression over A ∈ X ′

j−1, B ∈ X ′
j is equal to that over

[

kj
∏

p=kj−1+1

Zp
Zp−1

M ∗
p(xp , dxp−1)]

�kj (dxkj ) [

kj+1−1
∏

p=kj+1
Mp(xp−1, dxp)]

=
Zkj
Zkj−1 [

kj
∏

p=kj−1+1
M ∗
p(xp , dxp−1)] [

�kj (dxkj )
kj+1−1
∏

p=kj+1
Mp(xp−1, dxp)]

,

Of the two bracketed terms, we identify the former as (M ′
j )∗(x ′j , dx ′j−1), as de�ned in (3.20),

and the latter as �′j , written in the form (3.19). Therefore (3.21), which is the integral of this
expression over A ∈ X ′

j−1, B ∈ X ′
j , is equal to

Zkj
Zkj−1 ∫B

�′j (dx
′
j )∫

A
(M ′

j )
∗(x ′j , dx

′
j−1),

as required. ■
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3.4. the relative asymptotic variance decomposition

Using this result we now provide an analogue of Proposition 3.4: for Q′
j,rn as de�ned in

(1.36), we give an expression for the function Q′
j,rn (G

′
rn ⋅ '̄) ∶ X′

j → ℝ, as appears in (1.38).
This has the form

Q′
j,rn (G

′
rn ⋅ '̄)(x

′
j ) ≔ ∫

X′
rn

Q′
j,rn (x

′
j , dx

′
rn )G

′
rn (x

′
rn )'̄(x

′
rn ),

where we recall from (1.37) that '̄ ∶ X′
rn → ℝ is such that '̄(x ′rn ) = '̄(xkrn ,… , xn) ≔ '(xn).

Analogously to (3.12), we �rst de�ne a sequence of kernels (M ′
rn ,j)

rn
j=0 in terms of the

‘reversal’ kernels introduced in (3.20). For j ∈ {0,… , rn} we de�neM ′
rn ,j ∶ X′

rn ×X
′
j → [0, 1]

by
M ′
rn ,rn ≔ Id; M ′

rn ,j ≔ (M ′
rn )

∗⋯ (M ′
j+1)

∗, j ∈ {0,… , rn − 1}. (3.22)

Proposition 3.7. Let M0 = �0, Mp be a Markov kernel admitting �p as an invariant dis-

tribution (for p ≥ 1), and each Gp take the form (2.2). For j ∈ {0,… , rn} let Q′
j,rn be de�ned

as in (1.36); also let ' ∶ X → ℝ be a bounded X -measurable function, with '̄ ∶ X′
rn → ℝ

de�ned according to (1.37). Then the function Q′
j,rn (G

′
rn ⋅ '̄) ∶ X′

j → ℝ, de�ned such that

Q′
j,rn (G

′
rn ⋅ '̄)(x

′
j ) ≔ ∫X′

rn
Q′
j,rn (x

′
j , dx ′rn )G

′
rn (x

′
rn )'̄(x

′
rn ) for x

′
j ∈ X′

j , is �′j -almost everywhere of

the form

Q′
j,rn (G

′
rn ⋅ '̄)(x

′
j ) =

Zn
Zkj

d�̂′rn ('̄M
′
rn ,j)

d�′j
(x ′j ),

where the signed measure �̂′rn ('̄M
′
rn ,j) is given by, for A ∈ X ′

j ,

�̂′rn ('̄M
′
rn ,j)(A) = ∫

X′
n

�̂′rn (dx
′
n)'̄(x

′
n)M

′
rn ,j(x

′
n, A).

Proof. We begin with the case j = rn. Since Q′
rn ,rn ≔ Id one has that for all x ′rn ∈ X′

rn ,

Q′
j,rn (G

′
rn ⋅ '̄)(x

′
rn ) = Id(G′

rn ⋅ '̄)(x
′
rn ) = G

′
rn (x

′
rn )'̄(x

′
rn ). (3.23)

Now for some A ∈ X ′
rn , consider the integral

∫
A
�′rn (dx

′
rn ) [

Zn
Zkrn

d�̂′rn ('̄M
′
rn ,rn )

d�′rn ] =
Zn
Zkrn

�̂′rn ('̄M
′
rn ,rn )(A) (3.24)

= ∫
X′
rn

Zn
Zkrn

�̂′rn (dx
′
rn )'̄(x

′
rn )M

′
rn ,rn (x

′
rn , A).

Since Mn,n ≔ Id, we have M ′
rn ,rn (x

′
rn , A) = Id(x ′rn , A) = �x′rn (A) = 1A(x

′
rn ). Therefore we may

re-express (3.24) as

∫
X′
rn

Zn
Zkrn

�̂′rn (dx
′
rn )'̄(x

′
rn )1A(x

′
rn ) = ∫

A

Zn
Zkrn

�̂′rn (dx
′
rn )'̄(x

′
rn ). (3.25)

The normalising constant ratio Zn/Zkrn may be expressed in terms of the Feynman–Kac
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models as
Zn
Zkrn

=
Zn/Z0
Zkrn /Z0

=

̂ ′rn (X

′
rn )


 ′rn (X
′
rn )
.

Therefore,

Zn
Zkrn

�̂′rn (dx
′
rn ) =


̂ ′rn (X
′
rn )�̂

′
rn (dx

′
rn )


 ′rn (X
′
rn )

=

̂ ′rn (dx

′
rn )


 ′rn (X
′
rn )

=

 ′rn (dx

′
rn )G

′
rn (x

′
rn )


 ′rn (X
′
rn )

= �′rn (dx
′
rn )G

′
rn (x

′
rn ),

where we have used the de�nitions (1.8) and (1.11) of the normalised prediction and updated
Feynman–Kac models respectively. We may therefore re-express (3.25) as

∫
A
�′rn (dx

′
rn )G

′
rn (x

′
rn )'̄(x

′
rn ).

Since this is equal to (3.24), it follows that for �′rn -almost all x ′rn ∈ X′
rn the bracketed expres-

sion in (3.24) is equal to G′
rn (x

′
rn )'̄(x

′
rn ). Following (3.23), this is equal to Q′

j,rn (G
′
rn ⋅ '̄)(x

′
rn ).

The statement therefore holds for j = rn.
To complete the proof one follows essentially the same steps as in the inductive step of

the proof of Proposition 3.4; we summarise the main steps here, omitting the intermediate
expressions. Suppose that the statement is true for j = � ≥ 1, and for some A ∈ X ′

�−1

consider the integral

∫
A
�′�−1(dx

′
�−1)Q

′
�−1,rn (G

′
rn ⋅ '̄)(x

′
�−1). (3.26)

By (1.36) we have Q′
�−1,rn = Q

′
�Q′

� ,rn , and so we may re-express this as

∫
A
�′�−1(dx

′
�−1)∫

X′
�

Q′
� (x

′
�−1, dx

′
� )Q

′
� ,rn (G

′
rn ⋅ '̄)(x

′
� ).

Applying Lemma 3.6, followed by the inductive assumption, gives

Zk�
Zk�−1 ∫X′

�

�′� (dx
′
� )Q

′
� ,rn (G

′
rn ⋅ '̄)(x

′
� )∫

A
(M ′

� )
∗(x ′� , dx

′
�−1)

=
Zk�
Zk�−1

Zn
Zk� ∫X′

�

�′� (dx
′
� )
d�̂′rn ('̄M

′
rn ,� )

d�′�
(x ′� )∫

A
(M ′

� )
∗(x ′� , dx

′
�−1).

Using the identity M ′
rn ,� (M

′
� )∗ = M ′

rn ,�−1 as follows from (3.22), one may now follow essen-
tially the same �nal steps as those in the proof of Proposition 3.4 to simplify this expression,
and therefore (3.26), as

Zn
Zk�−1

�̂′rn ('̄M
′
rn ,�−1)(A). (3.27)

Now suppose �′�−1(A) = 0. Then the integral (3.26) equals zero, and so (3.27) is also zero.
It follows that �̂′rn ('̄M

′
rn ,�−1) ≪ �′�−1. Comparing (3.26) and (3.27) we see that Q′

�−1,rn (G
′
rn ⋅ '̄)

is equal to Zn/Zk�−1 times the corresponding Radon–Nikodym derivative, as required.
The result therefore holds for all j ∈ {0,… , rn}. ■
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3.4. the relative asymptotic variance decomposition

Finally, the following analogue of Proposition 3.5 may then be obtained.. This gives an
explicit form for the terms v̂′j,rn (') in the relative asymptotic variance decomposition of

Nn ('), for an SMC sampler with resampling schedule Rn ≔ {kj ∶ j ∈ {1,… , rn}}.

Proposition 3.8. LetM0 = �0,Mp be a Markov kernel admitting �p as an invariant distribu-
tion (for p ≥ 1), and each Gp take the form (2.2). Let ' ∶ X → ℝ be a boundedX -measurable

function, with '̄ ∶ X′
rn → ℝ de�ned according to (1.37). Then for j ∈ {0,… , rn},

v̂′j,rn (') = ∫
X′
j
(
d�̂′rn ('̄M

′
rn ,j)

d�′j
(x ′j ))

2

�′j (dx
′
j ) − �n(')2. (3.28)

The proof is essentially identical to that of Proposition 3.5, requiring the application of
Proposition 3.7 to expression (1.38).

3.4.2. The normalising constant estimator

To complete this section, we now consider some properties of the estimator 
Nn (1) of the
normalising constant of 
n, and the decomposition of its relative asymptotic variance as
N → ∞. Following Section 3.3 this quantity will be of particular interest to us in com-
paring distribution and resampling schedules for SMC samplers; we shall therefore make
extensive use of the results in this section throughout the following chapters.

As usual, we begin by considering the use of an SMC algorithm employing resampling
in every iteration, i.e. Algorithm 1.2. In this case the estimator of the normalising constant
takes the form


Nn (1) =
n−1
∏
p=0

1
N

N
∑
i=1
Gp(� ip) (3.29)

which follows directly from (1.15). We observe that this estimator is independent of the
�nal set of particles (� in)Ni=1.

The relative asymptotic variance of this estimator may be decomposed according to
(1.26) as ∑n

p=0 vp,n(1). An expression for each term in this decomposition may be obtained
by taking ' = 1 in (1.29); noting that �n(1) = 1 since �n is a probability measure, we obtain

vp,n(1) =
�p(Qp,n(1)2)
�p(Qp,n(1))2

− 1. (3.30)

Remark 3.9. Consider (3.30) in the case p = n. SinceQn,n ≔ Id by (1.28), and Id(x, ⋅) = �x (⋅)
is a probability measure for all x ∈ Xn, we have Qn,n(1) = 1. Therefore, �n(Qn,n(1)) =
�n(Qn,n(1)2) = 1. It follows that vn,n(1) = 0 for any Feynman–Kac model; as such, when
' = 1 the �nal term in the decomposition (1.26) vanishes.

We now speci�cally consider this estimator as formed using an SMC sampler; in this case
the expression (3.29) for 
Nn (1) may be computed by expressing the the potential functions
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Gp according to (2.2). The relative asymptotic variance of this estimator corresponds to �2
1

as de�ned in (3.9), for the resampling schedule Rn = {1,… , n}. We therefore have

�2
1(�0∶n, {1,… , n}) =

n
∑
p=0

vp,n(1). (3.31)

An expression for each of these terms may obtained by taking ' = 1 in Proposition 3.5.
Indeed, in this case we may show that each term vp,n(1) may be expressed as a chi-squared
distance between appropriately-de�ned distributions. We detail this result below.

Proposition 3.10. LetM0 = �0,Mp be a Markov kernel admitting �p as an invariant distri-

bution (for p ≥ 1), and each Gp take the form (2.2). Then for p ∈ {0,… , n},

vp,n(1) = D� 2(�nMn,p ∥�p).

Proof. By Proposition 3.5, we have

vp,n(1) = ∫
X (

d�n(1Mn,p)
d�p

(xp))

2

�p(dxp) − �n(1)2

= ∫
X (

d�nMn,p

d�p
(xp))

2

�p(dxp) − 1.

Since �nMn,p is a probability measure this corresponds to De�nition 3.1 of the chi-squared
distance of �nMn,p from �p , written in the form (3.1). ■

As has previously been discussed, the variance of the incremental weights (2.2) is de-
pendent on the ‘similarity’ between successive distributions in the sequence (�p)np=0. The
above result allows us to formalise this notion of similarity, and its e�ect on the variances
of estimators such as 
Nn (1); it also further motivates the use of �2

1 as a quantity for as-
sessing and comparing the performances of distribution schedules. However, this quantity
is not directly dependent on the similarity between the distributions (�p)np=0, since it also
depends on the time reversals of the Markov kernels (Mp)np=1. In particular, the mixing
properties of these time reversal kernels strongly in�uence the terms vp,n(1).

Consider the measure �nMn,p that appears in the result of Proposition 3.10. One may �nd
that when the time reversal kernels exhibit good mixing, �nMn,p resembles �p+1 (for p < n),
and so the corresponding term vp,n(1) approximates the chi-squared distance of �p+1 from
�p . This may indeed be seen as the ‘similarity’ between consecutive distributions; this is
further explored in Chapter 4, which considers the extreme setting in which each Markov
kernelMp (and its time reversal) exhibits perfect mixing. When in contrast the time reversal
kernels mix poorly, �nMn,p is generally comparable to �n, and so the vp,n(1) terms are
larger.

In Section 5.1 we shall explore a collection of simply-de�ned Markov kernels in which
the mixing quality is determined by a sequence of parameters. The description therein of
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3.4. the relative asymptotic variance decomposition

the resulting forms of �nMn,p exempli�es the properties discussed above, and may assist in
building an intuition for the e�ects of the Markov kernels’ mixing properties on the terms
vp,n(1).

3.4.2.1. Occasional resampling

We now turn our attention to the use of occasional resampling, and the resulting SMC
estimator of the normalising constant of 
n. In this case, 
Nn (1) takes the general form


Nn (1) =
(

rn−1
∏
j=0

1
N

N
∑
i=1 [

kj+1−1
∏
p=kj

Gp(� ip)])(
1
N

N
∑
i=1 [

n−1
∏
p=krn

Gp(� ip)])
. (3.32)

Each use of resampling may be seen to contribute an additional factor to this estimator,
which is a product of rn + 1 factors. The apparent contradiction with the expression (3.29)
resulting from always resampling, which is a product of n factors (rather than n + 1), may
be explained by the following remark.

Remark 3.11. Given a sequence of resampling times k1∶rn−1 occurring in the �rst n − 1
iterations of Algorithm 1.3, whether resampling is conducted in the nth iteration of the
algorithm has no e�ect on the normalising constant estimator 
Nn (1). This follows from
inspection of (3.32) in the case that resampling does not occur in the nth iteration (so that
rn = rn−1), and in the case that such resampling does occur (so that rn = rn−1 + 1, with
krn = n). In the latter case, the additional factor introduced to (3.32) is the �nal (rightmost)
factor, which evaluates to 1.

Consider the relative asymptotic variance of (3.32), as N → ∞. As discussed in Sec-
tion 1.4.1.2, this admits a decomposition of the form ∑rn

j=0 v̂′j,rn (1). Taking ' = 1 in (1.38),
each term in this decomposition may be expressed as

v̂′j,rn (1) =
�′j (Q′

j,rn (G
′
rn )

2)
�′j (Q′

j,rn (G
′
rn ))

2 − 1. (3.33)

Considering this expression for j = rn, note that v̂′rn ,rn (1) is typically non-zero, in contrast
to Remark 3.9. In general v̂′rn ,rn (1) = 0 only in the special case that krn = n, so that G′

rn = 1.

Remark 3.12. In the decomposition of the relative asymptotic variance of (3.32), an addi-
tional summand (3.33) is introduced by each instance of resampling. By consideration of
(3.33) it may be shown that resampling in the nth iteration leaves the �rst rn−1 summands
unchanged. As discussed in Remark 3.11, resampling in the nth iteration has no e�ect on
the estimator 
Nn (1); therefore this must have no e�ect on its relative asymptotic variance,
and so the additional summand this introduces must be zero. This may be seen to explain
the above observation that v̂′rn ,rn (1) = 0 when krn = n, of which the result in Remark 3.9 is
a special case.
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3. the schedule selection problem

Again, we now focus on (3.32) as formed by an SMC sampler, in which case this corre-
sponds to (3.8). The relative asymptotic variance of this estimator is �2

1 as de�ned in (3.9),
and so we have

�2
1(�0∶n, Rn) =

rn
∑
j=0
v̂′j,rn (1) (3.34)

where Rn ≔ {kj ∶ j ∈ {1,… , rn}}. Analogously to Proposition 3.10, each term in this
expression may be expressed as a chi-squared distance:

Proposition 3.13. LetM0 = �0, Mp be a Markov kernel admitting �p as an invariant distri-

bution (for p ≥ 1), and each Gp take the form (2.2). Then for j ∈ {0,… , rn},

v̂′j,rn (1) = D� 2(�̂
′
rnM

′
rn ,j ∥�

′
j ). (3.35)

The proof of this result is essentially the same as that of Proposition 3.10, being ob-
tained by taking ' = 1 in Proposition 3.8 and comparing the resulting expression with
De�nition 3.1 of the chi-squared distance.

Remark 3.14. In the special case that krn = n, corresponding to resampling occurring in
the nth step, we have from Section 1.4.1.2 that v̂′j,rn (1) = v′j,rn (1), as de�ned in (1.39). As
also discussed therein, we also have �̂′rn = �′rn ; this is in turn equal to �n, which for an
SMC sampler corresponds to the �nal distribution �n. Therefore for j ∈ {0,… , rn}, (3.35)
simpli�es in this case to

v′j,rn (1) = D� 2(�nM
′
rn ,j ∥�

′
j ).

Recall from Remark 3.12 that resampling in the nth iteration has no e�ect on �2
1; it is there-

fore always possible to decompose �2
1 as a sum of these simpler expressions, by assuming

that resampling in the nth iteration does indeed take place.

3.5. Summary

In this chapter we have introduced the schedule selection problem for SMC samplers,
proposing a formulation of this problem in terms of the relative asymptotic variance �2

1 of
the normalising constant estimator 
Nn (1). In the following chapters we shall continue to
investigate the quantity n�2

1 introduced in Section 3.3, making frequent use of the expres-
sions obtained in Section 3.4.2.

The general results in Section 3.4 pertain to the relative asymptotic variance of 
Nn ('),
for arbitrary bounded X -measurable test functions '. As discussed in Section 3.3, the nor-
malising constant estimator 
Nn (1) is a natural quantity of interest, and for this reason we
shall focus on the setting ' = 1 in subsequent chapters. However, our proposed approach
to solving the schedule selection problem could in theory be generalised, optimising the
asymptotic variance of some other estimator; while we do not pursue this here, the more
general results may be useful for this purpose.
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4. Optimal schedules for perfectly-mixing
Markov kernels

4.1. The perfectly-mixing setting

A special case of the SMC sampler is that in which all the Markov kernels (Mp)np=1 are
perfectly mixing, so that in the pth iteration of the algorithm one may generate IID samples
exactly distributed according to �p . Formally, for p ∈ {1,… , n} this may be expressed as

Mp(x, ⋅) = �p(⋅) for all x ∈ X.

Within this chapter it is this speci�c case that shall be studied.
Although the ability to draw IID samples would generally preclude the need to use an

SMC sampler, such a setting might be useful for estimating the normalising constants of
the corresponding densities, when these are computationally intractable. Furthermore,
this special case is convenient for analysis, since it allows closed-form expressions for the
relative asymptotic variance �2

1 to be derived; other authors (e.g. Cérou et al., 2012) anal-
yse this case for the same reason. Following Section 3.3 we may therefore derive proper-
ties of the optimal schedules of distributions (�p)np=0, by determining those that minimise
n�2

1. Results in this setting may provide a useful baseline for the behaviour of the relative
asymptotic variance �2

1, and of the optimal schedule, in more general settings.
The simple form of these Markov kernels allows further simpli�cation of the expression

for vp,n(1) given in Proposition 3.10, giving the following result. This gives a useful char-
acterisation of the relative asymptotic variance of 
Nn (1): speci�cally, when resampling
is used in every iteration, this is equal to the sum of the chi-squared distances between
consecutive distributions in the sequence (�p)np=0.

Proposition 4.1. For p ∈ {1,… , n} let Mp(x, ⋅) = �p(⋅) for all x ∈ X. Then for an SMC

sampler using resampling in every iteration, the relative asymptotic variance of 
Nn (1) as
N → ∞ is given by

�2
1(�0∶n, {1,… , n}) =

n−1
∑
p=0

D� 2(�p+1 ∥�p).

Proof. By (3.31), �2
1(�0∶n, {1,… , n}) = ∑n

p=0 vp,n(1). By Remark 3.9, the summand for which
p = n is equal to 0. Consider therefore vp,n(1) for p < n, which by Proposition 3.10 is equal
to D� 2(�nMn,p ∥�p).
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4. optimal schedules for perfectly-mixing markov kernels

Since Mp(x, ⋅) = �p(⋅) for all x ∈ X it follows directly from De�nition 3.2 that M ∗
p(x, ⋅) =

�p(⋅) for all x ∈ X, for all p ∈ {1,… , n}. Therefore for p ∈ {0,… , n − 1}, for A ∈ X ,

�nMn,p(A) = ∫
X
�n(dxn)∫

X
M ∗
n(xn, dxn−1) ⋯∫

X
M ∗
p+2(xp+2, dxp+1)M

∗
p+1(xp+1, A)

= ∫
X
�n(dxn)∫

X
�n(dxn−1) ⋯∫

X
�p+2(dxp+1)�p+1(A)

= �p+1(A),

and so �nMn,p = �p+1. The stated result follows. ■

This result helps to formalise the notion that the variances of estimators are reduced
by ensuring that successive distributions are su�ciently ‘similar’: in the perfectly-mixing
setting, the relative asymptotic variance of 
Nn (1) will be large if consecutive distributions
are dissimilar in the sense of the chi-squared distance.

As discussed, this result only holds if resampling is used in every iteration of the SMC
sampler. In the more general setting of occasional resampling, a similar expression for
the relative asymptotic variance of 
Nn (1) may be obtained in terms of the chi-squared
distances D� 2(�p+1 ∥ �p). We present this result below, which may be seen to follow from
Proposition 3.13.

Proposition 4.2. For p ∈ {1,… , n} let Mp(x, ⋅) = �p(⋅) for all x ∈ X. Then for an SMC

sampler using resampling schedule Rn ≔ {kj ∶ j ∈ {1,… , rn}}, the relative asymptotic

variance of 
Nn (1) as N → ∞ is given by

�2
1(�0∶n, Rn) =

rn−1
∑
j=0 [(

kj+1−1
∏
p=kj

[D� 2(�p+1 ∥�p) + 1])
− 1

]
.

Proof. As discussed in Remark 3.11, whether resampling takes place in the nth iteration
of the SMC sampler has no e�ect on the form of 
Nn (1), and therefore no e�ect on its
asymptotic variance. Without loss of generality we may therefore assume that resam-
pling does indeed take place in this �nal step, so that krn = n. In this case the rela-
tive asymptotic variance of 
Nn (1) as N → ∞ may be expressed as ∑rn

j=0 v′j,rn (1), where
v′j,rn (1) = D� 2(�nM

′
rn ,j ∥�

′
j ) following Remark 3.14.

First consider this expression for j = rn. Since M ′
rn ,rn ≔ Id we have �nM ′

rn ,rn = �n; also,
�′rn = �n, which for an SMC sampler is equal to the �nal distribution �n. It therefore follows
that v′rn ,rn (1) = D� 2(�n ∥�n) = 0, in line with Remark 3.12.

Consider therefore v′j,rn (1) for j < rn. The excursion Feynman–Kac model �′j is of the
form (3.19); in this perfectly-mixing setting, this simpli�es to

�′j (dx
′
j ) =

kj+1−1
∏
p=kj

�p(dxp). (4.1)
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4.1. the perfectly-mixing setting

We look to obtain a similar simpli�ed expression for the reversal kernels (M ′
j )∗ de�ned in

(3.20). As described in the proof of Proposition 4.1, since Mp(x, ⋅) = �p(⋅) for all x ∈ X it
follows directly from De�nition 3.2 that M ∗

p(x, ⋅) = �p(⋅) for all x ∈ X for p ∈ {1,… , n}.
Therefore for j ∈ {1,… , rn}, one has for all x ′j ∈ X′

j that

(M ′
j )
∗(x ′j , dx

′
j−1) ≔

kj−1+1
∏
p=kj

M ∗
p(xp , dxp−1) =

kj−1+1
∏
p=kj

�p(dxp−1) =
kj−1
∏

p=kj−1
�p+1(dxp).

We now proceed similarly to Proposition 4.1. Using the above expression for (M ′
j )∗, and

noting that X′
rn = X since krn = n, we have for j ∈ {0,… , rn − 1} that

�nM ′
rn ,j(dx

′
j ) = ∫

X′
rn

�n(dx ′rn ) [
j+2
∏
�=rn

∫
X′
�

(M ′
� )
∗(x ′� , dx

′
�−1)] (M

′
j+1)

∗(x ′j+1, dx
′
j )

= ∫
X
�n(dxn) [

j+2
∏
�=rn

k�−1
∏

p=k�−1
∫
X
�p+1(dxp)]

kj
∏

p=kj+1−1
�p+1(dxp)

=
kj+1−1
∏
p=kj

�p+1(dxp). (4.2)

Using the form (3.1) of the chi-squared distance, we may express v′j,rn (1) as an integral:

v′j,rn (1) = D� 2(�nM
′
rn ,j ∥�

′
j ) = ∫

X′
j
(
d�nM ′

rn ,j

d�′j
(x ′j ))

2

�′j (dx
′
j ) − 1.

Substituting (4.1) and (4.2), this may be written as

v′j,rn (1) = ∫
Xkj+1−kj (

kj+1−1
∏
p=kj

d�p+1
d�p

(xp))

2 kj+1−1
∏
p=kj

�p(dxp) − 1,

where the decomposition of the Radon–Nikodym derivative d�nM ′
rn ,j/d�′j into a product

of such derivatives follows from its de�nition. Therefore,

v′j,rn (1) =
kj+1−1
∏
p=kj

∫
X (

d�p+1
d�p

(xp))

2

�p(dxp) − 1

=
kj+1−1
∏
p=kj

[D� 2(�p+1 ∥�p) + 1] − 1,

again using the form (3.1) of the chi-squared distance. The stated result follows. ■

The main utility of this result is in showing that, when perfectly-mixing Markov kernels
are used, the relative asymptotic variance �2

1 is minimised when resampling is used in
every iteration of the SMC sampler. We detail this result below, which has the e�ect of
solving the problem of selecting a resampling schedule in perfectly-mixing settings.
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4. optimal schedules for perfectly-mixing markov kernels

Proposition 4.3. For p ∈ {1,… , n} let Mp(x, ⋅) = �p(⋅) for all x ∈ X. Then �2
1(�0∶n, Rn)

is minimised when {1,… , n − 1} ⊆ Rn; that is, the relative asymptotic variance of 
Nn (1) as
N → ∞ is minimised when resampling is used in each of the �rst n − 1 iterations of the SMC

sampler.

Proof. We begin by showing that �2
1(�0∶n, Rn) ≥ �2

1(�0∶n, {1,… , n}) for any resampling
schedule Rn ⊆ {1,… , n}. Denoting dp ≔ D� 2(�p+1 ∥ �p) for p ∈ {0,… , n − 1}, by Proposi-
tion 4.2 we have

�2
1(�0∶n, Rn) =

rn−1
∑
j=0 [(

kj+1−1
∏
p=kj

[dp + 1])
− 1

]
,

where Rn ≔ {kj ∶ j ∈ {1,… , rn}}.
By De�nition 3.1 of the chi-squared distance, dp ≥ 0 for all p ∈ {0,… , n − 1}. Since

∏m
i=1 [1 + xi] ≥ 1 +∑m

i=1 xi for any non-negative real values x1∶m, we have

�2
1(�0∶n, Rn) =

rn−1
∑
j=0 [(

kj+1−1
∏
p=kj

[dp + 1])
− 1

]
≥

rn−1
∑
j=0 [

kj+1−1
∑
p=kj

dp]
=

n−1
∑
p=0

dp = �2
1(�0∶n, {1,… , n}),

where the �nal equality follows from Proposition 4.1. Therefore, the relative asymptotic
variance of 
Nn (1) as N → ∞ is minimised when resampling is used in every iteration of
the SMC sampler.

Again from Remark 3.11, for any sequence of resampling times k1∶rn−1 occurring in the
�rst n − 1 iterations, the use of resampling in the nth iteration has no e�ect on the form
of 
Nn (1) and therefore no e�ect on its asymptotic variance. It follows that the value of
�2
1 resulting from resampling in all but the �nal iteration is equal to that resulting from

resampling in every iteration, which by the above computations is the minimal value over
all resampling schedules. ■

This result has an intuitive interpretation: if one can draw IID samples from each in-
termediate distribution then it is always preferable for these to be unweighted, since the
accumulation of importance weights will only increase the variance of resulting estima-
tors. When it is not possible to draw IID samples in this way, this argument does not hold;
as discussed in Section 1.3.1, in general some form of occasional resampling is preferred in
order to minimise such an asymptotic variance.

It follows that in perfectly-mixing settings, that for any sequence of distributions, the
optimal resampling schedule is that in which resampling is used in every iteration. For
the remainder of this chapter, in which our objective is to minimise n times the relative
asymptotic variance of 
Nn (1), we therefore solely consider this setting. We proceed to
determine properties of the optimal distribution schedules for some simple choices of the
target distribution �⋆ and initial distribution �0. In each case we consider two problems,
which collectively correspond to the optimisation problem described in Section 3.3:
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4.1. the perfectly-mixing setting

• For �xed n, �0 and �n ≔ �⋆, which sequence �1∶n−1 minimises �2
1?

• Considering for each n the value of �2
1 attained by this optimal distribution schedule,

which value of n minimises n�2
1?

Following Proposition 4.1, the �rst of these two problems corresponds to determining the
sequence (�p)np=0 that, for �xed �0 and �n, minimises the sum of chi-squared distances be-
tween consecutive distributions. We shall make extensive use of this formulation through-
out this chapter.

The assumption of perfect mixing may limit the practical applications of the theoretical
results we derive, since in many realistic settings the Markov kernels may mix poorly.
To this end, the ideas and investigations we shall later present in Chapter 5 may provide
a more practical contribution to the problem of tuning SMC samplers. Nonetheless, the
results in this chapter may be useful for such tuning in well-mixing settings, and we shall
propose a number of heuristic procedures based on the theoretical results we derive.

4.1.1. Preliminary results

Before proceeding, we introduce some simple results based on Jensen’s inequality that will
be useful in proving later results. Speci�cally, given a function de�ned on the positive real
numbers, we consider the problem of minimising the sum of n evaluations of this function,
under the constraint that the product of the n arguments is �xed. By the following lemma,
under a convexity condition this is achieved when all n arguments are equal.

Lemma 4.4. For some function f ∶ ℝ+ → ℝ consider the problem of minimising∑n
p=1 f (xp),

under the constraint that∏n
p=1 xp = � > 0. If f (exp(x)) is convex as a function of x ∈ ℝ, then

the unique minimal value is nf (�1/n), attained when xp = �1/n for all p ∈ {1,… , n}.

Proof. By Jensen’s inequality, applied to the convex function x ↦ f (exp(x)) and evaluated
at the values log(x1),… , log(xn),

1
n

n
∑
p=1

f (exp(log(xp))) ≥ f(exp(
1
n

n
∑
p=1

log(xp))) .

Equality holds if and only if all values of log(xp) are equal, which occurs if and only if all
xi are equal, by the injectivity of the logarithm. Rearranging,

n
∑
p=1

f (xp) ≥ n ⋅ f
([

n
∏
p=1

xp]

1/n

)
.

Since ∏n
p=1 xp = �, it follows that ∑n

p=1 f (xp) is bounded below by nf (�1/n), and this value
is attained if and only if x1 = ⋯ = xn = �1/n. ■
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4. optimal schedules for perfectly-mixing markov kernels

This may be seen as a generalisation of the inequality of arithmetic and geometric
means, which corresponds to the case in which f is the identity function.

We also present a multivariate form of this result. In this case, we consider minimis-
ing the sum of n evaluations of a function de�ned on ℝd+, under the constraint that the
componentwise product of the n arguments is �xed.

Lemma 4.5. For some function f ∶ ℝd+ → ℝ consider the problem of minimising

n
∑
p=1

f (xp,1,… , xp,d ),

under the constraints that ∏n
p=1 xp,i = �i > 0 for i ∈ {1,… , d}. If f (exp(x1),… , exp(xd )) is

convex as a function of (x1,… , xd ) ∈ ℝd+, then the unique minimal value is

nf (�1/n1 ,… , �1/nd ),

attained when xp,i = �1/ni for all p ∈ {1,… , n}, i ∈ {1,… , d}.

The proof is analogous to that of the univariate result.

4.2. Restrictions on nested sets

A particular setting of interest is that in which the sequence of distributions (�p)np=0 com-
prises restrictions of some probability measure � on each of a sequence of nested sets
(normalised appropriately, so that each �p is a probability measure). We shall assume that
� admits a (possibly unnormalised) density �̄ with respect to some dominating measure
dx . That is, for A ∈ X

� (A) =
1
Z ∫

A
�̄ (x) dx,

where the normalising constant Z ≔ ∫X �̄ (x) dx may be unknown.
For some E0, E⋆ ∈ X such that E⋆ is a proper subset of E0, we assume that the initial dis-

tribution �0 and �nal distribution �⋆ admit unnormalised densities that may respectively
be expressed as

�̄0 = �̄ ⋅ 1E0 , �̄⋆ = �̄ ⋅ 1E⋆ .

Expressing the probability measures �0 and �⋆ in terms of � , we have that for A ∈ X ,

�0(A) =
� (A ∩ E0)
� (E0)

, �⋆(A) =
� (A ∩ E⋆)
� (E⋆)

.

Considering the normalising constants of �̄0 and �̄⋆, one has that

Z0 = ∫
X
�̄0(x) dx = Z ⋅ � (E0), Z⋆ = ∫

X
�̄⋆(x) dx = Z ⋅ � (E⋆).
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4.2. restrictions on nested sets

In the analysis that follows, it will be convenient to de�ne � ≔ Z0/Z⋆ ≥ 1; indeed we shall
assume that � > 1, so that � (E⋆) is strictly less than � (E0).

To determine a sequence of distributions (�p)np=0, we de�ne a decreasing sequence in X
given by

E0 ⊇ E1 ⊇ ⋯ ⊇ En ≔ E⋆.

For p ∈ {0,… , n}, let �p be the normalised restriction of � on Ep ; that is, for A ∈ X

�p(A) =
� (A ∩ Ep)
� (Ep)

. (4.3)

This admits an unnormalised probability density function given by �̄p = �̄ ⋅ 1Ep , with
normalising constant Zp = ∫X �̄p(x) dx = Z ⋅ � (Ep). An illustration of such a sequence of
unnormalised density functions is presented in Figure 4.1.

Such sequences arise in a number of applications of the SMC sampler framework. As
described in Chapter 2, for an SMC sampler one has 
n(1) = Z⋆/Z0. Here this ratio is
Z⋆/Z0 = � (E⋆)/� (E0); that is, the conditional probability under � of E⋆ given E0. If one
chooses E0 = X so that �0 = � , then this corresponds to the probability of the event E⋆
under � . Using an SMC sampler one may therefore obtain an unbiased estimator 
Nn (1) of
this probability of interest, �−1.

The bene�t of this SMC approach is greatest when �−1 is very small, in which case direct
estimation of this quantity using simple Monte Carlo techniques may require very large
numbers of samples in order to obtain a non-zero estimate. In contrast, use of an SMC
sampler e�ectively reduces the problem to that of estimating the conditional probability
of Ep given Ep−1 for p ∈ {1,… , n}, corresponding to the n iterations of the algorithm. The
potential functions (2.2), used to compute each particle’s incremental weight, have the
convenient form

Gp = 1Ep+1 .

For these reasons, SMC samplers have been widely employed for rare event estimation
as described in Section 2.3.2, by taking E⋆ as the rare event for which we wish to estimate
the probability, and E0 = X. Comparable constructions have also been used in rare event
estimation algorithms based on multilevel splitting, and have been well studied in this
context (see e.g. Lagnoux, 2006).

Similarly, this methodology may be useful for estimating the volumes of convex sets in
high-dimensional space, being complementary (although somewhat di�erent in construc-
tion) to MCMC methods addressing this problem. These methods are of practical interest
because, while the exact evaluation of such volumes is a #P-hard problem, Monte Carlo
methods allow approximations of arbitrarily small error to be computed in polynomial
time. Jerrum and Sinclair (1996, Section 12.5.2) provide a review of such methods; a recent
MCMC approach to this problem has been proposed by Chevallier et al. (2018).
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4. optimal schedules for perfectly-mixing markov kernels

E0 ⊇ E1 ⊇ E2 ⊇ E3 ⊇ E4 ⊇ E5 = E⋆

�̄0 �̄1

�̄2 �̄3

�̄4 �̄5 = �̄⋆

Figure 4.1.: Restrictions of a bivariate density function on a sequence of nested sets.
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In other applications the quantity to be approximated is �⋆ itself; for example in SMC im-
plementations of approximate Bayesian computation (ABC), as introduced in Section 2.3.1.
In Del Moral et al. (2012a), the decreasing sequence of tolerance levels corresponds to a
decreasing sequence of subsets of the joint space of parameters and pseudo-observations.
The resulting distributions (�p)np=0 may be seen as restrictions of the overall joint distri-
bution on this space to each of these subsets, with the marginals of these distributions
forming a sequence of improving approximations of the true posterior.

4.2.1. Optimal distribution schedule for �xed n

As emphasised, in this setting the selection of a distribution schedule (�p)np=0 is equivalent
to selecting the sequence of sets (Ep)np=0, given E0 and En ≔ E⋆. In the results that follow
we derive conditions for this sequence to be optimal, by considering the two problems
described at the end of Section 4.1. Firstly, for �xed n we �nd conditions under which
a sequence (Ep)np=0 minimises the relative asymptotic variance �2

1; we shall then �nd the
value of n for which the corresponding value of n�2

1 is minimised.
In the case of perfectly-mixing Markov kernels (Mp)np=1 that we consider here, the former

problem of choosing an optimal sequence (Ep)np=0 for �xed n has already been considered
by Cérou et al. (2012, Section 2.3). Proposition 4.6 provides a full proof of this known
result, here presented explicitly in terms of the chi-squared distances between consecutive
distributions.

Proposition 4.6. For a �xed value of n, consider a distribution schedule (�p)np=0 de�ned by

(4.3), for some probability measure � and decreasing sequence of sets (Ep)np=0. For �xed E0 and
En, the sum ∑n−1

p=0 D� 2(�p+1 ∥�p) of chi-squared distances between consecutive distributions is

minimised when the probabilities of (Ep)np=0 under � form a geometric progression, in which

case all of these chi-squared distances are equal. Speci�cally, its minimal value is n(�1/n − 1),
attained when � (Ep) = �−1/n� (Ep−1) for all p ∈ {1,… , n}.

Proof. For p ∈ {0,… , n − 1}, the chi-squared distance of �p+1 from �p is given by

D� 2(�p+1 ∥�p) = ∫
X (

d�p+1
d�p

(x))

2

�p(dx) − 1

= ∫
X (

�̄ (x)1Ep+1(x)/Zp+1
�̄ (x)1Ep (x)/Zp )

2

(�̄ (x)1Ep (x)/Zp) dx − 1

=
Zp
Z 2
p+1

∫
Ep+1

�̄ (x) dx − 1

=
Zp
Zp+1

− 1.
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We therefore look to minimise

n−1
∑
p=0

D� 2(�p+1 ∥�p) =
n−1
∑
p=0(

Zp
Zp+1

− 1) =
n
∑
p=1

(�p − 1) ,

where for p ∈ {1,… , n},

�p ≔
Zp−1
Zp

=
Z ⋅ � (Ep−1)
Z ⋅ � (Ep)

=
� (Ep−1)
� (Ep)

.

Since Ep−1 ⊇ Ep , we have �p ≥ 1 for each p. An additional constraint is obtained by noting
that

n
∏
p=1

�p =
Z0
Z⋆

= �.

In summary, one looks to choose n numbers (�p)np=1 no less than 1, with �xed product �,
in order to minimise ∑n

p=1 f (�p) where f (x) ≔ x − 1.
The function x ↦ f (exp(x)) = exp(x) − 1 is convex, and so the optimal choice may

be found using Lemma 4.4. By this result the unique minimal value of ∑n
p=1(�p − 1) is

n(�1/n − 1), obtained when �1 = �2 = ⋯ = �n = �1/n. While Lemma 4.4 only requires each
�p to be positive, this solution satis�es the additional constraint that �p ≥ 1 for each p.
The sum of chi-squared distances therefore takes its minimal value of n(�1/n − 1) when
all of the chi-squared distances are equal, occurring when � (Ep−1)/� (Ep) = �1/n for all
p ∈ {1,… , n}. ■

Following Proposition 4.1 this result implies that for �xed n, the relative asymptotic
variance �2

1 is minimised in this perfectly-mixing setting by choosing (�p)np=0 to be equally
spaced in the sense of the chi-squared distance. This may be achieved by choosing any
sequence of sets (Ep)np=0 for which the probabilities under � form a geometric progression.

Remark 4.7. From Proposition 4.6, the minimal value of �2
1 for a schedule of �xed length n

is n(�1/n −1). We see that this quantity converges to log(�) as n → ∞. It follows that when
constructing distribution schedules in the way considered here (i.e. using restrictions of
� on each of a sequence of nested sets), it is not possible to make the relative asymptotic
variance �2

1 arbitrarily small.

4.2.2. Optimal schedule length n

We now turn to the problem of choosing n in order to minimise n�2
1. By Proposition 4.6,

the minimal value of �2
1 over all distribution schedules with �xed n is given by n(�1/n−1); it

follows that one should choose n as the value n⋆ that minimises n×n(�1/n−1) = n2(�1/n−1).
Finding this integer value is facilitated by considering this as a function of n ∈ ℝ+, leading
to the following result.
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Proposition 4.8. The function f ∶ ℝ+ → ℝ given by f (x) ≔ x2(�1/x − 1), where � > 1 is
a constant, is convex and has exactly one local minimum, which is therefore also the global

minimum. This minimum is attained when

x =
log(�)

W0(−2e−2) + 2
≈ 0.6275 log(�),

whereW0 denotes the principal branch of the LambertW function.

Proof. Let us �rst show that f is a convex function. By elementary calculus,

f (x) = x2 (exp(
log(�)
x ) − 1) ,

f ′(x) = (2x − log(�)) exp(
log(�)
x ) − 2x, (4.4)

f ′′(x) = (2 −
2 log(�)

x
+
log(�)2

x2 ) exp(
log(�)
x ) − 2.

To prove the convexity of f , we show that this second derivative is positive for all pos-
sible values of x and �. To this end, we consider the function g ∶ ℝ+ → ℝ de�ned by

g(y) ≔ (2 − 2y + y2) exp(y) − 2,

so that f ′′(x) = g(log(�)/x). For �xed � > 1 the mapping from ℝ+ → ℝ+ given by x ↦
log(�)/x is bijective, and therefore it is su�cient to show that g(y) > 0 for all y ∈ ℝ+.

The �rst derivative of g is g′(y) = y2 exp(y), which is positive for all y ∈ ℝ+, and so g is
increasing. Since limy→0 g(y) = 0, it follows that g(y) > 0 for all y ∈ ℝ+. Therefore f ′′(x) >
0 for all x ∈ ℝ+, so that f is convex. Since it is additionally the case that limx→0 f (x) =
limx→∞ f (x) = ∞, it follows that f has exactly one local minimum in ℝ+, which is therefore
also the global minimum.

The value of x at which this minimum is attained is therefore the unique solution of
f ′(x) = 0. Consider a solution of the form x = � log(�) for some � > 0 (since we require
x ∈ ℝ+, and log(�) > 0). Then from (4.4),

(2� log(�) − log(�)) exp(
log(�)
� log(�))

− 2� log(�) = 0,

from which one obtains

(2 −
1
� ) exp(

1
� ) − 2 = 0. (4.5)

Denoting � ′ ≔ 1/� − 2, this becomes

−� ′ exp(� ′ + 2) − 2 = 0
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4. optimal schedules for perfectly-mixing markov kernels

which is rearranged to give
� ′ exp(� ′) = −2 exp(−2). (4.6)

Although this is ostensibly solved when � ′ = −2, this does not correspond to a real value
of � = 1/(� ′ + 2) satisfying (4.5); indeed, since � ∈ ℝ+ one requires � ′ ∈ (−2, 0). Since f has
a unique minimum, there is exactly one such value of � ′ satisfying (4.6).

The Lambert W function is the multivalued inverse of the function mapping z ∈ ℂ to
z exp(z). Forw ∈ (−e−1, 0) there are two real values of z satisfying z exp(z) = w; the greater
of these two values is W0(w), where W0 denotes the principal branch of the Lambert W
function, and satis�es W0(w) ∈ (−1, 0) (Corless et al., 1996).

Considering (4.6), since −2e−2 ∈ (−e−1, 0) it follows that � ′ = W0(−2e−2) ≈ −0.406, so that

� =
1

� ′ + 2
=

1
W0(−2e−2) + 2

≈ 0.6275.

The unique minimum of f is therefore obtained at x = � log(�), for this value of � . ■

Since this function f is convex, it follows that the integer value n⋆ that minimises n�2
1

is one of the two nearest integers to this value (either its �oor or its ceiling).
This result may be useful for tuning adaptive approaches to selecting the sets (Ep)np=0.

Cérou et al. (2012) propose taking the particle population (� ip)Ni=1 at time p, and choosing
Ep+1 so that the proportion of these particles lying within this set is equal to some prede-
termined � ∈ (0, 1). Since the particles (� ip)Ni=1 form an approximation of �p , it follows that
Ep+1 is chosen so that � (Ep+1) ≈ � ⋅ � (Ep). The choice of � therefore determines n.

Remark 4.9. By Proposition 4.6, to obtain a sequence (�p)np=0 of length n one should
choose � = �−1/n. Using the optimal value n⋆ that follows from Proposition 4.8, it fol-
lows that in order to minimise n�2

1 one should choose

� = �−1/n
⋆
≈ �−1/(� log(�)) = e−1/� .

Using (4.5), this may be evaluated as

e−1/� =
1
2 (2 −

1
� ) = −

1
2
W0(−2e−2) ≈ 0.203.

This optimal choice of � does not depend on �, and therefore requires no knowledge of
the relative probabilities of E0 and E⋆ under � .

While this result depends on the use of perfectly-mixing Markov kernels, it may pro-
vide a useful heuristic for tuning adaptive algorithms when well-mixing kernels may be
constructed; for example, for choosing � in the algorithm of Cérou et al. (2012). In settings
where the Markov kernels used mix poorly, it may be di�cult to move the particles from
the areas of positive mass of each �p−1 to those of the next distribution �p by application
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of the Markov kernel Mp . In general it may therefore be desirable for consecutive distri-
butions to be more similar than would result from this choice of �, and so Remark 4.9 may
be seen to provide a heuristic lower bound for choosing this tuning parameter.

4.2.3. Uniform distributions on nested balls

The e�ect of the dimension of the space X on these results is best exempli�ed in a special
case. Suppose that X = ℝd , with E0 and E⋆ being open d-dimensional balls of radius r0 and
r⋆ respectively, both centred at some point x0 ∈ ℝd . That is, for some q ≥ 1 de�ne

E0 ≔
{
x ∈ ℝd ∶ ‖x − x0‖Lq < r0

}
,

E⋆ ≔
{
x ∈ ℝd ∶ ‖x − x0‖Lq < r⋆

}
,

where ‖⋅‖Lq denotes the Lq norm. Assume that r0 = kr⋆ with k > 1, so that E⋆ ⊂ E0 as
required. Denote by V0 and V⋆ the respective volumes of E0 and E⋆.

A decreasing sequence of nested sets can in this case be formed by de�ning a decreasing
sequence of radii (rp)np=0, where r0 > r1 > ⋯ > rn ≔ r⋆. For p ∈ {0,… , n} one may then take

Ep ≔
{
x ∈ ℝd ∶ ‖x − x0‖Lq < rp

}
,

de�ning Vp as the volume of Ep .
If one chooses the distribution � to be the uniform distribution on E0, then for each

p ∈ {0,… , n}, �p is the uniform distribution on Ep , admitting the unnormalised probability
density function �̄p = 1Ep . As such Zp = ∫X �̄p(x) dx = Vp/V0, so that the normalising
constants are proportional to the volumes of the sets. Since r0 = kr⋆, one has

� =
Z0
Z⋆

=
V0
V⋆

=
rd0
rd⋆

= kd ,

since the d-dimensional volume of an Lq ball is proportional to the dth power of its radius.
By Proposition 4.6, if n is �xed then the optimal value of �2

1 in the perfectly-mixing case
is n(kd/n − 1), obtained when Vp = k−d/nVp−1 for all p ∈ {1,… , n}. This in turn corresponds
to choosing the sequence of radii to follow a geometric progression, with rp = k−1/nrp−1
for all p ∈ {1,… , n}. Proposition 4.8 implies that the optimal value of n in the sense of
minimising n�2

1 is n⋆ ≈ �d log(k) (where � ≈ 0.6275), which is a linear function of the
dimension d . The corresponding minimal value of n�2

1 is then

(n⋆)2(kd/n
⋆
− 1) = (�d log(k))2 (kd/(�d log(k)) − 1)

= �2(e1/� − 1)d2 log(k)2,

which is quadratic in d .
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4.3. Normal distributions with equal means

The convenient properties of Gaussian densities have long been exploited in sequential
estimation problems, notably in the Kalman �lter (Kalman, 1960), used to compute exact
�ltering and smoothing distributions associated with linear Gaussian state space models.
For the same reasons, SMC samplers targeting sequences of normal distributions (�p)np=0
provide useful examples for theoretical analysis. In particular, in the perfectly-mixing
case all of the Markov kernels Mp admit Gaussian densities, facilitating the derivation of
closed-form expressions for quantities of interest.

Furthermore, the ubiquity of normal distributions leads to many possible practical ap-
plications of such analytical results. For example, as discussed in Sections 2.2.1 and 2.3.1,
a common application of SMC samplers chooses the target distribution �⋆ to be some
Bayesian posterior. The Bernstein–von Mises theorem (see e.g. van der Vaart, 2000, Sec-
tion 10.2) gives conditions under which such a posterior converges weakly to a normal
distribution as the number of observations tends to in�nity.

Let us therefore consider an SMC sampler targeting some normal distribution �⋆ =
N (�⋆, �⋆), initialised with a normal distribution �0 = N (�0, �0). The problem of selecting
a sequence or path of distributions interpolating two normal distributions has been in-
vestigated in several applications outside the SMC framework, for example in relation to
optimal transport in stochastic systems (see e.g. Chen et al., 2015). For the setting of this
section, in which we aim to choose a distribution schedule (�p)np=0 for use in an SMC sam-
pler, we shall restrict our attention to schedules comprised of normal distributions. That
is, for p ∈ {0,… , n} we consider �p = N (�p , �p), with mean �p ∈ ℝd and positive de�nite
covariance matrix �p ∈ ℝd×d .

We shall aim to derive conditions under which such a distribution schedule may be
deemed to be optimal in perfectly-mixing settings, in the sense described in Section 4.1.
Following Proposition 4.1, for �xed n this corresponds to determining the sequence of
normal distributions for which the sum of chi-squared distances ∑n−1

p=0 D� 2(�p+1 ∥ �p) is
minimised. Consider two normal distributions with respective means �a, �b ∈ ℝd , and
respective positive de�nite covariance matrices �a, �b ∈ ℝd×d ; provided that 2�−1

a − �−1
b is

positive de�nite, the chi-squared distance of N (�a, �a) from N (�b, �b) is given by (Bock,
2012, page 158)

D� 2(N (�a, �a) ∥N (�b, �b)) =

det(�b�−1
a )

√
det(2�b�−1

a − I )
exp(

1
2[(

2�−1
a �a − �−1

b �b)
T
(2�−1

a − �−1
b )

−1
(2�−1

a �a − �−1
b �b)

+ �Tb�
−1
b �b − 2�Ta�

−1
a �a]) − 1.
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By elementary manipulations, this may be simpli�ed to

D� 2(N (�a, �a) ∥N (�b, �b)) =

det(�b�−1
a )

√
det(2�b�−1

a − I )
exp[(�a − �b)T (2�b − �a)−1 (�a − �b)] − 1. (4.7)

If 2�−1
a − �−1

b is not positive de�nite then the integral in De�nition 3.1 of the chi-squared
distance does not converge, and so D� 2(N (�a, �a) ∥N (�b, �b)) is unde�ned.

We shall make the following assumption of the target distribution �⋆ = N (�⋆, �⋆) and
initial distribution �0 = N (�0, �0):

Assumption 4.10. The chi-squared distance of �⋆ from �0 is well de�ned; that is, 2�−1
⋆ −

�−1
0 is positive de�nite.

As has previously been discussed, �0 is generally chosen to place non-negligible mass
on a large subset of the space, with the intention that this includes the areas of high mass
of �⋆. This assumption will therefore hold in most practical settings involving normal or
approximately normal distributions, since �0 will typically be much more di�use than �⋆.

In general the optimal sequences of parameters (�p)np=0 and (�p)np=0, in the sense of min-
imising the sum of chi-squared distances between consecutive distributions, do not admit
closed-form expressions. However, one setting that is conducive to analysis is that in
which the mean of the target distribution is equal to that of the initial distribution; that is,
�0 = �⋆ = � ∈ ℝd . While this is unlikely in practice, this may provide a useful approxima-
tion of the more general setting. For example, if �0 = N (�0, �0) is very di�use compared
to �⋆ = N (�⋆, �⋆), then �⋆ may lie in an area of high mass of �0, so that it is ‘close to’ �0
relative to the marginal standard deviations of �0.

For example, the expression (4.7) for the chi-squared distance ofN (�a, �a) fromN (�b, �b)
is dependent on the means solely through their di�erence, via the quadratic form

(�a − �b)T (2�b − �a)−1 (�a − �b) . (4.8)

If �a = �b then this evaluates to zero; however, if 2�b − �a is su�ciently di�use, then this
quadratic form may have a value close to zero even if �a ≠ �b. As such, if �a is su�-
ciently concentrated compared to �b, this chi-squared distance may be well approximated
by assuming that the means are equal.

We consider this setting for the remainder of this section; that is, we consider �⋆ =
N (�, �⋆) and �0 = N (�, �0) for some common mean � ∈ ℝd , and we look to derive prop-
erties of the optimal sequence of interpolating normal distributions (�p)np=0.
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4.3.1. Optimal distribution schedule for �xed n

As previously, we begin by considering this schedule selection problem for a �xed schedule
length n. The following initial result relates to the sequence of means (�p)np=0 associated
with each of the distributions in the optimal schedule. In this setting in which the target
distribution �⋆ and initial distribution �0 have the same mean, the relative asymptotic
variance �2

1 is always minimised when each of the intermediate distributions also has this
mean value.

Lemma 4.11. Consider the sequence of distributions (�p)np=0 such that for p ∈ {0,… , n},
�p = N (�p , �p) for some �p ∈ ℝd and positive de�nite �p ∈ ℝd×d . Suppose �0 = �n = �.
Then for any �xed sequence of covariance matrices (�p)np=0, the sequence of means (�p)np=0
that minimises ∑n−1

p=0 D� 2(�p+1 ∥�p) is given by �p = � for all p ∈ {0,… , n}.

Proof. For a square matrixM ∈ ℝd×d , we writeM ≻ 0whenM is positive de�nite. Consider
the expression (4.7) for the chi-squared distance of N (�a, �a) from N (�b, �b), which holds
if 2�−1

a − �−1
b ≻ 0, or equivalently, (�a/2)−1 − �−1

b ≻ 0.
For any M,N ∈ ℝd×d with M,N ≻ 0, we have that M,N are invertible, and M−1, N −1 ≻ 0

(Horn and Johnson, 1985, page 430). Additionally, if M −N ≻ 0, then N −1 −M−1 ≻ 0 (Horn
and Johnson, 1985, Corollary 7.7.4a); therefore,

(�a/2)−1 − �−1
b ≻ 0 ⟹ �b − �a/2 ≻ 0.

Furthermore, for any � > 0, if M ≻ 0 then �M ≻ 0 (Horn and Johnson, 1985, Observa-
tion 7.1.3); applying this result for � = 2, the above implies 2�b − �a ≻ 0, and therefore
(2�b − �a)−1 ≻ 0.

It follows that if the chi-squared distance D� 2(N (�a, �a) ∥N (�b, �b)) is de�ned, then the
quadratic form (4.8) is always positive, except when �a = �b, in which case it is zero. The
chi-squared distance (4.7) is an increasing function of this quadratic form. Therefore, for
�xed �a and �b the chi-squared distance may be seen as a function of the di�erence �a−�b

that is minimised when this is zero.
In the case of the sequence (�p)np=0 we see that choosing �p = � for all p ∈ {0,… , n}

satis�es the constraint that �0 = �n = �. Since the di�erence �p+1 − �p between each pair
of means is zero, it follows that for any �xed sequence of covariance matrices (�p)np=0, this
sequence minimises the sum ∑n−1

p=0 D� 2(�p+1 ∥�p). ■

It follows that in this setting, the optimal distribution schedule of normal distributions
(�p)np=0 is such that �p = N (�, �p) for all p ∈ {0,… , n}, so that the problem of selecting a
distribution schedule may be reduced to that of selecting a sequence of covariance matri-
ces. In the case of a �xed schedule length n, for given �0 and �n ≔ �⋆, we look to choose
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(�p)n−1p=1 to minimise

n−1
∑
p=0

D� 2(�p+1 ∥�p) =
n−1
∑
p=0

⎡
⎢
⎢
⎣

det(�p�−1
p+1)√

det(2�p�−1
p+1 − I)

− 1
⎤
⎥
⎥
⎦
, (4.9)

where we require 2�−1
p+1 − �−1

p to be positive de�nite for all p ∈ {0,… , n − 1}, so that all
these chi-squared distances are de�ned.

In general, this constrained matrix optimisation problem is not easily solved. However,
closed-form expressions for an optimal sequence of covariance matrices may be derived
in the special case that �0 and �⋆ are simultaneously diagonalisable. That is, we assume
there exists some orthogonal matrix S ∈ ℝd×d , and diagonal matrices M0, M⋆ ∈ ℝd×d , such
that

�0 = S−1M0S, �⋆ = S−1M⋆S.

Noting that all covariance matrices are (individually) diagonalisable, this occurs if and
only if �0 and �⋆ commute (Horn and Johnson, 1985, Theorem 1.3.12). This includes the
case where �0 is chosen to be a spherical Gaussian (so that �0 = kI for some k > 0).
Although this assumption is restrictive, analysis of this simple setting allows the develop-
ment of heuristics that may be useful more generally. Furthermore, consideration of this
case allows us to conjecture a result for the more general case, which we discuss subse-
quently.

We here consider intermediate covariance matrices (�p)n−1p=1 of the form �p = S−1MpS
for p ∈ {1,… , n − 1}, so that these are all diagonalisable in the same basis as �0 and
�⋆. The problem of �nding the optimal distribution schedule, in the sense of minimising
�2
1, reduces to the problem to �nding the optimal sequence of diagonal matrices (Mp)np=0.

The following result provides an expression for this sequence; we consider its practical
relevance in the discussion that follows.

Proposition 4.12. For a �xed value of n, consider a distribution schedule (�p)np=0 de�ned by
�p = N (�, S−1MpS) for p ∈ {0,… , n}, for some � ∈ ℝd , orthogonal matrix S ∈ ℝd×d and

sequence of diagonal matrices (Mp)np=0 in ℝd×d . For �xedM0 andMn, the sum∑n−1
p=0 D� 2(�p+1 ∥

�p) of chi-squared distances between consecutive distributions is minimised when the sequence

(Mp)np=0 is chosen to be a geometric progression, in which case all of these chi-squared distances

are equal. Speci�cally, writingM0M−1
n = diag(�1,… , �d ) theminimal value of∑n−1

p=0 D� 2(�p+1 ∥
�p) is

n
⎡
⎢
⎢
⎣

d
∏
i=1

�1/ni√
2�1/ni − 1

− 1
⎤
⎥
⎥
⎦
,

obtained when Mp = diag(�−1/n1 ,… , �−1/nd )Mp−1 for all p ∈ {1,… , n}.
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4. optimal schedules for perfectly-mixing markov kernels

Proof. For p ∈ {0,… , n − 1}, we have by elementary manipulations that

�p�−1
p+1 = S

−1MpM−1
p+1S.

From (4.9), the sum of chi-squared distances may therefore be expressed as

n−1
∑
p=0

D� 2(�p+1 ∥�p) =
n−1
∑
p=0

⎡
⎢
⎢
⎣

det(S−1MpM−1
p+1S)√

det(S−1[2MpM−1
p+1 − I]S)

− 1
⎤
⎥
⎥
⎦

=
n−1
∑
p=0

⎡
⎢
⎢
⎣

det(MpM−1
p+1)√

det(2MpM−1
p+1 − I)

− 1
⎤
⎥
⎥
⎦
.

For p ∈ {0,… , n}, let the ith diagonal element of Mp be denoted by mp,i , so that Mp =
diag(mp,1,… , mp,d ). Then, noting that the determinant of a diagonal matrix is equal to the
product of its diagonal elements, we have

n−1
∑
p=0

D� 2(�p+1 ∥�p) =
n−1
∑
p=0

⎡
⎢
⎢
⎣

∏d
i=1mp,i/mp+1,i√

∏d
i=1 [2mp,i/mp+1,i − 1]

− 1
⎤
⎥
⎥
⎦

=
n−1
∑
p=0 [

d
∏
i=1

mp,i/mp+1,i√
2mp,i/mp+1,i − 1]

− n.

Denoting �p,i ≔ mp−1,i/mp,i , we therefore look to minimise

n
∑
p=1 [

d
∏
i=1

�p,i√
2�p,i − 1]

− n.

We now derive the constraints for this optimisation problem. Firstly, we require each
chi-squared distance in the sum to be well de�ned. For p ∈ {0,… , n − 1}, D� 2(�p+1 ∥ �p)
is well de�ned when 2�−1

p+1 − �−1
p = S−1[2M−1

p+1 −M−1
p ]S is positive de�nite. Since S is an

orthogonal matrix, this occurs if and only if 2M−1
p+1 −M−1

p is positive de�nite (by, e.g., Horn
and Johnson, 1985, Observation 7.1.7). This diagonal matrix is positive de�nite if and only
if all its diagonal elements are positive; so for all i ∈ {1,… , d} we require

2
mp+1,i

−
1
mp,i

> 0 ⟹
mp,i

mp+1,i
>
1
2
.

Therefore, for p ∈ {1,… , n} and i ∈ {1,… , d} we require �p,i > 1/2.

An additional constraint is obtained by considering the product over p of �p,i , for �xed
i ∈ {1,… , d}. Recall that M0 and Mn are both �xed; write M0M−1

n = diag(�1,… , �d ). Then
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4.3. normal distributions with eqal means

for i ∈ {1,… , d} we have

n
∏
p=1

�p,i =
n
∏
p=1

mp−1,i

mp,i
=
m0,i

mn,i
= �i .

To summarise, our constrained optimisation problem is as follows. De�ne g ∶ (1/2,∞) →
ℝ+ by g(x) ≔ x/

√
2x − 1, and de�ne g̃ ∶ (1/2,∞)d → ℝ+ by

g̃(x1,… , xd ) ≔
d
∏
i=1
g(xi). (4.10)

We look to choose n vectors in (1/2,∞)d , which we denote (�p,1,… , �p,d ) for p ∈ {1,… , n},
with �xed componentwise product (�1,… , �d ), in order to minimise ∑n

p=1 g̃(�p,1,… , �p,d )−n.
This problem suggests the use of Lemma 4.5, for which it is necessary that the function

(x1,… , xd ) ↦ g̃(exp(x1),… , exp(xd )) is convex. From the de�nition (4.10) of g̃ in terms of
the function g, we see that since g is non-negative, it is su�cient to show that the function
x ↦ g(exp(x)) is convex. By elementary computations, the second derivative of g(exp(x))
with respect to x is

exp(x) [(exp(x) − 1)2 + exp(x)]
(2 exp(x) − 1)5/2

,

which is readily seen to be positive when exp(x) > 1/2. The convexity condition therefore
holds.

By Lemma 4.5, it follows that the unique minimal value of ∑n
p=1 g̃(�p,1,… , �p,d ) − n is

ng̃(�1/n1 ,… , �1/nd ) − n = n
⎡
⎢
⎢
⎣

d
∏
i=1

�1/ni√
2�1/ni − 1

− 1
⎤
⎥
⎥
⎦
,

obtained when �p,i = �1/ni for all p ∈ {1,… , n}, i ∈ {1,… , d}. To con�rm that this satis�es
the constraint that each �p,i is greater than 1/2, recall from Assumption 4.10 that D� 2(�n ∥
�0) is well de�ned. By a similar argument to that used to show �p,i > 1/2, we �nd that
each diagonal element �i of M0M−1

n is greater than 1/2, and therefore �1/ni > 1/2 for each
i ∈ {1,… , d}.

The sum of chi-squared distances therefore takes this minimal value when Mp−1M−1
p =

diag(�1/n1 ,… , �1/nd ) for all p ∈ {1,… , n}, which results in all the chi-squared distances being
equal. ■

From this result we �nd that, among all sequences of intermediate covariance matri-
ces (�p)np=0 that are diagonalisable with respect to the same common basis as �0 and �⋆,
the optimal sequence is itself a geometric progression of matrices. Denote K ≔ �0�−1

⋆ ;
then the optimal sequence described in Proposition 4.12 is such that �p−1 = K 1/n�p for all
p ∈ {1,… , n}. Here, K 1/n is the principal nth root of K , which may be obtained from the

81



4. optimal schedules for perfectly-mixing markov kernels

eigendecomposition of K by replacing all its eigenvalues with their nth roots; this is well
de�ned since K = �0�−1

⋆ is a product of positive de�nite matrices, and therefore all its
eigenvalues are positive (Horn and Johnson, 1985, Corollary 7.6.2).

Remark 4.13. Consider the minimal value of �2
1 for a �xed sequence of length n, as given

in Proposition 4.12. For any values of �1∶d , this value converges to 0 as n → ∞ (as may
be shown using an appropriate Taylor expansion, for example; we later use this technique
in the proof of Proposition 4.16). It follows that when using distribution schedules of this
form, the relative asymptotic variance �2

1 may be made arbitrarily small by introducing
additional intermediate distributions. This stands in contrast to the ‘nested sets’ setting of
Section 4.2, for which this is not the case (see Remark 4.7).

A possible practical application of Proposition 4.12 is described in the following remark.

Remark 4.14. In general, the optimal distribution schedule described in Proposition 4.12
does not correspond to a temperature schedule. An exception is the case in which �0 = ��⋆
for some � > 1/2, so that the covariance matrices of the intermediate distributions are of
the form �p = �1−p/n�⋆. Assuming � ≠ 1, the optimal distribution schedule of length n
corresponds to that generated by a temperature schedule (�p)np=0 given by

�p =
�p/n − 1
� − 1

, p ∈ {0,… , n}. (4.11)

This could be used as the basis for a heuristic approach for selecting a temperature sched-
ule in general settings involving approximately normal distributions, given an approx-
imation of the relative scales of the initial and �nal distributions. For example, de�ne
�̃ ≔ det(�0�−1

⋆ )1/d , which corresponds to the ratio of standardised generalised variances
of �0 and �⋆ (as de�ned by SenGupta, 1987). A temperature schedule could be generated
using (4.11), with � replaced by some approximation of this value.

As previously discussed, for a sequence of distributions (�p)np=0 with �p = N (�, �p), the
general problem of �nding the optimal sequence of covariance matrices to minimise the
sum of chi-squared distances is not easily solved analytically. However, we may solve
this optimisation problem numerically. Consider the setting of Proposition 4.12, where
the initial and �nal covariance matrices are simultaneously diagonalisable. Numerical in-
vestigations of such settings suggest that the sequence of intermediate covariance matri-
ces described in that result is not only the optimal sequence of the form �p = S−1MpS,
p ∈ {0,… , n}, but the optimal sequence over all feasible sequences of covariance matrices.

Indeed, numerical investigations suggest that in the most general setting where �0
and �⋆ are not simultaneously diagonalisable, the optimal sequence corresponds to the
previously-described geometric progression of matrices. We therefore conjecture the fol-
lowing general result for the optimal distribution schedule between normal distributions
with equal means.
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4.3. normal distributions with eqal means

Conjecture 4.15. For a �xed value of n, consider a distribution schedule (�p)np=0 de�ned

by �p = N (�, �p) for p ∈ {0,… , n}, for some � ∈ ℝd and sequence of positive de�nite

covariancematrices (�p)np=0 inℝd×d . Suppose�0 and�n are �xed; denoteK ≔ �0�−1
n . The sum

∑n−1
p=0 D� 2(�p+1 ∥ �p) of chi-squared distances between consecutive distributions is minimised

when�p−1 = K 1/n�p for all p ∈ {1,… , n}, whereK 1/n is the principal nth root ofK . In this case
case all of these chi-squared distances are equal, and the minimal value of∑n−1

p=0 D� 2(�p+1 ∥�p)
is

n
⎡
⎢
⎢
⎣

det(K 1/n)√
det(2K 1/n − I)

− 1
⎤
⎥
⎥
⎦
.

Proving this result would require an analytical solution to the following constrained
matrix optimisation problem. Denoting �p ≔ �p−1�−1

p for p ∈ {1,… , n}, from (4.9) we look
to minimise

n
∑
p=1

⎡
⎢
⎢
⎣

det(�p)√
det(2�p − I)

− 1
⎤
⎥
⎥
⎦

under the constraints that ∏n
p=1 �p = �0�−1

n ≕ K , and 2�−1
p −�−1

p−1 is positive de�nite for all
p ∈ {1,… , n}. Notably, the latter constraint does not correspond to each �p being positive
de�nite; indeed, in general K is not symmetric. A generalisation the proof of Proposi-
tion 4.12 may be possible, but would not be straightforward: for example, it would require
a suitable generalisation of Lemma 4.5, and would appear to depend on the convexity of a
suitably-de�ned function involving matrix determinants.

4.3.2. Optimal schedule length n

We now look to �nd the value n that minimises n�2
1, when �2

1 takes its minimal possible
value for �xed n. For clarity of exposition, we shall here analyse the setting described
in Remark 4.14, in which the initial and target covariance matrices are equal up to some
multiplicative constant; that is, �0 = ��⋆ for some � > 1/2. In this case, the values �1∶d
described in Proposition 4.12 are all equal to �, so that the minimal value of �2

1 for �xed n
is

n
[(

�1/n
√
2�1/n − 1)

d

− 1
]
. (4.12)

As well as simplifying the notation, this setting is also convenient for considering the role
of the dimension d in this optimisation problem. We emphasise however that a similar
analysis may be performed in the more general case described by Proposition 4.12.

We therefore look to �nd the value n⋆ that minimises n times the minimal value of �2
1

given by (4.12); that is, the value n⋆ that minimises

n2
[(

�1/n
√
2�1/n − 1)

d

− 1
]
.
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4. optimal schedules for perfectly-mixing markov kernels

As in Section 4.2.2, we approach this problem by considering this as a function of real-
valued n ∈ ℝ+. It is not possible to �nd the stationary points of this function analytically;
however, the existence of a global minimum can be proved by considering its asymptotic
behaviour, as in the following result.

Proposition 4.16. The function f ∶ ℝ+ → ℝ given by

f (x) ≔ x2
[(

�1/x
√
2�1/x − 1)

d

− 1
]
,

where � > 1/2 and d ≥ 1 are constants, has a global minimum value of the form ℎ(d) log2(�),
where 0 < ℎ(d) < d/2.

Proof. It is convenient �rst to de�ne f̃ , g ∶ ℝ+ → ℝ such that

f̃ (x) ≔ x2
⎡
⎢
⎢
⎣
(

exp(1/x)√
2 exp(1/x) − 1)

d

− 1
⎤
⎥
⎥
⎦
, g(x) ≔

(
exp(x)

√
2 exp(x) − 1)

d

. (4.13)

We see that f (x) = log2(�) f̃ (x/ log(�)) and f̃ (x) = x2[g(1/x) − 1].

Consider a Taylor series expansion of g about some point a ∈ ℝ+. Writing the remainder
term in Lagrange form, one has that for y ∈ ℝ+,

g(y) = g(a) + g′(a)(y − a) +
g′′(a)
2

(y − a)2 +
g′′′(a + t(y − a))

6
(y − a)3 (4.14)

for some t ∈ (0, 1). Elementary calculations give

g′(y) = d
exp(y) − 1
2 exp(y) − 1

g(y),

g′′(y) = d [
exp(y) − 1
2 exp(y) − 1

g′(y) +
exp(y)

(2 exp(y) − 1)2
g(y)] ,

g′′′(y) = d [
exp(y) − 1
2 exp(y) − 1

g′′(y) + 2
exp(y)

(2 exp(y) − 1)2
g′(y) −

exp(y)(2 exp(y) + 1)
(2 exp(y) − 1)3

g(y)] .

Considering the limits of g(y) and these �rst three derivatives as y → 0, we �nd

lim
y→0

g(y) = 1,

lim
y→0

g′(y) = 0,

lim
y→0

g′′(y) = d,

lim
y→0

g′′′(y) = −3d.
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4.3. normal distributions with eqal means

Taking the limit of (4.14) as a → 0, one therefore has that for some t ∈ (0, 1),

g(y) = 1 +
dy2

2
+
g′′′(ty)

6
y3.

Therefore, for x = 1/y ∈ ℝ+, we have

f̃ (x) = x2 [g (
1
x )

− 1] =
d
2
+
g′′′(t/x)

6x
. (4.15)

Note that since t is bounded, limx→∞ g′′′(t/x) = limy→0 g′′′(y) = −3d . It follows that

lim
x→∞

g′′′(t/x)
6x

= 0;

in addition, since g′′′ is continuous and limx→∞ g′′′(t/x) is negative, this limit is ap-
proached from below.

It follows from (4.15) that
lim
x→∞

f̃ (x) =
d
2

and that this limit is approached from below, so that for su�ciently large x , f̃ (x) < d/2.
Noting that limx→0 f̃ (x) = ∞, it follows that f̃ must have a global minimum; denoting this
value by ℎ(d), one has 0 < ℎ(d) < d/2. Finally, since f (x) = log2(�) f̃ (x/ log(�)), f must
have a global minimum value of ℎ(d) log2(�). ■

As well as proving that an optimal n⋆ does exist in this scenario, this result makes clear
the dependence of the minimal value of n�2

1 on each of d and �. In particular, it may be seen
that the minimal value cannot grow faster than linearly with d . Another consequence of
this result is that the value of x that minimises f (x) must be of the form ℎ̃(d) log(�), where
ℎ̃ is some function of d .

This result leads to a possible strategy for choosing n. As described, n�2
1 converges to

d log2(�)/2 as n tends to in�nity, with this convergence occurring from below. On the
other hand, f (x) diverges to in�nity as x tends to zero. This therefore suggests that in
order to control n�2

1, a safe (if possibly suboptimal) approach is to choose a large value of
n, since for n su�ciently large this expression is bounded above by d log2(�)/2.

Numerical �ndings allow various possible results about the nature of n⋆ to be conjec-
tured. Figure 4.2a shows a typical shape of the graph of f̃ as de�ned in (4.13), a linear
transformation of f that is independent of �. This is observed to exhibit only one local
(and global) minimum, which may be found by numerical optimisation. For each in grid
of values of d , Figure 4.2b displays the ratio of this minimal value and d/2.

These results suggest that the relationship between the minimal value of n�2
1 and d is

asymptotically linear. Recalling that we denote by ℎ(d) the global minimum of f̃ , it may
additionally be conjectured that as d → ∞, ℎ(d)/(d/2) → 1. This would imply that as
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(a) f̃ (x) against x , and the constant function of
value d/2 (dashed), when d = 20.
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Figure 4.2.: Plots describing f̃ as de�ned in (4.11), a linear transformation of the function
f considered in Proposition 4.16, which corresponds to the value of n�2

1 in a
setting involving normal distributions. Note the truncated vertical axes.

the dimension tends to in�nity, the di�erence vanishes between the optimal value of n�2
1,

and its asymptotic value as n → ∞. From a practical perspective, this means that the
‘safe’ approach of simply taking n very large should give a result that is close to optimal
in high-dimensional settings.

These numerical optimisations also allow us to make a similar conjecture about the
minimising value n⋆ of n: it appears that as d → ∞, n⋆/(d log(�)/2) → 1. As well as
implying an asymptotically linear relationship, this gives an approximate value for n⋆

when d is large. While � would usually not be known in advance, such a result could form
the basis of a heuristic for choosing n for a high-dimensional space.

4.4. Properties of the chi-squared distance

In the results we have presented in this chapter, the distribution schedule (�p)np=0 minimis-
ing the sum of chi-squared distances ∑n

p=0 D� 2(�p+1 ∥�p) is such that all of the chi-squared
distances in this sum are equal. Unfortunately, this does not hold in general. To demon-
strate this, we may consider the �nite state space X = {0, 1}, on which any probability
measure is of the form (1 − �)�0 + ��1 for some � ∈ [0, 1]. This is the Bernoulli distribution
with parameter �, which we shall denote by Ber(�).

Consider a schedule of distributions (�p)np=0 on X with n = 2, so that for p ∈ {0, 1, 2}
we may write �p = Ber(�p), for some �p ∈ [0, 1]. Given �0 and �2 = �⋆, so that �0 and �2
are �xed, the selection of a distribution schedule is equivalent to choosing �1. We shall
consider the chi-squared distances between consecutive distributions as functions of �1,

86



4.4. properties of the chi-sqared distance
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Figure 4.3.: Ratio of the expressions d1(�1) and d0(�1) de�ned in (4.17) and (4.16) respec-
tively, describing the chi-squared distances between pairs of Bernoulli distri-
butions, evaluated at the value �opt

1 that minimises their sum. Displayed for
a grid of pairs of values (�0, �2), with the convention that this ratio is 1 when
both chi-squared distances are zero.

denoting these by d0 and d1 respectively. These take the forms

d0(�1) = D� 2(Ber(�1) ∥Ber(�0)) =
(1 − �1)2

1 − �0
+
�21
�0

− 1, (4.16)

d1(�1) = D� 2(Ber(�2) ∥Ber(�1)) =
(1 − �2)2

1 − �1
+
�22
�1

− 1. (4.17)

We look to �nd the value �opt
1 of �1 that minimises the sum of these two chi-squared

distances.
Despite the simplicity of this setting, this optimisation problem does not admit a closed-

form solution. However, for a given choice of �0 and �2 this may be solved numerically. We
�nd that in general, the value �opt

1 that minimises the sum d0(�1) + d1(�1) does not result
in the two chi-squared distances d0(�1) and d1(�1) being equal. Figure 4.3 illustrates this,
displaying the ratio d1(�opt

1 )/d0(�opt
1 ) of the resulting chi-squared distances over a grid of

values of �0 and �2, with the convention that this ratio is 1 if both chi-squared distances
are zero. We here see that minimising the sum of chi-squared distances generally requires
the �rst two distributions (�0 and �1) to be somewhat more similar than the �nal two (�1
and �2).

It follows that even in this perfectly-mixing setting, constructing a schedule of equally-
spaced distributions (in the sense of the chi-squared distance) may not be optimal. As de-
scribed in Section 3.2.2, an adaptive approach to parametric schedule selection proposed
by Zhou et al. (2016) aims to construct a distribution schedule in which the chi-squared
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distances between consecutive pairs of distributions are approximately constant. Consid-
ering the optimality criterion introduced in Section 3.3, there is therefore scope to develop
methods that improve on this adaptive procedure. Indeed, in more general settings the
terms in the decomposition of �2

1 do not directly correspond to chi-squared distances be-
tween consecutive distributions, but also depend on the Markov kernels and resampling
schedule, as shown in Proposition 3.13. We shall consider this in the following chapter.

As previously discussed in Section 3.2.2, the chi-squared distance is not a true ‘distance’,
in the sense of being a metric. From De�nition 3.1 we see that D� 2(� ∥ �) is non-negative,
and equal to zero if and only if � = �; however, it is not symmetric in its arguments.

Rather, the chi-squared distance belongs to a class of functions known as f -divergences,
introduced by Csiszár (1963) for quantifying the dissimilarity between two probability dis-
tributions de�ned on the same space (see Csiszár and Shields, 2004, Section 4 for a review
of the de�nition and properties). A number of dissimilarity measures widely used in statis-
tics and information theory are examples of such f -divergences, including the Kullback–
Leibler divergence and total variation distance. The chi-squared distance has been well
studied in this context; for example, Sason and Verdú (2016) derive a number of inequali-
ties between the chi-squared distance and other f -divergences.

A consequence of the chi-squared distance not de�ning a metric is that it does not follow
a triangle inequality. That is, for distributions � , � and � on X, the sum of D� 2(� ∥ �) and
D� 2(� ∥�) is not bounded below by D� 2(� ∥�). Indeed as demonstrated by the results in this
chapter, adding an additional intermediate distribution to a schedule may reduce the sum
of chi-squared distances, and so the sum D� 2(� ∥ �) + D� 2(� ∥ �) may in fact be rather less
than D� 2(� ∥ �). By the following result, it is always possible to choose an intermediate
distribution � to achieve such a reduction.

Proposition 4.17. Let � and � be distributions on (X,X ) with � ≪ �. De�ne � ≔ (� + �)/2.
Then

D� 2(� ∥�) + D� 2(� ∥�) ≤
3
4
D� 2(� ∥�).

Proof. First consider the term D� 2(� ∥ �). Since � ≪ � it is readily seen that � ≪ �, so this
chi-squared distance is well de�ned and may be expressed according to (3.2) as

D� 2(� ∥�) = ∫
X

d�
d�

(x)�(dx) − 1

=
1
2 ∫

X

d�
d�

(x)�(dx) +
1
2 ∫

X

d�
d�

(x)� (dx) − 1

=
1
2
+
1
2 ∫

X

d�
d�

(x)� (dx) − 1.

From the de�nition of the Radon–Nikodym derivative it may be shown that d�/d� =
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(d�/d� + d�/d�)/2, and so

D� 2(� ∥�) =
1
2
+
1
4 ∫

X

d�
d�

(x)� (dx) +
1
4 ∫

X

d�
d�

(x)� (dx) − 1

=
1
2
+
1
4 ∫

X

d�
d�

(x)� (dx) +
1
4
− 1

=
1
4 (∫

X

d�
d�

(x)� (dx) − 1)

=
1
4
D� 2(� ∥�). (4.18)

Now consider the term D� 2(� ∥ �). We readily �nd that � ≪ � and � ≪ � , and so from
the de�nition of the Radon–Nikodym derivative it may be shown that

d�
d�

= 2
d�

d(� + �)
= 2(

d(� + �)
d(� + �)

−
d�

d(� + �))
= 2(1 −

1
2
d�
d�)

.

Therefore,

D� 2(� ∥�) = ∫
X

d�
d�

(x)� (dx) − 1 = 2 ∫
X (1 −

1
2
d�
d�

(x)) � (dx) − 1

= 1 − ∫
X

d�
d�

(x)� (dx). (4.19)

To rewrite (4.19) we �rst note that since the Radon–Nikodym derivatives d�/d� and
d�/d� are well de�ned, we have that for any A ∈ X,

∫
A

d�
d�

(x)
d�
d�

(x)�(dx) = ∫
A

d�
d�

(x)�(dx) = �(A).

It follows that the product of d�/d� and d�/d� must equal 1 �-almost everywhere, and so
d�/d� = (d�/d�)−1 �-almost everywhere. By symmetry, this is also true �-almost every-
where; and since � is a linear combination of � and � , it is true �-almost everywhere.

Rewriting the integrand of (4.19) accordingly, and then applying Jensen’s inequality
with respect to the convex function x ↦ x−1, we have

D� 2(� ∥�) = 1 − ∫
X (

d�
d�

(x))

−1

� (dx)

≤ 1 −(∫
X

d�
d�

(x)� (dx))

−1

= 1 −(
1
2 ∫

X

d�
d�

(x)� (dx) +
1
2 ∫

X

d�
d�

(x)� (dx))

−1

= 1 − 2(∫
X

d�
d�

(x)� (dx) + 1)

−1

.
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By the form (3.2) of the chi-squared distance we therefore have

D� 2(� ∥�) ≤ 1 −
2

D� 2(� ∥�) + 2
=

D� 2(� ∥�)
D� 2(� ∥�) + 2

. (4.20)

Finally, combining (4.18) and (4.20) we have

D� 2(� ∥�) + D� 2(� ∥�) ≤ (
1

D� 2(� ∥�) + 2
+
1
4)

D� 2(� ∥�) ≤
3
4
D� 2(� ∥�),

as required. ■

Owing to the ‘reduction factor’ of 3/4 in this result it follows that for any initial distri-
bution �0 and �nal distribution �⋆, it is always possible to construct a schedule for which
the relative asymptotic variance �2

1 is arbitrarily small, by adding intermediate mixture
distributions in this manner. We make no claims of optimality; indeed such intermediate
distributions may be computationally impractical for use in an SMC sampler. Other ap-
proaches to constructing a distribution schedule may not allow �2

1 to be made arbitrarily
small (see e.g. Remark 4.7).

A consequence of this result is that in perfectly-mixing settings, the minimal value of
�2
1 over all distribution schedules of length n is strictly decreasing as a function of n:

Proposition 4.18. For any n ≥ 2,

min
�1,…,�n−1

n−1
∑
p=0

D� 2(�p+1 ∥�p) > min
� ′
1 ,…,� ′

n

n
∑
p=0

D� 2(� ′
p+1 ∥�

′
p),

where all distributions are de�ned on some common space X, with �0 = � ′
0 and �n = � ′

n+1 =
�⋆ ≠ �0.

Proof. Consider the optimal distribution schedule of length n, in the sense of minimising
the sum of chi-squared distances between consecutive distributions. We may extend this
to a schedule of length n + 1 by inserting a new distribution between two existing consec-
utive distributions. In the sum of chi-squared distances this has the e�ect of replacing the
corresponding summand with two new terms, with all other summands una�ected.

Suppose we insert the new intermediate distribution between two existing consecutive
distributions that are distinct; since �0 ≠ �⋆ at least one such pair exists. By Proposi-
tion 4.17, it is always possible to choose the new distribution so that the total of the two
new chi-squared distances is strictly less than the summand it replaces.

The sum of chi-squared distances for the original schedule of length n is therefore
strictly greater than that of the new schedule of length n + 1; this in turn must be greater
than or equal to that of the optimal distribution of length n + 1. ■

This formalises the notion that increasing n allows consecutive distributions to be more
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4.4. properties of the chi-sqared distance

‘similar’, resulting in lower variances of the SMC incremental weights and of such estima-
tors as 
Nn (1).

4.4.1. Chained chi-squared distances

Returning to the problem of minimising the sum of chi-squared distances described in
Proposition 4.1, a similar problem has previously been considered for another f -divergence,
albeit in a rather di�erent context. Motivated by applications to Wright–Fisher processes
in genetics, Pavlichin and Weissman (2016) consider sums of Kullback–Leibler divergences:
denoting by Dkl(� ∥�) the Kullback–Leibler divergence of � from �, the authors de�ne the
‘n-fold chained Kullback–Leibler divergence’ of �⋆ from �0 as

D(n)
kl (�⋆ ∥�0) ≔ min

�1,…,�n−1

n−1
∑
p=0

Dkl(�p+1 ∥�p), (4.21)

where �n = �⋆. That is, over all sequences of distributions (�p)np=0 interpolating between
�0 and �⋆, one takes the minimal value of the sum of Kullback–Leibler divergences be-
tween consecutive distributions. There are clear similarities between this and the problem
we have considered in this chapter; generalising the nomenclature, for �xed n one might
describe the minimal value of �2

1 over all distribution schedules as the ‘n-fold chained
chi-squared distance’ of �⋆ from �0.

Pavlichin and Weissman (2016) derive a number of properties of this dissimilarity mea-
sure, and of the optimal path of interpolating distributions, in the case that all these distri-
butions are de�ned on a �nite space X. A number of these results use only those properties
of the Kullback–Leibler divergence that are common to all f -divergences, and therefore
also apply to chi-squared distances. For example, one may show that when considered as
a function of �n and �0, the minimal value of �2

1 is jointly convex. In settings where the
set of probability measures on X is closed (with respect to an appropriate topology), this
implies that the optimal distribution schedule of length n exists and is unique (cf. Pavlichin
and Weissman, 2016, Theorem 1.1).

For a �nite state space X, the authors also derive a form for the optimal path of in-
terpolating distributions for general n, which in turn allows the study of the asymptotic
behaviour of (4.21) in n. To achieve this one �rst considers the case n = 2; using the method
of Lagrange multipliers one can derive an expression for the distribution �1 that minimises

Dkl(�1 ∥�0) + Dkl(�2 ∥�1).

Unfortunately, such an approach cannot be directly applied to chi-squared distances. Again
considering a �nite state space X, one could apply Lagrange multipliers to minimise

D� 2(�1 ∥�0) + D� 2(�2 ∥�1) = ∑
x ∈X [

�1({x})2

�0({x})
+
�2({x})2

�1({x}) ]
− 2
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under the constraint that the sum of �1({x}) over x ∈ X is 1. One �nds that the resulting
solutions satisfy the cubic equation

2
�0({x})

�1({x})3 + ��1({x})2 − �2({x})2 = 0.

While a closed-form solution does exist for �xed � (and may be obtained using computer
algebra software), the resulting expression is unwieldy; indeed, there is no closed form for
�, which must be chosen so that the resulting solutions satisfy the required constraint.

There may nonetheless be scope to use similar methods to derive properties of the op-
timal schedule of distributions in perfectly-mixing settings, and of their asymptotic be-
haviour in n. Such results would be useful in determining the optimal schedule length in
the sense of minimising n�2

1, and could lead to the development of heuristics for choosing
the spacing of intermediate distributions in practical settings.

4.5. Summary

The theoretical results and heuristics presented in this chapter may be practically useful;
for example, in settings where the Markov kernels Mp mix well, analysis of this perfectly-
mixing setting may provide a useful approximation of the behaviour of the SMC sampler.
As discussed however, in many settings of practical interest, the Markov kernels may mix
poorly. In the following chapter, we shall consider the schedule selection problem in this
more general setting, describing work towards more widely-applicable procedures to se-
lecting distribution and resampling schedules.
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5. Approaches to schedule selection for
general Markov kernels

5.1. Numerical optimisations for normal distributions

We now return to the more general schedule selection problem, considering settings in
which the Markov kernels (Mp)np=1 may not be perfectly-mixing. This chapter explores
the properties and behaviour of relevant quantities, as well as investigating some practical
approaches to schedule selection in such general settings.

We continue to view the issue of schedule selection in terms of the optimisation problem
described in Section 3.3. Recall from (3.34) and Proposition 3.13 that for a distribution
schedule �0∶n and resampling schedule Rn ≔ {kj ∶ j ∈ {1,… , rn}}, the relative asymptotic
variance of the normalising constant estimator is given by

�2
1(�0∶n, Rn) =

rn
∑
j=0
D� 2(�̂′rnM

′
rn ,j ∥�

′
j ), (5.1)

where the sequence of excursion Feynman–Kac models is de�ned with respect to the re-
sampling schedule. As previously stated, we assume that there is some �xed method of
constructing the Markov kernels Mp to leave each �p invariant.

In order to explore how the mixing properties of the kernels a�ect this quantity, we �rst
consider a simple method of constructing imperfectly-mixing Markov kernels. Within this
setting we shall investigate a model that allows closed-form expressions for each term in
the decomposition (5.1) to be derived, which we shall in turn use to conduct numerical
optimisations.

To facilitate comparison with the results in Chapter 4, and to assist in the interpretation
of the terms in the asymptotic variance decomposition, in this section we shall consider the
setting in which resampling takes place in every iteration. From (3.31) and Proposition 3.10,
in this case the decomposition (5.1) may be expressed as

�2
1(�0∶n, {1,… , n}) =

n
∑
p=0

D� 2(�nMn,p ∥�p), (5.2)

and the schedule selection problem reduces to that of choosing a distribution schedule.
We emphasise however that the numerical optimisation results in this section could be
extended, by also optimising over the space of resampling schedules.
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Speci�cally, we shall consider Markov kernels that may be expressed as, for p ∈ {1,… , n},

Mp(x, ⋅) = �p�p(⋅) + (1 − �p)�x (⋅) (5.3)

for all x ∈ X, where �p ∈ [0, 1]. That is, application of Mp at x ∈ X results in a sam-
ple from �p with probability �p , and returns the same value x with probability 1 − �p ; it
is straightforward to show that this kernel leaves �p invariant. We here see some simi-
larities with Metropolis–Hastings MCMC kernels, in which a proposed value is accepted
with some probability, else the current value is returned (a brief summary is later given in
Section 6.1). To this end, the value �p may be seen as a proxy for the mixing quality of Mp .

Now consider the probability measures �nMn,p in (5.2). Recalling from (3.12) that Mn,n =
Id we �nd that �nMn,n = �n, so that the nth term in the asymptotic variance decomposition
(5.2) vanishes, in line with Remark 3.9. For p < n, Mn,p is de�ned in (3.12) in terms of the
time reversal kernelsM ∗

p , themselves given by De�nition 3.2. ForMp as given in (5.3), these
may be shown to have the simple form M ∗

p = Mp .
The consequence is that for this choice of Markov kernels Mp the probability measures

�nMn,p in (5.2) admit convenient expressions. To build an intuition for the forms of these
measures, and for the e�ects of the ‘mixing quality parameters’ �p on the relative asymp-
totic variance �2

1, it is instructive to consider �rst the two extreme cases:

• If �p = 1 for all p, one has for each p that Mp(x, ⋅) = �p(x) for all x ∈ X, and so
each Mp exhibits perfect mixing, corresponding to the setting of Chapter 4. As has
previously been shown in Proposition 4.1, in this case �nMn,p = �p+1 for p < n, and
the relative asymptotic variance (5.2) is given by

n−1
∑
p=0

D� 2(�p+1 ∥�p).

• If �p = 0 for all p, one has for each p that Mp(x, ⋅) = �x (⋅) for all x ∈ X, and so
each Mp exhibits no mixing. In this case �nMn,p = �n for all p, and so the relative
asymptotic variance (5.2) is given by

n−1
∑
p=0

D� 2(�n ∥�p).

• In the general case, we may derive a recursive expression for �nMn,p by noting
that Mn,p = Mn,p+1M ∗

p+1 for p < n; we thereby obtain

�nMn,p = �p+1�p+1 + (1 − �p+1)�nMn,p+1

for p ∈ {0,… , n−1}. It follows that for p < n each �nMn,p can be expressed explicitly
as a mixture of the distributions (�q)nq=p+1. This represents a generalisation of the
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two extreme cases above. In particular, if the �p values are closer to 1 (representing
good mixing) then this mixture distribution places higher weight on the ‘earlier’
distributions near �p+1; if the �p values are closer to 0 (representing poor mixing)
then higher weight is placed on the ‘later’ distributions near �n.

When these Markov kernels are used, a setting in which the terms in (5.2) admit closed-
form expressions is that in which (�p)np=0 are all chosen as normal distributions. In this case,
each such term corresponds to the chi-squared distance of a mixture of normal distribu-
tions from a single such distribution. The resulting expressions are unwieldy but tractable,
being a weighted sum of terms resembling the chi-squared distance (4.7) between two nor-
mal distributions.

In the results that follow we consider a target distribution �⋆ = N (�⋆, �⋆), an initial
distribution �0 = N (�0, �0), and a distribution schedule �0∶n speci�ed by a temperature
schedule �0∶n (as described in Section 2.2). To re�ect the common scenario in which
Markov kernels corresponding to higher inverse temperatures mix more poorly, we as-
sume that the values �p appearing in the Markov kernels (5.3) are determined according
to some decreasing function of the inverse temperatures �p . The corresponding problem
of optimising (5.2), considered as a function of the temperature schedule, does not in gen-
eral admit a closed-form solution; we here present results obtained from optimising this
quantity numerically.

Figure 5.1 presents such results in the setting that �0 = N (0, 100), �⋆ = N (0, 1), and
�p = 1 − 0.9�p for p ∈ {1,… , n}. For various values of n the optimal temperature schedule
�0∶n, in the sense of minimising n�2

1, was found using a numerical procedure; for n ∈
{1,… , 12} the corresponding minimal values of this quantity are displayed in Figure 5.1a.
Here, the minimal value of n�2

1 was obtained when n = 2, using temperature schedule
�0∶n = (0, 0.0764, 1).

For comparison, we present in Figure 5.1b the optimal temperatures schedules of length
n = 6 and n = 12. We see that the former is not obtained by ‘thinning’ the latter, i.e.
by taking every other value: for example, �5 in the optimal sequence with length 6 is not
equal to �10 in the optimal sequence of length 12. It follows that in this imperfectly-mixing
setting, the optimal sequence �0∶n of length n can not be expressed as

�p = f (p/n), p ∈ {0,… , n}, (5.4)

where f ∶ [0, 1] → [0, 1] is some function that does not depend on n. This stands in
contrast to the perfectly-mixing setting, for the same choices of �0 and �⋆: by Remark 4.14
the optimal schedule in that setting is given by (4.11), which is indeed of the form (5.4).

We note that several authors have described methods for temperature schedule selec-
tion via the (possibly implicit) speci�cation of such a ‘temperature map’ f as in (5.4). For
example, Heng et al. (2015) consider partial di�erential equations relating to an associated
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(a) min n�21 against n, where the minimum
in each case is taken over all temperature
schedules �0∶n of length n.
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(b) The optimal temperature schedules �0∶n for
n = 6 (blue stars) and n = 12 (red triangles),
plotted as �p against p/n for p ∈ {0,… , n}.
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(c) For the optimal temperature schedule of
length n = 10, the terms vp,n(1) in the de-
composition of �21, plotted against p for p ∈
{0,… , n}.
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(d) For the optimal temperature schedule of
length n = 10, the chi-squared distances
D�2 (�p+1∥�p) between consecutive distribu-
tions, plotted against p for p ∈ {0,… , n − 1}.

Figure 5.1.: Results from the numerical optimisation of n�2
1 by selection of a temperature

schedule �0∶n, for various values of n. Here, �0 = N (0, 100), �⋆ = N (0, 1), and
the Markov kernels are of the form (5.3), with �1∶n determined by �p = 1−0.9�p ,
p ∈ {1,… , n}.
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�ow transport problem; Zhou et al. (2016) also use this formulation within the description
of their adaptive schedule selection method. While there is merit in selecting a tempera-
ture schedule via the choice of such a function, we see that there is no single function in
general that will generate the optimal schedule of every length n.

A further comparison with the perfectly-mixing setting may be made by considering the
values of the terms vp,n(1) in the decomposition of �2

1. Recall from Proposition 4.12 that
for these choices of �0 and �⋆, when perfectly-mixing Markov kernels are used one should
choose the intermediate distributions to be equally-spaced in terms of the chi-squared
distance, so that for p < n all the terms vp,n(1) are equal. We see from Figure 5.1c, which
presents these terms for the optimal distribution schedule of length n = 10, that this is not
the case in this imperfectly-mixing setting. Instead, it is optimal for terms corresponding
to larger values of p to be larger.

Since in this case the terms vp,n(1) are not equal to the chi-squared distances between
consecutive distributions, we present these separately in Figure 5.1d. These follow a rather
di�erent pattern, gradually decreasing up until the last pair of distributions, which are
separated by a much greater chi-squared distance. The intuition is that as the mixing
of the Markov kernels worsens, it becomes harder to move the particles to the areas of
high mass of the following distribution. To counteract this, consecutive distributions are
chosen to be more similar. Eventually the mixing becomes so poor that adding additional
intermediate distributions o�ers no bene�t over moving directly to �⋆.

The patterns exhibited here are nontrivial, and indeed may be di�erent for di�erent
models. Figure 5.2 presents similar results for a setting in which the initial distribution is
�0 = N (100, 1000), but is otherwise unchanged from the setting of Figure 5.1. Here, the
optimal pattern of chi-squared distances between successive distributions (presented in
Figure 5.2d), while similarly requiring a somewhat larger separation between the �nal two
distributions, is qualitatively rather di�erent to that in the former setting.

For further comparison we also present results for the same choices of �0 = N (100, 1000)
and �⋆ = N (0, 1), but with the mixing parameters �1∶n determined from the temperature
schedule by �p = exp(−30�p) for p ∈ {1,… , n}. Here the mixing properties worsen more
rapidly with the inverse temperature, which may better re�ect the mixing in many realis-
tic settings (e.g. the bimodal example of Figure 2.1). We see in Figure 5.3b that the optimal
schedule �0∶n over all values of n, here obtained when n = 5, places all its intermediate
inverse temperatures very close to 0 (the penultimate value is �4 = 0.0159). We also see in
Figure 5.3d that the optimal pattern of chi-squared distances between successive distribu-
tions (here for n = 10) exhibits a very wide range of values; for example, here the value of
D� 2(�10 ∥�9) is over 116 times larger than D� 2(�9 ∥�8).

If one were to choose a distribution schedule solely by consideration of the relative
and/or absolute sizes of the vp,n(1) terms and/or chi-squared distances, it is not clear
what the optimal strategy would be. The adaptive procedure of Zhou et al. (2016) aims
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(a) min n�21 against n, where the minimum
in each case is taken over all temperature
schedules �0∶n of length n.

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7

(b) The optimal temperature schedule �0∶n for
n = 7, plotted as �p against p for p ∈
{0,… , n}.
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(c) For the optimal temperature schedule of
length n = 10, the terms vp,n(1) in the de-
composition of �21, plotted against p for p ∈
{0,… , n}.

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10

(d) For the optimal temperature schedule of
length n = 10, the chi-squared distances
D�2 (�p+1∥�p) between consecutive distribu-
tions, plotted against p for p ∈ {0,… , n − 1}.

Figure 5.2.: Results from the numerical optimisation of n�2
1 by selection of a temperature

schedule �0∶n, for various values of n. Here, �0 = N (100, 1000), �⋆ = N (0, 1),
and the Markov kernels are of the form (5.3), with �1∶n determined by �p =
1 − 0.9�p , p ∈ {1,… , n}.
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(a) min n�21 against n, where the minimum
in each case is taken over all temperature
schedules �0∶n of length n.
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(b) The optimal temperature schedule �0∶n for
n = 5, plotted as �p against p for p ∈
{0,… , n}.
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(c) For the optimal temperature schedule of
length n = 10, the terms vp,n(1) in the de-
composition of �21, plotted against p for p ∈
{0,… , n}.
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(d) For the optimal temperature schedule of
length n = 10, the chi-squared distances
D�2 (�p+1∥�p) between consecutive distribu-
tions, plotted against p for p ∈ {0,… , n − 1}.

Figure 5.3.: Results from the numerical optimisation of n�2
1 by selection of a temperature

schedule �0∶n, for various values of n. Here, �0 = N (100, 1000), �⋆ = N (0, 1),
and the Markov kernels are of the form (5.3), with �1∶n determined by �p =
exp(−30�p), p ∈ {1,… , n}.
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to construct a distribution schedule in which the chi-squared distances between consecu-
tive distributions are all equal, but in this imperfectly-mixing setting this may be highly
suboptimal (and even with perfect mixing this is not the optimal choice for all models, as
discussed in Section 4.4). Although the simplicity of adaptive procedures is to their bene-
�t, this motivates the investigation of alternative approaches to schedule selection, some
of which we shall proceed to investigate.

5.2. Procedures using variance estimators

Since the quantity that we look to minimise depends on the relative asymptotic variance
�2
1 of the normalising constant estimator 
Nn (1), we may consider approaches to schedule

selection that utilise the variance estimation techniques introduced in Section 1.5. As previ-
ously detailed, these allow consistent estimators of quantities including �2

1 to be generated
as a by-product of running an SMC sampler.

Within this section we explore several possible schedule selection procedures imple-
menting these variance estimators. We do not explore any adaptive or online procedures
here: this is partly because of the di�culties in constructing suitable approaches as previ-
ously explained, but also because estimating �2

1 for any given schedule necessarily requires
a complete realisation of the corresponding SMC sampler. Instead, we consider approaches
that compare schedules by running multiple SMC samplers, using di�erent schedules in
each case.

Such an approach may be computationally more expensive than an adaptive algorithm.
However, one can consider a setting in which such a procedure used in a ‘pilot run’ using
relatively few particles, to determine a distribution schedule and resampling schedule to
be used in some �nal run with many more particles. This is particularly applicable given
that n�2

1, the quantity with which we compare schedules, is independent of the number
of particles N . Such an idea can be compared with the use of adaptive SMC procedures in
pilot runs, as described at the end of Section 3.2.2.

5.2.1. Building a schedule by addition of intermediate distributions

An initial idea is to attempt to construct a distribution schedule ‘from scratch’. That is
to say, beginning with a schedule comprising only the initial distribution �0 and �nal
distribution �⋆, one could build a schedule by inserting intermediate distributions one by
one, until an appropriate sequence is obtained. Since any valid distribution schedule could
be constructed this way, such an approach could potentially be made fully general.

A basic framework for such an algorithm might include a scheme for proposing the
insertion of a new intermediate distribution, with this insertion accepted if it results in a
lower (estimated) value of n�2

1, and rejected otherwise. The �nal temperature schedule
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Algorithm 5.1 Temperature schedule building algorithm (basic structure)

1. Initialise n ← 1, temperature schedule � ≔ �0∶n ← (0, 1), resampling schedule
R ← {1}, and indexing variable p ← 0.

2. Run an SMC sampler for these temperature/resampling schedules, and store an es-
timate of n�2

1.

3. While p < n:
a) Propose a new temperature schedule �′ by adding a new inverse temperature

�new after �p , such that �p < �new < �p+1.
b) Run two SMC samplers for this temperature schedule, one with resampling

taking place in the newly-added iteration, and one without such resampling (all
other iterations using resampling as before). In each case, compute an estimate
of n�2

1.
c) Compare these estimates of n�2

1 with that corresponding to the existing tem-
perature schedule � and resampling schedule R; retain the schedules for which
this estimate is lowest. That is:

• If the proposal of adding �new (with or without associated resampling)
results in a lower estimated n�2

1, set � ← �′, n ← n + 1, and update R
appropriately.

• Else, either return to Step 3a to propose another new temperature between
�p and �p+1, repeating for some �xed maximum number of attempts; or set
p ← p + 1.

4. Return the temperature schedule � and resampling schedule R.

could then be returned once some termination criterion is satis�ed: for example, after the
insertion of additional distributions has been rejected multiple times.

Several such schemes were investigated in the context of temperature schedule selec-
tion; the basic structure of the algorithms explored is presented in Algorithm 5.1. The idea
of this approach, which essentially follows a recursive pattern, comes from the observation
that any temperature schedule �0∶n may be viewed as partitioning the interval [0, 1] into
n subintervals. Beginning with an initial schedule containing only 0 and 1, one proposes
the addition of a new inverse temperature between these values. If this is accepted to be
inserted into the sequence, then this divides the interval [0, 1] into two subintervals; the
process of proposing a new temperature can then be repeated for each of these subinter-
vals. If instead the addition of a new inverse temperature in the interval is rejected (or
perhaps if multiple proposals are rejected), then no further proposals are made for inser-
tions of new inverse temperatures in this interval. The algorithm terminates once it has
been decided to insert no new inverse temperatures in any of the existing subintervals.

One advantage of this structure is that when proposing new inverse temperatures, the
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5. approaches to schedule selection for general markov kernels

values of the existing inverse temperatures are taken into account. For example, if at any
point the schedule primarily contains values near 0, it may be advantageous to consider
inserting new values within this region, rather than attempting to distribute them more
uniformly across the interval [0, 1]. This is supported by the results of the previous section,
in which many of the optimal schedules placed almost all of their values very close to 0.

Rather than concurrently specifying a resampling schedule, this approach could be used
to specify only a distribution schedule, for example by using resampling in every iteration
when estimating n�2

1 for each schedule. We instead consider a simple (if possibly subop-
timal) approach to specifying a resampling schedule, in which a �xed resampling status
(i.e. the use or non-use of resampling) is associated with the iteration corresponding to
each inverse temperature. When proposing to insert a new inverse temperature, one es-
timates n�2

1 both with and without resampling taking place in the newly added iteration,
the resampling statuses of iterations corresponding to other inverse temperatures being
unchanged), considering whichever choice results in the lower estimate.

Many instances of this framework were investigated, with a number of di�erent ap-
proaches explored for proposing a new inverse temperature within a given subinterval.
However, even on simple examples there were frequent problems with the algorithm fail-
ing to terminate. Because the insertion of a new inverse temperature into a subinterval
has the e�ect of splitting it into two, this causes the total number of subintervals to be
investigated to increase by one, and so it is quite possible for the procedure never to ter-
minate.

The primary cause of these issues is the variance associated with estimators of n�2
1.

In our investigations, we estimated the relative asymptotic variance �2
1 associated with a

given schedule by running the associated SMC sampler and evaluating NV N
n (1), where

V N
n is as de�ned in (1.40). As mentioned in Section 1.5, this estimator of �2

1 is consistent
in N ; however for any �xed N , this variance estimator itself has a non-zero variance. In
practice this can be large relative to the value of �2

1 it estimates, making it di�cult to
compare schedules based on these values and con�dently determine which has the lower
true value of �2

1.
To provide an example, consider the simple univariate setting in which �0 = N (0, 102)

and �⋆ = 0.3N (−20, 0.42) + 0.7N (20, 0.82). Suppose one considers inserting the additional
inverse temperature 0.01 into the temperature schedule (0, 0.04, 0.16, 0.36, 0.64, 1). Fig-
ure 5.4 shows a boxplot of the estimated values of n�2

1 resulting from running an SMC
sampler 100 times with each schedule (using N = 210 particles, and always resampling).
We see that the variance of these distributions is relatively large compared to their mean; a
single observation of each value may give a very misleading impression of the relative sizes
of n�2

1. The practical e�ect is that in cases such as this, procedures based on Algorithm 5.1
often returned very di�erent temperature schedules when run multiple times. One could
reduce the variance of these estimators simply by increasing the number of particles N
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Figure 5.4.: Box plots of values of nNV N
n (1), which forms an estimator of n�2

1, result-
ing from 100 realisations of an SMC sampler. Here, �0 = N (0, 102), �⋆ =
0.3N (−20, 0.42) + 0.7N (20, 0.82), and two temperature schedules are consid-
ered: an ‘original schedule’ given by (0, 0.04, 0.16, 0.36, 0.64, 1), and a ‘pro-
posed schedule’ comprising the same values with an additional inverse tem-
perature of 0.01. Results are shown for SMC samplers using resampling in
every iteration, with N = 210 particles and separately with N = 214 particles.
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5. approaches to schedule selection for general markov kernels

in the SMC samplers with which they are evaluated, as seen in the results using N = 214

particles in Figure 5.4. However, this would have the e�ect of signi�cantly increasing the
already high computational cost of such an approach.

With this in mind, computationally cheaper approximations of the procedure described
in Algorithm 5.1 were also investigated. For example, we considered whether instead of
estimating the relative asymptotic variance of 
Nn (1) for each schedule, one could consider
that of 
Np (1) for various values of p ≤ n, essentially running an SMC sampler for ‘as long as
necessary’ to make some comparison. These procedures su�ered the same problems when
run at comparable computational cost. Attempts were also made to make Algorithm 5.1
more conservative when assessing the proposed insertion of a new inverse temperature,
for example by introducing an additional threshold on the resulting improvement in the
estimated value of n�2

1, though these did not prevent the issues with non-termination.
In a small number of cases, the procedures that were investigated terminated with no

new intermediate inverse temperatures being added, since all those proposed were re-
jected. A possible cause for this is the di�culty in estimating asymptotic variances such
as �2

1 when these are very high. Consider the variance estimator V N
n (1), which when mul-

tiplied by N gives a consistent estimator of �2
1. From the de�nition (1.40) of V N

n , we �nd
that

1 −(
N

N − 1)

n

≤ V N
n (1) ≤ 1;

these lower and upper bounds are attained when the particles’ zeroth-generation ancestors
are, respectively, all distinct and all equal.

For �xed N , the consistent estimator nNV N
n (1) of n�2

1 is therefore bounded above by
nN . The result is that when comparing two poorly-performing schedules that both result
in a high degree of particle degeneracy when used in an SMC sampler, it is common for
the resulting value of nNV N

n (1) to be smaller for the shorter sequence, purely by virtue of
n being smaller. This may the case even when the true value of n�2

1 corresponding to the
longer schedule is, though still high, rather lower than that of the shorter schedule.

Observing such behaviour in practice may impart some useful information; for example,
it might suggest that the areas of high mass of �0 do not coincide well with those of �⋆,
and therefore that a di�erent choice of initial distribution should be considered. However,
it poses obvious problems for a procedure that is initialised using a schedule containing
no intermediate distributions, which would generally be expected to perform poorly.

5.2.2. Re�ning a schedule by removal of intermediate distributions

As an alternative to the previous approach of building a schedule from scratch, we now
consider re�ning an existing schedule by the removal of intermediate distributions. Con-
sider for example the adaptive schedule selection procedure of Zhou et al. (2016), pre-
viously introduced in Section 3.2.2. Within this procedure, the approximate chi-squared
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distance between successive distributions is controlled by choosing the conditional e�ec-
tive sample size (CESS), de�ned in (3.4), to be equal to a tuning parameter CESS⋆. This
may result in a long sequence of closely-spaced distributions; we consider how such a se-
quence might be improved by removing some of these, and reducing the value of n�2

1. This
may be useful in light of the results of Section 5.1, in which it was seen that the optimal
schedules are typically not equally spaced in the sense of the chi-squared distance.

A motivation for this approach is the behaviour of the terms in the decomposition of �2
1.

Consider �rst these terms vp,n(1) in the case that resampling takes place in every iteration,
so that each such term may be expressed as D� 2(�nMn,p ∥ �p), following Proposition 3.10.
We see that this depends only on those distributions �q for which q ∈ {p,… , n}, either
directly or via Markov kernels leaving these distributions invariant. The e�ect is that
altering any distribution �q , where q ∈ {0,… , n}, only a�ects those decomposition terms
vp,n(1) for which p ≤ q.

Similarly, consider removing �q from the schedule, making no other changes. The de-
composition of �2

1 for this new schedule will have one term fewer than that for the original
schedule, but the �nal n − q terms will be unchanged. Similar statements can be made for
the terms vp,n(') in the decompositions of more general relative asymptotic variances, as
well as for the decomposition terms resulting from the use of occasional resampling.

This suggests the following procedure. Given an initial schedule (�p)np=0, propose the
removal of �n−1; that is, the last intermediate distribution. If the proposed new sched-
ule results in a lower value of n�2

1 than the original schedule, then accept this removal;
otherwise, retain this inverse temperature. Now move one step ‘back’ through the sched-
ule, proposing the removal of the previous intermediate distribution (i.e. the original �n−2)
and accepting/rejecting this by comparing the resulting values of n�2

1. Continue in this
manner, working ‘backwards’ through the distribution schedule until the removal of each
intermediate distribution has been considered, returning the resulting ‘thinned’ schedule.

The reasoning for this approach is twofold. Firstly, as seen in the empirical results
of Section 5.1, it is often preferable for distributions near the end of the schedule to be
more spaced more widely, and so it may be bene�cial to �rst consider the removal of
distributions within this region. Secondly, once it has been determined to retain a given
distribution �q in the schedule, the removal of any earlier distribution will not have any
e�ect on the �nal n − q terms in the decomposition of �2

1. The idea is that choosing to
retain �q is an indication that the contribution of these later terms is ‘su�ciently low’;
we may therefore ‘bank’ these low values and proceed to consider the removal of earlier
distributions, which will not a�ect these later terms.

As previously, such a procedure could be executed in practice by using estimated values
of each �2

1, for example by computing NV N
n (1) or ∑n

p=0 vNp,n(1), in the latter case using the
term-by-term estimators proposed by Lee and Whiteley (2018, Section 4.2). Compared to
the procedure described in Section 5.2.1, a bene�t of this approach is that it must terminate
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after n − 1 iterations (i.e. once each of the n − 1 intermediate distributions has been con-
sidered for removal). In practice however, we found that the same issues of high variance
prevented the construction of a robust procedure, and the returned distribution schedules
varied considerably between simulations.

For example, consider comparing a distribution schedule with some proposed schedule
which is identical except for the removal of some �q . In the decomposition of �2

1 relating
to each schedule, the �nal n−q terms are common; however, the estimated values of these
terms (e.g. the observed values of vNp,n(1)) may di�er. This is a simple consequence of the
need to run an SMC sampler in full to estimate �2

1 for each schedule. To reduce these
problems, some approaches were investigated for reducing the random variation between
these realisations. For example, one could run an SMC sampler for the �rst q −1 iterations
(over which the two schedules are identical), and then continue from this point for the
remainder of each of the two schedules separately, so that the realisations of the �rst q − 1
iterations are shared. Although this had the other bene�t of reducing the computational
cost of the procedure, in turn allowing a greater number of particles to be used for the
same overall computational budget, this did not result in improved robustness.

5.2.3. Simulated annealing using reversible jump MCMC

Given the aim of minimising n�2
1 over all distribution and resampling schedules, an alter-

native approach would be to use a form of simulated annealing, previously introduced in
Section 2.3.4. As earlier described, this is a probabilistic optimisation technique for deter-
mining the argument that maximises a continuous bounded function f ∶ E → ℝ. Given
an initial value x ∈ E, one applies a sequence of Markov kernels Ki such that for i > 0, Ki
leaves invariant the distribution with density at x proportional to exp(�if (x)). As previ-
ously mentioned the values �i may be viewed as inverse temperatures; one requires that
�i diverges to ∞ as i → ∞.

Here we aim to construct Markov kernels Ki , i > 0, such that Ki leaves invariant the
distribution with density at (�0∶n, Rn) proportional to

exp[−�i ⋅ n�2
1(�0∶n, Rn)]. (5.5)

The space E over which we optimise is the space of all distribution schedules �0∶n (for �xed
�0 and �n ≔ �⋆), for all possible lengths n, together with all corresponding resampling
schedules Rn ⊆ {1,… , n}. In practice, one might restrict consideration to intermediate
distributions belonging to some parametric family (e.g. those determined by a temperature
schedule).

In simulated annealing it is common for these Markov kernels to be constructed as
MCMC kernels. However, implementation of such kernels typically requires repeated eval-
uations of the unnormalised target density. Here, this would require the ability to exactly
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compute (5.5), and therefore n�2
1(�0∶n, Rn), for each distribution schedule and resampling

schedule. Instead, within the construction of the MCMC kernel we consider replacing
evaluations of �2

1 with realisations of a consistent estimator, using one of the approaches
introduced in Section 1.5. For example, one could computeNV N

n (1), whereV N
n is as de�ned

in (1.40), for the corresponding choice of distribution and resampling schedules.
The resulting Markov kernels are not guaranteed to have the correct invariant distribu-

tion. Indeed, since the resulting estimate of (5.5) is not unbiased, one cannot use this to
construct a pseudo-marginal MCMC kernel (we later provide a review of such methods,
proposed by Andrieu and Roberts, 2009, in Section 6.2.1). However, for a heuristic proce-
dure that is not necessarily intended to produce the optimal schedule (rather, an acceptable
one), this may be su�cient. Furthermore, simulated annealing schemes using biased esti-
mates have been shown to enjoy similar convergence properties in certain contexts (e.g.
Rubenthaler et al., 2009, who consider a di�erent setting in which the estimation error
reduces with time at an appropriate rate).

The problem of selecting an optimal distribution schedule and resampling schedule is
transdimensional in nature. Considering (�0∶n, Rn) as a parameter vector, the dimension of
the optimal parameter is unknown, since we consider schedules of all possible lengths n.
A convenient framework for describing MCMC methods as applied to such transdimen-
sional problems is that of reversible jumpMarkov chain Monte Carlo (RJMCMC), introduced
by Green (1995); a practical guide to its implementation is provided by Green and Hastie
(2009). Denoting by �n the set of all possible (�0∶n, Rn) for a given value of n, the space of
all possible distribution and resampling schedules is ⋃∞

n=1 �n. The RJMCMC framework
may be used to construct a Markov chain on a space given by ⋃∞

n=1 ({n} × �n).
We investigated settings in which the distribution schedule is determined by a temper-

ature schedule, as in Section 2.2. To propose new distribution/resampling schedules we
considered a number of possible moves, randomly choosing one of the following in each
iteration:

• Adding a new inverse temperature between a consecutive pair of existing inverse
temperatures �p and �p+1 (selected uniformly at random from all existing pairs),
drawing this from the uniform distribution on (�p , �p+1);

• Removing an existing inverse temperature (selected uniformly at random from all
those strictly between 0 and 1);

• Changing whether resampling takes place in an intermediate iteration (selected uni-
formly at random);

• Splitting an existing inverse temperature �p (selected uniformly at random from all
those strictly between 0 and 1) into two new inverse temperatures; i.e. removing �p
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while adding two new inverse temperatures drawn independently from the uniform
distribution on (�p−1, �p+1);

• Merging two existing consecutive inverse temperatures �p and �p+1 (selected uni-
formly at random from all existing pairs); i.e. removing �p and �p+1 while adding
one new inverse temperature drawn from the uniform distribution on (�p , �p+1);

• Jittering all existing inverse temperatures by adding IID normal random variates to
each, on a logit scale.

We ran a number of investigative simulations to assess the behaviour of simulated an-
nealing in this context. To initialise the Markov chain in each case we ran an SMC algo-
rithm once, adaptively determining a resampling schedule using the ESS-based procedure
of Liu and Chen (1995), and a distribution schedule using the CESS-based procedure of
Zhou et al. (2016). In the case of the latter, we considered various values of the parameter
CESS⋆, used to determine the approximate chi-squared distance between successive dis-
tributions as described in Section 3.2.2. One aim of these experiments was to determine
the extent to which the schedules chosen by these adaptive procedures can be improved
upon, with respect to minimising n�2

1.
We present in Table 5.1 results for two simple univariate settings, in which the initial

distribution �0 is a broad normal distribution, and the distribution of interest �⋆ has two
well-separated modes. These settings may be seen as comparable to the illustrative ex-
ample previously presented in Figure 2.1. For these experiments we ran the simulated
annealing algorithm for 2000 iterations with annealing schedule �i = 1.005i−1. In order to
compute V N

n (1) for each proposed schedule (as used in the estimation of n�2
1), we ran an

SMC sampler withN = 211 particles. The values of n�2
1 presented in Table 5.1 are estimates

that were generated subsequently, using the same approach but with 214 particles.
These results paint a mixed picture. In the �rst example, presented in Table 5.1a, the

simulated annealing procedure succeeds in improving on the schedules regarding by the
adaptive procedures, and is robust to the choice of initial schedule. In particular, we see
that for large choices of the CESS⋆ parameter used to specify a distribution schedule in
the procedure of Zhou et al. (2016), the resulting schedules can be much longer than is
optimal. The schedules found to be optimal by the simulated annealing procedure were
far shorter (with n between 2 and 4), and resulted in rather lower values of n�2

1.
The results for the second example, shown in Table 5.1b, display rather less robustness.

While the simulated annealing procedure still tends to prefer shorter schedules, the values
of n�2

1 associated with these exhibit very large variances. Once again, this appears to be
due to the high variance of the estimator V N

n (1): when comparing two schedules with very
small n the variances of the corresponding estimates of n�2

1 may be very large, so that one
cannot determine with reasonable con�dence which schedule has the lower true value of
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Mean ± standard deviation
Initial schedule Final schedule

CESS⋆ used for initialisation n n�2
1 n n�2

1

0.99N 51.9 ± 0.3 42.71 ± 0.90 2.1 ± 0.3 17.95 ± 0.55
0.90N 14.0 ± 0.0 32.94 ± 1.44 2.2 ± 0.4 18.41 ± 1.11
0.70N 7.0 ± 0.0 24.00 ± 0.94 2.6 ± 0.8 17.54 ± 0.85
0.50N 4.1 ± 0.3 21.14 ± 2.37 2.6 ± 0.7 17.17 ± 0.78

(a) Results for �0 = N (0, 102), �⋆ = 0.3N (−10, 0.12) + 0.7N (10, 0.22).

Mean ± standard deviation
Initial schedule Final schedule

CESS⋆ used for initialisation n n�2
1 n n�2

1

0.99N 71.4 ± 0.7 1549.3 ± 47.7 5.4 ± 3.5 1583.8 ± 2701.9
0.90N 24.3 ± 0.5 719.3 ± 44.6 4.3 ± 3.1 2831.1 ± 3044.3
0.70N 12.0 ± 0.0 540.3 ± 34.6 3.5 ± 2.7 1246.3 ± 1522.1
0.50N 8.0 ± 0.0 497.8 ± 31.1 3.3 ± 2.2 942.9 ± 1527.4

(b) Results for �0 = N (0, 102), �⋆ = 0.9N (−30, 0.12) + 0.1N (30, 0.22).

Table 5.1.: Results of two simulation studies of the simulated annealing procedure. The val-
ues presented correspond to the initial distribution and resampling schedules,
as obtained using the CESS-based procedure of Zhou et al. (2016) with various
values of the tuning parameter CESS⋆, and the �nal schedules following the
simulated annealing procedure. Presented are the sample mean ± standard de-
viation of n, and of n�2

1 (estimated as described in the main text), computed over
10 replicates in each case.

n�2
1. The resulting RJMCMC algorithm may therefore behave erratically1. Furthermore

the boundedness of V N
n (1) for �xed N , also as previously discussed in Section 5.2.1, results

in a tendency for the procedure to prefer shorter sequences in cases where the associated
asymptotic variances are high.

While it may be possible to improve on the speci�c algorithm that has been investigated
here, for example by considering other move types, these variance issues inhibit the use
of RJMCMC in this way to construct a robust schedule selection procedure. Furthermore
the computational cost of this approach, requiring a very large number of realisations
of SMC algorithms (one in each iteration, in order to compute V N

n (1) for the proposed
schedule), means that such a construction is unlikely to be of use in practical settings.

1 As previously mentioned, the Markov kernels used in this procedure cannot be viewed as pseudo-marginal
kernels in the sense of Andrieu and Roberts (2009), since they do not employ unbiased estimators of
the target densities. However, to understand the role of the estimator variance in this setting it may
be instructive to consider the literature on tuning pseudo-marginal kernels, in particular the e�ect of
estimator variance on their mixing properties. We later provide a brief review of this, albeit in a di�erent
context, in Section 7.2.2.
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While this could be alleviated by reducing the number of particles used within these SMC
realisations, this would have the e�ect of further increasing the variance of the estimators
V N
n (1).

5.3. Related problems

Although we have here focused on the problem of specifying a distribution schedule and
resampling schedule, there are several related problems in the tuning of SMC samplers for
which variance estimators may be useful. While we do not investigate these directly in
this thesis, we detail some of these issues here, to place them into the wider context and
describe possible procedures that could be investigated.

When de�ning the quantity �2
1 in Section 3.3, we noted that since this depends on the

sequence of Markov kernels (Mp)np=1, we must assume some �xed approach to constructing
these to leave the corresponding distributions (�p)np=1 invariant. While this characterisa-
tion is useful, this obscures the more general problem of tuning Markov kernels in order
to ensure convenient mixing properties. For example:

• If one chooses eachMp to be an MCMC kernel targeting �p , how should the proposal
distributions be chosen?

• If each Mp is to comprise multiple applications of an MCMC kernel targeting �p ,
how many iterations should be used in each case?

The former concern is pertinent to the schedule selection problem since in the construc-
tion of an MCMC kernel, the optimal choice of proposal kernel depends directly on the
target distribution. If successive distributions in the schedule are reasonably similar, so
that �p−1 ≈ �p for p ∈ {1,… , n}, it is often useful to use the particle approximation �Np−1 of
�p−1 as the basis for choosing the proposal kernel for Mp . For example, consider choosing
the covariance matrix for a Gaussian random walk Metropolis kernel; assuming the co-
variance matrix of �p−1 approximates that of �p , one could use the matrix associated with
�Np−1, scaled appropriately (e.g. using the results of Roberts and Rosenthal, 2001).

Since such a sequence of Markov kernels is determined directly by the distribution
schedule, in this manner the ideas investigated in this chapter to be extended directly to the
simultaneous selection of a sequence of proposal kernels. In other settings however, such
a construction may be highly suboptimal, requiring the consideration of other approaches.
For example, consider an SMC sampler targeting a distribution with well-separated modes;
as the intermediate distributions begin also to possess this property, proposal kernels con-
structed in the described manner will generally become less e�cient, with poor mixing
properties. To this end one may wish to compare multiple approaches to constructing the
sequence of Markov kernels (Mp)np=1, for which one could consider a procedure based on
variance estimation.
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The most general approach would involve the selection a schedule of Markov kernels to
minimise n�2

1, rather than simply choosing a distribution schedule, although the resulting
optimisation problem would be incredibly complex. Instead, one might consider using
estimated values of n�2

1 to compare sequences of Markov kernels for a �xed choice of
distribution schedule, selecting the sequence that results in the lowest value.

The second issue described above, that of determining how many MCMC kernel iter-
ations each Markov kernel should comprise, has a more direct connection to the issue of
schedule selection. Suppose we have an intermediate distribution � , and that it is di�-
cult to construct a well-mixing MCMC kernel leaving � invariant. To improve mixing one
might consider using multiple applications of such a kernel, and to this end there are two
possible choices for the construction of an SMC sampler:

• A distribution schedule including � only once, with the corresponding Markov ker-
nel comprising k iterations of a �-invariant MCMC kernel;

• A distribution schedule that is identical, except that this single instance of � is re-
placed by k consecutive repeated instances of � , with the corresponding Markov
kernels each comprising one single iteration of a �-invariant MCMC kernel.

When is each of these choices to be preferred?
If one chooses (deterministically) for resampling not to take place during any of the it-

erations corresponding to these replicated distributions, then these two choices are equiv-
alent in practice. To this end, the �rst of these two options may be seen as a special case of
the second. It follows that from a theoretical perspective, choosing each Markov kernel to
comprise a single MCMC kernel (repeating distributions as necessary) may be preferable,
since it permits greater �exibility in when the choice of resampling times. Of course, a
distribution schedule containing multiple copies of the same distribution may itself not be
optimal, when compared to other schedules of the same length; it may be better to instead
have distributions that are closely spaced but distinct.

Nonetheless, there may be settings in which it may be preferable for each Markov ker-
nel to comprise multiple applications of an MCMC kernel. Consider the use of adaptive
resampling based on the ESS, as described in Section 1.3.2. The (repeated) application of
an MCMC kernel to each particle may be conducted in parallel across all particles; in con-
trast, the computation of the ESS requires the values of all particles to be collected. In
settings where this ‘collection’ or communication process is ine�cient (for example, if the
algorithm is executed in a distributed manner and there is some latency involved in com-
municating their values between machines), it may be advantageous to restrict the number
of possible resampling steps.

While this may be seen theoretically in terms of choosing an appropriate distribution
and resampling schedule as discussed, for the purposes of implementation it may be most
convenient to view this in terms of the numbers of MCMC kernel applications in each
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iteration. To this end, di�erent choices of these numbers could be compared by consider-
ing the corresponding value of �2

1, multiplied by some proxy for the total computational
cost (analogous to the use of n�2

1 for distribution schedule selection). Again, this tuning
could be achieved in practice using estimators such as NV N

n (1), either to compare dif-
ferent choices for a �xed distribution schedule, or to determine these tuning parameters
concurrently with the selection of the distribution schedule.

5.4. Summary

Within this chapter we have considered the properties of optimal distribution schedules
in settings where the Markov kernels do not mix perfectly, and investigations towards
procedures for schedule selection in such settings, based on the variance estimators of Lee
and Whiteley (2018). Unfortunately, these investigations have not resulted in a procedure
that is robust, while having an acceptable computational cost. While the procedures de-
scribed could be implemented using SMC samplers employing many more particles, thus
alleviating many of the issues relating to the variances of the SMC variance estimators,
this would preclude their use for schedule selection in practical settings.

Nonetheless, it is hoped that the �ndings of these initial investigations may inform
and motivate the future development of techniques for the tuning of SMC algorithms
using these variance estimators, for example in those areas discussed in Section 5.3. To
this end the discussion of Section 3.3, and the proposal to use n�2

1 to compare distribu-
tion/resampling schedules, may �nd application for the more general purpose of compar-
ing tuning choices. We provide further discussion of possible research directions in the
concluding remarks at the end of the thesis.
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6. Markov chain Monte Carlo and big data

6.1. Markov chain Monte Carlo

The remainder of this thesis considers problems in approximating Bayesian posteriors,
when these depend on large data sets that are distributed across several computers. In this
chapter we summarise the di�culties in constructing e�cient simulation procedures for
these settings, and review several approaches that have been proposed in the literature. To
motivate these discussions, we begin with a short review of a class of simulation methods
that includes many algorithms commonly applied to Bayesian inference problems.

As �rst considered in Chapter 1, suppose we wish to approximate some probability mea-
sure � , de�ned on a measurable space (E, E). If we are able to draw IID samples from this
distribution, then a simple Monte Carlo approximation of � can be formed as (1.1). How-
ever, in most settings of practical interest it is computationally infeasible to draw indepen-
dent samples distributed according to � .

An alternative approach is to construct a Markov kernel K on (E, E) that leaves � invari-
ant; that is, such that �K = � . Under certain conditions, the simulation of a homogeneous
Markov chain by recursive application of K results in a sequence of random variables that
are dependent, but each approximately distributed according to � . These samples may
then be used to construct a Monte Carlo approximation of � . This idea forms the basis of
a range of algorithms known as Markov chain Monte Carlo (MCMC) methods.

Speci�cally, consider the discrete time Markov chain de�ned by

Z 0 ∼ �, Z i ∼ K (Z i−1, ⋅), i > 0.

Since K leaves � invariant, it follows that each Z i is marginally distributed according to
� . This suggests that � may be well approximated by the empirical measure

�N ≔
1
N

N
∑
i=1
�Z i , (6.1)

for some N , analogously to (1.1) in which IID samples are used. For an X -measurable
function ', an estimate of the integral � (') is thereby obtained as

�N (') =
1
N

N
∑
i=1
'(Z i).
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In practice however, the kernel K may be such that consecutive states are highly cor-
related, so that the resulting chain mixes poorly. The values (Z i)Ni=1 may behave very
di�erently to IID samples from � (for example, they may not belong to all areas of non-
negligible mass), so that (6.1) forms a poor approximation of � . Furthermore, it is generally
not possible to sample the initial state from � , and so Z 0 is drawn from some other dis-
tribution �. It is therefore not guaranteed that any Z i is exactly marginally distributed
according to � ; depending on the kernel K , the resulting chain may not even have � as its
limiting distribution.

Nonetheless, under certain conditions on K we may show that estimators of the form
(6.1) have similar asymptotic properties to those based on IID samples. For example, if the
resulting Markov chain is Harris recurrent, estimators of the form �N (') obey a strong law
of large numbers. A number of CLT results for such estimators also exist, holding under
varying conditions on the Markov chain. A summary of various such results is provided by
Roberts and Rosenthal (2004); a fuller theoretical review is provided by Meyn and Tweedie
(2009).

A number of methods have been proposed for constructing the Markov kernel K to
leave � , the target distribution, invariant. For purposes of exposition, we here present a
simple method that forms the basis of many more recently-proposed algorithms.

The Metropolis–Hastings algorithm was �rst proposed in the chemical physics literature
by Metropolis et al. (1953), and was later generalised by Hastings (1970). This procedure,
detailed in Algorithm 6.1, requires that � admits an (unnormalised) density �̄ with respect
to some dominating measure that may be evaluated at each z ∈ E. One also requires a
kernel Q ∶ E × E → [0, 1] known as the proposal kernel, chosen such that one may readily
sample from Q(z, ⋅) for all z ∈ E; we assume that this admits a density q(z, ⋅) with respect
to the same dominating measure.

Algorithm 6.1 Metropolis–Hastings algorithm

1. Set initial state Z 0.

2. For i = 1,… , N ,
• Set Z ← Z i−1 and sample Z ′ ∼ Q(Z, ⋅).
• Set

r(Z, Z ′) ←
�̄ (Z ′)
�̄ (Z )

q(Z ′, Z )
q(Z, Z ′)

. (6.2)

• Sample U according to the uniform distribution on (0, 1).
• If U < r(Z, Z ′), set Z i ← Z ′. Else, set Z i ← Z .

Given the current value Z of the chain, a new value Z ′ is proposed by application of Q.
With some probability, the proposed value Z ′ is accepted as the next value of the chain;
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else it is rejected, and the chain’s current value Z is carried forward. It is straightforward
to show that the Markov kernel de�ned by this procedure is reversible with respect to � ,
and therefore leaves � invariant (see e.g. Roberts and Rosenthal, 2004, Proposition 2).

Since Algorithm 6.1 only requires evaluations of an unnormalised density �̄ , the use
of Metropolis–Hastings and related MCMC methods is widespread in Bayesian inference,
for the purpose of approximating posterior distributions. Beyond the simplest models (e.g.
those employing conjugate prior distributions), these typically have complex forms that
make the exact evaluation of integrals � (') computationally intractable, and so these are
often approximated using Monte Carlo methods.

Speci�cally, suppose � is a Bayesian posterior distribution for the statistical parameter
Z , which takes values on z ∈ E ⊆ ℝd . By abuse of notation, henceforth let � also denote
the density of this distribution with respect to some version of the Lebesgue measure.
Denote the corresponding prior density by �, and the likelihood function by L(⋅ ∣y), where
y represents the observed data. Then we have

� (z) =
�(z)L(z ∣y)

∫E �(z′)L(z′ ∣y) dz′
∝ �(z)L(z ∣y) = �̄ (z), (6.3)

and so construction of a Metropolis–Hastings kernel leaving � invariant does not require
evaluation of the marginal likelihood ∫E �(z)L(z ∣y) dz, which is typically computationally
intensive.

6.2. MCMC methods for big data

We now continue to consider this Bayesian setting, in the case that the data set y is very
large. Consider the case in which the data comprise n observations y1∶n that are condi-
tionally independent given Z . Then from (6.3) we have

� (z) ∝ �(z)
n
∏
i=1
Li(z ∣yi), (6.4)

where Li(⋅ ∣yi) is the likelihood contribution of the observation yi .
Within Algorithm 6.1, the quantity r(Z, Z ′) de�ned in (6.2) is known as the acceptance

ratio. We see that each iteration of Algorithm 6.1 requires evaluation of r(Z, Z ′), and there-
fore of �̄ at the proposed value Z ′. Each iteration therefore requires evaluation of the like-
lihood contribution of each of the n observations, to compute just one bit of information:
whether to accept or reject Z ′ as the new value of the chain.

Suppose one aims to estimate integrals � ('), for appropriate E-measurable functions
'. If unlimited time were available, one could simply run a Metropolis–Hastings sampler
targeting � for as long as necessary; given one of the aforementioned CLT results the
resulting estimators are consistent, and so the error of the realised estimates may be made
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arbitrarily small.
In practice however, the available computation time is limited. When n is very large the

number of iterations of Algorithm 6.1 that can be completed may be relatively few, since
the required acceptance ratios are expensive to evaluate. Various authors have therefore
suggested alternative MCMC approaches to forming an empirical approximation �N of �
in this setting, which may be advantageous compared to this ‘direct’ Metropolis–Hastings
approach.

To motivate many of these methods, we may consider the mean squared error (MSE) of
the resulting estimator �N (') of an integral � ('); that is,

E[(�
N (') − � ('))

2
] = E[(�N (') − � ('))]

2 + var[�N (')] . (6.5)

An alternative method may generate estimators �N (') that are asymptotically biased inN ,
for example because the Markov chain formed does not target � , but some approximation
thereof. Alternatively, the estimators may have a higher asymptotic variance than those
obtained from a straightforward Metropolis–Hastings approach; that is, a higher value of
limN→∞ N var[�N (')]. However, for a �xed time budget it may be possible to obtain esti-
mators of a lower mean squared error than would be possible using the simpler approach.
For example it may be possible to draw a greater number of samples N , so that even if
the resulting estimators exhibit a slightly increased bias, their (non-asymptotic) variance
is greatly reduced.

We proceed to summarise a number of such approaches that have been proposed in the
literature; a fuller review of such methods is provided by Bardenet et al. (2017). A number
of approaches are particularly applicable in settings where the data y1∶n are stored on
multiple computers, so that any MCMC method requires some degree of communication
between these machines. We shall detail these separately in Section 6.3.

6.2.1. Pseudo-marginal MCMC

A natural idea is to construct an MCMC algorithm in which one computes only a fraction
of the n likelihood contributions Li(z ∣ yi) in each iteration. If a �xed subsample of these
likelihood contributions are used, then the resulting target posterior may be very di�erent
from � , as de�ned in (6.4). However, by using a random subsample in each iteration it is
possible to construct a Markov chain with � as its invariant distribution.

To this end, it is useful to consider MCMC algorithms in which rather than computing
the unnormalised density �̄ (z) exactly, one computes some computationally cheap esti-
mate of this quantity. Indeed we may show that within such methods as Algorithm 6.1,
directly replacing these unnormalised density evaluations by unbiased estimates does not
change the invariant distribution of the resulting Markov chain. The resulting framework
is known as pseudo-marginal MCMC. The generic form of this class of algorithms was
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described by Andrieu and Roberts (2009), following earlier work on ‘noisy’ Monte Carlo
methods by various authors (Kennedy and Kuti, 1985; Lin et al., 2000; Beaumont, 2003).

We formalise this framework as follows. Consider the latent variable (or collection
thereof) used in the formation of the unbiased estimator of the unnormalised target den-
sity �̄ (z); we shall denote this by � , where this takes values � ∈ X. Suppose that for any
z ∈ E we may sample � according to some probability measure �z , and that for some func-
tion �̃ ∶ E ×X → ℝ, the random variable �̃ (z, �) is unbiased as an estimator of �̄ (z). That
is,

∫
X
�̃ (z, � )�z(d� ) = �̄ (z) ∝ � (z).

Using this notation, we present as Algorithm 6.2 the resulting pseudo-marginal form of
the Metropolis–Hastings algorithm.

Algorithm 6.2 Pseudo-marginal Metropolis–Hastings algorithm

1. Set initial state (Z 0, �0).

2. For i = 1,… , N ,
• Set Z ← Z i−1 and � ← � i−1.
• Sample Z ′ ∼ Q(Z, ⋅) and � ′ ∼ �Z ′(⋅).
• Set

r((Z, �); (Z ′, � ′)) ←
�̃ (Z ′, � ′)
�̄ (Z, �)

q(Z ′, Z )
q(Z, Z ′)

. (6.6)

• Sample U according to the uniform distribution on (0, 1).
• If U < r((Z, �); (Z ′, � ′)), set Z i ← Z ′ and � i ← � ′. Else, set Z i ← Z and
� i ← � .

The acceptance ratio (6.6) used in this algorithm takes essentially the same form as
the corresponding quantity (6.2) in Algorithm 6.1, but with each evaluation of �̄ replaced
by its unbiased estimator. Formally, we may view Algorithm 6.2 as a Metropolis–Hastings
sampler on the extended state space E×X. Considering the resulting invariant distribution,
one may show that its marginal distribution on E is exactly equal to � , the distribution
of interest. The values (Z i)Ni=1 may therefore be used to form an empirical measure (6.1)
approximating � .

Returning to the big data problem, several authors have proposed pseudo-marginal ap-
proaches to sampling from � , estimating �̄ (z) by computing only a subsample of the like-
lihood contributions. While it is straightforward to generate an unbiased estimator of the
log-likelihood in this context, additional techniques are required to build an unbiased esti-
mator of the likelihood, and therefore of the unnormalised target density. Bardenet et al.
(2017, Section 4.2) describe one such approach, though note that the resulting Markov
chain may mix poorly in practice; Quiroz et al. (2019) propose a similar technique within
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this framework.
The ‘�re�y Monte Carlo’ approach of Maclaurin and Adams (2014), which requires a

positive lower bound on the likelihood contribution of each datum, similarly takes the
form of an MCMC algorithm on an extended state space. As shown by Bardenet et al.
(2017, Section 4.3) this may also take a pseudo-marginal form.

We shall further discuss pseudo-marginal kernels in Section 7.2.2, where we discuss the
tuning of such algorithms within the context of our proposed simulation framework.

6.2.2. Other approaches

Outside of the pseudo-marginal framework, a number of other MCMC approaches have
been proposed to generate approximations of the full posterior � . Many of these ap-
proaches are ‘asymptotically inexact’, resulting in a Markov chain with an invariant dis-
tribution that is not exactly � , but is intended to be a close approximation.

Korattikara et al. (2014) propose that in each iteration of Algorithm 6.1, a small random
subsample of the data is used to approximate the acceptance ratio (6.2). Based on this
approximation, a hypothesis test is conducted to determine whether there is su�cient
evidence that the proposed Z ′ would be accepted (or rejected) based on the true acceptance
ratio. If so, acceptance or rejection takes place accordingly, else the acceptance ratio is
re-approximated with a larger subsample and the test is reconducted. Motivated by this
method Bardenet et al. (2014) propose a similar adaptive subsampling approach, in which
con�dence intervals for the logarithm of the true acceptance ratio are computed according
to a concentration inequality.

Among other approaches, Huggins et al. (2016) consider using a �xed weighted subset of
the data, which may be used to construct an approximate posterior with an unnormalised
density that may be evaluated cheaply. A number of procedures applying stochastic op-
timisation techniques have also been proposed for this problem (Welling and Teh, 2011;
Ho�man et al., 2013)

6.3. MCMC methods for distributed data

Remaining in the Bayesian setting, we now assume that the likelihood function can be ex-
pressed as a product of b terms, each of which depends on data stored on a single machine.
That is, we assume the posterior density for the statistical parameter Z satis�es

� (z) ∝ �(z)
b
∏
j=1
fj(z). (6.7)

We assume that fj is computable on computing node j and involves consideration of yj ,
the jth subset or ‘block’ of the full data set, which comprises b such blocks. This setting is
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common in cases where the data set is very large, since for example it may not �t into the
memory of a single machine.

Suppose we wish to evaluate (6.7) for some z ∈ E. This requires the value of z to be
communicated to each of the b nodes, on which the corresponding partial likelihood fj(z)
is computed; these values must then be communicated back to the �rst machine, in order
for the product to be taken. The consequence is that each evaluation of the target density
on some central node, and therefore each iteration of Algorithm 6.1 performed on that
node, requires the communication of values to and from each of the b worker nodes.

Although the partial likelihood terms fj(z) may be computed in parallel, this ‘message
passing’ poses a problem in settings where the time budget is limited, due to the issue of
latency: the delay or lag associated with communication between machines. When this
latency is relatively high compared to the time taken to evaluate each partial likelihood
term, one may spend a relatively large proportion of time communicating values between
machines, rather than on likelihood computation. This ‘wasteful’ use of the available wall-
clock time may mean that relatively few iterations of an MCMC sampler targeting � may
be completed.

As previously discussed, a number of alternative approaches have therefore been pro-
posed that may be advantageous in this context, allowing integrals � (') to be estimated
with a lower mean squared error. We detail some of these here.

6.3.1. Embarrassingly parallel algorithms

In order to reduce the amount of inter-node communication required, a number of authors
have proposed methods that allow a separate MCMC chain to be generated on each of the
b computing nodes. Rather than targeting the density of interest (6.7), each of these chains
targets a density that depends only on the block of data yj stored on that node. Since these
densities may be computed locally, each of these MCMC chains may be executed without
the need for communication with other nodes. Only after the generation of all b local
chains are these values communicated to a central node, where they are used to generate
an approximation of the full target density (6.7).

Algorithms of this form require communication between the nodes only at the very
beginning and end of the procedure, and therefore fall into the MapReduce framework
(Dean and Ghemawat, 2008). Owing to the simplicity with which each of the b individual
chains can be run separately and concurrently, these algorithms are commonly known as
embarrassingly parallel algorithms.

The target densities of each of the b local chains are commonly referred to as subposterior
densities, being of the form of a posterior density, but each containing only the partial
likelihood term fj(z) relating to the corresponding node. Accordingly, it is necessary to
de�ne an appropriate pseudo-prior density for each chain. A common approach is to assign
each subposterior density an equal share of the prior information imparted by the true
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prior density �(z), by using a ‘fractionated’ prior density proportional to �(z)1/b . The jth
subposterior density is then proportional to

�(z)1/bfj(z); (6.8)

we observe that by taking the product of this expression over j ∈ {1,… , b}, one recovers the
full target density (6.7). We shall later discuss some properties and potential problems with
this construction in Section 7.2.3, in the context of our proposed simulation framework.

Having generated a collection of samples from each of these subposterior densities, a
�nal post-processing step is used to aggregate these samples, forming an approximation of
the true target density � . A simple approach proposed by Scott et al. (2016), which has mo-
tivated several more recent techniques, takes the form of weighted averaging. After gener-
ating bMCMC chains of equal lengthN , which we shall denote (Z i

j )Ni=1 for j ∈ {1,… , b}, one
averages these elementwise to compute a ‘consensus chain’ (Z i)Ni=1. Speci�cally, suppose
the state space E is some subset of ℝd ; for some choice of weight matrices W1∶b ∈ ℝd×d ,
one takes

Z i ≔ (
b
∑
j=1
Wj)

−1 b
∑
j=1
WjZ i

j

for i ∈ {1,… , N}. It is intended that these values approximate a collection of N samples
drawn from the true posterior density � , so that a weighted empirical measure approx-
imating � may be formed according to (6.1). This embarrassingly parallel algorithm is
known as consensus Monte Carlo.

Motivated by Bayesian asymptotics, the authors suggest taking each weight matrix Wj

to be an estimate of the precision matrix of the corresponding subposterior distribution,
computed using the samples from the jth chain. Indeed, if each subposterior density is
Gaussian, this approach results in a consensus chain comprising samples asymptotically
distributed according to � . We present this form of the procedure as Algorithm 6.3.

Algorithm 6.3 Consensus Monte Carlo

1. For j = 1,… , b, generate a chain of N samples (Z i
j )Ni=1 approximately distributed

according to the jth subposterior density, i.e. the density proportional to (6.8).

2. Combine these b chains:
• For j = 1,… , b, compute an estimate Sj of the covariance matrix of (Z i

j )Ni=1.
• For i = 1,… , N , set

Z i ← (
b
∑
j=1
S−1j )

−1 b
∑
j=1
S−1j Z i

j .

In cases where the subposterior distributions exhibit near-Gaussianity this performs
well, with the �nal ‘consensus chain’ providing good approximations of posterior expec-
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tations. However, there are no theoretical guarantees associated with this approach in
settings in which the subposterior densities are poorly approximated by Gaussians. In
such cases consensus Monte Carlo sometimes performs poorly in forming an approxima-
tion of the posterior � (as in examples of Wang et al., 2015; Srivastava et al., 2015; Dai et al.,
2019), and so the resulting estimates of integrals � (') exhibit high bias.

Various authors have therefore proposed more generally-applicable techniques for util-
ising the values from each of the b chains in order to approximate posterior expectations.
For example, Neiswanger et al. (2014) propose a strategy based on kernel density esti-
mation; based on this approach, Scott (2017) suggests a strategy based on �nite mixture
models, though notes that both methods may be impractical in high-dimensional settings.
The same author proposes a model-agnostic method employing sequential importance
sampling, which is also observed to perform poorly in high dimensions.

Other proposed approaches include combining the chains using random partition trees
(Wang et al., 2015), choosing a function with which to aggregate the chains via variational
optimisation (Rabinovich et al., 2015), and taking a suitably-de�ned average of empirical
measures approximating each subposterior distribution (Minsker et al., 2014; Srivastava
et al., 2015). A recent proposal of Dai et al. (2019) introduces a rejection sampler employing
Brownian bridges; the authors do not directly address ‘big data’ settings, reserving this for
future work.

As well as proposing an aggregation method for this framework based on rejection sam-
pling, Wang and Dunson (2013) propose an alternative embarrassingly parallel algorithm
that takes a slightly di�erent approach. Rather than drawing samples directly from each
of the subposterior distributions, one begins with an initial collection of N samples repre-
senting a rough empirical approximation of � . To each of these samples a re�nement step
is applied, which corresponds to a single iteration of an appropriately-de�ned Gibbs ker-
nel on an extended state space. We explain this approach in greater detail in Section 7.2.3,
comparing it to the simulation framework we shall later propose.

6.3.2. Other approaches

Outside of the embarrassingly parallel framework, an alternative approach to the problem
of sampling from � has been proposed by Xu et al. (2014). Within their framework, separate
MCMC chains are run in parallel on each node, targeting densities in which those partial
likelihood terms fj(z) that cannot be computed on that node are approximated by density
functions from an exponential family (up to normalising constants).

Rather than communication only occurring at the end of the algorithm, the sample mo-
ments of each chain’s values are shared among the nodes regularly. This allows the param-
eters of the approximating densities to be iteratively updated via expectation propagation,
in order that each chain’s target density forms a close approximation of the true target � .
Again, this method is most e�ective when the partial likelihood terms are well approxi-
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mated by the surrogate terms (often chosen to be Gaussian, following Bayesian asymptotic
arguments).

Finally, a recent proposal of Jordan et al. (2019), aims to further reduce the cost of com-
munication resulting from embarrassingly parallel approaches. Rather than a separate
MCMC chain being run on each node and communicated to a central node for aggrega-
tion, one only communicates the gradient of each subposterior density (at some initial
point). These are used to construct an approximation of the posterior density; a single
MCMC chain targeting this distribution may then be executed on the central node. This
approach may therefore be most advantageous when there are limitations on communi-
cation bandwidth, in addition to high latency.

6.4. Summary

We have here reviewed the basis of Markov chain Monte Carlo, and algorithms within this
framework that may be advantageous in Bayesian settings in which the data set is large and
computational time is limited. The setting of Section 6.3, in which the data are distributed
across multiple machines, shall form the focus of the following chapters. We shall proceed
to propose a Metropolis-within-Gibbs algorithm for approximating (6.7) in this context,
comparing with a number of the approaches and ideas that have been discussed here.
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7.1. The instrumental hierarchical model

Within this chapter we shall introduce a novel framework for inference in distributed
settings; that is, in the setting described in Section 6.3, in which the distribution of interest
� admits a density of the form (6.7). We describe the construction of an MCMC algorithm
on an extended state space targeting a distribution that, when appropriately marginalised,
provides an approximation of the density of interest � . For simplicity, throughout this
chapter we shall occasionally abuse notation by using the same symbol for a probability
measure and for its density with respect to a suitable form of the Lebesgue measure.

The framework we propose may be viewed in terms of an instrumental hierarchical
model. Alongside the variable of interest Z , we introduce a collection of b instrumental
variables each also de�ned on E, denoted by X1∶b . On the extended state space E × Eb , we
de�ne the probability density function �̃� by

�̃�(z, x1∶b) ∝ �(z)
b
∏
j=1
K (�)
j (z, xj)fj(xj), (7.1)

where for each j ∈ {1,… , b}, {K (�)
j ∶ � ∈ ℝ+} is a family of Markov transition densities on

E. De�ning
f (�)j (z) ≔ ∫

E
K (�)
j (z, x)fj(x) dx, (7.2)

the density of the Z -marginal of �̃� may be written as

��(z) ≔ ∫
Eb
�̃�(z, x1∶b) dx1∶b ∝ �(z)

b
∏
j=1
f (�)j (z). (7.3)

Here, we may view each f (�)j as a smoothed form of fj , with �� being the corresponding
smoothed form of the density of interest (6.7).

The role of � is to control the �delity of f (�)j to fj , and so we assume the following in the
sequel.

Assumption 7.1. For all � > 0, f (�)j is bounded for each j ∈ {1,… , b}; and f (�)j → fj
pointwise as � → 0 for each j ∈ {1,… , b}.

For example, Assumption 7.1 implies that �� converges in total variation to � by Sche�é’s
lemma (Sche�é, 1947), and therefore ��(') → � (') for bounded ' ∶ E → ℝ. A su�cient
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Figure 7.1.: Directed acyclic graphs, representing the original statistical model (left) and
the instrumental model we construct (right).

condition for Assumption 7.1 to hold is that for each j ∈ {1,… , b} and for �-almost all
z ∈ E, the probability measure associated with K (�)

j (z, ⋅) converges weakly to the Dirac
measure concentrated at z. In particular, Assumption 7.1 is satis�ed for essentially any
kernel that may be used for kernel density estimation; here, � takes a similar role to that
of the smoothing bandwidth. Another perspective is that Assumption 7.1 is satis�ed by
taking K (�)

j (z, ⋅) to be a ‘molli�er’ function, as originally introduced by Friedrichs (1944).

On a �rst reading one may wish to assume that the K (�)
j are chosen to be independent

of j; for example, with E = ℝ one could take K (�)
j (z, x) = N (x ; z, �). We describe some

considerations in choosing these transition kernels in Section 7.3.2, and describe settings
in which choosing these to di�er with j may be bene�cial.

The instrumental hierarchical model is presented diagrammatically in Figure 7.1. The
variables X1∶b may be seen as ‘proxies’ for Z associated with each of the data subsets,
which are conditionally independent given Z and �. Loosely speaking, � represents the
extent to which we allow the local variables X1∶b to di�er from the global variable Z . In
terms of computation, it is the separation of Z from the subsets of the data y1∶b , given X1∶b

introduced by the instrumental model, that can be exploited by distributed algorithms.

This construction was initially presented in Rendell et al. (2018). Essentially the same
framework has been independently and contemporaneously proposed in a serial context
by Vono et al. (2019a). Rather than distributing the computation, the authors focus on the
setting where b = 1 to obtain a relaxation of the original simulation problem, constructing
a Gibbs sampler via a ‘variable splitting’ approach (the case in which b > 1 is described in
an appendix). An implementation of this approach for problems in binary logistic regres-
sion is proposed in Vono et al. (2018), with a number of non-asymptotic and convergence
results presented more recently in Vono et al. (2019b). Our contemporaneous work focuses
on applications of this framework in distributed settings. In Chapter 8, we also provide a
sequential Monte Carlo implementation of the framework for use in this context.

This approach to constructing an arti�cial joint target density is easily extended to ac-
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commodate random e�ects models, in which the original statistical model itself contains
local variables associated with each data subset. These variables may be retained in the
resulting instrumental model, alongside the local proxies X1∶b for Z . We detail this fully
in Section 7.5.

7.1.1. Motivating concepts

The framework we describe is motivated by concepts in distributed optimisation, a connec-
tion that is also explored in the contemporaneous work of Vono et al. (2019a). The global

consensus optimisation problem is that of minimising a sum of functions on a common
domain, under the constraint that their arguments are all equal to some global common
value (see Boyd et al., 2011, Section 7 for a review). That is, for a collection of functions
g1∶b , ℎ ∶ E → ℝ one looks to minimise the expression

b
∑
j=1
gj(xj) + ℎ(z)

under the constraint that z = xj for j ∈ {1,… , b}. This problem is of practical interest when
each of the functions gj may only be evaluated on its own processor, with ℎ computable
on some central node.

Consider the problem of maximising � (z) as de�ned in (6.7), for example to compute
a MAP (maximum a posteriori) estimator. If for each j ∈ {1,… , b} one uses the Gaussian
kernel density K (�)

j (z, x) = N (x ; z, �), then taking the negative logarithm of (7.1) gives

− log �̃�(z, x1∶b) = C − log �(z) −
b
∑
j=1

log fj(xj) +
1
2�

b
∑
j=1
(z − xj)2 (7.4)

where C is a normalising constant. Maximising � is equivalent to minimising this function
under the constraint that z = xj for j ∈ {1,… , b}. We may view this as a global consensus
optimisation problem, with an L2 penalty term introduced by the Gaussian kernels K (�)

j .
This facilitates the application of the alternating direction method of multipliers (Bertsekas
and Tsitsiklis, 1989), a numerical method for solving such problems in distributed settings.
Speci�cally, (7.4) corresponds to using 1/� as the penalty parameter in this procedure.

Beyond this link with distributed optimisation, there are some similarities between our
framework and approximate Bayesian computation (ABC), as previously introduced in
Section 2.3.1 (see Marin et al., 2012, for a review of such methods). In both cases one
introduces a kernel that can be viewed as acting to smooth the likelihood. In the case of
(7.1) the role of � is to control the scale of smoothing that occurs in the parameter space;
in contrast, the tolerance parameter used in ABC controls the extent of a comparable form
of smoothing in the observation (or summary statistic) space.

When using the Gaussian kernel density K (�)
j (z, x) = N (x ; z, �), the smoothing (7.2) of

127



7. global consensus monte carlo

the partial likelihood terms corresponds to the application of a Weierstrass transform (see
Zayed, 1996, Chapter 18 for a de�nition and summary of its properties). This connection,
and the generalisation to other kernel density functions, is also exploited by an embarrass-
ingly parallel algorithm proposed by Wang and Dunson (2013). We discuss their approach
and compare with our proposed algorithm in Section 7.2.3.

7.2. Distributed Metropolis-within-Gibbs

The instrumental model described forms the basis of our proposed global consensus frame-
work; global consensus Monte Carlo is correspondingly the application of Monte Carlo
methods to form an approximation �N� of the smoothed distribution ��, which has den-
sity (7.3). If � is chosen to be su�ciently small, then �� provides an approximation of
the distribution of interest � . An approximation of � ('), for some E-measurable function
' ∶ E → ℝ, is therefore given by �N� (').

We here describe the construction of a Metropolis-within-Gibbs Markov kernel that
leaves invariant �̃�, the joint distribution with density (7.1). Given a chain with values
denoted (Z i , X i

1∶b) for i ∈ {1,… , N}, an approximation of the Z -marginal �� may be formed
according to (6.1) as

�N� ≔
1
N

N
∑
i=1
�Z i ,

An approximation of the integral � (') is therefore given by

�N� (') =
1
N

N
∑
i=1
'(Z i). (7.5)

The Metropolis-within-Gibbs kernel we consider utilises the full conditional densities

�̃�(xj ∣z) ∝ K (�)
j (z, xj)fj(xj) (7.6)

for j ∈ {1,… , b}, and

�̃�(z ∣x1∶b) ∝ �(z)
b
∏
j=1
K (�)
j (z, xj), (7.7)

where (7.6) follows from the mutual conditional independence ofX1∶b givenZ . Here we ob-
serve thatK (�)

j (z, xj) simultaneously provides a pseudo-prior forXj and a pseudo-likelihood
for Z .

We de�ne M (�)
1 to be a �̃�-invariant Markov kernel that �xes z. Speci�cally, we consider

a kernel of the form

M (�)
1 ((z, x1∶b); d(z′, x ′1∶b)) = �z(dz

′)
b
∏
j=1
P (�)j,z (xj , dx

′
j ), (7.8)

where for each j, P (�)j,z (xj , ⋅) is a Markov kernel leaving (7.6) invariant. We similarly de�ne
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M (�)
2 to be a �̃�-invariant Markov kernel that �xes x1∶b ,

M (�)
2 ((z, x1∶b); d(z′, x ′1∶b)) = [

b
∏
j=1
�xj (dx

′
j )] P

(�)
x1∶b (z, dz

′), (7.9)

where P (�)x1∶b (z, ⋅) is a Markov kernel leaving (7.7) invariant.
Using these Markov kernels we construct an MCMC kernel that leaves �̃� invariant; we

present the resulting sampling procedure as Algorithm 7.1.

Algorithm 7.1 Global consensus Monte Carlo: MCMC algorithm

1. Fix � > 0, and set initial state (Z 0, X 0
1∶b).

2. For i = 1,… , N ,
• For j ∈ {1,… , b}, independently sample X i

j ∼ P
(�)
j,Z i−1(X

i−1
j , ⋅).

• Sample Z i ∼ P (�)X i
1∶b
(Z i−1, ⋅).

The interest from a distributed perspective is that the full conditional density (7.6) of
each Xj , for given values xj and z, depends only on the jth block of data (through the
partial likelihood fj ) and may be computed on the jth machine. Within Algorithm 7.1, the
sampling of each X i

j from P (�)j,Z i−1(X
i−1
j , ⋅) may therefore occur on the jth machine; these X i

1∶b

may then be communicated to a central machine that draws Z i .
In the special case in which one may sample exactly from the conditional distributions

(7.6)–(7.7), Algorithm 7.1 takes the form of a Gibbs sampler. This setting is particularly
amenable to analysis, and we provide such a study in Section 7.4. The same Gibbs sam-
pler construction has recently been proposed independently by Vono et al. (2019a); rather
than considering distributed computation, their main objective was to improve algorith-
mic performance by constructing full conditional distributions that are more tractable than
the full posterior density.

Typically however it is not possible to sample exactly from the full conditional distribu-
tions (7.6) of each Xj ; in this case one may choose each P (�)j,z to be an MCMC kernel, so that
Algorithm 7.1 takes a Metropolis-within-Gibbs form. Our approach has particular bene�ts
in this setting, discussed in the following section.

7.2.1. Repeated MCMC kernel iterations

When sampling exactly from the full conditional densities (7.6) is not possible, one may
choose the Markov kernels P (�)j,z to comprise multiple iterations of an MCMC kernel leav-
ing (7.6) invariant. As described above, the full conditional density of Xj may be computed
on the jth machine without requiring communication between machines; it follows that
multiple MCMC accept/reject steps may be conducted on each of the b nodes, without
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inter-node communication. This stands in contrast to MCMC approaches directly target-
ing � , in which such communication is required for each evaluation of (6.7), and therefore
for every accept/reject step.

Similar to such ‘direct’ MCMC approaches, each iteration of Algorithm 7.1 requires com-
munication to and from each of the b machines on which the data are stored: the current
value of Z must be communicated from some central machine to each of these b machines,
and the updated values of X1∶b must be communicated back to the central machine in or-
der to update Z . However as described above, each such iteration may contain multiple
evaluations of each partial likelihood fj . In cases where the communication latency is high,
the resulting sampler will spend a greater proportion of time on likelihood computations
compared to a ‘direct’ approach, with less time lost due to latency. The result is that more
time is spent exploring the state space, which may in turn result in faster mixing (e.g. with
respect to wall-clock time).

To analyse this more concretely, we consider an abstracted distributed setting:

• Let � represent the approximate wall-clock time required to compute each fj(z) for
a given z ∈ E, which we here assume is independent of j for simplicity.

• Let the communication latency be C ; for the purposes of this analysis we shall con-
sider the additional time taken due to bandwidth restrictions to be negligible.

• Assume also that the time taken to compute the prior �, and the global consensus
transition densities K (�)

j , is negligible.

In an MCMC approach directly targeting the full posterior, each accept/reject step re-
quires communication to and from each node in order to compute the posterior density
� (z) at the proposed z ∈ E. Assuming that the likelihood contributions of each block
may be computed synchronously, the time taken by each iteration of such an algorithm is
therefore approximately � + 2C .

Within our proposed global consensus approach computations of the full conditional
densities of each Xj , and of Z , may each occur on a single node. Suppose that the Markov
kernels P (�)j,z comprise k iterations of an MCMC kernel leaving ��(xj ∣z) invariant. Then, un-
der the same assumptions of synchronous computation, a single iteration of Algorithm 7.1
(generating one new value of the Z -chain) requires a time of approximately k� + 2C .

The consequence is that, while our proposed approach would generally generate fewer
samples per unit of wall-clock time, the proportion of time spent on likelihood computa-
tion (rather than communication) may be made far greater: k�/(k� + 2C) for global con-
sensus Monte Carlo, versus �/(� + 2C) for the ‘direct’ MCMC approach. This may be
especially important when the latency C is large compared to the likelihood computation
time � ; by choosing the number of MCMC kernel applications k to be su�ciently large,
the resulting sampler will spend a greater proportion of time exploring the state space, and
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may therefore exhibit faster mixing (with respect to wall-clock time). This approach may
be particularly useful for high-dimensional settings, in which constructing a well-mixing
MCMC kernel can be di�cult.

The ‘local’ application of MCMC kernels in our framework may also allow a wider range
of such kernels to be computationally feasible than in a direct approach. For example, in the
case where the state space E is multi-dimensional, one may wish to use ‘componentwise’
proposals, in which new values are proposed for each individual component (or collection
thereof), with all others held �xed. Updating each component in turn may be infeasible in
a direct MCMC approach, due to the communication latency involved in computing the
acceptance probability for each proposed value.

Similarly, our proposed framework may also be bene�cial when using adaptive MCMC
algorithms in distributed settings (see Andrieu and Thoms, 2008, for a review). In an
MCMC approach directly targeting the full posterior � , adaptation of the proposal distri-
bution may be slow (in the sense of wall-clock time) due the communication required in
each accept/reject step. Within the global consensus framework, for which the acceptance
probabilities required by the MCMC kernels P (�)j,z may be computed locally, several ac-
cept/reject steps may take place for each new value of the Z -chain. Relative to the number
of Z -samples generated, the adaptation of the proposals used by these local MCMC ker-
nels may be faster than the adaptation of the proposal used by a kernel directly targeting
� . This may contribute to better mixing of the resulting Z -chain.

Finally, when each P (�)j,z comprises enough MCMC iterations to exhibit good mixing, the
resulting Metropolis-within-Gibbs algorithm may behave similarly to the corresponding
Gibbs sampler. Our analysis of the Gibbs setting in Section 7.4 may therefore be informa-
tive about this more general setting.

7.2.2. Pseudo-marginal MCMC kernels

Compared to an MCMC algorithm directly targeting the full posterior, a particular setting
in which our proposed approach may exhibit bene�ts is that in which pseudo-marginal
MCMC kernels are used, as previously introduced in Section 6.2.1. The e�ciency of pseudo-
marginal algorithms can depend heavily on the noise of the unbiased estimates of the
target density, used in computing the acceptance ratio (see e.g. Andrieu and Vihola, 2015).

Returning to the notation introduced in Section 6.2.1, suppose that the collection of
latent variables used to form these estimates is � = �1∶N ′ . For example, in Beaumont
(2003) these correspond to N ′ IID samples drawn from some importance distribution; in
the ‘particle marginal Metropolis–Hastings’ sampler of Andrieu et al. (2010), these are the
N ′ particles in an SMC algorithm used to estimate the marginal likelihood. A larger value
of N ′ results in unbiased estimates of the target density that are lower in variance, but
more expensive to evaluate.

In practice, one chooses N ′ to balance the computational cost of computing these es-
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timators with the mixing properties of the resulting algorithm. The problem of choosing
N ′ has been considered by several authors (Pitt et al., 2012; Doucet et al., 2015; Sherlock
et al., 2015), who consider tuning the variances of estimates of the target log-density. Again
using the notation of Section 6.2.1, these variances may be expressed as

var�z [log �̃ (z, ⋅)]

for values of z ∈ E. Under various assumptions, the authors �nd that the optimal variance
is generally between 1 and 4.

In our distributed setting, suppose that each partial likelihood fj cannot easily be evalu-
ated exactly, but that for any z ∈ E one may compute an unbiased estimate of each likeli-
hood contribution fj(z), independently for each j. For a pseudo-marginal MCMC sampler
directly targeting the full posterior (6.7), each iteration requires unbiased estimation of
all b likelihood contributions. The variance of each estimate of the target log-density is
therefore equal to the sum of the variances of these log-likelihood estimates.

In contrast, within our algorithm the full conditional densities (7.6) each depend on only
one fj . Suppose the Markov kernels P (�)j,z targeting these densities are chosen as pseudo-
marginal kernels. In order for the estimates of the target log-densities to have comparable
variances to those in the ‘direct’ MCMC algorithm (e.g. close to the aforementioned pro-
posed optimal values), one may use estimators of fj(z) of greater variance than would be
used in the direct algorithm, as there is no other source of variance.

The consequence is that the construction of well-mixing pseudo-marginal kernels may
here be achieved by generating cheaper estimates of each likelihood contribution than
would be required in an MCMC approach directly targeting the full posterior. That is
to say, pseudo-marginal MCMC kernels used within our approach may use much lower
values of N ′ than kernels of the same construction used to target � directly.

Correspondingly, the use of Algorithm 7.1 to target �� may allow more samples to be
drawn per unit wall-clock time than an algorithm directly targeting � , and using pseudo-
marginal kernels of comparable mixing quality. Embarrassingly parallel algorithms also
use MCMC samplers targeting densities that only depend on a single partial likelihood fj ,
and bene�t from this property similarly.

We further describe this phenomenon in Section 9.4, where we consider a numerical
example employing pseudo-marginal kernels.

7.2.3. Comparisons with embarrassingly parallel approaches

Our proposed algorithm has similar, but not identical, objectives to the embarrassingly
parallel algorithms introduced in Section 6.3.1. Instead of aiming to minimise entirely
communication between nodes, our algorithm avoids the aggregation step common to
such approaches, and the di�culties that may be associated with its construction. For
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example, our approach avoids the need to make distributional assumptions of � , such as
the Gaussian assumption that is implicit in the averaging step of consensus Monte Carlo
(Scott et al., 2016). Our framework also does not depend on techniques that may fail in
high-dimensional settings (e.g. kernel density estimation), as used in some of the other
proposed aggregation techniques described in Section 6.3.1.

A potential issue common to embarrassingly parallel approaches is the treatment of the
prior density �. Each subposterior density (6.8) is typically assigned an equal share of the
prior information in the form of a fractionated prior density �(z)1/b , but it is not clear when
this approach is satisfactory. For example, suppose � belongs to an exponential family; any
property that is not invariant to multiplying the canonical parameters by a constant will
not be preserved in the fractionated prior. For several common distributions (including
gamma and Wishart), this is true of the �rst moment. As such if �(z)1/b is proportional to
a valid probability density function of z, then the corresponding distribution may be qual-
itatively very di�erent to the full prior. Although Scott et al. (2016) note that fractionated
priors perform poorly on some examples (for which tailored solutions are provided), no
other general way of assigning prior information to each block naturally presents itself.
In contrast our approach avoids this problem entirely, with � providing prior information
for Z at the ‘global’ level.

The embarrassingly parallel approaches proposed by Wang and Dunson (2013) bear
some relation to our proposed framework, being based on the application of Weierstrass
transforms to each subposterior density (6.8). This results in a collection of smoothed den-
sities, analogous to the manner in which (7.2) represents a smoothed form of the partial
likelihood fj . As well as proposing a method for aggregating subposterior chains based
on rejection sampling, the authors propose a technique for ‘re�ning’ an initial posterior
approximation. Speci�cally, given an initial collection of N values approximating samples
from the full posterior density, a re�nement step is applied to each value, which may be
expressed as the application of a Gibbs kernel on an extended state space.

Comparing with the global consensus framework, this is analogous to �rst re-expressing
the prior density �(z) in (7.1) as a product of b fractionated prior densities �(z)1/b , and ab-
sorbing these into the b partial likelihood terms fj(z). One then applies Algorithm 7.1 for
one iteration with N di�erent initial values. Wang and Dunson (2013) indicate that it may
be bene�cial to repeat this process, each time possibly using a di�erent ‘re�nement param-
eter’ (corresponding to � in our framework); this bears some similarities to our proposed
SMC algorithm, which we introduce in Chapter 8.
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7.3. Implementation considerations

7.3.1. Choosing the regularisation parameter

Within Algorithm 7.1, the regularisation parameter � takes the role of a tuning parameter.
We can view its e�ect on the mean squared error of approximations (7.5) of � (') using the
bias–variance decomposition

E[(�
N
� (') − � ('))

2
] = [��(') − � (')]2 + var[�N� (')] ; (7.10)

when E[�N� (')] = ��(') this holds exactly, and corresponds to (6.5). In many practical
cases (7.10) will provide a very accurate approximation for large N , as the squared bias of
�N� (') is typically asymptotically negligible in comparison to its variance.

The decomposition (7.10) separates the contributions to the error from the bias intro-
duced by the instrumental model and the variance associated with the MCMC approxi-
mation. If � is too large, the squared bias term in (7.10) can dominate while if � is too
small, the Markov chain may exhibit poor mixing due to strong conditional dependencies
between X1∶b and Z , and so the variance term in (7.10) can dominate.

It follows that � should ideally be chosen in order to balance these two considerations;
the e�ect of � is investigated theoretically in the analysis in Section 7.4, and empirically in
the examples of Chapter 9. An alternative that we explore in Chapter 8 is to use Markov
kernels formed via Algorithm 7.1 within an SMC sampler. In this manner a decreasing
sequence of � values may be considered, which may result in lower-variance estimates for
small � values; we also describe a possible bias correction technique.

7.3.2. Choosing the Markov transition densities

As discussed in Section 7.1, in order to obtain the desired convergence properties of �� we
require that Assumption 7.1 is satis�ed, which follows from an appropriate choice of the
Markov transition densities K (�)

j . For a state space E = ℝ, a simple choice would be to take

K (�)
j (z, x) = N (x ; z, cj�) (7.11)

for j ∈ {1,… , b}, where c1,… , cb are positive values; we discuss subsequently how these
might be chosen. Similarly, if E = ℝd , one might choose K (�)

j (z, x) = N (x ; z, cj�I ), and if E
is some subset of ℝd , one might choose each K (�)

j to correspond to a Gaussian density on
some transformed space. We describe some such choices in the examples of Sections 9.2
and 9.4, where E = ℝ+ and E = [0, 1]d respectively.

Depending on � and f1∶b , appropriate choices of K (�)
j may enable direct sampling from

some of the conditional distributions (7.6)–(7.7) of Z and X1∶b . For example, K (�)
j (⋅, xj) is a

pseudo-likelihood for Z ∼ �, and so if � is conjugate toK (�)
j (⋅, xj) for each j ∈ {1,… , b}, then
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the conditional distribution of Z given X1∶b will be from the same family as �. Similarly,
one might choose for each K (�)

j (z, ⋅) a conjugate prior for the partial likelihood terms fj ,
so that the conditional distribution of each Xj given yj and Z is from the same family as
K (�)
j (z, ⋅).

It may also be appropriate to choose the Markov transition densities to have relative
scales comparable to those of the corresponding partial likelihood terms. To motivate this
consider a univariate setting in which the partial likelihood terms are Gaussian, so that we
may write fj(z) = N (�j ; z, �2

j ) for each j ∈ {1,… , b}. Suppose one uses the Gaussian tran-
sition densities (7.11), where c1,… , cb are positive values controlling the relative strengths
of association between Z and the local variables X1∶b .

As seen in (7.3), in the approximating density �� the partial likelihood terms fj are re-
placed by smoothed terms (7.2), in this case given by

f (�)j (z) ∝ N (�j ; z, �2
j + cj�). (7.12)

The resulting smoothed posterior density is presented as (7.14) in Section 7.4, where this
setting is further explored. In this case, the role of � may be seen as ‘diluting’ or down-
weighting the contribution of each partial likelihood to the posterior distribution ��. A
natural choice is to take cj ∝ �2

j , so that the dilution of each fj is in proportion to the
strength of its contribution to � . In this case (7.12) becomes

f (�)j (z) ∝ N (�j ; z, (1 + c�)�2
j )

for some constant c. The relative strengths of contribution of the f1∶b are thereby preserved
in the posterior density ��.

A particular case of interest in that in which the blocks of data yj di�er in size. If each
datum y� has a likelihood contribution of the form N (y� ; z, �2), then the jth partial like-
lihood may be expressed as fj(z) ∝ N (ȳj ; z, �2/nj), where nj is the number of data in the
jth block and ȳj is their mean. Taking cj ∝ 1/nj , the smoothed partial likelihood (7.12)
becomes

f (�)j (z) ∝ N (ȳj ; z, (�2 + c�)/nj) (7.13)

for some c, so that the information from each observation is diluted in a consistent way.
We present a numerical demonstration of the use of these scaled Markov transition den-
sities in Section 9.1.1, for a Gaussian model corresponding to the setting described here.
Motivated by Bayesian asymptotic arguments, we suggest that this scaling of the regu-
larisation parameter in inverse proportion to the relative block sizes may be bene�cial in
more general settings.

The e�ect of such choices on the Metropolis-within-Gibbs algorithm is most readily
seen by considering the improper uniform prior �(z) ∝ 1 (a Gaussian prior is considered
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in Section 7.4). Taking K (�)
j (z, x) = N (x ; z, cj�), the conditional density of Z given X1∶b is

�̃�(z ∣x1∶b) = N
(
z;

∑b
j=1 xj/cj

∑b
j=1 1/cj

,
�

∑b
j=1 1/cj)

.

Therefore, when updatingZ given the local variables’ current values x1∶b , the choice of c1∶b
dictates the relative in�uence of each such value. For example, we might expect the local
variables corresponding to larger blocks to be more informative about the distribution of
Z , which further justi�es choosing c1∶b to be inversely proportional to the block sizes.

In a multidimensional setting, one could control the covariance structure of each Xj
given Z by using transition densities of the form N (x ; z, �	j), where 	1∶b are positive
de�nite matrices. By a similar Gaussian analysis, one could preserve the relative strengths
of contribution of the partial likelihood terms by choosing for each 	j an approximation
of the covariance matrix of fj .

7.4. Theoretical analysis for a simple model

To study the theoretical properties of our algorithm, we here consider a simple model
where the goal is to infer the mean of a normal distribution. While our approach does not
require the distribution � to be approximately Gaussian, the behaviour of our algorithm
in this simple setting is particularly amenable to analysis. The results here may also be
indicative of performance for regular models with abundant data due to the Bernstein–von
Mises theorem (see e.g. van der Vaart, 2000, Section 10.2).

Let �(z) = N (z; �0, �2
0 ), and for each j ∈ {1,… , b} let fj(z) = N (�j ; z, �2

j ) and K (�)
j (z, x) =

N (x ; z, cj�), following Section 7.3.2. We obtain

��(z) = N (z; �
2
� [

�0
�2
0
+

b
∑
j=1

�j
�2
j + cj�]

, �2�) , �2� = (
1
�2
0
+

b
∑
j=1

1
�2
j + cj�)

−1

, (7.14)

and � (z) can be recovered by taking � = 0 in (7.14). The corresponding full conditional
densities for (7.14) are

�̃�(xj ∣z) = N (xj ;
�2
j z + cj��j
�2
j + cj�

,
cj��2

j

�2
j + cj�)

for j ∈ {1,… , b}, and

�̃�(z ∣x1∶b) = N (z; �̃
2
� [

�0
�2
0
+

b
∑
j=1

xj
cj�]

, �̃2�) , �̃2� = (
1
�2
0
+

b
∑
j=1

1
cj�)

−1

.

We consider the form of Algorithm 7.1 in whichM (�)
1 andM (�)

2 as de�ned in (7.8)–(7.9) are
Gibbs kernels. That is, we consider the case in which we may draw samples exactly from
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the full conditional distributions (7.6)–(7.7). We choose this setting to facilitate analysis
of the resulting Markov chain, but these results may be informative about more general
Metropolis-within-Gibbs settings in which well-mixing Markov kernels are used (e.g. those
comprising multiple MCMC kernel iterations, as described in Section 7.2.1).

Since X1∶b are conditionally independent given Z and can therefore be updated simul-
taneously given Z , Algorithm 7.1 may be viewed analytically as a Gibbs sampler on two
variables: Z and X1∶b . For a two-variable Gibbs Markov chain, each of the two ‘marginal’
chains (the sequences of states for each of the two variables) is also a Markov chain. In
this setting we may therefore consider the Z -chain with transition kernel given by

M (�)
12 (z, A) = ∫

A
�̃�(z′ ∣x1∶b) dz′∫

Eb [
b
∏
j=1
�̃�(xj ∣z)] dx1∶b (7.15)

for A ∈ E . Observing that �̃�(z′ ∣ x1∶b) depends on x1∶b only through the sum ∑b
j=1 xj/cj ,

one can thereby show that the Z -chain de�ned by (7.15) is an AR(1) process. Speci�cally,

Z i = C + �Z i−1 + �i , i > 0,

where
� ≔ �̃2�

b
∑
j=1

�2
j

cj�(�2
j + cj�)

, C ≔ �̃2� (
�0
�2
0
+

b
∑
j=1

�j
�2
j + cj�)

,

and the �i are IID zero-mean normal random variables, with variance

�̃2� (1 + �̃2�
b
∑
j=1

�2
j

cj�(�2
j + cj�))

.

It follows that the autocorrelation of lag k is given by �k for k ≥ 0, and that � → 1 as
� → 0.

7.4.1. Inferring the mean of a normal distribution

We now consider making the number of data n explicit in this setting. In particular, for
some z∗ ∈ ℝ consider realisations y1∶n of IID N (z∗, �2) random variables, grouped into b
blocks. For simplicity, assume that b divides n, that each block contains n/b observations,
and that the observations are allocated to the blocks sequentially, so that the jth block
comprises those y� for which � ∈ Bj ≔ {(j − 1)n/b + 1,… , jn/b}. Then

fj(z) = ∏
� ∈Bj

N (y� ; z, �2) ∝ N
(
b
n

∑
� ∈Bj

y� ; z,
b
n
�2

)
. (7.16)
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Since the blocks are of equal size in this case, so that each partial likelihood is of the same
scale, we consider using K (�)

j (z, x) = N (x ; z, �) for each j. From (7.14), we obtain

��(z) = N (z; �
2
� [

�0
�2
0
+

nȳ
�2 + n�/b ] , �

2
�) , �2� = (

1
�2
0
+

n
�2 + n�/b)

−1

. (7.17)

Letting Id here denote the identity function on ℝ, we consider an estimator �N� (Id) of the
posterior �rst moment � (Id), of the form (7.5). We analyse its mean squared error using
the bias–variance decomposition (7.10). The bias is

��(Id) − � (Id) =
n2 (�/b) �2

0 (�0 − ȳ)

(�2 + n�2
0 ) (�2 + n�2

0 + n�/b)
. (7.18)

To assess the variance of �N� (Id), we consider the associated asymptotic variance,

lim
N→∞

N var(�N� (')) = var('(Z0)) [1 + 2
∞
∑
k=1

corr('(Z0), '(Zk))] , Z0 ∼ ��, (7.19)

for ' square-integrable with respect to ��. As discussed earlier the Z -chain is an AR(1)
process, and the autocorrelations are entirely determined by the autoregressive parameter

� =
n�2�2

0

(�2 + n�/b) (n�2
0 + n�/b)

,

from which one can �nd that the asymptotic variance for ' = Id is

�2
0 (�2 + n�/b) [(n�/b)2 + (�2 + n�2

0 ) (n�/b) + 2n�2�2
0 ]

(n�/b) (�2 + n�2
0 + n�/b)2

. (7.20)

Following the de�nition (7.19) of this asymptotic variance, dividing this expression by N
gives an approximation of the variance term in (7.10) for large N .

As a caveat to this and the following analysis, estimation of the mean in Gaussian set-
tings may not accurately re�ect what happens in more complex settings. For example, if
one uses an improper uniform prior then ��(Id) is equal to � (Id) for all �, as seen in (7.18)
with �2

0 → ∞; this will not be true in general.

One may also note that in this Gaussian setting, the variance of �� will always exceed
the variance of the true target � , since the variance expression in (7.17) is an increasing
function of �. The e�ect is that estimation of the posterior variance in Gaussian settings
is likely to result in positive bias, and con�dence intervals for � (Id) may be conservative.
This, of course, simply re�ects the fact that marginally the instrumental model can be
viewed as replacing the original likelihood with a smoothed version as shown in (7.3).
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7.4. theoretical analysis for a simple model

7.4.1.1. Asymptotic optimisation of � for large N

For �xed n, we consider the problem of choosing � as a function of the chain length N ,
so as to minimise the mean squared error of the posterior mean estimator. This involves
considering the contributions of the bias and variance to the mean squared error (7.10), in
light of (7.18) and (7.20). Intuitively, with larger values of N , smaller values of � can be
used to reduce the bias while keeping the variance small. De�ning B(�) to be the bias as
given in (7.18), we see that as � → 0,

B(�)
�

→
n2�2

0 (�0 − ȳ)
b (�2 + n�2

0 )
2 ≕ B⋆.

Similarly, denoting by V (�) the asymptotic variance (7.20), we see that

�V (�) →
2b�4�4

0

(�2 + n�2
0 )

2 ≕ V⋆.

For small �, the MSE of the estimate is given approximately by

E[(�
N
� (Id) − � (Id))

2
] ≈ (�B⋆)2 +

1
N
V⋆
�
, (7.21)

which may be shown to be minimised when

�3 =
V⋆

2B2⋆N
=
b3�4 (�2 + n�2

0 )
2

n4N (�0 − ȳ)2
. (7.22)

We see that, for a �xed number of data n, we should scale � with the number of samples
N as O(N −1/3). Substituting the corresponding value of � into (7.21), we �nd that the
corresponding minimal MSE behaves as O(N −2/3). Speci�cally, this minimal MSE is given
by

3n4/3�8/3�4
0 (�0 − ȳ)

2/3

N 2/3 (�2 + n�2
0 )

8/3 ,

in which the contribution of the variance is twice that of the squared bias.
Note that in this example, all dependence on � and b in the smoothed likelihood (7.17)

is through their ratio �/b. The result is that splitting the data into more blocks has the
same e�ect as reducing �, and so these results may be adapted to consider optimisation of
the ratio �/b. This relationship may not be representative of these variables’ behaviour in
other models; but in cases where Bernstein–von Mises arguments hold, such results may
be useful in settings where the number of blocks b may be chosen by the practitioner.
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 < 0 �2(n) → �2
0 �(n)

a.s.
→

�0
�2
0

�(n)
a.s.
→ �0


 = 0 �2(n) → [
1
�2
0
+
1
c ]

−1

�(n)
a.s.
→

�0
�2
0
+
z∗

c
�(n)

a.s.
→ [

1
�2
0
+
1
c ]

−1

[
�0
�2
0
+
z∗

c ]


 ∈ (0, 1) n
�2(n) → c n−
 �(n)
a.s.
→

z∗

c
�(n)

a.s.
→ z∗


 = 1 n�2(n) → �2+c n−1�(n)
a.s.
→

z∗

�2+c
�(n)

a.s.
→ z∗


 > 1 n�2(n) → �2 n−1�(n)
a.s.
→

z∗

�2 �(n)
a.s.
→ z∗

Table 7.1.: Convergence results as n → ∞ relating to the terms in the approximate poste-
rior distribution (7.23), when �n/bn = cn−
 for some constant c > 0.

7.4.1.2. Posterior consistency and coverage of credible intervals as n→ ∞

We now consider the behaviour of the algorithm as the number of data n tends to in�nity.
Recalling that we assume the true parameter value to be z∗ ∈ ℝ, we may consider the
consistency of the posterior distribution (7.17) by treating the data Y1∶n as random. We
denote their mean by Ȳn, which is normally distributed with mean z∗ and variance �2/n.
We shall also consider allowing � and b to vary with n; making this explicit in the notation,
(7.17) becomes

��n (z) = N (z; �(n), �2(n)) = N (z; �2(n)�(n), �
2
(n)) , (7.23)

where �(n) = �2(n)�(n), and

�(n) =
�0
�2
0
+

nȲn
�2 + n�n/bn , �2(n) = (

1
�2
0
+

n
�2 + n�n/bn)

−1

.

We consider �n/bn = cn−
 , for some constant c > 0. Convergence results for di�erent
values of 
 are displayed in Table 7.1, obtained using the fact that Ȳn

a.s.
→ z∗. We see that the

posterior is consistent (see e.g. Ghosh and Ramamoorthi, 2003, Chapter 1) if 
 > 0. More-
over, if 
 > 1 then 1 − � credible intervals will have asymptotically a coverage probability
of exactly 1 − � due to the convergence n�2(n) → �2.

If 
 ∈ (0, 1) then the rate of approximate posterior contraction is too conservative, while
if 
 = 1 the corresponding credible intervals will be too wide by a constant factor depend-
ing on c. From a practical perspective, one can consider the case in which n/b corresponds
to the maximum number of data that can be processed on an individual computing node. In
such a setting, letting bn ∝ n is reasonable and we require in addition that �n is decreasing
to obtain credible intervals with asymptotically exact coverage.
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Z

Wj

yj

j = 1,… , b

Z �

XjWj

yj

j = 1,… , b

Figure 7.2.: Directed acyclic graphs for the random e�ects model, representing the original
statistical model (left) and the instrumental model (right).

7.5. Random e�ects models

The approach described in Section 7.1 for constructing a joint target density on an extended
state space can easily accommodate statistical models that not only contain a global vari-
able Z , but also contain local variables W1∶b associated with each data subset that are
conditionally independent given the data. Models of this form include random e�ects
models (see e.g. Laird and Ware, 1982) in which we assume that each block of data de-
scribes a di�erent subpopulation, and that the variance of the data in each block has a
subpopulation-speci�c component.

Speci�cally, suppose the true posterior density of (Z,W1∶b) satis�es

� (z, w1∶b) ∝ �(z)
b
∏
j=1
�j(z, wj)fj(z, wj) (7.24)

where Z takes values z ∈ E ⊆ ℝd , Wj takes values wj ∈ Wj , and � and �1∶b are prior
densities. Again, we introduce a collection of b instrumental variables each de�ned on E,
denoted by X1∶b , which may be viewed as local proxies for Z . This allows the construction
of an arti�cial joint density �̃� on E × Eb ×∏b

j=1 Wj given by

�̃�(z, x1∶b , w1∶b) ∝ �(z)
b
∏
j=1
�j(z, wj)K (�)

j (z, xj)fj(xj , wj). (7.25)

The resulting instrumental hierarchical model is presented in Figure 7.2.

As previously, de�ning

f (�)j (z, w) ≔ ∫
E
K (�)
j (z, x)fj(x, w) dx,
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we may marginalise out X1∶b from �̃� to obtain

��(z, w1∶b) ≔ ∫
Eb
�̃�(z, x1∶b , w1∶b) dx1∶b ∝ �(z)

b
∏
j=1
�j(z, wj)f (�)j (z, wj). (7.26)

Under Assumption 7.1 we obtain analogous convergence results to those described in Sec-
tion 7.1, so that �� forms an approximation of � for su�ciently small �.

The construction of a Metropolis-within-Gibbs sampler targeting the joint density (7.25)
is conceptually similar to the approach described in Section 7.2, though we detail this here
for completeness. We consider the full conditional densities of (Xj ,Wj) for j ∈ {1,… , b};
these take the form

�̃�(xj , wj ∣z) ∝ �j(z, wj)K (�)
j (z, xj)fj(xj , wj), (7.27)

where we note the mutual conditional independence of (Xj ,Wj)bj=1 given Z . We also require
the full conditional density of Z , which here is

�̃�(z ∣x1∶b , w1∶b) ∝ �(z)
b
∏
j=1
�j(z, wj)K (�)

j (z, xj). (7.28)

Again, we de�ne M (�)
1 to be a �̃�-invariant Markov kernel that �xes z, taking this to be

of the form

M (�)
1 ((z, x1∶b , w1∶b); d(z′, x ′1∶b , w

′
1∶b)) = �z(dz′)

b
∏
j=1
P (�)j,z ((xj , wj), d(x ′j , w

′
j )) ,

where for each j, P (�)j,z ((xj , wj), ⋅) is a Markov kernel leaving (7.27) invariant. We similarly
de�ne M (�)

2 to be a �̃�-invariant Markov kernel that �xes x1∶b and w1∶b ,

M (�)
2 ((z, x1∶b , w1∶b); d(z′, x ′1∶b , w

′
1∶b)) = [

b
∏
j=1
�xj (dx

′
j )�wj (dw

′
j )] P

(�)
x1∶b ,w1∶b

(z, dz′),

where P (�)x1∶b ,w1∶b (z, ⋅) is a Markov kernel leaving (7.28) invariant.
The resulting Metropolis-within-Gibbs algorithm is presented as Algorithm 7.2. This

may be implemented in essentially the same distributed manner as Algorithm 7.1, since
sampling from each P (�)j,z ((Xj ,Wj), ⋅) may occur on the jth computing node, with imple-
mentation of M (�)

2 taking place on a central node.
An approximation of ��, the marginal distribution of (Z,W1∶b) with density (7.26), is

obtained as
�N� ≔

1
N

N
∑
i=1
�(Z i ,W i

1∶b)
.

If � is su�ciently small that �� forms an approximation of � , then for some function of
interest ' ∶ E ×∏b

j=1 Wj → ℝ, an approximation of � (') is given by �N� (').
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7.6. summary

Algorithm 7.2 Global consensus Monte Carlo: MCMC algorithm with random e�ects

1. Fix � > 0, and set initial state (Z 0, X 0
1∶b ,W

0
1∶b).

2. For i = 1,… , N ,
• For j ∈ {1,… , b}, independently sample (X i

j ,W i
j ) ∼ P

(�)
j,Z i−1((X

i−1
j ,W i−1

j ), ⋅).

• Sample Z i ∼ P (�)X i
1∶b ,W

i
1∶b
(Z i−1, ⋅).

We provide a numerical example of the use of this algorithm, as applied to a stochastic
volatility model, in Section 9.4.

7.6. Summary

We have presented a new framework for sampling in distributed settings. Given that our
proposed approach makes no additional assumptions on the form of the likelihood beyond
its factorised form as in (6.7), we expect that our algorithm will be most e�ective in those
big data settings for which approximate Gaussianity of the likelihood contributions may
not hold. These may include high-dimensional settings, for which some subsets of the data
may be relatively uninformative about the parameter. In such cases the likelihood contri-
butions may be highly non-Gaussian, so that the consensus Monte Carlo of Scott et al.
(2016), presented as Algorithm 6.3, may result in estimates of high bias. Simultaneously,
the high dimensionality may preclude the use of alternative combination techniques in
embarrassingly parallel algorithms (e.g. the use of kernel density estimates, as discussed
in Section 6.3.1).

The examples of Chapter 9 provide numerical demonstrations of Algorithm 7.1 applied
to a number of models, illustrating the implementation considerations described in Sec-
tion 7.3. We also note that our proposed Metropolis-within-Gibbs algorithm constitutes
only one possible approach to inference within the instrumental hierarchical model that
we propose; in the following chapter, we shall describe how these kernels might be used
within an SMC sampler. We shall discuss other possible extensions in the conclusion of
the thesis.
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8. A sequential Monte Carlo approach to
global consensus

8.1. Constructing an SMC sampler

As discussed in Section 7.3.1, as � approaches zero estimators of the form (7.5) resulting
from Algorithm 7.1 exhibit lower bias but higher variance, due to poorer mixing of the
resulting Markov chain. In order to obtain lower-variance estimators for � values close to
0, we present in this chapter an application of sequential Monte Carlo (SMC) methodology
within our framework, allowing the generation of estimates for each in a sequence of
values of �.

Speci�cally we consider the construction of an SMC sampler, using the methodology in-
troduced in Chapter 2. For a decreasing sequence of � values that we shall denote �0,… , �n,
we consider the sequence of distributions �̃�p on E × Eb , as de�ned in (7.1). A collection of
Markov kernelsMp leaving each such distribution invariant may be constructed according
to Algorithm 7.1. The potential functions Gp , computed according to (2.2), take the simple
form

Gp(z, x1∶b) =
�̃�p+1(z, x1∶b)
�̃�p (z, x1∶b)

=
b
∏
j=1

K (�p+1)
j (z, xj)

K (�p)
j (z, xj)

.

Using Algorithm 2.1 in this setting results in an SMC implementation of the global con-
sensus framework, which we present as Algorithm 8.1.

After each iteration of the algorithm, a particle approximation of �̃�p may be formed
according to (1.16) as

�̃N�p ≔
∑N
i=1W i

p�� ip
∑N
i=1W i

p
.

Following Proposition 1.3, under weak conditions �̃N�p (') converges almost surely to �̃�p (')
as N → ∞. One can also de�ne the particle approximations of ��p , the Z -marginals of
these distributions as de�ned in (7.3), as

�N�p ≔
∑N
i=1W i

p�Z ip
∑N
i=1W i

p
, (8.1)

where Z i
p is the �rst component of the particle � ip .
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8. a seqential monte carlo approach to global consensus

Algorithm 8.1 Global consensus Monte Carlo: SMC algorithm

1. At time p = 0:
• For i ∈ {1,… , N} setW i

0 ← 1 and independently sample � i0 = (Z i
0, X i

0,1∶b) ∼ �̃�0 .

2. At time p = 1,… , n,

• For i ∈ {1,… , N} set W̃ i
p ← W i

p−1
b
∏
j=1

K (�p)
j (Z i

p−1, X i
p−1,j)

K (�p−1)
j (Z i

p−1, X i
p−1,j)

.

• If resampling in the pth iteration:
– For i ∈ {1,… , N} independently sample Aip−1 ∼ Categorical(W̃ 1

p ,… , W̃ N
p )

and set W i
p ← 1.

• Else:
– For i ∈ {1,… , N} set Aip−1 ← i and set W i

p ← W̃ i
p .

• For i ∈ {1,… , N} independently sample � ip ∼ Mp(�
Aip−1
p−1 , ⋅), where Mp is a �̃�p -

invariant MCMC kernel constructed in the manner of Algorithm 7.1.

In the distributed setting described in Section 6.3, a careful implementation of the MCMC
kernels used may allow the inter-node communication to be interleaved with the likeli-
hood computations associated with the particles. Speci�cally, recall the form of Algo-
rithm 7.1, in which all the local variables X1∶b are updated on their respective computing
nodes, with these values sent to a central node in order to update the global variable Z .
In Algorithm 8.1, the local components of all N particles may be updated on the worker
nodes, with their updated values all communicated to the central node simultaneously
(i.e. rather than separately for each particle). The e�ect is that the costs associated with
communication latency are reduced.

Although Algorithm 8.1 is speci�ed for simplicity in terms of a �xed sequence �0,… , �n,
a primary motivation for the SMC approach is that the sequence used can be determined
adaptively while running the algorithm, using one of the techniques described in Sec-
tion 3.2.2. Within the examples in Chapter 9 we employ the procedure proposed by Zhou
et al. (2016), based on the conditional e�ective sample size (CESS). Given an initial value
�0 and a choice of the CESS parameter used in this adaptive procedure, the sequence of
decreasing � values is determined in an automated way. In contrast to tempering, in the
context of which this procedure was introduced in Section 3.2.2, there is no natural �nal
value of � at which the SMC algorithm should be terminated. We detail a possible approach
to determining when to stop the algorithm, based on minimising the mean squared error
(7.10), in Section 8.3.

With regard to initialisation, if it is not possible to sample from �̃�0 one could instead
use samples obtained by importance sampling, or one could initialise an SMC sampler with
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some tractable distribution and use tempering or similar techniques to reach �̃�0 . At the
expense of the introduction of an additional approximation, an alternative would be to run
a �̃�0-invariant Markov chain, and obtain an initial collection of particles by thinning the
output (an approach that may be validated using results of Finke et al., 2020). Speci�cally,
one could use Algorithm 7.1 to generate such samples for some large �0, bene�ting from
its good mixing and low autocorrelation when � is su�ciently large. The e�ect of Algo-
rithm 8.1 may then be seen as re�ning or improving the resulting estimators, by bringing
the parameter � closer to zero.

The bene�ts of SMC samplers described in Chapter 2 may make this approach preferable
to the Markov chain scheme of Algorithm 7.1; for example, Algorithm 8.1 may be more
robust to multimodality of � . Another point in favour of this approach is that many of
the particle approximations (8.1) can be used to form a �nal estimate of � ('), which we
explore in the following section.

8.2. Bias correction using local linear regression

Since Algorithm 8.1 generates a particle approximation of �� for many values of �, a natural
idea is to regress the values of �N� (') on �, extrapolating to � = 0 to obtain an estimate of
� ('). A similar idea has been used for bias correction in the context of ABC, albeit not in
an SMC setting, regressing on the discrepancy between the observed data and simulated
pseudo-observations (Beaumont et al., 2002; Blum and François, 2010).

Under very mild assumptions on the transition densities K (�)
j , ��(') is continuous as a

function of �. Considering a �rst-order Taylor expansion of this function, a simple ap-
proach is to model the dependence of ��(') on � as linear, for � su�ciently close to 0. The
Gaussian setting described in Section 7.4.1 illustrates this approach; in that case, de�ne by
 (�) the �rst moment of ��, which has density (7.17). A Taylor expansion about � = 0 gives

 (�) =  (0) −
n(�0 − ȳ)
n + �2/�2

0

∞
∑
k=1(

−
�

b(�2/n + �2
0 ))

k

, (8.2)

in which the linear term in the sum dominates for su�ciently small �. A similar argument
may be applied to the second and higher moments of ��.

Having determined a subset of the values of � used for which a linear approximation is
appropriate, e.g. using the approach later described in Section 8.2.2, one can use linear least
squares to carry out the regression. To account for the SMC estimates �N�p (') having di�er-
ent variances, we propose the use of weighted least squares, with the ‘observations’ �N�p (')
assigned weights approximately inversely proportional to their variances. To compute
these weights in practice, we propose using the SMC variance estimators �rst discussed in
Section 1.5; we detail an approach to this in Section 8.2.1. A bias-corrected estimate of � (')
is then obtained by extrapolating the resulting �t to � = 0, which corresponds to taking
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8. a seqential monte carlo approach to global consensus

the estimated intercept term.
To make this explicit, �rst consider the case in which ' ∶ E → ℝ, so that the esti-

mates �N� (') are univariate. For each value �p denote the corresponding SMC estimate
by �p ≔ �N�p ('), and let vp denote some proxy for the variance of this estimate. Then for
some set of indices S ≔ {p∗,… , n} chosen such that the relationship between �p and �p
is approximately linear for p ∈ S, we �t a linear model via weighted least squares, with
weights proportional to 1/vp .

For the resulting �tted model, the slope parameter is computed as

∑p ∈ S(�p − �̃S)(�p − �̃S)/vp
∑p ∈ S(�p − �̃S)2/vp

,

where �̃S and �̃S denote weighted means given by

�̃S ∶=
∑p ∈ S �p/vp
∑p ∈ S 1/vp

, �̃S ∶=
∑p ∈ S �p/vp
∑p ∈ S 1/vp

.

A bias-corrected estimate for � (') is obtained as the intercept of the �tted model, which
is computed as

�bc
S (') ≔ �̃S − �̃S

∑p ∈ S(�p − �̃S)(�p − �̃S)/vp
∑p ∈ S(�p − �̃S)2/vp

. (8.3)

The formal justi�cation of this estimate assumes that the observations are uncorrelated,
which does not hold here. We demonstrate in Section 9.1.2 how this simple approach can
nevertheless be e�ective. In principle, however, one could use generalised least squares
combined with some approximation of the full covariance matrix of the SMC estimates.

In the more general case where ' ∶ E → ℝd for d > 1, we propose simply evaluating
(8.3) for each component of this quantity separately, which corresponds to �tting an inde-
pendent weighted least squares regression to each component. This facilitates the use of
the variance estimators described in the following section, though in principle one could
use multivariate weighted least squares or other approaches.

8.2.1. Variance estimation for weighted least squares

We propose the weighted form of least squares here since, as the values of � used in the
SMC procedure approach zero, the estimators generated may increase in variance: partly
due to poorer mixing of the MCMC kernels as previously described, but also due to the
gradual degeneracy of the particle set. In order to estimate the variances of the SMC
estimators one may use any of the approaches described in Section 1.5, which use the
genealogy of the particles to compute such an estimator using only the observed realisation
of the particle �lter. Using any such procedure, one may estimate the variance of �N� (')
for each � value considered by Algorithm 8.1, with these values used for each vp in (8.3).
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8.2. bias correction using local linear regression

Within our examples, we use the estimator V N
p proposed by Lee and Whiteley (2018)

and previously introduced in Section 1.5; for �xedN this coincides with an earlier proposal
of Chan and Lai (2013) up to a multiplicative constant. Speci�cally, after the pth step of
the SMC sampler we compute V N

p (' − �Np (')) according to (1.40); when multiplied by N
this provides a consistent estimator of the asymptotic variance of each estimate �N�p ('),
as de�ned in (1.25). While this is not equivalent to computing the true variance of each
estimate, for �xed large N the relative sizes of these estimates should provide a useful
indicator of the relative variances of each estimate �N� (').

In Section 9.1.2 we show empirically that inversely weighting the SMC estimates ac-
cording to these estimated variances can result in more stable bias-corrected estimates as
the particle set degenerates. We also explain in Section 8.3 how these estimated variances
can be used within a rule to determine when to terminate the algorithm.

The asymptotic variance estimator described is consistent in N . However, if in practice
resampling at the pth time step causes the particle set to degenerate to having a single
common ancestor, then the estimator evaluates to zero, and so it is impossible to use this
value as the inverse weight vp in (8.3). Such an outcome may be interpreted as a warning
that too few particles have been used for the resulting SMC estimates to be reliable, and
that a greater number should be used when re-running the procedure. An alternative
would be to use the �xed-lag estimators of Olsson and Douc (2019), which as previously
discussed in Section 1.5 bene�t from improved numerical stability in such scenarios.

8.2.2. Determining a subset of estimates to use for linear regression

If the local linear regression approach for bias correction is used, then the practitioner
must determine a value of � below which the dependence of ��(') on � is approximately
linear. For this purpose, we propose a heuristic based on the coe�cient of determination,
commonly denoted R2; here, this may be thought of as the proportion of the variance of
the observed values of �N� (') that is explained by an assumed linear dependence on �.

To de�ne this explicitly, consider the weighted least squares �t for which (8.3) is the
resulting bias-corrected estimate. Extending the notation used therein, let �̂Sp denote the
predicted value of �p under the model, which is computed as

�̂Sp ≔ �̃S − (�̃S − �p)
∑q ∈ S(�q − �̃S)(�q − �̃S)/vq

∑q ∈ S(�q − �̃S)2/vq
.

Then the coe�cient of determination R2S for this weighted least squares model �t may be
computed as the ratio of the weighted sum of squared errors and the weighted total sum
of squares. That is,

R2S ≔
∑p ∈ S(�̂Sp − �̃S)2/vp
∑p ∈ S(�p − �̃S)2/vp

= 1 −
∑p ∈ S(�p − �̂Sp)2/vp
∑p ∈ S(�p − �̃S)2/vp

. (8.4)
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8. a seqential monte carlo approach to global consensus

Algorithm 8.2 Linear regression inclusion procedure for SMC bias correction

For some test function ' ∶ E → ℝ:

1. Complete Algorithm 8.1, generating and storing estimates �p ≔ �N�p (') using the
particle approximations (8.1), and estimates vp of their variances, for p ∈ {0,… , n}.

2. Initialise the set of indices of estimates to be used in regression as S ← {0,… , n}.

3. Regress �p against �p using weighted least squares, with weights 1/vp , for p ∈ S.
Compute the coe�cient of determination R2S according to (8.4).

4. If |S| ≤ 3, proceed to Step 6. Else, set S′ ← S ⧵{min(S)}, and regress �p against �p
using weighted least squares, with weights 1/vp , for p ∈ S′. Compute R2S′ according
to (8.4).

5. If R2S′ > R2S , set S ← S′, and return to Step 4. Otherwise, proceed to Step 6.

6. Return the bias-corrected estimate �bc
S ('), computed according to (8.3).

The heuristic procedure for determining such a subset of the estimates is presented in
Algorithm 8.2. After completion of Algorithm 8.1, one conducts weighted least squares in
the manner described in Section 8.2, including all values of �p and the corresponding SMC
estimates �N�p ('), and computing the R2 value for the resulting �t. One then re-conducts
the regression, without the observation in the subset corresponding to the largest � value.
If this results in a greater R2 value, this observation should henceforth be excluded from
the least squares regression. One continues to apply this procedure, each time repeating
the regression without the observation corresponding to the highest remaining value of
�, until doing so no longer results in a model with a greater R2 value than the current �t.
The regression �t at this point may then be used to compute the bias-corrected estimate
for � ('), so that in (8.3), S corresponds to the set of indices of the remaining � values.

The motivation for this approach is that if this largest � value is not su�ciently close
to zero for ��(') to be approximately linear in �, then retaining the corresponding SMC
estimate in the regression may result in a large proportion of the variance in the data
being unexplained by a linear dependence. By excluding the corresponding SMC estimate,
one would expect the linear �t applied to the remaining estimates to better describe their
variance, and therefore to have a greater R2 value.

This heuristic approach has a natural online implementation, allowing a bias-corrected
estimate to be computed after each step of the algorithm. We use this online form within
our proposed stopping rule in Section 8.3, in which it forms Step 3 of Algorithm 8.3. Specif-
ically, we maintain a set of the SMC estimates to be used in the regression (and the corre-
sponding values of �), initialising this to be empty. After the pth step of the SMC sampler,
the newly-generated SMC estimate �N�p (') is added to this set (with the corresponding
�p). One conducts weighted least squares on this set of estimates and then, as long as
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the set contains more than 3 estimates, one proceeds in the manner described above, re-
conducting the regression without the observation in the set corresponding to the highest
value of �. If this results in a �t with a higher R2 value, then the omitted SMC estimate
is henceforth excluded from the set used for regression, and this step is repeated. If not,
then one terminates this procedure and proceeds to the next step of the SMC sampler.

8.3. Stopping rule

As � approaches zero we expect the bias resulting from estimating � (') by �N� (') to de-
crease, while the variance of the resulting estimators may increase due to poorer mixing
of the associated Markov kernels. Based on the bias–variance decomposition (7.10) of the
mean squared error, we here propose a procedure for determining when to terminate the
SMC sampler, in order to achieve such a bias–variance trade-o�. Since the mean squared
error is only well-de�ned when ' ∶ E → ℝ, so that the estimates �N� (') are univariate,
we �rst describe the stopping rule in this setting. We subsequently describe a possible
extension to multivariate functions ' ∶ E → ℝ, based on a simple generalisation of the
mean squared error.

At each stage, having computed an updated bias-corrected estimate via the online proce-
dure described in Section 8.2.2, one may subtract this value from each of the SMC estimates
generated so far in order to produce an estimate of the bias in each case. As discussed in
Section 8.2, we also have an estimate of the variance of each SMC estimate, as used in
the weighted linear regression procedure. As such, at each stage we are able to estimate
the mean squared error (MSE) of each SMC estimate so far generated, by squaring each
estimate of the bias and adding the appropriate estimate of the variance.

The formation of these mean squared error estimates is based on, but does not exactly
correspond to, the bias–variance decomposition (7.10). For example, the particle-based
SMC estimates �N� (') are not unbiased as estimators of � ('), although by Proposition 1.3
they are consistent in the number of particles N . Furthermore, the bias-corrected estimate
itself is not unbiased, since it is formed based on approximate local linearity rather than a
true linear dependency of �N� (') on �. Nonetheless, the use of this heuristic approach in
our proposed stopping rule has been found to work well in practice, resulting in estimates
of low mean squared error; we discuss one such example in Section 9.1.2.

Note that, since the bias-corrected estimate of � (') is updated after each step (to take
into account the most recent estimate), the estimated mean squared errors of all previous
estimates may also all be updated after each step. After each SMC estimate is generated we
may therefore determine which SMC estimate, of all those generated so far, has the lowest
estimated mean squared error. We propose that, for some �, the SMC sampler should be
terminated after the same previous estimate is found to have the lowest mean squared
error of all those generated so far, for � consecutive iterations. Following the termination
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8. a seqential monte carlo approach to global consensus

of the algorithm via the stopping rule this SMC estimate, which has been consistently
found to have the lowest estimated MSE, may be returned as the �nal estimate for � (').

Algorithm 8.3 Global consensus Monte Carlo: SMC algorithm with stopping rule

For some test function ' ∶ E → ℝ and stopping rule parameter �:

1. Initialise the time index as p ← 0, and the set of indices of estimates to be used in
regression as S ← ∅.

2. Complete the pth iteration of Algorithm 8.1, generating and storing an estimate �p ≔
�N�p (') using the particle approximation (8.1), and an estimate vp of its variance.

3. Set S ← S ∪ {p}. If |S| > 1:
a) Regress �q against �q using weighted least squares, with weights 1/vq , for q ∈

S. Compute the coe�cient of determination R2S according to (8.4).
b) If |S| ≤ 3, proceed to Step 4. Else, set S′ ← S ⧵{min(S)}, and regress �q against

�q using weighted least squares, with weights 1/vq , for q ∈ S′. Compute R2S′
according to (8.4).

c) If R2S′ > R2S , set S ← S′, and return to Step 3b. Otherwise, proceed to Step 4.

4. Set mp ← �bc
S ('), a bias-corrected estimate computed according to (8.3).

5. Set
ip ← argmin

q ∈ {0,…,p}
[(�q −mp)2 + vq],

which corresponds to taking the index of the SMC estimate with the lowest esti-
mated mean squared error (MSE).

6. If p > �, and (ip−�+1,… , ip) are all equal, terminate the algorithm, returning the
estimate �ip of lowest estimated MSE (and/or mp , the �nal bias-corrected estimate).
Else, set p ← p + 1 and return to Step 2.

This approach is described in Algorithm 8.3. In our simulation studies, we found that
taking � = 15 worked well in balancing robustness with the computational complexity of
the resulting algorithm. We present the results of such experiments for a simple model in
Section 9.1.2.1.

As an alternative, one may choose to return the �nal bias-corrected estimate, for which
this approach also provides a justi�able stopping rule: consistently �nding that the same
previous estimate has the lowest MSE suggests stability in our estimates of the MSEs of
each previous �N� ('), and therefore in the bias-corrected estimate. Furthermore, since we
expect the biases of the estimates �N� (') to decrease as � approaches zero, consistently �nd-
ing that a previous SMC estimate has the lowest MSE suggests that more recent estimates
are of higher variances. Again, this is also indicative of a stabilisation of the bias-corrected
estimate, since new observations are included in the regression-based bias correction pro-
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cedure with weights inversely proportional to these variances.
Finally, we discuss how this might be generalised in settings where ' ∶ E → ℝd for

d > 1, so that the estimates �N� (') are multivariate. As previously discussed in Section 8.2,
a bias-corrected estimate for each component of �� may be computed separately, by con-
ducting independent regressions. Within Algorithm 8.3, this would require maintaining a
separate set of regression indices S for each component.

In a multivariate setting, the mean squared L2 error corresponds to the sum of the
mean squared errors in each of the d components. Within Step 5 of Algorithm 8.3, one
could therefore estimate the MSE of each component of each previously-computed SMC
estimate, and take the sum. One would similarly determine the index of the previously-
computed estimate for which this is lowest, stopping once this has remained unchanged
for � iterations.

8.4. Summary

The SMC sampler presented here may be computationally intensive, and may therefore
be most useful in lower-dimensional settings. However, as discussed it has the bene�t
of allowing communication costs to be combined across particles, and avoids the need to
specify a single value of the regularisation parameter �. We present numerical demonstra-
tions of this SMC approach, and of the associated heuristic procedures we propose, in the
following chapter.
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9. Examples and applications

9.1. Simple Gaussian models

Within this �nal chapter we present results from simulation studies of our proposed algo-
rithms, in order to illustrate some of the properties discussed in the previous chapters, and
to compare their performance to other simulation approaches when applied to realistic
examples. To illustrate the role of � in our framework and to supplement the theoretical
analysis of Section 7.4, we begin with some numerical results based on univariate Gaussian
models.

9.1.1. Gibbs sampler

For our �rst Gaussian example we drew n = 20 000 IID samples from a normal distribution
with mean 12.4 and variance 10, splitting these into b = 4 equal blocks of size 5000. The
partial likelihood terms fj therefore take the form (7.16). For the prior density we use
�(z) = N (z; 10, 100), and for the Markov transition kernels we use K (�)

j (z, x) = N (x ; z, �).
We ran Algorithm 7.1 as a Gibbs sampler, i.e. such that the kernels (7.8)–(7.9) corresponded
to the drawing of IID samples exactly from the full conditional distributions (7.6)–(7.7).
For each of various � values we obtained a chain of length N = 25 000, repeating this for
a total of 25 replicates.

We consider the problem of estimating the posterior mean � (Id), as described in Sec-
tion 7.4.1. Figure 9.1 shows, for each value of � used, the behaviour of the mean squared
error of the estimator �N� (Id) as a function of the number of samples N . We see in Fig-
ure 9.1a that for larger values of �, this becomes approximately constant once the number
of samples N is su�ciently large, since this becomes dominated by the squared bias. For
the smallest values of �, presented in Figure 9.1b, the chains mix poorly due to high auto-
correlation, and so the MSE decreases slowly. Similar behaviour may also be observed in
the later examples of this chapter.

The role of � in achieving a bias–variance trade-o� is evident in these results. We see
that when N = 25 000 samples are used, the choice of � = 10−2 (presented in both Fig-
ure 9.1a and Figure 9.1b) results in the estimator �N� (Id) of lowest MSE, among all those
values of � considered. This is close to the approximately optimal value obtained from
(7.22), which for this model evaluates to approximately 0.0104.

As discussed in Section 7.3.2, in settings where the blocks of data di�er in size, it may
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(a) Values of � between 10−2 and 103.
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(b) Values of � between 10−7 and 10−2.

Figure 9.1.: Mean squared errors of estimates �N� (Id), plotted on a logarithmic scale against
the number of samples N , as obtained by the Gibbs sampler form of the global
consensus MCMC algorithm applied to the Gaussian example model. Results
are shown for various choices of the regularisation parameter �; in each case,
MSE values are computed over 25 replicates of the algorithm.
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be bene�cial to choose the Markov transition densities K (�)
j to have relative scales that are

inversely proportional to these block sizes. To demonstrate this, we repartitioned the data
into b = 4 blocks of size n1 = 1000, n2 = 3000, n3 = 6000 and n4 = 10 000. For the Markov
transition densities we take K (�)

j (z, x) = N (x ; z, cj�) as in (7.11), considering two possible
choices for the values cj :

• cj = c/nj for j ∈ {1,… , b}. In this case, the smoothed partial likelihood terms (7.2)
take the form f (�)j (z) ∝ N (ȳj ; z, (�2 + c�)/nj) following (7.13).

• cj = 1 for j ∈ {1,… , b}. In this case, f (�)j (z) ∝ N (ȳj ; z, (�2 + �nj)/nj).

Recall from Section 7.3.2 that for the �rst of these choices, the e�ect is to ‘dilute’ the
information from each observation in a consistent way, as seen in the resulting form of
f (�)j . In order to make a fair comparison between these two choices, we choose the constant
c so that the average ‘dilution’ of each observation is the same in both cases. Here, this
occurs when c = ∑b

j=1 n2j /n = 7300.
For each of these two choices of the Markov transition densities K (�)

j we again ran the
Gibbs sampler form of Algorithm 7.1 to obtain a chain of length N = 25 000, repeating
this for a total of 25 replicates in each case. We show in Figure 9.2 the MSE of �N� (Id) as a
function of N , in the case � = 10−3. We see that estimates of lower MSE are obtained by
choosing the scales cj to be inversely proportional to the block sizes, as recommended.
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10−2

100

0 5000 10 000 15 000 20 000 25 000

cj = c/nj
cj = 1

Figure 9.2.: Mean squared errors of estimates �N� (Id), plotted on a logarithmic scale against
the number of samples N , as obtained by the Gibbs sampler form of the global
consensus MCMC algorithm applied to the Gaussian example model with
di�ering block sizes. Here, we use Markov transition densities K (�)

j (z, x) =
N (x ; z, cj�), j ∈ {1,… , b}, with � = 10−3 and with two di�erent choices of c1∶b
as explained in the main text. In each case, MSE values are computed over 25
replicates of the algorithm.
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9.1.2. SMC sampler and bias correction procedure

To demonstrate the SMC sampler proposed in Section 8.1, and the bias correction technique
described in Section 8.2, we again study a univariate Gaussian model of the form described
in Section 7.4, with the aim of estimating the posterior �rst moment � (Id).

We consider here a case with b = 32, taking fj(z) = N (�j ; z, 1) for j ∈ {1,… , b}, with
the values �j drawn independently from a normal distribution with mean 4 and variance
1. For the Markov transition kernels we use K (�)

j (z, x) = N (x ; z, �). For the purposes of
illustrating the local linear regression approach to bias correction we consider the (quite
concentrated) prior density �(z) = N (z; 4, 1). In this case, we see that the dependence of
��(Id) on � is highly non-linear on the range � ∈ (0, 1000), as shown in Figure 9.3a.

We constructed an SMC sampler usingN = 2500 particles; we used sequences of � values
beginning with �0 = 1000, with subsequent values determined adaptively according to the
procedure proposed by Zhou et al. (2016), for which we used parameter CESS⋆ = 0.95N .
For the purposes of illustrating the bias correction technique we here consider sequences
of � values of �xed length n = 200; we will describe the use of the proposed stopping rule
subsequently.

To construct Markov kernels invariant with respect to each distribution �̃�, we used
Gibbs kernels constructed in the manner of Algorithm 7.1. That is to say that in each time
step of the SMC sampler (i.e. for each value of �) and for each particle, each of X1∶b was
updated by drawing exactly from its conditional distribution, after which Z was updated
similarly.

Figure 9.3a shows the SMC estimate �N� (Id) obtained for each �, in a single run of this
algorithm. To determine a subset of these estimates to be used for local linear regression,
we used the approach described in Section 8.2.2; the resulting subset is displayed in Fig-
ure 9.3b. In this case, we see that for the smallest values of � considered, the estimates
exhibit increased variance, due to the poorer mixing of the Markov kernels, and the de-
generacy of the particle set.

As described in Section 8.2.1, when conducting local least squared regression we weight
each estimate in inverse proportion to its estimated (asymptotic) variance. For the esti-
mates plotted in Figure 9.3b, these relative weights are presented in Figure 9.4, with � on a
log scale for clarity. The resulting weighted least squares �t is overplotted in Figure 9.3b,
together with the corresponding unweighted (ordinary) least squares �t. We see that for
these results, the weighted least squares �t better re�ects the local linear dependence on �,
being less in�uenced by the high-variance estimates near 0, which correspondingly carry
less weight in the regression.

As discussed in Section 8.1, we may view the SMC sampler as a method to improve or ‘re-
�ne’ the estimator that would be formed using the initial set of particles, i.e. �N�0 (Id), where
�0 = 1000. A straightforward choice of such a re�ned estimator would therefore be the
SMC estimate �N�n (Id) corresponding to �n, the �nal (smallest) � value considered. We ran
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(a) All estimates �N� (Id), and the true value of
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Figure 9.3.: Estimates �N� (Id) plotted against �, as obtained at each step of a single run of
the SMC sampler for the Gaussian example model. The orange square indicates
the true value of � (Id) ≈ 4.113.
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Figure 9.4.: For the estimates �N� (Id) plotted in Figure 9.3b, the estimates’ relative weights
as used in the weighted least squares bias correction technique, plotted against
� on a logarithmic scale.
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Estimate Mean squared error

Initial SMC estimate 1.32 × 10−2
Final SMC estimate 1.13 × 10−3
Bias-corrected estimate, using WLS 3.60 × 10−5
Bias-corrected estimate, using OLS 2.57 × 10−4

Table 9.1.: For the Gaussian example model, the mean squared error of four estimators of
� (Id): the SMC estimate �N�0 (Id) corresponding to the initial (largest) � value; the
estimate �N�n (Id) corresponding to the �nal (smallest) � value; the bias-corrected
estimate (8.3) computed using weighted least squares (WLS); and the analogous
estimate resulting from using unweighted ordinary least squares (OLS). All MSE
values are computed over 25 replicates of an SMC sampler using a sequence of
� values of �xed length n = 200.

the SMC sampler 25 times; the value of �n varied between runs due to the adaptive speci�-
cation of the sequence of distributions, but each time was approximately 2.2×10−5. For each
run of the SMC sampler we also computed a bias-corrected estimate (8.3) of � (Id) using
weighted least squares as described above; that is, the intercept of the local least squares
linear �t. Additionally, for purposes of comparison we also computed a bias-corrected
estimate using ordinary (unweighted) least squares.

The mean squared error of each such estimate is presented in Table 9.1. The weighted
least squares approach was observed to result in a rather lower MSE than the simpler ap-
proach of considering solely the �nal � value. Using unweighted least squares to compute
a bias-corrected estimate resulted in an MSE between these two values.

9.1.2.1. Using the proposed stopping rule

We subsequently considered the e�ects of using the stopping rule proposed in Section 8.3,
retroactively applying the procedure of Algorithm 8.3 to each of the 25 simulations. As
previously described, our proposed stopping rule requires the speci�cation of a parameter
�. After every iteration of the SMC sampler, a bias-corrected estimate of � (') is computed,
which is used to estimate the MSE of each previously-computed SMC estimate �N�p (Id). If
the same previously-computed estimate is found to have the lowest estimated MSE for �
successive iterations, one stops and returns this estimate.

In Figure 9.5 we show, for values of � ranging from 3 to 20, the average index p cor-
responding to the optimal SMC estimate �N�p (Id), as determined using the stopping rule.
We see that this stabilises once � is greater than about 10. We also present in Figure 9.5
the average number of SMC iterations required before termination of the algorithm, for
each value of � considered; note that this is necessarily an increasing function of �. This
supports our previous recommendation to take � = 15, balancing the robustness of the
resulting estimator with the computational cost of the SMC sampler.
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Figure 9.5.: For various values of the stopping rule parameter � (on the horizontal axis),
the average index p corresponding to the SMC estimate �N�p (Id) of lowest esti-
mated MSE, as determined using the stopping rule (�lled black circles); and the
average number of SMC iterations required before termination (red squares).
All averages are computed over 25 replicates of an SMC sampler applied to the
Gaussian example model.
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Figure 9.6.: For various values of the stopping rule parameter � (on the horizontal axis),
the mean squared error of two estimators of � (Id): the SMC estimate �N�p (Id)
of lowest estimated MSE, as determined using the stopping rule (�lled black
circles); and the bias-corrected estimate at the time of termination by the stop-
ping rule (blue triangles). All MSE values are computed over 25 replicates of
an SMC sampler applied to the Gaussian example model.
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Figure 9.7.: Mean squared errors of estimates �N�p (Id) of � (Id) plotted against p, as obtained
at each step of an SMC sampler for the Gaussian example model. The green
vertical line represents the average index p corresponding to the SMC estimate
of lowest estimated MSE, as determined using the stopping rule with � = 15.
All MSE values are computed over 25 replicates, with the sequences of values
�p determined adaptively according to the description in the main text.

In Figure 9.6 we show for each value of � the true MSE corresponding to the estima-
tor chosen by the stopping rule. Again, we see that our previously-suggested choice of
� = 15 provides a good balance, here between a low mean squared error and the total
computational cost.

A natural question is whether this estimator, chosen for having the lowest estimated
MSE, does indeed have the lowest true MSE of all estimators computed by the SMC sam-
pler. For our simulations in which we used sequences of � values of length n = 200, Fig-
ure 9.7 shows for each p ∈ {0,… , n} the true MSE of each estimator �N�p (Id), as computed
over the 25 replicates. Note that since the sequences of values �p were chosen adaptively,
these were not identical for each simulation, though they were very similar in practice.
We see that the minimal true MSE belongs to the estimator �N�p (Id) for which p = 30; for
each run the corresponding � value was approximately 0.5. The estimator returned by the
stopping rule (with � = 15) corresponds on average to p = 28.0, which is seen in Figure 9.7
to be within the region of lowest mean squared error.

As discussed in Section 8.3, an alternative to returning the estimator of lowest estimated
MSE is to return the �nal bias-corrected estimate, i.e. that computed using all iterations
at the time of termination. In Figure 9.6 we show for each value of the stopping rule
parameter � the MSE corresponding to this �nal bias-corrected estimator, which is seen
to behave largely similarly to the stopping-rule-based estimator previously discussed.

Finally, we show in Table 9.2 the mean squared error of the two estimates described here,
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Estimate Mean squared error

SMC estimate of lowest estimated MSE 1.11 × 10−5
Bias-corrected estimate 9.23 × 10−6

Table 9.2.: For the Gaussian example model, the mean squared error of two estimators of
� (Id): the estimate of lowest estimated MSE, as determined using the procedure
described in Algorithm 8.3; and the �nal bias-corrected estimate (8.3) computed
using weighted least squares. Both MSE values are computed over 25 replicates
of an SMC sampler, terminated according to the proposed stopping rule with
parameter � = 15.

when using the stopping rule with � = 15. These MSE values are comparable, and lower
than the values in Table 9.1, for which n = 200 iterations were used. We see therefore that
using the stopping rule to choose the SMC estimate of lowest estimated MSE here results
in a superior estimator to that obtained by simply taking the �nal SMC estimate after a
�xed number of iterations. We also �nd that the bias-corrected estimate here performs
slightly better than the corresponding estimate obtained after using 200 iterations: in that
case, the SMC estimates corresponding to the very smallest values of � are of high variance
and can distort the regression, despite being appropriately weighted.

9.2. Log-normal model

To compare the posterior approximations formed by the global consensus algorithm de-
scribed in Section 7.2 with those formed by some of the embarrassingly parallel approaches
discussed in Section 6.3.1, we conduct a simulation study based on a simple model. Let
LN (x ; �, �2) denote the density of a log-normal distribution with parameters (�, �2); that
is,

LN (x ; �, �2) =
1

x
√
2��2

exp(−
(log(x) − �)2

2�2 ) .

One may consider a model with prior density �(z) = LN (z; �0, �2
0 ) and likelihood contri-

butions fj(z) = LN (log(�j); log(z), �2
j ) for j ∈ {1,… , b}. This may be seen as a reparametri-

sation of the Gaussian model analysed in Section 7.4, in which each likelihood contribu-
tion is that of a data subset with a Gaussian likelihood. This convenient setting allows
for the target distribution � to be expressed analytically. For the implementation of the
global consensus algorithm, we choose Markov transition kernels given by K (�)

j (z, x) =
LN (x ; log(z), �) for each j ∈ {1,… , b}, which satisfy Assumption 7.1; this allows for exact
sampling from all the full conditional distributions.

As a toy example to illustrate the e�ects of non-Gaussian partial likelihoods we consider
a case in which fj(z) = LN (log(�j); log(z), 1) for each j, and �(z) = LN (z; 0, 25). Here we
took b = 32, and selected the location parameters �j as IID samples from a standard normal
distribution. We ran global consensus Monte Carlo (GCMC) using the Gibbs sampler form
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Mean ± MCSE of estimate of � (')
'(z) = z '(z) = z5 '(z) = log(z)

Algorithm [� (') = 1.141] [� (') = 2.644] [� (') = 0.1164]

GCMC � = 101 1.329 ± 0.003 121.154 ± 10.487 0.1151 ± 0.0019
� = 100 1.159 ± 0.002 3.901 ± 0.037 0.1165 ± 0.0014
� = 10−1 1.144 ± 0.003 2.763 ± 0.044 0.1173 ± 0.0030
� = 10−2 1.140 ± 0.011 2.648 ± 0.143 0.1150 ± 0.0090
� = 10−3 1.142 ± 0.022 2.661 ± 0.295 0.1191 ± 0.0199
� = 10−4 1.120 ± 0.077 3.505 ± 1.136 0.1630 ± 0.0651
� = 10−5 1.400 ± 0.110 6.195 ± 2.217 0.3283 ± 0.0810

CMC 1.073 ± 0.010 16.092 ± 5.675 0.0135 ± 0.0095

NDPE 1.148 ± 0.029 2.800 ± 0.385 0.1231 ± 0.0246

WRS 1.111 ± 0.007 2.444 ± 0.086 0.0862 ± 0.0063

Table 9.3.: True values and estimates of � ('), for various test functions ', for the �rst
log-normal toy model. Estimates obtained using global consensus Monte Carlo
(GCMC) with various values of �, and three embarrassingly parallel methods
(CMC, NDPE, WRS; see main text for descriptions). For each method the mean
estimate ± Monte Carlo standard error (MCSE) is presented, as computed over
25 replicates; the estimator corresponding to the lowest mean squared error is
printed in bold.

of Algorithm 7.1, for values of � between 10−5 and 10. For comparison with embarrassingly
parallel methods we also drew samples from each subposterior distribution as de�ned in
(6.8), combining the samples using various approaches. These are:

• the consensus Monte Carlo (CMC) averaging of Scott et al. (2016);

• the nonparametric density product estimation (NDPE) approach of Neiswanger et al.
(2014);

• the Weierstrass rejection sampling (WRS) combination technique of Wang and Dun-
son (2013), using their R implementation (github.com/wwrechard/weierstrass).

In each case we ran the algorithm 25 times, drawing N = 105 samples.
To demonstrate the role of � in the bias–variance decomposition (7.10), Table 9.3 presents

the means and standard deviations of estimates of � ('), for various test functions '. In
estimating the �rst moment of � , GCMC generates a low-bias estimator when � is chosen
to be su�ciently small; however, as expected, the variance of such estimators increases
when very small values of � are chosen. While the other methods produce estimators
of reasonably low variance, these exhibit somewhat higher bias. For CMC the bias is es-
pecially pronounced when estimating higher moments of the posterior distribution, as
exempli�ed by the estimates of the �fth moment. Note however that high biases are also
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Mean ± MCSE of estimate of � (')
'(z) = z '(z) = log(z)

Algorithm [� (') = 1.011 39] [� (') = 0.011 32]

GCMC � = 101 1.180 22 ± 0.002 097 0.011 21 ± 0.001 537
� = 100 1.027 40 ± 0.000 609 0.011 42 ± 0.000 623
� = 10−1 1.013 05 ± 0.000 156 0.011 40 ± 0.000 154
� = 10−2 1.011 55 ± 0.000 067 0.011 33 ± 0.000 066
� = 10−3 1.011 40 ± 0.000 020 0.011 32 ± 0.000 020
� = 10−4 1.011 39 ± 0.000 013 0.011 33 ± 0.000 013
� = 10−5 1.011 39 ± 0.000 023 0.011 32 ± 0.000 023

CMC data not permuted 0.998 28 ± 0.000 081 −0.001 72 ± 0.000 081
data permuted 1.011 41 ± 0.000 007 0.011 35 ± 0.000 007

NDPE data not permuted 1.015 56 ± 0.000 077 0.015 18 ± 0.000 076
data permuted 1.011 55 ± 0.000 077 0.011 23 ± 0.000 077

WRS data not permuted 0.998 67 ± 0.000 420 −0.001 33 ± 0.000 420
data permuted 1.011 35 ± 0.000 039 0.011 29 ± 0.000 039

Table 9.4.: True values and estimates of � ('), for various test functions ', for the sec-
ond log-normal model. For the three embarrassingly parallel approaches (CMC,
NDPE, WRS) we present results obtained both without and with �rst permut-
ing and repartitioning the data into new blocks. For each method the mean
estimate ± Monte Carlo standard error (MCSE) is presented, as computed over
25 replicates; the estimator corresponding to the lowest mean squared error is
printed in bold.

introduced when using GCMC with large values of � (as seen here with � = 10), for which
�� is a poor approximation of � .

Also of note are estimates of ∫ log(z)� (z) dz, corresponding to the mean of the Gaussian
model of which this a reparametrisation. While global consensus Monte Carlo performs
well across a range of � values, the other methods perform less favourably; consensus
Monte Carlo produces an estimate that is incorrect by an order of magnitude. While this
could be solved by a simple reparametrisation of the problem in this case, in more general
settings no such straightforward solution may exist.

As an additional example, we generated a data set comprising b = 32 blocks, each con-
taining 104 data. Within the jth block, the data were generated as IID observations of a
log-normal random variable with parameters (�j , 1); the parameters �j were drawn inde-
pendently from a normal distribution with mean 0 and variance 10−2. We took fj(z) =
LN (ȳj ; log(z), 10−4), with each ȳj being the geometric mean of the observations in the jth
block; we used the same prior �(z) = LN (z; 0, 25) as previously. While this represents a
misspeci�ed model, it is useful in exemplifying the behaviour of global consensus Monte
Carlo in cases where there are di�erences between the blocks of data.
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Table 9.4 shows the estimates of ∫ z� (z) dz and ∫ log(z)� (z) dz, from 25 runs in each
algorithmic setting. Global consensus Monte Carlo produces low-bias estimates for a range
of � values. In contrast, the embarrassingly parallel methods result in somewhat larger
biases; this is particularly the case for the expected value of the logarithm in the cases
of CMC and WRS, which behave similarly on this example. The NDPE method, which is
based on kernel density estimation, works reasonably well for this univariate model.

When the data are �rst randomly permuted and repartitioned into 32 new blocks, the
performances of the embarrassingly parallel methods are improved, though we still �nd
that for appropriately-chosen �, GCMC estimators attain a lower mean squared error. Fur-
thermore, for large distributed data sets permutation of the data in this manner may not be
feasible, for example if security restrictions prevent the transfer of data between machines.
Note that permuting the data has no e�ect on the performance of global consensus Monte
Carlo for this model, since the Z -chain resulting from a Gibbs sampler depends only on the
geometric mean of the entire data set (this may be shown using similar arguments to those
in Section 7.4, in which the Z -chain in a Gaussian setting behaves as an AR(1) process).

9.3. Bayesian logistic regression

Binary logistic regression models are commonly used in settings related to marketing. In
web design for example, A/B testing may be used to determine which content choices lead
to maximised user interaction, such as the user clicking on a product for sale.

We assume that we have a data set of size n formed of responses �� ∈ {−1, 1}, and vectors
�� ∈ {0, 1}d of binary covariates, where � ∈ {1,… , n}. The likelihood contribution of each
block of data then takes the form

fj(z) = ∏
� ∈Bj

S(��zT�� )

for z ∈ ℝd , where Bj is the set of indices � included in the jth block of data, and S ∶ ℝ →
[0, 1] denotes the logistic function, S(x) ≔ (1 + exp(x))−1.

For the prior �, we use a product of independent zero-mean Gaussians, with standard
deviation 20 for the parameter corresponding to the intercept term, and 5 for all other
parameters. For the Markov transition densities in GCMC, we use multivariate spherical
Gaussian densities: K (�)

j (z, x) = N (x ; z, �I ) for each j ∈ {1,… , b}.
We investigated several such simulated data sets and the e�cacy of various approaches

in approximating the true posterior � . To illustrate the bias–variance trade-o� described in
Section 7.3.1, in the presentation of these results we focus on the estimation of the posterior
�rst moment � (Id). While our global consensus approach was consistently successful in
forming estimators with low mean squared error in each component, in low-dimensional
settings the application of consensus Monte Carlo often resulted in marginal improve-
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ments. However, in many higher-dimensional settings, the estimators resulting from CMC
and other embarrassingly parallel approaches exhibited relatively large biases.

We present here an example in which the d predictors correspond to p binary input
variables, their pairwise products, and an intercept term, so that d = 1+p +(p2). In settings
where the interaction e�ects corresponding to these pairwise products are of interest, the
dimensionality d of the space can be very large compared to p.

We used a simulated data set with p = 20 input variables, resulting in a parameter
space of dimension d = 211. The data comprise n = 80 000 observations, split into b = 8
equally-sized blocks. Each observation of the 20 binary variables was generated from a
Bernoulli distribution with parameter 0.1, and for each vector of covariates, the response
was generated from the correct model, for a �xed underlying parameter vector z∗.

9.3.1. Metropolis-within-Gibbs

We applied GCMC for values of � between 10−2 and 1. We used a Metropolis-within-Gibbs
formulation of Algorithm 7.1, sampling directly from the Gaussian conditional distribution
of Z given X1∶b . To sample approximately from the conditional distributions of each Xj
given Z we used Markov kernels P (�)j,z comprising k = 20 iterations of a random walk
Metropolis kernel.

As mentioned in Section 7.2.1, in settings of high communication latency our approach
allows a greater proportion of wall-clock time to be spent on likelihood contributions,
compared to an MCMC chain directly targeting the full posterior � . To compare across
settings, we therefore consider an abstracted distributed setting of the form described in
Section 7.2.1, here assuming that the latency is 10 times the time taken to compute each
partial likelihood fj . To use the notation of Section 7.2.1, we assume that C = 10� .

We also compare with the same embarrassingly parallel approaches as in Section 9.2
(CMC, NDPE, WRS), which are comparatively una�ected by communication latency. For
these methods, we again used random walk Metropolis to draw samples from each sub-
posterior distribution. To ease computation, we thinned these chains before applying the
combination step, taking every kth value; in practice, the estimators obtained using these
thinned chains behaved very similarly to those obtained using all subposterior samples.

To provide a ‘ground truth’ against which to compare the results we ran a random
walk Metropolis chain of length 500 000 targeting � . For all our random walk Metropolis
samplers we used Gaussian proposal kernels. To determine the covariance matrices of
these, we formed a Laplace approximation of the target density following the approach of
Chopin and Ridgway (2017), scaling the resulting covariance matrix optimally according
to results of Roberts and Rosenthal (2001).

For each algorithmic setting, we ran the corresponding sampler 25 times. To compare
the resulting estimators of the posterior mean we computed the mean squared error of
each of the d components of the posterior mean, summing these to obtain a ‘mean sum of
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Algorithm Mean sum of squared errors

GCMC � = 100 0.1835
� = 10−0.5 0.1379
� = 10−1 0.0770
� = 10−1.5 0.0478
� = 10−2 0.0662

CMC 0.3710

NDPE 0.8476

WRS 0.6402

Direct MCMC 0.0884

Table 9.5.: Mean sum of squared errors over all d components of estimates of the posterior
mean for the logistic regression model, formed using various algorithmic ap-
proaches as described in the main text, during an approximate wall-clock time
equal to 200 000 times that required to compute a single partial likelihood fj . All
values computed over 25 replicates, with the lowest value printed in bold.

squared errors’.
Table 9.5 compares the values obtained by each algorithm after an approximate wall-

clock time equal to 200 000 times the time taken to compute a single partial likelihood fj .
Accounting for latency in the abstracted distributed setting described above, the GCMC ap-
proach is able to generate 5000 approximate posterior samples during this time, spending
50% of time on likelihood computations. In contrast, a direct MCMC approach generates
9523 samples, but would only spend 4.8% of the time on likelihood computations, with the
remainder lost due to latency.

The result is that the estimators generated by GCMC for appropriately-chosen � exhibit
lower mean sums of squared errors: we conduct many more accept/reject steps in each
round of inter-node communication than if we were to target � directly, and so it becomes
possible to achieve faster mixing of the Z -chain (and a better estimator) compared to such
a direct approach. This may be seen when comparing the e�ective sample size (ESS) of
each chain, where we estimate this via the ‘batch means’ approach of Vats et al. (2019): we
�nd that the average ESS of the direct MCMC chains is only 1111, while depending on the
choice of �, the shorter GCMC chains have average ESS values between 1327 and 4577.

Despite being una�ected by latency and therefore allowing many more samples to be
drawn, the embarrassingly parallel approaches (CMC, NDPE, WRS) perform poorly com-
pared to GCMC. This is particularly true of the nonparametric density product estima-
tion (NDPE) method of Neiswanger et al. (2014): while asymptotically exact even in non-
Gaussian settings, the resulting estimator is based on kernel density estimators and is not
e�ective in this high-dimensional setting.

Figure 9.8 shows the mean sums of squared errors as a function of the approximate wall-
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Figure 9.8.: Mean sum of squared errors over all d components of estimates of the poste-
rior mean for the logistic regression model, formed using various algorithmic
approaches as described in the main text. Values plotted against the approx-
imate wall-clock time, relative to the time taken to compute a single partial
likelihood term. All values computed over 25 replicates.

clock time (for simplicity we include only the best-performing of the three embarrassingly
parallel methods, omitting the results for NDPE and WRS). We see that for large enough
�, the GCMC estimators �N� (Id) exhibit rather lower values than the corresponding CMC
and ‘direct’ MCMC estimators. As the number of samples used grows, the squared bias of
these estimators begins to dominate, and so smaller � values result in lower mean squared
errors. As � becomes smaller the autocorrelation of the resulting Z -chain increases; indeed
we found that for � too small, the GCMC estimator �N� (Id) will always have a greater
mean squared error than the ‘direct’ MCMC estimator, no matter how much time is used.
Of course, since an MCMC estimator formed by directly targeting � is consistent in N ,
given su�cient time such an estimator will always outperform estimators formed using
GCMC, which are biased for any �. However, in many practical big data settings it may
be infeasible to draw large numbers of samples using the available time budget.

Rather than summing the squared numerical errors across all d components, one might
consider the error in each component of the posterior mean, relative to its true marginal
standard deviation. Given the sparsity of the data in this example this may be more mean-
ingful, since the marginal posterior variances of the parameters corresponding to inter-
action terms are rather larger than those of the other parameters. Figure 9.9 shows, as
a function of the number of the approximate wall-clock time and for each algorithmic
setting, the mean absolute value of this ‘standardised’ error, averaged across all d com-
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Figure 9.9.: Absolute value of the error in each component of the posterior mean, divided
by the corresponding true standard deviation, averaged over all d components,
for the logistic regression model and for various algorithmic approaches as
described in the main text. Values plotted against the approximate wall-clock
time, relative to the time taken to compute a single partial likelihood term. All
values computed over 25 replicates.
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Figure 9.10.: Ratio between the estimated marginal posterior standard deviation and cor-
responding true standard deviation, averaged over all d component, for the
logistic regression model and for various algorithmic approaches as described
in the main text. Values plotted against the approximate wall-clock time, rel-
ative to the time taken to compute a single partial likelihood term. All values
computed over 25 replicates.

ponents; that is to say, the mean absolute value of the componentwise error, relative to
the corresponding marginal standard deviation. We see essentially the same pattern of be-
haviour: for large enough � the GCMC estimators �N� (Id) outperform those formed using
the other approaches, over this range of wall-clock times.

Recall that the approximate posterior �� used in GCMC may be viewed as a smoothed
form of the true posterior � , as seen in (7.3). The result is that �� typically has a greater
variance than � . Figure 9.10 shows, again as a function of the approximate wall-clock time
and for each algorithmic setting, the ratio between the estimated marginal standard devi-
ation of each component of the posterior distribution and the corresponding true standard
deviation of that component, averaged over all d components. We see that for � su�ciently
large, the approximate posteriors �N� are rather more di�use than the true posterior, and
the CMC approximation. Consequently, a smaller value of � may be preferable when using
GCMC to estimate higher moments of � .

9.3.2. SMC sampler

We also applied the SMC procedure of Chapter 8 to this logistic regression model. While
we found that the SMC approach was most e�ective in lower-dimensional settings in
which it is less computationally expensive, the SMC procedure can be more widely use-
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Estimate Mean sum of squared errors

Initial SMC estimate 0.0692
SMC estimate after 100 iterations 0.0418
Bias-corrected estimate after 100 iterations 0.0682
SMC estimate of lowest estimated MSE 0.0367

Table 9.6.: For the logistic regression example, the mean sums of squared errors of esti-
mators formed using the SMC procedure. These are the SMC estimate �N�0 (Id)
corresponding to the initial (largest) � value; the SMC estimate �N�100(Id) obtained
after 100 iterations; the bias-corrected estimate (8.3) at this point; and the es-
timator chosen by the stopping rule proposed in Section 8.3 (with parameter
� = 15). All values are computed over 25 replicates of an SMC sampler.

ful as a means of ‘re�ning’ the estimator formed using a single � value, as discussed in
Section 8.1.

We used N = 1250 particles, initialising the particle set by thinning the chain gener-
ated by the Metropolis-within-Gibbs procedure with � = 10−1. To generate a sequence of
subsequent � values we used the adaptive procedure of Zhou et al. (2016), using tuning
parameter CESS⋆ = 0.98N . For the Markov kernels Mp we used Metropolis-within-Gibbs
kernels constructed according to Algorithm 7.1 as previously, with each update of Xj given
Z comprising k = 50 iterations of a random walk Metropolis kernel.

The mean sums of squared errors of various estimators associated with this approach
are presented in Table 9.6. The estimator �N�0 (Id) formed using the initial particle set was
found to have a mean sum of squared errors of 0.0692. After a �xed number of iterations
(n = 100) the resulting SMC estimate exhibited a mean sum of squared errors of 0.0418;
this represents a decrease of 40%, and has the bene�t of avoiding the need to carefully
specify a single value for �.

Used alone, the bias correction procedure of Section 8.2 was found to perform best in
lower-dimensional settings (as in Section 9.1.2; here, it resulted in a mean sum of squared
errors of 0.0682 after 100 iterations. However, improved results were obtained using the
stopping rule we propose in Section 8.3 (with stopping parameter � = 15), which is based
on our proposed bias correction procedure. The estimator selected by this stopping rule,
which automatically determines when to terminate the algorithm, obtained a mean sum of
squared errors of 0.0367, a decrease of 47% from the estimator generated using the initial
particle set.

9.4. Stochastic volatility model

Finally, we provide an example demonstrating the framework for random e�ects models
described in Section 7.5, and the use of pseudo-marginal MCMC kernels as discussed in
Section 7.2.2. The example we consider is based on stochastic volatility models, widely
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used in mathematical �nance in the context of asset pricing.
Speci�cally, we consider a model based on the ‘basic multivariate stochastic volatility

model’ of Chib et al. (2009, Section 2). We assume that the data are observations of a
sequence Y0∶T of random variables, distributed according to the following hidden Markov
model:

X0 ∼ N (m,U ∗);

Xt ∣Xt−1 ∼ N (m + diag(�)(Xt−1 −m), U ), t ∈ {1,… , T};

Yt ∣Xt ∼ N (0, exp(diag(Xt ))), t ∈ {0,… , T}.

Here m ∈ ℝd is the mean of the latent process, � ∈ [0, 1]d is the mean reversion parameter,
and U ∈ ℝd×d is a positive de�nite covariance matrix. The (i, j)th element of the matrix U ∗

is equal to the (i, j)th element of U divided by 1 − �i�j .
For our illustrative example we consider b blocks of data, with the jth block comprising

nj time series of length Tj . We model each block of data as having its own mean parameter
mj and covariance matrix Uj , with the mean reversion parameter � being common to all
the time series.

Using the notation of Section 7.5, we have Z = �, and Wj = (mj , Uj) for j ∈ {1,… , b}. To
construct a posterior distribution of the form (7.24), we choose the prior � over Z = � to be
uniform on [0, 1]d . The prior distributions �j of the local variables are assigned as follows.
Each mj is given an improper uniform prior; the diagonal elements of each Uj are given
independent inverse gamma priors (mean 0.2, variance 1); and the o�-diagonal elements of
the corresponding correlation matrices are given independent triangular priors, i.e. each
element has a prior density at x ∈ [−1, 1] given by 1 − |x |.

The partial likelihood terms in (7.24) may be written as

fj(z, wj) =
nj
∏
i=1
fj,i(z, wj), (9.1)

where fj,i is the likelihood contribution of the ith times series in the jth block; denote this
time series by y(j,i)1∶Tj . For given values of z = � andwj = (mj , Uj), the likelihood contribution
fj,i(z, wj) may be estimated using a sequential Monte Carlo algorithm. Speci�cally one may
use any of the algorithms detailed in Chapter 1, taking

M0(⋅) = N (mj , U ∗
j );

Mj(x, ⋅) = N (mj + diag(�)(x −mj), Uj), x ∈ ℝd , t ∈ {1,… , T};

Gj(⋅) = N (y(j,i)t ; 0, exp(diag(⋅))), x ∈ ℝd , t ∈ {0,… , T}.

An estimator of the marginal likelihood fj,i(z, wj) is then obtained as the normalising con-
stant estimator 
Nn (1); by Proposition 1.2, this is unbiased. By estimating each such likeli-
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hood contribution independently and taking the appropriate product as in (9.1), we obtain
an unbiased estimator of each partial likelihood fj(z, wj), and therefore unbiased estimators
of the posterior density (7.24).

It follows that we may draw samples approximately distributed according to the full
posterior using a pseudo-marginal MCMC algorithm. This essentially takes the form of a
particle marginal MCMC algorithm as proposed by Andrieu et al. (2010) except that mul-
tiple independent SMC algorithms are used, with each likelihood contribution estimated
independently. Similarly any density dependent on only one of the partial likelihood terms
(9.1), such as the subposterior distributions used in consensus Monte Carlo (CMC), may be
approximated using such an algorithm.

In the examples that follow, we compare our global consensus Monte Carlo (GCMC)
approach with the CMC approach of Scott et al. (2016), and an approach in which one
directly targets the full posterior density. For GCMC, which in this case takes the form of
Algorithm 7.2, we require a choice of transition kernels K (�)

j on E = [0, 1]d . We choose each
kernel to correspond to a product of independent zero-mean Gaussian kernels, each with
variance �, on a probit scale. Denoting by�−1 ∶ [0, 1]d → ℝd the function that applies the
quantile function of the standard normal distribution to each component of its argument,
we may write

K (�)
j (z, x) =

N (�−1(x);�−1(z), �I )
N (�−1(x); 0, I )

,

where the term in the denominator corresponds to the Jacobian determinant associated
with the probit transformation. It is readily found that this choice is su�cient for As-
sumption 7.1 to hold.

For this example in which the prior distribution on Z is uniform on [0, 1]d , a bene�t
of this choice is that it allows direct sampling from the full conditional distribution of Z ,
which is of the form (7.28). Speci�cally, we �nd that

�̃�(z ∣x1∶b , w1∶b) =

N
(
�−1(z);

∑b
j=1 �−1(xj)
� + b

,
�I
� + b)

N (�−1(z); 0, I )
.

One can sample according to this density by �rst drawing an auxiliary variable

Z̃ ∣X1∶b ,W1∶b , � ∼ N
(

∑b
j=1 �−1(Xj)
� + b

,
�I
� + b)

and then taking Z = �(Z̃ ), where � ∶ ℝd → [0, 1]d applies the cumulative distribution
function of the standard normal distribution to each component of its argument.

We used pseudo-marginal Metropolis–Hastings kernels of the form earlier described to
sample from distributions involving the likelihood contributions (9.1). That is, we used
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9.4. stochastic volatility model

these kernels to sample from:

• the full conditional distributions of each (Xj ,Wj) in GCMC;

• each subposterior distribution in CMC;

• and the full posterior in the ‘direct’ MCMC approach.

For proposal kernels we used random walk kernels, proposing new values for all compo-
nents simultaneously using additive normal innovations (on a probit scale for Z or Xj , and
on an untransformed scale each Wj ). We determined the scale simply by approximating
the scale of each likelihood contribution using a short MCMC chain, using these and the
corresponding (pseudo-)prior to obtain a rough approximation of the target covariance
matrix, which we scaled according to the optimal scaling result of Sherlock et al. (2015,
Corollary 1 and following remarks).

As discussed in Section 7.2.2, in order to achieve good mixing in the ‘direct’ MCMC
approach one generally requires each likelihood contribution to be estimated with a lower
variance than would be necessary in the other two settings. This is because the target
density in that case depends on a larger number of likelihood contributions (i.e. those
from all b blocks of data, rather than only one).

We found that in order for all three algorithmic approaches to possess comparable mix-
ing properties, it was necessary for the SMC algorithms used within the pseudo-marginal
kernels to use b times more particles when using the ‘direct’ MCMC approach than when
using the GCMC and CMC approaches. We assessed this in practice by looking at the
variance of estimates of the target log-density, and comparing with the optimal values
proposed by the tuning methods described in Section 7.2.2. In order for the three algorith-
mic approaches to be comparable (in the sense of having comparable computational cost),
the results we shall present for the ‘direct’ MCMC approach use b times fewer MCMC
samples than the other two approaches.

We �rst considered a simple model in which the time series are bivariate (d = 2). We
have observations of 8 time series each of length T = 50, divided into b = 2 blocks of
equal size. For the SMC samplers used with in the pseudo-marginal kernels, we chose the
number of particles in order that the variance of the resulting estimates of the log-density
was around 3.2, following Sherlock et al. (2015). Within the GCMC and CMC we required
250 particles for each such SMC run, while the direct MCMC approach required 500. To
account for this additional computational cost we ran chains of length 10 000 for the GCMC
and CMC settings, comparing with chains of length 5000 for the direct approach. Within
GCMC we considered a range of � values between 10−4 and 1.

Table 9.7 shows the mean sum of squared errors of the posterior mean, as computed
over 10 replicates for each algorithmic setting. That is, in each case we computed the
squared error in the posterior mean of each parameter, summed this over all parameters,
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9. examples and applications

Mean sum of squared errors
Algorithm All parameters m1∶b only

GCMC � = 100 0.1988 0.1230
� = 10−0.5 0.1258 0.0821
� = 10−1 0.0562 0.0225
� = 10−1.5 0.0288 0.0100
� = 10−2 0.0377 0.0174
� = 10−2.5 0.0233 0.0089
� = 10−3 0.0368 0.0194
� = 10−3.5 0.0704 0.0372
� = 10−4 0.0761 0.0280

CMC 0.0597 0.0088

Direct MCMC 0.0229 0.0148

Table 9.7.: For the �rst stochastic volatility model, the mean sum of squared errors of the
posterior mean, where the sum is taken over all parameters; and where the
sum is taken only over the parameters m1∶b describing the mean of the latent
process. All values computed over 10 replicates of each algorithmic approach,
as described in the main text; the lowest value in each column is printed in bold.

and then took the mean of this value over all 10 replicates. We see that for comparable
computational cost the direct MCMC approach performs best here, although the GCMC
approach performs comparably for appropriately-chosen �.

In many settings the parametersm1∶b are of particular interest; they represent the mean
of the latent process, and may therefore be viewed as quantifying the volatility in the
observations. We therefore also present in Table 9.7 the mean sum of squared errors for
this subset of parameters only. While the CMC approach performed best in this regard,
again we see that GCMC performs well for a range of � values. Indeed, the GCMC results
have the bene�cial property of providing low-error estimates of the parameters of direct
interest, while still obtaining reasonable estimates of the other model parameters (which
may still be of secondary interest).

As a second example, we considered a similar model in which 12 bivariate time series
of length T = 50 were split into b = 3 equal blocks. The GCMC and CMC approaches used
SMC samplers with 200 particles, with chains of length 12 000 generated; the direct MCMC
approach used 600 particles and chains of length 4000. The results in this case, presented
in Table 9.8, show that the GCMC approach generally performed poorly in estimating the
posterior mean, with the resulting mean sums of squared errors being rather larger than
those obtained via the other two approaches. However when considering only the ‘mean
volatility’ parametersm1∶b , for an appropriate choice of �GCMC was able to attain a rather
lower mean sum of squared errors than either of the other two approaches (most of the
remaining error resulted from poor estimation of the noise covariance matrices Uj ).
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9.5. summary

Mean sum of squared errors
Algorithm All parameters m1∶b only

GCMC � = 100 4.8583 4.6994
� = 10−0.5 0.7659 0.5526
� = 10−1 0.4251 0.0107
� = 10−1.5 1.4520 0.0243
� = 10−2 2.8413 0.0347
� = 10−2.5 3.9541 0.0404
� = 10−3 4.3179 0.0423
� = 10−3.5 4.6233 0.0449
� = 10−4 4.6803 0.0533

CMC 0.0783 0.0295

Direct MCMC 0.1044 0.0729

Table 9.8.: For the second stochastic volatility model, the mean sum of squared errors of
the posterior mean, where the sum is taken over all parameters; and where the
sum is taken only over the parameters m1∶b describing the mean of the latent
process. All values computed over 10 replicates of each algorithmic approach,
as described in the main text; the lowest value in each column is printed in bold.

The reasons for this behaviour are not clear. This may be purely due to the speci�cs of
this example (e.g. a property of the proposal kernel), or some inherent advantage of the
GCMC approach in the estimation of these parameters, perhaps since of all the parameters
in the model only m1∶b are de�ned on the whole real line. Nonetheless the surprising
patterns in these results could provide useful direction for further investigation, as we
shall soon discuss in the concluding remarks of this thesis.

9.5. Summary

We have here presented some illustrative examples of our proposed simulation frame-
work, investigating the role of various tuning parameters and providing a comparison to
some simple embarrassingly parallel approaches, as well as a more straightforward direct
approach. These examples demonstrate the key settings in which we might expect our
framework to outperform other algorithms with similar aims: settings in which the like-
lihood contributions fj may not be approximately Gaussian, for example in models using
high-dimensional ‘wide data’; and settings using pseudo-marginal kernels, as discussed in
Section 7.2.2.

It is hoped that these results might provide motivation for other applications of the
framework models involving high-dimensional distributed data, or for the development
of other techniques and methods within the global consensus framework. We detail some
such ideas in the conclusion that follows.
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Conclusion

Summary

This thesis has considered several problems in the tuning of sequential Monte Carlo meth-
ods, the role of variance estimation techniques in such problems, and issues in a number of
connected areas including distributed simulation procedures. Following a review of SMC
methodology and applications, Part II of this thesis has explored the schedule selection
problem for SMC samplers, making a number of key contributions. In particular, we have
proposed in Section 3.3 a formulation of this as a minimisation problem, using an objective
function that is dependent on the relative asymptotic variance of the normalising constant
estimator 
Nn (1). By consideration of the decomposition of this asymptotic variance, we
have investigated a number of properties of our proposed objective function n�2

1.
In Chapter 4 we have studied this optimisation problem analytically for settings in

which one can construct perfectly-mixing Markov kernels. Our theoretical results, and
the heuristics we propose based on these, may be of practical relevance in many settings.
For example, our results for restrictions on nested sets �nd direct application in the rare
events estimation procedure of Cérou et al. (2012), and our �ndings for normal distribu-
tions will be useful in many settings involving large data sets, due to the Bernstein–von
Mises theorem and other CLT results. The re�nement and generalisation of these may
provide a useful starting point for future developments, for which we shall later propose
possible directions.

The work of Chapter 5 has considered the problem of schedule selection in settings
where more general Markov kernels are used. The numerical optimisations of Section 5.1
provide new insights into the behaviour of the vp,n(1) terms in realistic settings. In light
of this, we have investigated the use of variance estimation techniques within schedule
selection procedures. While these investigations did not lead to the development of a
robust schedule selection algorithm, it is clear that the principle of using such variance
estimators to tune SMC samplers holds promise, and it is hoped that these discussions
may inform future research.

Part III has focused on the problem of inference in settings involving large distributed
data sets, and the issues in constructing e�cient simulation algorithms for approximating
Bayesian posterior distributions. Within Chapter 7 we have proposed a novel framework
that may be applied in such settings, describing a distributed Metropolis-within-Gibbs
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algorithm that may o�er bene�ts over embarrassingly parallel algorithms, and over an
MCMC approach that directly targets the full posterior. We have considered a number of
issues in its practical implementation and have analysed the theoretical properties of our
proposed algorithm in a Gaussian setting, providing insight into its asymptotic behaviour.

Given the role of the tuning parameter � in achieving a bias–variance trade-o�, we have
proposed in Chapter 8 an SMC sampler formulation of the framework. Within this context
we have described a simple approach to utilising many of the estimators formed during
the execution of the algorithm, regressing on � in order to obtain bias-corrected estimators
of integrals. Our proposed use of SMC variance estimators within weighted least squares
represents a novel application of these; empirically, we have found that the resulting lin-
ear regression procedure achieves improvements over an unweighted approach. We will
consider various possible improvements to these ideas, and to our proposed stopping rule,
in the discussion that follows these concluding remarks.

The simulation results of Chapter 9 demonstrate a number of settings in which our
proposed approach may o�er bene�ts over a straightforward MCMC approach, and over
some simple embarrassingly parallel methods. Given the ever-increasing sizes of data sets
in modern statistical settings, we believe that this work forms a valuable contribution to
the literature on this highly topical problem.

Contributions

We provide here a detailed list of the novel contributions of this thesis.
Part I comprised a review of the literature and methodology of sequential Monte Carlo

methods, and of the applications of sequential Monte Carlo samplers. Rather than pre-
senting new results, the primary role of these �rst two chapters was to introduce the ideas
and notation that form the basis of later work. We note however that many of the expres-
sions in Sections 1.4.1.1 and 1.4.1.2, explicitly describing asymptotic variance decomposi-
tions associated with updated and excursion Feynman–Kac models, have not previously
been published in these forms.
Part II introduced the open problem of schedule selection for SMC samplers, making a

number of key contributions.

• We have proposed in Section 3.3 a formalisation of this problem as a transdimen-
sional optimisation problem, based on the relative asymptotic variance of the nor-
malising constant estimator.

• We have in Section 3.4 derived expressions for the asymptotic variance decompo-
sition terms vp,n(') in SMC sampler settings. To our knowledge these results have
not previously been presented in these forms; this includes the results of Proposi-
tions 3.10 and 3.13, in which the terms vp,n(1) are expressed as chi-squared distances.
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• For the SMC approach to rare event estimation of Cérou et al. (2012), we have in Sec-
tion 4.2 extended the authors’ optimality result by determining the optimal sequence
length n (Proposition 4.8). For the authors’ proposed algorithm we have also derived
the optimal tuning parameter value in a perfectly-mixing setting (Remark 4.9).

• For sequences of normal distributions, we have in Section 4.3 derived several results
describing the optimal such sequence in a specialised setting (e.g. Proposition 4.12),
proposing several practical heuristics based on these (e.g. Remark 4.14).

• We have demonstrated in Section 4.4 some properties of the problem of minimising
a sum of chi-squared distances, including the proof of a ‘reversed triangle inequality’
(Proposition 4.17).

• In Section 5.1 we have provided numerical optimisation results for the optimal distri-
bution schedules in a simple imperfectly-mixing setting, providing new insight into
the optimal behaviour of the asymptotic variance decomposition terms in various
such settings.

• We have proposed the novel application of SMC variance estimators to the problem
of schedule selection. In Section 5.2 we have described various possible approaches
to this, empirically analysing their behaviour and documenting their limitations.

Part III devised a novel framework for Bayesian inference on large data sets, proposing
and investigating an MCMC algorithm and SMC sampler for use in distributed settings.

• We have introduced this framework in Section 7.1 by de�ning an instrumental hier-
archical model, proposing in Section 7.2 the construction of a distributed Metropolis-
within-Gibbs algorithm (Algorithm 7.1).

• We have described in Section 7.3 various considerations in the implementation of
our algorithm, and have analysed in Section 7.4 the behaviour of the algorithm in a
simple tractable setting, providing results describing its asymptotic properties.

• We have proposed in Section 7.5 an extension of our framework to random e�ects
models, and a form of our distributed Metropolis-within-Gibbs algorithm for use in
such settings (Algorithm 7.2).

• We have constructed an SMC formulation of this framework (Algorithm 8.1). Within
this context we have proposed in Section 8.2 a bias correction technique for use in
SMC contexts, based on local linear regression. This includes a novel application of
SMC variance estimators proposed in Section 8.2.1, for inverse-variance weighting
within weighted least squares,.
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• We have proposed heuristic procedures to be used in combination with this bias
correction technique: a procedure for determining which SMC estimators to include
in the local linear regression (Algorithm 8.2) and a stopping rule for the SMC sampler
(Algorithm 8.3).

• We have provided an empirical study of our proposed algorithms and procedures
in Chapter 9, including comparisons with a straightforward MCMC approach and
with some embarrassingly parallel approaches.

Directions for further research

Procedures for schedule selection

As suggested previously, our results for optimal distribution schedules in perfectly-mixing
settings may �nd practical application more generally, particularly when well-mixing ker-
nels are used. There is however scope to re�ne or extend these results, which may allow
the derivation of additional heuristic procedures for schedule selection. Considering the
results for normal distributions in Section 4.3 it would be particularly useful to develop
the results of Proposition 4.16 further, deriving a clearer heuristic for choosing the length
n of the distribution schedule.

Another direction would be to investigate further the properties of the chi-squared dis-
tance. In Proposition 4.17 we have shown that a sum of chi-squared distances can always
be reduced by inserting an intermediate mixture distribution between two existing distri-
butions. Useful extensions might include determining the optimal mixture distribution in
this case; obtaining a similar result when the intermediate distribution is formed by tem-
pering; and deriving tighter bounds on the resulting reduction in the sum of chi-squared
distances. Such results might in turn lead to practical heuristic procedures for schedule
selection. Initial investigations into these topics have led to interesting �ndings, though
to avoid digression from the main aims of the thesis these have not been included here.

The results of Chapter 5 demonstrated that while using variance estimation techniques
for schedule selection is a powerful idea in principle, the construction of a robust pro-
cedure is di�cult in practice. Given our documented issues with the variance of these
estimators, a useful avenue of investigation may be the development of variance reduc-
tion techniques for these estimators, perhaps motivated by similar ideas used in MCMC
(see Glasserman, 2004, Chapter 4 for a review). This may facilitate the development of
procedures for schedule selection, and for other tuning issues such as those described in
Section 5.3.
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Extensions of the schedule selection problem

As discussed in the context of tempering and path sampling in Section 3.2.3, a distribu-
tion schedule (�p)np=0 may be viewed as the discretisation of a continuum of probability
measures that smoothly interpolate between �0 and �⋆. Indeed while SMC samplers run
in discrete time, many of the associated concepts admit natural extensions to continuous
time. In particular, the discrete time Feynman–Kac models introduced in Section 1.2.1 have
well-studied continuous analogues (see e.g. Del Moral, 2004, Section 1.3.1). The investi-
gation of such constructions could therefore provide insight into the behaviour of distri-
bution schedules in discrete settings. For example, such ideas are used by Beskos et al.
(2014) in an investigation of the asymptotic behaviour of the ESS in SMC samplers, as the
dimension of the space X tends to in�nity. A similar approach could be used to investigate
the asymptotic properties of optimal schedules.

Within our discussion of the schedule selection problem we have focused on the con-
struction of a distribution schedule that begins with the initial distribution �0 and ends
with the distribution of interest �⋆. In other settings however we require a sequence that
approaches but does not attain �⋆, for example because this distribution corresponds to a
point mass and therefore does not admit a density, preventing the evaluation of the SMC
incremental weights (2.2). A common feature of such settings is the need to balance the
�delity of these distributions to �⋆ with the di�culty of constructing well-mixing Markov
kernels leaving these distributions invariant. Examples include SMC samplers for approx-
imate Bayesian computation (e.g. Sisson et al., 2007; Del Moral et al., 2012a) in which the
tolerance parameter approaches but does not reach zero, and our proposed SMC sampler
for global consensus Monte Carlo in Chapter 8.

In such cases the problem of selecting a distribution schedule is essentially extended,
since one must also choose the �nal distribution in the sequence. The stopping rule that
we propose for our global consensus algorithm in Section 8.3 provides a heuristic approach
for a speci�c setting, but is not fully general (a point that we shall return to shortly). In-
stead, one might consider how to extend our formulation of the schedule selection problem
to account for this additional dimension. This provides ample opportunity for future re-
search, with a number of the ideas and results from this thesis likely to prove useful in
this setting also (for example, our expressions for the asymptotic variance decomposition
terms). Variance estimators could also play a useful role in the development of a stopping
rule for practical application in general settings.

The proposed global consensus algorithms

Regarding our proposed global consensus framework in Part III, a promising idea for fu-
ture work is the further investigation of the properties of our proposed algorithms. Our
theoretical investigations in Section 7.4 focus on a Gaussian setting, since this is partic-
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ularly amenable to analysis; we found that theoretical analysis of our algorithms when
applied to other models is generally more di�cult. Although many of the properties of
this simple setting would be expected to apply more generally (as we have demonstrated
in our empirical studies), further investigations may be insightful, and may lead to new
heuristics for the choice of the tuning parameter �. As earlier mentioned, essentially the
same framework to that presented here (and in Rendell et al., 2018) was independently and
contemporaneously proposed by Vono et al. (2019a) for use in a serial context. Subsequent
to much of the work in this thesis, various non-asymptotic and convergence results have
been published in Vono et al. (2019b), several of which may also �nd application in our
distributed setting.

Our proposed bias correction technique for the global consensus SMC algorithm, and
the use of SMC variance estimators within weighted linear regression for this purpose, is a
simple idea that may also be useful in other contexts. However, theoretical analysis of this
scheme is complex; further investigations into its properties may lead to useful re�nements
of our proposed approach, particularly in the high-dimensional settings in which it was
less successful. Additionally, the use of non-linear procedures (such as that proposed in an
ABC context by Blum and François, 2010) may provide a more robust alternative with more
theoretical guarantees. It may therefore be insightful to investigate some such alternative
approaches and the role that SMC variance estimators might play within these.

The stopping rule that we have proposed for the SMC sampler in Section 8.3 is intended
to assist the practitioner in the choice of the tuning parameter �, and is designed around
the bias–variance trade-o� that motivates the framework as a whole. While our approach
is seen empirically to have useful properties, there is room for further work and improve-
ment. For example, our proposed stopping rule assumes that for the true posterior distri-
bution � , there is one integral � (') that we wish to estimate with minimal mean squared
error. In practice however there may be several such integrals of interest, and so an im-
proved approach would be independent of the choice of test function ', instead being
suitable for the estimation of integrals of many such functions. This idea may be com-
pared with our use of n�2

1 in schedule selection, since a low-variance estimator of the nor-
malising constant may be indicative of low variances of other estimators. Although we
investigated various stopping rules utilising the normalising constant estimator (or esti-
mated variance thereof), none performed especially well in obtaining low-MSE estimators
of integrals with respect to the true posterior distribution. As previously mentioned how-
ever, there is scope to develop general stopping rules for this and similar SMC algorithms
within the broader context of schedule selection.

Other global consensus applications

Finally, we stress that the MCMC and SMC algorithms that we have presented constitute
only two possible approaches to inference using the instrumental hierarchical model that
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we propose. Considering the decreasing sequence of � values in our SMC algorithm, over
which �delity to the original model increases while mixing quality decreases, a natural idea
is to investigate other algorithmic structures utilising such sequences of distributions. In
particular several of the tempering-based algorithms reviewed in Section 2.2.2 could be
applied within our framework, in which the role of � is comparable to that of an inverse
temperature. For example, by assigning a prior distribution to � in the instrumental model
we introduce in Section 7.1, one could construct a joint distribution over all parameters
(including �), allowing the application of a form of simulated tempering. Another idea
would be an implementation of parallel tempering, though this would require a careful
construction that minimises inter-node communication.

Multilevel Monte Carlo (see Giles, 2015, for a review) might also provide a useful direc-
tion for investigation. Under appropriate convergence conditions (i.e. using an appropri-
ate reformulation of Assumption 7.1) such an approach might allow the construction of
estimators with much lower MSE, compared to that achieved using our proposed MCMC
algorithm. In summary, our global consensus framework o�ers an exciting basis for the
exploration of new sampling algorithms.
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Abbreviations

ABC . . . . . . . . . . approximate Bayesian computation

CESS . . . . . . . . . . conditional e�ective sample size

CLT . . . . . . . . . . central limit theorem

CMC . . . . . . . . . . consensus Monte Carlo

ESS . . . . . . . . . . e�ective sample size

GCMC . . . . . . . . . global consensus Monte Carlo

IID . . . . . . . . . . . independent and identically distributed

MCMC . . . . . . . . . Markov chain Monte Carlo

MCSE . . . . . . . . . Monte Carlo standard error

MSE . . . . . . . . . . mean squared error

NDPE . . . . . . . . . nonparametric density product estimation

OLS . . . . . . . . . . ordinary least squares

RJMCMC . . . . . . . reversible jump Markov chain Monte Carlo

SIS . . . . . . . . . . . sequential importance sampling

SMC . . . . . . . . . . sequential Monte Carlo

WLS . . . . . . . . . . weighted least squares

WRS . . . . . . . . . . Weierstrass rejection sampling
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