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Abstract

This thesis contains a collection of research outcomes from the field of complex net-

works. The results presented here have been divided in two parts, one devoted to theo-

retical methods and the other to data-driven applications. Although many of the results,

especially in the first part, are general enough for describing many complex systems, a

special focus on social systems has been used throughout the thesis.

The first part contains ideas that explore the interplay of topology and dynamics

in complex systems, divided in three chapters dedicated to opinion dynamics, modular

networks and weighted networks respectively. Regarding opinion dynamics, we study

the emergence of self-organised leadership and herding behaviour in the voter model.

Regarding modular networks, we present a generative model for networks with com-

munity structure and arbitrary bridgeness distribution. We also show how bridgeness

interplays with functional behaviour in different dynamical systems. We use such inter-

play to define the concept of dynamical centrality, and show its applications to network

dismantling under limited topological information. Finally, we demonstrate how topolog-

ical uncertainty in link weights induces fluctuations on the critical threshold for multiple

dynamical processes on networks. We also discuss the role of degree heterogeneity in

this propagation, finding non-trivial dependencies for scale-free networks.

The second part contains two applications of network analysis to real-world systems.

The first application is a data study on the rail network of London and its surrounding

area. We show how topological resilience measures are strongly correlated to the per-

formance of train operators in the network. The second application contains a network-

based model of armed conflict prediction at city level of analysis. We use several central-

ity measures as features for machine learning models, showing how network information

generates very significant improvements in out-of-sample prediction performance.



To my grandfather Joan



Chapter 1

Introduction

“. . .Thus you see, most noble Sir, how this type of solution bears little

relationship to mathematics, and I do not understand why you expect

a mathematician to produce it, rather than anyone else, for the

solution is based on reason alone, and its discovery does not depend

on any mathematical principle. Because of this, I do not know why

even questions which bear so little relationship to mathematics are

solved more quickly by mathematicians than by others.”

— Leonhard Euler, letter to Carl Gottlieb Ehler 1736

“Psychohistory was the quintessence of sociology; it was the science of

human behavior reduced to mathematical equations. The individual

human being is unpredictable, but the reaction of human mobs, Seldon

found, could be treated statistically. The larger the mob, the greater

the accuracy that could be achieved”

— Isaac Asimov, Second Foundation (Prologue)

2



3 CHAPTER 1. INTRODUCTION

1.1 Scope and structure of this thesis

1.1.1 Scope

Society and its relation to the individual have been imagined, studied and reasoned about

from all artistic and philosophical perspectives ever conceived since the dawn of society

itself. Far from a peaceful topic, it seems that a conflict has persisted in all sociolog-

ical endeavours up to modern days, a dialect between positivists and anti-positivists.

Sociological positivism promotes the unity of the scientific method, directly applying

methodological tenets from the natural sciences in the study of society. Challenging

this view, anti-positivism considers a dualism between the natural and cultural world,

regarding human behaviour as so irreducibly complex and special that its study requires

methods of its own [4].

It is hard to judge who holds the higher ground, but nowadays we are undeniably

used to the divide between so-called social and natural sciences — most likely a victory

for team anti-positivist. Even today, young students are quickly segregated between

those who will study the social world and those who will investigate the natural. For

many, bringing the rules and ways of nature to the inquiries on society feels irreverent,

almost unnatural.

But there have been numerous voices over the centuries who have claimed to derive

the arithmetic or mechanics of society. Grounded on the believe that it could only be

described to the extent that it could be quantified, entire disciplines such as economics or

statistics have emerged from the positivist drive for measuring human behaviour. Seeking

parallelisms with successful constructs such as Newtonian mechanics or Calculus, such

voices have tried to build over-arching theories only based on a handful of fundamental

principles of society.

The reader should not expect to find any of such “theories of society” in this thesis.

Far from it, this is a dissertation about the relatively young field of complex networks,

where some of its recent developments and techniques are reviewed and discussed. There

is a strong research focus on the interplay between structural and dynamical features

of networks, based on the assumption that complex systems can only be interpreted if

the higher-order structure of their components’ interactions are understood. The thesis

has also been developed under a wide-angle lens in terms of the particular subfields that

have been explored. From opinion dynamics, community detection, weighted networks,

critical phenomena, transport networks or even armed conflict prediction, it is not easy

to define a unitary narrative for all the work herein exposed.

In all truth, this variety is a reflection of how the author’s curiosity has refused to focus

on a single field of application. However, this also reflects the subjective perception that

networks are a necessary part of virtually any phenomena we are exposed to in our daily

lives. Going back to the initial discussion, the common hypothesis exploited throughout
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all chapters below is that the theories and methods of complex networks can be used

to model, describe and predict complex systems and, in particular, are a fundamental

instrument to define the fabric of society.

1.1.2 Structure

Beyond the present introductory chapter, which provides below a very short context

to complex systems and networks, the thesis is structured around two building blocks.

The first part exposes theoretical methods developed around the concept of interplay

between topology and dynamics in complex networks. By theoretical methods we mean

mathematical models that do not contain direct empirical considerations using real-world

data. These models clearly show how from relatively simple changes in the structure

of complex networks unexpected or intricate dynamics may emerge. We believe our

theoretical methods can illustrate how complex social phenomena is the result of how

humans interact across different network scales. The second part of the thesis focuses

on applications of complex networks as mathematical tools for the analysis of real-world

social systems using data-driven methods. Below we provide detail on how these ideas

are structured around specific chapters.

Theoretical Methods

Chapter 2 tackles the problem of opinion dynamics, a prototypic example of how methods

from physics are used to study society. Opinions and beliefs are at the core of individual

human behaviour, but at the same time are the result of complex dynamics of social

influence. From a physical point of view, opinions can be regarded as the internal state

of individuals interacting in social networks of influence. This is what the voter model

does, a mathematical model that has gained popularity and success despite its numerous

limitations and reductionism. One such limitation is the diffusive behaviour observed

in the average opinion for the standard voter model. In this chapter, we provide a

minimal set of heterogeneous influence structures that allow the voter model to exhibit

herding behaviour, that is, rapid non-diffusive shifts on the average opinion promoted

by emergent leaders in a population of voters. As a result of our mean-field approach,

here we do not use an explicit network formalism, but our results can only be effectively

understood in the context of a network of influences, e.g. in populations where popularity

and activity are both related to connectivity.

Chapter 3 relates to the study of modular structures, which are pervasive in social,

technological and biological networks. In particular, we study how cross-community link

patterns affect the dynamical behaviour of a network. Such patterns are studied us-

ing bridgeness centrality, which measures to which extent each node participates in the

different structural modules of a network. We present a generative network model of
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community structure that controls the distribution of bridgeness in a network. Using

two paradigmatic models of statistical physics, that of Potts spins and that of Kuramoto

oscillators, we reveal an important interplay between the dynamical behaviour of indi-

vidual nodes and their bridgeness centrality. In fact, we use such interplay to derive two

novel measures of what we call dynamical centrality. Dynamical centralities are measures

of local order parameters that allow us to differentiate the structural centrality of nodes

just by observing their dynamical behaviour, without explicitly knowing the underlying

connectivity. We show how they can be used, for example, to efficiently attack and dis-

mantle networks even when we cannot observe their connections. Some of the concepts

from this chapter are later used and tested using real-world data from Chapter 6.

Chapter 4 introduces a novel topic in complex networks, namely uncertainty propa-

gation. Dynamical observations in real-world systems are usually noisy and fluctuating,

driven in many cases by uncertainty on the structure of the underlying networks. Net-

works can fluctuate at two different scales: by addition or removal of links, or by uncer-

tainty on the interaction weight of existent links. Here we focus on the latter, illustrating

how weight uncertainty can be propagated towards dynamics, particularly on the critical

threshold of physical models with phase transitions. We show how the critical range (i.e.

the uncertainty in the critical threshold) of a network depends on the heterogeneity of

its degree structure. Despite being very theoretically-oriented, the results of this chapter

shed light into the important topic of network measurement-error and its consequences

for real-world applications.

Applications

Chapter 5 shows a real-world application of the interplay between topology and dynamics

in rail transport systems. We use several global network measures of resilience (vulnera-

bility to cascade delays) and robustness (vulnerability to closure of stations) to the rail

network in Greater London and surrounding commuter areas. We use public data on

performance measures of several railway operators as proxies for resilience and robust-

ness. We find that vulnerabilities to cascade delays are the most important topological

factor related to the performance of train operators.

Finally, Chapter 6 presents our work on armed conflict research, a pioneering inter-

disciplinary field dealing with one of the most difficult to understand and catastrophic

complex phenomena in social systems. Although initially a subfield of political sci-

ences and international relations theory, peace and conflict research is nowadays in close

contact with mathematics and statistics. We develop a novel framework for conflict pre-

diction based on network models of geographical interactions of cities around the globe.

Using several network centrality measures, including bridgeness (as studied in Chapter

3), we show how our network models have very significant out-of-sample performance in

predicting armed conflict using conflict data from the last 30 years.
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1.2 Perspectives on complex systems

1.2.1 Scientific landscape

The relatively young science of complex systems as we know it today brings together

multiple disciplines in a pursue of laws and principles encompassing all imaginable scales,

from buzzing molecular worlds to crowded societies and the echos of history. The study

of complexity as an ultimate goal of science, however, is an old endeavour. Let us go

back, for example, to the days of René Descartes when science itself was almost a branch

of philosophy. Those were also the days of Leeuwenhoek and Hooke, the fathers of

microbiology and pioneering inventors of microscopy. One could argue that a scientific

journey, from the very top of our day-to-day human scale, down to the depths of the

smallest components of the real world, was just getting started. This was the journey

of reductionism, the quest of understanding complexity by analytically decomposing

systems down their fundamental most basic constituents. Fast forward to the dawn

of the twentieth century and we reach one of the pinnacles of this approach, quantum

physics, which in essence describes the building blocks of matter and energy.

The reductionist approach to particle physics has lead the discipline to incredible

levels of precision and detailed understanding of unimaginable phenomena, yielding nu-

merous outcomes both in terms of mathematical understanding of reality and in terms

of technological advances that have radically affected society. The journey is far from

ending, and so-called string theories might still bring us closer to the dreams of a unified

theory of fundamental interactions: a theory built from the study of the most funda-

mental elements in nature, that would provide answers about the birth of the universe

or even the existence of multiple universes. As for biology, however, despite the revo-

lutionary knowledge acquired throughout the path towards the micro (e.g. molecular

biology and its open ended possibilities for medicine, molecular genetics and its relation

to evolution, etc.), it seems unlikely that the answer to what life is hides in ever smaller

parts of the cell. What are we missing?

The reductionist approach has failed to explain how physical phenomena emerge

from the interactions of building blocks across scales, that being in inside the cell, the

brain, society or rainforests. The recognition that it is the exchange of information that

brings complexity to many real-world systems has produced a methodological shift in

science. The end goal of the study of complex systems is to find those universal laws

and mechanisms that explain in simple mathematical terms how information propagates

across non-linear interactions giving rise to emergence, self-organisation and collective

phenomena.

In summary, it is worth noting that the journey from top to bottom (reductionism)

and back to the top (emergentism) has been far from reversible. Lessons learned during

each section of such never-ending trip have a permanent effect in the way science is
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conducted, with the composability of these different approaches being a testimony of

complexity itself.

1.2.2 Social systems as complex systems

Humans are unpredictable but human collective behaviour can be predicted. Or, at least,

that is the main hypothesis of sociophysics [5], [6]. In analogy with (non-equilibrium)

thermodynamics, the hope is that collective social phenomena can be described as emerg-

ing properties of systems of interacting agents: the aim is to find a description of social

phenomena that depend on few fundamental features of the microscopic interaction laws

rather than on the idiosyncratic character of single individuals. This point of view has

lead to the study of social dynamics using the same tools and models that statistical

physics has been developing during the last fifty years [7]. In fact, statistical physics

has played a key methodological role in the dawn of complexity science in general, with

wide-range adoption and application in biology, computer sciences, urban modelling or

medicine, to name a few disciplines beyond the traditional applications of physics such

as thermodynamics, electronics, magnetism or superconductivity.

How much do we need to know about individual humans in order to produce useful

models of social systems? The approach of sociophysics is often criticised on the basis of

being too simple to represent human individuals. This is an important critique, but we

should not expect to ground a science of society on perfect knowledge about individuals,

for that could be too reductionist. In fact, as in many other real-world systems, the

collective properties of society are relatively independent of the internal mechanics of

human beings. In this sense, social phenomena exhibits universality.

What fundamental points of contact can we find between the particles of statistical

physics and humans? Order is perhaps the most important of them. The very pillars

of society are ordered structures that emerge from apparent disorder: language, culture,

political consensus. They all require the formation of statistical regularities that cannot

be explained without interactions. Both for particles and humans, interactions are the

real key for understanding the emergence of order from initial disordered states.

In terms of methodology, there are several tools recurrently used in sociophysics.

The first is the aforementioned order/disorder transition paradigm. Many models can

be seen as extensions of the Ising and Potts models, in that they seek to study the or-

dering process of some internal state of interacting agents using particular microscopic

mechanisms that want to reflect different social contexts. A different approach is that

of sociodynamics, a subfield focused on describing directly macroscopic societal variables

using dynamical and probabilistic models based on the master equation, without a par-

ticular description of microscopic mechanics [8]. Agent-based models provide yet another

approach, with a computationally-based methodology that studies emergence in social
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systems using computer simulations [9]. Agent-based models can naturally deal with

complex internal descriptions of agents and heterogeneous interactions, but on the other

side they are difficult to use in prediction settings and are prone to over-parametrisation.

Finally, the role of the structure and topology of social interactions is of great impor-

tance for sociophysics. A dedicated space can be found on Section 1.3 discussing the

implications and interfaces between network science and sociophysics.

1.3 The network paradigm

It is a sunny Sunday afternoon in the old beautiful town of Königsberg in 1735 and

most of its citizens happily walk the streets, unaware that a Swiss mathematician is

tracing their steps. The lore says that the people of Königsberg had a gamble in which

they tried to devise a route that would allow someone to walk around the city without

crossing any of its seven bridges more than once. None could devise such a path, but even

more frustrating was the fact that none could prove that the problem was unsolvable.

But along came Leonhard Euler, who in that same year published the solution to the

problem. Euler realised that the problem could be abstracted by only considering which

land masses where connected to which other, and by how many bridges. He proved that

a necessary condition for such a path to exist in any finite graph is that all vertices (land

masses) have an even number of connections (bridges). Eulerian cycles provided what is

considered to be the first historical use of graph theory.

But network science as a discipline of its own did not emerge until the turn of the

twentieth-first century — considering as a rough starting point, for example, the influ-

ential Reviews of Modern Physics by Albert and Barabási [10], one of the most cited

paper in the history of the journal. What pieces were missing so that this shift could

happen? In truth, during this two centuries, many developments were achieved in the

field of graph theory, including the instrumental work on random graphs by Erdős and

Rényi. Other disciplines, actually, started using networks for their own purposes. For

instance, ideas from psychology, anthropology, sociology and graph theory began encom-

passing as early as the nineteen thirties [11]. In fact, the subfield of social networks was

already maturing in sociology by nineteen seventies, with very influential papers such

as Granovetter’s [12]. The reality is,however, that all these efforts were missing large-

scale empirical data sources, and the computational power to process them, in order to

uncover some of the ideas that would later develop into network science.

The first decade of the twentieth-first century saw an exponential increase in research

activity regarding complex networks. Theoretical advances were met by increasingly

larger data-collection efforts, such as the development of the first large-scale Internet

mapping, the publication of protein-protein interaction databases, the Human Connec-

tome project, or the rapid development and sampling of online social networks such as
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Figure 1.1: The seven bridges of Königsberg. This iconic mathematical problem can be

solved using a graph in which nodes (A-D) and edges (a-g) represent, respectively, land

masses and bridges.

Facebook. One of the largest steps forward from this recent period was the realisation

that networks with vast divergences, in terms of their components (proteins, humans, rail

stations, servers, etc.) and their generating process (evolution, social norm and friend-

ship, local urban planning, individuals setting up servers, etc.), share a reduced number

of simple organisational principles and internal dynamics, thus resulting in universal

mathematical properties that can be validated empirically.

Nowadays, this universality has transformed complex networks into a multidisci-

plinary methodology that brings together physicists, biologists, sociologists, economists

and computer scientist generating a immense body of knowledge. The study of networks

is producing very important impact on society in terms of its implications to how we com-

municate over Internet, how we move and transport goods efficiently, how we understand

the emerging properties of the brain, or how we combat diseases and epidemics. From

gathering data, building mathematical models, using computer simulations to solve those

models, and testing the predictions produced by them with the data gathered initially,

it is easy to claim the existence of a science of networks.

1.4 A minimal toolkit for our network analysis

Here we present some of the mathematical concepts related to network analysis we use

more frequently throughout the present work. This is not intended as a general intro-

duction to or a comprehensive review of network theory (for which we refer the reader to

the extensive body of generalist literature on the topic [13]–[15]), but instead a primer

on the concepts needed along the journey of this thesis.
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1.4.1 Definitions on graphs

Networks are physical objects measurable in real-world systems. Graphs are their math-

ematical abstraction, conforming the vast field of graph theory, which is the starting

point for any numerical or analytical study of network properties. A graph is typically

denoted by G and contains two sets G = (V,E), that of vertices or nodes V , and that of

edges or links E. A graph G′ = (V ′, E′) is called a subgraph of G if V ′ ⊂ V and E′ ⊂ E
The convention in network science is to consider the size or order of a graph to be the

cardinality of the set of nodes N = |V |, i.e. the number of nodes in the network. Indeed,

the total number of possible edges or maximal cardinality of the edge set is bounded by

N in that a graph with |E| =
(
N
2

)
is called a complete graph. The density of a graph

represents the current number of edges divided by the total possible number of edges,

D = |E|/[N(N − 1)/2]. A graph is called sparse when D � 1, a property exhibited by

most real-world networks.

Two nodes vi and vj (sometimes we will directly use the simpler notation i and j to

refer to them) are called adjacent or said to be neighbours if there exists an edge (i, j)

connecting them. In fact, graphs are usually defined through their adjacency matrix

A = {aij}:

aij =

{
1 if (i, j) ∈ E
0 if (i, j) /∈ E

. (1.1)

Graphs where aij = aji are called undirected, because their edges do not contain direc-

tionality and can be depicted as simple lines. When the adjacency matrix is not nec-

essarily symmetrical, graphs are called directed and their edges are usually represented

graphically as arrows.

1.4.2 Connectivity

Most network properties are related to how nodes connect and reach to each other.

Locally, this is clearly represented by links, but connectivity tends to be related to

many different scales beyond locality. Higher-order interactions are crucially represented

by paths Pv0,vn between a source node v0 and a destination node Vn. Paths can be

represented by the subset of nodes needed to reach destination from source using existing

links, Pv0,vn = {v0, v1, . . . , vn−1, vn}. A class of path where source and destination nodes

are the same is called a cycle or loop.

A graph is said to be connected if there exists a path connecting any two nodes in it.

A connected subgraph is known as a component, and two components are disconnected

if we cannot build any path between nodes of such different components. Studying the

distribution and sizes of components is an important part of the analysis of real-world

networks. In particular, it is common to study the size of the largest component in a
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A B

Figure 1.2: The shortest path between nodes A and B, represented by blue lines,

contains three edges. Therefore, the distance between A and B is `AB = 3.

network, which is known as giant component when its size scales with the number of

nodes, thus diverging in the thermodynamic limit N →∞.

Paths are also instrumental in defining notions of distance in a graph. The distance `ij

between two nodes i and j is typically defined as the minimal number of edges traversed

in paths connecting i and j, as shown in Figure 1.2. Note that if a path between i and

j does not exists, `ij = ∞ by convention. Such minimal paths are known as shortest

paths. Several measures can be readily computed using shortest paths in order to gain an

understanding of the shape and scale of a network. For instance, the network diameter

is defined as:

dG = max
i,j

`ij . (1.2)

We can complement our notion of distance using statistical moments of `ij , such as the

average shortest path length:

〈`〉 =
1

N(N − 1)

∑
ij

`ij . (1.3)

1.4.3 Centrality measures

Networks are used to model real-world systems where it is important to understand the

position or role of each node with respect to the collective. Numerous definitions with

different criteria exist sharing the purpose of defining and discerning important nodes,

and they are commonly known as centrality measures. Below we define four of the most

regularly used measures, which we will employ in different sections of the present thesis.

Degree

One of the most basic and useful centrality measures, degree examines how well connected

a node is locally in terms of single-step paths. For undirected networks, degree ki is

simply the number of links attached to a given node i:

ki =
∑
j

aij . (1.4)
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For directed networks, we define in-degree and out-degree as:

kini =
∑
j

aji, kouti =
∑
j

aij . (1.5)

In general, examining its degree statistical properties is a recurrent task when analysing

a network. In this sense, it is useful to study the probability distribution:

pk =
Nk
N

, (1.6)

where Nk =
∑
i δkki is the number of nodes with k-degree, and can be expressed in terms

of the adjacency matrix through Eq. 1.4. The first-moment or average degree is also a

measure of link density in that:

〈k〉 =

∞∑
k=0

kpk =
1

N

N∑
i=1

ki =
2|E|
N

(1.7)

Closeness

Closeness centrality measures the inverse of the average distance from a node i to any

other node j:

Ci =
1∑
j 6=i `ij

. (1.8)

Not that the expression above is only valid for connected networks. An alternative

definition that can be used for unconnected networks is:

C ′i =
∑
j 6=i

1

`ij
. (1.9)

Those nodes that are generally more accessible to the rest of the network via shortest

paths will have higher importance in terms of closeness centrality.

Betweenness

Betweenness centrality measures the number of shortest paths traversing a given node:

Bi =
∑

m 6=j 6=i

σmj(i)

σmj
, (1.10)

where σmj is the number of possible shortest paths between m and j, and σmj(i) refers to

the more restricted set of shortest paths between m and j that go through i. Betweenness

highlights those nodes that act as bottlenecks for efficient information flows across the

network. In transport networks, for instance, betweenness provides an estimation of the

load or traffic expected in a given node, assuming transport occurs through shortest

paths.
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PageRank

PageRank centrality became highly successful because of its role in the inception of

Google [16]. It is recursively defined as:

PRi = α
∑
j

aji
koutj

PRj +
1− α
N

, (1.11)

where α is known as the dumping factor, which controls the extent by which PageRank

centrality of one node depends on others’ centrality.

1.4.4 Weighted networks

Link weights are a very important degree of freedom present in most real-world networks

[17]. Instead of having binary connections between nodes, networks can have intensi-

ties regulating interaction strength. Weights tend to be inherent to the measurement of

some real-world networks, where instead of observing a static binary snapshot we sample

several observations and infer an interaction probability from them. They can also be

representing physical features of the interaction medium, such as bandwith in informa-

tion or energy transport, passenger capacity in transport networks, amount of trade in

international networks or traffic in the Internet.

In any case, adding a weighting structure has a profound impact on all features

of a complex network, particularly on centrality measures. The most immediate local

measure of weighting structure is strength or weighted degree:

si =
∑
j∈V (i)

wij , (1.12)

where wij is the weight of edge (i, j), and V (i) is the set of neighbours of node i.

Furthermore, since some centrality measures such as closeness or betweenness depend

on the concept of distance, it is important to define the relation between weights and

shortest path lengths. The convention we use throughout the thesis is to consider w−1
ij

as the inherent distance of edge (i, j). Thus, when considering the length of a path we

need to sum up the inverse of the weight of all edges conforming such path. Finally, it

is straightforward to generalise PageRank definition in Eq. 1.11 to weighted networks

by using the weighting matrix wij instead of adjacency aij , and strength sj instead of

degree kj .

1.4.5 Community structure

Communities are groups of nodes that have significantly more internal interactions than

external. They are also referred to as clusters or modules. An extreme instance of a

community would be a complete subgraph with no edges connecting it with the rest of the
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network. But communities are usually defined in much more ambivalent circumstances,

where the aforementioned subgraph would have some connections with the rest of the

network, and the internal edge density would be lower than in a complete subgraph.

Community structures are prevalent in real-world networks, especially in biological (e.g.

functional modules in protein-protein interaction networks performing different cellular

functions [18]) and social networks (e.g. the famous Zachary’s Karate Club network

[19]).

The problem of partitioning a network into meaningful communities is referred to in

the literature as community detection. Given that the number of partitions (combinations

of communities) scales super-exponentially with the number of nodes in a network, com-

munity detection is an NP-hard problem where inspecting all possible solutions quickly

becomes impossible. In the last decades, a large number of heuristic algorithms that do

not need to check all possible partitions have emerged, but the most successful ones are

methodologically based on hierarchical clustering. Either by agglomerative procedures

[20] (start with very small communities and merge them) or divisive methods [21] (start

with very large communities and split them), hierarchical clustering requires a quality-

function in order to compare partitions and determine the optimal cut of the hierarchy.

For this purpose the usual measure is modularity, which essentially compares the internal

density of communities with the random expectation in the network [22]. However, given

that the number of possible partitions is so large, modularity optimisation often leads

to over-fitting. This occurs because heuristic algorithms cannot distinguish fluctuations

in edge density from real generative mechanisms producing communities: in fact, mod-

ularity maximisation algorithms may find optimal partitions even in completely random

networks. On the contrary, inferential algorithms based on the stochastic block model

[23] are capable of efficiently finding statistically significant communities (see Section

3.1.2 for details), and are gaining popularity in recent years. A further problem arises

when considering that nodes in real-world networks usually belong to more than one

community, such as in the case of friendship networks where individuals are well con-

nected to several groups of friends (from school, from work, from family, etc.). This

is known as overlapping community structures. Interesting algorithms have also been

devised for this case, including the clique percolation method [24], link clustering [25],

and also the inferential stochastic block model approach [26].
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Chapter 2

Emergent herding behaviour

Are important societal events driven by smooth, homogeneous or diffusive changes in the

opinion of people? Most frequently not. Financial crashes, unexpected election outcomes

or rapidly escalating social polarisation are all events that require particular opinions to

spread massively in short time scales — what is known as herding behaviour. This

phenomenon is closely related to the emergence of leadership in social systems. What

are the minimal influence structures required for herding behaviour to emerge in a social

network?

Models of opinion dynamics typically show consensus states where the dynamics is

frozen. In many cases, like in the voter [27], [28] or Sznajd models, the (weighted)

ensemble average opinion of the population is a conserved quantity. In such cases, the

dynamics of the stochastic average opinion is governed by a purely (non-homogeneous)

diffusive process without any drift, which eventually leads to one of the possible consensus

states. It is therefore difficult to imagine how leadership can emerge in this context.

In this chapter, we show that leadership can, in fact, spontaneously arise in a subset

of the population when there is a strong heterogeneity in the time scales of the agents

coupled with a hierarchical organization of their influence. Heterogeneity of time scales is

present, for example, in speculative markets, where noise traders operating at the scale of

minutes or hours coexist with fundamentalists, doing so at the scale of weeks or months.

Interestingly, we discover a pitchfork bifurcation separating a purely diffusive phase and

a phase where the most active agents lead the global state of the entire population. This

result can shed light on the dynamics of extreme events driven by human opinion.

2.1 The voter model

The voter model was first introduced in 1973 to model competition between species [27],

[28]. Ever since, it has become one of the most paradigmatic and popular models of

16
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opinion dynamics. Its simplicity, analytical tractability, and versatility to introduce

new mechanisms make it the perfect model to study many different phenomena in the

natural and social sciences, from catalytic reaction models [29], [30] to the evolution of

bilingualism [31] or the statistics of the US presidential elections [32]. In its most simple

version, the voter model is defined as follows: we have a set of N interacting agents, each

endowed with a binary state of opinion (sell or buy, democrat or republican, window or

mac, etc). At each time step of the simulation, an agent is randomly chosen to interact

with one of her social contacts, after which the agent copies the opinion of her neighbor.

Heterogeneity can be introduced in the population through the activity rate of agents [33],

[34]. We assume that agents are given intrinsic activity rates {λi}, controlling the fre-

quency at which they interact with their social contacts and, possible change their opin-

ion. In numerical simulations, this is equivalent to chose the next active agent, say agent

i, with probability proportional to λi. The influence of one agent over others can be

modeled by the probability Prob(j|i) that agent i copies the opinion of agent j when i

is activated at rate λi. When contacts take place through a fixed social contact graph

with adjacency matrix aij , this probability is given by Prob(j|i) = aij/ki, where ki is

the degree of agent i [35]–[38]. In a fully connected graph (equivalent to a mean-field

description), this probability is simply Prob(j|i) = 1/(N−1) for j 6= i and zero otherwise.

The dynamics of the state of the system can be described using a set ofN dichotomous

stochastic processes {ni(t)} taking values 0 or 1 depending on the opinion state of each

agent at time t. If we assume that all temporal processes follow Poisson statistics,

the stochastic evolution of ni(t) after an increment of time dt satisfies the stochastic

equation [39], [40]

ni(t+ dt) = ni(t) [1− ξi(t)] + ηi(t)ξi(t), (2.1)

where ξi(t) is a dichotomous random variable taking values

ξi(t) =

{
1 with probability λidt

0 with probability 1− λidt
. (2.2)

Notice that ξi(t) controls whether node i is activated during the time interval (t, t+ dt).

If so, the opinion of a neighbor will be chosen according to Prob(j|i) so that

ηi(t) =


1 with probability

N∑
j=1

Prob(j|i)nj(t)

0 with probability 1−
N∑
j=1

Prob(j|i)nj(t)
. (2.3)

In principle, ηi(t) should be realized only when ξi(t) = 1. However, due to the particular

form of Eq. (2.1), the value of ηi(t) is only relevant when ξi(t) = 1. Therefore, we can

safely consider ξi(t) and ηi(t) as statistically independent random variables.
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Equation (2.1), supplemented with the definitions of variables ξi(t) and ηi(t), repre-

sents the exact stochastic evolution of the system. For instance, the ensemble average

of the opinion of agent i, ρi(t) ≡ 〈ni(t)〉 can be evaluated by taking first the average of

Eq. (2.1) over the variables ξi(t) and ηi(t) and, then, over the ensemble. This program

leads to the exact differential equation

dρi
dt

= λi

 N∑
j=1

Prob(j|i)ρj − ρi

 . (2.4)

This equation implies the existence of a global conserved magnitude [36], [41] related to

the eigenvector φ(i) of eigenvalue 1 of Prob(j|i), that is, the solution of the equation∑
i φ(i)Prob(j|i) = φ(j). Indeed, by multiplying Eq. (2.4) by φ(i)/λi and summing over

all agents, the right side of the equation vanishes. Therefore, the weighted ensemble

average of the population

Φ ≡
N∑
i=1

φ(i)

λi
ρi(t) =

N∑
i=1

φ(i)

λi
ρi(0) (2.5)

is conserved by the dynamics and, thus, it is a function only of the initial conditions.

This fact can be used to evaluate the probability of the final fate of a realization of the

dynamics. The probability to end up absorbed in the “1” consensus state is just given

by Φ/
∑
i φ(i)/λi.

2.2 Emergence of leadership in the voter model

The results presented so far are valid for an arbitrary distribution of individual rates

λi. However, the behavior of the system can be very different when there is a strong

separation of time scales present in the system, like in speculative markets with noise

traders and fundamentalists. To shed light on this problem, hereafter we analyze a simple

model with a population segregated in two groups, a fast one of size Nf operating at rate

λf and a slow one of size Ns doing so at rate λs, with λf > λs. Aside from heterogeneity

in their time scales, agents in a real population are also heterogeneous in terms of their

influence on others. To model this effect, we assume that the probability of agent i to

copy the opinion of agent j is a function of the rate of agent j, that is,

Prob(j|i) =
f(λj)∑N
i=1 f(λi)

, (2.6)

where f(λ) is an arbitrary function measuring the reputation of agents of rate λ as seen

by the population. When f(λ) is a monotonic increasing function, the influence of agents

is hierarchically organized, with fast agents having higher reputation and, thus, being

copied more frequently, both by fast and slow agents. In this work, we use f(λ) = λσ.
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Figure 2.1: Evolution of the fraction of agents in the “1” state of a two-compounded

heterogeneous system, in a mean-field random network of N=5000 agents, where 20% of

them are fast. λf (λs) refers to fast (slow) group’s activation rate. Top: λf = 103λs.

Center: λf = 3 ∗ 103λs. Bottom: λf = 104λs

.

Figure 2.1 shows particular realizations of the process in a system made of a small

group of fast agents, Nf = 1000, and a large one of slow agents, Ns = 4000. In this

particular example, we set σ = 1, a fixed value of λf = 1, and different values of λs.

When the separation of time scales between the two groups is not very important, the

global dynamics is purely diffusive, as in the standard voter model. However, when the

separation of time scales exceeds a certain critical value, the behavior changes completely.

Periods of quasi-regular growth and decrease alternate, which are suddenly broken by

sharp peaks. Although the system ends up absorbed in one of the two absorbing states,

the peculiar pathway to reach consensus cannot be observed in the standard voter model.
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Figure 2.2: Evolution of the fraction of fast (top) and slow (bottom) agents in state “1”

of the same system as in Figure 2.1. Plots correspond to the supercritical phase with

λf = 104λs.

To understand this phenomenon, in Figure 2.2, we show the temporal evolution of

both groups. From this figure, it is clear that the anomalous behavior we observe in

Figure 2.1 is the result of a very differentiated dynamics of the fast and slow agents. Due

to the huge differences between time scales, from the fast group perspective slow agents

will seem as being frozen in their state. However, due to the growing form of function

f(λ), the effect of slow agents in the dynamics of fast ones is small. In this situation,

fast agents evolve as in the simple voter model until they reach one of their consensus

states. Nonetheless, unlike in the simple voter model, this consensus state is not an

absorbing one. Indeed, despite the small probability of a fast agent to copy a slow one,

its time scale is small enough to realize this interactions many times during the evolution

of the process. When such events occur, fast agents may copy an opposite opinion from

a slow outsider, thus introducing some noise in the small subsystem, preventing it to
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be trapped in the consensus state. In other words, the absorbing boundary is replaced

by a reflecting one. The same noise induced by slow agents can make the group of fast

agents to abruptly change to the opposite state, turning the dynamics into an effective

two-state dynamical system.

At the same time, from the slow group perspective fast agents spend long periods of

time in the consensus states. Again, due to the growing form of function f(λ), slow agents

have a higher tendency to copy the fast agents’ opinion that, being quasi-frozen, acts as

a constant drift that pulls the slow agents’ opinion towards the opinion of the fast ones.

We can interpret that the group of slow agents has become a herd-like group following

the leadership of the group of fast agents. However, this behavior is not observed in the

whole range of parameters and it is unclear whether it appears suddenly at a critical

value or, instead, it is a crossover effect interpolating continuously from the diffusive

behavior of the standard voter model to the herding behavior we observe in Figure 2.1.

2.2.1 Langevin description

The existence of the conserved quantity Φ implies that the dynamics cannot be com-

pletely understood only in terms of Eq. (2.4) as such equation does not contain any

information about the noise of the system. We are then forced to develop a theory that

includes the second order terms of the dynamics. To do so, we take advantage of the

homogeneity within each group of agents and define the instantaneous average opinion

state of each group as

Γf (t) ≡ 1

Nf

∑
i∈fast

ni(t) ; Γs(t) ≡
1

Ns

∑
i∈slow

ni(t). (2.7)

In the limit of large systems, Γf (t) and Γs(t) can be considered as quasi-continuous

stochastic processes in the range [0, 1]. Besides, they are the result of a sum of a large

number of random variables so that the central limit theorem can be invoked. As a

result, we conclude that the stochastic evolution of the vector ~Γ(t) ≡ (Γf (t),Γs(t)) can

be described by a Langevin equation. In particular, for the fast group dynamics, we can

write
dΓf (t)

dt
= Af

[
~Γ(t)

]
+

√
Df

[
~Γ(t)

]
ξf (t), (2.8)

where ξf (t) is a gaussian white noise. The drift and diffusion terms are respectively

defined in terms of the infinitesimal moments as

Af =
〈∆Γf (t)|~Γ(t)〉

dt
, Df =

〈[∆Γf (t)]
2 |~Γ(t)〉

dt
, (2.9)

where ∆Γf (t) ≡ Γf (t+dt)−Γf (t) [42]. These two terms can be computed exactly using

Eq. (2.1) and read

Af = αfs(Γs − Γf ) (2.10)
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Df =
αfs
Nf

(Γs + Γf [1 + 2βfs − 2Γs − 2βfsΓf ]) , (2.11)

where we have defined

αfs =
λf

1 + βfs
and βfs =

Nff(λf )

Nsf(λs)
. (2.12)

Similar equations can be derived for the slow group by replacing the index f ↔ s in the

previous equations.

2.2.2 Effective potential function

When the separation of time scales is large, the state of the slow group is perceived by

the fast group as constant. In this case, we can consider Γs in the previous equations

as a constant parameter. As a consequence, the diffusion term in Eq. (2.11) does not

vanish when Γf = 0, or Γf = 1 and the system reacts at these points as in the presence

of a reflecting barrier. Therefore, the system has a well defined steady state controlled

by an effective potential that, up to a constant value, takes the form [42]

Veff (Γf ) = lnDf − 2

∫
Af
Df

dΓf . (2.13)

This potential has a single extremum approximately at Γ∗f = Γs, which changes from

being a minimum to a maximum when

2
f(λf )

f(λs)
> Ns. (2.14)

When this condition is met, the combination of a maximum with the two reflecting

barriers at Γf = 0 and Γf = 1, transforms the effective potential into a double-well

potential with a barrier at Γf = Γs. This defines a pitchfork bifurcation separating a

diffusive phase, where the fast group is dragged by the slow one, and a herding phase,

with the fast group behaving effectively as a two-state system, jumping from one state to

the other as in an activated process. This is illustrated in Figure 2.3, where we show the

effective potential when Γs = 0.5 in the two cases, along with examples of realizations

of the slow and fast group dynamics.

We should note that, while this transition is not a true phase transition, as it disap-

pears in the thermodynamic limit Ns >> 1, for finite systems it behaves effectively as a

first order phase transition. Besides, the strong separation of time scales we find in some

real systems, like in speculative markets (which can be of the order of λf ∼ 104∼5λs),

coupled with a growing preference function f(λ) ∼ λσ can make condition Eq. (2.14) to

hold quite easily even for very large populations, in particular when exponent σ > 1.
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Figure 2.3: A: Effective Potential for Nf = 500 and kfs = 25. B: Effective Potential for

Nf = 500 and kfs = 2500. C: Simulation of process with conditions in A. D: Simulation

of process with conditions in B. For this parameters, kcfs = 250.

2.2.3 Consensus time

Voter systems satisfying Eq. 2.14 must be at the herding phase, with fast agents behaving

as a two-state system with switching dynamics. But it is important to note that the path

towards global consensus will vary depending on the time scales interplay between both

fast and slow agents. In order to understand these different dynamics, we can define the

order parameter:

x ≡ f(2λf )

Nsf(λs)
. (2.15)

As shown in [43], in the limit Ns > Nf � 1 the Langevin Equation for the average

opinion of fast agents (Eq. 2.8) can be rewritten as:

dΓf (t)

dt
=

2λf
xNf

[Γs − Γf ] +

√
2λf
Nf

Γf (1− Γs)ξf (t), (2.16)
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which reflects the diffusive dynamics of fast agents Γf towards one of the consensus

states, modulated by a drift towards slow agents opinion Γs controlled by the term
2λf
xNf

.

Assuming Γs remains constant from the perspective of fast agents, we can compute the

characteristic switching time of fast agents Tf as the standard mean first passage time

for a stochastic process following Eq.2.16, with one reflecting barrier at Γf = dΓ and an

absorbing boundary at Γf = 1− dΓ [43]:

Tf =
Nf
λf

∫ 1−dΓ

0

B
(
z, 2Γs

x , 2(1−Γs)
x

)
z

2Γs
x (1− z)

2(1−Γs)
x

dz, (2.17)

where B(z, a, b) refers to the incomplete Beta function. The Langevin equation for slow

agents under the same conditions reads:

dΓs(t)

dt
= λs [Γf − Γs] , (2.18)

leading to an exponential decay of slow agents opinion Γs with quasi-deterministic drift

towards the fast-group consensus state Γf with a characteristic time Ts = λ−1
s .

Note that when Tf � Ts, or equivalently λsTf � 1, the group of slow agents will

typically reach the quasi-frozen consensus state of fast agents Γf = 0, 1 before the latter

can switch their state. This means that global consensus Tcon will be reached according

to decay rate of the slow group:

Tcon ∼ λ−1
s . (2.19)

On the contrary, when Tf � Ts, it can be shown [43] that:

Tcon ∼ Tf exp

(
1

λsTf

)
. (2.20)

Assuming again that f(λ) = λσ and Nf = aNs, we can rewrite Eq.2.17 as:

λsTf = a

(
2

x

)1/σ

N1−1/σ
s

∫ 1−dΓ

0

B
(
z, 2Γs

x , 2(1−Γs)
x

)
z

2Γs
x (1− z)

2(1−Γs)
x

dz. (2.21)

Finally, we can combine all of the above to show [43]:

Tcon ∼

 λ−1
s if σ ≥ 1

exp(N1/σ−1
s )

N
1/σ−1
s

if σ < 1
. (2.22)

When σ ≥ 1 Eq.2.21 diverges, so that slow agents bring the system to consensus in

constant characteristic time. On the contrary, when σ < 1 consensus time diverges with

system size, making the absorbing states unreachable in the thermodynamic limit.
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2.3 Discussion

In this chapter, we have uncovered a simple and parsimonious mechanisms giving rise to

the emergence of leadership and herding behaviour in a population of interacting agents,

namely, a strong separation of time scales coupled with hierarchical structures of influence

exerted by some agents on the others.. This bring important differences with respect to

the diffusive behaviour and consensus path characteristics of the standard voter model.

Despite the simplicity of the toy model that we use in this work, the mechanisms are

general enough to be extrapolated to more complex and realistic situations. For instance,

the simple segregation of the population in only two groups is not really necessary.

Although mathematically more involved, it can be shown that the same phenomenology

takes place in systems with a strong heterogeneous distribution of activity rates.

The hierarchical organization can also be induced by different mechanisms, like a

hierarchical organization of the network of interactions among the agents.For instance, a

large sample of real-world networks present core-periphery structures [44], made of a core

of well interconnected agents and a periphery made of agents that are mainly connected

to the core. These type of structures are particularly pervasive in online social networks

such as Twitter [45], [46]. Finally, one could also argue that the influence that a group

of agents have on the others is a stochastic process by itself. In our case, this could

be easily modelled by assigning to the parameter σ some stochastic dynamics. This is

particularly interesting as, being the transition effectively discontinuous, the dynamics

would be a mixture of purely diffusive periods, when σ is such that the condition in

Eq. (2.14) is violated, and periods with strong herding behaviour.



Chapter 3

Bridgeness and dynamical

centrality

Whether finding influencers in online social networks [47], protecting key stations in a

power distribution grid [48] or vaccinating spreaders in an epidemic [49], there is no single

recipe to rank the nodes of a complex network according to their importance [50]. Despite

the existent variety of centrality measures that have been introduced in recent decades,

most of them share in common the need for complete or partial topological information.

A natural question is, therefore, can we measure centrality directly from local dynamical

observables when network topology is uncertain? That is, can we identify those actors

that are most important for the collective functionality or the robustness of a network

just by looking at each node’s internal state and dynamical behaviour?

In this chapter we propose two dynamical centrality measures, asynchrony and flip-

rate, based respectively on observables from two paradigmatic dynamical systems, that

of the Kuramoto model of synchronisation [51] and that of the Potts model of spins [52],

both of which have extensive applications in physics, chemistry, biology and the social

sciences. In networks with community structure, we find an interplay between these

dynamical observables and bridgeness centrality —a measure of the extent to which a

node acts as a modular broker, i.e. of its participation into the different communities

of a network. This interplay is important as it ensures we can infer topological cen-

trality (bridgeness) by measuring certain observables (asynchrony and flip-rate) directly

from network dynamics. In order to describe this relation, we introduce a prototype

network model we call Stochastic Block Model with bridgeness (SBMb), which gener-

ates graph ensembles with a given bridgeness distribution, while controlling the effect

of other properties such as degree or community structure. Using the SBMb, we show

how in fact bridgeness induces locally higher values of both asynchrony and flip-rate,

26
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promoting global ordering at the same time. We generalise such interplay showing that

bridgeness generates localised patterns in the Laplacian eigenvectors of the SBMb, which

are attributable to functional modes performing at different timescales and regions of

the network, from inside communities to their boundaries and bridges. Finally, using

asynchrony and flip-rate, we propose a novel method for detecting network vulnerabili-

ties even when the underlying topology cannot be accessed. Our conjecture is that some

networks can be as efficiently dismantled by targetting certain functional behaviour of

their nodes as by using topological targets such as degree, betweenness or bridgeness

centrality. We show how this is the case for two synthetic models (SBMb and Random

Geometric Graph) and one real network (Western US Power Grid).

3.1 The Stochastic Block Model

3.1.1 Generative model

Like preferential attachment for scale-free networks or the Watts-Strogatz model of small-

worlds, modular networks have a well-known generative mechanism based on planted

partitions, the Stochastic Block Model (SBM). It has its origin in the social sciences,

particularly in the study of social networks [53]. As its name suggests, the high-level

purpose of the SBM is to generate a parameterized ensemble of networks that have their

nodes somehow grouped into blocks of nodes that have internal statistical similarities.

Given a network with N nodes that are partitioned along B different groups, we

represent each node’s affiliation through the block or partition vector

b = (b1, . . . , bN ), (3.1)

with entries bi ∈ {1, . . . , B}. Then, the aim of the SBM is to generate networks using b

as a parameter. One way to achieve that is through fully characterizing the probability

P (A|b), (3.2)

where A = {aij} is the adjacency matrix of the generated network. In this sense,

building a SBM is equivalent to coming up with a reasonable P (A|b) that reflects the

desired modular structure we are trying to model.

For networks with single-edges (i.e. aij ∈ {0, 1}) and without self-edges, the standard

SBM is:

P (A|p, b) =
∏
i<j

p
aij
bibj

(1− pbibj )aij , (3.3)

where prs is a matrix parameter accounting for the probability of finding an edge between

nodes from blocks r and s respectively. In this case, edges are distributed according to

a Bernoulli distribution controlled by parameters b and p. It can be shown [23] that



3.1. THE STOCHASTIC BLOCK MODEL 28

the particular choice in Eq. 3.3 attests for the maximum indifference towards P (A|b)
when only the expected total number of edges between each group is known: that is, it

maximizes the entropy function

Ω = −
∑
A

P (A|b) lnP (A|b) (3.4)

subject to the constraint

〈ers〉 =
∑
ij

aijδbirδbjs, (3.5)

where ers is the number of edges between groups r and s. As will be shown in the next

section, other variants of P (A|b) can and are typically used for studying the SBM due

to their more tractable form.

3.1.2 Bayesian inference of communities

The task of detecting and describing community structures of complex networks has

been approached in many different ways (see Section 1.4.5 for details). Most of them

are based on non-statistical heuristics, and thus lack a principled method towards the

discovery of modular structure. In contrast, the SBM fundamentally is a generative

model for modular structures, as explained in the previous section. For this reason it

allows to build probabilistic models describing real and synthetic network data, thus

being widely used as cornerstone for Bayesian community detection methods. One of

the most appealing features of this SBM Bayesian inference framework is the ability

to distinguish random structures from statistically significant modules, something that

most heuristic methods for community detection cannot do.

Bayesian framework

In an inferential setting, our objective is to work out the conditional probability P (b|A)

of observing a partition or block vector b = (b1, . . . , bN ) given an empirical network

represented by its adjacency matrix A. This can be interpreted as a posterior probability

using Bayes’ rule:

P (b|A) =
P (A|b)P (b)

P (A)
(3.6)

where P (A|b) is called the marginal likelihood and assumes data is generated by a certain

SBM. P (b) is the prior probability representing a priori assumptions on that SBM. P (A)

is called the evidence and normalizes the posterior by counting all possible partitions,

although for the purposes of maximizing or sampling from the posterior distribution its

computation is not required.
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Likelihood functions

For the remaining of this chapter, we will use two of the most well-studied likelihood

models: the regular Poisson SBM and the degree corrected SBM [54]. Note that these

models differ from the previously described Bernoulli SBM in that they actually allow

for multi-edges and self-loops. It can be shown [23], however, that in the sparse limit

they introduce corrections of order O(1/n) which are insignificant for large-enough sparse

networks.

For networks with degree homogeneity, we approach community-detection using the

regular Poisson SBM likelihood function

P (A|b, ω) =
∏
i<j

ω
aij
bibj

e−ωbibj

aij !

∏
i

(ωbibj/2)aij/2e−ωbibj /2

aij/2!
, (3.7)

a model that considers the number of edges between any pair of vertices distributed

as independent Poisson variables. Similarly to the Bernoulli SBM, the model has a

parameter matrix ωrs, which accounts for the expected number of links between nodes

in communities r and s.

The likelihood function in Eq. 3.7 considers each node in each community as statis-

tically identical regarding the expected number of incident edges. However, this is not

a realistic assumption for most real-world networks, which have heterogeneous degree

distributions. The degree corrected SBM takes into account this by introducing a new

vector parameter θ, which controls the expected degree of each node in the network. In

this case, the marginal likelihood function reads:

P (A|b, ω, θ) =
∏
i<j

(θiθjωbibj )
aije−θiθjωbibj

aij !

∏
i

(θ2
i ωbibj/2)aij/2e−θ

2
iωbibj /2

aij/2!
(3.8)

Choice of priors

To preserve the unbiased nature of the inference mechanism, we use maximum entropy

priors for the parameters of the two considered SBM. Starting with the partition vector

b, we consider a prior which is agnostic about the number of communities B and the size

nr of each community r. It can be shown [23] that these assumptions lead to a prior

function of the form:

P (ω|b) =
∏
r≤s

∏
r nr!

N !N

(
N − 1

B − 1

)−1

(3.9)

The prior for the inter-community connectivity matrix ω necessarily takes into account

the information considered for b, and it can be shown that its entropy-maximizing dis-
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tribution is an exponential function [23] around an average value ω̄, of the form:

P (ω|b) =
∏
r≤s

exp
(
− nrnsωrs

(1+δrs)ω̄

)
(1 + δrs)ω̄

(3.10)

Finally, we also chose for θ its entropy-maximizing prior, which also depends on b and

its hyper-parameter nr, and it can be expressed as [23]:

P (ω|b) =
∏
r

(nr − 1)! δ

(∑
i

θiδbir − 1

)
(3.11)

where the outer δ indicates a Dirac delta function, and the inner is a Kronecker delta.

Numerical implementation

Although the previous expressions for priors and likelihoods can be combined using

Bayes rule, and analytical expressions for posterior distributions can be obtained, such

expressions will be complex and in general sampling or deriving their maximum will be

an NP-hard problem. Using Monte Carlo Markov Chain (MCMC) methods, however, a

numerical algorithm can be devised to achieve this: starting from an initial partition b0,

a Metropolis acceptance-rejection rule produces changes to community assignments until

we can ensure a convergence to an equilibrium dominated by the posterior distribution

[23], [55]. These sort of algorithms, including many useful modifications to include

very general SBM inference settings, are readily implemented in the freely available

python library Graph-Tool [56]. Throughout the experiments done in the chapter, we

have used this library for every community-inference step, making use of its exhaustive

documentation when needed.

3.2 Bridgeness centrality

Many real-world networks found in nature or society have modular structures that are

hierarchical and overlapping, such that some nodes may be affiliated to several communi-

ties at the same time [24]. Given their ability to connect groups of nodes that otherwise

would interact poorly, highly overlapping nodes are typically called bridge nodes. Bridge

nodes have been studied in social network analysis since the 1970s [12], [57], [58], focus-

ing on their role as promoters of diffusion and cross-communication in social systems.

Modular social networks are also the substrate on which epidemics usually spread, and

it has been shown that targeted immunisation or specific social distancing interventions

focused on community-bridging agents is even more effective than those strategies based

solely on number of contacts (degree) [59]. Furthermore, recent examples in molecu-

lar biology research have also shown that protein-protein interaction networks generate
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overlapping community-structures closely related to essential cellular functions [60], [61],

where some critical nodes integrate different functional modules [62], [63] and can be clas-

sified as functional bridges. Bridge nodes are also found in cortical networks [64] and

word association networks [65], among other real-world examples.

In this section we review existent methods used to evaluate to which extent nodes

are bridges, i.e. to measure so-called bridgeness centrality. In addition, we propose

a generative mechanism based on link-rewiring which extends the SBM to include an

arbitrary distribution of bridgeness centrality across generated networks.

3.2.1 Measuring bridgeness

Several methods have been proposed to quantify bridgeness, which can be generally

divided in two categories. On the one hand, there are methods that do not use directly

any community-level information. For example, Hwang et al. [66] introduced a measure

of bridgeness SH which combines degree k and betweenness centrality B (see Section

1.4.3 for details on these measures), and is defined as:

SHi = Bi
k−1
i∑

j∈N(i) k
−1
j

, (3.12)

where N(i) refers to the first neighbours of node vi. The term Bi above favours nodes

with high betweenness whereas the term
k−1
i∑

j∈N(i) k
−1
j

highlights nodes with low degree

that are surrounded by high-degree nodes. Similarly, Jensen et al. [67] proposed a

bridgeness measure SJ that only differs from betweenness centrality in that it discards

the shortest path starting or ending in the first neighbourhood of each node:

SJi = Bi −
∑

j /∈N(i),k/∈N(i)

σjk(i)

σjk
, (3.13)

where σjk counts the number of shortest paths between nodes j and k and σjk(i) accounts

for those same paths only if they traverse node i. The authors concluded that SJi is only

significantly different from betweenness when bridges are low degree, and even then

the difference is generally small. On a further example, Wu et al. [68] considered a

more restricted notion of bridge, defining it as an edge whose removal increases the

number of connected components in a graph. They defined an associated bridgeness

measure on edges SWi that simply counts the number of nodes disconnected from the

largest connected component after the removal of each edge. Through this definition,

the authors of this method directly associate the capacity for damaging a network with

bridgeness centrality.

On the other hand, there are those methods that use mesoscopic information form

community detection to infer bridgeness. In this category we can find methods such
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as that introduced by Nepusz et al. [69], which is based on overlapping community

detection (see Section 1.4.5 for details). Given a network with C detected communities,

and assuming a membership vector ui = (u1
i , . . . , u

C
i ) can be inferred for each node i,

the authors defined bridgeness centrality SNei as the normalised and inverted Euclidean

distance to a reference vector (1/C, . . . , 1/C) representing equally spread membership to

all communities:

SNei = 1−

√√√√ C

C − 1

C∑
c=1

(
ucj −

1

C

)2

(3.14)

For the remaining of this chapter we will use one of the earliest bridgeness measures

described in the literature, namely the participation coefficient described by Guimera

et al. [70], which uses mesoscopic information from community detection. Although

this method is based on non-overlapping community partitions, we can quantify the

participation of node vi to each of the C communities of a partition with the probability

mass function πi = (π1
i , . . . , π

C
i ), where:

πci =

∑
j aijδc,cj∑
j aij

=
kci
ki

, (3.15)

with δc,cj = 1, 0 if vi’s first neighbour vj belong to community c or not respectively, and∑
c∈C π

c
i = 1. Note how the fraction of edges connecting a vertex to a given community

is used as a proxy for membership strength. Then for each node’s vi the participation

coefficient or, what for our purposes we call bridgeness centrality Si, is defined as:

Si = 1−
∑
c∈C

(
πci
)2

. (3.16)

This measure reaches its minimum at Si = 0 (when a node participates only in one

module) and maximum at Si = 1− 1/C (participates evenly across the C communities

of the partition), and thus accounts for extensiveness and uniformity.

Note that the partition underlying the calculations of πi is generally unknown, and

therefore this method requires a choice of community detection algorithm. Throughout

this chapter, we will use the Stochastic Block Model for inferring communities (see

Section 3.1.2). Given the probabilistic nature of this framework, instead of a single

partition we obtain an ensemble of partitions B. For each partition in the ensemble we

can obtain a single bridgeness centrality measure Si, so that we can define an ensemble-

averaged bridgeness:

〈Si〉B =
∑
B

Si
|B|

. (3.17)

3.2.2 A stochastic block model with bridgeness

The model starts from an initial graph G0 = (V,E0) consisting of a set of M isolated sub-

graphs K ∈ {K1, . . . ,KM}, such that G0 =
⋃M
i=1Ki but Ki

⋂
Kj = ∅ ∀i, j ∈ {1, . . . ,M}.
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Then we rewire the incident links of each node vi with a certain probability piR, keeping

vi at one end and randomly selecting the other from the set of nodes V . Note that in

order to induce a homogeneous distribution of degree, we restrict our analysis to the

case of having an initial set of isolated complete subgraphs (cliques). Depending on the

exact manner pR is distributed across the network, different patterns of modular inter-

action will emerge, conforming the final network G = (V,E). Nodes with low rewiring

rates keep most incident links inside their original community, but still can promote di-

rect inter-community borders. Differently, nodes with high piR will emerge as mediators

between modules. We consider two types of SBMb models.

• SBMb1: this model prescribes three different types of nodes: Bulk nodes, with

pbulk
R = 0; Border nodes, with 0 < pborder

R << 1; Bridge nodes, with pbridge
R = 1.

Note that the split between bridge and border nodes is not fundamental, although

it allows us to study the difference between moderate and high rewiring rates.

• SBMb2: in contrast, the second model merges bridge and border nodes into a

continuous category of nodes that draw their rewiring probabilities uniformly at

random from pR ∈ (0, 1]. Bulk nodes are still controlled separately by pbulk
R = 0.

Figure 3.1(a) shows a schematic representation of the rewiring process described

above. Figure 3.1(b) depicts a particular instance of the SBMb1 with N = 500 nodes,

including 25 bridge nodes with pbridge
R = 1 and 75 border nodes with pborder

R = 0.2,

homogeneously distributed across the M = 25 initial cliques. Figure 3.1(c) illustrates

how bridgeness induces clearly distinctive functional behaviour to each nodal role, as

demonstrated in sections below.

Measuring bridgeness in the SBMb

Both in the SBMb1 and SBMb2, to get accurate bridgeness measures we will need to

produce R realisations of the rewiring protocol from the initial condition of isolated

cliques to obtain an ensemble of model instances G = {G1, . . . , GR}. As explained

above, we use the Stochastic Block Model to infer a partition ensemble B(G) in every

sampled network G, and derive its corresponding partition ensemble bridgeness 〈Si〉B(G)

using Eq. (3.17). Using partition ensembles for every realisation, we can finally compute

the SBMb-ensemble bridgeness 〈Si〉 for every node vi:

〈Si〉 =
∑
G

〈Si〉B(G)

R
. (3.18)

Shuffling probabilities and bridgeness

The SBMb provides planted partitions with inter-modular connections controlled by the

shuffling probability pR. A first test to the precission of our bridgeness methodology
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Figure 3.1: (a) Schematic link-rewiring mechanism of the SBMb. (b) Particular real-

isation of the SBMb1 with N = 500 nodes, including 25 bridge nodes with pbridge
R = 1

and 75 border nodes with pborder
R = 0.2, homogeneously distributed across M = 25 ini-

tial cliques. (c) Characteristic functional behaviour of each structural role: left column

represents asynchrony, showing the phase evolution θ(t) of a given node (black line) and

its neighbourhood (coloured lines) under Kuramoto dynamics; right column presents flip

rate, using a dichotomous variable 1− δσt,σt−1
showing whether the spin has flipped its

internal state in the current time step under Potts dynamics.
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Figure 3.2: Relation between bridgeness 〈S〉 (Eq. 3.18) and shuffling probability pR

in the SBMb2 for R = 100 rewiring realisations, with N=500 including 100 uniformly

rewired nodes with pR ∈ U(0, 1] and 400 bulk nodes with pR = 0.

consists in computing the relation between 〈S〉 and pR. To do so, we will use several

realizations of the SBMb2 with N=500 and 400 bulk nodes. In fact, as shown in Figure

3.2, there exists a continuous function relating the shuffling probabilities assigned to each

node with their bridgeness measure. Note we can see that the set of bulk nodes with

pbulk
R = 0 does not always have a bridgeness value of 0: this is natural given the nature

of the rewiring process, considering that some nodes from outside their clique have a

chance to rewire their links and connect with bulk nodes.

3.3 Dynamical centrality

3.3.1 Dynamical processes on modular networks

Modularity [22] —like scale-free degree distributions [71] and small-world properties

[72]— deeply influences any dynamical process occurring on a network. For example,

research has shown that modular structure hinders the spread of epidemics regardless

of degree heterogeneity, given that the presence of communities favours the natural con-

finement of outbreaks [73]. Cascading processes also show distinctive patterns of active

nodes which are directly related to the modular structure of the underlying network [74].

Similar results are observed in diffusion processes [75], consensus of spin systems [76],

[77] and synchronization of coupled oscillators [78], [79]. However, it remains unclear

how different patterns of inter-modular connection affect the outcome of such dynamical
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processes: does a system behave differently when modules are directly connected than

when bridge-nodes connect them indirectly?

3.3.2 Measuring dynamical centrality

Kuramoto model

Under Kuramoto dynamics each node vi in the network represents an oscillator with an

internal angular phase θi and natural frequency ωi. Non-linear couplings are reflected

on the instantaneous frequency θ̇i of each oscillator:

θ̇i = ωi +K

N∑
j=1

aij sin(θi − θj) . (3.19)

The transition towards phase synchronization (where all oscillators pulse with the same

phase) is mediated by the global coupling parameter K and has been studied for different

topologies [13]. These include modular networks [79] where for sufficiently low coupling

communities lock in locally-synchronised phases [80]. Also, previous studies suggest that

overlapping interfaces between communities behave differently than the rest of the system

when such locally clustered steady-states are reached, exhibiting anomalous distributions

of instantaneous frequency θ̇i [81]. Following [79] we measure local synchronisation using:

ρi =
1

ki

N∑
j=1

aij cos(θi − θj) . (3.20)

In this case, we will actually use (1 − ρi), i.e. asynchrony. Averaging over many reali-

sations with different initial conditions for ωi and θi(t = 0), both drawn from uniform

probability distributions U(0, 2π), we finally obtain an asynchrony centrality measure〈
1− ρi

〉
(3.21)

for each node in a given network of oscillators.

Experimentally, in order to simulate the trajectory of a system of oscillators we solve

the system of equations for θi using a 4th-order Runge-Kutta method for many different

initial distributions of internal frequency ωi. Figure 3.3(a) exemplifies both local and

global evolution of asynchrony for the SBMb1 of a single simulation. Low-bridgeness

(bulk) nodes quickly settle down to local synchrony, whilst higher-bridgeness (bridge)

nodes reach steadiness later, remaining at higher asynchrony than the network average

at all times.

Note that by observing the trajectory of the network average asynchrony we can de-

tect when the system has reached a metastable state of local cluster synchronisation. This

is important because our measures of dynamical centrality (1−ρi) are only significant at
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this state, which means we discard the transient towards it. A simple way to asses if the

system has reached the steady state consists of keeping track of the network-averaged

nodal asynchrony. As shown in Figure 3.3(b), we can heuristically find steady-states by

setting a condition such as: ∣∣∣∣∣ ddt
(

N∑
i=1

1− ρi
N

)∣∣∣∣∣ < εK , (3.22)

where εK is an arbitrary convergence threshold. It is expectable that the system under-

goes several metastable states before settling on the most robust steady state. For this

reason, we enforce that the condition in Eq. 3.22 holds for at least τK simulation steps

in order to declare a steady state.

It is worth noting that, for the normal Kuramoto model described in Eq. 3.19, the

network is expected to fall into a (coherent or incoherent) steady state where a single

global order parameter can be measured [82], thus ensuring the conditions in Eq. 3.22 can

be safely obtained. However, modified versions of the Kuramoto model — including but

not limited to those with non-local coupling, second-order dissipation terms or degree-

frequency correlations — can exhibit periodic trajectories or limit cycles under some

conditions [83]. In these type of situations the condition in Eq. 3.22 could become

unfeasible, potentially requiring different criteria to measure asynchrony centrality.

Potts model

In the Q-state Potts model each node vi contains a spin σi with an internal state q ∈
{1, . . . , Q}, and network neighbours interact according to the Hamiltonian:

Hσ = −
∑
i,j

Ji,jδσi,σj , (3.23)

where δσi,σj = 0, 1 if σi 6= σj or σi = σj respectively, and we consider Jij = aij where A

is the adjacency matrix of the network.

At equilibrium, we can locally describe the spin probabilities for each node as [84]:

pqi ≡ P
(
σi = q

)
=

eβh
q
i

Q∑
q′=1

eβh
q′
i

, (3.24)

where

hqi =
∑
j

aijδq,σj (3.25)

quantifies the q-state field at node vi, and β is the inverse temperature. When running

on sufficiently modular networks and low temperature, the system reaches ‘frustrated’
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states, generating steady spin-structures closely related to underlying topological com-

munities [76]. In those situations, however, some nodes cannot reach steadiness and

change state ad infinitum: they are known as ‘blinkers’ —and have only been previously

described for lattice topologies, where they appear to be randomly located [85]. The rate

at which node vi changes its internal state —which we simply call ‘flip rate’— is:

Wi ≡ P
(
σti 6= σt−1

i

)
=

Q∑
q=1

pqi
(
1− pqi

)
= 1−

Q∑
q=1

(
pqi
)2

. (3.26)

Using Gibbs sampling from an ensemble of uniformly random initial conditions σi(t = 0)

we obtain a measure
〈
Wi

〉
, which we denominate flip-rate centrality, for each node in a

given spin network.

Similarly to Kuramoto dynamics, flip-rate centrality measures are only significant

at the aforementioned steady states. Figure 3.3(c) illustrates the evolution of a spin

system realisation of the SBMb1. We can see how low-bridgeness nodes quickly settle

into the spin state of their local community, conforming frustrated states, whereas high-

bridgeness nodes keep on blinking, i.e. jumping between surrounding spin states. As

shown in Figure 3.3(d), a simple criterion for detecting the steady state in this case is:∣∣∣∣ ddt(MA
(
T,Nσ

))∣∣∣∣ < εP . (3.27)

where Nσ refers to the total number of different spin states present in the system at a

given time, and MA(T,Nσ) refers to a moving average filter of period T applied to the

time series of Nσ. The ordering dynamics of the Potts model will decrease the number

of existent spin states until the system reaches a steady state, moment at which Nσ will

remain stable. Given that the time series of Nσ is significantly noisy, applying a moving

average filter is useful in order to better track convergence.

As in the Kuramoto case above, the Potts model can also be modified to exhibit a

more rich phase space with periodic trajectories. This may be the case when introduc-

ing particular configurations of anisotropic couplings or external driving fields [86]–[88].

Again, under such circumstances the condition in Eq. 3.27 may become unfeasible, thus

requiring the choice of an alternative criterion to sample flip-rate centrality.

Note that, in modular networks, blinkers are not located randomly but instead their

location is determined by bridgeness. In fact, when local consensus is reached, each

community c will have a characteristic spin state σc. In this case, it is reasonable to

assume that local fields are non-zero only for such characteristic states σc, with a value

determined by participation coefficients:

hσci =
∑
j

aijδσc,σj ≈ kci = πci ki . (3.28)
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Combining Eqns. 3.15 and 3.28, we can compute flip rate centrality Wi as a function of

degree and community participation:

Wi ≈ 1−
C∑
c=1

 exp{βπci ki}
C∑
c′=1

exp{βπc′i ki}


2

. (3.29)

In Figure 3.4(b,f) we test this approximation for both the SBMb1 and SBMb2, with

further detail and interpretation provided on this result in the next Section.

3.4 Interplay of bridgeness and dynamical centralities

3.4.1 Empirical analysis

Figures 3.4 (a,b) show empirical results for the SBMb1 with N = 500 nodes, including

25 bridge nodes with pbridge
R = 1 and 75 border nodes with pborder

R = 0.2, homogeneously

distributed across M = 25 initial cliques. Figures 3.4 (e,f) studies the SBMb2 with

N = 500 and 400 bulk nodes. In both cases, we simulate R = 100 realisations of the

rewiring protocol from the initial condition of isolated cliques to obtain an ensemble of

model instances to compute the SBMb-ensemble bridgeness 〈Si〉 (see Eq. 3.18). Using

adequate temperature and coupling parameters on SBMb networks, we study the Ku-

ramoto and Potts models at the metastable state where dynamical structures reminiscent

of topological communities emerge. As previously described, we obtain Monte-Carlo es-

timators of dynamical centralities 〈Wi〉 and 〈1− ρi〉 for each SBMb network realisation.

The results in Figures 3.4(a,b) reveal a clear interplay between bridgeness and both

dynamical centralities for the SBMb1. Bridge nodes, which by definition have the high-

est values of 〈S〉, also present significantly higher levels of dynamical centrality: under

Kuramoto dynamics, bridge nodes store the most unsynchronized regions across the

network; under Potts rules, they have distinctively high flip rates W , thus clearly corre-

sponding to so-called blinkers. In Figure 3.4(b), black-cross markers show that flip rate

predictions from Eq. 3.29 match correctly our numerical results.

Furthermore, Figures 3.4(e,f) show that similar results apply to the SBMb2. In

this case, the model produces a continuous spectrum of bridgeness and consequently

it induces a continuous profile of dynamical centrality, which varies depending on the

tuning parameter used. Again, black markers show the analytical predictions of Eq. 3.29

matching our numerical results for flip rates also in this heterogeneous setting.
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Figure 3.3: Simulated realisations of the Kuramoto (a,b) and the Potts (c,d) models for

an underlying SBMb1 with N = 500 nodes, including 25 bridge nodes with pbridge
R = 1

and 75 border nodes with pborder
R = 0.2, homogeneously distributed across the M = 25

initial cliques. Panel (a) shows the evolution over time of asynchrony for each node-

oscillator coloured according to their bridgeness centrality; the dashed red line corre-

sponds to the network average, with its derivative plotted in panel (b) (see convergence

condition in Eq. 3.22). Panel (c) shows the evolution of the spin state of each node with

colour according to bridgeness; the dashed red line shows the number of unique spins

present in the network, with a moving average filter of period 1500, and its derivative

over time plotted in panel (d) (see convergence condition in Eq. 3.27).
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Figure 3.4: (a) Bridgeness (Eq. 3.16) and Asynchrony (Eq. 3.21) centrality measures for

an SBMb1 ensemble of 100 realisations, parametrised as in Figure 3.3, using Kuramoto

dynamics with K/N = 0.4 averaged over 1000 simulations. (b) Same as previous,

showing Flip Rate centrality
〈
Wi

〉
using β = 1 averaged over 1000 simulations. Black

markers show predicted flip rates (Eq. 3.29). (c) Laplacian eigenspectrum v for the same

SBMb1 ensemble: rows show the component i of each eigenvector vα, sorted by nodal

role; columns show eigenvectors sorted by corresponding eigenvalue index α. (d) Same

as previous, but showing the average eigenvector component value 〈wαi 〉 in each nodal

category. Inset: sorted eigenvalues λα. (e) Same as (a) using an SBMb2 parametrised as

in Figure 3.2 using different K/N values. (f) Same as (b) using an SBMb2 parametrised

as in Figure 3.2 using different β values.
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3.4.2 Effect of tuning parameters

Note that dynamical centrality measures arise from ordering dynamics which are sensitive

to their corresponding tuning parameter, namely the inverse temperature β for flip-rate

〈Wi〉 and the coupling strength K for asynchrony 〈1−ρi〉. Tuning parameters determine

the trade-off between random fluctuations of internal states and the influence of local

surrounding states. The effect of K on the evolution of oscillators is explicit from Eq.

3.19, whereas β has an explicit effect on the spin-transition probabilities as shown in Eq.

3.24.

Figure 3.5 exemplifies through the SBMb1 how tuning parameters have an important

effect on the interplay between dynamic centralities and bridgeness. The figure shows

node clustering in the horizontal axis, according to their bridgeness category. Depending

on the value of tuning parameters, nodes also cluster on the vertical axis, indicating that

they can be distinguished by measure of their dynamical centrality.

Lower value (e.g. β = 0 and K = 0) induce dynamics dominated by noise, which

prevents the system from reaching the partially ordered states where patterns relating

bridgeness and dynamic centrality emerge. For larger values (e.g. β = 10 and K = 10),

ordered states dominate the network, although some bridgeness-related patterns persist

on dynamical centrality: for the Potts model, bridge nodes retain their blinker behaviour,

although border and core nodes are indistinguishable in terms of dynamic centrality;

for the Kuramoto model, dynamic centrality still differentiates bridge, border and core

nodes at the local level, although the scale of asynchrony is so low that the network

would appear as generally synchronised from a macroscopic perspective.

Figures 3.4(e,f) show a similar effect for the SBMb2. We can see that asynchrony

centrality retains the capacity to distinguish nodes according to their bridgeness as the

value of the tuning parameter increases. In contrast, low and medium bridgeness node

become less distinguishable as we increase the tuning parameter for flip-rate centrality.

3.4.3 Laplacian localisation of dyamical centralities

Graph Laplacian matrices have been widely used to describe the relation between struc-

ture and dynamical behaviour in complex networks regarding diffusive processes for

random walks, coupled oscillators or epidemic spreading [13]. A common example of

Laplacian matrix is the combinatorial Laplacian, which for unweighted networks reads:

Lij = δijki − aij . (3.30)

In most cases, these matrices are studied through their spectrum of eigenvectors wα and

corresponding eigenvalues λα, which relate as follows:

N∑
j=1

Lijw
α
j = λαw

α
i . (3.31)
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Figure 3.5: Each point represents nodal averages over an SBMb1 ensemble of 100

realisations, parametrised as in Figure 3.3. Different clusters in the vertical axis indicate

groups of nodes that can be distinguished by dynamical centrality. Right column:

Bridgeness (Eq. 3.16) and Asynchrony (Eq. 3.21) centrality measures for increasing

values of K/N in Kuramoto dynamics averaged over 1000 simulations. Left column:

Same as right column, but showing Flip Rate centrality 〈Wi〉 using increasing values of

β each averaged over 1000 simulations.
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Global dynamical properties, such as the stability of the synchronised state for several

network topologies, are usually studied through the Master Stability Function formalism

[51], [89]–[91]. This typically involves finding expressions for the extreme eigenvalues of

the Laplacian, such as the eigenratio:

Rλ =
λN
λ1

, (3.32)

where λ1 and λN are the minimal and the maximal non-zero eigenvalues.

A different research path is that of Laplacian localisation. It builds on growing evi-

dence that, for many complex networks, there exists a relation between the components

of each eigenvector and the local topological properties of nodes associated with such

components. Given that eigenvectors with similar eigenvalues tend to represent differ-

entiated dynamical modes of the process occurring on a network, Laplacian-eigenvector

localisation is a great tool to diagnose which modes are dominated by each type of node.

For example, in degree-heterogeneous networks, higher degree hub-nodes are known dom-

inate the eigenvectors with largest eigenvalues, exhibiting eigenvector localisation and

degree-eigenvalue correspondence, which helps identifying the dynamical role of each de-

gree class [79], [92]. Also for modular networks, it is well known that nodes from the

same community dominate the same eigenvectors and have closely similar eigenvalues,

providing evidence that each module has its own dynamical modes which can be used to

detect communities [93]–[95].

In our case, here we study the Laplacian spectrum of the SBMb1, showing how local-

isation phenomena is also applicable to bridgeness centrality. Panels in Figure 3.4(c,d)

show numerical results for the combinatorial Laplacian (Eq. 3.30). The heatmap in Fig-

ure 3.4(c) represents the eigenvector spectrum wα, where α has been sorted according

to eigenvalues (see inset of Figure 3.4(d)) from smallest (α = 1) to largest (α = 499),

excluding the first trivial null eigenvalue:

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λ499 . (3.33)

Eigenvector components have also been sorted according to the bridgeness category (of

each node (bridge, border and bulk), so that localisation can be more easily visualised.

The heatmap shows clear bridgeness-localisation throughout the spectrum, i.e. nodes

with similar bridgeness centrality exhibit similar component values in each eigenvector.

Localisation is also evident in Figure 3.4(d), where we show the sample mean 〈wαi 〉 and

confidence interval 〈wαi 〉 ± 1.96σwαi at each eigenvector wαi for bridge, border and bulk

nodes respectively.

As mentioned above, the Laplacian eigenvectors form a basis where to project func-

tional observables (such as phase and frequency in synchronisation) onto a coordinate

system of normal modes. In this sense, Figure 3.4(d) reveals two groups of such modes

in the spectrum of the SBMb1. The first group of modes, with the smallest eigenvalues
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(see inset), represents internal community dynamics (there are 25 modes, one for each

community) and thus are dominated by bulk nodes. The second group of modes, of

larger eigenvalues, concerns the global ordering of the network: in fact, after the eigen-

gap we find the modes with strongest localisation, which are dominated by bridge nodes,

emphasising their role as promoters of global synchronisation and consensus.

3.5 Detection of critical nodes

Given the interplay between dynamical and topological centralities we have described

above, it is reasonable to assume this relation can be used to uncover critical nodes

–those which compromise the robustness of their network when attacked or removed–

even when physical connections cannot be completely observed. Logically, removing the

regions of high bridgeness will quickly lead to the collapse of a modular network, and our

framework shows how to target those regions by looking at local functional behaviours

such as asynchrony (3.21) and flip rate 〈Wi〉.
In order to test this idea we use a site percolation process where an increasing fraction

of nodes (along with their incident links) is sequentially removed using attacks targeted at

dynamical centrality [96]–[98]. We measure network robustness to such attacks using two

well-known indicators: size of the largest connected component; and network efficiency,

which quantify how efficiently information flows across a network [99], and is defined as:

Eff(G) =
1

N(N − 1)

∑
i,j∈G

d−1
ij , (3.34)

where dij is the shortest-path distance between nodes vi and vj .

We study such functionally-targetted percolation process in three types of networks

with increasing complexity, comparing this to targetting degree, betweenness and bridge-

ness. As a base model, we use the SBMb1 parametrised as in the previous sections, that

is with N = 500 nodes, including 25 bridge nodes with pbridge
R = 1 and 75 border nodes

with pborder
R = 0.2, homogeneously distributed across M = 25 initial cliques. Its homo-

geneous and correlation-free degree structure, coupled with its uniform community-size

distribution, controls the interplay between bridgeness, asynchrony and flip rate. Sec-

ondly, we consider the Random Geometric Graph (RGG) [100] with N = 500 nodes in

a unit square with a connection radius R = 0.07. These graphs lie just above the perco-

lation threshold and exhibit a distribution of both community sizes and degree broader

than the SBMb, thus providing a more general framework where to test our method.

Finally, we use the empirical structure of the US Western States Power Grid (WSPG)

[72], a large spatial network comprising 4941 nodes representing electricity generation

and transformation stations and 6594 links depicting distribution lines amongst them.

As many real-world networks, it is more heterogeneous and presents richer correlation
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structures than the models considered above. This network has been extensively studied

from many perspectives, including its community and bridgeness structure [101], and

thus it provides a realistic test for our percolation method.

Figure 3.6 summarises the results of the methodology described above, where nodes

are sequentially removed in order of centrality magnitude. Note that we also add a

control strategy where we removed nodes randomly. Overall, attacks based on dynamical

targetting are effective when compared to attacks based on topology in the three types of

networks considered. In addition, we can see how targetting asynchrony is generally more

efficient than targetting flip rate, and as in [101] bridgeness more than betweenness. In

particular, the SBMb1 is most and equally vulnerable to dynamical and bridgeness based

attacks, whereas attacks based on betweenness and especially degree are less effective.

The RGG also dismantles fastest when targetting asynchrony at early stages, whereas flip

rate performs slightly worst than bridgeness but better than betweenness. Interestingly,

the WSPG is most vulnerable to attacks based on bridgeness. For the WSPG network,

however, all strategies have a similar performance. This indicates that the presence

of centrality correlations makes hubs also important network bridges, and consequently

are far more critical for the robustness of the system but can be similarly detected by

most centrality measures. Finally we can see that, on the whole, due to the long-range

connections induced by rewiring the SBMb shows higher robustness (requires more node

removals) and a notably sharper transition to a dismantled state than the RGG and

the WSPG. This can be seen in the graph layouts in the lower section of Figure 3.6.

The layouts represent each of the three networks considered when the size of the largest

component has decreased to 40% of its original size due to asynchrony-based percolation

attacks. We can see that reaching this point has required the removal of 20% of nodes

in the SBMb1, whereas only 10% and 5% node removals are required for the RGG and

WSPG respectively.

Figure 3.5 exemplifies how the efficiency of asynchrony and flip-rate based attacks

in dismantling a network will depend on the tuning parameters from the underlying

dynamical processes. We use the same SBMb1 as before, with N = 500 nodes, including

25 bridge nodes with pbridge
R = 1 and 75 border nodes with pborder

R = 0.2, homogeneously

distributed across M = 25 initial cliques. In fact, similarly to what we have shown

in Section 3.4.2, low tuning parameter values (e.g. β = 0 and K = 0) promote very

noisy processes where nodes become functionally undistinguishable, therefore yielding

ineffective dismantling performance. As tuning parameters are increased (e.g. β = 1 and

K = 1), the emergence of partially ordered states allows to distinguish nodes according

to their bridgeness category: we can see how both network efficiency and size of largest

component decrease sharply after having removed 100 nodes targetting their functional

behaviour, mainly because they correspond to all bridge and border nodes which actually

hold the network together. For higher tuning parameters (e.g. β = 10 and K = 10) the
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Flip RateBridgeness
Asynchrony Betweenness

Degree
Random

Figure 3.6: Reduction of Network Efficiency (left) and Size of the Largest Compo-

nent (right) for sequential node removals, in order of centrality magnitude, targetting

both topological and dynamical centralities. We use 100 realisations of the SBMb1

parametrised as in Figure 3.3 (top), 100 realisations of a Random Geometric Graph with

connection radius R = 0.07 (centre) and the Western United States Power Grid (bot-

tom). Graph layouts at the bottom show the state of each network when the size of

the largest component has reached 40% of original size, with each connected component

coloured differently. The underlying text shows the amount of node removals needed to

reach that state, by targetting asynchrony.
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Figure 3.7: Reduction of Network Efficiency (left) and Size of the Largest Component

(right) for sequential node removals targetting flip rate (top) and asynchrony (bottom)

centralities, using 100 realisations of the SBMb1 parametrised as in Figure 3.3. Different

lines represent different values of the corresponding tuning parameter.

results are again different for both processes: flip-rate becomes ineffective in dismantling

because border and core nodes become indistinguishable (see Figure 3.5); on the contrary,

asynchrony is still useful to distinguish each category and thus is still an effective target

for network attacks.
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3.6 Discussion

Throughout this chapter we have reviewed some important topological features of mod-

ular complex networks, and have seek to uncover several aspects of their interplay with

dynamical system models. After a revision of the generative Stochastic Block Model

(SBM) and its applications to community detection, we have presented different ways of

measuring and important mesoscopic property of modular networks, namely bridgeness

centrality. Bridgeness measures to which extent a given node serves as an intermediary

between different communities. We have proposed a simple generative mechanism based

on link rewiring, the Stochastic Block Model with bridgeness (SBMb), that can produce

networks with arbitrary distributions of bridgeness across its nodes.

Given the important effect that modular structures have on all macroscopic aspects

of dynamical processes on networks, it is reasonable to expect that bridgeness may in-

duce changes in the local dynamical behaviour of nodes. That is, since communities

tend to produce differentiated internal dynamics, nodes connecting several of such com-

munities should be expected to produce distinguishable functional patterns. Using the

SBMb in conjunction with two paradigmatic dynamical system models, that of Potts

and that of Kuramoto, we have positively tested this hypothesis. Using information

from local observables, we have proposed two dynamical centrality measures, flip-rate

and asynchrony. For each spin or oscillator, these measures asses the level of internal

state disorder relative to surrounding partially-ordered states. We have shown how that,

when the tuning parameters and the modular structure are strong enough to produce

such partially-ordered metastable states, bridgeness centrality is highly correlated with

dynamical centrality. We have found further evidence of such interplay between topology

and dynamics by uncovering Laplacian eigenvector localisation phenomena in the SBMb.

In this sense, high-bridgeness nodes contribute to well-differentiated eigenvector modes

that influence the ordering dynamics at different network and time scales., given the per-

vasive character of Laplacian matrices this interplay could be extended to other physical

processes, such as spreading [102] or voter systems [32], and more complex topologies

such as multilayer networks [103].

Given that high-bridgeness nodes will tend to connect clusters of nodes which are

otherwise sparsely connected, exploiting the interplay with bridgeness centrality is par-

ticularly important in the context of network robustness to targetted attacks. We show

how node-removal strategies targetting flip-rate and asynchrony perform significantly

well in comparison with topological centralities such as degree, betweenness and brid-

geness. We have positively tested this result in three types of networks: the SBMb,

a synthetic model with planted partitions and controllable bridgeness distribution; the

Random Geometric Graph, which has heterogeneous community sizes; and the empirical

Western US Power Grid, a spatial transportation network with more realistic features.
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To what extent can this framework be applied to data gathered from empirical pro-

cesses? We conjecture that the dynamical centrality measures we have presented here

could indeed be extended to realistic situations. For instance, the dissemination of

information in social networks has been previously described under the spin-ordering

paradigm using the voter and Axelrod models, amongst other processes [7]. It is reason-

able to assume that in the context of Online Social Networks (e.g. Twitter or Reddit),

the volatility of user-opinion as extracted from posts could provide a measure similar to

flip-rate. Under the framework presented here, such measure could be used in the detec-

tion of central actors bridging different affinity-clusters [104]. Another example would

be neurobiological networks inferred from fMRI or EEG signals, which are modular and

spatially embedded, showing evidence of important brain regions bridging functionally-

specialized areas [105]: given that Kuramoto models have been previously applied to

neuronal networks [106], [107], our framework could also help in the detection of such

bridging regions targetting locally asynchronous patterns. Even in protein-protein in-

teraction networks, organised modularity is manifested by date-hub proteins capable of

interacting with several functional modules: in fact, date-hubs can be detected from

their dynamical behaviour through genetic interaction profiles [61], providing further

empirical insights for the framework presented here.



Chapter 4

Network uncertainty

propagation

The study of critical phenomena has been, and still is, a fruitful area of research in

network science [52]. Critical phenomena in networks include a wide set of aspects,

from structural changes in networks, or percolation phenomena [108], to epidemic [73] or

synchronization [51] thresholds and many other phase transitions in dynamical processes

defined on networks [52], [109]. The estimation of the critical threshold is of upmost

importance to predict the onset of the phase transition, and hence a major concern in

several applications, such as the containment of an infectious disease [97] or the control

of synchronization in the power grid [110], [111]. However, an accurate estimation of the

threshold is often elusive and costly because it depends on the particular details of the

whole network structure, usually through its eigenvalues.

As network science becomes more and more extended, its potential applications grow

fuelled by the necessity of analyzing data produced in diverse fields of research, such as

sociology, biology, experimental physics, etc. However, the data collected in any of the

former fields is not free from experimental error, induced for example by sampling biases,

device accuracy, or mistakes in data entry. Nevertheless, the literature on network science

usually dismisses these error sources, and produces results that are only valid if data is

error free. Some authors have concentrated their attention on inference of missing data

in networks [112]–[115]. However, no similar attention has been paid to the propagation

of uncertainty from the structure to the properties of dynamical processes running on it.

The lack of works devoted to the analysis of error propagation in networks is prob-

ably due to the fact that many studies consider unweighted networks, where a link is a

binary variable denoting its existence or not. However, the vast majority of networks are

weighted, i.e. the existence or not is valued by its intensity. The accurate determination

51
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of the weight is unlikely, and therefore, the error in their numerical values will influence

any particular measurement of the network properties.

Here, we present a study of error propagation in networks where links are subject to

uncertainty in their weights, and wonder about the effect that this uncertainty will have

in the determination of the critical threshold. In particular, we focus on those dynamical

processes in which the critical point is known to be inversely proportional to the largest

eigenvalue of the connectivity matrix. In section II, we present the particularities of our

analysis and derive our main results, in section III we study the range of uncertainty in

the critical point for different network structures, and finally, in section IV we discuss

the implications and limitations of the current study, paving the way for new analysis to

come.

4.1 Uncertainty in the critical threshold

We consider a dynamical process running on top of a complex network with N units. We

restrict the study to the class of dynamical models in which a phase transition occurs at

a critical value of the coupling intensity (the threshold), and where this value is given in

terms of the largest eigenvalue λmax of the network connectivity matrix A whose values

represent the weighted structure of the network [116]

Kc =
K0

λmax(A)
, (4.1)

where K0 is a constant that depends on the specific details of the particular process.

Without loss of generality, we fix K0 = 1. Eq.4.1 estimates the threshold for a wide

variety of dynamical processes, including the synchronization of heterogeneous phase-

oscillators [51], the onset of endemicity of a disease in epidemic models [73], [117], and

the phase transition in the Ising model in networks, to name a few [52], [108], [109].

The aim of this work is to understand how small noise in the entries of A affects the

statistical properties of the macroscopic threshold given by Eq.4.1, without looking into

the details of a specific dynamical model. For the sake of simplicity, we assume that the

noise in the entries is gaussian and uncorrelated (white gaussian noise) where each weight

is drawn from a normal distribution N(µ, σ2), with µ > 0 the average weight and σ2 its

variance. Nevertheless, the proposed analysis can be extended to other distributions of

noise, either theoretical or obtained through empirical measurements.

To study the exact statistics of Kc in Eq.4.1 induced by the presence of noise, one

could use in principle the available tools from Random Matrix Theory [118], [119] and

Spectral Graph Theory [120], [121]. However, it becomes very challenging to study

noisy sparse networks with arbitrary degree distributions in these frameworks. Here,

we use an alternative approach, based on applying error propagation to the mean-field
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Figure 4.1: Empirical distribution of the critical point Kc governed by Eq.4.1 (boxes)

and MFA (solid lines) in an Erdős-Rényi network with N = 200, p = 0.3, K0 = 1,

µ = 1 for two different noise intensities (σ = 0.2 grey and σ = 0.5 red). The distribution

corresponds to 104 independent realizations of the noise.

approximation of Eq.4.1. This approximation obviously restricts the validity range of

the analysis, however, the results are found to be very accurate in some scenarios and,

more importantly, they provide clear analytical insight on how the uncertainty in the

structure affects the determination of the critical threshold.

Our derivation starts assuming a mean–field approach. For simplicity, we restrict to

the case of undirected (symmetric) networks. Under the aforementioned conditions, the

critical threshold in Eq.4.1 can be approximated [122]–[124] by

Kc =
〈s〉
〈s2〉

, (4.2)

where 〈sn〉 is the n-moment of the strength distribution (the strength of a node is the

sum of in-coming/out-going weights). Eq.4.2 can also be obtained directly from the

equations of motion of the dynamical process (for instance in the Kuramoto Model [123])

by assuming that the local field in a node is proportional to the global field weighted

by the in-strength of the node [51]. Below, we will refer to Eq.4.2 as the Mean-Field

approximation (MFA).

First we test the accuracy of the critical threshold in the MFA, Eq.4.2, compared to

the exact result, Eq.4.1, in Erdős-Rényi networks with uncertainty in the weights. In

Figure 4.1 we plot the threshold distribution for two different values of the intensity of

the uncertainty σ. We observe that the MFA accurately determines the distribution,

and that the values of the expected critical threshold Kc and its variance are clearly

dependent on σ. In general, we expect our results to be accurate in the cases in which

the approximation of Eq.4.2 remains valid.

Using Eq.4.2, we can express Kc in terms of the moments of the degree distribution
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and noise parameters. The detailed calculations are shown in Section 4.5.1. We obtain

Kc =

∑N
i=1 µiki∑N

i=1 µ
2
i (k

2
i − ki) +

∑N
i=1〈w2〉iki

, (4.3)

where µi is the average weight of node vi, and 〈w2〉i the average second moment of the

weight distribution for node i. In random homogeneous networks, for sufficiently large

degree (ki � 1), we can approximate µi = µ, and 〈w2〉i = σ2 + µ2 in Eq.4.3. This

approximation allows to write down a simple relation between the mean of the critical

threshold and the uncertainty of the network as

〈Kc〉 ≈
µ〈k〉

µ2〈k2〉+ σ2〈k〉
. (4.4)

Interestingly, the näıve approximation in Eq.4.4 already informs that the critical thresh-

old decreases as the noise intensity σ increases. This can be understood because the

noise increases the structural heterogeneity of the network, and heterogeneity tends to

make the epidemic threshold vanish. Note that for µ = 1 and σ = 0, we recover the usual

threshold for unweighted, undirected networks [124] and for σ � 1, 〈Kc〉 ≈ 〈k〉/µ〈k2〉.

4.2 Error propagation on the critical threshold

Now, we estimate confidence intervals for the uncertainty of Kc, that is the standard

deviation named here δKc (or the variance (δKc)
2). For this purpose, we use the method

of error propagation[125], [126], that quantifies how the error in the microscopic variables

of a system (the 2N random variables in our nodal description) propagate through a

macroscopic quantity (the critical threshold Kc). In a first-order expansion, we have

(δKc)
2 ≈ JT0 VJ0, (4.5)

with J ∈ R2N the Jacobian of the system evaluated at the mean values of the random

variables ~µ and ~〈w2〉 and V ∈ R2N×2N the covariance matrix, which depends on the full

connectivity matrix A. The details of these calculations (for white gaussian noise and

fixing K0 = 1) are shown in Section 4.5.2. Finally, we obtain the following closed form

expression

(δKc)
2 ≈ a[µ4(2〈k〉〈k3〉 (4.6)

− 〈k2〉2)− 2µ2σ2(〈k〉〈k2〉 − 〈k〉2) + σ4〈k〉2]

with a = 2σ2〈k〉/[N(µ2〈k2〉+ σ2〈k〉)4].

Eq.4.6 shows that, beyond the non-linear dependence on the network and noise pa-

rameters, the uncertainty in the threshold is a finite-size effect, and decays with N−1/2.
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Figure 4.2: Numerics (Eq.4.1) vs theory (Eqs.(4,6)): mean and standard deviation of

the threshold Kc depending on the noise intensity σ for an Erdős-Rényi network with

N = 200, p = 0.3, µ = 1, and 5000 independent realizations for each value of the noise

intensity σ.

To compare networks of different sizes, we will scale the threshold by the size N in the

current analysis.

In Figure 4.2, we show the accuracy of the theoretical expressions for an Erdős-

Rényi network, confirming the validity of the approach, at least for small noise and

homogeneous structures. Note that the linear approximation used in Eq.4.5 is valid as

far as [126]

JT0 VJ0 �
1

2
Tr[(H0V)2] (4.7)

where H0 ∈ R2N×2N is the Hessian matrix of the system evaluated at the mean values of

the random variables. The detailed calculations of H0 are shown in 4.5.2. Both terms in

Eq.4.7 depend implicitly on the value of the noise, so their scaling with σ will determine

the range of validity of Eq.4.6. We numerically examine the goodness of both the linear,

Eq.4.5 and the second-order approximation for the uncertainty δKc

(δKc)
2 ≈ JT0 VJ0 +

1

2
Tr[(H0V)2] (4.8)

against the numerical results obtained for the Erdős-Rényi network analyzed so far, and

also for a real world network with large size and heterogeneous connectivity patterns (the

worldwide air transportation network). The air transportation network was constructed

using data from the website openflights.org, which has information about the traffic

between airports updated to 2012, data available from [97]. This network accounts for

the largest connected component, with 3154 nodes and 18,592 edges.

Figure 4.3 shows that the first and second order solutions are practically indistin-

guishable for small noise, therefore validating the result in Eq.4.6 in this regime. The
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Figure 4.3: Numerics vs theory: standard deviation of the critical threshold δKc de-

pending on the noise intensity σ with µ = 1 for a (left) fixed Erdős-Rényi network

(N = 200, 〈k〉 = 60, p = 0.3) and (right) the empirical network of airports (N = 3154,

〈k〉 ≈ 6) for 2000 independent realizations for each value of the noise. Results have been

rescaled by N .

deviation of the theory from the actual values in the empirical network (right plot in

Figure 4.3) points towards another direction: the goodness of the MFA itself. Basically,

the theory is expected to be accurate for networks that deviate from a random structure

as long as the MFA in Eq.4.2 holds. We refer the reader to the literature [122], [124],

[127] for details on the validity of the MFA. Moreover, it is important to remark that

even if the MFA holds, the method of error propagation (at any order) can only be

applied in our problem when the mean of the signal µ is sufficiently large compared to

the noise.

4.3 The role of the topology in error propagation

Network structure plays an important role in the uncertainty range of Kc. After the find-

ing of Eq.4.6, some interesting questions arise: does the heterogeneity induce an increase

of the critical fluctuations with respect to a homogeneous network? Is the behavior of

(δKc) monotonous with the moments of the degree distribution of the network? If not,

is there any particular structure that maximizes the uncertainty of the critical point

induced by noise in the weights?

To answer these questions, we consider the regime where networks are sufficiently

large and σ � µ. Then, we can approximate Eq.4.6 by its leading term, neglecting

terms in σ larger than O(σ2) as:

(δKc)
2 ≈ 2σ2 2〈k〉〈k3〉 − 〈k2〉2

N〈k〉3
〈Kc〉4. (4.9)
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Note that δKc increases linearly with the noise intensity and scales with 〈Kc〉2. We know

that 〈Kc〉2 is reduced by the heterogeneity of the degree distribution, and therefore one

would expect δKc to follow the same trend. However, the nonlinear dependence on the

moments of the degree distribution could change this intuition.

To understand this effect, we choose first as a reference the most homogeneous net-

work we can consider, a regular network, i.e. ki = k, ∀i. We compute Kc and δKc for a

regular network, obtaining

〈Kc〉reg ≈
1

µk
,

(δKc)
2
reg ≈

2σ2

Nµ4k3
. (4.10)

The role of the heterogeneity will be detected by comparing (δKc)
2 with (δKc)

2
reg for

networks with the same size and average degree, and for the same noise parameters µ

and σ. After some algebra, the condition for a given network to display higher uncertainty

in Kc than a random regular network reads

〈k3〉 > 〈k
2〉2

2〈k〉

(
1 +
〈k2〉2

〈k〉4

)
. (4.11)

Now, we can use Eq.4.11 to evaluate the role of heterogeneity. Let us consider a

power-law distribution p(k) ≈ k−γ , where the exponent γ controls the tail of the distri-

bution. For the value γ = 3, one recovers the well-know scale-free network that emerges

from preferential attachment [71]. For lower (higher) values of γ, the network becomes

more (less) heterogeneous. For a finite power-law network, the moments of the degree

distribution are given by

〈kn〉 =
(−γ + 1)(kn−γ+1

max − kn−γ+1
min )

(n− γ + 1)(kγ+1
max − k

γ+1
min )

. (4.12)

By fixing the value of kmin, we can explore the space of networks with a given (γ, kmax),

thus revealing the effect of heterogeneity and size. To simplify the visualization, we

define

q = log

 2〈k〉〈k3〉

〈k2〉2
(

1 + 〈k2〉2
〈k〉4

)
 . (4.13)

This way, when q = 0, the uncertainty of the critical threshold of a network is the same

than that of the regular one, and for positive (negative) values of q, we are measuring an

increase (decrease) of δK with respect to the homogeneous network. In Figure 4.4 we

show the theoretical results obtained for the q value of networks in the space (γ, kmax).

We note that the three horizontal lines correspond to the cases where the network has an

integer exponent of 2, 3 or 4. In these cases, the first, second or third moments diverge. It
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Figure 4.4: Colormap showing the theoretical dependence of q on the exponent γ and

the maximum degree of the network kmax. The value of kmin is fixed to kmin = 5 and the

resolution of the map is 100x100.

is also important to remark that below γ = 2, it is not feasible to generate networks with

a pure power-law distribution [108]. Besides these considerations, we observe an inter-

esting result. As expected, for large values of the exponent γ, the networks show similar

uncertainty to that of a regular network. However, for γ < 4, uncertainty significantly

increases, reaching a maximum as the exponent approaches γ = 3, before decreasing

again. When approaching the value of γ = 3, the network maximizes the third moment

of the degree distribution, while minimizing its second moment, and therefore emerges

as the optimal uncorrelated structure amplifying the uncertainty in the threshold. Con-

versely, uncertainty is minimal for maximally heterogeneous networks, corresponding to

an exponent γ ≈ 2. Interestingly, the non monotonous dependence on γ is amplified as

we increase the size of the system (in terms of its maximum degree).

To validate the previous theoretical prediction, we generate synthetic power-law net-

works using the modified preferential attachment algorithm with an attractiveness pa-

rameter that control the exponent[128]. Fixing the value of the minimum degree kmin,

and tuning the exponent and the size of the network, we detect a maximum in the

uncertainty δKc for the exponent γ = 3, as shown in Figure 4.5 thus confirming the pre-

diction of the theory. We observe good qualitative agreement for the non monotonous

dependency on the heterogeneity, and also that system size reinforces this dependency.



59 CHAPTER 4. NETWORK UNCERTAINTY PROPAGATION

2 3 4 5 6

γ

0.97

1

1.03

1.06
δ
K

c/
δ
K

c(
r)

theory

N = 500
N = 1000
N = 2000

2 3 4 5 6

γ

1

1.2

1.4

δ
K

c/
δ
K

c(
r)

numerics

N = 500
N = 1000
N = 2000

Figure 4.5: Relative value of the theoretical (left) and numerical (right) uncertainty

δKc for scale-free networks in the range γ ∈ [2, 6] for sizes N = 500, 1000 and 2000,

µ = 1, σ = 0.05 and minimum degree fixed at kmin = 5 compared to regular networks

with the same average degree, and the same characteristics of the noise. The results are

obtained with 200 realizations of the noise for each network and then averaging with 200

networks for each configuration of the modified preferential attachment algorithm. The

high variance at each point shows that the results are very sensitive to the particular

structure of the network, although the general trend is captured.

The results point towards the difficulty of accurately determine the critical threshold of

scale-free networks, with exponent γ ≈ 3, because δKc is maximized in the presence of

noisy weights for these networks.

4.4 Discussion

The results found in section III are of theoretical and practical relevance for the field of

network science and they should be investigated further in detail. We have shown that

particular network structures, as power-law degree distribution networks with exponent

γ ≈ 3 maximize the uncertainty of the critical threshold in the presence of noisy weights.

This fact should be taken into account in the prediction of the critical threshold in

empirical networks (which are usually heterogeneous) because, as proven, the accuracy

in the estimation crucially depends on the underlying structure of the network. Moreover,

the results might have a strong impact in the context of network optimization and

adaptation [129]–[131], specially considering the ubiquity and theoretical relevance [71],

[108] of power-law networks with exponent γ ≈ 3 and the well-stablished hypothesis that

many biological networks are operating near the critical point [132], [133]. In particular,

one could wonder to which extent the existence of power-law networks with an exponent

close to 3, maximizing the range of critical values has been evolutionary favourable. In
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this sense, the current results make a natural connection with the previous work in [134],

where it was shown that scale-free networks with exponent γ = 3 are able to achieve

a larger variety of macrostates with respect to homogeneous networks (specifically near

the critical threshold) by deterministically tuning the weights of the links.

From the methodological side, the formalism introduced in section II represents a

first step in the use of error propagation methods to the analysis of complex networks

with dynamical processes on top of them. The formalism is flexible and it can be applied

to other network properties and in other scenarios, being of special importance the

case of colored noise obtained directly from empirical measurements. We conjecture

that this line of research will receive more attention in the future due to the increasing

amount of data (not free of errors), that is being collected for a large variety of systems.

We remark also that the current method is based on a MFA of the largest eigenvalue

of the connectivity matrix, and this approximation neglects strong correlations of the

eigenvalues in the presence of noise [135], [136]. While definitely more results are needed,

the present formalism provides analytical insight to the studied phenomena, and turns

out to give very accurate quantitative predictions if a few assumptions on the network

hold.

To summarize, in this work we have studied how noise in the weights of a complex

network affects the critical threshold of a dynamical process. We have restricted our

study to the wide family of processes where the threshold depends on the largest eigen-

value of the connectivity matrix. In this scenario, and using the well-known MFA, we

have applied error propagation to derive analytical expressions for the mean and stan-

dard deviation of the threshold depending on the noise parameters and the moments of

the degree distribution. We validated our results against numerical simulations, show-

ing good agreement when the initial MFA holds. Moreover, the formalism allowed us

to carefully examine the effect that the network structure plays in the amplification of

the noise at the critical point. Surprisingly, we found a non-monotonous behavior of

the critical uncertainty with respect to the heterogeneity of the underlying network. By

considering the paradigmatic case of uncorrelated power-law networks, we found that

networks with exponent γ ≈ 3 (γ ≈ 2) emerge as the structures that maximize (mini-

mize) the uncertainty of the threshold, due to an interplay between the second and third

moment of the degree distribution.
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4.5 Analytical derivations

4.5.1 Calculation of the mean

We can write the degrees and strengths in terms of the binary connections (aij = 0

or 1) and weights (wij ∈ R) of the connectivity matrix A, i.e ki =
∑N
j=1 aij and si =∑N

j=1 aijwij . For the average strength 〈s〉, we have:

〈s〉 =
1

N

N∑
i=1

N∑
j=1

aijwij . (4.14)

Note that we can write Eq.4.14 equivalently as 〈s〉 = (1/N)
∑
i µiki, where µi is the

average weight of node vi. For sufficiently large degree (ki � 1), one can approximate

µi = µ, and therefore 〈s〉 = µ〈k〉. However, in general, it is important to keep the

contribution of each node because each µi has a specific uncertainty depending on the

degree of node vi, and this affects the overall uncertainty on Kc. For the second moment

〈s2〉, we have

〈s2〉 =
1

N

N∑
i=1

(

N∑
j=1

aijwij)
2

=
1

N

N∑
i=1

(

N∑
j=1

aijw
2
ij +

N∑
j 6=k

aijaikwijwik).

(4.15)

Noticing that
∑
j 6=k aijaik = k2

i − ki, we obtain

〈s2〉 =
1

N
[

N∑
i=1

µ2
i (k

2
i − ki) +

N∑
i=1

〈w2〉iki], (4.16)

where 〈w2〉i is the average second moment of the i-node. Plugging Eq.4.14 and Eq.4.16

into Eq.4.2 in the main text, we obtain

Kc =

∑N
i=1 µiki∑N

i=1 µ
2
i (k

2
i − ki) +

∑N
i=1〈w2〉iki

, (4.17)

which correspond to Eq.4.3 in the main text.

4.5.2 Calculation of the variance

The propagation of uncertainty of a non-linear function of the random variables as Eq.4.3

requires to use a truncated Taylor expansion [126]. Up to second-order, and in the

notation used in the main text, the approximate variance of the function is given by

(δKc)
2 ≈ JT0 VJ0 +

1

2
Tr[(H0V)2] (4.18)
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where the Jacobian vector and the Hessian matrix are evaluated at the mean values of

the random variables ~µ and ~〈w2〉. The Jacobian of the system in Eq.4.3 is

J = (
∂Kc

∂µ1
, ...,

∂Kc

∂µN
,
∂Kc

∂〈w2〉1
, ...,

∂Kc

∂〈w2〉N
). (4.19)

First, we compute the partial derivatives in Eq.4.19 explicitly from Eq.4.3, obtaining

∂Kc

∂µi
≈ 1

N

ki(µ
2〈k2〉+ σ2〈k〉)− 2µ2(k2

i − ki)〈k〉
(µ2〈k2〉+ σ2〈k〉)2

,

∂Kc

∂〈w2〉i
≈ − 1

N

kiµ〈k〉
(µ2〈k2〉+ σ2〈k〉)2

, (4.20)

where the sign ≈ stands for assuming, in good approximation, that the input parameters

µ and σ2 are the actual mean values of the random variables ~µ and ~σ2 = ~〈w2〉 − ~µ2.

The Hessian matrix, the square matrix of the second-order partial derivatives of the

function in Eq.4.3 can be directly obtained by taking derivates from Eq.4.20. After some

algebra, and defining Q = µ2〈k2〉+ σ2〈k〉, we obtain

∂2Kc

∂µi∂µj
≈ 1

N2Q3
[Q(2µ(k2

j − kj)ki − (2 + 2δijµ(k2
i − ki)kj))

− (ki − 8µ3〈k〉(k2
i − ki)(k2

j − kj)).
(4.21)

The Hessian matrix of our system is symmetric, such that ∂2Kc/∂µi∂〈w2〉j = ∂2Kc/∂〈w2〉i∂µj .
We obtain

∂2Kc

∂µi∂〈w2〉j
≈ 1

N2Q3
[−Qkikj + 4µ2〈k〉kj(k2

i − ki)], (4.22)

and for the last term we have

∂Kc

∂〈w2〉i∂〈w2〉j
≈ 2µkikj〈k〉

N2Q3
. (4.23)

For the covariance matrix, we can obtain explicit expression for the entries (V)ij when

the noise in the weights is assumed gaussian and uncorrelated. By assumption, the

network is symmetric and so it will be the covariance matrix, which can be written in

block form as

V =

(
vµ

2 vµ,〈w2〉

vµ,〈w2〉 v〈w2〉
2

)
,

where vµ
2, vµ,〈w2〉 and v〈w2〉

2 are symmetric matrices in RN×N that capture each
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covariance term between the two random variables (µi, 〈w2〉i) of all nodes. Explicitly

(vµ
2)ij =

σ2

ki
(δij +

aij
kj

), (4.24)

(vµ,〈w2〉)ij =
2µσ2

ki
(δij +

aij
kj

), (4.25)

(v〈w2〉
2)ij =

2σ2(2µ2 + σ2)

ki
(δij +

aij
kj

). (4.26)

The first term in the sums is the contribution of the diagonal entries. The gaussian vari-

ances (σ2 and 2σ2(2µ2 + σ2)) and covariance (2µσ2) of a single weight wij drawn from

(µ, σ2) are divided by the number of elements (the degree ki) involved in computing the

averages µi and 〈w2〉i. The second term accounts for the non-diagonal entries. If two

nodes (i, j) are neighbours, i.e. aij = 1, then we have to add an additional correlation

due to the presence of the shared weight, which is divided by the product of their degrees

(ki and kj).

For the first order expansion, we can compute explicitly (δKc)
2 in terms of the noise

parameters (µ, σ) and the moments of the degree distribution. We can write Eq.4.5 as

(δKc)
2 ≈

N∑
i=1

N∑
j=1

[(
∂Kc

∂µi
)(
∂Kc

∂µj
)(σµ

2)ij , (4.27)

+ (
∂Kc

∂〈w2〉i
)(

∂Kc

∂〈w2〉j
)(σ〈w2〉

2)ij , (4.28)

+ 2(
∂Kc

∂µi
)(

∂Kc

∂〈w2〉j
)(σµ,〈w2〉)ij ], (4.29)

and after some algebra, we obtain

(δKc)
2 ≈ 2σ2〈k〉

NQ4
[Q2 − 4µ2〈k2〉Q+ 2µ2(2µ2 + σ2)〈k〉2

+2µ4(〈k〉〈k3〉+ 〈k2〉(〈k2〉 − 4〈k〉) + 2〈k〉2)

+8µ4〈k〉(〈k2〉 − 〈k〉)], (4.30)

where we have used that
∑
i

∑
j aijkikj = N〈k2〉2/〈k〉. Simplifying further, we get the

resulting Eq.4.6 in the main text. Explicitly,

(δKc)
2 ≈ a[µ4(2〈k〉〈k3〉 (4.31)

− 〈k2〉2)− 2µ2σ2(〈k〉〈k2〉 − 〈k〉2) + σ4〈k〉2]

with a = 2σ2〈k〉/[N(µ2〈k2〉+ σ2〈k〉)4].
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Chapter 5

Vulnerabilities in rail networks

Many critical infrastructure systems have network structures and are under stress. De-

spite their national importance, the complexity of large-scale transport networks means

that we do not fully understand their vulnerabilities to cascade failures. The research

conducted through this chapter examines the interdependent rail networks in Greater

London and surrounding commuter area. We focus on the morning commuter hours,

where the system is under the most demand stress. There is increasing evidence that

the topological shape of the network plays an important role in dynamic cascades. Here,

we examine whether the different topological measures of resilience (stability) or robust-

ness (failure) are more appropriate for understanding poor railway performance. The

results show that resilience, not robustness, has a strong correlation with the consumer

experience statistics. Our results are a way of describing the complexity of cascade

dynamics on networks without the involvement of detailed agent-based models, show-

ing that cascade effects are more responsible for poor performance than failures. The

network science analysis hints at pathways towards making the network structure more

resilient by reducing feedback loops.

5.1 Introduction to rail transport networks

Cascade delays and cancellations on rail transport can cause devastating economic dam-

age and dent consumer satisfaction. Existing knowledge either focuses on improving

operational practices or considers a pure topological analysis. However, by considering

both real passenger travel flows and the network topology together, in this chapter we

obtain a stronger understanding of its dynamic vulnerability and resilience. In earlier

years, research largely focused on improving specific functionalities in rail systems; and

more recent research has focused on the relationship between the general network topol-

ogy and whether this has macroscopic bearing on the overall system performance [137].
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The efficiency of transport networks has been related with their resilience [138] and

the different types of topologies have been analysed, comparing the network geometry

and the level of connectivity. However, these studies predominantly focus on the pure

topological characteristics of a graph [139], [140].

5.1.1 Identifying vulnerabilities in rail networks

The concept of vulnerability in transportation network, introduced in the literature by

Berdica [141], is generally defined as the susceptibility to disruptions that could cause

considerable reductions in network service or the ability to use a particular network

link or route at a given time. Many have applied general network science disruption

analysis. For example, several studies [142]–[144] have been conducted for modelling

railway vulnerability with promising predictive results. Bababeik et al. [145] recently

proposed a mathematical programming model that is able to identify critical links with

consideration of supply and demand interactions under different disruption scenarios.

Recent work has also used graph properties to infer interaction strengths and use an

epidemic spreading model to predict delays in railway networks [146].

In the current literature, most of the proposed studies consider natural or man-made

disasters, but they do not consider the stress of the network during the peak-hours and

how the structure of the network created by the massive flows of people can influence

their ability to maintain a good service. For example, several graph-based approaches

have been proposed to improve the performances by revising the design and maintenance

of the rail networks [147], but do not consider dynamic passenger flows. Other studies

focus on specific extreme scenarios [148] or unfavourable conditions [149] that cause

disruptions.

The UK rail network transports more than 1.7 billion passengers per year, of which

1.1 billion passengers commute in and around London.1 According to the Office of Rail

and Road,2 last year in and around London only 86.9% of passenger trains arrived on

time and 4.8% of the journeys were cancelled or significantly late. Often these delays are

interrelated and the relationship between cascade effects and network dynamics is not

well understood.

The data used for this chapter (see Section 5.4) indicates that under the same ex-

ternal conditions, the major rail companies in and around London show dramatically

different performance levels. In this work, we hypothesize that this difference can, in

part, be attributed to the peak passenger demand. The interplay between flow and net-

work structure can tease out which structural measures correlate strongly with overall

1Passenger rail usage. Office of Rail and Road. See http://dataportal.orr.gov.uk/browsereports/

12. (10 September 2018)
2Passenger and freight rail performance. Office of Rail and Road. See http://dataportal.orr.gov.

uk/browsereports/3. (10 September 2018).

http://dataportal.orr.gov.uk/browsereports/12
http://dataportal.orr.gov.uk/browsereports/12
http://dataportal.orr.gov.uk/browsereports/3
http://dataportal.orr.gov.uk/browsereports/3
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performance.

We take a systems-of-systems approach by applying a complex network analysis to

transport networks. Unlike prior studies that focus only on the topological aspects of

the network, we consider several important additional aspects which attempt to match

our analysis to reality. First, we consider passenger volumes during morning commuter

or rush-hour, which weights the network and adds directionality. The morning rush-

hour is important because most of the delays and the highest economic impact of delays

occur during this time. Second, we consider a multiplex of different urban overground,

regional and national rail services (both together and separately). As a result, we have

a weighted and directed multiplex network, which requires more sophisticated network

analysis methods to uncover its resilience and robustness to cascade failures. Finally, we

map our network resilience and robustness results to actual railway performance figures

of delay and cancellation statistics and consumer satisfaction.

5.2 Theoretical framework

Vulnerability is a major problem in the study of complex networks and it can be regarded

as the susceptibility of a networked system to suffer important changes in its structure

and dynamic functions under any form of disruption. When such disruptions affect the

internal state of the nodes (e.g. stations) or links (e.g. train lines) of the network, it

becomes important to predict the extent of such perturbations under the perspective

of dynamical systems (e.g. linear stability analysis); throughout this chapter, we refer

to this problem as the study of resilience. Resilience is important for understanding

cascade effects that suppress the performance of the network, such as cascade delays due

to signal failures or poor scheduling. Resilience is related to the type of problem where

a train going from A to B that is running late, which affects the ensuing service B back

to A using the same train. But, when the perturbations involve some sort of attack or

out-right failure (e.g. a disruption in a station due to someone walking on to the tracks or

a signal failure), the challenge tends to be in studying the resulting connectivity loss and

secondary loss of functionality in neighbouring stations. We refer to this as the robustness

problem, which is describes different situations from the aforementioned resilience. In

plain terms, robustness considers when a train from A to B will be halted if the track in

between is blocked or station B is closed.

5.2.1 Measuring resilience

The concept of resilience on networks admits various interpretations and definitions [150],

[151]. A generally accepted definition of stability is applicable when the system perfor-

mance returns to a desirable state. For homogeneous linear stability, one might equate
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resilience with equilibrium points and look at the leading eigenvalue of the Jacobian ma-

trix [152]. When linear stability is not suitable due to complex dynamics, many authors

[153]–[156] have studied system resilience from different perspectives. Some consider the

dynamic response (e.g. time to recovery) of the whole system after a specific disruption,

while others use random perturbations to numerically quantify system response [157].

However, such approaches depend strongly on assumptions about the system, such

as details of the dynamics or the number of neighbours required for a node to function.

In this work, we use instead recent advances in the ecological system analysis to study

resilience, namely the framework of trophic coherence [158]. While there are obviously

differences between ecosystems and rail systems, both are essentially transport networks

in which either biomass or passengers flow from sources (plants or home towns) through

various intermediary nodes, and end in sinks (top predators or work places).

Trophic coherence is a property of directed graphs that defines how much a graph is

hierarchically structured. The rationale is that hierarchical systems have fewer feedback

loops and are less likely to suffer from cascade effects. When networks are modelled

as a discrete linear time invariant (LTI) system with a defined input and output [159],

the dynamic response stability is defined by the location of roots of its transfer func-

tion (negative domain). In such a case, the absence of feedback loops ensures stability.

The presence of feedback loops will cause non-zero roots and risk instability. When we

consider a complex network with N2 input-output combinations, the transfer function

cannot be defined. As such, we measure the overall network incoherence, which is a

compressed figure of merit for how many feedback loops exist [158], [160]. Johnson et

al. [158] proved that ‘a maximally coherent network with constant interaction strengths

will always be linearly stable’, and that it is a better statistical predictor of linear sta-

bility than size or complexity. We measure network coherence through the incoherence

parameter (see Figure 5.1(c)), a measure of how tightly the trophic distance associated

with edges is concentrated around its mean value (see Section 5.3.1).

In order to define trophic coherence in a directed network, the first step is to define its

basal nodes (i.e. nodes that predominantly supply energy—high out-degree and low in-

degree). That is to say, stations with a high trophic level receive passengers while stations

with a low trophic level provide passengers. Thus, basal nodes are likely to be home train

stations of commuters. Unlike networks studied in previous works (e.g. food webs [160]–

[162]), the London urban rail network in peak-hours does not have predefined basal

nodes (i.e. nodes with in-degree 0). In transportation, this means that there is always a

non-zero passenger counter-flow travelling from urban to the countryside stations during

the morning rush hour. To distil the basal nodes from the data, we developed and

tested two different approaches (see Section 5.3.2) to approximately define basal nodes

in networks where they do not naturally exist. In the first proposed approach, we apply

basal node enforcement, whereby basal nodes are selected from those with lowest ratio
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Figure 5.1: We reconstruct the major rail networks under stress conditions considering

the morning journeys (a) and we measure the topological characteristics of these net-

works, removing the uninteresting flows (b). Then, the resilience (c) and robustness (d)

of these networks are analysed using the framework described in Section 5.2.

between incoming and outgoing edges. The trophic level of the remaining nodes is then

computed using the standard formula (Eq. 5.1). In the second proposed approach we

apply passenger flow filtering, a method by which redundant edges are removed until

basal nodes naturally emerge (see Figure 5.1(b)).

5.2.2 Measuring robustness

The objective in this case is to use both proxy and direct measures of robustness. Di-

rect measures include random or targeted node removal. However, as robustness is not

uniquely defined, proxy measures may yield more holistic insights. As such, here we

use a variety of robustness measures to establish a wider evidence base. Regarding the

first approach, we directly evaluate network robustness by performing sequential node

removal [15]: nodes of the rail networks are randomly removed whilst evaluating network

connectivity, computing the size of the largest strongly connected component [163], [164].
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On the other approach, as a first proxy we evaluate the core and periphery meso-scale

structure of the rail network (see Figure 5.1(d)). The core-periphery ratio (see Section

5.3.3) gives a scalable and compressed understanding of robustness, and the argument

is formalized by Borgatti et al. [165]. As a second proxy measure we use the rich-club

coefficient (see Eq. 5.4) [161], [162], [166], [167].

5.3 Methods

5.3.1 Computing trophic coherence

The trophic level of a node i, denominated by si, is recursively defined as the average

trophic level of its in-neighbours, plus 1:

si = 1 +
1

kini

∑
j

aijsj , (5.1)

where aij is the adjacency matrix of the graph and kini =
∑
j aij is the number of in-

neighbours (in degree) of node i. Basal nodes, i.e. those with kini = 0 have trophic level

si = 1 by convention. Note that Eq. 5.1 can have non-integer solutions. By solving

the system of equations in 5.1, it is always possible to assign a unique trophic level to

each node as long as there is at least one basal node, and every node is on a directed

path which includes a basal node [158]. In our study, the trophic level of a station is

the average level of all the stations from which it receives passengers plus 1. For this

reason, stations near residential areas in the suburbs will have lower trophic level than

those close to business areas and those in the centre.

Each edge has an associated trophic difference: xij = si − sj . The probability distri-

bution function of trophic differences, p(x), always has mean 1. The smaller the variance

of this distribution is, the more a network is considered to be trophically coherent. We

can measure trophic coherence with the incoherence parameter q, which is simply defined

as the standard deviation of p(x) [158]:

q =

√
1

L

∑
ij

aijx2
ij − 1 , (5.2)

where L =
∑
ij aij is the total number of connections (edges) between the stations

(nodes) in the network. A perfectly coherent network will have q = 0, while q > 0

indicates less coherent networks.

The degree to which empirical networks are trophically coherent can be investigated

by comparison with a null model. The basal ensemble expectation q̃ can be considered

a good approximation to a null model for finite random networks [160]:

q̃ =

√
L

Lb
− 1 , (5.3)
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where Lb is the number of edges connected to basal nodes. The ratio q/q̃ is used to analyse

the coherence of the network: a value close to 1 shows a network with a trophic coherence

similar to a random expectation. Values lower than 1 reveal significant coherence, while

values greater than 1 reveal significant incoherence. For example, Johnson & Jones [160]

found that food webs are significantly coherent (q/q̃ = 0.44± 0.17), metabolic networks

are significantly incoherent (q/q̃ = 1.81 ± 0.11) and gene regulatory networks are close

to their random expectation (q/q̃ = 0.99± 0.05).

5.3.2 Finding basal nodes

In our study of the morning peak-hour rail networks, there are not natural basal nodes.

In order to be able to solve the equations and compute trophic levels, we define two

methodologies to identify them: the basal nodes enforcement and the flows filtering.

Basal nodes enforcement

The first technique used to select the basal nodes revolves around the enforcement of

the desired number of basal nodes, selecting them according to some properties of the

nodes. This technique enforces a predefined number EN of nodes to be basal nodes (their

trophic level is imposed to be 1). The nodes to be enforced are selected according to their

similarity to real basal nodes, namely the nodes with the lowest ratio between incoming

and outgoing edges. More formally, the kout/kin ratio is computed for all the nodes, then

the trophic level of the EN nodes with the lower ratio is enforced to 1 (si = 1). If parts

of the network are not connected to basal nodes, only the largest strongly connected

component will be considered. This technique maintains the structure of the network

intact (it does not add/remove nodes or edges) but, instead, it does not take into account

its natural topology when selecting the basal nodes, making the selection artificial: the

selection of the number of basal nodes is artificially defined by the user.

Flows filtering

In the analysis of the morning peak-hour commute, the factors that determine the stabil-

ity of the network depend on the major flows of people (from home to work commute).

The paths with just a small portion of commuters can thus be ignored. To remove these

paths, a threshold T for the detection of major flows is defined: when two nodes i and j

are connected with two reciprocal edges (aij = 1 and aji = 1), the edges eij whose weight

ratio is below the threshold T , i.e. ωij/ωji < T , are deleted. With this technique, basal

nodes are not enforced but rather naturally emerge from the change in the structure

of the network (i.e. the edges with a low impact on the study are removed from the

network).
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For example, if there are 100 people going from node i to j and only 1 going from j

to i, the edge eji can be removed without degrading the quality of the peak-hour flows

study. If T ≥ 1, for each pair of nodes the edge with smaller weight is always removed;

the edge with the highest weight is preserved only if it is sufficiently greater than its

reciprocal. Note that larger values of T will require higher directionality unbalance in

order to keep the edge in the dominant direction. If T < 1, the edge with the highest

weight is always preserved, whereas the lower-weight edge could potentially be preserved

if flow directionality is sufficiently balanced. Note that for T < 1, the lower the value of

T , the easier it is to preserve edges with unbalanced flows.

5.3.3 Core-periphery and robustness

The study of the core–periphery structure of the network is used to identify the densely

connected stations where people can choose more than one path to reach the destination

in contrast to sparsely connected stations which can cause a major interruption of the

service in case of disruptions.

Finding the core of a network

The core of a network is computed ranking all the nodes in a network according to a

predefined centrality measure (in our case total degree and trophic coherence) and then

counting the number of connections they have with higher ranked nodes. The node with

the highest number of high-level connections is the core-border. All the nodes with a

higher ranking than the core-border node along with the border node itself compose the

core of the network, whilst the other nodes are its periphery. A big core suggests several

different ways to reach the majority of the nodes and accordingly a more robust network.

Rich-club coefficient

To study the robustness of the networks, we analysed the rich-club phenomenon [168].

This structural characteristic appears when nodes of higher degree are more intercon-

nected than nodes with lower degree. The presence of this phenomenon may be indicative

of several interesting high-level network properties, such as its robustness. More precisely,

this behaviour appears when nodes with degree larger than k are more densely connected

among themselves than the nodes with degree smaller than k [169]. This is quantified by

computing the rich-club coefficient across a range of k values, and if this value is greater

than 1 for some k the network is considered to exhibit rich-club phenomenon.

The rich-club coefficient is usually defined using the degree of nodes, but it can be

generalized to other richness metrics (in our case, the trophic level). Note that, in

order to compute it, we need to convert the morning peak-hours directed graph to an
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undirected one so that it is consistent with the standard rich-club definition. The formula

to compute the rich-club coefficient for a generalised richness measure is as follows:

φ(r) =
2E>r

N>r(N>r − 1)
, (5.4)

where E>r refers to the number of edges present between nodes with richness measure

above r and N>r refers to the number of nodes with richness measure above r.

5.4 Data

5.4.1 UK rail network

In this study, we analyse a real-world rail network under demand stress conditions (morn-

ing rush-hour). The commuter paths are computed considering the information relative

to places where people live and work provided by the UK National Census Transformation

Programme.3 The optimal travel paths were provided by the National Rail (including

rail services through underground tunnels, but not including the underground/subway

system) through their TransportApi service.4 Given an origin station and a destination

station, the TransportApi service provides all the information about the travel, including

the intermediate stop stations. We first check if rail travel is required for a person to go

from home to work, and if so, we compute their optimal journey and use these data to

weight the network (see Figure 5.1(a)). In the current study, only the travels that start

and end in a bounding area of 80 km from central London have been taken into account

(this approximately covers Cambridge to the north, Oxford to the northwest, Reading

to the west and Brighton to the south). It roughly represents all 1 h commuter paths,

which is the national standard according to UK’s Office for National Statistics.

The resulting dataset represents the flows of people in morning peak-hours on the rail

network (available on Dryad [170]), when they travel from their homes to their places of

work. Each journey is defined as a set of two or more stations (in case of intermediate

stops of the train all the intermediate stations are included). The dataset is transformed

in a directed weighted graph (see Section 1.4.1) where the nodes are the train stations,

the edges are the weighted flows of passengers and a journey is an ordered set of nodes

that includes the departure station, the arrival station and any intermediate station (if

the train stops, as we consider the service class of the train).

When, in our graph, one or more passengers are going from node i to node j (or these

two nodes are intermediate stations of the travel), an edge eij is added to the graph.

The weight ωij of this edge is the sum of all the passengers of the journeys that include

3Census transformation programme, Office for National Statistics. See https://www.ons.gov.uk/

census/censustransformationprogramme. (May 2018).
4transportApi, National Rail. See https://www.transportapi.com. (May 2018).

https://www.ons.gov.uk/census/censustransformationprogramme
https://www.ons.gov.uk/census/censustransformationprogramme
https://www.transportapi.com
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Figure 5.2: Directed graph representing passenger flows during morning peak-hours in

the urban rail network of London and its surroundings, built as detailed in Section 5.4.

travels from node i to node j. The directed graph of the passenger flows during morning

peak-hours is shown in Figure 5.2. We show the whole multiplexed network, as well

as some examples of the individual sub-networks comprising urban overground (London

Overground), regional links (Thameslink) and national services (e.g. Southern rail).

5.4.2 Service performance measures

, http://orr.gov.uk/about-orr/who-we-are. (May 2018).

We use data from the Public Performance Measures provided by the ORR (Office of

Rail and Road) 5, an independent regulator that monitors the rail industry’s health and

safety performance. ORR holds Network Rail 6, the company that with 20.000 miles

of track owns, operates and develops Britain’s railway infrastructure. In particular, two

performance measures are used in our comparison:

• PPM. The Public Performance Measure combines figures for punctuality and reli-

ability into a single performance measure. Usually, it shows the percentage of trains

which arrive at their terminating station within 5 min (for London and South East

5Office of Rail and Road - who we are, Office of Rail and Road. See http://orr.gov.uk/about-orr/

who-we-are. (May 2018).
6Public performance measure, National Rail. See https://www.networkrail.co.uk/who-we-are/

how-we-work/performance/public-performance-measure/. (May 2018).

http://orr.gov.uk/about-orr/who-we-are
http://orr.gov.uk/about-orr/who-we-are
https://www.networkrail.co.uk/who-we-are/how-we-work/performance/public-performance-measure/
https://www.networkrail.co.uk/who-we-are/how-we-work/performance/public-performance-measure/
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and regional services) or 10 min (for long distance services) 7. Here, for the sake

of clarity, we define oPPM as the opposite value of PPM (oPPM=100%−PPM).

oPPM is the percentage of trains which do not arrive at their terminating station

within 5 or 10 min (depending on the distance).

• CaSL. The Cancellation and Significant Lateness is a percentage measure of sched-

uled passenger trains which are either cancelled (including those cancelled en route)

or arrive at their scheduled destination more than 30 min late 8.

We use performance measures from the year 2017 (key statistics by train operating com-

pany (TOC)—2016–2017 9 ). To provide statistically significant results (small networks

are more sensitive to local functional effects than macroscopic topological structure), we

considered the five companies with the highest number of nodes in the network, exclud-

ing companies with very simple network structures (e.g. Heathrow Express has only one

line). The companies taken into account and the number of stations are shown in Table

5.1.

Operator name Number of stations

London Overground 109

Great Western Railway 18

Chiltern Railways 18

South West Trains 91

Southeastern 64

Table 5.1: Number of stations (nodes) per company in the morning peak-hours network.

5.5 Results

Our hypothesis is that the delays in a rail network and, more generally, the performance

of the services are influenced by the topological structure of the network. The intuition

we seek to validate is that a more resilient and/or robust network should guarantee lower

cascade delays and faster recovery in case of disruptions.

7Public performance measure, National Rail. See https://www.networkrail.co.uk/who-we-are/

how-we-work/performance/public-performance-measure/. (May 2018).
8Public performance measure, National Rail. See https://www.networkrail.co.uk/who-we-are/

how-we-work/performance/public-performance-measure/. (May 2018).
9Statistical releases,, Office of Rail and Road. See http://orr.gov.uk/statistics/

published-stats/statistical-releases. (May 2018).

https://www.networkrail.co.uk/who-we-are/how-we-work/performance/public-performance-measure/
https://www.networkrail.co.uk/who-we-are/how-we-work/performance/public-performance-measure/
https://www.networkrail.co.uk/who-we-are/how-we-work/performance/public-performance-measure/
https://www.networkrail.co.uk/who-we-are/how-we-work/performance/public-performance-measure/
http://orr.gov.uk/statistics/published-stats/statistical-releases
http://orr.gov.uk/statistics/published-stats/statistical-releases
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Figure 5.3: oPPM versus CaSL Person correlation coefficient for each different network

operator.

5.5.1 Performance metrics correlation

Figure 5.3 shows how four out of five of the rail companies analysed show a strong

correlation between the two performance measures oPPM and CaSL (see definitions in

Section 5.4), while in one case (Great Western Railway) these values are not correlated,

possibly meaning that this company often has little delays (low resilience) but generally

does not have major disruptions (high robustness). The Pearson correlation coefficient

(PCC) [171] is used to establish if there is a correlation between the topology parameters

of the network and the performance measures. PCC has a value between +1 and −1,

where +1 is total positive linear correlation, 0 is no linear correlation and −1 is total

negative linear correlation. As a rule of thumb, variables with a correlation coefficient

greater than 0.7 are considered highly correlated, while they are considered moderately

correlated when the PCC coefficient is between 0.3 and 0.7.

5.5.2 Choosing a method to find basal nodes

Our analysis crucially relies on the filtering parameter values NE and T defined in

Section 5.3.2 in order to reasonably reconstruct some underlying network structure. In

this section, we analyse empirically the properties of both basal node selection methods

presented before, namely the basal nodes enforcement and the flows filtering methods.

We’re looking for the minimum filtering value range (higher values may remove too much

data) such that our measures of interest (e.g. trophic coherence for resilience or core size

for robustness) remains invariant to further increases in filtering parameter values. To

do so, we apply a methodology consisting on constructing the morning peak-hours rail

network for each separated provider and for each filtering value. Then we compute the
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Figure 5.4: The figure shows several ranges of filtering parameter values for the two

techniques proposed: the basal nodes enforcement parameter NE is shown in red, and

the flows filtering parameter T is shown in blue. It analyses the behaviour of three major

resilience and robustness measures used in this work: (a) incoherence of the network;

(b) trophic core–periphery ratio; (c) Degree core–periphery ratio.

average measure of interest from all provider networks for each filtering value.

Regarding resilience, as shown in Figure 5.4(a) the node enforcement method pro-

duces incoherent networks throughout all the range of filter parameters — even with a

large number of stations enforced (e.g. 100) the networks remain highly incoherent on

average with q/q̃ > 2. On the contrary, the passenger filtering technique can achieve sta-

ble values of low incoherence even eliminating few links at low filtering values. Regarding

robustness, Figure 5.4(b) shows that the measure of trophic-core requires larger filtering

values in order to stabilise for both method, although it reaches more consistent stability

with the flow filtering technique. Figure 5.4(c) shows that the measure of degree-core

remains consistently stable for both methods and any range of filtering parameters.

In the light of this results, we choose to work with the flow filtering method because,

besides being more intuitive, it provides more stable results across a range of lower

filtering parameters. In particular, throughout the subsequent analysis we choose to

work with filtering parameters between T = 1 and T = 4. Across this range, the flow

filtering method removes the small counter-flow (e.g. people that live in the centre and

work in the suburbs) in order to evidence the mass commute that causes the major stress

on the network.

5.5.3 Topology-performance correlation

Trophic incoherence analysis

We compute the degree to which each of the specific provider rail networks are incoherent

by comparing them with the basal ensemble expectation as a null model, using the

trophic incoherence measure q/q̃. This measure has a value close to 1 when a network
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Figure 5.5: Box-plot distribution of trophic incoherence q/q̃ for a range of filtering thresh-

old T ∈ [1, 4] showing the mean (marker) and the standard deviation (box limit), for

each service provider. The x-axis represents service performance through oPPM (lower

blue x-labels, blue boxes) and CaSL (upper red x-labels, red boxes).

has a trophic coherence similar to a random expectation, it has a value lower than 1

when the network is coherent, and it has a value greater than 1 when the network is

incoherent (the details of this computation are provided in Section 5.3.1).

As described in the previous section, the morning peak-hour network is computed

using the passenger flow filter method with different flow filtering thresholds, between

T = 1 and T = 4, with a granularity of ∆T = 0.5. Figure 5.5 presents the distribution of

incoherence across all considered filtering thresholds in the form of a box-plot showing

the average and standard deviation of q/q̃, for each of the service providers ordered

according to their corresponding performance metrics oPPM and CaSL.

We can see that more coherent networks (low q/q̃) are generally associated with lower

delays (oPPM) and cancellations (CaSL). In particular, the results exhibit a highly pos-

itive correlation between the trophic incoherence of the network and the Public Perfor-

mance Measure (PCC = 0.98), suggesting that there is a high correlation between the

resilience of a rail network and the probability of its trains to arrive at their terminating

station on time. There is also a high positive correlation between the trophic incoherence

and the Cancellation and Significant Lateness measure (PCC = 0.92), evidencing also a

correlation between low resilience and the percentage of trains either cancelled or that

arrive to their destination with more than 30 min late.
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Figure 5.6: Box-plot distribution of rich-cub coefficient (see Eq. 5.4) for a range of

filtering threshold T ∈ [1, 4] showing the mean (marker) and the standard deviation

(box limit), for each service provider. The x-axis represents service performance through

oPPM (lower blue x-labels, blue boxes) and CaSL (upper red x-labels, red boxes).

Rich-club coefficient analysis

In Figure 5.6 we compare the highest rich-club coefficient observed considering all the

possible k (degree) values for each service provider with its performances metrics. Our

results show that even if there is a moderate correlation between the value of the rich-club

coefficient and the performances (PPM has PCC= 0.62 and CaSLhas PCC= 0.55), there

is no evidence of significant correlations between the presence of rich-club phenomenon

and service performances.

Core-periphery analysis

The ratio between the size of the core of a network over the size of its periphery represents

the percentage of well-connected core stations, versus the sparse periphery stations —

intuitively a network with a larger core has more connections between stations and, thus,

higher robustness to disruptions. In this section, we compare the percentage of core nodes

of each provider network, computed ranking nodes according to degree on the one hand

and trophic level on the other. We compare this to the oPPM and CaSL measures. As

shown in Figure 5.7, our findings suggest that there is a moderate positive correlation

between the size of the degree-core (PCC= 0.38) and the trophic-core (PCC= 0.59)

of a provider network and the oPPM. However, there is no correlation with the CaSL

(degree-core PCC= −0.09, trophic-core PCC= 0.28).
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Removal of random nodes

We attack the networks by removing nodes and analysing the size of the remaining largest

component. These experiments are repeated through several random simulations. The

upper panel in Figure 5.8 shows the average size of the largest component of each provider

and its standard deviation for increasing quantities of nodes removed. We set a threshold

value for the largest component of 50% of network size (dashed red line), representing the

connectivity limit below which the network is considered non-functional. We measure the

percentage of nodes required to disrupt each of the networks, representing its robustness

to attacks. The robustness to attacks is then compared with the performance measures of

the companies in the lower panel of Figure. Our results show a strong correlation between

robustness to attacks and CaSL measures (PCC= 0.83) and a moderate correlation

(PCC= 0.58) with oPPM measures.

Extension to other provider statistics

In Figure 5.9, the correlation analysis has been extended to other significant provider-

related statistics (number of employees, stations, trains and passengers), showing how

oPPM and CaSL are related to these metrics. Note that the incoherence ratio q/q̃ is

indeed the most significant correlate. Figure 5.9 also provides a synthesised view of the

correlation space described above. It shows that robustness to attacks is a good indicator

for cancellations and significant delays (CaSL). The size of the core (both degree and

trophic cores) and the rich-club phenomenon do not provide significant correlation with

performances. The size of the rail network in terms of the number of employees and

stations also has a strong correlation to oPPM, which is probably indicating that larger

networks are more likely to have feedback loops and incur cascade effects.
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Figure 5.7: Box-plot distribution of core size for nodes ranked by degree (upper panel)

and trophic coherence (lower panel) for a range of filtering threshold T ∈ [1, 4] showing

the mean (marker) and the standard deviation (box limit), for each service provider. The

x-axis represents service performance through oPPM (lower blue x-labels, blue boxes)

and CaSL (upper red x-labels, red boxes).
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Figure 5.8: Upper panel : size of the largest strongly connected component for random

node removal for each service provider. The horizontal line indicates when more than

50% of the network is compromised. Lower panel : box-plot distribution of node removal

percentage needed to lower size of the largest component by 50% for a range of filtering

threshold T ∈ [1, 4], showing the mean (marker) and the standard deviation (box limit),

for each service provider. The x-axis represents service performance through oPPM

(lower blue x-labels, blue boxes) and CaSL (upper red x-labels, red boxes).
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Figure 5.9: Pearson correlation coefficient between: topological measures, including nor-

malized incoherence parameter (q/q̃), incoherence parameter (q), size of degree-core (size

degree-core), size of trophic-core (size trophic-core), rich-club phenomenon (rich-club),

robustness to attacks (attacks); and operator-related metrics, including public perfor-

mance measure (oPPM), cancellations and significant lateness (CaSL), number of em-

ployees, number of stations, number of trains and number of passengers.
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5.6 Discussion

In this chapter, we have proposed a topology-driven data study of London’s urban rail

network under stress conditions during morning peak-hours. We have represented the

rail networks of major service providers as weighted directed graphs,where nodes indicate

stations, edges represent commute flows of people, and edge weights count the number

of people travelling on that segment. Note that if two stations are connected but there

are no passengers travelling through them in the morning peak-hours, these stations are

considered disconnected (there is not an edge between these nodes).

We studied the resilience and robustness of these networks drawing inspiration from

techniques used in the study of natural complex networks, such as food webs. Our results

suggest that network resilience, as measured by trophic incoherence (q/q̃), is strongly

correlated with the performance parameters PPM (Public Performance Measure) and

CaSL (Cancellations and Significant Lateness) of the underlying service provider of the

network. In contrast, most of the different network robustness indicators considered (size

of the core and rich-club phenomenon) are not significantly correlated with performance

measures, except for robustness to attacks (random percolation) which is correlated with

CaSL measurements.

There is interesting research remaining with regards to the dataset we have built for

this study, especially regarding the network-related methods we have presented here. For

example, it would be interesting to model the flow of passengers using a biased diffusive

process on top of the rail networks (e.g. biased random-walks [172]). This could help

assess the role of noise — deviations from the shortest path routing between origin and

destination we have considered here — in the design of more resilient passenger flows of

complex rail networks. Note that strictly shortest path protocols will tend to overload

links when the network is attacked [173], [174], an effect that we hypothesise could be

mitigated by adding randomness in the routing of passengers. Intuitively, artificially

inducing a certain degree of random behaviour in passenger trajectories may alleviate

overall congestion and thus achieve lower global travel times. Given that we have shown

that trophic coherence is a desirable property of rail networks because it implies a lower

number of feedback loops, another interesting open question is: what is the optimal set

of changes (train rescheduling or path removal) that a service provider should perform

in order to achieve a positive step change in coherence? A problematic in this case

would be that the operator will be facing a number of trade-offs when modifying the

network, because there will usually be local economic incentives for the presence of loops

in transport network.



Chapter 6

Gravity-networks for conflict

prediction

6.1 The scientific study of peace and conflict

The scientific study of peace and armed conflict is not a development of recent decades,

but rather an old discipline of political sciences. The goal of a researcher in this field

is usually related to the discovery of mechanisms promoting sustainable peace across

human populations around the world. But peace is a rather elusive term which might be

difficult to quantify by itself. Ironically, armed conflict is an objective phenomena with

evident and catastrophic effects, which can be readily quantified, modelled and to some

extend predicted.

The origin of conflict research can be traced back to the post-World War I era.

Before that, theories that influenced international relations were based on the ethics

related to the circumstances under which it was morally acceptable and thus legal for

countries to attack each other. But the atrocities of World War I, and the even larger-

scale catastrophe of World War II moved the inquiry about conflict to the settings of

realism, and to the question of why and how does armed conflict emerge. Psychologists,

sociologists, economists but also physicists and mathematicians put in motion several

academic efforts to understand the mechanisms underlying war with a clear mindset of

preventing new global escalations. By the decade of the 1960s many different theoretical

frameworks had already emerged [175]–[177]. Such large variety of theories required a

process of selection and validation using empirical tests. That could only be accomplished

through the use of data.

Several large-scale data-gathering efforts and techniques were developed in the fol-

lowing two decades, including projects like the World Event/Interaction Survey (WEIS)

85
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[178], the Conflict and Peace Data Bank (COPDAB) [179] or the Correlates of War

(COW) [180] databases, some of them still being in active development nowadays. Most

of these databases contain either individual country attributes (GDP, population, regime

types, minority groups, etc.), interaction events between nations or political actors (al-

liances, international trade, militarized disputes, attacks to civilians, embargoes, etc.)

or both. The availability of data, together with the development of accessible com-

putational statistical techniques, led the field of conflict research into a model-testing

mindset during the 1980s and 90s. Classical hypothesis testing and p-values analysis be-

came prevalent in the literature, with the aim of finding explanatory variables for conflict

data backed by theoretical underpinnings. However, fundamental limitations recurrent in

many social sciences, like the impossibility of isolating causal factors or measuring them

with precision, limited the applicability of such research efforts. A too strong focus on

p-value significance without careful out-of-sample prediction evaluation brought the de-

velopment of many significant but over-fitted models without much prediction accuracy

[181].

In recent years, the field of conflict research has benefited extraordinarily from an

increasing attention towards out-of-sample predictive performance, and from the mod-

els and best practices of machine learning in general [182]. Although non-parametric

machine-learning models offer wider flexibility to capture non-linear effects and higher-

order relationships between large sets of features, this usually comes with the price of

reduced interpretability. For this reason, there is an increasing need for holistic ap-

proaches where simpler and more interpretable statistical models are combined with

more sophisticated predictive models, conforming different steps in a scientific process

towards theory building [183]. Finally it is worth mentioning that even in the current

predictive paradigm it is difficult to bridge the gap between conflict research and interna-

tional policy making. Existing research is already addressing the issue of discerning the

effects of actions triggered by national and international decision makers with regards

to peace-keeping [184]–[186], but realistically current forecasting tools can at their best

inform policymaking of what is the likelihood of future events if no actions are taken.

6.1.1 Levels of analysis

The concept of level of analysis [187] is an important methodological factor driving dif-

ferent approaches to conflict research and international relations in general [188]. The

level of analysis in a given study relates to the scale of the object causally associated with

the phenomena under examination. The most microscopic scale would be the individual

level, which in the case of conflict research would study the influence of individuals on

particular wars. For example, one could study the individual actions and motivations of

dictator Francisco Franco as causal effects for the Spanish Civil War. On the opposite
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side of the spectrum, the most macroscopic perspective is the systemic level of analysis,

where actors are individual states but the focus is on the emergence of international

processes from the different interaction structures between nations. For example, one

could search causal explanations for World War I on the absence of strong intergov-

ernmental organizations (IGOs) such as United Nations or the European Union. Most

studies lie somewhere in between these two scales. For example, the monadic level of

analysis considers domestic factors of nations such as their economic model, political

system or religious distribution. One step further, the dyadic level of analysis is possi-

bly the most common approach [189] and studies bilateral interactions amongst states

(trade, alliances, vetoes, embargoes, etc.) as explanatory factors for conflict amongst

them. Note that levels of analysis do not necessarily need to be discrete choices, and

most models will work with features across different level factors.

New generations of studies are increasingly moving towards subnational levels of anal-

ysis, which has been reciprocated by the emergence of disaggregated datasets tracking

conflict events to precise geographic locations [190]–[192]. This new trend is opening

the field to a larger set of explanatory factors related to precise demographic variables,

climate, natural resources and other geographic factors or local political unrest, to name

a few.

6.1.2 Networks in conflict research

Research efforts trying to transcend the dyad paradigm appear early on in the literature

using the framework of social networks, proposing methodologies to measure interac-

tions amongst nations in order to construct higher-level explanations of cooperation and

conflict at a network system level [193]–[195]. Interesting complex network techniques

such as community detection are used in some of these studies [196]–[199], which tend to

be concerned with the formation of groups (communities or clusters) of nations through

trade, alliance and conflict. Some others study the concept of centrality (mainly closeness

and degree), finding that highly central countries in trade networks tend to be associated

with lower levels of conflict [200], [201]. Besides some rare cases where out-of-sample pre-

diction is used as evaluation tool [202], [203], most studies on international networks are

purely descriptive and based on significance claims.

6.1.3 Novelty of our study

The present study compounds some of newest trends in conflict research mentioned

above. Our unit of analysis is the urban settlement or city. Although defining a city

is challenging even from the most basic physical or spatial perspective, cities are in-

teresting subnational actors because they usually have significant political idiosyncrasy

and bring large groups of people together into relatively confined spaces promoting com-
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mon cultural identities. They have well known geographic locations and in many cases

well known population records, and can be reasonably well combined with disaggregated

conflict datasets. To the best of our knowledge, this is the first study regarding conflict

research using cities as level of analysis.

Importantly, cities interact locally with one another through a multiplicity of dimen-

sions, usually involving the flow of people, goods or information. As a result of such

interactions, cities around the world are connected through global complex networks via

all sorts of infrastructures such as roads, railways, sea or air routes, but also power dis-

tribution lines or telephone and internet connections. Combining all of these networks

is challenging from a practical data collection and processing perspective. We use the

gravity law (see Section 6.3.1) as an approximation for the amount of flow between cities,

which helps us building a global network of interactions. As described above, networks

are not new in the field of conflict research, but they have always been used at the state

level. Therefore, the study of a global network of cities is another contribution of the

present study.

Finally, we capitalise on these models of global networks of cities to derive a set of

centrality measures attributed to each city. We test a larger variety of centrality mea-

sures than in previous (state-based) network studies, including hybrid measures that

combine topological information with metadata on ethnic groups and international bor-

ders. We use these measures as factors for a predictive analysis evaluated out-of-sample

on disaggregated conflict data, altogether generating a novel set of conflict predictors.

6.1.4 Research outline

Section 6.2 describes the three datasets we use in our analysis: one describing location,

population and state membership of cities; another containing spatial representation of

politically relevant ethnic groups; and a third containing a global comprehensive set of

geographically tagged conflict events from 1989 to 2018.

Section 6.3 describes the set of methods we use to build our global network of inter-

actions between cities. We present two different methods to build such networks, one

deriving purely from spatial proximity and the other directly from thresholds on the

gravity law. Section 6.3 also describes the set of centrality measures we use as predictors

in our predictive analysis. Such measures include degree, betweenness, closeness and

pageRank, as well as their weighted versions. They also include three bridgeness mea-

sures based on topological communities, ethnic communities and national communities

respectively.

Also in Section 6.3 we provide detail on the statistical methodology used for our

predictive analysis. We present the prediction objective as a classification task where

we want to predict which cities will be under a state of conflict in a given year. We
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also describe the algorithms that will be used for such task, namely a logistic regression

and random forests. We present the statistical models we will make predictions with:

we describe our baseline model, which excludes all network features and is only based

on the autoregressive component of conflict history and the population of each city; we

also describe the set of full models containing both baseline and network-based features.

Still in the same Section, we elaborate on our data partition scheme, which is based on

rolling forecasting cross-validation. Finally, we describe the performance metrics used in

the analysis and the measures of variable importance.

Section 6.4 presents all the results of our predictive analysis, which are finally dis-

cussed in-depth throughout Section 6.5.

6.2 Data

6.2.1 City data

We use data from the National Geospatial Intelligence Agency, containing 7322 settle-

ments around the world with their latitude, longitude, population, country and province

affiliation [204]. For the purpose of this chapter, we shall call all settlements cities. The

geospatial data includes cities that vary in population from mega-cities (several millions)

to small towns. The data represents around 25% of the world’s total population. We

only use cities with a population above 10,000, of which we find more than 5,900 in the

dataset, yielding high city resolution.

6.2.2 Ethnic data

As shown in Section 6.3.3, some of our network features are enriched with metadata rep-

resenting ethnic groups. For this purpose, we use the Geocoded Ethnic Power Relations

(GeoEPR) dataset [192], which provides polygon data for the spatial distributions of po-

litically relevant ethnic groups around the globe. Polygon data is a type of vector data

that includes 3 or more vertices with coordinates in the latitude and longitude space,

forming closed figures that, in this case, represents boundaries of territory dominated

by a particular ethnic group. In this dataset, ethnicity is generally defined as any set of

subjective views that bring individuals towards the belief of a common cultural ancestry.

Allowing for this subjective variable is a key trait of GeoEPR which differentiates it

from other ethnic datasets such as Geo Referencing of Ethnic Groups (GREG) dataset

[205] which do not consider aspects such as religion, thus grouping together very dis-

tinct ethnic groups such as Hutus and Tutsis or Sunni and Shi’a Arabs. In addition,

GeoEPR is focused on ‘politically relevant’ ethnic groups, which are defined as those

having political organizations in the public arena, or those being publicly excluded or

discriminated based on ethnicity. Finally, GeoEPR is a dynamic dataset that registers
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the spatial evolution of ethnic groups through time. For the purposes of the current

work, however, we have only used a snapshot fixed at the year 2017.

6.2.3 Conflict data

We use data from the Uppsala Conflict Data Program (UCDP). In particular, we use

the UCDP Georeferenced Event Dataset (GED). This is the most comprehensive event

dataset on organised violence existing up to this date. Crucially for our purposes, this

dataset is geographically disaggregated below state level, meaning we have access to the

geographic coordinates of each event. It contains 179,130 events occurred between 1989

and 2018 around the globe.

UCDP-GED is an event-based dataset. According to UCDP, an event is defined as

“The incidence of the use of armed force that was used by an organised actor against

another organized actor, or against civilians, resulting in at least 1 direct death at a

specific location and a specific date”[191]. Therefore, there are clear criteria to qualify

an event as such.

Note that organised actors refers to either governments of independent states, for-

mally organised groups which have publicly advertised their name and purpose, and

informally organised groups which have not publicly advertised a name or purpose but

are recurrently involved in armed violent patterns. Accordingly, this dataset includes

three types of events: state-based conflict (violence against state representatives com-

mitted by another state or group), non-state conflict (violence between non-state groups)

and one-sided conflict (violence against unarmed civilians).

Some of the events registered in the GED dataset may geographically occur in loca-

tions which are not registered in our city dataset. For this reason, we have processed

GED data so that each event is attributed to the closest city registered in our dataset.

6.3 Methods

6.3.1 The gravity law

One method to infer the volume of flow between any two given cities is the widely used

gravity law [100]. The gravity law has been employed in various forms and disciplines

in the social sciences for over a century [206], [207], but as with many such laws, its

theoretical underpinning comes in many forms. Gravity laws generally describe the

attractive force between two social entities and has been used to describe the flow of

a wide variety of goods (e.g. vehicles, goods, disease, and human beings) [208]–[211],

and information (e.g. telephone calls and social media messages) [212]–[214] between

cities and countries. In fact, they have also been used in the conflict research literature

[215]–[217], especially in the context of bilateral trade study and its relation to conflict.



91 CHAPTER 6. GRAVITY-NETWORKS FOR CONFLICT PREDICTION

Figure 6.1: Partial temporal aggregation of the GED dataset (Section 6.2.3) across 3

different time periods. Data has also been aggregated to the closest city registered in our

city dataset (Section 6.2.1). The colormap shows the total number of events attributed

to each city across each time period, using a logarithmic scale.
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The law consists of two main dependencies: the importance or fitness of each of the

two social nodes (i.e. usually their population P , given that most research agrees that

population is a significant factor determining the flow of goods or people [218], [219]

in social systems) and the rate of flow-decay dependent on the (typically Euclidean)

distance d that separates them. It is typically expressed as:

Fij ∝ (PiPj)
α
d−γij , (6.1)

where the exponent α and γ are the parameters of the model that can take different

forms depending on the context of application. In the classical gravity law, α = 1 and

γ = 2. The discrepancy between different models lies in what form the gravity law takes,

i.e. the value of parameters weighting population and distance, α and γ.

As a model of interactions, it can be shown that the gravity law arises from an entropy

maximisation principle where there are constraints on the cost and benefit of interaction

amongst a system of actors [220]. Therefore, it can be argued that in the absence of

information, the gravity law represents the most likely set of interactions in a system. A

thorough review of gravity laws and complex networks can be found in [100].

6.3.2 Network construction

Both physical and intangible networks have always permeated the way cities interact. Al-

though there exists data on several of such networks (e.g. roads, rail or flight networks),

such data is typically (i) hard to collect and to process and (ii) very asymmetrical be-

tween regions at different development stages. At the same time, it would be hard to

find criteria to evaluate which of such networks is more representative of the overall con-

nectivity between cities. For this reasons, here we take a different approach and instead

build our networks using spatial interactions models.

The first step of the construction of the network consists on inferring the amount

of flow connecting any two cities in our dataset. A natural candidate for this task is

the gravity law, as shown in Eq. (6.1). This yields a pairwise interaction matrix that

needs to be constrained in order to obtain a network. The density of such network can

be controlled using a threshold hyper-parameter T so that edges will only exist between

cities i and j if their pairwise interaction strength is above a certain level, that is:

aij =

{
1 if Fij > T
0 if Fij < T

. (6.2)

Besides using the gravity flow Fij for our connection rule, we also use it to weight the

edges that end up created. Note that this method yields three hyper-parameters (α, γ, T )

that will need to be accounted for when building our statistical analysis. Depending on

the values of these, we will consider two types of network models, described below.
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Geographic network

In this case, we consider α = 0 and γ = 1, so that the connection rule simply becomes:

aij =

{
1 if dij < R
0 if dij > R

, (6.3)

where R = 1/T . This criterion simply states that those cities that are closer than R
kilometres must be connected by a network edge. This yields a network which is highly

constrained by distance, effectively providing a model of land-based connections between

cities. Assuming this, we will further restrict edges that connect islands with continental

areas, as well as edges connecting continental areas separated by sea (e.g. southern

Europe and northern Africa). Furthermore, it is reasonable to model separately the

connection rule and the weighting of edges. In practice, this means we will first draw

the edges of the network using the condition in Eq. 6.3, and then weigh those existing

edges using the gravity law in Eq. 6.1 with general exponents (α, γ).

As shown in Figure 6.2, R both affects the range of connections and the density of

the network. Lower R values (e.g. R = 200 km) generate very short range connections,

consequently producing a sparse and relatively disconnected graph. Highly dense regions

such as central Europe or the western coast of North America quickly produce large

connected components, whilst less dense regions in Africa and South America remain

more isolated. For increasingly larger R values (e.g. R = 500 km) the network becomes

globally percolated, meaning Europe, Africa and Asia are merged into a large single

component, separated from another large component connecting all America.

Note that this connection rule produces networks with similarities to Random Geo-

metric Graphs, which are a type of spatially restricted networks with relatively homo-

geneous degree distributions [221]. In fact, the spatial constraints introduced by Eq.

6.3 prevent the network from forming hubs, although in this case this is offset by the

heterogeneity in city density around the globe. In any case, it is clear that the set of

parameters (R, α, γ) have a significant impact on the structure of the resulting network

and, as we show throughout the rest of the chapter, they have an effect in the ability of

the network to produce useful features in the context of a predictive analysis of armed

conflict.

Gravity network

In this case, we consider α > 0 and γ > 0, so that the connection rule is:

aij =

{
1 if (PiPj)

α
d−γij > T

0 if (PiPj)
α
d−γij < T

. (6.4)

This connection rule transcends the purely cost-based geographic network described in

Eq. 6.3, balancing instead both the costs (distance) and the benefits (population) of
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Figure 6.2: Geographic networks derived from the criterion in Eq. 6.3 for different values

of R. We are using the standard gravity law (see Eq. 6.1) with α = 1 and γ = 2 for edge

weights. The colormap represents the weights of each edge in logarithmic normalised

scale so that F̃ij =
log(Fij)−min log(F )

max log(F )−min log(F ) .
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each potential edge. Distant cities now have the chance to connect if their populations

are significant enough to offset the cost involved. Note that in this case, the exponents

(α, γ) determine the balance between cost and benefit and thus the final structure of

the network. An alternative procedure consists on fixing the number of edges Eg in the

gravity layer and simply chose the Eg links with largest flow from all possible connections.

This yields effectively the same structures as the method in Eq. 6.4, but it provides an

easier control over edge density. In fact, this enhanced control over density becomes very

useful when searching for optimal hyper-parameters for the predictive analysis presented

in the rest of the chapter. Also note that in this model the network has the potential

to represent not only land-based routes but also sea or air paths. For this reason, we

relax the restrictions of the previous model and allow continental regions to connect to

islands or other regions separated by sea. Finally note that in this case, we use the same

exponents (α, γ) both for the connection rule and the weights of existing edges.

In Figure 6.3 we show the connection rule in Eq. 6.4 using the edge-density selection

method. The resulting networks promote significantly longer-range edges which leads

to network structures differing from than the previous model. With α = 1 and γ = 2,

the particular configurations in Figure 6.3 still have a significant bias towards distance

costs, specially for lower edge densities (Eg = 7000 and Eg = 1500). Despite this, we

can see hubs forming around highly populous mega-cities, triggering the emergence of

radial structures where peripheral cities connect to their regional hub, which at its turn

connects to other distant regional hubs.

6.3.3 Centrality measures

We derive our set of independent predictors from the networks constructed using the

methods in Section 6.3.2. We compute two types of network features. On the one hand,

we derive a set of standard centrality measures that range from local to global network

scales. These are measures that can be deducted from the topology of interactions

exclusively, i.e. the adjacency matrix of the underlying graphs. On the other hand, we

also compute a set of custom centrality measures that are based on bridgeness centrality.

Standard measures

We consider the following centrality measures:

• Degree, k (Eq. 1.4): counts the number of edges of each city. This quantity is

highly related to the surrounding density of urban settlements.

• Weighted degree, s (Eq. 1.12): also known as strength, counts the number of edges

of each city adjusted by their weight. This quantity is highly related to the gravity

flows surrounding each city.
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Figure 6.3: Gravity-based networks derived from the criterion in Eq. 6.4 for different

values of edge-density Eg. We are using the standard gravity law (see Eq. 6.1) with α = 1

and γ = 2 for both Eq. 6.4 and edge weights. The colormap represents the weights of

each edge in logarithmic normalised scale so that F̃ij =
log(Fij)−min log(F )

max log(F )−min log(F ) .
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• Betweenness, B (Eq. 1.10): by counting the number of shortest paths that cross

each node, it indicates to which extent each city is a bottleneck for efficient global

flows.

• Weighted betweenness, BW : by taking into account gravity weights, shortest paths

are biased towards routes traversing populous cities, even at the cost of covering

larger distances.

• Closeness, C (Eq. 1.8): is the reciprocal sum of the shortest distance form a city

to any other city in the world, and thus it measures how well communicated a city

is with its environment.

• Weighted closeness, CW : again, by taking into account gravity weights, shortest

paths are biased towards routes traversing populous cities, even at the cost of

covering larger distances.

• PageRank, PR (Eq. 1.11): it is based on the eigenvector concept of recursively

defining central nodes as those which are most connected to other central nodes,

but it also takes into consideration the degree of the node (highly linked nodes

are more central) as well as the degree of neighbouring nodes (links from more

parsimonious nodes are more valuable).

• Weighted pageRank, PRW : also takes into consideration the weight of each link in

attributing its importance.

In Figure 6.4, we illustrate the weighted variants of these centrality measures for a

given instance of geographic network.

Bridgeness measures

We include another set of independent network predictors, based on bridgeness central-

ity (see Eq. 3.16) and some extensions of it, based on ethnic and country-boundary

metadata.

• Community bridgeness, cBridg: equivalent to the participation coefficient in Eq.

3.16, it measures the participation of each node in each of the communities in a

modular partition of the network. We use the degree-corrected Stochastic Block

Model (SBM) (see Section 3.1.2) to find such partition and the corresponding

bridgeness centrality.

• Weighted community bridgeness, cBridgW : in this case, we modify the way we

quantify the participation of each node into a given community c (previously de-
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Figure 6.4: Centrality measures in a geographic network derived from Eq. 6.3 R = 400

and gravity law (see Eq. 6.1) weighting with α = 0.5 and γ = 1.5. The colormap repre-

sents centrality of each node (edge in the case of betweenness) in logarithmic normalised

scale.
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fined in Eq. 3.15) so that:

πcW (i) =

∑
j Fijδc,cj∑
j Fij

, (6.5)

where Fij is the gravity flow between cities i and j defined by the gravity law in

Eq. 6.1. We calculate weighted community bridgeness by using Eq. 6.5 in Eq.

3.16.

• Ethnic bridgeness, eBridg: in this case, we seek a bridgeness measure that is based

on a community partition arising from the ethnicity-related metadata described in

Section 6.2.2. We modify Eq. 3.15 to reflect this, so that:

πei =

∑
j aijδe,ej∑
j aij

, (6.6)

where e represents each of the ethnic groups contained in our dataset. We calculate

ethnic bridgeness by using Eq. 6.6 in Eq. 3.16.

• Weighted ethnic bridgeness, eBridgW : we modify the previous definition by in-

cluding gravity weights, so that:

πeW (i) =

∑
j Fijδe,ej∑
j Fij

, (6.7)

where Fij is the gravity flow between cities i and j defined by the gravity law in

Eq. 6.1. We calculate weighted ethnic bridgeness by using Eq. 6.7 in Eq. 3.16.

• International bridgeness, iBridg: in this case, we seek a bridgeness measure that

is based on a community partition arising from the country-membership metadata

of each city. We modify Eq. 3.15 to reflect this, so that:

πsi =

∑
j aijδs,sj∑
j aij

, (6.8)

where s represents each of the states or countries contained in our dataset. We

calculate International bridgeness by using Eq. 6.8 in Eq. 3.16.

• Weighted international bridgeness, iBridgW : again, we modify the previous defi-

nition by including gravity weights, so that:

πsW (i) =

∑
j Fijδc,cj∑
j Fij

, (6.9)

where Fij is the gravity flow between cities i and j defined by the gravity law in

Eq. 6.1. We calculate weighted ethnic bridgeness by using Eq. 6.9 in Eq. 3.16.

In Figure 6.5, we illustrate the weighted variants of these bridgeness measures for a

given instance of geographic network.
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Figure 6.5: Top panel: GeoEPR and GREG datasets, with colour-coded ethnic group

boundaries. Lower panels: Bridgeness measures in a geographic network derived from

Eq. 6.3 R = 400 and gravity law (see Eq. 6.1) weighting with α = 0.5 and γ = 1.5. The

colormap represents centrality of each node in logarithmic normalised scale.
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6.3.4 Predictive modelling

We want to construct a statistical framework that allows us to systematically test whether

the gravity-network predictors described above are useful for forecasting armed conflict.

More precisely, by forecasting we mean producing a set of predictions about events in the

future given estimations from a model trained using events in the past. Note that this

approach moves away from correlation analysis or goodness-of-fit tests, and instead seeks

to maximize predictive performance under a set of reproducible out-of-sample conditions.

By useful predictors, we mean that we want to test whether our network-derived features

lead to an increment in predictive performance with respect to a baseline model that

does not contain them.

Classification task

Our conflict dataset contains great temporal resolution and describes the occurrence of

individual events of political violence. In our case, however, we narrow the scope of our

predictive analysis down to a binary classification task which sets out to predict whether

individual cities will be involved in some armed conflict at some point in the future. For

this, we need to set a criterion that defines whether a city is involved in conflict or not.

We begin by temporally aggregating events in one-year periods, and then fixing an event

threshold TE in the number of events per year: if the number of events NE(i, t) in city

i at year t is greater than some threshold (i.e. NE(i, t) > TE) we declare that a conflict

occurred. Otherwise, the city is declared peaceful.

Classification algorithms

We use two different statistical models in our analysis. On the one hand, we use logistic

regression in the form of a Generalised Linear Model (GLM) with logit link function.

On the other hand, we use the Random Forest (RF) model. Both are useful for the

classification task we have defined above, but taking into account their respective trade-

offs they are used at different stages of the analysis, as we will show below.

Logistic regression is widely used to model binary-outcome dependent variables (such

as the conflict/peace dichotomy defined above) by attributing to each event a probability

following a logistic function. Given a set of binary outcome variables {Yi} and predictors

{x1,i, . . . , xm,i}, the logistic regression model can be expressed in terms of a GLM by

defining the probability of success (pi = E [Yi|x1,i, . . . , xm,i]) as a logit (inverse logistic)

link function [222]:

logit (pi) = ln

(
pi

1− pi

)
= β0 + β1x1,i + · · ·+ βmxm,i (6.10)

The logit model tends to perform well when compared with many other machine learning
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techniques [223], but it has significantly lower computational costs and is robust to over-

fitting. It has the additional benefit of having higher interpretability through its linear

coefficients β0, . . . , βm, which reflect the impact of each predictor on the response variable

when the former have been normalised to a unit range. Given its characteristics, we will

use this model to search for optimal combinations in the network-hyperparameter space

(R, Eg, α, γ) described in Section 6.3.2.

The random forest model [224] is a very popular ensemble learning method based on

decision trees. Our random forest model is implemented as in the original model intro-

duced by Breiman [225]. It uses classification decision trees combined with bootstrap-

aggregating (bagging) and random feature selection [226]. The random forest is a very

versatile model that has been shown to perform better than logistic regression under some

circumstances [227], but there is no guarantee of superior performance in our particular

application. Given its higher computational costs, we will only use the random forest to

benchmark logistic regression once an optimal combination of network-hyperparameters

have been found using GLMs.

Predictive models

Generally speaking, we use two different sets of models. The first set is based on two

simple network-independent metrics that are used in conjunction as a baseline model,

including:

• Conflict history: it has been shown that conflict patterns are significantly persistent

through time and that past accounts of violence in a region are the best predictors

for future conflict [228]. This feature is computed by aggregating all the events

occurred in a city during the corresponding training set.

• Population: we have already shown how our network features fundamentally use

the gravity law, which in our case derives from city population measures (see Eq.

6.1). Therefore, it is reasonable to include city population as a control variable

that helps us discern between purely demographic and network effects.

For clarity, we can express these features in logistic regression terms:

logit(pi) = β0 + βHHistoryi + βPPopi (6.11)

where pi refers to the probability of classifying city i as conflictive, History refers to the

conflict history variable and Pop is the population of the city.

The second set uses network centrality measures and constitutes the bulk of our

research. As described in Section 1.4.3, its features include:

• Standard centrality measures, namely degree, betweenness, closeness and pageRank

(and their weighted representations).
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• Bridgeness measures, namely ethnic, international and community bridgeness (and

their weighted representations).

In terms of the logistic model, these network models can be expressed as

logit(pi) = β0+βHHistoryi + βPPopi + βkki + βBBi + βCCi + βPRPRi+

βeBeBridgi + βiBiBridgi + βcB + cBridgi ,
(6.12)

for the case of unweighted centrality measures; or as

logit(pi) = β0+βHHistoryi + βPPopi + βssi + βBWBW i + βCWCW i + βPRWPRW i+

βeBW eBridgW i + βiBW iBridgW i + βcBW + cBridgW i ,

(6.13)

for weighted centrality measures, as described in Section 1.4.3.

Note that in many situations network features are very heterogeneous and sharply

distributed in space, meaning that one city may have several orders of magnitude higher

centrality than the nodes in its neighbourhood. For this reason, when deriving the final

set of network features we apply a local smoothing filter. This consists on building a

purely geographical network using Eq. 6.3 with R = 300km and, for every node, use

the centrality average in the local subset of nodes consisting of the union of itself and its

neighbourhood.

Data partition and cross validation

Random sampling cross-validation is not applicable in our case, given that we’re dealing

with time series with significant autocorrelation structures. For this reason, we partition

our data into in-sample training sets and out-of-sample evaluating sets, using rolling

forecasting cross-validation [229]. Models are trained using in-sample data and evaluated

through data unseen by the model, emulating forecasting. As illustrated in Figure 6.6, we

use a fixed-size rolling window to define data splits. Note that growing window size can

be used to reflect growth in data availability, but in our case we retain a fixed window in

order to lower computation costs. Furthermore, in the present analysis we use data from

4 consecutive years to train our models, which are then evaluated in the immediately

subsequent year. Potentially, the training windows could have other sizes, and we could

evaluate our models in longer horizons (i.e. more than one year in the future).

For every window in the roll we obtain a predictive performance metric. We average

metrics from every window in order to obtain a single representative performance measure

for our models. We end up selecting the model with those parameters that maximize

the average performance metric.
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Figure 6.6: Illustration of our data partitioning method. Each row represents a dif-

ferent training/evaluating split, with green cells representing training years, grey cells

evaluation years, and white cells years unused.

Performance metrics

There are several performance metrics that can be used for classification tasks. Here we

give an overview of the most important of them, and argue which one is the most suitable

for our particular task. At the most fundamental level, classification performance is

usually measured through the concepts of True Positive (TP), False Positive (FP), True

Negative (TN) and False Negative (FN). The terms positive or negative refer to the

outcome of the binary dependent variable under study: in our case, a positive would

refer to a city that has been declared as in conflict in a given year t and event threshold

TE (i.e.NE(i, t) > TE ), whereas a negative is a city declared peaceful under the same

conditions. The terms true or false refer to whether our classification model produces a

correct or incorrect assessment of an observation being positive or negative.

The simplest set of metrics using the aforementioned terms that underlie any classi-

fication task are the following [223]:

• Precision (Pr):

Pr =
TP

TP + FP
(6.14)
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• Recall, sensitivity or true positive rate (R):

R =
TP

TP + FN
(6.15)

• Specificity or true negative rate (S):

S =
TN

TN + FP
(6.16)

• False alarm or false positive rate (FPR):

FPR = 1− S =
FP

TN + FP
(6.17)

The predictive models used for classification typically yield a probability of an event

being positive, and so all of the measures above are dependent upon the probability

cutoff used for taking classification decision. Precision, recall or specificity can be used

for single cutoff values, but typically they are more informative if their value is used in

combination of all possible probability cutoffs, generating aggregated metrics. Two of

the most well-established from such aggregated metrics are:

• Area Under Receiver-Operator Curve (AUROC): is based on the ROC curve, which

presents the false positive rate FPR on the x-axis versus the recall R on the y-axis

for all probability cutoffs.

• Area Under Precision-Recall Curve (AUPRC): is based on the PR curve, which

presents the recall R on the x-axis versus the precision Pr on the y-axis for all

probability cutoffs.

For a given model, the AUROC reflects a trade-off between the ability to classify positive

outcomes correctly and the cost of generating false alarms. For this reason, AUROC

rewards models that are good at classifying negative outcome events. This becomes

problematic for highly imbalanced datasets such as ours, where the number of peaceful

cities largely outnumbers the ones with conflict. Using AUROC in our analysis would

favour the selection of models that are good at predicting peace, but we are much more

interested in models that predict conflict. On the contrary, the AUPRC only takes into

account positive outcomes, only favouring in our case those models that can accurately

predict conflict. For all of this, we will only use AUPRC in the following analysis to

assess model predictive performance.

Variable importance

The absolute value of the t-statistic is a common measure of variable importance for

General Linear Models. It is simply obtained by dividing the absolute value of a pre-

dictor’s linear coefficient β (see Eq. 6.10) by its estimated standard error, so intuitively



6.4. RESULTS 106

it expresses the magnitude of influence for each predictor on the outcome of the model.

In order to have comparable coefficients that provide meaningful variable importance

measures, it is important to normalize or standardize the predictors. Note that the

absolute value of the t-statistic becomes less significant when there are correlation struc-

tures present amongst the predictors. GLM variable importance is scaled to percentage,

with values between the minimum importance (0 score) and the maximum importance

(100 score).

For the random forest model, we use permutation importance [225]. This is a two-

step approach done for each predictor variable, where we capture the loss of predictive

performance occurred when the internal data of the predictor under study is randomized

and thus its connection with the response variable disappears. For every decision tree in

the ensemble, in the first step we compute the predictive performance (AUPRC in our

case) using the original predictors. In the second step, we sequentially randomize each

predictor and compute the predictive performance in that scenario. For every predictor,

the difference between the two predictive performances is used as a variable importance

indicator for that tree. Permutation importance is finally obtained by averaging variable

importance over all trees in the ensemble. Permutation importance is also scaled to

percentage, with values between the minimum importance (0 score) and the maximum

importance (100 score).

6.4 Results

6.4.1 Baseline models

We begin analysing the predictive performance of the logistic regression baseline model

described in Eq. 6.11. As explained above, the baseline model contains city population

data and past conflict history data. Figure 6.7 shows that keeping a history window of 1

year (i.e. using the events produced in the previous year as predictive feature) produces

the optimal out-of-sample performance for the logistic regression baseline model. We

also compute the baseline random forest using 1-year conflict history and population as

features. As we can see in Table 6.1, baseline GLM performs significantly worst than

baseline random forest (-11.31%).

6.4.2 Geographic network models

Here we study the geographic network model derived from Eq. 6.3. We explore the

performance of this model in two steps of increasing complexity. The first consists on

using unweighted networks, so that the gravity law in Eq. 6.1 is not at all used to

derive network features. The second step consists on weighting the network using the
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Figure 6.7: Grid search for the conflict history window size that maximizes out-of-sample

AUPRC for the baseline GLM model.

Model AUPRC ∆RFAUPRC

Baseline RF 0.3252366 -

Baseline GLM 0.2884589 -11.30796%

Table 6.1: Predictive performance (AUPRC) for the basline random forest model (Base-

line RF) and the baseline logistic regression model (Baseline GLM). ∆RFAUPRC is

calculated as the difference between each model’s AUPRC and the random forest base-

line model.

gravity law. This allows us to differentiate the predictive performance arising purely from

network effects, from that arising from the convolution of the network with a gravity law.

Unweighted network

Here we explore the unweighted geographic network model, described in terms of the

logistic regression in Eq. 6.12. In this case there’s only one network hyperparameter,

namely the connectivity radius R. As mentioned above, the logit GLM is much less

computationally costly. For this reason, we use it to search for the hyperparemter value

in the grid R ∈ [100, 1000]km which maximizes out-of-sample prediction performance as

measured by AUPRC. We use a step of 100km for our grid search, which provides enough

resolution whilst keeping the computational costs tractable. In fact, for every value of

R we need to derive a network and compute its centrality measures, which becomes

more costly as R increases due to the increase in edge density. Furthermore, for every

network, we train and test the model in Eq. 6.12 using every rolling window available

as explained in Section 6.3.4.

As shown in Figure 6.8, we find a clear AUPRC-maximizing model at R = 300km.

We can see that in this case there is an increase in AUPRC of 18.63% with respect to

the baseline model. The coefficients of the optimal model are shown in Table 6.2. Using

such coefficients we can see which features have a positive effect on violence-propensity

(history, population, betweenness, closeness, ethnic and international bridgeness) and
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Figure 6.8: Grid search for the unweighted geographic network model. We show the

AUPRC-improvement of the model in Eq. 6.12 with respect to the logistic regression

baseline model for different values of the connectivity radius R.

which have a negative effect (degree, pageRank and community bridgeness). As described

above, we can also use this coefficients to derived variable importance: Figure 6.9 shows

that conflict history is the largest contributor to the model, but some network metrics

such as betweenness and international bridgeness also have a significant contribution in

predicting conflict patterns through logistic regression.

Once the optimal network hyperparameter has been located, we can apply the more

computationally costly random forest model for this specific network at R = 300km

using the same features as in Eq. 6.12. Table 6.3 summarises the predictive performance

of the best logistic regression and random forest models at R = 300km, and shows the

increase or decrease of performance of each of them with respect to the random forest

baseline model. The optimised network-based GLM performs better than the random

forest baseline (5.21%). However, the optimised network-based random forest performs

significantly better than the GLM model and than the random forest baseline (12.62%).

Finally, we use the permutation importance method described in 6.3.4 for the optimal

random forest at R = 300km. The results are shown in Figure 6.10. In this case, the

variables with the highest impact on the predictive performance of the random forest are

conflict history, degree, betweenness and ethnic bridgeness, although the rest of network

variables also seem to have a non-negligible effect.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.2850 0.2101 -34.68 0.0000

Lag is Conflict 6.7748 0.1772 38.23 0.0000

pop 4.1189 1.2134 3.39 0.0007

degree -8.6870 3.0214 -2.88 0.0040

betweenness 3.1855 0.3818 8.34 0.0000

closeness 2.2491 1.9656 1.14 0.2525

pageRank -6.2189 2.2693 -2.74 0.0061

eBridg 4.4427 1.6443 2.70 0.0069

iBridg 6.0354 1.4321 4.21 0.0000

cBridg -1.8100 1.1187 -1.62 0.1057

Table 6.2: Model coefficients for the logistic regression GLM maximising AUPRC for the

optimal unweighted geographic network with R = 300 km.
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Figure 6.9: Variable importance plot for the out-of-sample AUPRC-maximising logistic

model (Eq. 6.12) in the weighted geographic network with R = 300 km. As described in

Section 6.3.4, we use the GLM t-statistic of each coefficient as a measure of importance.
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Figure 6.10: Variable importance plot for the out-of-sample AUPRC-maximising random

forest model in the weighted geographic network with R = 300 km. As described in

Section 6.3.4, we use AUPRC-decrease through permutation as a measure of importance

of each variable.

Model AUPRC ∆RFAUPRC ∆GLMAUPRC

uwRF (R=300km) 0.3662935 12.62371% 26.98291%

uwGLM (R=300km) 0.3421942 5.213935% 18.62841%

Table 6.3: Predictive performance (AUPRC) for the optimal unweighted-network random

forest (uwRF) at R = 300 km, and the optimal unweighted-network logistic regression

GLM (uwGLM) at R = 300 km. ∆RFAUPRC is calculated as the difference between

each model’s AUPRC and the random forest baseline model, whereas ∆GLMAUPRC is

the difference with the logistic regression baseline model.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.4871 0.1595 -46.95 0.0000

Lag is Conflict 6.6975 0.1849 36.23 0.0000

pop 3.4367 1.4745 2.33 0.0198

degree W -3662.3440 1935.6889 -1.89 0.0585

betweenness W 3.8358 0.3258 11.77 0.0000

closeness W 1436.2946 3884.5762 0.37 0.7116

pageRank W -8.4657 1.5455 -5.48 0.0000

eBridg W -0.6055 0.8263 -0.73 0.4636

iBridg W 6.0985 1.1433 5.33 0.0000

cBridg W -1.1317 0.6002 -1.89 0.0594

Table 6.4: Model coefficients for the logistic regression GLM maximising AUPRC for the

optimal weighted geographic network with R = 700 km, α = 0.8 and γ = 3.

Weighted network

Here we explore the weighted geographic network model, described in terms of the logistic

regression in Eq. 6.13. In this case there are three hyperparameters, namely the connec-

tivity radius R, and the gravity population exponent α, and gravity distance exponent

γ. Again, we use logistic regression to search for the out-of-sample AUPRC-maximising

hyperparemter values, which in this case are constrained to the grid R ∈ [100, 1000] km,

α ∈ [0, 1] and γ ∈ [0, 5].

As shown in Figure 6.11, in this case we identify an AUPRC-maximizing model at

R = 700 km, α = 0.8 and γ = 3. We can see that in this case there is an increase in

AUPRC of 20.54% with respect to the baseline model. The coefficients of the optimal

model are shown in Table 6.4. Note how in this case, some coefficients (weighted degree

and closeness) are much larger in absolute value than the rest. This is due to the fact

that gravity weights at α = 0.8 and γ = 3 produce large imbalances amongst cities for

these centrality measures. Using such coefficients we can see which features have a posi-

tive effect on violence-propensity (history, population, weighted betweenness, ethnic and

international bridgeness) and which have a negative effect (weighted degree,closeness,

pageRank and community bridgeness). As before, we can use these coefficients to de-

rived variable importance: Figure 6.12 shows that conflict history is again the largest

contributor to the model, but weighted betweenness, pageRank and international brid-

geness also have a significant contribution in predicting conflict patterns through logistic

regression.

Having derived the optimal hyperparameters, we can apply the random forest model

for this specific network using the same features as in Eq. 6.13. Table 6.5 summarises

the predictive performance of the best logistic regression and random forest models at
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Figure 6.11: Grid search for the weighted geographic network model. We show the

AUPRC-improvement of the model in Eq. 6.13 with respect to the logistic regression

baseline model for different values of the connectivity radius R (panels), population

exponent α (x-axis) and distance exponent γ (y-axis).
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Figure 6.12: Variable importance plot for the out-of-sample AUPRC-maximising logistic

model (Eq. 6.13) in the weighted geographic network with R = 700 km, α = 0.8 and

γ = 3. As described in Section 6.3.4, we use the GLM t-statistic of each coefficient as a

measure of importance.

R = 700 km, α = 0.8 and γ = 3, and shows the increase or decrease of performance of

each of them with respect to the random forest baseline model. The optimised weighted

network GLM performs better than the random forest baseline (6.91%). However, the

optimised weighted network random forest performs again significantly better than the

GLM model and than the random forest baseline (15.43%). Finally, we also use the

permutation importance method described in 6.3.4 for the optimal weighted network

random forest. The results in Figure 6.13 show that all weighted centrality measures

(except community bridgeness) have an important effect on predictive performance.

Model AUPRC ∆RFAUPRC ∆GLMAUPRC

wRF (R=700,α = 0.8, γ = 3) 0.3754271 15.43199% 30.14924%

wGLM (R=700,α = 0.8, γ = 3) 0.3477251 6.914509% 20.54581%

Table 6.5: Predictive performance (AUPRC) for the optimal weighted-network random

forest (wRF) at R = 700 km, α = 0.8 and γ = 3, and the optimal weighted-network

logistic regression GLM (wGLM) at R = 700 km, α = 0.8 and γ = 3. ∆RFAUPRC is

calculated as the difference between each model’s AUPRC and the random forest base-

line model, whereas ∆GLMAUPRC is the difference with the logistic regression baseline

model.
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Figure 6.13: Variable importance plot for the out-of-sample AUPRC-maximising random

forest model in the weighted geographic network with R = 700 km, α = 0.8 and γ = 3.

As described in Section 6.3.4, we use AUPRC-decrease through permutation as a measure

of importance of each variable.

6.4.3 Gravity network models

We now move the analysis towards the gravity network model derived from Eq. 6.4.

As described before, we use the number of edges Eg as hyperparameter, as well as the

gravity law exponents α and γ. Given that in this case the creation of edges in the

network and their weights are dependent on the same gravity law, we directly proceed to

study the weighted network model. As before, we use logistic regression to search for the

out-of-sample AUPRC-maximising hyperparemter values in the grid Eg ∈ [7000, 130000],

α ∈ [0, 1] and γ ∈ [0, 5].

As shown in Figure 6.14, we find an AUPRC-maximizing model at Eg = 49090,

α = 0.8 and γ = 3. We can see that in this case there is an increase in AUPRC of 24.07%

with respect to the baseline model. The coefficients of the optimal model are shown in

Table 6.6, and the variable importance metrics are shown in Figure 6.15. Weighted

betweenness, community and international bridgeness and pageRank have significant

contribution in predicting conflict patterns through logistic regression.

Again, we fit a random forest model to the optimal set of hyperparameters. Table

6.5 summarises the predictive performance of the best logistic regression and random

forest models at Eg = 49090, α = 0.8 and γ = 3. Interestingly, we can see that in this

case there is a much lower performance difference between the GLM and the random

forest. The random forest performs slightly worst in the gravity network than in the
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Figure 6.14: Grid search for the weighted gravity network model. We show the AUPRC-

improvement of the model in Eq. 6.12 with respect to the logistic regression baseline

model for different values of the connectivity radius R.
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.3804 0.1177 -62.72 0.0000

Lag is Conflict 6.5721 0.1883 34.90 0.0000

pop 4.6970 2.3909 1.96 0.0495

degree W -202.9371 168.3299 -1.21 0.2280

closeness W -2032.3356 3497.5063 -0.58 0.5612

betweenness W 9.4505 0.9476 9.97 0.0000

pageRank W -25.7742 5.8431 -4.41 0.0000

eBridg W 1.1110 3.3249 0.33 0.7383

iBridg W 12.0320 2.0374 5.91 0.0000

cBridg W -13.1164 2.1365 -6.14 0.0000

Table 6.6: Model coefficients for the logistic regression GLM maximising AUPRC in the

weighted gravity network with Eg = 49090, α = 0.8 and γ = 3.
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Figure 6.15: Variable importance plot for the out-of-sample AUPRC-maximising logistic

model (Eq. 6.13) in the weighted gravity network with Eg = 49090, α = 0.8 and γ = 3.

As described in Section 6.3.4, we use the GLM t-statistic of each coefficient as a measure

of importance.
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Figure 6.16: Variable importance plot for the out-of-sample AUPRC-maximising random

forest model in the weighted gravity network with Eg = 49090, α = 0.8 and γ = 3. As

described in Section 6.3.4, we use AUPRC-decrease through permutation as a measure

of importance of each variable.

weighted geographic network (12.24% over RF baseline). On the contrary, the GLM

performs significantly better in the gravity network than in the weighted geographic

network (10.04% over RF baseline). Finally, we use permutation importance again for

the optimal gravity network random forest. The results are shown in Figure 6.16. For

this gravity-network case, all weighted centrality measures (except closeness) have higher

importance scores than in the geographic networks studied before.

Model AUPRC ∆RFAUPRC ∆GLMAUPRC

wRF (Eg = 49090,α = 0.8, γ = 3) 0.3650467 12.24034% 26.55067%

wGLM (Eg = 49090,α = 0.8, γ = 3) 0.357905 10.04451% 24.07488%

Table 6.7: Predictive performance (AUPRC) for the optimal weighted-network random

forest (wRF) at Eg = 49090, α = 0.8 and γ = 3, and the optimal weighted-network

logistic regression GLM (wGLM) at Eg = 49090, α = 0.8 and γ = 3. ∆RFAUPRC is

calculated as the difference between each model’s AUPRC and the random forest base-

line model, whereas ∆GLMAUPRC is the difference with the logistic regression baseline

model.



6.5. DISCUSSION 118

6.5 Discussion

This chapter presents evidence and results for a disaggregated network-driven forecast-

ing system of political violence events and armed conflict. The system is based on the

construction of networks that connect a set of nodes representing major cities around the

world. Connections in these networks abstractly represent interactions amongst cities,

which may take the form of commercial exchange, population commutes, immigration,

cultural relations or infrastructure such as roads and flight routes, amongst other fac-

tors. Such networks are then used to derive centrality measures that are attributable as

features of each city in our dataset. These features allow to construct predictive mod-

els, which are then evaluated out-of-sample using performance metrics suitable for our

classification task, namely predicting conflict prevalence amongst the cities under study.

Our predictive models are based on two fundamental hypothesis, namely: (i) that

complex network analysis is a useful mathematical tool for representing, at the city level,

socio-geographical data relevant for conflict prediction; (ii) that meaningful centrality

measures can be derived from such complex networks, and used as statistical features

with significant predictive performance. Below we discuss to which extent such hypoth-

esis are validated from our analysis, and what steps can be taken in the future to refine

and generalise the framework exposed above.

Regarding the first hypothesis, we have shown in Section 6.3.2 how interaction net-

works can be inferred solely using data on the geolocation of cities and their population,

using a combination of connection rules (see Eqs. 6.3 and 6.4) and the gravity law (see

Eq. 6.1). Importantly, the topology of these networks depends on the value of three

hyperparameters: one of them governs the density of edges in the network, while the

other two are associated with the gravity law and control the distance cost and popu-

lation benefit terms respectively. This network framework represents a methodological

step forward for conflict prediction that bridges together spatial disaggregation on the

one hand, and systemic generalisation of dyadic analysis on the other.

With reference to the second hypothesis, we have also shown how standard centrality

measures can be used to rank cities by importance under various criteria (see Section

6.3.3). Such criteria may refer to local features such as the number of interactions (related

to the presence of populous settlements in the proximity of a city) or global features such

as how close to important settlements one city is, or how strategic it is in terms of efficient

shortest-path flows. In addition, we have proposed three novel centrality measures based

on the concept of bridgeness. One of them uses topological communities derived from

the Stochastic Block Model (see Section 3.2), and the other two use metadata-driven

communities from countries and ethnic groups respectively.

In order to test the predictive performance of these centrality measures we have used

baseline models to quantify the relative improvement provided by network features. Such
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baseline models use conflict history and population as only features. Regarding conflict

history, we have shown in Figure 6.7 how using the history of the previous year brings the

highest predictive performance. Table 6.1 summarises the performance of both a logistic

regression (0.288 AUPRC) and a random forest (0.325 AUPRC) baseline models.

It is not easy to put these performance values in context, given that the present work

is (to the best of the author’s knowledge) the first predictive study done at the city level

of analysis. However, we can use recent scores published by the ViEWS project [228],

which is one of the most advanced conflict prediction systems to date. ViEWS uses two

levels of analysis: at country level, their baseline model (which only considers conflict

history, but not population) scores 0.675 AUPRC; at grid level, which studies conflict

patterns at quadratic grid cells that cover a resolution of 0.5 x 0.5 decimal degrees, their

baseline model scores 0.225 AUPRC. The difference in baseline scores comes intuitively

from the fact that the coarser the level of analysis, the easier it is for a model to classify

conflictive zones. Thus it is reasonable to see that our city-network baseline, although

slightly coarser than the grid, scores similarly to it.

Beyond the particular baseline performance values, an interesting way to compare

our models with others (e.g. ViEWS) consists on reporting performance improvements

relative to their baseline. For instance, the ViEWS model, which combines a sophisti-

cated ensemble of constituent models using logistic regression and random forest based

on a large variety of predictors (related to natural geography, social geography, economy

and social unrest), reports a ∼ 2% improve at country level and a ∼ 23% improve at

grid level, relative to their respective baselines.

Focusing on our study, Table 6.3 shows how our simplest unweighted geographical

network model (see Section 6.4.2) produces a 18.62% improvement when using logistic

regression, and a 12.62% improvement when using random forests. When adding gravity

weights to such geographic network, these improvements scale up to 20.54% for logistic

regression and 15.43% for random forest. For the case of gravity-based networks, the

baseline improvements are 24.07% for logistic regression and 12.24% for random forest.

One conclusion to derive from the results above is that geolocation alone is one of

the most important factors driving the predictive performance of our networks. In fact,

the unweighted geographical network only uses the location of cities to make predictions

and still captures most predictive improvements — the weighted geographical network

only scores 1.75% (logistic regression) and 2.46% (random forest) higher than the un-

weighted in absolute AUPRC terms. Note, however, that the gravity law remains an

important factor influencing conflict prediction. In the gravity-based network model, for

instance, we classify conflictive cities using logistic regression up to 4.64% better than

the unweighted geographic network in absolute AUPRC performance.

Another interesting conclusion, drawn by looking at the regression coefficients of

the logistic models, is that some network features seem to have a consistently positive
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effect on conflict whereas some others have a negative impact. Considering only GLM

coefficients with high significance (i.e. the p-value Pr(> |z|) < 0.05) in Tables 6.2, 6.4

and 6.6, we can see that degree and pageRank (and their weighted versions) have negative

coefficients, meaning that cities with higher degree and pageRank centrality (i.e. cities

with high connectivity and connected to important cities) will be less prone to conflict.

On the contrary, given their positive coefficients, betweenness, international bridgeness

and ethnic bridgeness will tend to increase the probability of observing conflict in a

city. This suggests that being located in geostrategic crossroads for global flows (e.g.

for international trade or migration) and being connected to a larger variety of borders

and ethnic groups are risk factors for cities to experiment conflict. In fact, our two

bridgeness measures can be related to some extent with existent predictors in social

geography: distance to and number of borders have been regarded as a risk factor since

the early days of the field [176], [230], whereas measures related to ethnic diversity have

also been frequently studied [192], [231]. Also note that community bridgeness is not

significant enough in any of the logistic regression t-tests, so no judgement on its net

impact can be made.

Besides the directionality of each predictor, we can also conclude that some network

features are more important than others in terms of predictive performance. The most

important centralities are betweenness, degree, pageRank, international and ethnic brid-

geness, although their exact ranking depend on the particular network and statistical

model used. In most cases, however, closeness and community bridgeness seem to have

smaller contributions.

In terms of future extensions of this framework, there are four main branches with

significant room for improvement. The first branch relates to composability and levels

of analysis: our city-level analysis could be simply projected down to grid levels such

as those used by ViEWS [228] or aggregated up to the country level, providing a path

towards integration and benchmarking with existing conflict prediction systems. The

second branch relates to the use of ensemble prediction methods. We have provided a

variety of models: unweighted, weighted, geographic and gravity-based networks; logistic

regression, and random forest statistical models. As a consequence, we have produced

different sets of predictions, which could be calibrated and combined using ensemble

Bayesian model averaging techniques [232], in order to extract the best contributions from

each constituent model. The third branch concerns network construction: using real-

world data (e.g. for global infrastructure or global trading patterns) we could reconstruct

our networks directly from real world observations, instead of using gravity law inference.

The fourth branch refers to the ability of the model to predict new conflicts: currently

we are measuring predictive performance for both new and recurrent conflicts, but the

UCDP-GED dataset [191] contains information distinguishing both types of conflict.



Chapter 7

Outlook and Conclusions

The first part of this thesis opens with three chapters containing theoretical methods that

investigate the emergence of unexpected dynamical behaviour as a result of an interplay

with structural properties in complex systems. Chapter 2 is set among the framework

of opinion dynamics, where we have shown a parsimonious mechanisms giving rise to

the emergence of leadership and herding behaviour in a population of interacting agents

of a voter model. These mechanisms consist on a strong separation of activity time-

scales coupled with a hierarchical organization of the influence exerted by some agents

on others. Herding behaviour and leadership is expressed dynamically by large groups

of the population quickly adopting the opinion of a small minority of leading agents,

producing observable sharp shifts in global opinion that are much more pronounced

than the typical diffusive fluctuations observed in voter models.

Importantly, our results are very general and apply on a wide variety of real-world

social systems. For instance, we argue that any social network containing core-periphery

structures can potentially express self-organised herding behaviour if the right circum-

stances apply. These circumstances basically consist on a coupling between topological

features (e.g. the number of connections) and the popularity and activity of agents.

These are assumptions likely to occur in systems such as the stock market or online so-

cial networks, where feedback loops exist reinforcing the coupling between connectivity

and social influence. We conjecture that herding behaviour could shed light in emerging

social phenomena such as stock market crashes or rapid opinion polarisation in social

networks. Interesting empirical studies of our results could be conducted using online

social networks such as Twitter, where topology can be easily inferred by friendship, like

and retweet structures, and the opinion state of nodes can be retrieved using sentiment

analysis.
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Communities are an essential feature present in both natural and human-made com-

plex networks. In Chapter 3 we have reviewed one of the most successful generative

models for modularity, the Stochastic Block Model (SBM), making use of the Bayesian

approach to community detection. The SBM works well for defining and finding com-

munities in networks, but does not explain the different connectivity patterns amongst

modules. We have shown how bridgeness centrality is a useful measure to determine how

important a node is, in terms of its capacity to mediate and integrate different commu-

nities. Combining both ideas, we have introduced the SBM with bridgeness (SBMb), a

generative model that allows us to build networks with arbitrary community structures

and arbitrary bridgeness distributions.

In fact, the development of the SBMb has been an instrumental step to test hypothesis

on the interplay between bridgeness and functional behaviour. In particular, we have

asked the question of whether the position of a node with respect to the community-

interfaces present in the network has an effect on its dynamical behaviour. In other

words, we have looked for a universal functional effect induced by bridgeness. For this,

we have used the Potts model of spins and the Kuramoto model of oscillators. These

two models have different applications and descriptions, but both reveal a very similar

conclusion with regards to bridgeness. Namely, that bridgeness induces what we could

call dynamical disorder: in the case of Potts, bridgeness prevents spins to settle down

to a single state but instead keep on flipping ad infinitum; in the case of Kuramoto,

bridgeness prevents oscillators to synchronise normally. Additionally, we have shown how

bridgeness induces special patterns in the Laplacian matrix of the network, producing

localisation phenomena, where nodes with similar bridgeness tend to exhibit similar

Laplacian eigenvector components. This observation adds generality to our results, given

that the shape of the Laplacian matrix has important effects on the dynamical processes

on networks. Further work should be done to illustrate the effects of bridgeness on other

paradigmatic dynamical processes such as epidemic spreading models.

These observations show a clear interplay between topology and dynamics in modular

networks. We use such interplay to define the concept of dynamical centrality. The idea

is that when we know how a topological measure (in our case bridgeness) relates to a par-

ticular dynamical behaviour (in our case dynamical disorder in spins or oscillators), we

can use functional observations to infer topological centrality even when topology itself

cannot be observed. Further work could be done to understand to which extent dynam-

ical centrality can be extrapolated to other interplaying factors between topology and

dynamics. We finish Chapter 3 illustrating how bridgeness and dynamical centrality are

all useful measures to dismantle both synthetic and real-world modular networks, even

when the underlying topology is unknown. Further empirical tests on the dismantling

performance of dynamical centrality would be useful to confirm our results.
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In Chapter 4, we have moved our analysis towards weighted networks. In particular,

we have asked the question of how does uncertainty in weights affect critical onsets of

phase transitions in dynamical systems occurring on such fluctuating networks. Uncer-

tainty in weights is pervasive in many network settings, either due to measurement error

or due to some intrinsic behaviour that generates fluctuations in interaction strength

amongst nodes. We have presented a mathematical framework that can analytically

propagate uncertainty from weights to what we call critical range, which is the uncer-

tainty in the critical threshold.

We have used such analytical framework to study how uncertainty propagation is

affected by network structure. In particular, we have focused in the effects of degree

heterogeneity. We have found that scale-free networks with exponent γ ' 3 maximise

noise amplification, a result which may shed light to existing evolutionary arguments on

the prevalence of scale-free networks with such exponent in the real world. In fact, it can

be argued that having a wider critical range provides a network with larger adaptability

in that, by producing very small changes in the weights of its constituents, the collective

behaviour of the network can change dramatically in response to evolving environmental

conditions.

The second part of the thesis contains two research applications of network analysis

to real-world systems. We expose the first of such data studies in Chapter 5. The

experimental setting is that of the rail network of London and its surrounding area,

and our general aim has been to show how the interplay between topological features

of this infrastructure and the human mobility patterns occurring on top of it affect the

performance of this particular transport network. We have proposed to first measure

the stability and robustness of the network from a theoretical point of view, and then

compare our measures with empirical data on the performance of train operators on such

network.

We have approached the measurement of stability and robustness drawing novel par-

allels between ecological networks and rail networks. In particular, we have built on

well-known results from ecology regarding the abundance of feedback loops and its re-

lation to lack of stability. In fact, by studying the distribution of feedback loops in

our rail network, we have found that their abundance is related to lower performance

metrics. Our results could be further generalised using larger datasets concerning entire

countries, and other network metrics could be used to asses theoretically the stability

and robustness of such networks. Larger datasets could also help moving our analysis

from correlations to out-of-sample predictions, increasing the impact for policy-making

and infrastructure planning of our results.
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Finally, Chapter 6 presents perhaps the most ambitious results of this thesis. Here we

have developed a theory of armed conflict based on spatial networks of urban settlements

interacting across the globe. In its essence this is a theory that studies, at the city level

of analysis, the effect of network-driven features of social geography on the likelihood of

developing political violence. In methodological terms, we have proposed two network

models that can be used to infer the patterns of interactions of cities around the world:

one of them uses purely geographical proximity arguments to derive the connectivity

of the network, whereas the other uses the social gravity law for the same purpose.

From these networks, we have derived several centrality measures that inform us on how

geostrategic each city is under different graph-theoretical criteria. It is important to note

that, beyond standard centrality measures, we use a set of bridgeness-related measures

that are intended to extrapolate the results of Chapter 3 to this particular case. After

presenting the theory for deriving such network features, we have proposed a predictive

framework to test their forecasting performance using one of the most comprehensive

datasets containing armed conflict events occurred globally in the last thirty years. In

order to isolate the predictive power of the network approach, we have used autoregressive

baseline models to benchmark against full statistical models that use our centrality

measures as features.

Out-of-sample predictions show a very significant increase deriving from the inclusion

of network information in conflict forecasting models. We discuss several extensions of

the statistical modelling framework and justify how our current work could be easily

extended to higher or lower levels of analysis such as the country-level or the spatial grid-

level. These extensions would make our model compatible with existing sophisticated

bayesian ensemble prediction systems that are currently being used to inform policy-

making with regards to international relations and peace-keeping. Further extensions

include building a city-network that changes with real-world data dynamically, which

would allow studying Granger-causality in relation to conflict events. All in all, we

conjecture that in the future geographical network analysis can be an important tool to

study the stability of the international relations system, perhaps developing into urban-

planning methodologies at the global scale.

The work presented here takes us, at best, a very small step closer to a mathematical

understanding on how some social systems work. An important collateral outcome of the

thesis, however, is the illustration that the methods of network science, combined with

the extraordinary availability of human-generated data, are bringing the social sciences

to a new paradigm of understanding and applicability. By using statistical mechanics and

complex networks, our results (especially from Chapters 3 and 4) enjoy greater generality

because they can be easily interpreted and applied in many different scientific areas. We
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conclude remarking that in the subjective opinion of the author, the universality and

interdisciplinary mindset required for the study of complex networks, altogether build

one of the most rewarding and exciting experiences a scientist can aspire to today.
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