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ABSTRACT Bacteria that colonize animals must overcome, or coexist, with the reac-
tive oxygen species products of inflammation, a front-line defense of innate immu-
nity. Among these is the neutrophilic oxidant bleach, hypochlorous acid (HOCl), a
potent antimicrobial that plays a primary role in killing bacteria through nonspecific
oxidation of proteins, lipids, and DNA. Here, we report that in response to increasing
HOCl levels, Escherichia coli regulates biofilm production via activation of the digua-
nylate cyclase DgcZ. We identify the mechanism of DgcZ sensing of HOCl to be
direct oxidation of its regulatory chemoreceptor zinc-binding (CZB) domain.
Dissection of CZB signal transduction reveals that oxidation of the conserved zinc-
binding cysteine controls CZB Zn21 occupancy, which in turn regulates the catalysis
of c-di-GMP by the associated GGDEF domain. We find DgcZ-dependent biofilm for-
mation and HOCl sensing to be regulated in vivo by the conserved zinc-coordinating
cysteine. Additionally, point mutants that mimic oxidized CZB states increase total
biofilm. A survey of bacterial genomes reveals that many pathogenic bacteria that
manipulate host inflammation as part of their colonization strategy possess CZB-
regulated diguanylate cyclases and chemoreceptors. Our findings suggest that CZB
domains are zinc-sensitive regulators that allow host-associated bacteria to perceive
host inflammation through reactivity with HOCl.

IMPORTANCE Immune cells are well equipped to eliminate invading bacteria, and
one of their primary tools is the synthesis of bleach, hypochlorous acid (HOCl), the
same chemical used as a household disinfectant. In this work, we present findings
showing that many host-associated bacteria possess a bleach-sensing protein that
allows them to adapt to the presence of this chemical in their environment. We find
that the bacterium Escherichia coli responds to bleach by hunkering down and pro-
ducing a sticky matrix known as biofilm, which helps it aggregate and adhere to
surfaces. This behavior may play an important role in pathogenicity for E. coli and
other bacteria, as it allows the bacteria to detect and adapt to the weapons of the
host immune system.

KEYWORDS hypochlorous acid, redox signaling, bacterial sensory transduction,
chemoreceptor zinc-binding domains, diguanylate cyclase Z, CZB, HOCl, biofilm,
bleach, c-di-GMP, diguanylate cyclase, reactive oxygen species

Host-associated bacteria use a repertoire of sensory proteins to eavesdrop on host
chemical cues and adapt their lifestyles accordingly. Two primary pathways that

bacteria use for lifestyle adaptation in hosts are biofilm formation (1), regulated by
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diguanylate cyclases (2), and chemotaxis (3), regulated by chemoreceptors (4), which
serve to direct bacterial localization and biogeography. One of the most consequential
host processes for bacteria that colonize animals is inflammation, in which neutrophils
infiltrate tissue and generate reactive oxygen and nitrogen species to control and elim-
inate invading microbes (5, 6). Of these cytotoxic species, hypochlorous acid (HOCl)
has been shown to play a dominant role in killing bacteria (7). HOCl is catalyzed from
hydrogen peroxide (H2O2) and chloride by myeloperoxidase, an enzyme abundant in
neutrophil granules and neutrophil extracellular traps (8, 9). Inflamed tissue can harbor
millimolar concentrations of HOCl, with individual neutrophils able to generate as
much as 134mM HOCl/min (6, 10–12). HOCl is an extremely reactive chemical that acts
as a bactericide through the oxidation of a broad spectrum of cellular components,
especially sulfur-containing amino acids (5, 7, 13). A cellular consequence of HOCl ex-
posure is the mobilization of cellular zinc, which occurs as a result of HOCl oxidation of
zinc-cysteine clusters and small-molecule thiols (14–16).

Prior investigations have sought to understand bacterial defenses against HOCl,
which include upregulation of antioxidant enzymes through the HOCl-responsive tran-
scription factors OxyR, HypT, RclR, and NemR (17–21) and activation of the molecular
chaperones Hsp33 and CnoX (22, 23). However, the idea that bacteria could utilize
HOCl as a chemical cue to inform decisions about sessility, motility, and localization
within a host is comparatively understudied. Yet, many examples are known in which
bacteria utilize biofilm and chemotaxis pathways to colonize inflamed tissue. For exam-
ple, the formation of biofilms inhibits bacterial clearance even in the face of extensive
neutrophil recruitment, such as for uropathogenic Escherichia coli strains that cause
pyuria (24), and Legionella spp. and Streptococcus pneumoniae strains that establish
persistent infections in the inflamed lung (25–27). The enteric pathogen Salmonella
enterica serovar Typhimurium utilizes chemoattraction toward the alternative electron
acceptor tetrathionate, formed by reaction of HOCl and hydrogen sulfide in the
inflamed gut, to outcompete native obligate fermenters of the microbiota (28). The
human stomach pathogen Helicobacter pylori uses chemotaxis to localize to gastric
wounds (29) and colonizes the stomach antrum and corpus despite an aggressive
inflammation response (30). In addition, individuals with chronic gastrointestinal
inflammation, such as Crohn’s disease and ulcerative colitis, are well known to exhibit
disrupted microbiome communities thought to perpetuate a cycle of dysbiosis recalci-
trant to correction with therapeutics (31, 32). These examples suggest that inflamed
host environments that contain HOCl can dramatically shift the colonization, biogeog-
raphy, and behavior of host-associated bacteria.

Chemoreceptor zinc-binding (CZB) protein domains were first identified in H. pylori
(33) and consist of a four-helix bundle fold with a unique and conserved 3His/1Cys
zinc-binding motif (34). CZB-containing proteins have been reported to play roles in
sensing a diverse set of exogenous effectors, including Zn21 and other metals, pH,
nutrients, H2O2, and superoxide, to regulate bacterial chemoreceptors and diguanylate
cyclases (33–40). Whether CZB domains use a shared molecular mechanism to mediate
cellular responses to such dissimilar stimuli has remained unclear. Adding to the
enigma of CZB ligand sensing, we recently showed that H. pylori uses the chemorecep-
tor transducer-like protein D (TlpD), which contains a C-terminal CZB domain, to sense
HOCl through direct oxidation of the conserved Cys residue in the CZB zinc-binding
core (35). As an example of the biological significance of this mechanism and relevance
to human disease, TlpD was shown to facilitate chemoattraction to HOCl sources for H.
pylori, providing an explanation for the bacterium’s persistence in inflamed tissue and
tropism for gastric wounds (29, 30, 35, 41).

H. pylori is an unusual bacterium that is highly adapted for colonizing the human
stomach, and it is possible that our observation of HOCl sensing by TlpD was a func-
tion unique to a single H. pylori chemoreceptor. Thus, it was unclear to what extent our
findings on the chemoreceptor TlpD could be extrapolated to the diverse array of CZB-
containing proteins that exist in nature, such as CZB-regulated diguanylate cyclases
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which, unlike TlpD, contain an N-terminally-linked CZB (34). Distant CZB homologues
exhibit important differences, including low sequence similarity outside the zinc-bind-
ing core and cytoplasmic versus periplasmic cellular localization. Additionally, CZB-con-
taining proteins are possessed by bacteria that inhabit diverse environments (33–35).
In fact, prior evidence suggested that CZB domains in other contexts might function
solely as direct sensors of exogenous Zn21. The Escherichia coli diguanylate cyclase Z
(DgcZ, previously referred to as YdeH) (34, 42–44) is a cytosolic CZB-regulated diguany-
late cyclase and catalyzes the conversion of GTP to bis-(39–59)-cyclic dimeric GMP (c-di-
GMP), a ubiquitous bacterial signaling molecule well known to play pivotal roles in
bacterial decisions of cell adhesion, biofilm formation, and pathogenicity (1, 45, 46).
Generally, increases in cellular c-di-GMP correspond to decreased motility, synthesis of
biofilm polymers, and formation of biofilm (45). Earlier work showed that E. coli DgcZ
catalysis of c-di-GMP is regulated through a subfemtomolar affinity for Zn21, whereby
the zinc-bound protein is enzymatically inhibited and the zinc-free protein is activated,
and addition of exogenous Zn21 reduces the formation of biofilm (34). E. coli DgcZ
exhibits many differences from H. pylori TlpD: the CZB domains of the two proteins
share only 20% sequence similarity, the full-length proteins have different domain
architectures and signaling outputs, and the bacteria colonize different sites within the
host. Additionally, E. coli does not possess a TlpD-like chemoreceptor. Thus, we have
used E. coli DgcZ as a model system to investigate whether CZB domains act as HOCl
sensors in diverse contexts to regulate host-associated bacterial lifestyles.

In this study, we contribute to an emerging picture of how bacterial CZB domains
act as monitors of cellular zinc homeostasis and how host-associated bacteria can uti-
lize this function to perceive the neutrophilic oxidant HOCl, a major disruptor of zinc
homeostasis (15, 16). These data support earlier reports that oxidants can increase E.
coli biofilm formation (38, 47) and suggest how enteropathogenic, enteroaggregative,
and uropathogenic E. coli may respond to host inflammation to favor pathogenicity
(48–50). The ability of CZB domains to sense HOCl and regulate host-associated bacte-
rial lifestyles implicates this family of proteins as important players in diseases of gut
dysbiosis and chronic inflammation, with relevance for bacterial biology across diverse
phyla.

RESULTS
DgcZ regulates biofilm in response to exogenous HOCl. To investigate whether

E. coli DgcZ could function as an HOCl sensor and regulate bacterial biofilm in
response to HOCl, E. coli biofilms were grown and quantified under various conditions.
When grown in vitro, E. coli DgcZ expression is inhibited by carbon storage regulator A
(CsrA), which directly binds mRNA transcripts of DgcZ to inhibit translation (43, 51).
Therefore, we utilized a previously engineered csrA deletion strain of MG1655 that per-
mits a moderate degree of DgcZ expression and biofilm formation under laboratory
conditions to mimic behavior inside a host (43). In this background, we compared the
biofilm formation of strains expressing or lacking dgcZ (dgcZ1 or DdgcZ, respectively)
in a static microplate when treated with increasing concentrations of HOCl at mid-log
exponential phase (Fig. 1A). Crystal violet staining was used to quantify biofilm as
done previously (34), with relative biofilm calculated as a ratio of the biofilm of each
sample divided by the average biofilm of untreated wild type in the same experiment.
No difference in biofilm was observed after 24 h for controls containing untreated cells,
for water-treated strains, or for strains treated with phosphate-buffered saline (PBS)
buffer at pH 7 (Fig. 1A). Single applications of HOCl in PBS buffer showed a bimodal
response for wild-type cells, with relative biofilm increasing in response to micromolar
HOCl, to a maximum of 1.6-fold at 250mM, and decreasing at higher HOCl concentra-
tions (Fig. 1A). The DdgcZ mutant displayed a different trend, showing decreased bio-
film in the range of 5 to 250mM HOCl (Fig. 1A). The significance of non-dgcZ-depend-
ent biofilm changes was unclear and not replicated in other experiment formats (see
below), so we did not investigate it further. Under these conditions, both dgcZ1 and
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DdgcZ cultures were observed to grow equivalently and did not display growth inhibi-
tion (Fig. 1B). Experiments with more established cultures with cells treated at an A600

of 1.0 showed a smaller dgcZ-dependent increase in biofilm in response to a single
HOCl treatment, as well as biofilm inhibition with exogenous zinc treatment, as was
previously reported (34) (see Fig. S1A in the supplemental material).

Since single treatments of HOCl might react quickly and dissipate, we performed a
similar version of this static biofilm microplate assay with treatment “point sources” to
model a more sustained exposure to an HOCl microgradient, such as might occur in
the vicinity of neutrophils and extracellular granules that contain myeloperoxidase.
This was accomplished by using a 96-well Rainin liquidator with pipettes containing
HOCl treatments over the range of 5 to 2,500mM that were submerged in cell cultures
for 16 h (Fig. 1C). These data showed a dgcZ-dependent maximal increase in relative
biofilm of 6.25-fold at 300mM (Fig. 1C). For these cultures, the A600 of the planktonic
population was lower for the dgcZ1 than the DdgcZ strain, possibly owing to the
higher fraction of surface-attached cells for the dgcZ1 strain, and a slight negative cor-
relation was observed between cell density and increasing HOCl concentrations
(Fig. 1D). To test the growth of cells post-HOCl treatment, we inoculated fresh LB with
cultures from HOCl point source experiment endpoints (Fig. 1E and F). These experi-
ments showed a slight delay in time to reach mid-log exponential phase as a function
of increasing HOCl concentrations (Fig. 1G), but the doubling times during exponential
phase were similar across a large range of HOCl treatments (Fig. 1H). The influence on
biofilm as a function of proximity to an HOCl microgradient was difficult to assess
using microliter volumes of cell culture, so we scaled up these experiments in 15-mm
petri dishes and 3ml of cell culture. Experiments contained a central point source
treatment of buffer or HOCl, and biofilms were visualized by crystal violet staining after
24 h. These assays suggested that biofilm formation distribution may be altered in
response to HOCl microgradients (Fig. 1I). The total biofilm tended to increase in
response to HOCl in these assays, similar to experiments with smaller cell volumes
(Fig. 1J). Collectively, these data indicate that DgcZ regulates biofilm formation in
response to physiological concentrations of HOCl and that no serious toxicity or
impediment to growth occurs for E. coli under these conditions.

DgcZ uses a zinc-binding cysteine for selective reactivity with HOCl. Previously,
we demonstrated that the H. pylori chemoreceptor TlpD detects the inflammation
product HOCl through direct oxidation of the cysteine of the zinc-binding core to form
cysteine sulfenic acid (Cys-SOH) (Fig. S1B) (35, 52). The structure of E. coli DgcZ is com-
prised of a CZB domain (residues 1 to 128) and a GGDEF domain (residues 129 to 296)
(Fig. 2A). The CZB domain of DgcZ contains a 3His/1Cys zinc-binding core identical to
that of TlpD (34, 35, 52) and so could, in principle, sense HOCl by the same molecular
mechanism. Mapping amino acid conservation patterns of CZB-regulated diguanylate
cyclases (232 sequences) onto the crystal structure of E. coli DgcZ (models based on
PDB ID 3T9O and 4H54) (34) showed strong conservation in the regions proximal to
the CZB zinc-binding site and the GGDEF catalytic site, suggesting that these regions
of the protein are broadly important for function (Fig. 2A).

To investigate the molecular basis for DgcZ sensing of exogenous HOCl and regula-
tion of biofilm, we conducted biochemical analyses with purified recombinant E. coli
DgcZ to experimentally determine how the protein could facilitate HOCl sensing. We
used DgcZ mutants as tools to model the effects of different oxidation states and test
the dependence of HOCl reactivity on the conserved zinc-binding C52. A C52A mutant
models aspects of the Cys-SOH state, having no charge at neutral pH, whereas a C52D
mutant may approximate either the Cys-SO2 or Cys-SO2

2 state, having a negative
charge at neutral pH. In addition, we created DgcZ constructs lacking all cysteines or
containing only C52, but these proteins were unstable and unable to be used for in
vitro experiments (data not shown).

Dimedone is a cyclic diketone that can form stable adducts with cysteine sulfenic
acids and is therefore a useful reagent for quantifying cysteine oxidation (53). The
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reactivity of full-length DgcZ with various concentrations of HOCl was determined
through dimedone treatment and slot blotting analysis to monitor formation of Cys-
SOH with an antibody that recognizes cysteine-dimedone adducts (Fig. 2B) (53). As the
reaction with HOCl is thought to be extremely rapid at neutral pH (approximately 109

M21 s21) (13), we expect that these data reflect reaction endpoints. The wild-type pro-
tein contains five cysteines (C52, C85, C223, C230, and C284), and readily forms Cys-
SOH in the presence of micromolar HOCl (Fig. 2B). In contrast, the C52D mutant exhib-
ited 5.7-fold less Cys-SOH formation (Fig. 2B). Further characterization using the CZB
domain alone (residues 1 to 128) recapitulated this behavior, with a 10 mM concentra-
tion of the wild-type protein being half maximally oxidized by 122mM HOCl and the
C52D mutant showing little oxidation even at 500mM HOCl (Fig. 2C). Using HOCl con-
centrations above 500mM reduced the amount of detected Cys-SOH, which we
hypothesize is due to overoxidation of C52 to cysteine sulfinate (Cys-SO2

2), as was
observed to occur for H. pylori TlpD at similar concentrations (35). In contrast, treat-
ment with equivalent concentrations of H2O2 produced virtually no Cys-SOH, showing
that C52 possesses the ability to discriminate between H2O2 and HOCl (Fig. 2D) (35).
Lastly, preoxidized CZB protein was reduced through the addition of glutathione disul-
fide, consistent with the reversibility of the Cys-SOH formation (Fig. 2E). These data
show that DgcZ has the capacity to react selectively with HOCl through oxidation of
C52, can differentiate between HOCl and H2O2, and can be reduced by reductant sys-
tems present in bacteria.

HOCl oxidation promotes zinc release from the CZB domain. Zinc is a metal that
is essential for many cellular processes, and cells maintain strict control of zinc through
the competition of many high-affinity binders that effectively maintain the concentration
of free cytosolic Zn21 near zero (54, 55). For example, the E. coli zinc uptake regulator
(Zur) protein responds to Zn21 in the subfemtomolar range (56, 57). Hence, the subfem-
tomolar affinity for Zn21 exhibited by DgcZ (34) positions the enzyme at a threshold
necessary to respond to cytosolic zinc. Zinc binding in the CZB domain regulates the en-
zymatic activity of DgcZ by allosterically inhibiting the productive encounter of two
GTP-loaded GGDEF domains to catalyze c-di-GMP (2, 34). Oxidation of zinc-coordinating
cysteines by HOCl has been known to promote zinc release (14, 58), which we hypothe-
sized could be a molecular basis by which DgcZ is regulated by HOCl.

Perceiving effects on zinc binding for proteins with such high zinc affinity requires
the presence of zinc-binding competitors, as even 10-fold changes will not otherwise
substantially alter the zinc-bound $ zinc-free equilibrium. Reactions to test CZB zinc
lability were performed in PBS buffer, which is both inert to reaction with HOCl and
contributes to zinc chelation (55). Relative amounts of soluble Zn21 were monitored
with the fluorescent zinc probe zinpyr-1, which has a relatively high affinity for Zn21

and displays a strong increase in fluorescence when zinc bound (35, 59). To assay rela-
tive zinc affinity, we competed the wild-type DgcZ protein against the zinpyr-1 probe
in the presence of added zinc and observed that DgcZ only slightly diminished the
zinc available to the probe (Fig. 2F). To gain insight into the possible effects of cysteine
oxidation on zinc binding, we performed equivalent experiments with the C52D mu-
tant and found that the probe’s fluorescence signal was decreased by about half
(Fig. 2F).

We next assayed whether HOCl treatment alters CZB zinc binding. HOCl treatment
of the wild-type protein showed a bimodal response; zinc was increasingly liberated
(made available for the probe to bind) by increasing concentrations of HOCl up to
500mM (50-fold molar HOCl/DgcZ ratio), and higher HOCl concentrations decreased
the amount of zinc available to the probe (Fig. 2G). In contrast, the C52D mutant was
unresponsive to HOCl and relinquished little zinc even when treated with millimolar
HOCl (Fig. 2G). At 2.5mM HOCl, the wild-type retention of zinc was approximately
equal to that of the C52D mutant (Fig. 2G). Based on the concentrations of HOCl that
appear to result in Cys-SOH versus Cys-SO2

2 oxidation states for wild-type DgcZ
(Fig. 2C), we interpret these data to indicate that the Cys-SOH state decreases zinc
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affinity, the Cys-SO2
2 has increased zinc affinity, and that the C52D mutant mimics the

increased zinc affinity of the Cys-SO2
2 state (Fig. 2G). The C52D mutant also exhibits

higher intrinsic fluorescence and a stronger alpha-helical circular dichroism signature,
suggesting that local alterations to the stability of the zinc-binding core induce large-
scale changes to the domain’s global structure (Fig. 2H and I).

Computational dissection of CZB signal transduction. We were motivated to
learn how the cysteine redox state may alter the zinc-binding core and global CZB
structure. Our previous biochemical analysis of TlpD indicated that oxidation can pro-
mote local unfolding of the CZB region containing the conserved Cys (a2-a3) (35)
(Fig. 3A; Fig. S1B). We wondered if this conformational change could play a role in reg-
ulating structurally distant parts of the full-length protein. To address this question, we
employed molecular dynamics (MD) simulation to model how HOCl oxidation and zinc
release affect the structure of the CZB domain, which contains five a-helices and one
310-helix (Fig. 3A) (PDB ID 3T9O) (34, 60). We examined three redox states of the con-
served zinc-binding C52, namely, C52-S2 (native unreacted thiolate state when bound
to zinc), C52-SH, and C52-SOH (product of HOCl reaction), as well as two mutations,
C52A and C52D. For each state, triplicate simulations were performed for a duration of
1ms each, allowing six views of the active site (Movies S1A to S1E).

Our simulations revealed a loss of coordination between residue 52 and the zinc
atom within the Cys-SH, Cys-SOH, and C52A simulations, while the pair maintain tight
interactions throughout the C52D and Cys-S2 simulations (Fig. 3B). This loss of coordi-
nation has two principal effects. First, it leads to increased zinc lability and release from
the active site, as demonstrated by a corresponding increase in the distance between
zinc and the zinc-binding core residue His83 (Fig. S2A to E). Second, it markedly affects
the conformational flexibility of the entire a2-a3 segment (approximately residues 39
to 65) surrounding residue 52. This observation is in line with previous crystallographic
and biochemical data suggesting that a2-a3 becomes disordered upon disruptions to
the zinc-thiolate interaction (34, 35). This effect is illustrated by the stark increase in av-
erage root mean square fluctuation (RMSF) of this region for Cys-SOH compared to
Cys-S2 (Fig. 3C; Fig. S2F). Interestingly, the increased dynamics of the C52 position and
a2-a3 segment are propagated to the N and C termini, which connect to the down-
stream- and upstream-regulated protein domains, respectively (Fig. 3C, signal trans-
duction arrows). Comparison of average RMSFs across all systems reveals that the Cys-
SH, C52A, and Cys-SOH states, which disrupt zinc-cysteine interactions, display
increased global dynamics (Fig. 3D and E). Consistent with the trends of RMSF, an anal-
ysis of average secondary structure probability of the a2-a3 region showed that more
random coil is observed at the 310-helix for C52A, Cys-SH, and Cys-SOH, reflecting their
increased dynamics and propensity to undergo local unfolding, while less random coil
is observed for Cys-S2 and the C52D mutant, reflecting those models’ stability and
generally static nature (Fig. 3F). These data indicate that changes to the oxidation state
of C52 can induce large-scale alterations to CZB structure and dynamics.

To further understand how HOCl may promote CZB local unfolding and signal
transduction, we performed quantum mechanics (QM) calculations quantifying the
energetic tendency for different cysteine redox states to be displaced from the CZB do-
main by either water or the HOCl ligand. Using the core of the CZB domain in E. coli
DgcZ (34) as a model system, we examined the ligand exchange equilibria at three re-
dox and protonation sulfur states, namely, CH3S (H), CH3SO (H), and CH3SO2 (H)
(Table 1). Consistent with results from our MD simulations, our QM calculations indi-
cate that in all but one scenario, the protonated sulfur states are more likely to be dis-
placed from the zinc than the deprotonated states. Based on approximate pKa’s of
Cys-SH (pKa, ;8.6) (61), Cys-SOH (pKa, ;6.3 to 12.5) (62, 63), and Cys-SO2H (pKa, ;1.8)
(64), we suggest the following model at neutral cytosolic pH for the relative tendency
of discrete cysteine redox states to be displaced from the zinc complex. Prior to oxida-
tion, the deprotonated Cys-S– state is energetically favored to remain associated with
the zinc complex (DG for displacing CH3S– = 16.9kcal/mol by H2O and 7.2kcal/mol by HOCl).
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FIG 3 MD simulation of CZB dimer with variable residue 52 moieties. (A) Starting model of the E. coli CZB domain dimer based on crystal
structure PDB ID 3T9O (34). (B) Local unfolding events in the a2-a3 region for each model as monitored by the distance between Zn and the
residue 52 Ca atoms. Data from three independent simulations are shown (red, blue, purple), with independent active sites from each simulation
indicated by solid and dashed lines. (C) RMSFs, averaged across three simulations each, for the C52-S2 and C52-SOH models are shown mapped to
the CZB structure. The a2-a3 region involved in local unfolding is highlighted in yellow. Black arrows indicate structural changes that may be
involved in signal transduction. The zinc and residue 52 positions are represented by spheres. (D) Average RMSF across three simulations for each
model is shown, with the a2-a3 region that undergoes local unfolding highlighted in yellow. (E) Close-up view of highlighted region in panel D.

(Continued on next page)
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However, upon oxidation by HOCl, the protonated Cys-SOH state is more readily displaced
from the complex (DG for displacing CH3SOH=1.4kcal/mol by H2O and 20.4 kcal/mol by
HOCl), and even the deprotonated Cys-SO– state is destabilized compared to the unreacted
Cys-S2 state (DG for displacing CH3SO– = 3.6kcal/mol by H2O and 22.5kcal/mol by HOCl).
Following overoxidation, the Cys-SO2

– protonation state predominates and is less
favored than the Cys-SO– state to dissociate from the complex (DG for displacing
CH3SO2

– = 9.1 kcal/mol by H2O and 8.7 kcal/mol by HOCl).
HOCl relieves Zn-mediated inhibition of DgcZ enzymatic activity. Although we

had established that oxidation of DgcZ by HOCl promotes zinc release, we had yet to
determine whether enzyme activity is regulated in this manner. Therefore, we per-
formed activity assays measuring DgcZ production of c-di-GMP under various condi-
tions. Titration of ZnCl2 results in a linear decrease of enzymatic activity as measured
by the concentration of the c-di-GMP product after a defined incubation time (Fig. 4A).
Under these conditions, a superstoichiometric amount of ZnCl2 is required for com-
plete inhibition, likely due to Zn21 complexation with phosphate from the buffer. Zinc-
mediated inhibition of DgcZ can be relieved by the addition of a zinc chelator like
EDTA that competes for Zn21 (34). Partially zinc-loaded wild-type DgcZ shows a clear
activation by EDTA which can be fit well with a two-state model. Under the same
conditions, the C52D mutant shows considerably lower activity without EDTA but
converges to the same maximal value at high EDTA (Fig. 4B). The data conform to a
two-state model, but the inflection point occurs at approximately 10-fold higher
EDTA, consistent with Zn21 affinity being higher for the C52D mutant than for the
wild-type protein (Fig. 4B).

We performed a titration of HOCl in the presence of EDTA under conditions where
the available Zn21 was estimated to be shared about equally between DgcZ and EDTA
(Fig. 4C). Under these conditions, HOCl treatment increased DgcZ activity for HOCl of
#2mM (4-fold molar HOCl/DgcZ ratio), whereas larger concentrations induced a nega-
tive effect (Fig. 4C). Experiments with the C52A mutant showed no activation by HOCl
but did show inactivation at higher HOCl concentrations similar to that of the wild-
type protein (Fig. 4C). This leads us to conclude that the activating effect of HOCl seen
for wild-type DgcZ is due to specific oxidation of C52 to Cys-SOH and concomitant
release of Zn21 by the CZB domain (Fig. 4D). We had been interested to learn if specific
overoxidation of C52 to Cys-SO2

2 might also serve a regulatory purpose, potentially as
a way for bacteria to perceive high concentrations of HOCl. However, both the wild
type and the C52A mutant were inhibited at higher HOCl concentrations, suggesting

TABLE 1 Ligand exchange equilibria depicting the energetic tendency for the sulfur ligand
across protonation and oxidation states to dissociate from a model Zn21 complex

aEnergiesAQ:fig were calculated at 298 K and 1.0 atm and are reported in kcal/mol. Energies reflect the exchange
between various sulfur ligands of the zinc-binding core (X) to be displaced by ligands of different protonated
states (Y).

FIG 3 Legend (Continued)
Residue 52 is indicated by a black dashed line. (F) Secondary-structure probability profiles, created using Weblogo 3, are shown as determined by
Stride (122) (H, a-helix, red; C, coil, blue; T, turn, purple; G, 310-helix, orange). The secondary structure observed in the crystal structure is indicated
above the profiles.

Perkins et al. ®

May/June 2021 Volume 12 Issue 3 e00173-21 mbio.asm.org 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

bi
o 

on
 0

8 
Se

pt
em

be
r 

20
21

 b
y 

2a
02

:c
7f

:2
3b

2:
68

00
:a

de
1:

dd
5d

:8
59

b:
31

a1
.

https://mbio.asm.org


that the effects are due to nonspecific protein oxidation. The ability of DgcZ to be oxi-
dized by HOCl and to regulate c-di-GMP production provides a molecular basis for our
observations of biofilm regulation in response to exogenous HOCl (Fig. 1).

C52 is required for regulation of E. coli biofilm formation in response to HOCl.
Limited knowledge of the molecular basis of CZB ligand sensing has restricted under-
standing of the biological roles of CZB domains, and most studies so far have relied on
interpreting the phenotypes of strains harboring full genetic knockouts (30, 34–36, 65)
rather than dissecting CZB function at the individual amino acid level. Although the
high conservation of the CZB zinc-binding cysteine has been documented in other
studies (34, 35), its importance for function has never been demonstrated in vivo. We
were interested to test the requirement for C52 for mediating biofilm responses to
HOCl in E. coli and to further explore how discrete cysteine oxidation states of DgcZ
influence cellular c-di-GMP signaling. However, a practical barrier to performing these
experiments in bacteria is the transient nature of the Cys-SOH reaction intermediate,
which can be reduced or further oxidized to Cys-SO2

2 (66, 67). Our biochemical and

FIG 4 Relief of zinc-mediated inhibition of DgcZ activity by HOCl. DgcZ-catalyzed c-di-GMP synthesis was assayed by FPLC nucleotide
concentration determination at saturating GTP (500mM for panels A and B and 300mM for panel C) and the indicated enzyme
concentrations. Incubation times were 1,800 s and 1,037 s for panels A and B, respectively. (A) Zinc titration of wild-type DgcZ
demonstrating linear decrease of c-di-GMP production (solid line) consistent with high-affinity binding of the zinc inhibitor. (B) EDTA titration
relieves zinc-mediated enzyme inhibition. Solid lines represent the fit with a two-state model. For the C52D mutant, about a 10-fold-higher
EDTA concentration is required for the half-maximal effect, indicating tighter zinc binding of the mutant than of the wild type (WT). (C) HOCl
titration in the presence of EDTA competition for zinc shows relief of DgcZ inhibition at low HOCl concentration (#2mM) for the wild type
but not for the C52A mutant. The C52A mutant demonstrates the effect of dose-dependent inactivation, seen also for the wild type at
higher HOCl concentrations. Incubation times were as indicated. (D) Energetic map for the effect of HOCl oxidation on DgcZ zinc lability
based on calculations of wild-type, C52A (34) and C52D zinc affinities (DG in units of gas constant [R] � temperature [T]). Zinc competitors
are required to establish a threshold (dashed line) for cysteine oxidation to be able to alter the CZB zinc-binding equilibrium. All data values
are available in Data Set S1A in the supplemental material.
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computational characterization of DgcZ cysteine point mutants provided a strategy to
circumvent these difficulties, as these redox states can be stably approximated by the
C52A and C52D mutants. We therefore created two new E. coli strains through seam-
less CRISPR gene editing that contain dgcZ chromosomal point mutants to express
dgcZC52A or dgcZC52D under native gene regulation.

DgcZ production of c-di-GMP is known to regulate synthesis of the biofilm polymer
poly-N-acetylglucosamine (poly-GlcNAc), which can be visualized with Congo red dye
(34, 43). We assessed the staining of E. coli strains on LB agar plates containing Congo
red, including as a control a strain expressing an enzymatically inactivated dgcZE208Q

mutant (34). Under these conditions, we found that the wild type exhibited a modest
amount of Congo red binding, the dgcZC52A and dgcZC52D mutants showed increased
binding, and the DdgcZ and dgcZE208Q mutants showed low dye binding (Fig. 5A). To
quantify dye binding in these assays, images of colonies were color thresholded, and
the fractions of red pixels (dye-containing cells) out of the total pixels (e.g., brown
[non-dye containing cells] and red) were normalized to those of the wild-type strain
(Fig. 5B). For plates inoculated with cells from mid-log exponential cultures, the
dgcZC52A and dgcZC52D mutants showed 4.4- and 7.0-fold greater dye binding, respec-
tively, than the dgcZ1 strain (Fig. 5B, left column). Plates inoculated with cells from
established overnight cultures also showed elevated Congo red binding by dgcZC52A

and dgcZC52D mutants, 2.1 and 2.4-fold higher than the wild type, respectively, with the
dgcZ1 strain showing a moderate amount and DdgcZ and dgcZE208Q mutants showing
lowered binding (Fig. 5B, right column).

That both the dgcZC52A and dgcZC52D mutants appeared to produce increased poly-
GlcNAc ran counter to our prediction based on in vitro analyses, in which we expected
the differences in zinc-mediated inhibition of c-di-GMP synthesis to result in increased
and decreased production of poly-GlcNAc, respectively. We also found both dgcZC52A

and dgcZC52D mutants to have increased biofilm formation when grown in static liquid
cultures (Fig. S3A) and rocking liquid cultures (Fig. 5C and D). But, in a point source
assay, the cellular behavior we expected based on in vitro assays with the recombinant
protein was somewhat recapitulated, with wild-type biofilm formation increased by
HOCl, the dgcZC52A mutant being unresponsive, and the dgcZC52D mutant showing
decreased biofilm (Fig. S3B). Therefore, behavior of the dgcZC52A mutant (Cys-SOH
mimic) was consistent with our biochemical and computational modeling, whereas the
behavior of the dgcZC52D mutant (Cys-SO2

2 mimic) was more difficult to interpret.
In rocking cultures, we frequently observed that biofilm did not occur evenly and a

robust pellicle (68, 69) formed at the liquid-air interface (Fig. 5C). Experiments visualiz-
ing biofilm formation in proximity to an HOCl microgradient had suggested that bio-
film distribution might be regulated by DgcZ (Fig. 1I). We therefore tested if pellicle
formation was altered by HOCl and whether this required C52 in vivo. Cultures of
dgcZ1 cells treated with increasing concentrations of HOCl diluted in PBS buffer
showed a dose-dependent increase in pellicle formation over those with PBS treatment
alone (Fig. 5E). Equivalent experiments with dgcZC52A and dgcZC52D mutants showed ro-
bust pellicle formation regardless of HOCl treatments, and DdgcZ and dgcZE208Q

mutants exhibited low biofilm and little change in pellicle formation (Fig. 5F to I;
Fig. S3C). Similar biofilm experiments with addition of exogenous zinc partially reca-
pitulated in vitro observations of differences in zinc-mediated inhibition of DgcZ c-di-
GMP of the wild type and cysteine mutants, with addition of 50mM zinc decreasing
biofilm for dgcZ1 and dgcZC52D strains and the dgcZC52A mutant being less sensitive to
zinc inhibition (Fig. S3D). Based on these data, we conclude that DgcZ utilizes C52 for
sensing HOCl to regulate poly-GlcNAc-dependent biofilm formation and biofilm
distribution.

Architectures, conservation, and biological distribution of CZB-containing
proteins. Our initial research question, motivated by our earlier discovery of an H.
pylori CZB-containing chemoreceptor that mediates attraction to HOCl sources (35),
was whether CZB domains could be a previously unappreciated and widespread
mechanism by which host-associated bacteria perceive inflammation by acting as
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HOCl sensors. We next expanded our analysis by performing a bioinformatics survey
of CZB domain sequences to quantify the prevalence and biological distribution of
CZB-containing proteins.

To create a database of all currently available CZB-containing proteins, we per-
formed iterative searches with the Basic Local Alignment Search Tool (BLAST) (70) for
CZB domain sequences in the nonredundant protein database, which resulted in
10,140 unique sequences (Data Set S1C). Most CZB-containing protein sequences con-
tain multiple protein domains, so to understand the major cellular pathways regulated
by CZB domains, we further categorized and quantified sequences according to pro-
tein domain architecture. We found that CZB-containing proteins can be divided into
seven subgroups based on domain similarity, with the majority of sequences involved
in two biological outputs, namely, chemotaxis or c-di-GMP metabolism (Fig. 6A and B).
Some sequences also appear to contain only a CZB domain with no other detectable
protein domain sequence signature (27.1%), although some of these may represent
incomplete sequences or annotations. The most common subgroup consists of soluble
CZB-regulated chemoreceptors similar in structure to H. pylori TlpD (45.6%), which we
refer to here as “TlpD-like.” CZB-regulated nucleotide cyclases, including E. coli DgcZ,
account for a smaller but widespread fraction of sequences (6.0%), which we refer to
as “DgcZ-like” (Table 2). Less common, but involved in functionally related processes,
are CZB-regulated chemotaxis W (CheW, 1.4%) and Glu-Ala-Leu (EAL) (3.4%) proteins
that transduce chemoreceptor signals and degrade c-di-GMP, respectively. Nearly all
CZB sequences are predicted to be cytosolic, with only 384 putative periplasmic CZB
sequences (approximately 3.9%) identified.

Protein structure-function relationships can be revealed through analyses of conser-
vation patterns to learn what parts of the protein are indispensable for function across
divergent homologues (71–73). Commonalities in amino acid conservation between
distantly related CZB sequences could point toward general functions of CZB domains,
while differences between subgroups could indicate evolutionary tuning to optimize
ligand sensing and signal transduction in specific settings. In addition to the ubiqui-
tous 3His/1Cys zinc-binding motif, two regions of global conservation across all CZB
domains were revealed (Fig. 6B). First, the N-terminal a1-helix exhibits a modest
degree of conservation, with 10 positions that have sequence identity conservation in
the range of 20% to 100%. This region (residues 1 to 30) constitutes a large portion of
the homodimer interface (384 Å2 of 1,950 Å2 total) that forms a 2-fold symmetry axis,
with residues packing against their homodimer counterpart. Second, in addition to the
universally conserved zinc-binding Cys, many residues of the a3 region exhibit a high
degree of conservation (Fig. 6B). This pattern of conservation in the a1 and a3 regions
occurs across all CZB subgroups, suggesting that these two regions are of universal im-
portance for CZB function. One additional site of high conservation occurs in the
diguanylate cyclase subgroup, where a Trp, which resides three residues downstream
of the conserved zinc-binding His22, packs into the protein core against the zinc-bind-
ing site (Fig. 6B, indicated by an asterisk).

The high conservation of the a3 region could relate to CZB signal transduction, as
we showed that this region is involved in redox-stimulated conformational changes
(Fig. 3). To further investigate the conservation of the a3 region, seqLogo plots were
generated for the seven-residue motif containing the conserved Cys across all CZB
sequences and individual CZB architecture subgroups (Fig. 6C). By studying the posi-
tion and interactions of each residue in the E. coli DgcZ CZB structure, putative roles
and rationales for conservation were inferred for each amino acid site as follows.
Position 1 is approximately 100% conserved as a Cys, reflecting its absolute require-
ment for function. The Cys forms a lid for the zinc-binding core, increases zinc affinity
by an order of magnitude (34), and can serve as an HOCl sensor through direct oxida-
tion (35). Positions 2 and 5 are conserved as residues that contain either a hydrophilic
side chain or a small hydrophobic side chain that permits exposure to solvent.
Positions 3, 6, and 7 are conserved as bulky hydrophobic side chains that are buried in
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FIG 6 Amino acid conservation and biological distribution of CZB domains. (A) Prevalence of different domain architectures of CZB domain-
containing proteins, colored as follows: soluble chemoreceptors, dark blue; membrane-bound chemoreceptors, light blue; diguanylate

(Continued on next page)
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the protein core and provide a thermodynamic driving force for the proper folding of
the motif. Position 4 is almost universally conserved as a Gly, because a Cb atom would
clash with the carboxyl oxygen of a position three residues upstream of the Cys in the
310-helix, and the position does not adopt phi-psi angles that are Gly specific (w =

FIG 6 Legend (Continued)
cyclases (DGC), light pink; EAL-containing diguanylate cyclases, dark pink; EAL-CZB, gold; CheW-CZB, mint green; CZB only, purple. Diagrams
of protein domain architecture show the CZB domain as a red circle with the N terminus represented by a short, curved line. Membrane-
spanning regions are indicated in pink. Structural features that are variable within a subgroup are represented by dashed lines, with variations
in ligand-binding domain (LBD) quantified in parentheses. Observed domains include four-helix bundle (4HB), globin, Pas/Cache (and tandem
PAS/dCache), histidine kinases–adenylate cyclases–methyl-accepting proteins–phosphatase (HAMP), methyl-accepting chemotaxis proteins (MCP,
here referred to as chemoreceptors), CheW-like, GGDEF, and EAL. (B) Amino acid conservation of CZB subgroups mapped onto the crystal
structure of E. coli DgcZ CZB (PDB 3T9O). DGCs with and without EAL domains (light and dark pink) were similar and are mapped as a single
group that shows an additional conserved Trp (asterisk). (C) Amino acid conservation of the a3 CZB motif among CZB protein subgroups. An
additional “periplasmic” group which comprises putative periplasmic CZBs from the N-terminal region of membrane-bound chemoreceptors
(orange) is included. The predicted binding site for reactive oxygen species ligands, such as HOCl, is approximated by two bound water
molecules in the CZB structure (PDB 3T9O) and indicated as “ROS ligand” in pink. (D) Phylogenetic tree showing the biological distribution of
CZB domains colored by phyla. The number of organisms identified to the species level in each group is noted in parentheses. The classes
Firmicutes and Proteobacteria are indicated. Bacteria associated with causing disease in humans are indicated by red circles. (E) CZB subgroups
found in classes Firmicutes and Proteobacteria. The coloring scheme is as described for panel A, and the subgroups are ordered left to right as
soluble chemoreceptors, membrane-bound chemoreceptors, diguanylate cyclases, EAL-containing diguanylate cyclases, CZB only, CheW-CZB, and
EAL-CZB. (F) Quantification of organisms that at the species level contain only a CZB-containing chemoreceptor (light and dark blue), only a
diguanylate cyclase (light and dark pink), or both (yellow). (G) Relatedness tree of CZB domains from subgroups, with clusters I to III shaded in
gray.

TABLE 2 Bacteria that possess DgcZ-like proteinsa

Genus/speciesb Accession no./locus tag Host association
Achromobacter sp. ATCC 35328 CUK19701.1 Yesc

Citrobacter freundii WP_071685553.1 Yes
Citrobacter koseri WP_047457159.1 Yes
Citrobacter pasteurii WP_121584627.1 Yes
Citrobacter portucalensis WP_079934014.1 Yesc

Curvibacter sp. GWA2_64_110 OGP03434.1 Yesc

Dyella ginsengisoli WP_017462428.1 No
Escherichia coli WP_000592841.1 Yes
Hyphomonas adhaerens WP_162177456.1 No
Hyphomonas sp. CY54-11-8 WP_051599791.1 No
Hyphomonas sp. GM-8P WP_112073350.1 No
Hyphomonas sp. ND6WE1B WP_065383192.1 No
Legionella cincinnatiensis WP_065240083.1 Yes
Legionella gratiana WP_065231755.1 Yes
Legionella hackeliae WP_045105921.1 Yes
Legionella pneumophila GAN16124.1 Yes
Legionella santicrucis WP_065236300.1 Yes
Oceanospirillum linum OOV86010.1 Yesc

Oceanospirillum maris WP_028304308.1 Yesc

Oceanospirillum sanctuarii WP_086478956.1 Yesc

Oleiagrimonas soli WP_052394942.1 No
Oleiagrimonas sp. MCCC 1A03011 WP_113063355.1 No
Parvibaculum sp. HXT-9 WP_152215867.1 No
Rhodanobacter sp. SCN 68-63 ODV15579.1 No
Shigella boydii EAA4815907.1 Yes
Shigella dysenteriae WP_000592774.1 Yes
Shigella flexneri K-315 EIQ21590.1 Yes
Shigella sonnei CSF33682.1 Yes
Streptococcus pneumoniae VTQ33263.1 Yes
Sulfurimonas gotlandica WP_008337708.1 No
Sulfurimonas sp. GYSZ_1 WP_152307624.1 No
Thiotrichales bacterium 12-47-6 OZB86354.1 No
Thiotrichales bacterium 32-46-8 OYX07815.1 No
Tistlia consotensis WP_085120475.1 No
aProtein architecture consists of an N-terminal CZB domain and a C-terminal GGDEF domain.
bHuman pathogens are indicated in bold.
cBacteria of this genus are known to be host associated, but this has not been directly determined for this
species.
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122.3°, c = 114.9°). A site of variability between subgroups is position 2, which is
enriched as Arg especially in soluble chemoreceptors but also in membrane-bound
chemoreceptors, diguanylate cyclases, and EAL-CZBs (Fig. 6C). However, position 2 is
either poorly conserved or conserved as an Ala for the CZB-only, periplasmic, and
CheW-CZB subgroups.

To obtain insight into the biological factors that drive CZB evolution, we assessed
the phylogenetic distribution of CZB domains. This revealed a total of 822 unique
organisms for which phylogenetic classification and annotation were available down
to the species level. This analysis shows that CZB domains are found in diverse phyla
and essentially all CZB sequences are bacterial (Fig. 6D). A single eukaryotic sequence
from the nematode Diploscapter pachys was nearly identical to a sequence from
Pseudomonas and, therefore, likely contamination. A single archaeon sequence from
“Candidatus Woesearchaeota” shows 35% sequence similarity to sequences from the
bacterial genus Sulfurimonas and may represent a case of horizontal gene transfer. In
total, CZB domains were identified in 21 bacterial phyla and 6 candidate phyla
(Fig. 6D). An evolutionary divergence tree for species that contain CZB proteins sug-
gests that they may have arisen in bacteria more than 4 billion years ago (Fig. S4) (74).

In terms of currently available sequence data, most CZB proteins are found in
Firmicutes and Proteobacteria, phyla that contain many host-associated species, and
Gammaproteobacteria account for approximately one-third of all known CZB sequen-
ces (Fig. 6D). CZB domains were identified in 23 bacterial species associated with
human diseases, including many enteric pathogens (Fig. 6D, red circles; Table 2). There
exist considerable differences among the Proteobacteria and Firmicutes classes in the
prevalence of CZB protein architectures (Fig. 6E). Regarding subgroups involved in che-
motaxis, soluble chemoreceptors make up a sizable fraction in these classes, except for
Deltaproteobacteria, in which they are nearly absent, and CheW-CZBs are most abun-
dant in Clostridia. Diguanylate cyclases and EAL-CZBs are restricted to Alpha-, Beta-,
Gamma-, and Deltaproteobacteria, suggesting that CZBs are important regulators of c-
di-GMP signaling for these bacteria. At the species level, we were intrigued to find that
bacteria seem to contain either CZB-regulated chemoreceptors or CZB-regulated
diguanylate cyclases, but not both (Fig. 6F).

CZB domains may have become honed over time to perform signaling and regulation
in specific contexts. We examined whether or not the similarity of CZB domain sequences
corresponds to their function (i.e., domain structure). A relatedness tree for full-length
CZB amino acid sequences provides some evidence of this. Approximately three main
clusters exist: cluster I is dominated by C-terminal soluble chemoreceptor CZBs, including
H. pylori TlpD and S. enterica methyl-accepting chemotaxis protein A (McpA), cluster II is
dominated by C-terminal membrane-bound chemoreceptor CZBs, and cluster III is more
variable and contains diguanylate cyclases, including E. coli DgcZ, periplasmic (N-terminal
chemoreceptor CZBs), CheW-CZB, EAL-CZB, and CZB-only subgroups (Fig. 1G). Of these,
we have now demonstrated that clusters I and III both contain representative CZB
domains that are HOCl sensors, supporting that HOCl sensing is retained across distantly
related CZB homologues from host-associated bacteria.

DISCUSSION

CZB domains are a class of sensors that have remained enigmatic despite their
prevalence among diguanylate cyclases and chemoreceptors in diverse bacterial phyla
(Fig. 6) (33). In fact, CZB domains are the most common C-terminal regulatory domains
of cytoplasmic chemoreceptors (75). Our investigation has yielded a new rationale for
the widespread conservation of CZB domains in bacteria: they are versatile sensory
apparatuses with the potential to perceive and integrate information from multiple
effectors through zinc binding. We first consider the function of HOCl sensing by CZB
domains, which occurs through direct oxidation of the zinc-binding cysteine. This
response may be most relevant for bacteria that colonize animals and are exposed to
high concentrations of HOCl through the neutrophilic respiratory burst, but these
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domains may also function as monitors of other exogenous effectors or of intracellular
processes that alter zinc homeostasis.

Bacterial lifestyle decisions based on specific environmental oxidants. Earlier
work has elucidated mechanisms by which bacteria sense and tolerate HOCl in their
environment, with HOCl-sensitive transcription factors orchestrating a sophisticated
network of proteins that eliminate oxidants and repair oxidative damage (17–23). Here,
we add to this knowledge by presenting evidence that CZB domains are a prevalent
HOCl sensory system used by bacteria to regulate the decision between motility and
sessility, implicating these proteins as important players in bacterial coexistence with
inflammation. Our findings suggest that host-associated bacteria may regard HOCl not
only as a toxic oxidant but also as a reporter on host inflammation that can inform bac-
terial localization.

DgcZ is now the second CZB-containing protein found to be preferentially oxidized
by HOCl over H2O2 (35). This result supports our earlier quantum mechanical study
finding that chemoselectivity between these oxidants occurs as a result of geometric
strain within the active site during an SN2-based reaction (52). An increasing number of
bacterial proteins have been identified that, like CZB domains, appear to use a sulfur
oxidation mechanism to respond selectively to HOCl. This observation supports that
bacteria are attuned to the presence of this specific oxidant. It is interesting to specu-
late on why bacteria would discriminate between HOCl and other oxidants. One possi-
bility is differences in cytotoxic potential. For example, H2O2 is also produced by neu-
trophils but is far less reactive and bactericidal than HOCl (76). Bacteria are also well
equipped to eliminate hydroperoxides with enzymes such as peroxiredoxins (77, 78)
and in some contexts even use H2O2 as a nutrient (79). But from the view of oxidants
as molecular cues, how might bacteria interpret the presence of H2O2 versus HOCl?
Bacteria can encounter H2O2 derived from many different sources, including immune
responses, normal eukaryotic signaling (78), bacterial metabolism (80), dietary oxidants
(81), and abiotic origins (82). Yet, with a few exceptions, the presence of hypohalous
acids is emblematic of eukaryotic life. Myeloperoxidases are a major source of HOCl in
animals (83), whereas vanadium peroxidases generate HOCl and HOBr in fungi and
algae, respectively (84, 85). Thus, there is the potential that bacteria have evolved to
interpret hypohalous acids as a signature of proximity to eukaryotes and multicellu-
lar organisms, and CZB domains may be a widespread mechanism by which bacteria
integrate this information into decisions on localization. Based on our new mecha-
nistic insights, we have developed a general model for how CZB domains facilitate
HOCl sensing within animal hosts and the role this plays in colonization and disease,
which we summarize in Fig. 7. Further work is required to test and substantiate this
model.

Signal transduction by CZB domains. An important new insight into CZB function
is that oxidation by HOCl regulates the domain’s affinity for Zn21 and, hence, zinc-
mediated allostery (Fig. 2 and 4). Specifically, the oxidation of the zinc-binding C52 to
Cys-SOH facilitates the release of Zn21 and results in the local unfolding of the a2-a3
region (Fig. 2, 3, and 7; see Fig. S2 in the supplemental material). Our modeling indi-
cates that these conformational changes control the structural dynamics of the N (a1)
and C (a5) termini that connect to regulated protein domains (Fig. 3C). These new
insights enhance our understanding of CZB regulation of proteins, which can be
understood as an order (zinc-bound)-to-disorder (zinc-free) transition. The structural
basis by which zinc occupancy is transduced to the domain’s termini provides an ex-
planation for how CZBs can use the same structural topology to regulate proteins like
chemoreceptors, which mostly have C-terminal CZBs, and diguanylate cyclases, which
have N-terminal CZBs (Fig. 6A). Presumably, the increased dynamics permit the popula-
tion of conformations required for signal transduction. In the case of DgcZ-like pro-
teins, this allows the GGDEF domain to align productively for c-di-GMP catalysis (34).
For TlpD-like chemoreceptors, disorganization of the coiled-coil domain may serve to
inhibit the autophosphorylation activity of the histidine kinase chemotaxis protein A
(CheA) and promote chemoattraction (35).
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FIG 7 Proposed model for the role of CZB proteins in bacterial sensing of HOCl and implications for bacterial pathogenesis. (1) Neutrophils
produce HOCl as part of innate immunity and inflammation to control bacterial populations and combat pathogens. (2) Bacterial CZB domains (red
circles) exist as homodimers that bind zinc (green circle) in the low- to subfemtomolar range. Zinc binding elicits allosteric control of the full-
length protein by promoting structural rigidity (white circles). CZB domains sense neutrophilic HOCl through the unique reactivity of their
conserved zinc-thiolate complex and direct cysteine oxidation to form cysteine sulfenic acid (Cys-SOH). (3) CZB oxidation is reversed and inhibited
by cellular reductants such as glutathione and, possibly, antioxidant enzymes. (4) The formation of Cys-SOH, modeled by the C52A mutant (violet),
drives a large conformational change in the CZB domain through the active site strain induced by the Cys-SOH to promote local

(Continued on next page)
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We have observed an interesting pattern in which bacteria typically possess either
chemoreceptor or diguanylate cyclase forms and not both (Fig. 6F). In the context of
host-associated bacteria, this suggests that a conserved mechanism is utilized to sense
host inflammation (the CZB domain) but that this signal is relayed into discrete lifestyle
responses. The apparent incompatibility of these CZB protein forms could relate to the
prerequisite of motility for chemotaxis. Differences in CZB regulatory outputs, i.e., bac-
terial attraction versus aggregation, may have important consequences for bacterial
responses to inflammation and pathogenesis (Fig. 7).

CZB domains can regulate the switching of biofilm lifestyle in response to
HOCl. We have shown in this work that the CZB-regulated diguanylate cyclase DgcZ
acts as a direct sensor of exogenous HOCl to regulate c-di-GMP synthesis, surface
attachment, and biofilm distribution. Our E. coli model biofilm system shows that DgcZ
is required for increased biofilm formation in response to micromolar HOCl and that
cell growth is not impaired under these conditions (Fig. 1). The conserved C52 of the
CZB-binding core is required for biofilm responses to HOCl, and strains harboring C52
mutations that mimic cysteine oxidation display 2-fold-greater Congo red binding
(Fig. 5A and B) and 1.5- to 2-fold-higher biofilm formation (Fig. 5C and D; Fig. S3A). The
inability of the DdgcZ deletion strain and the catalytically inactivated dgcZE208Q strain to
recapitulate these responses suggests that these biofilm differences are due to direct
regulation of DgcZ c-di-GMP production rather than indirect regulation of c-di-GMP
signaling through effector proteins.

Interestingly, there were some differences between our in vitro biochemical analy-
ses of the protein DgcZ and the cellular role of DgcZ in biofilm assays. First, only a
modest increase in catalytic activity in response to low micromolar HOCl was observed
for DgcZ protein in vitro (Fig. 4), whereas 1.5- to 6.2-fold increases in dgcZ-dependent
biofilm occurred in response to HOCl treatments (Fig. 1 and 5). Such discrepancies
between in vitro and in vivo responses are not unprecedented for diguanylate cyclases
and can sometimes be attributed to feedbacks involving c-di-GMP effector proteins
that are not present in the in vitro analyses (86). Alternatively, cellular reductants may
alleviate nonspecific oxidation of DgcZ in vivo and allow activation responses at con-
centrations of HOCl higher than what we observed in vitro. Second, although we were
able to use the C52A and C52D mutants as tools in vitro to model the Cys-SOH and
Cys-SO2

2 oxidation states, respectively, the biofilm formation of the dgcZC52D strain
was experiment dependent. In vitro, the C52D mutant protein had 10-fold-higher zinc
affinity than the wild type, and its c-di-GMP catalysis was more readily inhibited by zinc
(Fig. 2 and 4), but the dgcZC52D strain behaved similarly to the dgcZC52A strain in most
assays and had increased Congo red binding and biofilm formation (Fig. 5; Fig. S3). Our
in vitro studies on Cys-SOH (modeled by the C52A mutant) may be most relevant for
understanding bacterial responses to physiological concentrations of HOCl, as bacteria
are not known to use Cys-SO2

2 (modeled by the C52D mutant) for signaling due to
their inability to reduce and recover this overoxidized cysteine form (77).

Roles for bacterial CZB sensing of HOCl in colonization and disease. The rela-
tionship between inflammation and bacterial colonization of the human gastrointesti-
nal tract is central to many diseases, as innate immune responses that fail to clear
pathogens can manifest into states of chronic inflammation, causing tissue damage
and even carcinogenesis (5, 11). In other cases, the inflammation induced by a bacterial

FIG 7 Legend (Continued)
unfolding of the a2-a3 region, and this lowers the domain’s zinc-binding affinity. In the presence of cellular chelators that compete for zinc, this
shifts the equilibrium toward the protein being zinc-free and promotes structural flexibility and increased dynamics. Alternatively, under
conditions of high levels of HOCl (dark red dashed lines), the cysteine can react with a second molecule of HOCl to form cysteine sulfinate (Cys-
SO2

2), modeled by the C52D mutant (teal), which has higher zinc affinity and inhibits signal transduction. (5) Bacterial pathogens and
pathobionts typically possess either CZB-regulated chemoreceptors (TlpD-like; blue) or CZB-regulated diguanylate cyclases (DgcZ-like; pink), and
thus HOCl sensing is integrated into chemotaxis or c-di-GMP-signaling processes, respectively. The Citrobacter genus has some species with
chemoreceptor forms and other species with diguanylate cyclase forms and is colored both blue and pink. (6) CZB sensing of HOCl may
contribute to disease in a number of ways, such as initiating positive feedback loops that promote chronic inflammation through HOCl
chemoattraction (e.g., H. pylori), stimulating inflammation to alter the tissue environment to the disadvantage of health-promoting native
microbiota (e.g., S. enterica), or initiating virulence and inflammation resistance pathways in pathobiont communities (e.g., E. coli).
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pathogen can displace the native microbiota and promote dysbiosis, which is thought
to contribute to the development of inflammatory bowel diseases (31, 32, 87–89). CZB
domains and their function as HOCl sensors represent a new class of proteins that may
play important roles in these processes. Our updated survey of CZB sequences pro-
vides the first quantification for what proteins and systems are regulated by CZB
domains (Fig. 6; Data Set S1C). We expand on previous observations of the wide biologi-
cal distribution of CZB domains (34) to quantitatively report that they are found in 21 bac-
terial phyla, as well as 6 candidate phyla, and are prevalent in Proteobacteria. These
include many human gastrointestinal pathogens, such as species from the genera Vibrio,
Shewanella, Shigella, Helicobacter, Campylobacter, Citrobacter, and Salmonella, and patho-
gens associated with nosocomial infections, such as Legionella, Morganella, Klebsiella, and
Streptococcus (Fig. 6D and 7; Table 2; Data Set S1C).

Although much remains to be learned about the potential roles of CZB domains in bac-
terial infections, the c-di-GMP signaling processes we show to be regulated through CZB
HOCl sensing are known to be involved in the virulence of E. coli. Adhesion of E. coli to in-
testinal microvilli is the primary mechanism of E. coli-induced diarrhea in humans (90),
which kills over 50,000 individuals annually (91). An emerging body of evidence suggests
that enduring and manipulating host inflammation is a central aspect of E. coli pathogenic-
ity. CZB sensing of HOCl and stimulation of biofilm processes could play important roles in
enabling the bacterium to overcome neutrophil responses and thrive in inflamed environ-
ments. For instance, Crohn’s disease colonoscopy biopsy specimens show dramatic
increases in total E. coli (92). A majority of urinary tract infections are caused by uropatho-
genic E. coli (UPEC) (24), and a hallmark of the disease in patients is pyuria, stimulated
through upregulation of the neutrophil chemokine interleukin-8 (50). Neutrophil infiltra-
tion of tissue has been proposed to benefit E. coli pathogenicity by stimulating adherence
to epithelial cells (48), and DgcZ has been shown to facilitate adhesion to bladder cells
(93). Our observations of the role of DgcZ in mediating biofilm distribution and pellicle for-
mation in response to HOCl may provide new insights into the mechanisms of these dis-
eases. Pellicle formation in E. coli is linked to the production of poly-GlcNAc (94), which our
data suggest is robustly increased in response to HOCl, as modeled by the dgcZC52A and
dgcZC52D strains (Fig. 5). A majority of clinical isolates of UPEC strains were found to pro-
mote virulence through production of poly-GlcNAc (95), and pellicle formation has also
been found to be associated with enteropathogenic E. coli (EPEC) (68). Our findings on E.
coli DgcZ may also be relevant for understanding chronic infections of the lungs, as S.
pneumoniae and Legionella spp. possess DgcZ homologues (Fig. 7 and Table 2; Data Set
S1C).

The function of CZB domains as mediators of chemotaxis and biofilm formation in
response to inflammation may have roles in the organization and destabilization of
host microbiomes. Bacterial populations of healthy human microbiomes that inhabit
the low-oxygen environment of the gut are dominated by obligate anaerobic bacteria
from the phyla Bacteroidetes and Firmicutes, with Proteobacteria species being less
abundant (96, 97). However, the influx of neutrophils into the inflamed gastrointestinal
tract stimulates a dramatic shift in the oxidant landscape (98) that can favor the oppor-
tunist. In diseases of chronic gut inflammation, such as colitis (99) and Crohn’s disease
(100), the bacterial community structure changes substantially and a bloom in faculta-
tive aerobic Gammaproteobacteria is observed. It has been proposed that the expan-
sion of Gammaproteobacteria species in these diseases is linked to their inherent ability
to exploit host inflammation by utilizing biproducts of neutrophilic oxidants as
nutrients (89). Tetrathionate and nitrate are two such metabolites that have been iden-
tified (28, 101–103). Therefore, HOCl could be a signal of opportunity sensed through
CZB domains for bacteria able to tolerate and exploit inflamed tissue (Fig. 7).
Intriguingly, it has been reported that the anti-inflammatory drug sulfasalazine, used
for treatment of ulcerative colitis, is able to bind and directly inhibit DgcZ and E. coli
biofilm formation (104), supporting the idea that CZB-regulated proteins may be thera-
peutic targets for interfering with bacterial coexistence with chronic inflammation.
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CZB indirect sensing of diverse effectors through zinc lability. Having discussed
the roles of CZB domains in sensing HOCl, we revisit previous observations of CZB-
mediated responses to other stimuli. CZB-containing proteins have been implicated in
cellular responses to superoxide (36–38), hydrogen peroxide (36), pH (39), Zn (34), Cu
(40), Ni (40), Fe (36), and energy taxis (65), and no common mechanism has been pro-
posed that could underlie these responses. While we did not directly test most of these
effectors in our present work, our data do provide a possible explanation. The data in
our study confirm that zinc binding is central to CZB function and allosteric control of
proteins (34). This is apparent from our analysis of amino acid conservation among
CZB-containing proteins in which CZB domains show strong conservation of only the
regions containing, and proximal to, the zinc-binding core (Fig. 6B). This suggests that
CZB responses to effectors are universally coordinated through the zinc-binding core.
This does not exclude the possibility of effectors interacting with CZB domains through
other means, such as protein-protein interactions, but these interactions are not con-
served across distantly related bacteria.

A mechanism by which diverse stimuli could be perceived by CZB domains that
requires only the zinc-binding core is through effector perturbation of cellular zinc home-
ostasis. For example, zinc solubility is heavily pH dependent (55), and cellular reductants
like glutathione are abundant, readily bind zinc (105), and are responsive to the cellular
redox state. What these shifts in zinc homeostasis indicate to bacteria, however, may be
complex to interpret and system dependent. We speculate that CZB domains have two
modes of sensing that rely both on zinc lability and the conserved zinc-binding core: (i)
use of zinc as a cofactor for direct sensing of effectors that alter CZB zinc-binding affinity,
such as HOCl, and (ii) use of zinc as a second messenger for indirect sensing of effectors
that alter zinc homeostasis. Presumably, HOCl sensing is most relevant for bacteria that
colonize animals and are exposed to millimolar concentrations of HOCl. However, as dis-
cussed above, sensing of hypohalous acids could serve functions in regulating interac-
tions between bacteria and eukaryotes in nature. CZB sensing could be tuned through
evolution to have broad or narrow spectrums of effector sensitivity. Our observation of
distinct conservation patterns in the a3 region of functional classes of CZB proteins may
be evidence of such evolutionary selection (Fig. 6C).

CZB homologs are present in diverse and evolutionarily distant bacteria, including
enteric commensals and pathogens, soil-dwelling and marine species, and extremo-
philes such as the deep-sea genus Thermatoga (Fig. 6D). A corollary is that CZB
domains have an ancient evolutionary heritage. Though difficulties exist in estimating
bacterial protein origins due to horizontal gene transfer, a naive model based on a con-
sensus of evolutionary divergence timelines indicates these proteins to have been
present in the bacterial last universal common ancestor (LUCA) approximately four bil-
lion years ago (Fig. S4) (74). This suggests that the evolution of CZB domains predated
eukaryotes, which originated approximately two billion years ago, and animals, which
arose approximately 600 million years ago. Thus, the zinc-binding ability of CZB pro-
teins can be viewed as its ancestral molecular function, and HOCl sensing is a more
recent adaptation for interacting with eukaryotic life and colonizing animals.

MATERIALS ANDMETHODS
CZB conservation and phylogenetics. Initial BLAST searches of the nonredundant protein database

were performed to identify CZB-containing proteins using the CZB domains from H. pylori TlpD, E. coli
DgcZ, and S. enterica McpA as search queries and the software Geneious Prime 2020 with default cutoffs.
Automated identification of CZB domains was based on four attributes: (i) the presence of the conserved
CZB zinc-binding 3His/1Cys core, (ii) the conserved CX(L/F)GXW(Y/L) motif identified in previous studies
(33, 34), (iii) sequence coverage across the domain, and (iv) reasonable alignment to other confirmed
CZB sequences. Sequences that did not meet these qualifications were reviewed manually. BLAST
searches were continued iteratively with bona fide CZB sequences until no new sequences emerged.
Protein sequences were annotated using Interpro (106) to identify protein domains and putative trans-
membrane regions. Sequences were aligned using MUSCLE (107), and relatedness trees were con-
structed with FastTree (108). Phylogenetic trees of CZB-containing organisms were constructed with
phyloT (109), and divergence trees were constructed with TimeTree (74).
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Molecular dynamics simulation. An intact model of the E. coli CZB homodimer (residues 7 to 126)
was constructed based on PDB ID 3T9O (34). Coordinates for residues 38 to 51 from chain B were used
to fill in the corresponding residues missing in chain A. Chemical alternations to residue 52 were accom-
plished using the psfgen program in VMD (110). Force-field parameter and topology files were obtained
for cysteine sulfenic acid (Cys-SOH) from an independent study (111). All CZB models were hydrated
with TIP3P and neutralized with 150mM NaCl, producing systems containing ;40,500 atoms. Each
model was subjected to a conjugant-gradient energy minimization (2,000 steps), followed by a series of
equilibration simulations with harmonic positional restraints applied successively to backbone1Zn
(5 ns), Ca1Zn (5 ns), and Zn only (5 ns). Three independent, all-atom production simulations (1 ms each)
provided the data used for subsequent analysis. All molecular dynamics simulations were performed
using NAMD 2.13 (112) and the CHARMM36 force field (113). Simulations were conducted in the NPT en-
semble (1 atm; 310 K) using a 2-fs timestep. Short-range, nonbonded interactions were calculated with a
cutoff of 12 Å, and long-range electrostatics were evaluated using the particle mesh Ewald method.
Molecular visualization and basic structural analyses were carried out in VMD. Representative videos of
each simulation are presented in Movies S1A to S1E in the supplemental material.

Quantum mechanical analyses. All quantum mechanical analyses on the ligand exchange equili-
bria reported in this article were performed in Gaussian 16 (114). All structures were optimized and
vibrational frequency calculations were performed in vacuum using B3LYP (115)/SDD (116) (Zn)/6-311G
(d,p) (117–119) level of theory (Data Set S1B). Electronic energies on the B3LYP-optimized geometries
were calculated using the Minnesota functional M06 (120) suite and with the identical mixed basis sets
described for optimizations. The optimized complexes were verified as ground states through vibra-
tional frequency analysis (see the supplemental material for full authorship list for Gaussian 16). All ther-
mal energies (e.g., DG) were calculated at 298 K and 1.0 atm. For each entry reported in Table 1, both
sides of the equilibrium were modeled as the cationic Zn21 species complexed with the appropriate ex-
ogenous ligand, that is, HOCl or H2O on the left side, and CH3S (H), CH3SO (H), or CH3SO2 (H) on the right
side, depending on the oxidation state of the zinc-bound sulfur state being displaced.

Recombinant protein purification. For recombinant protein expression, Rosetta DE3 cells were trans-
formed with pET28a plasmids from previous work (34) containing sequences for full-length DgcZ, DgcZ-C52A,
and CZB (residues 1 to 128) containing 6�His affinity tags. Equivalent constructs of full-length DgcZ-C52D
and CZB-C52D mutants were obtained commercially from GenScript as a service. Recombinant proteins were
expressed and purified as described previously (34, 35). Frozen stocks were used to inoculate 25ml of LB plus
kanamycin (LB1Kan) (50mg/ml) cultures and grown overnight. The following morning, 5ml of these over-
night cultures was added to each of four 1-liter cultures of LB1Kan and grown with shaking at 37°C until they
reached an A600 of 0.6 to 0.8. Protein expression was induced with 1mM IPTG (isopropyl-b-D-thiogalactopyra-
noside), grown for 3 h, and harvested by centrifugation. Cell pellets were resuspended into ice-cold lysis buffer
containing 10mM imidazole, 50mM HEPES, 10% glycerol, 300mM NaCl, and 0.5mM TCEP [Tris(2-carbox-
yethyl)phosphine hydrochloride] (pH 7.9) and lysed by sonication. The cell suspension was centrifuged, and
the soluble portion was retained for affinity chromatography. Lysate was applied to a prepacked gravity col-
umn of Ni-nitriloacetic acid (NTA) agarose beads (Qiagen) equilibrated with lysis buffer. Lysate was incubated
with the beads for 10 min and then allowed to flow over the column twice. The column was then washed
with lysis buffer until no protein was present in the flowthrough as determined using a Bradford assay.
Purified protein was eluted by adding elution buffer to the column containing 300mM imidazole, 50mM
HEPES, 300mM NaCl, and 0.5mM TCEP (pH 7.9), incubating the buffer in the column for 10 min, and then col-
lecting the flowthrough in fractions. Samples were checked for purity by SDS-PAGE. Fractions containing pure
protein were pooled and concentrated by use of a Pall centrifugal device with a 10-kDa cutoff and flash-fro-
zen in liquid nitrogen. Prior to biochemical experiments, proteins were extensively dialyzed into buffers rele-
vant for the reactions by using Thermo Scientific mini-dialysis tubes with 3- to 10-kDa molecular weight (MW)
cutoffs.

Cysteine-sulfenic acid quantification. Reaction mixtures were prepared with purified protein
(10mM) dialyzed into PBS (pH 7), 500mM 5,5-dimethyl-1,3-cyclohexanedione (dimedone), and additions
of buffer or HOCl/H2O2 diluted into PBS buffer. The pHs of solutions prior to protein addition were moni-
tored with a Toledo pH probe and adjusted as necessary with minimal additions of HCl. Reactions were
allowed to proceed for 10 min at room temperature and then quenched with 100mM L-methionine
(Fig. 2B to D). For experiments with glutathione disulfide (GSSG), CZB protein was pretreated with
250mM HOCl and subsequently with various GSSG treatments, followed by the addition of dimedone
(Fig. 2E). GSSG was chosen to test the reversibility of CZB oxidation because it can form mixed disulfides
with cysteines in both sulfenic acid and thiol states, and also is oxidized by HOCl, and therefore serves
to fully quench the reaction. Cys-SOH formation was quantified by slot blotting analysis. Twenty-microli-
ter volumes of samples were dispensed into 180 ml of quenching buffer containing 75mM H3PO4–1 M
NaCl and drawn by vacuum through a 0.4-mm polyvinylidene fluoride membrane in a 96-well slot blot-
ter. The membrane was blocked in a buffer of 5% milk in 50mM Tris, pH 7.5, 150mM NaCl, 0.1% Tween
20 (TBST) for 10 min and incubated overnight at room temperature with rabbit anti-cysteine-dimedone
antibody (Kerafast) at a 1:5,000 dilution. Subsequently the membrane was washed three times with
20ml of TBST for a duration of 15 min and then incubated with goat anti-rabbit–horseradish peroxidase
(HRP) secondary antibody (1:5,000) for 1 h. Afterward, the membrane was washed three times for 15
min with 20ml of TBST and then visualized through chemiluminescence using an ECL kit and a Li-Cor
imaging system.

Fluorescence and circular dichroism assays. The zinc-binding probe zinpyr-1 (Abcam) was used to
detect available zinc through fluorescence emission. To avoid cross-reactivity of the probe with HOCl,
samples were quenched with 1mM methionine prior to probe addition, and probe was added no sooner
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than 10 min after quenching. Samples were analyzed in black, clear-bottom 96-well plates with excita-
tion at 488 nm and emission spectra collected from 505 to 600 nm on a Spectramax i3 plate reader.
Intrinsic protein fluorescence was collected similarly with excitation at 280 nm. Circular dichroism spec-
tra were collected using a 1-mm quartz cuvette (Sterna Cells) on a Fluoromax-3 spectrofluorometer.

DgcZ activity assays. Reactions monitoring the in vitro production of c-di-GMP by DgcZ and cyste-
ine point mutants were carried out in PBS buffer (10mM Na2HPO4, 1.8mM KH2PO4, 2.7mM KCl, 137mM
NaCl, pH 7) with 5mM MgCl2 and 300 or 500mM GTP. Protein was preincubated in the reaction buffer
for 10min with HOCl, ZnCl2, dithiothreitol (DTT), or EDTA as necessary prior to the addition of GTP.
Quantification of GTP and c-di-GMP at specific time points was performed as done previously (34) by
chromatography using a Resource Q column and AKTA fast protein liquid chromatography (FPLC). A
two-state model was fitted to the EDTA titration data with the amount of c-di-GMP produced being
equal to y = ymin 1 Dy and with Dy given by the following quadratic equation:

Dy ¼ 0:5�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dymax

2 2 ð2Dymax � L0Þ1 ð2Dymax � KDÞ1 L02 1 ð2L0 � KDÞ1 KD
2

q
1Dymax1 L0 1KD

where Dymax = ymax 2 ymin and L0 is the ligand concentration. Parameters to be refined were ymin, ymax,
and the equilibrium dissociation constant, KD.

Bacterial strains. E. coli strains, genotypes, relevant phenotypes, and sources are listed in Table 3.
All biofilm experiments were performed with MG1655-derivatized strains containing a csrA deletion (34,
42, 43).

Biofilm assays. Unless specified otherwise, cells were prepared for biofilm assays with overnight
growth with shaking in 5ml of LB at 37°C, and fresh liquid LB cultures were inoculated in the morning and
grown to the desired A600. Static biofilm assays with clear flat-bottom microplates were prepared with
200ml of cells at an A600 of 0.5 or 1.0, covered with Parafilm, and grown for 16 or 24 h at 25 or 30°C as indi-
cated. Static assays with 15-mm petri dishes were set up similarly but using 3ml of cell culture at an A600 of
0.5, and holes were drilled into the lids to hold a 20-ml pipette with treatment solution. Treatments were
applied by either direct addition, exposure to 20-ml treatment point sources with a Rainin 96-well liquidator,
or exposure to a 20-ml Rainin pipette tip sealed with Parafilm containing 20ml of treatment solution. Liquid
culture rocking biofilm assays were conducted using 1ml of cells at an A600 of 0.5 in LB medium in glass 10-
by 75-mm culture tubes (Fisherbrand) and incubated upright at 30°C for 24 h with near-horizontal rocking.

Biofilm was quantified by crystal violet staining as done previously (34). Nonadhered cells were
removed, and samples were washed twice with deionized water and stained with 0.1% crystal violet for
30 min. Excess stain was removed, and samples were washed twice with deionized water, dried, and
then treated with a destain solution containing 30% methanol–10% acetic acid (equal in volume to cell
culture) for 30 min. Samples were then quantified by measuring the absorbance at 562 nm.
Quantifications of samples are presented as either raw A562 values or values normalized relative to the
average of the wild-type untreated control strain in each experiment (A562 of sample/average A562 of
untreated wild-type replicates). For quantification of biofilm distribution and pellicle formation, high-re-
solution microscopy images of crystal violet-stained culture tubes were captured on a Nikon Z20 dissect-
ing scope and intensity profiles of tubes were collected along the tube length. Note that images of pel-
licle formation presented are illustrative and were not the images used for quantification. Quantification
of pellicle formation was performed by integrating the intensity in the range of pixels 2000 to 2500.

Congo red assays. For assaying Congo red dye retention with growth on agar plates, 2ml of cells ei-
ther from overnight cultures or mid-log exponential growth cultures at an A600 of 0.5 was spotted onto
LB agar plates containing 25mg/ml Congo red dye and grown for 24 h at room temperature. Plates were
imaged under identical lighting with a Leica MZ10F scope equipped with an MC190HD camera.
Quantification of dye uptake was performed in ImageJ (121) with application of a red hue threshold
of 1 to 14 in HSB color space. Images were then clustered into red, brown, and black (background)
color bins using the Color Segmentation plugin and clustering pixels according to the k-means algo-
rithm. Pixels from color-thresholded and clustered images were then counted using the Color
Counter plugin. For visualizing Congo red staining of liquid cultures, cells were treated with 25mg/ml
dye and incubated for 10 min.

Data availability. Further information and requests for resources and reagents should be directed
to and will be fulfilled by the lead contact, Arden Perkins (ardenp@uoregon.edu). Data values from fig-
ures and a curated database of CZB sequences are supplied in Data Set S1.

TABLE 3 E. coli bacterial strains

Strain Genotype Relevant phenotype Reference/source
AB958 csrA::Tn5D (kan)::Frt csrA deletion, expresses wild-type

dgcZ (dgcZ1)
Boehm et al., 2009 (43); Zähringer et al.,
2013 (34)

AB959 csrA::Tn5D (kan)::(kan)::Frt DydeH::Frt DdgcZ, deletion Zähringer et al., 2011, 2013 (34, 42)
AB1299 csrA::Tn5D (kan)::(kan)::Frt ydeH Frt ydeH-1 (E208Q) dgcZE208Q, catalytically inactive Zähringer et al., 2011 (42)
AP1 csrA::Tn5D (kan)::Frt ydeH (C52A) dgcZC52A mutant This work
AP2 csrA::Tn5D (kan)::Frt ydeH (C52D) dgcZC52D mutant This work
Rosetta (DE3) F– ompT hsdSB (rB– mB

–) gal dcm (DE3) pRARE2 (Camr) Protein expression Novagen
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