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Abstract 

 

Cognitive researchers often carve cognition up into structures and processes. Cognitive processes 

operate on structures, like vehicles driving over a map. Language alongside semantic and 

episodic memory are proposed to have structure, as are perceptual systems. Over these 

structures, processes operate to construct memory and solve problems by retrieving and 

manipulating information. Network science offers an approach to representing cognitive 

structures and has made tremendous inroads into understanding the nature of cognitive structure 

and process. But is the mind a network? If so, what kind? In this article, we briefly review the 

main metaphors, assumptions, and pitfalls prevalent in cognitive network science (maps and 

vehicles; one network/process to rule them all), highlight the need for new metaphors that 

elaborate on the map-and-vehicle framework (wormholes, skyhooks, and generators), and 

present open questions in studying the mind as a network (the challenge of capturing network 

change, what should the edges of cognitive networks be made of, and aggregated vs. individual-

based networks). One critical lesson of this exercise is that the richness of the mind as network 

approach is a powerful tool in its own right; it has helped to make our assumptions more visible, 

generating new and fascinating questions, and enriching the prospects for future research. A 

second lesson is that the mind as network--though useful--is incomplete. The mind is not a 

network, but it may contain them.  

 

Keywords: Cognitive networks, representation, process, language, memory, cognition  
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1. Introduction 

In recent years, cognitive networks have received tremendous interest (Baronchelli, 

Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen, 2013; Borge-Holthoefer & Arenas, 

2010; Castro & Siew, 2020; Karuza, Kahn, Thompson-Schill, & Bassett, 2017; Siew, Wulff, 

Beckage, & Kenett, 2019). Cognitive networks refer to the application of methods from network 

science to study the complexity of cognitive systems, mainly language and memory (Castro & 

Siew, 2020; Siew et al., 2019). The success of cognitive networks is due to a number of factors, 

including the ability to quantify structural characteristics, such as nearness and farness, between 

behaviors, concepts, and memories (Kenett, Levi, Anaki, & Faust, 2017; Kumar, Balota, & 

Steyvers, 2020), the potential for enrichment or degradation of the network map—such as in 

creativity (Kenett, 2018, 2019; Kenett & Faust, 2019b) and age-related cognitive decline (Borge-

Holthoefer, Moreno, & Arenas, 2011; Kenett et al., 2018)—and the possibility that aspects of 

cognitive control (executive function) influence network navigation (Hills, Mata, Wilke, & 

Samanez-Larkin, 2013). 

As two avid users of network science, we constantly discuss and often disagree about big 

details. For example, is creativity explained by a change in the map (i.e., the network 

representation; Kenett & Faust, 2019b) or is it a consequence of the vehicle (i.e., the cognitive 

processes such as cognitive controlthat navigate the network; Silvia, 2015)? Is memory one 

representation or is it many? If it is many, then memory search may be amenable to ‘short-cuts’ 

or ‘wormholes’, by which travel between two distant places in a network can be shortened by 

briefly traveling via another representation (Wulff, Hills, & Hertwig, 2020). How do we separate 

the map from the vehicle experimentally? If one researcher infers a difference in representations 

between two groups (e.g., young vs. old), might that difference also be explained by a change in 

the processes, such as cognitive control, without a difference in the underlying networks (Siew et 

al., 2019)?   

Questions like these are often the outcome of better understanding the metaphors we have 

adopted and the assumptions we have made. Cognitive network science is a technical and 

theoretical framework. As Jones and Love (2011; p. 170) describe, there is “a danger of 

confusing technical advances with theoretical progress, and the allure of the former can lead to 

the neglect of the latter. As the new framework develops, it is critical to keep the research tied to 



Running Head: Cognitive networks and the mind 

 

 4 

certain basic questions, such as: What theoretical issues are at stake? What are the core 

assumptions of the approach?”  

Our goal here is to take these concerns seriously in an honest self-appraisal of our 

discipline and its theoretical contributions to understanding the mind. In what follows, we will 

discuss the main metaphor that dominates cognitive network science—the map and vehicle 

model—and the assumptions it often elicits. Then we will highlight alternative metaphors 

(wormholes, generators, and skyhooks), based on varied empirical findings. Finally, we will 

highlight core challenges that cognitive network science must address to advance our 

understanding of the complexity of the human mind. 

 

2. The map and vehicle framework 

 

William James presented a metaphor of mental ‘travel’ when he proposed that we search 

memory like we search for a lost item in our house, first checking one room and then another 

(James, 1890). This invites one to imagine our memories as a kind of map—or as Tolman put it, 

a cognitive map—over which some kind of mental vehicle travels (Tolman & Tolman, 2004). 

Indeed, any account of cognitive phenomenon requires a description of both what the cognitive 

system knows (the representation) and what it does (the process) with that information 

(Anderson, 1990; Estes, 1975).  

Take, for example, the case of modelling the semantic fluency task, which is often used 

in clinical practice (Kenett & Faust, 2019a): ”say  all the animals you can think of.” Here the 

researcher’s goal is to be able to predict the list of animal names that an individual is likely to 

produce: e.g., dog, cat, monkey, giraffe, etc. To do this, one first needs to represent how animals 

are related to one another in the mind. A mathematical description of this space, representing the 

distances between different concepts, works nicely to represent the map. Such a matrix (or 

graph) is a network. Second, one needs to formally describe some kind of process that acts over 

that network, allowing names to be activated in a series (Hills, Jones, & Todd, 2012; Zemla, 

Kenett, Jun, & Austerweil, 2016). The representation is a map, and the process is a vehicle; 

together they make explicit the cognitive components necessary to understand how the mind 

solves this task. 
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This map and vehicle framework represents a core assumption that underlies many 

network science approaches to cognition. The instantiation of the map and vehicle model varies 

across researchers; sometimes there are multiple maps and sometimes there are many vehicles, 

but the conceptual core is the same. Below, we use this core framework to unpack a number of 

potential assumptions about the practice of cognitive network science, while also highlighting 

some of the open questions that remain to be addressed and exploring what it would mean for the 

mind to be a network. 

 

2.1. One Network to Rule Them All 

Suppose you assume that the network on which you model your semantic fluency data is 

based on the same representation for everyone (Figure 1). So, no matter how old or young, or 

how much a lover of Attenborough or hater of the outdoors, everyone is assumed to know the 

same animals and to represent them in the same way. We call this approach the one-network-to-

rule-them-all assumption. Someone trying to infer the process people use to navigate this 

network will find that nature lovers have excellent memory search processes. The home-bodies, 

on the other hand, will appear to be mentally impaired, unable to retrieve information from the 

network that everyone is assumed to have. This may sound silly, but exactly the same approach 

has been used by Hills, Mata, et al. (2013) to make inferences about executive cognitive control 

processes in the aging mind. If you assume everyone has the same network, then you guarantee 

the differences will be in the process. 

 

2.2. One Process to Rule Them All 

Alternatively, one can imagine that everyone has the same process and look for 

differences in the representation (Figure 1). This is the one-process-to-rule-them-all assumption. 

For example, you might ask people to produce associations for a set of words. This data—

producing targets in response to cues—can be used to construct networks (De Deyne, Kenett, 

Anaki, Faust, & Navarro, 2016; De Deyne, Navarro, Perfors, Brysbaert, & Storms, 2019). If the 

participants are split into different groups based on some other measurement, such as intelligence 

(low vs. high), the networks constructed out of their aggregate data might look different. One 

might then conclude that low- and high-intelligent individuals represent information differently. 

Again, this may sound silly, but exactly the same approach was used by Kenett et al. to evaluate 
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the semantic representations of low and high creative individuals (Kenett & Faust, 2019b). If you 

assume everyone has the same process, then you guarantee the differences will be in the 

representation. 

 

2.3. Can representation and process be disentangled? 

The above examples are necessarily simplified, but things can get tricky in a hurry. A 

specific example (described in more detail by Jones, Hills, & Todd, 2015), involves two different 

approaches to modelling the semantic fluency task described above. Both took a map and vehicle 

approach, and both used a one-network-to-rule-them-all assumption. One constructed the 

network out of free associations, derived from another database of free associations wherein 

people said the first words that came to mind when presented with a cue word, like cat (Abbott, 

Austerweil, & Griffiths, 2015). The second constructed the network using a semantic space 

model applied to a corpus natural language, based on using patterns of word-occurrences to 

detect word similarity (Hills et al., 2012). For search over the free association network, Abbott et 

al. (2015) assumed a process (i.e., vehicle) made up of random walkers, who moved from the last 

word produced randomly over the network to activate nearby words. For the semantic space 

network, Hills et al. (2012) assumed the process was a common probabilistic choice rule (the 

Luce choice rule) that chose nearby words in proportion to their similarity with the previously 

recalled word. In this second case, if there were no nearby words, a secondary ‘switching’ 

process was assumed to choose a new word based on its frequency in natural language—leaving 

the local constraints of the network to jump to a new location. Abbott et al. (2015) demonstrated 

that the two approaches were able to generate similar phenomenology using different processes 

(random walkers versus a switching process) and different representations (free associations 

versus semantic space). Following Anderson (1978), Abbott et al. (2015) put it like this: 

“behavior that seems like the signature of one mechanism can sometimes be produced by 

others.”  

In relation to the core question of this article, if the mind is a network, the natural 

extension to this question is “which one”? Theoretical progress in cognitive network science 

requires that we become more proficient at comparing our alternatives. There are many ways to 

do this: model competitions, cross-validation, model recovery, parameter evaluations, qualitative 

comparisons to various datasets, and so on (e.g., Shiffrin, Lee, Kim, & Wagenmakers, 2008). 
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With respect to representation and process, we can independently sample cognitive control 

measures (Hills et al., 2013; Hills & Pachur, 2012; Kenett, Beaty, Silvia, Anaki, & Faust, 2016), 

introduce secondary tasks that interfere with control processing (Rosen & Engle, 1997), use 

neuroimaging to identify control processing (Beaty, Benedek, Silvia, & Schacter, 2016), and 

evaluate more nuanced differences in the behaviour, such as reaction time data (Kenett et al., 

2017; Kumar et al., 2020). Given a sufficiently large set of possible processes and 

representations, we are likely to find a variety of process-representation pairs that are difficult to 

discriminate without formal model comparisons.  

Though it is debated under what conditions we can investigate process and representation 

independently (Siew et al., 2019), the reality is that if we cannot discriminate representation and 

process our ability to make general inferences from cognitive network research is highly 

constrained and likely to be presumptive whenever we attribute explanations to structure or 

process without testing the alternatives. 

 

Figure 1: The core metaphor of cognitive network science and two typical assumptions. Map 

and vehicle. This is a common implicit framework for many network approaches to cognition in 

which nodes represent behavioural outputs. The network is the structural representation over 

which some process (e.g., vehicle) navigates. One-process-to-rule-them-all assumes that all 

participants have the same process and that only the structure of the network representation may 

change. One-network-to-rule-them-all assumes that everyone has the same representation and 

one can therefore examine individual differences in processes (e.g., a Luce choice rule, random 

walkers, a sailboat). 

 

3. Alternative cognitive network metaphors 

The observations we discuss above are meant to shine light on one overarching 

assumption (the map and vehicle) and two common practical assumptions (one-process/network-

to-rule-them-all) that may often be at work when taking a network approach to cognition. But let 

us take a second to challenge the most alluring assumption of all: is the mind a network?   
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If the mind is a network, the map-and-vehicle approach already suggests that a network 

(or map) is incomplete. From a purist perspective, a network and the mathematical matrix that 

represents it does not do anything; one must apply a secondary process to deliver some output in 

response to some input. It is instead the knowledge representation of the system that may be 

mathematically equivalent to a network. Metaphors of knowledge representations have ranged 

across such diverse things as a cow’s stomach (Hintzman, 1974), an acid bath (Posner & Konick, 

1966), a library card catalogue (Forster, 1978), steam engines, and a digital computer (for a 

review, see Turvey & Moreno, 2006). Still, the most persistent metaphor is of memory as akin to 

a physical space (Roediger, 1980), satisfying the network assumption of a quantifiable distance 

between ‘places’ in the space. Plato and Aristotle (cited in Roediger, 1980) considered memory 

as a kind of wax tablet. Freud (1920) revived this idea with his mystic writing pad. James (1890) 

proposed that memory was like a house one could walk around in and Collins and Quillian 

(1969) expanded the idea to a subway map. Collins and Loftus further developed this idea to 

suggest that memory is structured as a network that constrains a process of spreading activation 

(Collins & Loftus, 1975). Hills (2006) went on to suggest that the similarity between external 

and internal representations facilitated the evolution of a common search process to navigate 

them. 

This leads us to the map and vehicle framework, which has had substantial success in 

describing cognitive phenomena, as cited throughout this article. Graphs (i.e., matrices) and their 

corresponding networks quantify the structure of cognitive space and provide the kind of pin-

headed angel counting required to distinguish one theory from another. Nevertheless, the map 

and vehicle metaphor is but one way to achieve that. What are the alternatives? 

 

3.1. Wormholes  

A common assumption in cognitive network science is that the mind uses a single fixed 

network. Even if different people have different network representations, they each have but one. 

One cannot jump from one network to another within the same mind. The network one is 

assumed to have is also rigid and inflexible—one cannot emphasize certain edge properties over 

others, as edges are often deemed to have a binary value (present or absent) or to be a weighted 

output of their subcomponents that are themselves no longer separable.  
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However, consider searching for country names from memory (“Switzerland”, 

“Germany”, “The UK”, etc).  In this case, we may sometimes feel we are searching based on one 

kind of feature—such as the spatial proximity of a shared border—and at other times feel we are 

searching based on phonological similarity, as one might have when recalling the ‘Stans’, i.e., 

“Kazakhstan”, “Kyrgyzstan”, “Pakistan”, and so on. The ability to search via different features 

may suggest the existence of more than one localist network representation and the capacity to 

switch between them, or similarly, the capacity to restructure a single network by emphasizing or 

de-emphasizing the different kinds of features that make up its edges. We consider these 

cognitive wormholes, because they would allow cognition to bend internal space in a directed 

fashion by emphasizing one network representation to another (Figure 2).  

Wulff, Hills, and Hertwig (2020) studied a milder wormhole hypothesis by having people 

retrieve names of countries either by continent or by first letter (from A to Z). They hypothesized 

that a continent-based search would emphasize a spatial representation, as if the person were 

imagining a map. Similarly, they hypothesized that an alphabetical search would emphasize a 

phonological representation, as if the person were sounding out the first letter. The data 

suggested that people followed these predictions. However, evidence of phonological retrieval 

was apparent in the by-continent condition, and evidence of spatial retrieval was apparent in the 

alphabet condition. This suggests that people can bend their internal representations by 

emphasizing different edge properties (e.g., phonology or spatial proximity) in the underlying 

network—even though they do not appear to be able to separate these in entirety. 

This inability to completely separate networks is consistent with tip of the tongue states, 

in which people express difficulties in retrieving names and get stuck on misleading phonemes, 

even though they can also access semantic information (Brown & McNeill, 1966; Vitevitch, 

Chan, & Goldstein, 2014). Thus, while some evidence of wormhole space bending exists, it 

seems less clear that memory is represented by separable networks.  

The above data suggest that task context can influence the structure of a searchable 

cognitive representation, but that it is likely to remain a single cognitive representation (Kumar, 

2021), though it appears to be a little bendy. To get from one place to another, one must search 

its structure locally or, as noted in the previous Section 2.2, use control processes that escape the 

local structural constraints. Importantly, it illustrates that there is an interaction between the 

process and structure. Therefore, a one network/process to rule them all model is inadequate, 
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challenging us to consider different frameworks that allow us to advance our thinking on the 

relation between them. 

 

3.2. Skyhooks 

Can a one network to rule them all model account for human performance in cognitive 

tasks? As we discuss in section 2.3., two competing models predict performance in a semantic 

fluency task: random walks and clustering-switching processes. Importantly, a complete model 

of the task must account for controlled, goal-directed cognition, which may require an integrated 

approach that combines elements of both (see Goñi et al., 2010 for one such example). 

As discussed, one popular model suggests that when participants are performing a 

memory search task they switch between a ‘local’ representation (the network) and a ‘global’ 

frequency list (e.g., Hills et al., 2012; Hills et al., 2013; Hills & Pachur, 2012). This capacity to 

jump using frequency is somewhat similar to a wormhole, except that frequency has no local 

structure. Having just found the 100th most frequent animal does not—as far as we know—make 

it easier to retrieve the 99th most frequent animal. In this sense, frequency does not shrink the 

distance between targets in memory, it simply allows one to escape resource-poor locations on 

the internal map, a process we suggest is similar to a skyhook (Figure 2).  

Relevant to our discussion on representation and process, these skyhook-like global 

transitions are correlated with measures of executive cognitive control (Hills et al., 2013; Hills & 

Pachur, 2012; Rosen & Engle, 1997). Executive cognitive control is also dynamically involved 

in creative thinking (Chrysikou, 2019). This suggests a nice analogy between thinking out of the 

box and getting off your cognitive map. Individuals with better performance on measures of 

executive control retrieve more items from memory and are better at retrieving original ideas 

(Beaty, Kenett, Hass, & Schacter, 2019; Volle, 2018). Thus, executive control can potentially 

evaluate the local prospects in the representation and act as a skyhook to transfer attention 

elsewhere if local opportunities are looking sparse (Figure 2).  

The skyhook metaphor adds an additional process to the “is the mind a network” 

question, which currently stands at map plus vehicle. This new skyhook process is related to 

effortful cognitive control because it is constrained by a cognitive load. It instantiates the 

effortful component in psychology’s well-established distinctions between automatic and 
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effortful processing (Kahneman, 2011). Correspondingly, more automatic processes may 

encompass aspects of the vehicle when it is on the map. 

 

3.3. Generators 

Another common observation about cognitive representations is that they change over 

time. This requires us to invoke processes associated with network change, such as learning and 

forgetting. New nodes and edges can be formed and potentially lost; we can learn new object 

concepts and their associations. We can also combine existing nodes to create new nodes, what 

one might call cognitive griffins (a griffin had the head and wings of an eagle and the body of a 

lion). Indeed, we know that memory works like this; Bartlett’s (1995) work in Remembering and 

much research since has shown that much of cognition is constructive. Stories evolve in their 

retellings (Jagiello & Hills, 2018; Moussaïd, Brighton, & Gaissmaier, 2015) and we can 

construct alternatives that we have never experienced (Hills, 2019). Thus, nodes can in principle 

form and move in relation to other nodes. The map itself can change, and any metaphor of the 

mind must be able to account for such change.  

Though network learning models exist for evaluating how concepts might be learned 

from their environment (Engelthaler & Hills, 2019; Hills, Maouene, Maouene, Sheya, & Smith, 

2009a), these models largely aim to predict what order, for example, children will acquire new 

words. A deeper question asks how concepts are formed and may change in relation to one 

another. More specifically, what are nodes and edges constructed of? Understanding the 

processes that generate nodes may help us understand how they can change. 

Neural networks may offer a useful process metaphor for understanding node behavior. 

Neural networks are different kinds of networks than cognitive networks, both in relation to 

structure and process. Structurally, cognitive networks usually adopt a localist representation—

cat is a single node—whereas neural networks adopt a distributed representation—cat is 

distributed across multiple nodes. In terms of process, how nodes change is not yet well-

described by cognitive network science. However, neural networks learn using prediction error 

and alter their distributed representations via feedback (Lecun, Bengio, & Hinton, 2015). 

A particularly useful instantiation of a neural network that may be analogous with neural 

processes in the brain (Gershman, 2019) is a generative adversarial network (Figure 2). A 

generative adversarial network contains a generator and a discriminator: the generator learns to 
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generate data (e.g., cats) which can fool the discriminator which learns to detect data categories. 

Both the generator and the discriminator learn through their interaction. A cognitive instantiation 

of a generative adversarial network can both learn to infer structure (e.g., categories) from data, 

but also produce data from categories, producing outputs that have never been seen before (e.g., 

novel faces). Note that the discriminator classifies the data into specific categories (our classic 

idea of nodes), but can also produce outputs that lie between other outputs, merging details from 

multiple starting categories (Karras, Laine, & Aila, 2019).  

A cognitive system with similar abilities could create novel nodes, such as the meaning 

of cabbage cage or gravy orgy, which also represent the kind of novel high-entropy stimuli 

associated with humor (Siew, Engelthaler, & Hills, under review). Moreover, if as network 

scientists we want to imagine that the nodes in our networks represent constellations of neural 

activity in a brain, then we must accept that cabbages, cages, and cabbage cages all represent 

different patterns of activity across a distributed representation (e.g., Musz & Thompson-Schill, 

2015). There is therefore a potential infinity of neural states and associated nodes in our 

networks.  

This truth is embedded in the neuroscience: short- and long-term synaptic plasticity 

means that constellations of neural activity involve many thousands of continuously tuning 

synapses, making our ‘network’ nodes moving targets (Holtmaat & Svoboda, 2009). This invites 

us to think of our output nodes as constructions of other nodes (“wavy”, or some other 

probabilistic variation, e.g., Tenenbaum, Kemp, Griffiths, & Goodman, 2011), somewhat similar 

to the interactive activation model of word recognition with adjustable weights (McClelland & 

Rumelhart, 1981). 

A more recent model of semantic representation shares an architecture similar to our 

generative analogy (Jamieson, Avery, Johns, & Jones, 2018; McKoon & Ratcliff, 1992).  In this 

architecture, words are not abstracted into prototypes by averaging across the contexts in which a 

word appears—which is the more typical method of distributional semantics. Instead, words 

preserve their idiosyncratic regularities in an exemplar representation, which captures individual 

contexts. This allows a retrieval process to recover meanings associated with various homonyms 

and polysemes (e.g., break as in smash or break as in report)—a standard problem for 

distributional semantic models. The model proposed by Jamieson et al. (2018)—the instance 

theory of semantics—distributes concept information across features and allows memory traces 
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to be constructed at retrieval based on differential feature activation.  This may offer a process 

based mechanism for deriving wormhole-like behaviour and it also has the properties of the 

generator we propose here. 

 

4. Core challenges in cognitive network science 

 Wormholes, skyhooks, and generators offer metaphors to further elucidate the underlying 

assumptions of the map and vehicle framework by suggesting how they might be otherwise.  

There are several additional core challenges that cognitive network scientists should be aware of, 

which represent both pitfalls and opportunities: What “stuff” make up the edges in cognitive 

networks, how can we measure the effect of change and context in cognitive networks, and the 

ability to measure individuals, not just be aggregated data of groups.

 

 

Figure 2. Alternative to the standard map and vehicle framework. Wormholes allow individuals 

to take shortcuts across a network by using a separate network that contains a more direct path to 

the destination. Skyhooks represent cognitive processes that cause motion on the network 

independent of the network structure. Generators represent multipartite networks in which the 

top-level localist network is constructed from activations of a lower-level distributed network.  

 

4.1. Network Chimera 

What holds the mind’s nodes together? What are its edges (the links between nodes)? 

Importantly, even in the  related field network neuroscience, researchers still discuss what the 

edges should be in functional MRI connectivity-based networks (Lurie et al., 2019). In cognitive 

network research, the discussion is a bit more muted, but needs to take place. Researchers have 

wielded a strikingly large set of materials with which to link their network nodes, such as 

phonological similarity (FAT and CAT are neighbors; Vitevitch, 2008; Vitevitch & Castro, 

2015), perceptual features (a banana is yellow and so is a school bus, Sizemore, Karuza, Giusti, 

& Bassett, 2017), functional features (a hammer hits and so does a bat; Engelthaler & Hills, 
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2019), co-occurrences in language (Beckage, Smith, & Hills, 2011), semantic similarity derived 

from text (Bhatia, 2017; Hills et al., 2010), orthographic similarity (Siew, 2018), similarity of 

responses to items in questionnaires (Christensen, Kenett, Aste, Silvia, & Kwapil, 2018), and 

many other things (Siew et al., 2019). Is one of these the answer?  

It is tempting to suggest that edges in a memory network, for example, can be inferred 

from free association data (Abbott et al., 2015; De Deyne et al., 2019; Kenett et al., 2017; 

Kumar, 2021; Kumar et al., 2020). However, the cognitive mechanisms underlying free 

association and its ability to reliably represent individual-based and group-based representations 

are far from understood (Nelson, McEvoy, & Dennis, 2000). We can measure associations from 

people by giving them a cue word (e.g., cat) and asking for the first word that comes to mind, the 

target (Nelson, McEvoy, & Schreiber, 2004). Other free association data collection approaches 

require participants to generate multiple responses (De Deyne et al., 2019; Kenett, Kenett, Ben-

Jacob, & Faust, 2011). There are large collections of these free association norms (e.g., De 

Deyne et al., 2019; Nelson et al., 2004). Free associations are a common approach to estimate 

networks and have been used to model everything from memory retrieval (Steyvers & 

Tenenbaum, 2005) to word learning (Hills, Maouene, Maouene, Sheya, & Smith, 2009b).  

However, Jones et al. (2015) argued that free associations have a Turk problem. The 

problem is named after the 18th century chess-playing automaton, the Mechanical Turk, which 

secretly housed a chess-playing boy. Similar to the Turk, free associations (especially when 

multiple response are required) may secretly house one or more processes. In other words, they 

may not be a process-free read out of an individual’s underlying cognitive representation. If 

researchers are trying to explain the cognitive processes that produce a certain behavior, using 

free associations may obscure that process. Alternatively, if one is representation-process 

agnostic—and indifferent to the underlying mechanism driving the behavior—then free 

associations may be easy and ideal. If nothing else, they are often a good place to start in 

identifying differences, before one moves on to exploring the processes that give rise to those 

differences (see Hills, Maouene, Riordan, & Smith, 2010 for an example of exploring what may 

drive a free association pattern in a network). 

What edges work best are likely to depend on the question one is trying to answer. For 

children learning early words, co-occurrences in language appear to outcompete other measures 

(including free associations) in predicting order of word learning (Hills et al., 2010; Hills et al., 
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2009b). But different questions about word learning provide roles for different kinds of networks 

(Hills & Siew, 2018). In some cases, evidence against one kind of network representation (e.g., 

features: being furry, having eyes, etc) is revived when the process used to construct edges is 

revised. For example, Hills et al. (2009b) showed that feature networks were not effective at 

predicting the order of children’s word acquisition when network edges represented one or more 

shared features. However, Engelthaler and Hills (2017) found that if they reframed feature 

networks based on distinctiveness—how dissimilar are two objects—they could predict word 

order using features. This invites us to consider that network edges are themselves the outcomes 

of cognitive processes.  

An alternative to committing to a single type of edge is to keep all the different edge 

types and represent them in different layers, in what are called multiplex networks. Various 

approaches to multiplex networks have proven to be quite enlightening  (Stella, 2019, 2020; 

Stella, Beckage, & Brede, 2017; Stella, Beckage, Brede, & De Domenico, 2018; Stella & Brede, 

2016; Stella & Kenett, 2019). Moreover, recent work has shown that the relative layers of 

multiplex networks (e.g., phonology, co-occurrences, and free associations) vary in their 

predictive power over time in relation to early word learning (Stella, 2019; Stella et al., 2018)—

which indicates a general need to attend to individual differences (e.g., age-related differences) 

when testing process and representation hypotheses. Moreover, multiplex networks may offer a 

substrate to explain the wormhole findings discussed above and the short-term network change 

described below (Kenett & Thompson-Schill, 2020). 

 

 

4.2. Network Change 

Given that cognitive representations may change as we learn or age, it is useful to ask 

whether and how networks change over time (Figure 3). A few studies have investigated the 

effect of aging on semantic memory, or the aging lexicon (Wulff, De Deyne, Jones, Mata, & 

Consortium, 2019). A seeming paradox in aging research is that while many cognitive capacities 

decline over time, people accumulate more semantic knowledge as they age (Park et al., 2002). 

Aging cognitive network studies report structural properties of the lexical representation that 

vary across the lifespan (Cosgrove, Kenett, Beaty, & Diaz, 2021; Dubossarsky, De Deyne, & 

Hills, 2017; Wulff, Hills, & Mata, 2018; Zortea, Menegola, Villavicencio, & Salles, 2014) and 



Running Head: Cognitive networks and the mind 

 

 16 

find that concepts in older adults’ semantic memory are less well connected and are more 

segregated (any pair of concepts in the network are “further apart”) than those of younger adults. 

For example, Dubossarsky et al. (2017) analyzed the network structure of free associations 

obtained from a cross-sectional sample across the lifespan to estimate semantic networks for 

groups of young, middle-aged, and older adults. The authors find a U-shape change in semantic 

memory properties across the lifespan: Semantic memory starts off as sparse, increases in density 

towards midlife, which is then followed by increasing sparseness in late life (Dubossarsky et al., 

2017). Cosgrove, Kenett, Beaty, and Diaz (2021) have recently shown how such structural 

changes lead to diminished flexibility in these networks. Importantly, such aging differences 

across the mental lexicon may be related to changes in retrieval processes, which are also known 

to change across the lifespan (Salthouse, Atkinson, & Berish, 2003). 

Short-term change in cognitive networks may also occur (Kenett & Thompson-Schill, 

2020; Yee & Thompson-Schill, 2016). Kenett and Thompson-Schill (2020) estimated semantic 

networks based on free associations, before and after a short-term cognitive manipulation where 

they primed participants to process concepts via different strategies. These strategies either had 

participants focus on the dominant features of these concepts, or on relations between these 

concepts and other concepts (Kenett & Thompson-Schill, 2020). The authors found that 

processing concepts based on the relations between them led to changes in the post-manipulation 

semantic network. In addition, the authors show that in a baseline condition—where pre- and 

post-semantic networks were estimated without the manipulation task—there were no 

differences between the two networks, suggesting they remained stable. 

However, an alternative interpretation to the findings of Kenett and Thompson-Schill 

(2020) is that the manipulation task affected participants sensitivity to different features of the 

concepts, which led to different retrieval processes during the post-manipulation free association 

task, and not to changes at the representational level. Such an account fits with the instance 

theory of semantic memory described above (Jamieson et al., 2018), and also dynamical attractor 

network models, which model how an input to the network (such as thinking about a concept) 

may change the state into which the network settles depending upon the time course of input 

activation (e.g., conceptual combinations). For example, Lerner et al. has shown how associative 

thinking and semantic priming can be modelled based on such attractor-based models (Lerner, 

Bentin, & Shriki, 2012, 2014; Lerner & Shriki, 2014).  



Running Head: Cognitive networks and the mind 

 

 17 

To address this alternative perspective, Kenett and Thompson-Schill (2020) conducted 

several additional analyses of the behavioral data collected to show that the conceptual 

combination manipulation similarly affected the free associations generated after the 

manipulation, compared to those generated before, but that the content of retrieved associations 

was different, according to the manipulation. These findings may provide indirect support for 

representation-based, and not process-based, change. However, this evidence can also be 

explained by the instance theory of semantic memory (Jamieson et al., 2018). Thus, whether the 

representation level was affected at all, and to what extent these short-term effects persist 

remains an open question. 

 

4.3. Aggregated Networks 

The majority of network research is group-based, aggregating data from multiple 

individuals to compare differences in representation and process. The problem with such a 

group-based approach relates to a larger more general issue in cognitive research related to 

problems of making inferences about individuals from aggregated data (Estes, 1956; Myung, 

Kim, & Pitt, 2000). Consider the studies described above regarding differences in the semantic 

networks in low and high creative individuals (Kenett & Faust, 2019b). Creativity varies across 

individuals, yet these cognitive network studies aggregate participants into low and high creative 

groups. Aggregation of individual data poses potential problems and it is not well understood in 

cognitive networks science. Thus, where possible, we recommend collecting individual data.   

Some studies have collected individual networks from either the individuals themselves 

or their environments (Benedek et al., 2017; Hills & Pachur, 2012; Hills & Segev, 2014; Morais, 

Olsson, & Schooler, 2013; Zemla et al., 2016). For example, Morais, Olsson, and Schooler 

(2013) applied a “snow-ball” sampling method to collect associative networks for individuals, 

taking the targets produced during one sampling event as cues in subsequent sampling events, a 

procedure which took 30 to 60 days to complete. Zemla et al. (2018; 2016) combined multiple 

re-iterations of the semantic fluency task with Bayesian modelling to estimate an individual’s 

semantic network for the animal category. Finally, others have used relatedness judgment tasks, 

where participants rate the relatedness of pairs of words, to estimate the semantic network of 

these words, an approach that has been conducted across several languages (Benedek et al., 

2017; Bernard, Kenett, Ovando-Tellez, Benedek, & Volle, 2019; He et al., 2020). Individual data 
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can be especially useful for teasing apart differences in representation and process. An 

individual’s network can be collected independently of the processes they use to navigate it, 

which can be further investigated using additional cognitive control tasks, for example, allowing 

one to infer that working memory performance predicts network perseveration (e.g., Hills & 

Pachur, 2012).

 

 

Figure 3, Core challenges in cognitive network science. Network chimera represents the 

challenge of identifying the proper edges when there are many to choose from. Network change 

represents the challenge of characterizing how networks and processes change over time. 

Aggregate networks represents the challenges of understanding aggregate networks built from 

individual data, which potentially hide the underlying processes or structure that gave rise to 

them. 

 

5. Conclusions 

Is the mind a network?  Our analysis suggests that the network analogy is far from 

complete. While the mind clearly represents information, and that representation may be usefully 

approximated as a network, the characteristics of retrieved knowledge as dealt with by cognitive 

network science cannot be reduced to a network. The reigning assumptions (one network or 

process to rule them all) already invite a map and vehicle metaphor. Indeed, it is not yet clear 

how to capture representational data without involving some form of retrieval process. Though 

we discuss numerous ways to disentangle these, the mind (which we have only defined from a 

functionalist perspective) would seem to at least involve process and representation.   

We also grappled with additional assumptions: bendy networks (wormholes), 

executive/cognitive control processes (skyhooks), and nodes as dynamic and distributed 

representations (generators). Given the kinds of questions cognitive scientists are likely to ask 

about cognition, these too would seem to be required for a complete understanding of cognition. 

In practice, the emphasis on a map or vehicle varies across practitioners of the network arts. The 

alternatives we enumerate here (and no doubt others) have yet to be examined and many 
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theoretical issues remain in mid-embrace. Thus, in answer to the question of “where do we go 

from here,”  Table 1 provides an overview of existing assumptions as well as the new metaphors 

and challenges that remain open questions for future work.  

It is always useful to examine our metaphors and the limitations they may obfuscate as 

well as the alternatives that may liberate them.  We hope to have captured some of that intention 

here, recognizing that our approach is still likely to be limited. There is of course additional 

phenomenology that cognitive network science has yet to address and that we did not discuss in 

detail.  These include problems like chunking in memory, procedural knowledge, personality, 

episodic memory, the difference between experts and novices in strategic control (e.g., in chess), 

and so on. These remain exciting open challenges for cognitive network science and we are 

hopeful that the application of cognitive network science will remain a useful tool in contributing 

to how we understand these questions. 

Nonetheless, one clear finding of this exercise is the substantial progress cognitive 

network science has made on various fronts in a relatively short amount of time, and the 

numerous ways in which network science has demonstrated the importance of structure and 

control in explaining cognitive phenomena. We might turn to the brain for some help in guiding 

us towards a future cognitive metaphor. The controlled semantic cognition framework suggests 

that semantic cognition involves the interaction between two neural systems: conceptual 

knowledge and control processes that guide retrieval (Lambon Ralph, Jefferies, Patterson, & 

Rogers, 2017; Rogers, Patterson, Jefferies, & Lambone-Ralph, 2015). According to this model, 

the control processes are “implemented within a distributed neural network that interacts with, 

but is largely separate from, the network for semantic representation” (Lambon Ralph et al., 

2017; p. 49). This framework suggests that it should be possible to study representation and 

processes separately at the cognitive level. More importantly, it highlights the strengths of 

incorporating findings and insights from brain research into cognitive theory. 

Nevertheless, and despite its limitations and required theoretical and methodological 

growth, we argue that cognitive network science is a powerful quantitative perspective to capture 

the complexity of cognition. Its central contribution is its ability to understand how 

representations differ, how they are acquired, and how they engage with other processes to 

influence behavior. Moreover, the quantitative language of networks allows us to conduct novel 

research that combines and cuts across different levels of analysis (neural networks, cognitive 
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networks, social networks), allowing us to ask new research questions that were not possible to 

ask before. In sum, cognitive network science poses the potential to significantly impact our 

theories and operationalization of complex cognitive phenomena. Though assumptions abound, 

in many cases the alternatives to these assumptions represent untapped opportunities to advance 

new theoretical and empirical cognitive science.  
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Table 1: Assumptions, alternatives, and core challenges that lie at the heart of cognitive network 

science. For each of these issues, we highlight the key questions an avid cognitive network 

scientist should be cognizant of and examine as they set forth in a cognitive network research. 

 

Assumptions on the network model 
Map and vehicle Cognitive processes consist of 

information representations and 

processes that operate on these 

representations to generate behavior.  

One-network-to-rule-them-all If you assume everyone has the 

same network, then you guarantee 

the differences will be in the 

processes. 
 

One-process-to-rule-them-all If you assume everyone has the 

same process, then you guarantee 

the differences will be in the 

representation. 
 

Alternative cognitive network metaphors 

Wormholes Can people access more than one 

network independently in the same 

task, or is there one fixed network? 
 

Generators Are nodes fixed or might the network 

be better represented as a multipartite 

network, for which the location of 

nodes in the network are influenced by 

their relationships with nodes in other 

networks? 

 

 

Skyhooks Is there a non-network process (e.g., 

executive attention) the influences 

movement on the representation? 

 
Core challenges in cognitive network science 

Network chimera Are you studying a particular kind of 

edge or a particular kind of behavior? If 

the latter, are edges one feature or 

many? Can you compete different 

edges against one another? 

 

 
Network change Does the network change in a 

predictable way with age or 

experience? 
 

 Aggregated networks Is the network aggregated data, which 

may obscure underlying structure or 

processes?  Do you have access to 

individual data?  
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