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Abstract

We reconsider the classic puzzle of why election turnouts are persis-
tently so high even though formal analysis strongly suggests that rational
agents should not vote. If we assume that voters are not making sys-
tematic mistakes, the most plausible explanation seems to be that agents
receive benefits from the act of voting itself. This is very close to assum-
ing the answer, however, and immediately begs the question of why agents
feel a warm glow from participating in the electoral process. In this pa-
per, we approach the question from an evolutionary standpoint. We show
for a range of situations, that public-spirited agents have an evolutionary
advantage over those who are not as public-spirited. We also explore con-
ditions under which this kind of altruistic behavior is disadvantageous to
agents. The details depend on the costs of voting, the degree to which
different types of agents have different preferences over public policies and
the relative proportions of various preference types in the population, but
we conclude that evolution may often be a force that causes agents to
internalize the benefits their actions confer on others.



1. Introduction

Any rational voter in a large society should realize that the probability that his

vote will have an effect on the outcome of an election is negligible. Many classical

writers in voting theory, Downs (1957) and Tullock (1968) for example, have argued

that it simply does not pay to a citizen to show up at the polls. Even if a voter

cares passionately about the outcome, the odds that his vote will be pivotal are so

small that the expected benefit of casting a ballot would always be offset by even

minor costs of voting. It is difficult to reconcile this with the fact that more than

one hundred million Americans voted in the most recent presidential election.

Not surprisingly, there have been many attempts to provide a theory of voting

that comports with actual observations. Ferejohn and Fiorina (1974), for example,

suggested that voters might not be fully informed and so may not be able to calculate

the probability that their vote would make a difference. They noted that this

precludes voters from making an expected utility calculation and proposed instead

that voters might be using minimax strategies. Since having voted when an agent

ends up not being pivotal involves only a small regret (the cost of voting) but not

having voted when an agent would have been pivotal may involve very large regret,

minimax agents will generally choose to participate in elections.

Ferejohn and Fiorina’s argument has the virtue that it does provide a founda-

tion for rational voting. It is open to criticism, however on at least two grounds.

Most obviously, it calls for agents to choose strategies in an extremely conservative

and probably unrealistic way. For example, a minimax agent should never cross a

street because it is possible that he might be hit by a car. More fundamentally,

Ferejohn and Fiorina ignore the fact that the benefit of voting to any given agent

depends on the actions of all of the other agents. While the expected utility ap-

proach can also be criticized for taking the probability a voter will be pivotal as

exogenous and not depending on strategic interaction among voters, Ferejohn and

1



Fiorina go one step further. In suggesting that agents follow a minimax strategy,

they are asserting that voters give no consideration at all to the strategic choices of

others. It may be possible to justify this as an approximation for large economies,

but it is at least a bit troubling to build a theory of voting on a foundation of

strategic myopia.

More recently, several authors have reformulated the problem of why people

vote to allow for strategic interaction between voters. For example, Palfrey and

Rosenthal (1983) consider a model in which agents are completely informed about

costs of voting and preferences of other voters. These agents play a noncooperative

game in which they can either vote or abstain. They show that in some equilibria,

there are substantial turnouts even for large economies. Unfortunately, these high

turnout equilibria seem to be fragile, and as Palfrey and Rosenthal point out, the

assumption of complete information is rather strong for large populations. The work

of Palfrey and Rosenthal is partly based on the pioneering work of Ledyard (1981).

There, and in a 1984 paper, Ledyard first explores the idea of strategic interaction

among voters. In contrast to Palfrey and Rosenthal, Ledyard considers the case of

voters who have incomplete information about the voting costs and preferences of

their fellow citizens. Ledyard’s key result is that equilibria with positive turnouts

exist. Unfortunately, Palfrey and Rosenthal (1985) were able to show that when

the electorate gets large, the cost of voting would again be the dominant factor for

rational voters in Ledyard’s model and so turnouts would be low. These results are

reinforced by the recent work of DeMichelis and Dhillon (2001) in the context of a

complete information learning model.

To summarize, although the game theoretic approach taken by Ledyard, Pal-

frey and Rosenthal do suggest that turnouts will be positive in many cases, their

approach still does not explain what we actually observe. What is missing is a model

in which agents have incomplete information and which at the same time exhibits

robust equilibria in which the turnouts are substantial, even for large populations.
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Riker and Ordeshook (1968) propose quite a different explanation of why it

could be rational to vote. They suggest that agents might actually get utility from

the act of voting itself. They show that if agents feel a sense of civic duty that

is satisfied by going to polls, then large positive turnouts are not at all surpris-

ing regardless of the size of the electorate. This seems quite plausible, and the

recent literature provides both empirical and experimental evidence that agents do

indeed feel a “warm glow” from public-spirited activity. See Andreoni (1995), and

references therein.2 Despite the intuitive appeal of the civic duty explanation, it

is somewhat disappointing from a theoretical standpoint. Saying that agents vote

because they like to vote is essentially assuming the answer. As Andreoni (1990)

points out in a somewhat different context, making such an assumption tends to

rob the theory of its predictive power.

This provides the starting point for the current paper. Our main objective

is to address the question of why agent might indeed have such a sense of civic

duty. Is there some sense in which public-spiritedness in the context of voting is

beneficial to agents? If so, to what degree of altruism is optimal? Fundamentally,

we are asking how agents might come to have preferences that incorporate the

welfare of others. We approach this question from an evolutionary standpoint. We

show, for a range of situations in a voting game, that public-spirited agents have an

evolutionary advantage over those who are not as public-spirited. We also explore

when this kind of altruistic behavior is disadvantageous to agents. In general, we

find that agents who like to vote will have an evolutionary advantage when voting

is not too costly compared to the potential benefits of winning elections, and when

the population of like-minded voters is large enough that winning an election is

2 In an interesting paper, Kan and Yang (2001) explore an alterative explanation. They argue that
agents get utility from voting because it allows them the pleasure of expressing themselves. they
support this view with evidence for the 1988 US presidential elections. If “expressive voting” is in
fact the reason that agents choose to turn up at the polls, our results would still make sense, but
would need to be slightly reinterpreted. We would simply conclude that wanting to express one’s
opinion confers an evolutionary advantage rather than being public spirited per se.
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a realistic possibility. The broader message is that evolution may be a force that

causes agents to internalize the benefits their actions confer on others, at least to

the extent that they all share a common set of preferences.

The plan of this paper is the following. In section 2 we describe the model.

In section 3, we explore how the cost of voting, the size of the opposition and

the degree to which preferences over public policies differ between groups affect

the evolutionary benefits of voting. In section 4, we connect these results to the

literature on evolution and altruism more generally and discuss possible extensions.

Section 5 concludes.

2. The Model

We consider a dynamic economy with continuum of agents uniformly dis-

tributed on the interval [0,1]. Agent are divided into two types which we will

designate H and L for “high” and “low” type voters, respectively. Two factors

distinguish these types: preferences over public policies and propensities to vote.

We denote the share of each type in the population by Sj . Since the population is

divided between these two types we have

Sj ∈ [0, 1] for j = H,L, and SH = 1− SL.

Each period, agents vote on a randomly generated public proposal.3 These proposals

produce a cost or benefit for each type of agent that is uniformly distributed on

the interval [−1, 1]. We assume that all agents of the same type have the same

preferences over proposals, but that preferences between the types differ. Formally,

3 Much of this model is a modification of Conley and Temimi (2001).
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we denote the benefit that agents of type H receive from a proposal in any given

period as a random variable BH where:

BH ∼ U(−1, 1).

We will allow the preferences of the two types to vary between perfectly corre-

lated and perfectly independent.4 Thus, we denote the benefit that agents of type

L receive from a proposal in any given period as a random variable BL where

BL = αBH + (1− α)UI

UI is an independent uniform distribution on the interval [−1, 1], and α ∈ [0, 1]

is the preference correlation parameter. More generally, the correlation coefficient

between BH and BL is:

Corr(BH , BL) =
α√

1− 2α+ 2α2
.

We denote the propensity to vote of the two types by VH and VL where

Vj ∈ (0, 1) for j = H,L.

We also define the relative public-spiritedness of the two types as:

β =
VH

VL
,

where β ≥ 1. We shall assume that the likelihood of an agent choosing to vote for a

proposal depends both on his innate propensity to vote (Vj) and the benefits that

passage of a given realization the proposal will produce for him. More formally,

4 In a previous version of this paper we also considered the case where the preferences are negatively
correlated. The results do not differ radically and may be obtained from the author upon request.
We have omitted them from the current paper in the interests of space.
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we shall assume for any realization of the public proposal bj , that vj | bj | is the

probability that a voter of type j will cast a ballot. This implies that the net turnout

of voters of type j in any given election is a random variable given by:

TOj = SjVjBj .

Note that this number can be positive or negative. We will use the convention

that a negative turnout measures the number of “No” votes while a positive one

measures the number of “Yes” votes. Putting both types together implies that the

total net turnout is a random variable given by:

TOnet = TOH + TOL = SHVHBH + SLVLBL,

We denote the cost of casting a ballot by C > 0 and assume it is the same for

all agents. Since the voters show up at the polls with probabilities less than one,

the realized voting cost to a voter of type j in any given election is also a random

variable:

Cj = Vj | Bj | C.

Note that it is the probability of voting that affects the expected cost and not

whether the vote was positive or negative, and this explains the absolute value

term in the expression above.

From an algebraic standpoint, the expected payoff that members of each type

receive in each period is rather complicated. It requires calculating the net turnout

for any given realization of a proposal, and then integrating over all the proposals

that pass, while subtracting the expected voting cost in each case. The net turnout,

in turn, depends on the share of each type of agent in the population, the relative

public-spiritedness of the types and the preference correlation parameter. We rel-

egate both the expression and the derivation to the appendix. We shall, however,

denote the expected payoff to agents of type j by:
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π̄j , for j = H,L

To model the evolution of the shares of each voter type over time we use

standard replicator dynamics. According to this dynamic, the growth rate of the

proportion of each type in the population is determined by the difference between

its expected payoff and the population average payoff. Any type whose expected

payoff is greater than average increases its share of the total population. Formally,

the average payoff is:

π̄ = SH π̄H + SLπ̄L.

In the interest of simplifying the model, we will treat the dynamics as taking

place in continuous time. Since we will mainly be interested in showing how the

parameters of the models and initial conditions of the economy influence which

steady state the system converges to, this is innocuous. On the other hand, if we

wanted to calculate the actual dynamic path we would have to explicitly take into

account the fact the proposals are distinct and arrive at discrete points in time.

This would introduce an degree on uncertainly in the paths since a particular set

of initial conditions could lead to different steady states depending what specific

proposals happened to randomly appear. We can think our choice to look at the

continuous time version of the problem as moving the focus to ”average” dynamics

instead of exploring the entire distribution of possible paths. Thus, we shall assume

that population shares evolve according to the following dynamic:

Ṡj = Sj(π̄j − π̄)

where Ṡj is derivative of Sj with respect to time. The state of system at time t is

given by the currently population shares:

St = (St
H , St

L).
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We close this section with a remark. In the introduction, we told a story about

evolution taking place over preferences and nature selecting for agents who felt a

“warm glow” from altruistic actions. In the model above, however, altruistic actions

appear to be programmed into behavior and evidently do not relate preferences at

all. It would have been possible to derive the behavioral voting parameter (Vj)

indirectly from an altruism parameter in preferences. Since the preference and

behavioral parameters would be completely correlated in this case, we do not believe

that much is to be gained from looking at these microfoundations. We therefore

consider a reduced form in which Vj serves as a proxy for altruism in preferences.

We do not believe any loss of generality results. In the appendix we provide an

example of a utility function from which the behavior rule we describe can be

derived. Further discussion on this point may also be found there.

3. Results

In this section, we focus on the steady states of the game. We will be most

interested in showing how the parameters of voting game determine the population

shares in the steady state to which the system converges.

The literature on evolution in economics is most concerned with the evolution-

arily stable states (ESS). Testing for the stability of a steady state requires that

the strategies agents play be shown to survive the introduction of small proportions

of “mutant” strategies in the sense that they yield higher average payoffs. We will

take up the question of how the presence of mutant players affects our equilibria in

section 4. In this section, however, we will concentrate on finding the steady states

themselves and will also study the likelihood a particular steady state will emerge as

the outcome of the dynamic process. With this in mind, we shall say that the type
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j wins the evolutionary game if the parameters and initial conditions are such that

the economy converges over time to a stable steady state in which type j makes up

the entire population (Sj = 1). We do this to simply our discussion, however, and

not to assert that this necessarily is a compelling definition of evolutionary success.

We begin by the showing that steady states will always exist, and that there

are three distinct possible dynamic situations for the economy.

Theorem 1. Depending on values of parameters α, β and C there are three possible

outcomes for the system:5

1. High type wins: The system has two steady states SH = 0 and SH = 1 where

SH = 1 is globally stable and SH = 0 is unstable.

2. Large population wins: The system has three steady states, SH = 0, SH = 1

and SH = S∗
H ∈ (0, 1) where SH = 0 and SH = 1 are asymptotically stable and

their basins of attraction are [0, S∗
H) and (S∗

H , 1] respectively, and SH = S∗
H is

unstable.

3. Low type wins: The system has two steady states SH = 0 and SH = 1 where

SH = 0 is globally stable and SH = 1 is unstable.

Figure 1 illustrates the three cases given in Theorem 1. What this result says

is that sometimes, the high voter types will increase their share of the population

until they make up the entire society regardless of how small their numbers are to

begin with. This case is shown in Figure 1a. For other parameters, the low types

will come to dominate the population regardless of their initial share. Figure 1c

illustrates this. Both of these situations, however, are just limiting cases of what

5 Let Ft(S0) be the value assumed by the state variable at time t when the initial condition at time
0 is S0. A steady state S∗ is stable if for every neighborhood U of S∗ there is a neighborhood U1
of S∗ in U such that if S0 ∈ U1, Ft(S0) ∈ U1, t > 0. A steady state is asymptotically stable if
it is stable and in addition if S0 ∈ U1, then limt→∞ Ft(S0) = S∗. The basin of attraction of an
asymptotically stable steady state is the set of all points S0 such that limt→∞ Ft(S0) = S∗. If
there is a unique steady state with basin equal to the entire state space it is called globally stable.
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we think of as the more typical case in which the initial population shares matter.

In general, there will be two stable steady states and one unstable steady state that

divides the basins of attraction. Figure 1b illustrates this. We will call this unstable

steady state the tipping point and denote it S∗
H .

We now turn to the question of when being public-spirited is more likely to

lead to evolutionary success. We begin by considering what happens as the cost of

voting increases.

Theorem 2. Assume that the parameters of the game are such that there are three

steady states. Then all else equal, the higher the cost of voting C, the less likely

the high voter types will win the evolutionary game.

Proof/

See appendix.

To be slightly more formal, Theorem 2 says that if the parameters of the system

are such that we are not in one of the two degenerate cases, then all else equal, as C

increases, S∗
H approaches one and the basin of attraction of SH = 0 expands. This

means that as the cost of voting increases, the high voter type has to have a larger

initial population share to prevent themselves from being squeezed out by the low

voter type. Of course, this makes sense. If voting is costly, then the act of voting

conveys that much less net increase in payoff to the high voter types. If voting is

extremely costly, voting is a net loss, even to the group collectively. In this case, it

is better to have a low voting parameter and we end in up in case 3 with the only

stable steady state being SH = 0 and the tipping point forced all the way up to

SH = 1.

Next we consider how the parameter of relative public-spiritedness β affects

the evolutionary advantage of voting. It turns out that the cost of voting and the

degree of preference correlation (which in turn affects the degree of free riding that

the low types get to enjoy from the costly voting activity of high types) have an
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Figure 1a. 

No matter what the initial population share, the high voting type will eventually make up the 
entire population.  Thus, SH=1 is a globally absorbing state 

 

 
Figure 1b. 

The larger its initial population share, the more likely a type is to win the evolutionary 
game. The SH=S* is an unstable steady state that divides the basins of attraction for the two 

stable steady states SH=1 and SH=0.  
 

 
Figure 1c. 

No matter what the initial population share, the low voting type will eventually make up the 
entire population.  Thus, SH=0  is a globally absorbing state 



effect. As a consequence, more public spiritedness does not alway benefit a type.

The next theorem shows this for the case of when voting is very costly.

Theorem 3. If voting is too costly, then voting does not convey an evolutionary

advantage.

Proof/

The benefit and losses that voters get from each period from the public propos-

als that happen to pass by lie in the interval [−1, 1] by assumption. On the other

hand, voters must pay Vi |Bi |C each period for voting. Thus, if C is high enough,

the expected voting cost the high types pay compared to the low types each period

(which grows without bound in C) will be larger than the expected difference the

benefits from public projects. It follows that for large enough C, the low voter types

get a higher expected payoff and so will always win the evolutionary game.

When voting is costless, a symmetric result is holds: public-spiritedness is

always an advantage.

Theorem 4. If voting is costless and preferences are not perfectly correlated, then

voting conveys an evolutionary advantage.

Proof/

If the agents with the high voter propensity increase their propensity to vote

even more, the expected payoff from public projects relative to that received by the

low voter type cannot decrease. This is easy to see. For any particular realization

of a public proposal, the additional votes contributed by the high type voters either

do or do not affect the outcome of the election. If the outcome is not affected, the

relative payoff is not affected. If the outcome is affected it can only be because

a proposal favored by the high type that would have failed passes instead (or the

inverse). In either case the payoff to the high type goes up relative to the low type.
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Given this, and since voting is costless, there is nothing on the negative side to

offset these gains, and so the relative gains of the high voter type compared to the

low increase as the VH increases. A symmetric argument holds for the low types.

We now consider the effects of the preference correlation parameter α. The

question is: Is public-spiritedness more or less of an advantage for a group when they

have preferences that are similar to the remaining population? Again it depends

on the details of the economic parameters, but we are able to show an important

result for the limiting case.

Theorem 5. If preferences are perfectly correlated, then the low voter always win

the evolutionary game.

Proof/

Note that the payoff each type of agent gets from public proposals is identical

in this case. Thus, if voting cost is positive, the type that votes more often gets

a lower per capita payoff. The higher voting type therefore loses the evolutionary

game.

The fact that in the extreme case of perfect correlation, the high types are

always supplanted by the low types in the steady state regardless of the initial

population shares will turn out to have significant implications for the interpretation

of our steady states as Evolutionary Stable Equilibria. We explore this more in the

next section.

The previous two theorems explore only for extreme values of the parameters

of the game. One might wonder whether voting conveys an evolutionary advantage

in a more general case. We close by showing that for a range of parameters voting

is beneficial to groups of agents.
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Theorem 6. If voting is sufficiently cheap and preferences are sufficiently uncor-

related, then the more public-spirited the low voter types are compared to the high

voter types, the more likely they are to win the evolutionary game.

Proof/

See appendix.

More formally, this says that the tipping point SH moves in a way that favors

the low type voters when they vote with higher frequency. This means that, all

else equal they can win the evolutionary game with a lower initial share of the

population. (A symmetric result holds when high type voters increase their voting

propensity.) For this to be true, however, it must be the case voting is not too costly

C < (1−α)
2VH

. Otherwise, voting may be self-defeating. In addition, the preferences

of voters must not be too highly correlated (α < 1/5). Otherwise the free-riding

benefits that the other type of agent gets from the costly voting efforts of the first

may more than offset the advantages of winning a higher number of elections.

4. Evolution and Altruism.

The literature on evolution in economics is very large, and it is not our intention

to survey it here. Instead, we shall concentrate on a discussion of how the model

we present agrees with and differs from the existing literature.

Evolutionary game theory is typically used to explain who how agents might

choose strategies in an arational way. Thus, evolution takes place over strategic

choices. See Taylor and Jonker 1978, Friedman 1991, or more recently Lagunoff

2000, among many others. In contrast, we propose that evolution takes place over

the underlying preferences of agents and those in turn determine their strategic
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choices.6 In this, we follow such authors as Becker (1976), Hirshleifer (1978) more

recently Bergstrom and Stark (1993) and Robson (1996). (See Robson 2000 for a

more complete survey.)

This raises an interesting question regarding whether or not our story can be

reconciled with the traditional view in economics which seems to take evolution as

metaphor for learning or imitation in strategic situations. See Kandori, Mailath

and Rob (1993) or Fudenberg and Levine (1998) chapter 3, for example. We take a

somewhat neutral view on this. Whether preferences come from nature (no learning)

or nurture (passive learning) does not really matter for the results in our model.

In either case, the actions of the parents are passed on through preferences to the

children. What our model does not allow is a kind of active learning in which agents

might somehow choose to undertake actions to shape their preferences as in Reiter

(2001), for example. All in all, the major difference that evolving over preferences

rather than strategies makes in interpretation is that the agents in our model are

fully rational and behave in a strictly optimal way at all points.

The literature most closely related to the current paper relates to the evolu-

tionary viability of altruism. In their seminal piece, Bergstrom and Stark (1993)

consider a number of models but focus on one in which benefits of altruistic actions

are felt amongst groups of siblings. Selfish siblings are at an advantage over altru-

istic ones in the same family, but pass on their selfish genes to their children. Since

groups of altruistic siblings are at an advantage over groups of selfish siblings, the

momentary benefit of exploiting one’s own altruistic sibling is out-weighed by the

evolutionary disadvantage of having a set of completely selfish children. The altru-

istic genes end up being successful. Eshel, Samuelson and Shaked (1998) pick up on

another model described in Bergstrom and Stark in which agents are arranged in

6 Recall that the voting propensity parameter (Vj) is a behavioral expression that reflects optimal
altruistic actions of public-spirited agents. Thus, Vj is not a strategy, but rather a consequence of
optimal voter choice given their preference for altruism. Of course, we treat the reduced form of
the model and focus on providing an explanation for the presence of these altruistic preferences.
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a circle and experience positive externalities when their direct neighbors choose to

undertake costly altruistic actions. Agents choose a strategy each period by adopt-

ing the highest yielding action that they can directly observe. They show that for a

correctly parameterized model, altruistic behavior survives and is stable against the

introduction of mutations. Bester and Guth (1999) propose a model of externality

producing duopolists. They show that if the production of one duopolist lowers the

marginal cost of production for the other firm, then production choices are strate-

gic complements. This means that when an altruistic firm chooses a higher than

privately optimal production level, the other firm responses with its own higher

production level, and this in turn benefits the first firm. Clearly, it is better to be

selfish when paired with an altruist. Altruists, however, do much better when they

happen to be paired with other altruists while egoists do much worse when they are

paired with other egoists. As a result, altruists do better on the average, and are

more successful from an evolutionary standpoint. (See also the comments of Bolle

2000 and Possajennikov 2000.)

There is common thread in all of these papers: local interaction. Eshel, Samuel-

son and Shaked’s externalities extend only to adjacent neighbors, Bergstrom and

Stark’s only to groups of siblings, and Bester and Guth’s only to pairs of duopolists.

It is doubtful that any of these results could be generalized to more widespread

externalities. What allows altruism to survive is that the altruist gene is able to re-

capture some part of the external benefit of its behavior.7 In Eshel, Samuelson and

Shaked’s case, it is through teaching one’s neighbors to be altruist, for Bergstrom

and Stark it is by producing kids who have an evolutionary advantage, and for

Bester and Guth it is though the strategic complementarity. It may appear that

the model we describe breaks with this thread and does indeed allow for widespread

7 To be a bit more precise, recapturing benefits of altruism only needs to take place in a relative
sense. For example, recapture happens if egoists are benefit less from the acts of altruists that do
other altruists.
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externalities. This is only partly true. Our two groups of voters each consist of a

continuum of agents, and when a proposal passes, the costs and benefits that result

are purely public in nature. In this sense, the externalities are widespread. Notice,

however, that preferences and voting propensity are completely linked by construc-

tion in our model. Thus, while benefits of proposals that pass are spread across

many individuals, they are in a sense localized within a given genotype. We con-

clude that the gene recaptures much of the externality even though the individuals

themselves do not get an advantage from voting.

Although the mechanism that allows altruism to survive in our group selection

setting is similar the one at work for local interaction models described above, there

remains the key question of the robustness of the steady states to the occurrence of

mutations. Unless the steady states we find can survive strategic experimentation

and random genetic drift, there is little reason to believe that we would ever observe

them as the outcome of any evolutionary process.

As it turns out, the steady states in which the high voter types prevail are

robust to the introduction almost all types of mutants. To see this, suppose we

are in a steady state in which the high voter type makes up the entire population.

Now introduce a small fraction of mutants with tastes that differ from the dominant

type. Because the mutants make up such a small fraction of the economy, they have

a negligible effect on elections and the proposals most favored by the dominant type

will continue to pass. Thus, provided that the tastes of the mutant are sufficiently

different from the dominant type, they will get a systematically smaller payoff than

the dominant type regardless of their propensity to vote and will not upset the

steady state. On the other hand, if the mutants have the same (or at least very

similar) tastes for public proposals as the dominant type, then they can success-

fully free-ride on their voting efforts. Thus, a mutant with the same tastes, but a

lower voting parameter can upset the steady state and will eventually supplant the

original dominant type. Observe, however, that the free riding mutants are in turn
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vulnerable to even less public-spirited mutants who otherwise share their tastes.

At first glance, this may seem like bad news. This analysis suggests that no

steady state with agents who have any positive voting propensity is an ESS. There

is a kind of Gresham’s Law at work in which bad citizens force out good ones. We

believe that the news is not so bad, however, and there are at least two possible

ways to address the fact that the steady states we discover in our model are not

ESS.

First, notice that the mutants we are worried about must have the same tastes

but different voting propensity as the dominant type. There are reasonable argu-

ments for why this may be an unlikely scenario in the real world. To the extent

that preferences are literally based on genes, for example, it might be impossible

to inherit a love of high levels of public spending without also having the public-

spiritedness to vote. Both may be driven by the same “empathy” or “responsibility”

gene, for example. To the extent that preferences are learned from the environment,

the same argument might apply. Parents may teach their children to be empathetic

and socially responsible and this would inform both the children’s voting behav-

ior and preferences over public proposals. If a child rejects his parent’s teaching

or gets a truly mutant gene he would necessarily find himself equipped both with

preferences over public proposals and voting propensities that differ from those of

his parents. Even if such mixed mutations were possible, it might be that there

exist social sanctions to keep it from taking over. In other words, suppose a free

rider arises. If this is detectable, the dominant group may protect itself by refusing

to provide a mate for this mutant. After all, who wants a child to marry a selfish

person? At a less extreme level, it may be that smaller social sanctions imposed

by the dominant group more than offset the gain the free rider receives from not

voting.8 Thus, even though having the high voter types win the evolutionary game

8 See Harbaugh (1996) for some interesting evidence that social sanctions and rewards do play a role
in getting people to vote, and that people even try to lie about their voting behavior to receive
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is not an ESS in a strict sense, there are still reasons to believe that this steady

state my arise in real world settings.

Second, let us put aside the arguments just given, and suppose that free riding

mutants with high type tastes can arise. The remarkable thing is that provided

that mutation happens slowly enough, this actually improves the welfare of the

dominant type and in a sense does not threaten its evolutionary success. Consider

the following dynamic story: Initially we have two types of agents, high and low,

and a small leavening of all possible types of mutants. Suppose that we are in

a situation that converges to the high types dominating the population. If the

mutants are small enough in number, their presence is not enough to prevent the

high type for forcing the low voter types close to extinction. The only agent type

that manages to increase its population proportion is the free riding mutant with

high type tastes. Eventually, of course, enough time passes that the free riding

mutant replaces the high type. This mutant in turn is eventually replaced by an

even less public-spirited mutants with the same taste as the original high type and

so on until public-spiritedness converges to zero. Thus, tastes of the original high

types are evolutionary stable, but the altruism is not in the long run.

Notice, however, that in the initial state, there is a compelling social reason for

the high types to vote. If there are many low voter types in the population with

different tastes over public policies, voting by the high types is needed to assure

that the public proposals favored by the high voter types win. As the low voter

types begin to disappear, however, the high voters could win the elections even if

they were less public-spirited since there are fewer of the low types to oppose them.

Thus, in the steady state, continuing to vote is socially wasteful because all of the

opposition has been vanquished. At this point, not only the individuals, but also

the species itself benefits from having a lower voting parameter. In this modified

these rewards.
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environment, free riders can thrive without threatening the survival of their type.

We think of this as a kind of decline and fall of the Roman empire story. Ini-

tially, for Rome to thrive, its citizens must be vigilant and willing to make sacrifices

for the common good. If the neighboring cities contain less public-spirited citizens,

they will be conquered and added to the empire. Eventually, however, Rome will

have vanquished all of its enemies, and then it is better for everyone to spend pub-

lic money on bread and circuses instead of a large standing army. Public-spirited

sacrifice ceases to serve a useful purpose and it is time for Romans to rest on their

laurels. The key, however, is to make sure that all of Rome’s enemies have been

destroyed before this decline into decadence. If the decline happens before all the

Gauls have been pacified, decline turns into fall.

5. Conclusion

A feature of our model which may be open to criticism is that we find that only

one type of agent can survive in the steady state. In reality, however, we seldom

observe a completely homogeneous society. An interesting extension of our model

might be to assume that agents experience diminishing marginal utility in public

projects. In this case, the benefits accruing to whichever type of voter makes up

the winning coalition would decline, while the prospective benefits to the opposition

group of winning an election would remain high. This would suppress the winning

coalition’s turnout, make it more likely the opposition would begin to win elections,

and slow the winning coalition’s rate of growth even if they continued to win. It

might be possible to find a stable interior solution in which both types of agents

persist for such a model. Another interesting generalization would be allow more

than two types. Simulation results suggest that if the groups are equally numerous,
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preferences over public policies are uncorrelated and voting is cheap enough, then

the type with the highest voting propensity will prevail in the evolutionary game.

It is harder to prove theorems about this case, however, as the initial conditions

(especially the covariance of tastes between agent types) can vary widely, and it is

not immediately clear which are the most compelling benchmark cases.

Our work is motivated by our interpretation of the literature as suggesting

that it is difficult to explain observed voting behavior on the basis of rational choice

unless one assumes that agents get utility from the act of voting itself. In this

paper we have attempted to provide a foundation for the warm glow associated with

behaving in a public-spirited manner using evolutionary game theory. The basic

result is that being public-spirited can confer an evolutionary advantage. Having

a high propensity to vote is more advantageous when voting is less costly, when

your group’s preferences over public project differ sharply from those of competing

groups, and when the competing group is less public-spirited or less numerous.

We conclude that evolutionary forces may indeed play a role in causing agents to

internalize the benefits their actions confer on their fellow agents, at least to the

degree that they share a common set of preferences.

Appendix

Derivation of Payoff Functions

We begin with some preliminary that will simplify our calculations. First we
define an the following:

θ = − (1− α)(1− SH)
α+ SH(β − α)

.

Denote the probability that a given proposal passes by P . This is calculated as
follows:
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P = Prob(SHVHBH + SLVLBL > 0 | BH = bH)
= Prob(SHVHbH + (1− SH)VL(αbH + (1− α)UI) > 0)

= Prob(UI > − α+ SH(β − α)
(1− α)(1− SH)

bH)

= Prob(UI >
bH
θ
) = 1− Prob(UI <

bH

θ
)

=



1 for bH

θ ≤ −1
1
2 − bH

2θ for −1 < bH

θ < 1
0 for bH

θ ≥ 1.

In the calculations below, it will be more convenient to express this as follows:

P =

{ 1 for −θ ≤ bH ≤ 1
1
2 − bH

2θ for θ < bH < −θ
0 for −1 ≤ bH ≤ θ

.

The payoff that a high voting parameter agent can expect for a given proposal
as follows:

E(πH | BH = bH) =P (bH −CH) + (1− P )(−CH)
=PbH −CH .

Therefore the average payoff of a high voting type agent over all possible values of
bH is:

π̄H =EbH
[E(πH | BH = bH)]

=

1∫
−1

(PbH − CH)
2

dbH .

Substitution for P in the above integral gives:

π̄H =

bH=θ∫
bH=−1

−VHC | bH |
2

dbH +

bH=−θ∫
bH=θ

(
bH

2
(
1
2

− bH

2θ
) − VHC | bH |

2

)
dbH+

bH=1∫
bH=−θ

(
bH

2
− VHC | bH |

2

)
dbH

=.25− θ2

12
− VHC

2
.

Recall that bH is constrained to lie in the interval [−1, 1]. Therefore, the
calculation above is valid only if θ takes a value which keeps the limits of integration

22



within these bounds. It is immediate that θ ≤ 0. Thus, the calculation above is
correct if and only if θ ≥ −1. We will therefore need to distinguish this case. It is
easy to verify the following:

Case A: −1 ≤ θ ≤ 0 if one of the following is true:
i. 1

2 ≤ α ≤ 1
ii. 0 ≤ α ≤ 1

2 and S1 ≡ 1−2α
(1−2α)+β

≤ SH ≤ 1.

Case B: θ < −1 if the following is true:
i. 0 ≤ α ≤ 1

2 and 0 ≤ SH < 1−2α
(1−2α)+β ≡ S1.

Note that these two cases are exhaustive.

Clearly, if case B holds, it can never be true that −1 ≤ bH ≤ θ or that
−θ ≤ bH ≤ 1. Therefore the probability that a proposal passes is always given by
the middle case: 1

2 − bH

2θ . This gives the following equation:

π̄H =

bH=1∫
bH=−1

(
bH

2
(
1
2

− bH
2θ

) − VHC | bH |
2

)
dbH

= − 1
6θ

− VHC

2
.

For the calculation of the low voting parameter agent payoff, we take a different
route. Recall from the calculation of P that for values of UI > bH

θ , the proposal
passes, and otherwise it fails. Therefore we can calculate the payoff a low voting
type can expect for a given proposal, BH = bH as:

E(πL | BH = bH) =

bH
θ∫

−1

−CL

2
duI +

1∫
bH
θ

(bL − CL)
2

duI .

After a change of variable and taking expectation over all possible values of bH we
will have:

π̄L =EbH [E(πL | BH = bH)]

=
1

4(1− α)

(∫ 1

−1

∫ αbH+(1−α)

bH (αθ+1−α)
θ

bLdbLdbH −
∫ 1

−1

∫ αbH+(1−α)

αbH−(1−α)
CLdbLdbH

)
.

To make the presentation of the calculations easier we separate the above integration
into two and substitute for CL. We get:

M ≡ 1
4(1− α)

∫ 1

−1

∫ αbH+(1−α)

bH (αθ+1−α)
θ

bLdbLdbH
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N ≡ VLC

4(1− α)

∫ 1

−1

∫ αbH+(1−α)

αbH−(1−α)
|bL|dbLdbH

This means that π̄L = M − N .
Not surprisingly, we run into similar problems regarding limits of integration.

For different cases the calculation are as follows:
Case A.i:

M =
1

4(1− α)

(∫ −θ

θ

∫ αbH+(1−α)

bH (αθ+1−α)
θ

bLdbLdbH +
∫ 1

−θ

∫ αbH+(1−α)

αbH−(1−α)
bLdbLdbH

)

=− αθ2

12
− θ

6
+

αθ

6
+

α

4

N =
VLC

4(1− α)
(
∫ − (1−α)

α

−1
−2α(1− αbH)dbh +

∫ (1−α)
α

− (1−α
α

α2b2H + (1− α)2dbh+

∫ 1

(1−α)
α

(2α(1− α)bH)dbh =
(4α2 − 2α+ 1)VLC

6α

Case A.ii:
In this case the calculation of the M is the same as in case A.i, but the calcu-

lation of N is as follows:

N =
VLC

4(1− α)

∫ 1

−1
(α2b2H + (1− α)2)dbh =

(4α2 − 6α+ 3)VLC

6(1− α)

Case B:
In this case the calculation of the N is the same as in case A.ii, but the calcu-

lation of M is as follows:

M =
1

4(1− α)

∫ 1

−1

∫ αbH+1−α

bH (αθ+1−α)
θ

bLdbLdbH = − α

6θ
− (1− α)

12θ2
+

(1− α)
4

To summarize all of these results, the value of payoff functions for high and
low voting types is the following:

Case π̄H π̄L

A. i. .25− θ2

12 − VHC
2 −αθ2

12 − θ
6 +

αθ
6 + α

4 − VLCd1

A. ii. .25− θ2

12 − VHC
2 −αθ2

12 − θ
6 +

αθ
6 + α

4 − VLCd2
B. − 1

6θ − VHC
2 − α

6θ − (1−α)
12θ2 + (1−α)

4 − VLCd2
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where d1 = 4α2−2α+1
6α and d2 = 4α2−6α+3

6(1−α) . Note that π̄H and π̄L are continuous
and well behaved functions in SH .

Proofs of Theorems

Theorem 1. Depending on values of parameters α, β and C there are three possible
outcomes for the system:

1. High type wins: The system has two steady states SH = 0 and SH = 1 where
SH = 1 is globally stable and SH = 0 is unstable.

2. Large population wins: The system has three steady states, SH = 0, SH = 1
and SH = S∗

H ∈ (0, 1) where SH = 0 and SH = 1 are asymptotically stable and
their basins of attraction are [0, S∗

H) and (S∗
H , 1] respectively, and SH = S∗

H is
unstable.

3. Low type wins: The system has two steady states SH = 0 and SH = 1 where
SH = 0 is globally stable and SH = 1 is unstable.

Proof/
The steady states are solution to ṠH = 0. The replicator dynamics can be

written as follows:

ṠH = SH(π̄H − π) = SH(1− SH)(π̄H − π̄L).

It is immediate that SH = 0 and SH = 1 are always steady states. The other
steady state, if it exists, is the solution to π̄H − π̄L = 0. Calculating the roots of
this equation is tedious, but the results are straightforward to verify. We show the
calculations in detail for different cases.

Case A.i:
Substituting the values of payoff functions for this case into π̄H − π̄L = 0 gives

us:
Γ1 ≡ −(1− α)θ2 + 2(1− α)θ − 6VLC(β − 2d1) + 3(1− α) = 0.

We need some preliminary observations that makes the proof easier to understand.
Note that the second derivative of Γ1 with respect to θ is negative (for every θ). Thus
Γ1 is a concave function for all its range. Assuming α 
= 0, a little algebra shows
that both roots of equation Γ1 = 0 are real if and only if C ≤ 2(1−α)

3VL(β−2d1)
≡ C∗

1 .
Thus for all values of C < C∗

1 the equation has two real roots. To simplify the
equation define the constant term as follows: K1 ≡ 6VLC(β − 2d1) − 3(1 − α).
Thus, the above equation becomes:

Γ1 ≡ −(1− α)θ2 + 2(1− α)θ −K1 = 0
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We call the two roots of this equation θ+1 and θ−
1 where:

θ+1 =
(1− α) +

√
(1− α)2 − K1(1− α)
(1− α)

θ−
1 =

(1− α) −
√
(1− α)2 − K1(1− α)
(1− α)

The fact that Γ1 is concave implies the following:

A. θ < θ−
1 or θ > θ+1 ⇒ Γ1 < 0 ⇒ ṠH < 0.

B. θ−
1 < θ < θ+1 ⇒ Γ1 > 0 ⇒ ṠH > 0

Also recall that θ is a function of SH and other variables. Solving for SH in
terms of θ gives the following:

SH =
αθ − α+ 1

αθ − α+ 1− βθ

Therefore, by substituting any valid roots, we can obtain the other steady state(s)
of the system. The solution of the equation Γ1 = 0 depends on the value of α.

1. First consider the case where α = 1 (which implies the two types preferences are
perfectly correlated). In this case π̄H − π̄L = 0 if and only if 6VLC(β − 1) = 0,
which in is turn is true if and only if β = 1 (which implies there is no difference
in voting behavior between the two types). For all β > 1, we have π̄H < π̄L.
Thus, the only steady states in this case are SH = 0 and SH = 1. For all
other values of SH , ṠH < 0. This means that SH = 0 is globally stable while
SH = 1 is globally unstable. Therefore, if preferences are perfectly positively
correlated, no matter what the cost of voting is, the low voting type will be
the winner. This means that case (3) of theorem obtains.

2. Next suppose 1
2 ≤ α < 1.

As we saw above in this case, if C < C∗
1 , the equation Γ1 = 0 has two roots

θ+1 and θ−
1 . However, θ+1 cannot be a solution. This is because θ+1 > 0 and

therefore either S∗
H > 1 (for 0 < θ+1 < 1−α

β−α ) or S
∗
H < 0 (for θ+1 ≥ 1−α

β−α ).

Now consider the other root, θ−
1 . As we mentioned above, for a root to give

a valid solution, the associated steady state must satisfy the following: 0 ≤
S∗

H ≤ 1. A little algebra shows that this implies that:

− (1− α)
α

≤ θ−
1 ≤ 0.
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Substituting the solution for θ−
1 given above and solving for allowable values

of C gives us the following:

−4α3 + 4α2 + α − 1
6α2VL(β − 2d1)

≡ Cmin
1 ≤ C ≤ Cmax

1 ≡ (1− α)
2VL(β − 2d1)

It is easy to verify that Cmin
1 < Cmax

1 < C∗
1 .

Our final step is to determine the number and nature of the steady states as
C varies.

a. If C ≤ Cmin
1 then from the above, we know θ−

1 < − (1−α)
α . This in turn

implies that − α
β−α

< S∗
H ≤ 0. There is no interior steady state in this

case, only the boundaries, SH = 0 and SH = 1, remain. For stability
properties of the steady states we find the sign of ṠH for all values of
0 ≤ SH ≤ 1. For this note that the values of 0 ≤ SH ≤ 1 correspond to
θ−
1 < − (1−α)

α ≤ θ ≤ 0 < θ+1 . As we saw above for these value of θ we
have Γ1 > 0 which implies ṠH > 0. This means that SH = 0 is globally
unstable while SH = 1 is globally stable. Thus, case (1) of the theorem
obtains.

b. If Cmin
1 < C < Cmax

1 then − (1−α)
α < θ−

1 < 0. This in turn means that
0 < S∗

H < 1 and so we also have an interior SH = S∗
H in addition to

the two at the boundaries. For determining the stability properties of
steady states note that for values of 0 < SH < S∗

H , which correspond to
− (1−α)

α ≤ θ < θ−
1 we have Γ1 < 0 which means ṠH < 0. Also for values

of S∗
H < SH < 1 which correspond to θ−

1 < θ < 0 we have Γ1 > 0 which
means ṠH > 0. Therefore we have single interior steady state which is not
stable. In addition, since ṠH < 0 for SH close to zero, SH = 0 is stable,
and since ṠH > 0 for SH close to one, SH = 1 is stable. Thus, case (2) of
the theorem obtains.

c. If Cmax
1 ≤ C < C∗

1 then θ− > 0. As in the case of the positive root
discussed above, this implies either S∗

H > 1 or S∗
H < 0 . Thus, there is

no interior steady state. For any interior value of the share of the high
type (0 ≤ SH ≤ 1 which implies θ < θ−

1 ) we have Γ1 < 0 which means
ṠH < 0. This means that SH = 0 is globally stable while SH = 1 is
globally unstable. Thus, case (3) of theorem obtains.

d. Finally, if C ≥ C∗
1 , then equation Γ1 = 0 will not have any roots and since

Γ1 is concave, it will always be negative. Again, this means that there will
be only two steady states SH = 0 and SH = 1 and for values of 0 ≤ SH ≤ 1
Γ1 is negative, which means ṠH < 0 . Again, case (3) of theorem obtains.

Case A.ii:
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Substituting the values of payoff functions for this case into π̄H − π̄L = 0 gives
us:

Γ2 ≡ −(1− α)θ2 + 2(1− α)θ − 6VLC(β − 2d2) + 3(1− α) = 0.

Note that Γ2 is also a concave function. Both roots of equation Γ2 = 0 are real
if and only if C ≤ C∗

2 ≡ 2(1−α)
3VL(β−2d2)

. Thus for all values of C < C∗
2 the equation

has two real roots. The same argument about the relationship of the location of
θ relative to the roots of the equation and the sign of Γ2 holds as in the previous
case.

To simplify the equation define the constant term as follows: K2 ≡ 6VLC(β −
2d2) − 3(1− α). Thus, the above equation becomes:

Γ2 ≡ −(1− α)θ2 + 2(1− α)θ −K2 = 0

We call the two roots of this equation θ+2 and θ−
2 where:

θ+2 =
(1− α) +

√
(1− α)2 − K2(1− α)
(1− α)

θ−
2 =

(1− α) −
√
(1− α)2 − K2(1− α)
(1− α)

However, θ+2 cannot be a solution. This is because θ+2 > 0 and therefore either
S∗

H > 1 or S∗
H < 0. Now consider the other root, θ−

2 . As we mentioned above, for a
root to give a valid solution, the associated steady state must satisfy the following:
0 ≤ S∗

H ≤ 1. In this case this implies that:

−1 ≤ θ−
2 ≤ 0.

Substituting the solution for θ−
2 given above and solving for allowable values of C

gives us the following:

0 ≤ C ≤ Cmax
2 ≡ (1− α)

2VL(β − 2d2)

It is easy to verify that Cmax
2 < C∗

2 .
Our final step is to determine the number and nature of the steady states as

C varies.
a. If C ≤ Cmax

2 then from the above, we know −1 ≤ θ−
2 ≤ 0. This in turn implies

that S1 ≤ S∗
H ≤ 1. There is an interior steady state in this case in addition

to the boundary solution SH = 1. For stability properties of the steady states
we find the sign of ṠH for all values of S1 ≤ SH ≤ 1. Note that the values
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S1 ≤ SH ≤ S∗
H , correspond to −1 ≤ θ < θ−

2 . For these value of θ we have
Γ2 < 0 which implies ṠH < 0. Also the values S∗

H < SH ≤ 1, correspond to
θ−
2 < θ ≤ 0. For these value of θ we have Γ2 > 0 which implies ṠH > 0. This
means that SH = 1 is stable while SH = S∗

H is unstable. We will show in case
B that irrespective of value of C, there is no other interior solution between 0
and S1 and there is only a boundary solution SH = 0, which is stable. Thus,
case (2) of the theorem obtains.

b. If Cmax
2 < C ≤ C∗

2 then θ−
2 > 0. Therefore the same argument for θ+2 applies

here and we don’t have any interior solution. Thus the only steady state is
SH = 1. For determining the stability properties of steady state note that for
values of S1 < SH < 1, which correspond to −1 ≤ θ < θ−

2 we have Γ2 < 0 which
means ṠH < 0. As we will show in case B, irrespective of value of C, there
is no other interior solution between 0 and S1 and there is only a boundary
solution SH = 0, which is unstable. This means that SH = 0 is globally stable
and SH = 1 is unstable. Thus, case (3) of the theorem obtains.

c. Finally, if C > C∗
2 , then equation Γ2 = 0 will not have any roots and since Γ2

is concave, it will always be negative. Again, this means that there will be only
one steady states SH = 1. For values of S1 ≤ SH ≤ 1 Γ2 is negative, which
means ṠH < 0 . Considering our results in case B, again, case (3) of theorem
obtains.

Case B:

Substituting the values of payoff functions for this case into π̄H − π̄L = 0 gives
us:

Γ3 ≡ −θ2 (6VLC(β − 2d2) + 3(1− α)) − 2(1− α)θ + (1− α) = 0.

To simplify the equation define the constant term as follows: K3 ≡ 6VLC(β−2d2)+
3(1− α). Thus, the above equation becomes:

−K3θ
2 − 2(1− α)θ + (1− α) = 0.

Note that K3 > 0 and that Γ3 is also a concave function. The same argument about
the relationship of the location of θ relative to the roots of the equation and the
sign of Γ3 holds as in the previous cases.

We call the two roots of this equation θ+3 and θ−
3 where:

θ+3 =
−(1− α) +

√
(1− α)2 + (1− α)K3

K3

θ−
3 =

−(1− α) −
√
(1− α)2 + (1− α)K3

K3
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Note that here since (1−α)2+(1−α)K3 > 0 the two real roots always exist. For a
root to give a valid solution, the associated steady state must satisfy the following:
0 ≤ S∗

H ≤ S1. In this case this implies that the roots must be between −1−α
α

and −1. The first root, i.e. θ+3 is positive. So there is no interior steady state
corresponding to this root. It is also easy to check that −1 < θ−

3 < 0. Therefore
there are no interior steady states. Hence in this case for any value of C > 0 the
steady states are SH = 0 and SH = 1. As to the stability property of the steady
state, we note that for values of 0 ≤ S∗

H ≤ S1 which correspond to values of θ < θ−
3 ,

we have Γ3 < 0 which means that ˙SH < 0. This means that SH = 0 is stable.

Theorem 2. All else equal, the higher the cost of voting C, the less likely the high
voter types will win the evolutionary game.

Proof/
We assume that there is an interior steady state S∗

H . Therefore we should
only consider cases A.i and A.ii. Since the two cases are very similar we will
provide a proof only for case A. i. since the other cases are essentially repe-
titions of the same argument. As we argue above, S∗

H = αθ−+1−α
αθ−+1−α−βθ− where

θ− = (1−α)−
√
(1−α)2−K1(1−α)
(1−α) , K1 = 6VLC(β−2d1)−3(1−α), and d1 = 4α2−2α+1

6α .
Since we are considering case A. i., we know that 1

2 ≤ α ≤ 1. It is easy to verify
that this implies that 1

3 ≤ d1 ≤ 1
2 and since β > 1

∂K1

∂C
= 6VL(β − 2d1) > 0

It is also the case that ∂θ−

∂K1
> 0, and that

∂S∗
H

∂θ− =
(1− α)β

(αθ− + 1− α − βθ−)2
> 0.

Putting this altogether we get ∂S∗
H

∂C > 0. Therefore as C increases S∗
H will move

towards 1. This means that the high voter types must make up a larger share of the
initial population if they are to win the evolutionary game. Thus, as C increases it
is less likely that the high voter types will win.

Theorem 6. If voting is sufficiently cheap and preferences are sufficiently uncor-
related, then the more public spirited the low voter types are compared to the high
voter types, the more likely they are to win the evolutionary game.

Proof/
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More formally, we shall demonstrate that if C < (1−α)
2VH

and α < 1/5 that
∂S∗

H

∂VL
> 0, that is, the basin of attraction for SH = 0 expands.
Note that we are now considering a result for case (A. ii) By arguments similar

to those given for theorem 1, we can establish that

S∗
H =

αθ−
2 + 1− α

αθ−
2 + 1− α − βθ−

2

where θ−
2 = (1−α)−

√
(1−α)2−(1−α)K2

(1−α) . and K2 = 6VLC(β − 2d2) − 3(1− α)
To prove our result, we need to take the derivative of S∗

H with respect to VL.
The algebra is dense, but after simplification we get the following:

∂S∗
H

∂VL
=

VH

2(1−θ−
2 )
[θ−
2
2
(2αθ−

2 + 1− 3α) − 6CVH + 3(1− α)]

[(α − 1− αθ−
2 )VL + θ−

2 VH ]2
.

The denominator is positive. Since we are considering case (A. ii.), −1 < θ−
2 < 0

and therefore 1−θ−
2 > 0 and so VH

2(1−θ−
2 )

> 0. We focus on the rest of the numerator.

1. First consider 2αθ−
2 + 1− 3α. We know −1 < θ−

2 < 0. We multiply by 2α and
then add (1− 3α) to get:

−2α+ 1− 3α < 2αθ−
2 + 1− 3α < 1− 3α.

Simplifying gives:
1− 5α < 2αθ−

2 + 1− 3α < 1− 3α.

Since α > 1/5 by assumption, 1− 5α is positive and so is the expression under
consideration.

2. Now consider −6CVH +3(1−α). Very directly, since C < (1−α)
2VH

by assumption

the expression is positive. Therefore, ∂S∗
H

∂VL
> 0 and so higher voting propensity

conveys an evolutionary advantage on the low type voters. A similar result is
true for the high type voters in this case.

Derivation of the voting behavioral rule for a rational agent

Suppose that an agent has the following utility function where

B - ex anti per capita cost or benefit of a the public proposal to agents of his type
Br - ex post cost of benefit received by an agent (may be zero if the proposal fails)
C - cost of voting
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p -probability of voting
x -private good consumption

U(B,Br, C, p, x) = x+Br + (B +C)p − (
1
2V

)p2.

The budget constraint is ω = x + pC. Substituting this in to the utility function
and maximizing this with respect to p gives the following first order condition:

∂U

∂p
= −C +B + C − 1

V
p = 0,

Which gives a solution p = vB. This is the linear behavior rule we explore in above.
This utility function warrants some discussion. The idea we are attempting to

capture is that the agent is an altruist who enjoys voting in proportion to how much
benefit the proposal would covey to his type and how much effort he has to go to in
order to vote. The second part of this may seem strange at first as it says that the
more the agent has to exert himself to vote, the happier he is, at least as far as his
altruistic feelings go. While we would not want to argue that this is always the case,
it seems reasonable that in some cases agents get a warm glow from working hard to
help their fellow man. (Note, however, that cost of voting is still a negative in that
it affects the budget constraint.) If we were to remove this term, the behavioral rule
would get more complicated in that agents would choose not to vote when the per
capita benefits of voting were lower than the expected costs of voting. This would
introduce discontinuities into the behavior and would substantially complicate the
proof of the results. Since the proofs are already algebraically dense, we do not
pursue this further.
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