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Abstract
We construct examples of p-adic L-functions over universal deformation spaces for GL2.We
formulate a conjecture predicting that the natural parameter spaces for p-adic L-functions
and Euler systems are not the usual eigenvarieties (parametrising nearly-ordinary families of
automorphic representations), but other, larger spaces depending on a choice of a parabolic
subgroup, which we call ‘big parabolic eigenvarieties’.

Résumé
Nous construisons des exemples de fonctions L p-adiques définies sur les espaces des défor-
mations universels de GL(2). Nous formulons une conjecture qui prédit que les espaces
naturels des paramétres pour les fonctions L p-adiques et les systémes d’Euler ne sont pas
les variétés de Hecke usuelles, mais d’autres espaces plus grands, qui dépendent d’un choix
de sous-groupe parabolique.

Mathematics Subject Classification 11F67 · 11F85

1 Introduction

It is well known that many interesting automorphic L-functions L(π, s) have p-adic coun-
terparts; and that these can often be extended to multi-variable p-adic L-functions, in which
the automorphic representation π itself also varies in a p-adic family of some kind. In the
literature so far, the p-adic families considered have been Hida families, or more generally
Coleman families—families of automorphic representations which are principal series at p,
together with the additional data of a “p-refinement” (a choice of one among theWeyl-group
orbit of characters from which πp is induced). In Galois-theoretic terms, this corresponds to
a full flag of subspaces in the local Galois representation at p (or in its (ϕ, �)-module, for
Coleman families). The parameter spaces for these families are known as eigenvarieties.

The aim of this note is to give an example of a p-adic L-function varying in a family of a
rather different type: it arises froma family of automorphic representations ofGL2 ×GL2, but
the parameter space for this family (arising fromGalois deformation theory) has strictly bigger
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D. Loeffler

dimension than the eigenvariety for this group—it has dimension 4, while the eigenvariety
in this case has dimension 3. We also sketch some generalisations of the result which can
be proved by the same methods. This corresponds to the fact that a p-refinement is a little
more data than is actually needed to define a p-adic L-function: rather than a full flag,
it suffices to have a single local subrepresentation of a specific dimension (a Panchishkin
subrepresentation), which is a weaker condition and hence permits variation over a larger
parameter space. This weaker condition is also sufficient to interpolate Selmer groups in
families, and hence to formulate an Iwasawa main conjecture.

We concludewith some speculative conjectures whose aim is to identify the largest param-
eter spaces on which p-adic L-functions and Euler systems can make sense. We conjecture
that, given a reductive group G and parabolic subgroup P (and appropriate auxiliary data),
there should be two natural p-adic formal schemes, the big and small P-nearly-ordinary
eigenvarieties. These coincide if P is a Borel subgroup, but not otherwise; if G = GL2 and
P is the whole of G, then the big eigenvariety is the 3-dimensional Galois deformation space
of a modular mod p representation (with no local conditions at p). In general, we expect
that the “natural home” of p-adic L-functions – and also of Euler systems – should be a big
ordinary eigenvariety for an appropriate parabolic subgroup.

2 Families of Galois representations

2.1 The Panchishkin condition

Let L be a finite extension of Qp and let V be a finite-dimensional L-vector space with a
continuous linear action of �Q = Gal(Q/Q). Recall that V is said to be geometric if it is
unramified at all but finitely many primes and de Rham at p; in particular it is Hodge–Tate
at p, so we may consider its Hodge–Tate weights. (In this paper, we adopt the common, but
not entirely universal, convention that the cyclotomic character has Hodge–Tate weight +1.)

We recall the following condition introduced in [29, Definition 7.2] (generalising the
more familiar case r = 0, which is the condition originally studied by Panchishkin in [33,
Definition 5.5]).

Definition 2.1 Let r ≥ 0 be an integer. We say V satisfies the r -Panchishkin condition if it
is geometric, and the following conditions hold:

(1) We have

(number of Hodge–Tate weights ≥ 1ofV ) = dim V (c=+1) − r ,

where c ∈ �Q is (any) complex conjugation.
(2) There exists a subspace V + ⊆ V stable under �Qp such that V + has all Hodge–Tate

weights ≥ 1, and V /V + has all Hodge–Tate weights ≤ 0.

Remark 2.2 (i) Note that V + is unique if exists; we call it the Panchishkin subrepresentation
of V at p.

(ii) Condition (1) is equivalent to requiring that the Tate dual V ∗(1) be “r -critical”, in the
sense of [29, Definition 6.4]. This generalises the notion of “critical values” of an L-
function due to Deligne: if V is the p-adic realisation of a motive M , then condition (1)
for r = 0 is equivalent to requiring that L(M, 0) is a critical value of the L-function
L(M, s) in the sense of [15]. (Note that this use of the word “critical” is unrelated to the
usage in the theory of eigenvarieties, as in [2] for instance.)
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P-adic L-functions in universal...

(iii) The Panchishkin condition is closely related to the concept of near-ordinarity: a rep-
resentation V is said to be nearly-ordinary if it is geometric with distinct Hodge–Tate
weights, and there exists a full flag of subspaces of V such that the Hodge–Tate weights
of the graded pieces are in strictly increasing order. Clearly, if V is nearly-ordinary and
r -critical, then it is also r -Panchishkin; but the condition of near-ordinarity is much more
restrictive, and we want to emphasise here that near-ordinarity is an unnecessarily strong
hypothesis for the study of p-adic L-functions. ��

2.2 Panchishkin families

By a “Panchishkin family”, we mean a family of p-adic Galois representations equipped
with a family of Panchishkin subrepresentations, in the sense of the following definition. For
simplicity, we shall suppose throughout this paper that p > 2, so that we can diagonalise
the action of complex conjugation without introducing denominators. Let O be the ring of
integers of L , and F its residue field. We let CNLO be the category of complete Noetherian
local O-algebras with residue field F.

Definition 2.3 LetR be an object of CNLO , and r ≥ 1 an integer. An r -Panchishkin family
of Galois representations (V,V+) over R consists of the following data:

• a finite freeR-module V with anR-linear continuous action of �Q, unramified at almost
all primes.

• an R-direct-summand V+ ⊆ V stable under �Qp , of R-rank equal to that of Vc=1.

These are required to satisfy the following condition:

• The set�(V,V+) of maximal ideals x ofR[1/p] such that Vx satisfies the r -Panchishkin
condition and V+

x is its Panchishkin subrepresentation is dense in SpecR[1/p].
We call V+ an r -Panchishkin submodule of V , and�(V,V+) the interpolation region of V+.

It is important to note that V+ is not uniquely determined by V (or even by the pair (V, r)),
in contrast to the case of Qp-linear representations, as the examples of the next section will
show.

Remark 2.4 The natural notion of a nearly-ordinary family in this case would be a finite free
R-module V with �Q-action as above, together with a filtration by �Qp -stable submodules
V = F0V ⊃ F1V ⊃ . . . with graded pieces free of rank 1 over R. Our main focus in the
present work will be in examples of r -Panchishkin families which do not admit a nearly-
ordinary filtration.

2.3 Examples from character twists

Webriefly illustrate the above definitions using families of representations arising by twisting
a fixed, geometric representation by a family of characters.

Example 2.5 (Cyclotomic twists) The original examples of Panchishkin families are those of
the following form. Let V be an L-linear representation of �Q satisfying the r -Panchishkin
condition, and V ◦ a O-lattice in V stable under �Q. Let V + be the Panchishkin subrepre-
sentation, and V ◦+ = V + ∩ V ◦.

We let � denote the Iwasawa algebra O[[Z×
p ]], and j the canonical character Z×

p → �×.
If dim V c=1 = dim V c=−1, then we can takeR to be the localisation of� at any of its (p−1)
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maximal ideals, corresponding to characters Z×
p → F×; otherwise, we need to assume our

maximal ideal corresponds to a character trivial on−1.We can then let V = V ◦ ⊗OR(χ
j
cyc),

where χ
j
cyc : �Q ↪→ �× � R× denotes the composite of j and the p-adic cyclotomic

character. If we let V+ = V ◦+ ⊗OR(χ
j
cyc), where V ◦+ = V + ∩ V ◦, then V+ is anR-direct-

summand of V stable under �Qp .
By construction, the set �(V,V+) contains all points of SpecR[1/p] corresponding to

characters of the form1 j + χ , where χ is of finite order and j is an integer in some interval
containing 0 (depending on the gap between the Hodge–Tate weights of V + and V /V +). In
particular, it is Zariski-dense, as required; so (V,V+) is an r -Panchishkin family over R.

Example 2.6 (Varying r) More generally, if V is a geometric L-linear �Q-representation and
V ◦ a lattice in V , we can define R(V ) to be the set of integers 0 ≤ r ≤ dim V c=+1 such
that V posesses a �Qp -stable subrepresentation V +

r of dimension dim V c=+1 − r with all
Hodge–Tate weights of V +

r strictly larger than those of V /V +
r . Note that R(V ) is never

empty, since it always contains dim V c=+1 (with V +
r = {0}); and if V is nearly ordinary,

then R(V ) is the whole interval [0, dim V c=+1].
For r ∈ R(V ), defining R and V as in the previous example, we can define V+

r =
V ◦+

r ⊗O R(χ
j
cyc). Then (V,V+

r ) is an r -Panchishkin family, with interpolation region
�(V,V+

r ) consisting of all j + χ with j in some nonempty interval of integers depend-
ing on V and r .

Example 2.7 (Twisting by imaginary quadratic Grössencharacters) As a final “character-
twist” example, we consider the following setting: let K be an imaginary quadratic field with
p = p1p2 split in K , and let V be a geometric representation of �K , of dimension d . We
let K∞ be the unique Z2

p-extension of K , with Galois group G K , and R = O[[G K ]]. We
consider the rank 2d family over R defined by

V = Ind
�Q
�K

(
V ◦ ⊗O R(χuniv)

)

for some lattice V ◦ ⊂ V , with χuniv the composite map �K � G K ↪→ R× (the “universal
character” valued in R).

We now equip this with Panchishkin submodules. Choosing decomposition groups at the
pi , we obtain an isomorphism

Suppose u1, u2 are integers ≥ 0 with u1 + u2 ≤ d . We assume that for each i = 1, 2, the
representation V has subrepresentations V +

pi
stable under the decomposition group at pi , of

dimension ui , with each V +
pi

having strictly larger Hodge–Tate weights than V /V +
pi
. If we

define V+ to be the image of
⊕

i V ◦+
pi

⊗O R(χuniv)|�Kpi
under the isomorphism (†), then

V+ is an r -Panchishkin submodule of V where r = d −u1−u2; the set�(V,V+) consists of
all locally-algebraic characters of G K whose Hodge–Tate weights lie in a certain non-empty
region of Z2, depending on V and the ui .

See [29, §10] for an example of this kind with d = 2; in this case, we obtain 6 different
Panchishkin submodules, one with r = 2, two with r = 1 and three with r = 0. The interpo-
lation regions for these submodules are illustrated in Figure 1 of op.cit.. (More generally, if

1 We use additive notation for characters, so j + χ is a shorthand for the character z �→ z j χ(z).
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V is nearly-ordinary of any dimension d ≥ 1, this construction gives rise to 1
2 (d + 1)(d + 2)

different Panchishkin submodules, d + 1 of which have r = 0.)

2.4 Conjectures on p-adic L-functions

The following conjecture is due to Coates–Perrin-Riou [12] and Panchishkin [33] in the
case of cyclotomic twists of a fixed representation. The generalisation to families as above
is “folklore”; we have been unable to locate its first appearance, but it is a special case of
more general conjectures of Fukaya and Kato [18] (who have also investigated the case of
non-commutative base rings R, which we shall not attempt to consider here).

Conjecture 2.8 Suppose (V,V+) is an 0-Panchishkin family. There exists an element
L(V,V+) ∈ FracR such that for all x ∈ �(V,V+) we have

L(V,V+)(x) = (Euler factor) · L(Mx , 0)

(period)
,

where Mx is the (conjectural) motive whose realisation is Vx .

If Vx is semistable at p, the expected form of the Euler factor is

det
[
(1 − p−1ϕ−1) : Dcris(V +)

] · det [(1 − ϕ) : Dcris(V /V +)
]
.

We refer to [18] for more details of the interpolation factors involved.

2.5 Euler systems

In [29], Zerbes and the present author conjectured that when V is the family of cyclotomic
twists of a fixed representation, the r -Panchishkin condition was the “correct” condition for a
family of Euler systems of rank r to exist, taking values in the r -th wedge power of the Galois
cohomology of the Tate dual V∗(1), and satisfying a local condition at p determined by V+.
This extends the conjectures formulated by Perrin-Riou in [34], which correspond to taking
r to be the maximal value dim V c=1 (in which case the r -Panchishkin condition is automatic,
as we have seen). It is also consistent with the above conjectures of Coates–Perrin-Riou and
Panchishkin for r = 0, if we understand a “rank 0 Euler system” to be a p-adic L-function.

It seems natural to expect that an analogue of Conjecture 2.8 should hold for arbitrary
r -Panchishkin families, predicting the existence of families of rank r Euler systems overR;
and, as in the rank 0 case, one can show that this would follow as a consequence of the very
general conjectures of [18].

Remark 2.9 There are a number of (unconditional) results concerning the variation of Euler
systems in Hida families of automorphic representations, which are examples of nearly-
ordinary families; see e.g. [32] for Kato’s Euler system, and [26] for the GL2 ×GL2

Beilinson–Flach Euler system.
However, the above conjecture predicts that Euler systems should vary in more general

families, which are not nearly-ordinary but are still r -Panchishkin. Some examples of cyclo-
tomic twist type for r = 1 are discussed in [29]. A much more sophisticated example due to
Nakamura, in whichR is the universal deformation space of a 2-dimensional modular Galois
representation, is discussed in §3.5 below.
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3 Examples fromGL2

Notation: Suppose f is a modular cusp form which is a normalised eigenform for the Hecke
operators, with a chosen embedding of its coefficient field Q( f ) into L . We denote by
ρ f ,p the unique Galois representation �Q → GL2(L) characterised as follows: we have
tr ρ f ,p(Frob

−1

 ) = a
( f ) for almost all primes 
, where Frob
 denotes an arithmetic Frobe-

nius at 
. Thus det ρ f ,p is χ1−k
cyc up to finite-order characters, where k is the weight of f . (We

warn the reader that some references use the notation ρ f ,p for the dual of this representation.)

3.1 The universal deformation ring

Let ρ̄ : �Q → GL(V ) ∼= GL2(F) be a 2-dimensional, odd, irreducible (hence, by Khare–
Wintenberger, modular) representation.

Hypotheses 3.1 We shall assume ρ̄ satisfies the following:

(a) ρ̄|�K is irreducible, where K = Q(ζp) (Taylor–Wiles condition).
(b) if ρ̄|�Qp

is not absolutely irreducible, with semisimplification χ1,p ⊕χ2,p (after possibly

extending F), then we have χ1,p/χ2,p /∈ {1, ε±1
p } where εp is the mod p cyclotomic

character.
(c) ρ̄ is unramified away from p (i.e. its tame level is 1).

Remark 3.2 Note that the first two assumptions are essential to our method, because they are
hypotheses for major theorems which we need to quote. On the other hand, the third is much
less fundamental and is imposed chiefly in order to simplify the calculations in Sect. 4 below.
See Sect. 5.1 below for further discussion.

Definition 3.3 Let R(ρ̄) ∈ CNLO be the universal deformation ring over O parametrising
deformations of ρ̄ as a �Q,{p}-representation, and ρ : �Q,{p} → GL2(R(ρ̄)) the universal
deformation. Let X(ρ̄) = Spf R(ρ̄).

Theorem 3.4 (Böckle, Emerton)

• The ring R(ρ̄) is a reduced complete intersection ring, and is flat over O of relative
dimension 3.

• We have a canonical isomorphism R(ρ̄) ∼= T (ρ̄), where T (ρ̄) is the localisation at the
maximal ideal corresponding to ρ̄ of the prime-to-p Hecke algebra acting on the space
S(1,O) of cuspidal p-adic modular forms of tame level 1.

Proof This is proved in [5] assuming that ρ̄|�Qp
has a twist which is either ordinary, or

irreducible and flat. This was extended to the setting described above (allowing irreducible
but non-flat ρ̄) by Emerton, see [17, Theorem 1.2.3]. ��
Remark 3.5 If ρ̄ is unobstructed in the sense that H2

(
�Q,{p},Ad(ρ̄)

) = 0, then R(ρ̄) is
isomorphic to a power-series ring in 3 variables overO. It is shown in [37] that if f is a fixed
newform of weight ≥ 3, then for all but finitely many primes p of the coefficient fieldQ( f ),
the mod p representation ρ̄ f ,p is unobstructed.

Definition 3.6 (i) If f is a classical modular newform of p-power level (and any weight)
such that ρ̄ f ,p = ρ̄, then ρ f ,p is a deformation of ρ̄ and hence determines aQp-point of
X(ρ̄). We shall call these points classical.
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(ii) More generally, a Qp-point of X(ρ̄) will be called nearly classical if the corresponding
Galois representation ρ has the form ρ f ,p ⊗ (χcyc)

−t , for some (necessarily unique)
newform f and t ∈ Z.

In the setting of (ii), if t ≥ 0, the Galois representation ρ f ,p ⊗ (χcyc)
−t corresponds

formally to the nearly-overconvergent p-adic modular form θ t ( f ), where θ = q d
dq is the

Serre–Tate differential operator on p-adic modular forms. Slightly abusively, we denote such
a point by θ t ( f ), even if t < 0 (inwhich case θ t ( f )may not actually exist as a p-adicmodular
form).

Either Theorem 1.2.4 of [17] or the main theorem of [24], combined with Theorem 0.4 of
[35] in the case of equal Hodge–Tate weights, shows that any Qp-point ρ of X(ρ̄) which is
de Rham at p is a nearly-classical point (as predicted by the Fontaine–Mazur conjecture).

Proposition 3.7 For any weight k ≥ 2, modular points corresponding to weight k modular
forms are dense in X(ρ̄).

Proof This is obvious for Spf T (ρ̄), since T (ρ̄) can be written as an inverse limit of locali-
sations of Hecke algebras associated to the finite-level spaces Sk(�1(pn),O). Since we have
R(ρ̄) ∼= T (ρ̄) by Theorem 3.4, the result follows. ��
Remark 3.8 Note that a crucial step in the proof of Theorem3.4 is to establish that the set of all
modular points (of any weight) is dense in X(ρ̄). However, once this theorem is established,
we can obtain the much stronger result of Proposition 3.7 a posteriori.

For later constructions we need the fact that there exists a “universal modular form” over
X(ρ̄):

Definition 3.9 (i) Let k : Z×
p → R(ρ̄)× be the character such that det ρuniv = (χcyc)

(1−k).

(ii) Let G[p]
ρ̄ be the formal power series

G[p]
ρ̄ =

∑

p�n

tnqn ∈ R(ρ̄)[[q]],

where the tn are determined by the identity of formal Dirichlet series

∑

p�n

tnn−s =
∏


�=p

det
(
1 − 
−sρuniv(Frob−1


 )
)−1

.

The specialisation of G[p]
ρ̄ at a nearly-classical point ρ f ,p ⊗ (χcyc)

−t is precisely the “p-

depletion” θ t ( f [p]) of θ t ( f ), where θ is the Serre–Tate differential operator q d
dq . If t ≥ 0,

this p-adic modular form is the image under the unit-root splitting of a classical nearly-
holomorphic cuspform, in the sense of Shimura.

Theorem 3.10 (Gouvea) The series G[p]
ρ̄ is the q-expansion of a p-adic modular form with

coefficients inR(ρ̄), of tame level 1 and weight-character k, which is a normalised eigenform
for all Hecke operators.

Proof This follows readily from the duality between Hecke algebras and spaces of cusp
forms. ��
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3.2 The universal ordinary representation

The following definition is standard:

Definition 3.11 An ordinary refinement of (ρ̄, V ) is a choice of 1-dimensional F-subspace
V

+ ⊆ V stable under ρ̄(�Qp ), such that the inertia subgroup IQp acts trivially on V
+
.

Let usfix a choice of ordinary refinementV
+
. Then there is a natural definitionof ordinarity

for deformations: we say that a deformation ρ of ρ̄ (to some ring A ∈ CNLO) is ordinary if

ρ|�Qp
preserves a rank one A-summand lifting V

+
, and the action of IQp on this summand

is trivial. (Note that this summand is unique if it exists, since Hypothesis 3.1(b) implies that
V /V

+
cannot be isomorphic to V

+
).

Theorem 3.12 Suppose ρ̄ is ordinary. Then there exists a complete local Noetherian O-
algebra representing the functor of ordinary deformations. We let Rord(ρ̄) be this algebra,
and Xord(ρ̄) = Spf Rord(ρ̄).

Remark 3.13 Over Rord(ρ̄) we have a universal triple (ρord,Vord,Vord,+), but we caution
the reader that (Vord,Vord,+) is not an 0-Panchishkin family over Rord(ρ̄) in the sense of
Definition 2.3, since it interpolates the representations ρ f ,p for ordinary modular forms f .
These have all their Hodge–Tate weights ≤ 0, and hence cannot satisfy condition (1) in
Definition 2.1. However, we shall build interesting examples of 0-Panchishkin families from
(Vord,Vord,+) via twists and tensor products.

On the “modular” side, we can consider the ordinary Hecke algebra T ord(ρ̄), which is the
localisation at ρ̄ of the algebra of endomorphisms of eord · S(1,Zp) generated by all of the
Hecke operators (including Up). There is a natural map

Rord(ρ̄) → T ord(ρ̄),

and by Theorem 3.3 of [38], this map is an isomorphism. (Note that this isomorphism is
compatible with the isomorphismR(ρ̄) ∼= T (ρ̄) of the previous section, via the natural maps
R(ρ̄) → Rord(ρ̄) and T (ρ̄) → T ord(ρ̄).)

Note that the composite Z×
p

k−→ R(ρ̄) → Rord(ρ̄) gives Rord(ρ̄) the structure of a �-
algebra, where � = O[[Z×

p ]]. So we have a map k : Xord(ρ̄) → Xcyc = Spf �.

Proposition 3.14 (Hida)

• The ring Rord(ρ̄) is finite and projective as a �-module, and thus has relative dimension
1 over O.

• If k ≥ 2 is an integer, and χ : Z×
p → O× is a Dirichlet character of conductor pn, then

the fibre of Xord(ρ̄) at k = k +χ is étale over L = FracO, and its geometric points biject
with the normalised weight k eigenforms of level �1(pn) and character χ (if n ≥ 1) or
level �0(p) (if n = 0) which are ordinary and whose mod p Galois representation is ρ̄.

(Note that this fibre is empty if k + χ does not lie in the component of Xcyc determined
by det ρ̄.)

Much as above, we can define a universal ordinary eigenform Gord
ρ̄ with coefficients in

Rord(ρ̄) (whose p-depletion is the pullback of G[p]
ρ̄ along Xord(ρ̄) → X(ρ̄), and whose

Up-eigenvalue is the scalar by which Frob−1
p acts on V+). However, we shall not use this

explicitly here.
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More useful is the following dual construction due to Hida [21]. The ring Rord(ρ̄)

has finitely many minimal primes, corresponding to irreducible components of Xord(ρ̄)

(“branches”). If a is a minimal prime, and we let Ta be the integral closure of T ord(ρ̄)/a,
then we can find an invertible ideal Ia � Ta, and a homomorphism

λa : Sord(1,�) ⊗T ord(ρ̄) Ta → I −1
a ,

characterised by mapping Gord
ρ̄ to 1.

3.3 Nearly ordinary deformations

More generally, we can define a nearly ordinary refinement V
+

of V by dropping the
requirement that inertia act trivially on V

+
; and there is a corresponding definition of a

nearly-ordinary deformation (V , V +) of (V , V
+
).

Proposition 3.15 There exists a ring Rno(ρ̄) ∈ CNLO , and a nearly-ordinary deformation

(Vno,Vno,+) of (V , V
+
) to this ring, which are universal among nearly-ordinary deforma-

tions of (V , V
+
). Moreover, Rno(ρ̄) is flat over O of relative dimension 2.

Proof The representability of this functor follows easily from the ordinary case above. If
(V , V

+
) is nearly-ordinary, we can find a unique character χ̄ : Gal(Q(ζp)/Q) → F× such

that (V ⊗ χ̄ , V
+ ⊗ χ̄) is ordinary. Similarly, the data of a nearly-ordinary deformation of

(V , V
+
) is equivalent to the data of an ordinary deformation of (V ⊗ χ̄ , V

+ ⊗ χ̄ ), together
with a characterχ ofGal(Q(ζp∞)/Q) lifting χ̄ . This shows that the functor of nearly-ordinary
deformations is represented by a ring Rno(ρ̄), defined as the completed tensor product of
Rord(ρ̄ ⊗ χ̄) and the ring parametrising deformations of χ̄ to a character of Gal(Q(ζp∞)/Q),
which is isomorphic to O[[X ]]. Since Rord(ρ̄ ⊗ χ̄) is flat of dimension 1, we conclude that
Rno(ρ̄) is flat of dimension 2. ��

3.4 Examples of Panchishkin families

The above deformation-theoretic results give rise to the following examples of 0-Panchishkin
families, in the sense of Definition 2.3.

Example 3.16 (Nearly-ordinary deformations of modular forms) Suppose V is a modular
mod p representation satisfyingHypotheses 3.1, with a nearly-ordinary refinement V

+
. Then

the universal family Vno of Galois representations over Rno(ρ̄), together with its universal
nearly-ordinary refinement Vno,+, is an example of a 0-Panchishkin family. In this case,
Hida theory shows that �(V,V+) consists precisely of the Qp points of Xno(ρ̄) of the form
θ−s( f ), where f has weight k ≥ 2 and 1 ≤ s ≤ k − 1. These are manifestly Zariski-dense.
Conjecture 2.8 is known for this family, by work of Mazur and Kitagawa [25]2.

We are principally interested in examples which (unlike Example 3.16) are not nearly-
ordinary. Our first examples of such representations come from tensor products:

Example 3.17 (Half-ordinary Rankin–Selberg convolutions) Let V 1 and V 2 be two mod p
representations satisfying Hypotheses 3.1, and suppose V 1 admits a nearly-ordinary refine-
ment V

+
1 . Twisting V 1 by a character and V 2 by the inverse of this character, we can suppose

2 See also [19] for a comparison between the Mazur–Kitagawa result and the general conjectures of [18].
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that (V 1, V
+
1 ) is actually ordinary (not just nearly-so). Thenwe consider the triple (R,V,V+)

given by

R = Rord(ρ̄1)⊗̂R(ρ̄2), V = Vord
1 ⊗̂V2, V+ = Vord,+

1 ⊗̂V2.

where (Vord
1 ,Vord,+

1 ) is the universal ordinary deformation of (V 1, V
+
1 ), and V2 the universal

deformation of V 2 (with no ordinarity condition). Note thatR has relative dimension 4 over
O.

The set �(V,V+) is the set of points of the form
(

f , θ−s(g)
)
, where f is a classical point

of weight k ≥ 2, and θ−s(g) is a nearly-classical point such that g has weight 
 < k and s
lies in the range of critical values of the Rankin–Selberg L-function, namely


 ≤ s ≤ k − 1.

This set �(V,V+) is Zariski-dense; even the specialisations with (k, 
, s) = (3, 2, 2) are
dense. We shall verify Conjecture 2.8 for this family below.

Remark 3.18 A generalisation of the above two examples would be to consider tensor prod-
ucts of universal representations over product spaces of the form

X = Xno(ρ̄1) × X(ρ̄2) × · · · × X(ρ̄n)

for general n, where ρ̄1, . . . , ρ̄n are irreduciblemodular representationsmod p with ρ̄1 nearly
ordinary. This space has dimension 3n −1; but there are n −1 “redundant” dimensions, since
the tensor product is not affected by twisting ρ1 by a character and one of ρ2, . . . , ρn by the
inverse of this character. Quotienting out by this action gives a 0-Panchishkin family over a
2n-dimensional base.

Example 3.19 (General tensor products)Let L = FracO and let V1 be any L-linear represen-
tation of �Q (not necessarily 2-dimensional) which is geometric, satisfies the 0-Panchishkin
condition, and has dim V c=1 = dim V c=−1. Let V ◦

1 be a �Q-stable O-lattice in V1 (which
always exists). Then, for any modular mod p representation V 2, we obtain a 0-Panchishkin
family by letting

R = R(ρ̄2), V = V ◦
1 ⊗ V2, V+ = (V ◦

1 ∩ V +
1 ) ⊗ V2,

In particular, we can take V1 to be the Galois representation arising from a cohomological
automorphic representation of GSp4 which is Klingen-ordinary at p.

Note that in the last two examples the subspace V+ will not, in general, extend to a full
flag of �Qp -stable subspaces, so V is not nearly ordinary.

3.5 Families of Euler systems

For ρ̄ as in Hypotheses 3.1, the canonical 2-dimensional family V over R(ρ̄) will not,
in general, satisfy the 0-Panchishkin condition. However, it automatically satisfies the r -
Panchishkin condition for r = 1, as V+ = {0} satisfies the conditions of a 1-Panchishkin
submodule (with�(V,V+) being the set of nearly-classical specialisations θ t ( f )with t ≥ 0).

So the more general conjecture sketched in §2.5 predicts that there should exist a family
of Euler systems taking values in V∗(1), interpolating Kato’s Euler systems for each modular
form f lifting ρ̄. Such a family of Euler systems has recently been constructed by Nakamura
[31].
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4 P-adic L-functions for half-ordinary Rankin convolutions

Let us choose two mod p representations ρ̄1, ρ̄2 satisfying Hypotheses 3.1, with ρ̄1 ordinary
(but no ordinarity assumption on ρ̄2).

Choose a branch a of Xord(ρ̄1) as before, and let A denote the ring Ta ⊗̂Zp T (ρ̄2), and
X = Xa ×X(ρ̄) its formal spectrum. This has relative dimension 4 over Zp . We let V denote
the A-linear representation ρord

1 ⊗ (ρ2)
∗(1), and V+ = (ρord

1 )+ ⊗ (ρ2)
∗(1) where (ρord

1 )+
is the 1-dimensional unramified subrepresentation of ρord

1 |�Qp
. Thus V is a rank 4 family of

�Q-representations over X unramified outside p, and V+ a rank 2 local subrepresentation of
V .

Remark 4.1 This differs from the (V,V+) of Example 3.17 by an automorphism of the base
ring R, so Conjecture 2.8 for either one of these examples is equivalent to the other. The
present setup is slightly more convenient for the proofs.

The set �(V,V+) contains all points ( f , θ t (g)) where f has weight k ≥ 2, g has weight

 ≥ 1, and t is an integer with 0 ≤ t ≤ k − 
 − 1. Our goal is to define a p-adic L-function
associated to (V,V+), with an interpolating property at the points in �(V,V+).

The ring A is endowed with two canonical characters k1,k2 : Z×
p → A×, the former

factoring through Ta and the latter through T (ρ̄2). We can regard G[p]
ρ̄2

as a p-adic eigenform
with coefficients in A, of weight k2, by base extension.

Definition 4.2 Let � denote the p-adic modular form

eord
(
G[p]

ρ̄2
· E [p]

k1−k2

)
∈ Sord

k1 (1,A),

where E [p]
k = ∑

n≥1
p�n

(
∑

d|n dk−1)qn ∈ Sk(1,�) denotes the p-depleted Eisenstein series of

weight k and tame level 1. Let

La(ρ̄1, ρ̄2):=λa (�) ∈ I −1
a ⊗Ta A.

This is a meromorphic formal-analytic function on the 4-dimensional space Xa × X(ρ̄),
regular along any 3-dimensional slice { f } × X(ρ̄) with f classical.

We now show that the values of L at points in �+ interpolate values of Rankin L-
functions. Let ( f , θ t (g)) be such a point, with f , g newforms of p-power levels, and let k, 


be the weights of f , g. Let α be the eigenvalue of geometric Frobenius on the unramified
subrepresentation of ρ f ,p|�Qp

, and let fα be the p-stabilisation of f of Up-eigenvalue α.

Remark 4.3 If f has non-trivial level, then fα = f , and α is just the Up-eigenvalue of f . If
f has level one, then α is the unique unit root of the polynomial X2 − ap( f )X + pk−1, and

fα is the level p eigenvector fα(τ ) = f (τ ) − pk−1

α
f (pτ).

We define λ f ,α to be the unique linear functional on Sord
k (1, L) which factors through

projection to the fα eigenspace, and satisfies λ f ,α( fα) = 1. By definition, we have

La(ρ̄1, ρ̄2)( f , θ t (g)) = λ f ,α

(
θ t (g[p]) · E [p]

k−
−2t

)
.
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Definition 4.4 For f , g newforms as above, we write L(p)( f × g, s) for the Rankin–Selberg
L-function of f and g without its Euler factor at p,

L(p)( f × g, s) := L(p)(χ f χg, 2s + 2 − k − 
)
∑

n≥1
p�n

an( f )an(g)n−s

=
∏


�=p

det
(
1 − 
−s Frob−1


 : Vp( f ) ⊗ Vp(g)
)−1

,

and let

�(p)( f ⊗ g, s):=�C(s)�C(s − 
 + 1)L(p)( f ⊗ g, s).

Theorem 4.5 We have

La(ρ̄1, ρ̄2)( f , θ t (g)) = 21−k (−1)t i k+


(
p(t+1)

α

)b

λpb (g)
Pp(g, pt α−1)

Pp(g∗, p−(
+t)α)

�(p)( f , g∗, 
 + t)

Eadp ( f )〈 f , f 〉 ,

where b is the level at which g is new. Here λpb (g) is the Atkin–Lehner pseudo-eigenvalue
of g, Pp(g, X) is the polynomial such that

Pp(g, X)−1 =
∑

r≥0

apr (g)Xr ,

and

Ead
p ( f ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1 − pk−1

α2

) (
1 − pk−2

α2

)
f crystalline atp,

−
(

pk−1

α2

)
f semistable non-crystalline atp,

(
pk−1

α2

)a
G(χ f ) f non-semistable at p, new of level pa .

Proof This follows from theRankin–Selberg integral formula. The computations are virtually
identical to the case of finite-slope forms treated in [27], so we shall not reproduce the
computations in detail here. ��

Remark 4.6 Note that the factor Pp(g,pt α−1)

Pp(g∗,p−(
+t)α)
can be written as

det
[
(1 − ϕ)−1(1 − p−1ϕ−1) : Dcris(V +)

]

where V + = (ρ f ,p)
+ ⊗ ρ∗

g,p(1 + t) is the fibre of V+ at ( f , θ t (g)). On the other hand, the

factor
(

p(t+1)

α

)b
λpb (g) is essentially the local ε-factor of this representation.

5 Other cases

We briefly comment on some other cases which can be treated by the samemethods as above.
For reasons of space we shall only give a very brief sketch of each construction, and we hope
that these sketches will be expanded into a fuller account in future works.
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5.1 Relaxing the tame levels

Firstly, the assumption in Theorem 4.5 that the tame levels of the Hida families be 1 should
not be too difficult to relax. However, handling general tame levels will require much more
careful book-keeping about the local Euler factors at the bad primes, as in the construction
of p-adic Rankin–Selberg L-functions for the convolution of two ordinary families in [10].
The problem of generalising Theorem 4.5 to non-trivial tame levels will be treated in the
forthcoming Warwick PhD thesis of Zeping Hao.

5.2 The case of GSp(4)×x GL(2)

A more ambitious case which can be treated by the same methods is the following. Let �

be a cohomological automorphic representation of GSp4 which is globally generic, unram-
ified and Klingen-ordinary at p, and contributes to cohomology with coefficients in the
algebraic representation of weight (r1, r2), for some r1 ≥ r2 ≥ 0. (Classically, these corre-
spond to holomorphic vector-valued Siegel modular forms taking values in the representation
Symr1−r2 ⊗ detr2+3 of GL2.) For technical reasons we assume r2 > 0.

In [28] we constructed a cyclotomic p-adic L-function interpolating the critical values of
L(� ⊗ σ, s) where σ is an automorphic representation of GL2 generated by a holomorphic
form of weight 
 ≤ r1 − r2 + 1. This is constructed by applying a “push-forward” map to
the product of the p-depleted newform g[p] ∈ σ with an auxiliary p-adic Eisenstein series,
and pairing this with a coherent H2 eigenclass coming from �.

This construction is closely parallel to the construction of the p-adic Rankin–Selberg
L-function for GL2 ×GL2, and it generalises to universal-deformation families in the same
way, since the pushforward map of [28] can be applied to any family of p-adic modular
forms (over any base). If we assume for simplicity that � is unramified at all finite places,
and replace g with a universal deformation family G[p]

ρ̄ as above, then we obtain an element of
R(ρ̄) interpolating these p-adic L-functions, with � fixed and σ varying through the small-
weight specialisations of a 3-dimensional universal-deformation family. We can also add a
fourth variable, in which we vary � through a 1-dimensional family of Klingen-ordinary
representations, with r1 varying but r2 fixed.

5.3 Self-dual triple products

If we are given three mod p modular representations ρ1, ρ2, ρ3 with ρ1 nearly-ordinary and
det(ρ1) · det(ρ2) · det(ρ3) = χ̄cyc, then the space

{
(ρ1, ρ2, ρ3) ∈ Xno(ρ̄1) × X(ρ̄2) × X(ρ̄3) : det(ρ1) · det(ρ2) · det(ρ3) = χcyc

}

carries a natural 8-dimensional 0-Panchishkin family V , given by the tensor product of the
three universal deformations Vi , with the Panchishkin submodule given by V+

1 ⊗ V2 ⊗ V3.
The base space is a priori 7-dimensional, but it has two “redundant” dimensions (since we
can twist either ρ2 or ρ3 by a character, and ρ1 by the inverse of that character, without
changing the tensor product representation), so we obtain an 0-Panchishkin family over a
5-dimensional base X, satisfying the self-duality condition V ∼= V∗(1). The set �(V,V+)

corresponds to triples of classical modular forms ( f1, f2, f3) which are “ f1-dominant” –
i.e. their weights (k1, k2, k3) satisfy k1 ≥ k2 + k3.
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Feeding the universal eigenforms G[p]
ρ̄2

and G[p]
ρ̄3

into the construction of [14] gives a p-
adic L-function over this 5-dimensional base space, extending the construction in op.cit. of a
p-adic L-function over the 3-dimensional subspace ofXwhere ρ2 and ρ3 are nearly-ordinary.

(Note that this is actually a refinement of Conjecture 2.8, since the resulting p-adic L-
function interpolates the square-roots of central L-values.)

5.4 The Bertolini–Darmon–Prasanna case

Let ρ̄ be a modular mod p representation of �Q,{p}, with universal deformation space X(ρ̄).
We shall suppose that det ρ̄ = χ̄cyc, andwe letX0(ρ̄) ⊆ X(ρ̄)denote the subspace parametris-
ing deformations whose determinant is χcyc; this is flat over O of relative dimension 2, and
is formally smooth if ρ̄ is unobstructed.

Meanwhile, we choose an imaginary quadratic field K in which p = p1p2 is split, and we
letXac

K
∼= Spf O[[X ]] be the character space of the anticyclotomic Zp-extension of K . LetX

denote the productXac
K ×X0(ρ̄). This isO-flat of relative dimension 3, and it carries a family

of 4-dimensional Galois representations V , given by tensoring the universal deformation
ρuniv of ρ̄ with the induction to �Q of the universal character over Xac

K . Note that V satisfies
the “self-duality” condition V∨(1) ∼= V . Locally at p, V is the direct sum of two twists of the
universal deformation of ρ̄, corresponding to the two primes above p; and we can define a
0-Panchishkin submodule V+ by taking the direct summand corresponding to one of these
primes. Note that �(V,V+) consists of pairs (ψ, f ) where f is a modular form and ψ an
anticyclotomic algebraic Hecke character of weight (n,−n), where n is large compared to
the weight of f .

Plugging in the universal family G[p]
ρ̄ (more precisely, its pullback to X0(ρ̄)) into the

constructions of [4], we obtain a p-adic analytic function on the 3-dimensional space Xac ×
X0(ρ̄) interpolating the square-roots of central L-values at specialisations in �(V,V+).
This refines the construction due to Castella [9, §2] of a BDP-type L-function over the
2-dimensional space Xac

K × Xord(ρ̄) when ρ̄ is ordinary.3

5.5 A finite-slope analogue?

One can easily formulate a “finite-slope” analogue of Conjecture 2.8, where the submodule
V+ ⊆ V is replaced by a submodule of theRobba-ring (ϕ, �)-module ofV|�Qp

. The analogue

of Hida’s ordinary deformation space Xord(ρ̄) is now the ρ̄-isotypic component E(ρ̄) of the
Coleman–Mazur Eigencurve [13].

However, proving a finite-slope version of the results of Sect. 4, or of the generalisations
sketched in the above paragraphs, appears to be much more difficult than the ordinary case.
All of the above constructions rely on the existence of the universal eigenform G[p]

ρ̄ as a
family of p-adic modular forms overX(ρ̄). However, in the finite-slope case, we need to pay
attention to overconvergence conditions, since the finite-slope analogue of the projectors λa

are only defined on overconvergent spaces. Clearly G[p]
ρ̄ is not overconvergent (as a family),

since it has specialisationswhich are nearly-classical rather than classical. Sowe need towork
in an appropriate theory of nearly-overconvergent families. Such a theory has recently been
introduced by Andreatta and Iovita [1]. We might make the following optimistic conjecture:

3 This is slightly imprecise since Xord(ρ̄) is not contained in X0(ρ̄); more precisely, the correspondence
between the two constructions is given by identifyingXord(ρ̄)withXno(ρ̄)∩X0(ρ̄), via twisting by a suitable
character of �ab

Q,{p} ∼= Z×
p .
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Conjecture 5.1 Let f be a nearly-classical point of X(ρ̄), corresponding to a modular form
f of prime-to-p level. Then there is an affinoid neighbourhood X f = Max A f of f inX(ρ̄)an

over which the universal eigenform G[p]
ρ̄ is a family of nearly-overconvergent forms in the

sense of [1].

If this conjecture holds, one might realistically hope to define (for instance) a p-adic
Rankin–Selberg L-function over neighbourhoods of crystalline classical points in E(ρ̄1) ×
X(ρ̄2)

an.

6 Conjectures on P-nearly-ordinary families

In this section, we’ll use Galois deformation theory to define universal parameter spaces for
Galois representations valued in reductive groups,which satisfy a Panchishkin-type condition
relative to a parabolic subgroup; and we formulate a “parabolic R = T ” conjecture, pre-
dicting that these should have an alternative, purely automorphic description. We expect that
these parameter spaces should be the natural base spaces for families of p-adic L-functions,
and of Euler systems.

6.1 Nearly-ordinary Galois deformations

Let G be a reductive group scheme over O and P a parabolic subgroup. In [6, §7], Böckle
defines a homomorphism ρ : �Q,S → G(A), for A ∈ CNLO , to be P-nearly ordinary if
ρ|�Qp

lands in a conjugate of P(A). Theorem 7.6 of op.cit. shows that under some mild
hypotheses, the functor of P-nearly-ordinary deformations of a given P-nearly-ordinary
residual representation is representable.

Remark 6.1 This extends the definition of near-ordinarity described in Remark 2.4 above,
which corresponds to taking G = GLn and P the Borel subgroup. On the other hand, if
(V,V+) is an r -Panchishkin family in the sense of Definition 2.3, then it is P-nearly-ordinary
where P is the corresponds to taking G = GLn and P to be the parabolic subgroup of block-
upper-triangular matrices with blocks of sizes dim Vc=1−r and dim Vc=−1+r . So the notion
of P-near-ordinarity gives a framework covering both of these classes of representations.

The reason why we consider general reductive groups G, rather than just GLn , is that
the geometry of deformation spaces for GLn-valued global Galois representations is rather
mysterious when n > 2; in particular, it is not expected that these spaces will always have
a Zariski-dense set of specialisations which are de Rham. However, the geometry of defor-
mation spaces is much simpler and better-understood for Galois representations arising from
Shimura varieties (or, more generally, from automorphic representations that are discrete-
series at ∞).

6.2 Nearly-ordinary automorphic representations

We now introduce the corresponding condition on the automorphic side. We let G be a
reductive group over Q; for simplicity, we assume here G is split. We also suppose G has a
“twisting element” in the sense of [8], and fix a choice of such an element4. Then Conjecture

4 Alternatively, one could replaceG∨ by the identity component of the “C-group” of op.cit., which the quotient
of G∨ × Gm by a central element of order 2. We can also allow non-split G, by considering representations
into a larger, non-connected quotient of the C-group.
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5.3.4 of op.cit. predicts that cohomological cuspidal automorphic representations � of G
give rise to Galois representations ρ�,p : �Q → G∨(Qp), where G∨ is the Langlands dual
of G.

Let P be a parabolic in G, with Levi decomposition P = M N . We say that a cohomo-
logical, cuspidal automorphic representation � is P-nearly-ordinary if the Hecke operators
at p associated to cocharacters valued in the centre Z(M) of M act on �p with unit eigen-
values. For example, if P is the parabolic in GSp2n consisting of matrices whose lower-left
n × n block is zero, then the condition of P-near-ordinarity is that the double coset of
diag(p, . . . , p, 1, . . . , 1) should act as a unit. See also [22] for a discussion of near-ordinarity
for general parabolics in the case G = SLn .

The link between the “Galois” and “automorphic” notions of near-ordinarity is the fol-
lowing. Since the root datum of G∨ is the dual of that of G, there is a canonical bijection
P ↔ P∨ between conjugacy classes of parabolics in P and parabolics in G∨; and one
expects that if � is nearly-ordinary for P , then ρ�,p should be a P∨-nearly-ordinary rep-
resentation. (This is known in many cases; see e.g. [36] for the group GSp4.) In particular,
families of P-nearly-ordinary cohomological automorphic representations of G should give
rise to families of P∨-nearly-ordinary Galois representations into G∨.

If we also choose a linear representation ξ : G∨ → GLn , then for suitably chosen P
and r , the resulting families of n-dimensional Galois representations will be r -Panchishkin
families. The example of §4 is of this type, taking G = GL2 ×GL2, and P = B2 × GL2

where B2 is the Borel subgroup of GL2. Here we take ξ to be the 4-dimensional tensor
product representation of G∨ ∼= G, which maps B2 × GL2 to the parabolic in GL4 with
block sizes (2, 2).

Similarly, the self-dual triple-product setting of Sect. 5.3 corresponds to taking G to be
the group (GL2 ×GL2 ×GL2)/GL1, and P the image of B2 × GL2 ×GL2. Then G∨ is a
subgroup of GL2 ×GL2 ×GL2, and the 8-dimensional tensor-product representation of L G
sends the dual of P to the parabolic in GL8 with blocks (4, 4).

6.3 Big and small Galois eigenvarieties

In the setting of the previous paragraph, we define the big P-nearly-ordinary Galois eigenva-
riety for G to be the following space. Suppose G∨ and P∨ have smooth models overO, and
fix some choice of ρ̄ : �Q,S → G∨(F) which is P∨-nearly-ordinary. Then – assuming the
hypotheses of Böckle’s construction are satisfied – we obtain a universal deformation ring
RP∨−no(ρ̄) for for P∨-nearly-ordinary liftings of ρ̄. We define the big P-nearly-ordinary
Galois eigenvariety XP (ρ̄) to be the formal spectrum of this ring RP∨−no(ρ̄).

The methods of [6] give a formula for the dimension of this space. Suppose ρ̄ satisfies the
“oddness” condition that dim g

Ad ρ̄(c)=1
F = dim(G/BG), where gF is the Lie algebra of G/F,

c is complex conjugation and BG is a Borel subgroup ofG. (This condition is expected to hold
for representations arising from Shimura varieties; see [11, Introduction].) ThenRP∨−no(ρ̄)

has a presentation as a quotient of a power series ring in d1 variables by an ideal with d2
generators, where

d1 − d2 = dim P − dim(G/BG) = dim BM ,

where M is the Levi factor of P and BM ⊆ M is a Borel subgroup of M . It seems reasonable
to conjecture that XP (ρ̄) is in fact flat over O, and its relative dimension is dim BM .

The term big is intended to contrast with the following alternative construction (which
is perhaps less immediately natural; we introduce it because it is the Galois counterpart
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of an existing construction on the automorphic side, as we shall recall below). Let M∨ =
M∨/Z(M∨), where Z(M∨) is the centre of M∨; hence M∨ is the Langlands dual of Mder.
We fix a Hodge type v and an inertial type τ for M∨-valued representations of �Qp , in the

sense of [3]. Then we say a lifting ρ of ρ̄ to Qp is P∨-nearly-ordinary of type (τ, v) if it

is P∨-nearly-ordinary, and the composition �Qp

ρ−→ P∨(Qp) → M∨(Qp) has the given
Hodge and inertial types. We define the small P-nearly-ordinary Galois eigenvariety to be
the universal deformation space XP (ρ̄; τ, v) for deformations that are P∨-nearly-ordinary
of the specified type. Using the formulae of [3] applied to M∨ to compute the dimension of
the local lifting rings, and assuming that ρ̄ is odd and v is sufficiently regular, we compute
that the expected dimension of XP (ρ̄; τ, v) is now given by dim Z(M∨) = dim Z(M).

Remark 6.2 Note that the big and small Galois eigenvarieties coincide if P is a Borel sub-
group; but the dimension of the big eigenvariety grows with P , while the dimension of the
small eigenvariety shrinks as P grows. For instance, if G = GL2 and P = G, then XP (ρ̄) is
just the unrestricted deformation space, which is 3-dimensional overO as we have seen; but
XP (ρ̄; τ, v) has dimension 1, since for any (τ, v) there are only finitely many deformations
of that type, so XP (ρ̄; τ, v) has only finitely many points up to twisting by characters.

6.4 Big and small automorphic eigenvarieties

We can now ask if the above Galois-theoretic spaces have automorphic counterparts.

6.4.1 The big eigenvariety

Seeking an automorphic counterpart of the big Galois eigenvariety leads to the following
question:

Question: If G is reductive overQ, and P is a parabolic in G/Qp as above, is there a natural
purely automorphic construction of a parameter space EP for systems of Hecke eigenvalues
arising from cohomological automorphic representations for G that are nearly ordinary for
the parabolic P?

We call this conjectural object EP the big P-nearly-ordinary automorphic Eigenvariety.
We expect its dimension to be the same as its Galois analogue; in particular, if G has discrete
series its dimension should be dim BM , where BM is a Borel subgroup of the Levi of P as
before.

The case when P = B is a Borel subgroup is relatively well-understood; this is the setting
of Hida theory. However, the case of non-Borel parabolics is much more mysterious. In this
case, one can give a candidate for this space EP as follows.

For any open compact K ⊂ G(Af ), we can form the H∗(K ,O) of Betti cohomology of
the symmetric space for G of level K , which is a finitely-generated graded O-module. This
has an action of Hecke operators, and the subalgebra of its endomorphisms generated by
Hecke operators at primes where K is unramified, the spherical Hecke algebra of level K, is
commutative.

We fix an open compact subgroup K p ⊂ G(Ap
f ), and let Kn,p = {g ∈ G(Zp) : g mod

pn ∈ NP (Z/pn)}, where NP is the unipotent radical of P . Then, for any n ≥ 1, H∗(K ,O)

has a canonical idempotent endomorphism eP (the Hida ordinary projector associated to
P), defined by limr→∞ Ur !

P where UP is a suitable Hecke operator; this commutes with the
spherical Hecke algebra.
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Definition 6.3 With the above notations, let T P−no
n (K p) be the quotient of the spher-

ical Hecke algebra acting faithfully on eP H∗(K p K p,n,O); and define T P−no(K p) =
lim←−n

T P−no
n (K p).

We conjecture that the formal spectrum of T P−no(K p) should be the big P-nearly-
ordinary eigenvariety. However, from this definition alone it is rather difficult to obtain much
information about the properties of the resulting space (for instance, it is not clear whether
T P−no(K p) is Noetherian). As far as the author is aware, the only non-Borel cases where
this construction is well-understood are the following:

• G = GL2 and P = G, as in Theorem 3.4.
• G = ResF+/Q(U ), where U is a totally definite unitary group for some CM extension

F/F+, with p split in F and F/F+ unramified at all finite places; and P is a parabolic
subgroup of G(Qp) ∼= GLn(Qp)

[F+:Qp] whose Levi subgroup is a product of copies of
GL1 and GL2. This case has been studied extensively by Yiwen Ding [16].

In the definite unitary case, Ding proves that the localisation of T P−no(K p) at themaximal
ideal corresponding to an irreducible ρ̄ is a quotient of the global Galois deformation ring
RP∨−no(ρ̄), and is thereforeNoetherian; andhegives a lower bound for the relative dimension
of T P−no(K p) overO (localised at the maximal ideal corresponding to some ρ̄). This lower
bound is exactly dim BM , the dimension conjectured for the Galois eigenvariety above.

Remark 6.4 Note that Ding’s construction uses the p-adic local Langlands correspondence
for GL2(Qp) in an essential way, so this approach will be much harder to generalise to cases
where the Levi of P is not a product of tori and copies of GL2(Qp).

6.4.2 The small eigenvariety

In contrast to the rather disappointing situation described above, there does seem to be a
well-established theory for the “little brother” of this space—the small P-nearly-ordinary
automorphic eigenvariety. This would be a parameter space for P-nearly-ordinary cohomo-
logical automorphic representations satisfying two additional conditions:

• the highest weight λ of the algebraic representation of G to whose cohomology � con-
tributes should lie in a fixed equivalence class modulo characters of M/Mder;

• the ordinary part JP (�p)
no of JP (�p), which is an irreducible smooth representation of

M(Qp), should satisfy e · JP (�p)
no �= 0 where e is some fixed idempotent in the Hecke

algebra of Mder(Qp).

Note that both conditions are vacuous if P is a Borel. These conditions are the automorphic
counterparts of the fixed Hodge and inertial types up to twisting used to define the small P-
nearly-ordinary Galois eigenvariety. See e.g. Mauger [30] for the construction of the small
P-nearly-ordinary automorphic eigenvariety, and [23] for a “P-finite-slope” analogue.

Remark 6.5 Themost obvious choice of ewould be the idempotent projecting to the invariants
for some choice of open compact subgroup of Mder(Qp). For instance, Mauger’s theory
applies to � such that JP (�p)

no has non-zero invariants under Mder(Zp), although it can
be extended without difficulty to allow other more general idempotents. However, a craftier
choice would be to take e to be a special idempotent in the sense of [7], corresponding to
a choice of Bernstein component for Mder(Qp); these Bernstein components are expected
to biject with inertial types on the Galois side (the inertial local Langlands correspondence
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for Mder(Qp)), while the highest weights λ biject with Hodge types, so we obtain a natural
dictionary between the defining data at p for the Galois and automorphic versions of the
small P-nearly-ordinary eigenvariety.

6.4.3 R = T theorems

Both big and small automorphic eigenvarieties should, clearly, decompose into disjoint unions
of pieces indexed by mod p Hecke eigenvalue systems.We can then formulate the (extremely
speculative) “parabolic R = T ” conjecture that each of these pieces should correspond to
one of the big or small Galois eigenvarieties of the previous section, for a mod p Galois
representation ρ̄ determined by the mod p Hecke eigensystem.

In the case when G is a definite unitary group, results of this kind have been proven by
Geraghty [20] when P is a Borel subgroup; and when the Levi of P is a product of GL1’s
and GL2’s, Ding proves in [16] the slightly weaker result that the map from RP∨−no(ρ̄) to
the ρ̄-localisation of T P−no(K p) is surjective with nilpotent kernel, after possibly extending
the totally real field F+ (an “Rred = T red” theorem).

6.5 Miscellaneous remarks

Remark 6.6 The 4-dimensional parameter space for GSp4 ×GL2 mentioned at the end of
§5.2 is a slightly artificial hybrid: the it is the product of the big automorphic (or Galois)
eigenvariety for P = G = GL2 with the small automorphic eigenvariety for the Klingen
parabolic of GSp4. Of course, we expect that the “correct” parameter space for this construc-
tion is the product of the big eigenvarieties for the two groups, which would have dimension
7 (or 6 if we factor out a redundant twist, which corresponds to working with the group
GSp4 ×GL1 GL2). However, we do not know how to construct p-adic L-functions on this
eigenvariety at present.

Remark 6.7 The small P-nearly-ordinary eigenvariety is finite over the “weight space”
parametrising characters of (M/Mder)(Zp). Moreover, in Shimura-variety settings it is flat
over this space (up to a minor grain of salt if the centre Z(G) has infinite arithmetic sub-
groups). It is natural to ask if there is an analogous, purely locally defined “big P-weight
space” over which the big eigenvarietyEP is finite; the results of [16] suggest that a candidate
could be a universal deformation space for p-adic Banach representations of M(Qp) on the
automorphic side, or M∨-valued representations of �Qp on the Galois side. However, these
spaces will in general have much larger dimension than the eigenvariety, so there does not
seem to be a natural choice of local parameter space over which EP is finite and flat.
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