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Abstract
This paper considers solutions uα of the three-dimensional Navier–Stokes
equations on the periodic domains Qα := (−α,α)3 as the domain size α→
∞, and compares them to solutions of the same equations on the whole
space. For compactly-supported initial data u0

α ∈ H1(Qα), an appropriate exten-
sion of uα converges to a solution u of the equations on R

3, strongly in
Lr(0, T; H1(R3)), r ∈ [1,∞). The same also holds when u0

α is the velocity cor-
responding to a fixed, compactly-supported vorticity. A consequence is that if
an initial compactly-supported velocity u0 ∈ H1(R3) or an initial compactly-
supported vorticity ω0 ∈ H1(R3) gives rise to a smooth solution on [0, T ∗] for
the equations posed on R

3, a smooth solution will also exist on [0, T ∗] for the
same initial data for the periodic problem posed on Qα for α sufficiently large;
this illustrates a ‘transfer of regularity’ from the whole space to the periodic
case.

Keywords: Navier–Stokes equations, expanding domains, strong convergence

Mathematics Subject Classification numbers: 35Q30.

1. Introduction

The aim of this paper is to compare solutions of the Navier–Stokes equations

∂tu −Δu + (u · ∇)u +∇p = 0, ∇ · u = 0, (1.1)

posed on ‘large’ periodic domains Qα := (−α,α)3 and on the whole space R
3. One would

expect, when the initial velocity is sufficiently localised, that the solutions on a ‘large enough’
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domain should mimic those on R
3, and this approach is the basis of many numerical experi-

ments. Indeed, discussions with Robert Kerr about his numerical investigations (Kerr 2018) of
the trefoil configurations of vorticity from the experiments of Scheeler et al (2014) were the
original motivation for this paper, which gives a rigorous justification of this intuition.

Section 3 contains an analysis of the velocity fields that arise from such compactly-
supported vorticities. The results there both provide a natural family of initial data to consider
on the domains Qα, and also serve to illustrate of some of the arguments that follow in a
relatively simple setting.

It is shown that given a fixed compactly-supported vorticity ω ∈ H1(R3), the corresponding
velocities uα on Qα have extensions to R

3, ũα, that converge strongly in H1(R3) to the veloc-
ity on R

3 reconstructed from ω using the Biot–Savart Law. Obtaining strong convergence in
H1(R3) requires uniform bounds on the ‘tails’

∫
x∈Qα : |x|�R

|∇uα|2,

a technique also employed later for solutions of the Navier–Stokes equations, and which goes
back at least to Leray (1934).

After recalling some basic existence results for weak and strong solutions of the
Navier–Stokes equations in section 4, it is shown that a subsequence of weak solutions on
Qα (solutions bounded in L2 that satisfy the energy inequality) will converge to a weak solu-
tion on R

3, given weak convergence of the initial data in L2(R3). This result is due to Heywood
(1988), who used it as a way of proving the existence of weak solutions on the whole space.

The main result of the paper concerns the convergence of strong solutions (i.e. solutions
that remain bounded in H1) given convergence of the initial data in H1(R3); due to uniqueness
of the limiting solution this convergence now occurs without the need to extract a subse-
quence. By bounding the ‘tails’ of |uα|2 at infinity it is shown that ũα converges to u strongly
in Lp(0, T; L2(R3)) for all p ∈ [1,∞), and then, via interpolation of the H1 norm between L2

and H2, the boundedness of uα in L2(0, T; H2(R3)) shows that ũα converges strongly to u in
Lr(0, T; H1(R3)), r ∈ [1,∞).

Finally, using this strong convergence, comes what is perhaps the most striking result of
the paper: if u0 ∈ H1(R3) with compact support (or ω0 ∈ H1(R3) with compact support) gives
rise to a strong solution on [0, T ∗] and u0

α ∈ H1(Qα) converges to u0 in H1(R3), then for large
enough α the equations on Qα with initial data u0

α give rise to a unique strong solution on
the same interval, and ũα → u as α→∞ in Lr(0, T; H1(R3)), r ∈[1, ∞). This shows that the
existence of a regular solution on the whole space implies the existence of a regular solution
on a large enough periodic domain.

The relationship between the existence of smooth solutions for the equations in various
settings (periodic boundary conditions, Schwartz solutions on R

3, homogeneous and inho-
mogeneous problems) has also been considered, from a different point of view, by Tao
(2013).

There are other ‘transfer of regularity’ results for the Navier–Stokes equations in differ-
ent contexts. Constantin (1986) showed that if u0 ∈ Hs+2, s � 3, gives rise to a solution in
L∞(0, T ∗; Hs+2) of the Euler equations, then for the Navier–Stokes equations with dissipative
term −νΔu, one can take ν sufficiently small to ensure that the same initial condition pro-
duces an Hs-bounded solution of the Navier–Stokes equations on [0, T ∗]. A variant of this
approach in Chernyshenko et al (2007) shows that if u0 gives rise to a regular solution of the
Navier–Stokes equations on [0, T ∗] then a sufficiently ‘good’ numerical scheme will have a
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similarly smooth solution that will also exist on [0, T ∗]. Other results that ‘transfer regularity’
start with two-dimensional flows: Raugel and Sell (1993) considered the problem posed on
thin three-dimensional domains, and Gallagher (1997) considered flows with initial data that
are ‘close to two dimensional’.

There is, of course, another way to view solving the equations on Qα, α � α0, with fixed
initial data u0 of compact support. Here, rather than keeping u0 fixed and increasing α, one
could keep the domain fixed and rescale u0: taking α0 = 1 for simplicity, the problem on Qα

becomes a problem posed on Ω1 by setting

uα
0 (x) = αu0(αx).

A solution (u(x, t), p(x, t)) on Qα becomes the rescaled solution

(αu(αx,α2t),α2 p(αx,α2t))

on Q1. However, if the solution on Qα exists for t ∈ [0, T], then the rescaled solution on Q1

exists only for t ∈ [0, T/α2]. It follows that such a rescaling is not a useful tool for considering
the behaviour of solutions as α→∞ in the sense proposed here. Nevertheless, related scaling
ideas are used here to check that various inequalities hold with constants independent of the
domain parameter α.

2. Preliminaries

The expression L2(Qα) denotes the space of functions that are 2α-periodic in every direction,
with ∫

Qα

|u|2 < ∞,

where Qα = (−α,α)3. Throughout the paper, a dot over a space denotes that the functions
have zero average: so, for example, L̇2(Qα) denotes the subset of L2(Qα) consisting of those
functions that also satisfy the condition∫

Qα

u = 0. (2.1)

The notation 〈 f, g〉L2(Qα) =
∫

Qα
f (x)g(x) dx is used for the inner product in L2(Qα).

The space of 2α-periodic functions with weak derivatives up to order s in L2(Qα),
again satisfying (2.1), is denoted by Ḣs(Qα). Due to the zero-average condition, the
Ḣs(Qα) norm defined by setting

‖u‖Ḣs(Qα) :=

⎛
⎝∑

|γ|=s

‖∂γu‖2
L2(Qα)

⎞
⎠

1/2

is equivalent to the full Hs(Qα) norm. Indeed, for all r � s � 0 the generalised Poincaré
inequality

‖u‖Ḣs(Qα) � Cr,sα
r−s‖u‖Ḣr(Qα), u ∈ Ḣr(Qα),

holds, from which the equivalence follows.
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Note also for later use that if Δu ∈ L2(Qα) then u ∈ H2(Qα) with

3∑
i, j=1

‖∂i∂ ju‖2
H2(Qα) � 9‖Δu‖2

L2(Qα),

since for any f ∈ C∞(Q1) with f =
∑

k∈Z3 f̂keik·x

‖∂i∂ j f ‖2
L2(Q1) =

∑
k∈Z3

|kik j|2| f̂k|2 �
∑
k∈Z3

|k|4| f̂k|2 = ‖Δ f ‖2
L2(Q1). (2.2)

The notation Ċ∞(Qα) denotes the space of all C∞ 2α-periodic functions satisfying the same
zero average condition, and Ċ∞

σ (Qα) the space of all smooth divergence-free functions in
Ċ∞(Qα). The space Ċ∞

c,σ(R3) is the space of all smooth, compactly-supported, divergence-free
functions defined on R

3, with zero integral over R3. The space L̇p
σ(Qα) is the completion of

Ċ∞
σ (Qα) in Lp(Qα); similarly L̇p

σ(R3) is the completion of Ċ∞
c,σ(R3) in Lp(R3). Throughout, the

σ subscript indicates that the functions are divergence free.
Note that Ċ∞

σ (Qα) is dense in Ḣ1
σ(Qα) and Ċ∞

c,σ(R3) is dense in H1
σ(R3). The second of these

two is less obvious, so the proof is given here.

Lemma 2.1. Ċ∞
c,σ(R3) is dense in H1

σ(R3).

Proof. The density of C∞
c,σ(R3) in H1

σ(R3) is due to Heywood (1976): so given any u ∈
H1

σ(R3) and ε > 0, there exists φ ∈ C∞
c,σ(R3) such that ‖u − φ‖H1(R3) < ε/2.

Set M =
∫
R3φ(x)dx and choose any ψ ∈ C∞

c,σ(R3) with
∫
R3ψ(x)dx = 1. Setting

ψM(x) :=MR−3ψ(x/R) yields a ψM ∈ C∞
c,σ(R3) with

∫
R3
ψM = M,

∫
R3
|ψM |2 =

M2

R3
, and

∫
R3
|∇ψM|2 =

M2

R5
.

Now choose R sufficiently large that ‖ψM‖2
H1 = M2R−3 + M2R−5 < ε2/4; setting ũ = φ− ψM

gives ũ ∈ Ċ∞
c,σ(R3) with ‖u − ũ‖H1(R3) < ε. �

At various points it is important that the constants in inequalities valid on Qα do not depend
on α, i.e. on the size of the domain. To ensure this, inequalities are shown on Q1 and then
rescaled: given a function fα defined on Qα, the rescaled function f (x) = fα(αx) is defined on
Q1. The Lp norms of derivatives of order k then scale according to

‖∂γ fα‖Lp(Qα) = α(3/p)−k‖∂γ f ‖Lp(Q1), where |γ| = k. (2.3)

3. Convergence of velocities corresponding to compactly-supported vorticity

3.1. Reconstruction of u from ω

One of the issues for the convergence results considered here is to identify a class of initial
data that is ‘localised’ in a reasonable way. One possible choice (although theorem 6.2 is more
general) is to take a compactly supported vorticityω and to consider the corresponding velocity
fields obtained by ‘inverting’ the curl operator on the corresponding domain. This amounts to
solving the equations

curl u = ω, ∇ · u = 0; (3.1)
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by taking the curl of both equations and using the vector identity

curl curl u = ∇(∇ · u) −Δu = −Δu

it follows that

−Δu = curlω ⇒ u = (−Δ)−1curlω;

the weak form of this system is: given ω ∈ L̇2
σ(Ω),

find u ∈ Ḣ1
σ(Ω) s.t. 〈∇u,∇φ〉L2(Ω) = 〈ω, curlφ〉L2(Ω) ∀ φ ∈ Ḣ1

σ(Ω), (3.2)

for Ω = Qα, and replacing Ḣ1
σ with H1

σ (i.e. relaxing the zero average condition) on R
3. Note

the integration by parts in the right-hand side from 〈curlω,φ〉, which allows for ω ∈ L2 and
not only ω ∈ H1.

On the whole space, an expression for u can be obtained using the fundamental solution of
the Laplacian and an integration by parts, namely the Biot–Savart law

u = curl−1 ω := − 1
4π

∫
R3

x − y
|x − y|3 × ω(y)dy; (3.3)

for ω ∈ L6/5(R3) ∩ L2
σ(R3) this is the unique solution in H1

σ(R3) of (3.2).
[In the case of R2 modified versions of the equivalent to the Biot–Savart law are available

that do not require decay of ω and u at infinity, see Serfati (1995) and Ambrose et al (2015),
for example. For bounded domains see Enciso et al (2018), for example.]

On periodic domains, while uα = curl−1
α ω can be written explicitly in terms of the Fourier

expansion it will be more useful here to observe that uα is still the solution of the equation
−Δuα = curlω.

On the periodic domain Q1, if
∫

Q1
g = 0, then the equation −Δu = g,

∫
Q1

u = 0, has a
solution given in the form

u(x) =
∫

Q1

KQ(x, y)g(y) dy, with KQ(x, y) =
1

|x − y|φ(x − y) + S(x, y),

where φ and S are smooth and φ(z) = 1 for |z| < 1/10 and φ(z) = 0 for |z| > 1/4, see theorem
C.5 in Robinson et al (2016), for example. Then, when ω has compact support in Q1,

u(x) =
∫

Q1

[
1

|x − y|φ(x − y) + S(x, y)

]
[curl ω](y)dy

=

∫
Q1

1
|x − y|φ(x − y)[curl ω](y) dy +

∫
Q1

S(x, y)[curl ω](y) dy

=

∫
Q1

curly

(
1

|x − y|φ(x − y)

)
ω(y) dy +

∫
Q1

[curly S](x, y)ω(y)dy

= −
∫

Q1

φ(x − y)
x − y

|x − y|3 × ω(y) dy +
∫

Q1

1
|x − y|∇φ(x − y) × ω(y) dy

+

∫
Q1

[curly S](x, y)ω(y) dy. (3.4)
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3.2. Bounds on u from bounds on ω

The following result is extremely useful; it is valid on Qα for everyα and onR3. While a similar
inequality could be obtained using the Calderón–Zygmund theorem and (3.3), equality follows
here from a much simpler argument (see equation (1.4.20) in Doering and Gibbon 1995).

Lemma 3.1. If u ∈ H1
σ and ω = curl u ∈ L2 then ‖∇u‖L2 = ‖ω‖L2 .

Proof. Assume first that u is smooth and ω ∈ L2. Then, since ωi = εi jk∂ juk and εi jkεilm =
δjlδkm − δjmδkl,∫

|ω|2 =

∫
εijk(∂ juk)εilm(∂lum)

=

∫
[δjlδkm − δjmδkl](∂ juk)(∂lum)

=

∫
(∂ juk)(∂ juk) − (∂ juk)(∂ku j) =

∫ ∑
j,k

|∂ juk|2,

integrating by parts twice in the final term and using the fact that u is divergence free. Now if
u ∈ H1, ω ∈ L2 and mollifying u produces a smooth uε with ∇× uε ∈ L2; the same argument
shows that since ωε → ω, ∂i(uε) j → ∂iu j for every i, j, yielding the same equality for these
more general u. �

The Biot–Savart law and Young’s inequality provide Lq estimates on u given Lp bounds on
ω.

Lemma 3.2. Suppose that ω ∈ Lp
σ(R3) for some p ∈ (1, 3). Then, for

1
q
=

1
p
− 1

3
,

u = curl−1 ω ∈ Lq
σ(R3) with

‖u‖Lq(R3) � Cp‖ω‖Lp(R3). (3.5)

The same estimate also holds when ω ∈ L̇p
σ(Qα): uα = curl−1

α ω ∈ L̇q
σ(Qα) with

‖uα‖Lq(Qα) � Cp‖ω‖Lp(Qα), (3.6)

where Cp is independent of α.

Proof. On the whole space u is given by (3.3). So u is given by the convolution of ω with a
kernel of order |x|−2; in three dimensions this belongs to the weak Lebesgue space L3/2,∞, and
(3.5) follows using the weak-Lebesgue space version of Young’s inequality,

‖ f � g‖Lq � Cp,q,r‖ f ‖Lr,∞‖g‖Lp, 1 +
1
q
=

1
r
+

1
p

, 1 < p, q, r < ∞.

For the same bound on Q1, consider the expression in (3.4),

u(x) = −
∫

Q1

φ(x − y)
x − y

|x − y|3 × ω(y)dy +
∫

Q1

1
|x − y|∇φ(x − y) × ω(y)dy

+

∫
Q1

[curlyS](x, y)ω(y) dy.
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The kernel in the first term is once again in L3/2,∞(Q1) and the kernel in the second term is in
L3/2(Q1); these two terms are thus bounded in Lq(Q1) using Young’s inequality. For the final
term u3(x), Minkowski’s inequality yields

‖u3‖Lq(Q1) �
∫

Q1

‖curlyS(·, y)‖Lq(Q1)|ω(y)|dy.

Noting that S is smooth and that only x, y ∈ Q1 are relevant, ‖curlySα(·, y)‖Lq(Q1) � M and
hence

‖u3‖Lq(Q1) � M
∫

Q1

|ω(y)|dy � M‖ω‖L1(Q1) � Mp‖ω‖Lp(Q1),

using Hölder’s inequality and the fact that Q1 is bounded.
These three upper bounds combine to yield (3.6) on Q1. The fact that the same inequality

holds with a constant independent of α follows since both norms in (3.6) behave the same way
under the rescaling x 
→ αx, see (2.3). �

3.3. Extension of functions from Qα to R
3

Givenω ∈ L̇2
σ(R3) with support contained in Qα0 , lemma 3.2 gives a family {uα}α�α0 of veloc-

ity fields defined on Qα (α � α0). In order to be able to take a meaningful limit on the whole
of R3, each uα will be extended to the whole of R3 in such a way that the support of ũα is
contained in a domain only slightly larger than Qα.

Given uα ∈ L2(Qα), denote by ũα the extension of uα to all of R3 defined by setting

ũα(x) = ψα(x)up
α(x),

where up
α(x) is the periodic extension of uα to R

3 and ψα ∈ C∞
c (R3) with 0 � ψα � 1,

ψα(x) =

{
1 x ∈ (−α,α)3

0 x /∈ (−(α+ 1),α+ 1)3,

|∇ψα| � M1, and |∇2ψα| � M2, uniformly in α.
Bounds on uα immediately translate to bounds on ũα: in particular, for α � 1,

‖ũα‖L2(R3) � e1‖u‖L2(Qα), ‖∇ũα‖L2(R3) � e2‖u‖H1(Qα),

and

‖ũα‖H2(R3) � e3‖u‖H2(Qα)

[for explicit values of these constants, one can take e1 = 27, e2 = max(26M1, 27), and
e3 = max(27M2, 52M1, 27)].

Later a similar extension will be used for time-dependent functions uα(x, t); in this case

ũα(x, t) :=ψα(x)up
α(x, t),

with the cut-off function ψα being independent of t. This means, in particular, that

∂tũα(x, t) = ψα(x)[∂tuα]p(x, t),

so that bounds on ∂tũα can be deduced from bounds on ∂tuα as done for ũα above.
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Figure 1. The support of ũα is contained in the large central square in the left-hand figure,
and |ũα| � |uα| everywhere. Periodised circles of radius R are shown in white. Clearly∫
|x|�R|ũα|2 � 9

∫
x∈Qα : |x|�R|uα|2. However, with portions of this darker square moved

using periodicity (on the right) this can be improved to
∫
|x|�R|ũα|2 � 4

∫
x∈Qα : |x|�R|uα|2.

3.4. Convergence of curl−1
α ω to curl−1 ω as α→∞

Theorem 3.4 will show that the fields ũα from lemma 3.2 converge to u strongly in H1(R3)
whenever ω ∈ H1(R3). The following lemma (see Leray 1934, or lemma 6.34 in Ożański and
Pooley 2018) can be used to improve the L2-convergence of ũα to u on compact subsets of R3

to convergence on the whole of R3 by bounding the ‘tails’ of uα uniformly.

Lemma 3.3. If { fα}α�α0 , f ∈ L2(R3); fα → f strongly in L2(K) for every compact subset K
of R3; and for every η > 0 there exist R(η) and β(η) such that∫

|x|�R
| fα|2 < η for all α � β, (3.7)

then fα → f in L2(R3).

The argument that follows obtains bounds on the ‘tail’ of a sequence uα ∈ L2(Qα); in order
to apply lemma 3.3 the corresponding bounds on ũα will be needed. Therefore note here that
if uα ∈ L2(Qα) and R < α− 1 then∫

|x|�R
|ũα|2 dx � 27

∫
x∈Qα : |x|�R

|uα|2dx, (3.8)

since ⋃
k∈Z3

B(2αk, R) ∩ supp(ũα) = B(0, R),

i.e. the integral on the left-hand side of (3.8) can at most include the ‘tails’ from the periodic
cells immediately adjacent to Qα, see figure 1 for an illustration of this in the two-dimensional
case, where the corresponding constant is 9. [In 2D this can be improved to 4; following a
similar idea the constant in the 3D case can be improved to 10.]
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Theorem 3.4. Suppose that ω ∈ L̇2
σ(R3) has compact support. For every α sufficiently large

that supp(ω) ⊂ Qα define uα = curl−1
α ω. Then

‖uα‖L2 � C‖ω‖L6/5 , ‖∇uα‖L2 = ‖ω‖L2, (3.9)

ũα ⇀ curl−1 ω weakly in H1(R3) and ũα → curl−1 ω strongly in L2(K) for every compact subset
K of R3.

If in addition ω ∈ H1(R3) then uα ∈ H2(R3), ũα ⇀ curl−1 ω weakly in H2(R3), and ũα →
curl−1 ω strongly in H1(R3).

Proof. If ω ∈ L2 then the uniform estimates for uα in (3.9) follow from lemmas 3.1 and
3.2. Now extend each uα to a function ũα defined on all of R3 as outlined above, and in this
way obtain a set of functions with ũα uniformly bounded (with respect to α) in H1(R3). Since
H1(R3) is reflexive, it follows from reflexive weak sequential compactness that there exists
an element v ∈ H1(R3) such that ũα j ⇀ v weakly in H1(R3), which in turn implies the strong
convergence in L2(K) for every compact subset K of R3.

It remains to show that v = u := curl−1 ω and that the convergence takes place as α→∞
and not just for a subsequence.

To this end, take ϕ ∈ Ċ∞
c,σ(R3). Then, since ũα j = uα j on Qα j , once supp(ϕ) ⊂ Qα j we have

〈∇ũα j ,∇ϕ〉L2(R3) = 〈∇uα j ,∇ϕ〉L2(Qα j ) = 〈ω, curlϕ〉L2(Ωα j )

= 〈ω, curlϕ〉L2(R3).

Since ∇ũα j ⇀ ∇u weakly in L2(R3), for each fixed ϕ it follows that

〈∇u,∇ϕ〉L2(R3) = 〈ω, curlϕ〉L2(R3)

for every ϕ ∈ Ċ∞
c,σ(R3); the equality then holds for every ϕ ∈ H1

σ(R3) by density (see lemma
2.1). Since u ∈ H1

σ(R3) it follows that u is the unique H1 solution of −Δu = curlω, which is
precisely curl−1 ω. This also shows that the limit of any convergent subsequence must be the
same, and it follows that uα → u as claimed in the statement of the theorem.

If in addition ω ∈ H1(R3) then standard elliptic regularity results (see Evans 2010, for
example) gives uniform estimates on ũα in H2(R3), since then

‖Δuα‖L2(Qα) = ‖curlω‖L2(Qα)

and this yields a bound on the other second derivatives, see (2.2). The weak convergence in
H2(R3) now follows since H2 is reflexive, which implies the strong convergence in H1(K) for
every compact subset K of R3.

To improve this to strong convergence in H1(R3), take φ = uα�α as the test function in

〈∇uα,∇φ〉 = 〈curlω,φ〉

(cf (3.2)), where �α is the restriction of

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 |x| < r

|x| − r
R − r

r � |x| � R

1 |x| > R,

(3.10)
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to Qα, where we take 0 < r < R < α; note that

|∇�α| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 |x| < r

1
R − r

r < |x| < R

0 |x| > R.

Therefore ∫
Qα

|∇uα|2�α = −
∫

Qα

(∇uα) · (∇�α)uα +

∫
Qα

(curlω)uα�α,

and taking r sufficiently large that supp(ω) ⊂ B(0, r) yields∫
x∈Qα : |x|�R

|∇uα|2 � 1
R − r

‖∇uα‖L2(Qα)‖uα‖L2(Qα)

� K
R − r

‖ω‖L6/5‖ω‖L2 .

Lemma 3.3 now guarantees that ∇ũα →∇u in L2(R3).
It remains to show that ũα → u in L2(R3). First, since in 3D the Sobolev embedding

‖ f ‖L6(R3) � C‖∇ f ‖L2(R3) holds for f ∈ H1(R3), it follows that

‖ũα − u‖L6(R3) � C‖∇ũα −∇u‖L2(R3),

and so ũα → u in L6(R3). Now, since ω ∈ L24/23(Qα), lemma 3.2 implies that

‖uα‖L8/5(Qα) � K‖ω‖L24/23(Qα),

a bound that holds uniformly inα and yields a similar uniform bound on ũα in L8/5(R3). Finally,
the Lebesgue interpolation

‖ũα − u‖L2(R3) � ‖ũα − u‖8/11

L8/5(R3)
‖ũα − u‖3/11

L6(R3)

guarantees that ũα → u in L2(R3).
Combining the convergence of ũα → u and ∇ũα →∇u in L2(R3) shows that ũα → u in

H1(R3) as claimed. �

4. Weak and strong solutions of the Navier–Stokes equations

For Ω = Qα or R3, denote by Dσ(Ω) the space of all test functions on Ω× [0,∞) given by

Dσ(Ω) = {φ ∈ C∞
c (Ω× [0,∞)) : ∇ · φ(t) = 0 for all t ∈ [0,∞)}.

Definition 4.1. A function u is a weak solution of the Navier–Stokes equations correspond-
ing to the initial condition u0 ∈ L̇2

σ(Ω) if

u ∈ L∞(0, T; L̇2
σ(Ω)) ∩ L2(0, T; H1(Ω)) for every T > 0

and ∫ ∞

0
− 〈u, ∂tφ〉+

∫ ∞

0
〈∇u,∇φ〉+

∫ ∞

0
〈(u · ∇)u,φ〉 = 〈u0,φ(0)〉
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for all test functions φ ∈ Dσ(Ω).

The following theorem combines the basic existence result for weak solutions (Leray
1934, Hopf 1951) with the property that at least one solution exists that satisfies the strong
energy inequality (Leray 1934, Ladyzhenskaya 1969): see theorems 4.4, 4.6, 4.10, and 14.4 in
Robinson et al (2016).

Theorem 4.2. For every initial condition u0 ∈ L̇2
σ(Ω) there exists at least one global-in-time

weak solution u of the Navier–Stokes equations on Ω that satisfies the strong energy inequality

1
2
‖u(t)‖2

L2(Ω) +

∫ t

s
‖∇u‖2

L2(Ω) � 1
2
‖u(s)‖2

L2(Ω) for all t > s (4.1)

for almost all times s ∈ [0,∞), including s = 0. [These are known as Leray–Hopf weak
solutions.]

Note that it follows from this definition that any weak solution u has a weak time derivative
∂tu with

∂tu ∈ L4/3(0, T; H−1
σ (Ω)) for every T > 0,

where H−1
σ (Ω) is the dual space of Ḣ1

σ(Ω), with

‖∂tu‖L4/3(0,T;H−1
σ (Ω)) � c

∫ T

0
‖∇u‖2‖u‖2/3 + T1/3

(∫ T

0
‖∇u‖2

)2/3

, (4.2)

with c independent of α; see lemma 3.7 in Robinson et al (2016).
Key to later results in this paper is the notion of a strong solution.

Definition 4.3. A function u is a strong solution on [0, T] of the Navier–Stokes equations
corresponding to the initial condition u0 ∈ Ḣ1

σ(Ω) if it is a weak solution and in addition1

u ∈ L∞(0, T; H1(Ω)) ∩ L2(0, T; H2(Ω)).

The following theorem on the existence of strong solutions is again valid on Qα and R
3; the

constant c is the same for all these domains. The result as stated combines theorems 6.4, 6.8,
6.15, and 7.5 in Robinson et al (2016).

Theorem 4.4. Any initial condition u0 ∈ Ḣ1
σ(Ω) gives rise to a unique strong solution of the

Navier–Stokes equations at least on the time interval [0, T], where T = c‖∇u0‖−4
L2(Ω)

. For such
solutions the equation

∂tu −Δu + (u · ∇)u +∇p = 0

is satisfied as an equality in L2(0, T; L2(Ω)), and in fact u is smooth in space–time onΩ× (0, T].

5. Convergence of weak solutions

Convergence of weak solutions as α→∞ is relatively straightforward; indeed, a similar
method has been used by Heywood (1988); (see also theorem 4.10 in Robinson et al 2016)

1 This assumption is in fact sufficient to ensure that u ∈ C([0, T]; H1).
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to prove the existence of weak solutions on the whole space, although with that aim it is proba-
bly more natural to consider the equations with Dirichlet boundary conditions on the domains
B(0,α), which can easily be extended by zero to all of R3.

Proposition 5.1. Suppose that u0
α ∈ L̇2

σ(Qα) with ũ0
α ⇀ u0 in L2(R3). Let uα be weak solu-

tions of the equations on Qα with initial conditions u0
α that satisfy the energy inequality

1
2
‖uα(t)‖2

L2(Qα) +

∫ t

0
‖∇uα(s)‖2

L2(Qα) ds � 1
2
‖u0

α‖2
L2(Qα) (5.1)

for almost every t > 0. Then there exists a weak solution u of the equations on R
3, and a

subsequence uα j such that, for every T > 0, ũα j converges to u weakly in L2(0, T; H1) and
strongly in L2(0, T; L2(K)) for every compact subset K of R3.

Proof. Since ũ0
α is a weakly-convergent sequence it must be bounded in L2(R3); so u0

α is uni-
formly bounded in L2(Qα), and it is immediate from the energy inequality (5.1) that uα is uni-
formly bounded (with respect to α) in L∞(0, T; L2(Qα)) and L2(0, T; H1(Qα)). The inequality
(4.2) also provides uniform bounds on the time derivative ∂tuα in L4/3(0, T; H−1

σ (Qα)).
These uniform bounds on uα become uniform bounds on the extended functions ũα

in L∞(0, T; L2(R3)) and L2(0, T; L2(R3)), so there exists an element u ∈ L∞(0, T; L2
σ(R3)) ∩

L2(0, T; H1(R3)) and a subsequence ũα j that converges to u weakly-∗ in L∞(0, T; L2(R3)) and
for which

∇ũα j ⇀ ∇u in L2(0, T; L2(R3)).

However, it is not necessarily the case that∂t ũα is uniformly bounded in L4/3(0, T; H−1
σ (R3)),

since there is no reason why the restriction of a ‘test function’φ ∈ Ḣ1
σ(R3) to Qα should respect

the periodic boundary conditions or integrate to zero, i.e. be an element of Ḣ1
σ(Qα). To obtain

strong convergence in L2(0, T; L2(K)) for compact subsets K of R3, instead observe that for
each R > 0, once α > R

(∂tũα)|B(0,R) = (∂tuα)|B(0,R),

and that if α > 3R then any φ ∈ H1
0,σ(B(0, R)) :=H1

0(B(0, R)) ∩ L2
σ(B(0, R)) can be extended to

an element φ̂ ∈ Ḣ1
σ(Qα) with

‖φ̂‖H1(Qα) = 2‖φ‖H1(B(0,R)),

by setting

φ̂(x) =

⎧⎪⎪⎨
⎪⎪⎩
φ(x) x ∈ B(0, R)

−φ(x) x ∈ B((2R, 0, 0), R)

0 otherwise;

the part of the extension where φ̂(x) = −φ(x) ensures that
∫

Qα
φ̂ = 0. It follows that once α >

3R,

‖∂tũα‖H−1
0,σ (B(0,R)) � 2‖∂tuα‖H−1

σ (Qα).

It is also clear that

‖ũα‖H1(B(0,R)) � ‖uα‖H1(Qα),
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so ũα is uniformly bounded in L2(0, T; H1
σ(Qα)). An application of the Aubin–Lions com-

pactness theorem (see Simon 1987) now yields a subsequence that converges strongly in
L2(0, T; L2(B(0, R))) for every R > 0, and hence in L2(0, T; L2(K)) for every compact subset
K of R3.

It remains only to show that u is a solution of the equations on the whole space.
To do this, take any test function φ ∈ Dσ(R3) and let M and T be large enough that the

support of φ is contained in QM × [0, T). Then for all α � M it follows from definition 4.1,
since ũα = uα on Qα, that

−
∫ ∞

0
〈ũα j , ∂tφ〉+

∫ ∞

0
〈∇ũα j ,∇φ〉+

∫ ∞

0
〈(ũα j · ∇)ũα j ,φ〉 = 〈ũ0

α j
,φ(0)〉.

Passing to the limit as j →∞ (using the weak convergenceof gradients, the strong convergence
in L2(0, T; L2(ΩM)), and the fact that ũ0

α j
⇀ u0) shows that u is a weak solution of the equations

on R
3 with initial condition u0, as required. �

Note that the above proof does not show that the solution u on R
3 satisfies the energy

inequality; this is why the limiting procedure here is not the ideal way to generate solutions of
the equations on R

3.

6. Convergence of strong solutions

The main result of this paper, theorem 6.2, will show that given a suitably convergent family
of initial data u0

α ∈ H1(Qα), the ‘solutions’ ũα converge strongly to u in L2(0, T; H1(R3)).

6.1. Uniform inequalities

Key to obtaining uniform estimates for strong solutions on expanding domains are the
following inequalities.

Lemma 6.1 (Uniform inequalities). There exist constants CA and C6, which do not
depend on α, such that

‖u‖L∞(Qα) � CA‖∇u‖1/2
L2(Qα)

‖Δu‖1/2
L2(Qα)

for all u ∈ Ḣ2(Qα), (6.1)

and

‖u‖L6(Qα) � C6‖∇u‖L2(Qα), for all u ∈ Ḣ1(Qα). (6.2)

If −Δp = ∇ · [(u · ∇)u] with
∫

Qα
p =

∫
Qα

u = 0 then

‖p‖L2(Qα) � CZ‖u‖2
L4(Qα). (6.3)

where CZ is independent of α.

Proof. The validity of the estimate (6.1) for a fixed value of α is standard, and follows by
splitting the Fourier series expansion of u into ‘low modes’ and ‘high modes’ (see exercise
1.10 in Robinson et al (2016), for example): so, taking α = 1, for all v ∈ H2(Ω1)

‖v‖L∞(Ω1) � CA‖∇v‖1/2
L2(Ω1)

‖Δv‖1/2
L2(Ω1)

.

The rescalings in (2.3) now show that this inequality is valid with the same constant on Qα.
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Inequality (6.2) in the case α = 1 is a consequence of the embedding H1(Q1) ⊂ L6(Q1)
valid for three-dimensional domains, and the Poincaré inequality ‖u‖L2(Q1) � CP‖∇u‖L2(Q1)

which holds when
∫

Q1
u = 0. A similar rescaling argument shows that the same constant works

for every α.
Finally, on Q1, the estimate (6.3) follows using the Calderón–Zygmund theorem,

‖p‖L2(Q1) � CZ‖u‖2
L4(Q1) (6.4)

(see appendix B in Robinson et al (2016) for example). To see that the constant is uniform in
α, given ( p̃, ũ) that satisfy the equations on Qα, define (p, u) on Q1 by setting p(x) = α2 p̃(αx)
and u(x) = αũ(αx). Then

[−Δp](x) = −α4(Δp̃)(αx) and ∇ · [(u · ∇)u](x) = α4[(ũ · ∇)ũ](αx),

so −Δp = ∇ · [(u · ∇)u], whence (p, u) satisfy (6.4). Now observe that ‖p‖L2(Q1) =

α1/2‖ p̃‖L2(Qα) and ‖u‖L4(Q1) = α1/4‖ũ‖L2(Qα) to obtain (6.3). �

6.2. Convergence in L2(0, T; H1(R3)) when uα ∈ H1(Qα)

For initial u0
α ∈ L̇2

σ(Qα) ∩ H1(Qα), such that ũ0
α → u0 in H1(R3), the following theorem shows

that the corresponding strong solutions converge in L2(0, T; H1(R3)). One particular example
of such a family is provided by theorem 3.4: take a fixed compactly-supported vorticity, and
set u0

α = curl−1
α ω and u0 = curl−1 ω. Alternatively, simply take a compactly-supported initial

condition u0 ∈ H1
σ(R3) and let u0

α = u0|Qα once α is sufficiently large.
There is a uniform time for which the existence of a smooth solution uα (on Qα) and u (on

R
3) can be guaranteed, starting with this initial condition. The following theorem shows that

the extended solutions ũα must converge to u. That there is weak convergence [as in proposition
5.1] is fairly standard and follows directly from uniform bounds on uα; that the convergence is
strong in L2(0, T; H1(R3)) is more surprising, and requires a more careful analysis. This strong
convergence is crucial for the ‘transference of regularity’ result that follows in section 7.

Theorem 6.2. Suppose that u0 ∈ H1
σ(R3), u0

α ∈ Ḣ1
σ(Qα), and ũ0

α → u0 in H1(R3), with
‖u0

α‖2
H1(Qα)

� M for all α � α0. [For the definition of the extension ũ0
α see section 3.3.]

Set T = 2/[9C4
AM2], where CA is the constant from (6.1). Denote by uα the strong solution

of the Navier–Stokes equations on Qα with initial data u0
α, and by u the solution on R

3 with
initial data u0; all of these solutions exist on [0, T]. Then for all 1 � s < 2

ũα → u in Lr(0, T; H1+s(R3)), r ∈ [1, 2/(s − 1)); (6.5)

in particular, ũα → u strongly in Lr(0, T; H1(R3)) for all r ∈ [1,∞).

Proof. Since the solution uα is smooth on [0, T] it is admissible to take the inner product
with uα in L2(Qα) to obtain

1
2
‖uα(t)‖2

L2(Qα) +

∫ t

0
‖∇uα(s)‖2

L2(Qα) ds � 1
2
‖uα

0‖2
L2(Qα) � M

2
. (6.6)

This gives bounds on uα in L∞(0, T; L2(Qα)) and L2(0, T; H1(Qα)) that are uniform with respect
to α.

Equation (6.6) shows that the solutions uα satisfy the energy inequality (5.1), so proposition
5.1 already guarantees that a subsequence (at least) converges to a weak solution on R

3 with
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initial data u0. However, although u0 gives rise to a strong solution, weak-strong uniqueness
(see theorem 6.10 in Robinson et al (2016), for example) cannot be used here, since the limiting
solution u from proposition 5.1 does not necessarily satisfy the energy inequality (which is
required in the proof of weak-strong uniqueness).

Better convergence of ũα to u can be obtained via bounds on uα in H1 and bounds on uα in
H2. Take the inner product of the equation with −Δuα in L2(Qα) to obtain

1
2

d
dt
‖∇uα‖2

L2(Qα) + ‖Δuα‖2
L2(Qα) = 〈(uα · ∇)uα,Δuα〉L2(Qα)

� ‖uα‖L∞(Qα)‖∇uα‖L2(Qα)‖Δuα‖L2(Qα)

� CA‖∇uα‖3/2
L2(Qα)

‖Δuα‖3/2
L2(Qα)

,

where the constant CA does not depend on α (see lemma 6.1). It follows that

d
dt
‖∇uα‖2

L2(Qα) + ‖Δuα‖2
L2(Qα) � 27

16
C4

A‖∇uα‖6
L2(Qα), (6.7)

and therefore

‖∇uα(t)‖2
L2(Qα) �

‖∇uα
0‖2

L2(Qα)√
1 − 27

8 C4
At‖∇uα

0‖4
L2(Qα)

. (6.8)

Taking T = 2/[9C4
AM2] it follows that

‖∇uα(t)‖2
L2(Qα) � 2‖∇uα

0‖2
L2(Qα) � 2M for all t ∈ [0, T]

and, integrating (6.7) from 0 to T and using the bound in (6.8), that∫ T

0
‖Δuα(t)‖2

L2(Qα) dt � 5M
2

. (6.9)

Therefore uα is bounded uniformly in L∞(0, T; H1(Qα)) and in L2(0, T; H2(Qα)).
To obtain bounds on the time derivative, since the equation

∂tuα = Δuα − (uα · ∇)uα −∇pα

holds as an equality in L2(0, T; L2(Qα)) it follows that

‖∂tuα‖L2(Qα) � ‖Δuα‖L2(Qα) + ‖(uα · ∇)uα‖L2(Qα) + ‖∇pα‖L2(Qα).

The Helmholtz decomposition provides a bound on ∇pα in L2(Qα): write

L2(Qα) = L2
σ(Qα) ⊕ G(Qα),

where

G(Qα) = {∇ψ : ψ ∈ H1(Qα)}.

These two spaces are orthogonal: for any v ∈ H(Qα) and ∇ψ ∈ G(Qα)

〈v,∇ψ〉L2(Qα) = 0.
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Take any φ ∈ L2(Qα) and write φ = v +∇ψ, where v ∈ H(Qα) and ∇ψ ∈ G(Qα). Then

〈∇pα,φ〉 = 〈∇pα,∇ψ〉 = 〈∂tuα −Δuα + (uα · ∇)uα,∇ψ〉 = 〈(uα · ∇)uα,∇ψ〉,

since ∇ψ is orthogonal to any divergence-free function. It follows that

|〈∇pα,φ〉| � ‖(uα · ∇)uα‖L2(Qα)‖∇ψ‖L2(Qα)

� ‖(uα · ∇)uα‖L2(Qα)‖φ‖L2(Qα),

which shows that

‖∇pα‖L2(Qα) � ‖(uα · ∇)uα‖L2(Qα).

It follows that

‖∂tuα‖L2(Qα) � ‖Δuα‖L2(Qα) + 2‖(uα · ∇)uα‖L2(Qα)

� ‖Δuα‖L2(Qα) + 2‖uα‖L∞(Qα)‖∇uα‖L2(Qα),

so ∂tuα is bounded uniformly in L2(0, T; L2(Qα)).
All these bounds carry over uniformly to the extended functions ũα, which are therefore

bounded uniformly in L∞(0, T; L2(R3)) and L2(0, T; H1(R3)), with ∂tũα bounded uniformly in
L2(0, T; L2(R3)).

It follows — using weak-∗ sequential compactness, weak sequential compactness in reflex-
ive Banach spaces (see chapter 27 in Robinson 2020, for example), and the Aubin–Lion com-
pactness theorem (see Simon 1987) — that there is a subsequence ũα j that converges to some
limit u ∈ L∞(0, T; H1(R3)) ∩ L2(0, T; H2(R3)), with

˜
uα j

∗
⇀u in L∞(0, T; H1(R3)),

˜
uα j ⇀ u in L2(0, T; H2(R3)),

and ũα j → u strongly in L2(0, T; H1(K)) for every compact subset K of R3.
We know from before that u is at least a weak solution on [0, T): these bounds now show

that u has the required regularity to be a strong solution. By the uniqueness of strong solutions
(in their own class) it follows that in fact ũα converges to u in all senses above as α→∞, and
not only through the sequence α j. (See lemma 3.1 in Robinson (2004), for example.)

To obtain strong convergence of ũα to u solutions in Lr(0, T; H1(R3)), the idea is first to use
lemma 3.3 to prove that ũα → u in Lp(0, T; L2(R3)), p ∈ [1,∞), by showing that∫

x∈Qα : |x|�R
|uα(t)|2 (6.10)

can be made small (uniformly forα sufficiently large and t ∈ [0, T]) by taking R large. Towards
this, observe that it follows from the assumptions on u0

α that for every η > 0 there exists
r = r(η) and β = β(η) � r(η) such that∫

x∈Qα : |x|�r
|u0

α(x)|2 dx < η for every α � β. (6.11)

To obtain the bound (6.10) on uα, take the inner product [in L2(Qα)] of

∂tuα −Δuα + (uα · ∇)uα +∇pα = 0

with �αuα, where �α is the function defined in (3.10).
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Then (cf proof of proposition 14.3 in Robinson et al 2016) an integration by parts yields

1
2

d
dt

∫
Qα

�α|uα|2 +
∫

Qα

�α|∇uα|2

= −
∫

Qα

(∂ juα,i)uα,i(∂ j�α) +
∫

Qα

|uα|2(uα · ∇)�α +
∫

Qα

pα(uα · ∇)�α.

Integrating from 0 to t and using the definition of �α yields

1
2

∫
x∈Qα : |x|>R

|uα(t)|2 � 1
2

∫
x∈Qα : |x|>r

|u0
α|2

+
1

R − r

∫ t

0

∫
Qα

|∇uα‖uα|+ |uα|3 + |pα‖uα|.

Since ‖uα(s)‖L2(Qα) � ‖u0
α‖L2(Qα) the second term on the right-hand side can be bounded by

1
R − r

‖u0
α‖L2(Qα)

∫ t

0
‖∇uα(s)‖L2(Qα) + ‖uα(s)‖2

L4(Qα) + ‖pα‖L2(Qα) ds.

The first term of this integral can be estimated by∫ t

0
‖∇uα(s)‖L2(Qα) ds � t1/2

∫ t

0
‖∇uα(s)‖2

L2(Qα) ds.

Using the Calderón–Zygmund estimate ‖pα‖L2(Qα) � CZ‖uα‖2
L4(Qα)

from (6.3) the second
and third terms can be combined; then using the Lebesgue interpolation inequality ‖ f ‖L4 �
‖ f ‖1/4

L2 ‖ f ‖3/4
L6 and the Sobolev embedding ‖ f ‖L6(Qα) � C6‖∇ f ‖L2(Qα) from (6.2)

∫ t

0
‖uα(s)‖2

L4(Qα) ds �
∫ t

0
‖uα(s)‖1/2

L2(Qα)
‖uα(s)‖3/2

L6(Qα)
ds

� C3/2
6 ‖u0

α‖
1/2
L2(Qα)

∫ t

0
‖∇uα(s)‖3/2

L2(Qα)
ds

� C3/2
6 ‖u0

α‖
1/2
L2(Qα)

t1/4

(∫ t

0
‖∇uα(s)‖2

L2(Qα) ds

)3/4

.

Therefore, for all t ∈ [0, T],

1
2

∫
x∈Qα : |x|>R

|uα(t)|2 � 1
2

∫
x∈Qα : |x|>r

|u0
α|2 +

‖u0
α‖L2(Qα)

R − r

[
T1/2

∫ T

0
‖∇uα(s)‖2

L2(Qα) ds

+ 2C3/2
6 ‖u0

α‖
1/2
L2(Qα)

T1/4

(∫ T

0
‖∇uα(s)‖2

L2(Qα) ds

)3/4
]

;

or ∫
x∈Qα : |x|>R

|uα(t)|2 �
∫

x∈Qα : |x|>r
|u0

α|2 +
Γ

R − r
,
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where Γ can be chosen to be independent of α. Given η > 0, it follows from (6.11) that there
exist β and r such that∫

x∈Qα : |x|>r
|u0

α|2 < η/2 for α � β.

Now choose R sufficiently large that Γ/(R − r) < η/2, and then increase β if necessary so that
β > R + 1. There therefore exist R(η) and β(η) such that∫

x∈Qα : |x|>R(η)
|uα(t)|2 � η for α � β(η), t ∈ [0, T],

with β(η) > R(η) + 1, which was (6.10). Finally, it follows from (3.8) that∫
|x|>R(η)

|ũα(t)|2 � 27η for α � β(η). (6.12)

Since ũα → u in L2(0, T; L2(K)) for every compact subset K of R
3, it follows that

ũα(t) → u(t) in L2(B(0, n)) for every n ∈ N and for almost every t ∈ R. Given the estimate
in (6.12), it now follows from lemma 3.3 that ũα(t) → u(t) in L2(R3) for almost every t,
i.e. ‖ũα(t) − u(t)‖L2(R3) → 0 for almost every t. Now observe that

‖ũα(t) − u(t)‖L2(R3) � ‖ũα(t)‖L2(R3) + ‖u(t)‖L2(R3)

� 27‖uα(t)‖L2(Qα) + ‖u0‖L2(R3)

� 27‖u0
α‖L2(Qα) + ‖u0‖L2(R3) � 28

√
M;

it follows, using the dominated convergence theorem, that ũα → u in L2(0, T; L2(R3)) (and in
fact in Lp(0, T; L2(R3)) for every p ∈ [1,∞)).

The fact that ũα → u strongly in L2(0, T; L2(R3)) can now be used to improve the conver-
gence of ũα to u from weak in L2(0, T; H1(R3)) to strong in Lr(0, T; H1(R3)) for all r ∈ [1,∞);
rather than having to bound the ‘tails’ of

∫
|x|�R|∇ũα|2, all that is required is the additional

information that ũα is uniformly bounded in L∞(0, T; H1(R3)) and in L2(0, T; H2(R3)) (which
is guaranteed by (6.9)). Assume that r � 2; given convergence in any such Lr(0, T; H1(R3)),
convergence with r ∈ [1, 2) follows immediately. Now note that the Sobolev interpolation
inequality

‖ f ‖H1(R3) � C‖ f ‖1/2
L2(R3)

‖ f ‖1/2
H2(R3)

implies that ∫ T

0
‖ũα − u‖r

H1(R3) dt � ‖ũα − u‖r−2
L∞(0,T;H1(R3))

∫ T

0
‖ũα − u‖2

H1(R3) dt

� C‖ũα − u‖r−1
L∞(0,T;H1(R3))

∫ T

0
‖ũα − u‖L2(R3)‖ũα − u‖H2(R3) dt

� C‖ũα − u‖r−1
L∞(0,T;H1(R3))

(∫ T

0
‖ũα − u‖2

L2(R3) dt

)1/2

×
(∫ T

0
‖ũα − u‖2

H2(R3) dt

)1/2

.
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Since ũα (and hence u) are uniformly bounded in L∞(0, T; H1(R3)) and in L2(0, T; H2(R3)),
this implies that ũα → u in Lr(0, T; H1(R3)) as claimed.

To finish the proof, if s = 1 + θ with θ ∈ (0, 1) and r ∈ [1, 2/θ), then

‖ f ‖H1+θ(R3) � C‖ f ‖1−θ
H1(R3)

‖ f ‖θH2(R3)

and so∫ T

0
‖ũα − u‖r

H1+θ(R3) dt � C
∫ T

0
‖ũα − u‖(1−θ)r

H1(R3)
‖ũα − u‖θr

H2(R3) dt

� C

(∫ T

0
‖ũα − u‖2r(1−θ)/(2−rθ)

H1(R3)
dt

)(2−rθ)/2(∫ T

0
‖ũα − u‖2

H2(R3) dt

)rθ/2

.

�

7. ‘Transfer of regularity’ from the whole space to the periodic case

This final section shows that the existence of a solution on the whole space for a particular
choice of initial condition is transferred to the periodic case when α is large enough.

7.1. The transfer of regularity result

The following theorem shows that if u0 gives rise to a smooth solution on [0, T ∗] on the whole
space, the corresponding periodic problems will have smooth solutions on the same time inter-
val once the size of the periodic domain is sufficiently large. Note that T ∗ does not need to be a
‘guaranteed local existence time’ from the proof of the existence of strong solutions, but could
be significantly longer.

The simplest particular cases of the theorem are when u0
α ≡ u0 ∈ Ḣ1

σ(R3) for all α suffi-
ciently large or when u0

α = curl−1
α ω0 for some compactly-supported ω0 ∈ Ḣ1

σ(R3).

Theorem 7.1. Suppose that u0
α ∈ Ḣ1

σ(Qα) and u0 ∈ H1
σ(R3), with ũ0

α → u0 in H1(R3). [For
the definition of the extension ũ0

α see section 3.3.] Suppose in addition that there exists T∗ > 0
such that the equations on R

3 with initial condition u0 admit a solution

u ∈ L∞([0, T∗]; H1(R3)) ∩ L2(0, T∗; H2(R3)).

Then for α sufficiently large the equations on the periodic domain Qα with initial data u0
α have

a smooth solution

uα ∈ L∞(0, T∗; H1(Qα)) ∩ L2(0, T∗; H2(Qα))

and ũα → u in Lr(0, T∗; H1), r ∈ [1,∞), as α→∞.

Proof. Since u ∈ L∞([0, T∗]; H1(R3)) there exists M > 0 such that

‖u(t)‖2
H1(R3) � M for all t ∈ [0, T∗].

Theorem 4.4 guarantees that there exists a uniform time τ such that any solution with u(0) = v0,
where ‖v0‖2

H1(R3)
� 2M, exists at least on the time interval [0, τ ].

Set N = 2T ∗/τ and fix r ∈ [1,∞).
Theorem 6.2 ensures that ũα → u in Lr(0, T; H1(R3)) as α→∞. In particular, ũα(t) → u(t)

in H1(R3) for almost every t ∈ (0, τ ); choose one such t with t > τ/2 and call this t1.
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Choose α1 such that ‖ũα(t1)‖H1(R3) � 2M for all α � α1. Since

‖uα(t1)‖H1(Qα) � ‖ũα(t1)‖H1(R3),

this bound is enough to ensure that, uniformly for α � α1, the solutions on Qα starting from
uα(t1) exist on the time interval [t1, t1 + τ ] ⊃ [τ , 3τ/2].

Since ũα(t1) → u(t1) in H1(R3), theorem 6.2 can again be used to guarantee that as α→∞
(α � α1), have ũα → u in Lr(t1, t1 + τ ; H1(R3)). Again, the convergence in H1(R3) for almost-
every time means that there exists t2 ∈ (t1, t1 + τ ) with t2 > t1 + τ/2 > τ such that ũα(t2) →
u(t2) in H1(R3); in particular, there exists α2 � α1 such that ‖uα(t2)‖H1(Qα) � 2M for all
α � α2.

Continue in this way, noting that at each step the interval of existence of the solutions on
Qα (for α � αn) increases by at least τ/2. After N steps the entire interval [0, T ∗] has been
covered, showing that the solution on Qα starting at u0

α is strong on [0, T ∗] for all α � αN . �
Note that this result does not say that if the equations are regular on R

3—i.e. if any smooth
(compactly-supported) initial condition gives rise to a smooth solution for all t > 0—then
they are regular on Qα for α large enough (which would then imply regularity on Qα for any
α). Indeed, it does not even guarantee that if a particular compactly-supported smooth initial
condition u0 gives rise to a globally-defined solution on R

3 then the equations on Qα will
also have a globally-defined solution for α sufficiently large. Rather, for a fixed (compactly-
supported) initial condition, regularity on R

3 on a given finite time interval [0, T ∗] carries over
to Qα forα sufficiently large (so α depends on both u0 and on T ∗). (In this way it is reminiscent
of the result of Constantin (1986) mentioned in the introduction, which transfers regularity
from a smooth Euler solution on [0, T], starting at u(0) = u0, to the Navier–Stokes equations
with sufficiently small viscosity ν < ν0; in his result, ν0 depends on both u0 and T.)

A full ‘transfer of regularity’ from one problem to another would require (among other
ingredients) a convergence result in which the distance between solutions on R

3 and Qα

could be bounded in terms of the H1 norm of the initial data, which appears to require
much more sophisticated methods that the compactness-based arguments employed here. [For
results in this direction for the Ginzburg–Landau equation see Mielke (1997) and for the
two-dimensional Navier–Stokes equations see Zelik (2013).]

8. Conclusion

Given fixed sufficiently regular initial data with compact support, solutions of the
Navier–Stokes equations on expanding periodic domains converge to the corresponding solu-
tion on the whole space; and this can to some extent be ‘reversed’, in that a compactly-
supported initial condition that leads to a strong solution on a time interval [0, T ∗] (which could
be significantly longer than what is guaranteed by standard existence theorems) will give rise
to a strong solution on the same time interval on a sufficiently large periodic domain.

It is natural to conjecture that a similar result holds given any choice of smooth, simply-
connected, bounded subsetΩ ofR3, replacing (−α,α)3 byαΩ and imposing no-slip (Dirichlet)
boundary conditions on the boundary of αΩ. However, the estimates on the pressure required
in the proof given here become much more delicate in the case of a bounded domain (see Sohr
and von Wahl 1986, for example).

While the results here demonstrate convergence, they give no error estimates; this appears to
be a significantly harder problem, but a particularly interesting one if one is to view solving the
equations on a periodic domain as a ‘numerical approximation’ to the solution of the equations
on the whole space. Ożański (2021) has recently obtained such error estimates, comparing
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solutions of the equations on the whole space and on bounded domains with Dirichlet boundary
conditions, by finding a way to treat the bounded domain problem as a perturbation of the
problem posed on the whole space.
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