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Abstract 6 

Clathrin is best known for its contribution to clathrin-mediated endocytosis yet it also 7 

participates to a diverse range of cellular functions. Key to this is clathrin’s ability to assemble 8 

into polyhedral lattices that include curved football or basket shapes, flat lattices or even 9 

tubular structures. In this review we discuss clathrin structure and coated vesicle formation, 10 

how clathrin is utilised within different cellular processes including synaptic vesicle recycling, 11 

hormone desensitisation, spermiogenesis, cell migration and mitosis, and how clathrin’s 12 

remarkable ‘shapeshifting’ ability to form diverse lattice structures might contribute to its 13 

multiple cellular functions. 14 

Introduction 15 

Eukaryotic cells use endocytosis to internalise cargo from their extracellular environment, in 16 

which invagination of the plasma membrane creates a vesicle or tubule that is cleaved off and 17 

released into the cytoplasm of the cell (1–4). In receptor mediated endocytosis (RME) 18 

receptors on cell surfaces target specific cargo for import, which when internalised is 19 

transported to endosomes. The cargo may then be recycled back to the cell membrane, 20 
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transported intracellularly or delivered to lysosomes for degradation (5–7). Clathrin mediated 21 

endocytosis (CME) is the most studied form of RME and is believed to be the major endocytic 22 

process in cells (8). CME was first discovered in 1964 and is named after the clathrin coated 23 

vesicles (CCV) of around 60 nm to 135 nm in diameter that form from cell membranes in order 24 

to achieve this. The clathrin coat is formed from the scaffold protein clathrin and other CME 25 

adaptor proteins (9–13). Clathrin is highly evolutionarily conserved within eukaryotes and is 26 

involved in multiple cellular processes including mitosis, spermiogenesis, hormone 27 

desensitisation, cell migration, synaptic vesicle (SV) recycling, and intracellular trafficking (14–28 

19). Figure 1 illustrates the processes in which clathrin is involved. Defects within CME are 29 

associated with several pathological conditions, including Parkinson's disease, Alzheimer's 30 

disease, HIV/AIDs, and autosomal recessive hypercholesterolemia (20–27). 31 

 32 

Figure 1 – Clathrin-mediated endocytosis in cellular processes 33 
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Schematic diagram demonstrating the variety of cellular processes in which clathrin is used, including but 34 
not limited to endocytosis, spermiogenesis, cell migration, hormone desensitisation, mitosis, and SV 35 
recycling (1–4,14–19). Diagram is not to scale. 36 

For CME to occur clathrin is required to form a coat bound to the cell membrane, but clathrin 37 

cannot directly interact with cell membrane lipids and proteins and thus relies on CME 38 

adaptor proteins to form these connections (20,28). Once a clathrin coat starts to form, 39 

invagination can begin, as the formation of the clathrin coat and the presence of CME 40 

adaptors such as BAR-domain proteins and epsin alter the balance of forces stabilising the 41 

cell membrane to allow membrane bending to occur (1,29–31). For invagination to occur, the 42 

CME adaptors need to contribute forces of the order of picoNewtons so that factors that 43 

make bending the membrane challenging, such as high membrane tension, internal 44 

hydrostatic pressure, and cargo properties, can be overcome (1,11,32,33). These picoNewton 45 

forces could be provided via the consequences of actin polymerisation and crosslinking, 46 

involving hydrolysis of ATP, interactions of BAR domain proteins with the membrane and one 47 

another, molecular crowding or clathrin assembly (34).  Despite our understanding of the 48 

challenges of membrane invagination, there is still ongoing debate regarding how clathrin 49 

coats assemble, the role and nature of clathrin lattice rearrangement, how CME adaptors 50 

interact and cooperate to produce CCVs and clathrin coated pits (CCP), and how the CME 51 

process is regulated to ensure the successful formation of vesicles saturated with cargo. In 52 

this review, we will discuss current knowledge of clathrin structure and how this contributes 53 

to the molecular mechanism of CME, how clathrin is utilised during different cellular 54 

processes, and how clathrin’s remarkable ‘shapeshifting’ ability to form diverse lattice 55 

structures might contribute to its multiple cellular functions. 56 
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Clathrin structure 57 

Clathrin forms a three-legged structure called a triskelion composed of three clathrin heavy 58 

chains (CHC) ~190 kDa in size, and three clathrin light chains (CLC) ~25 kDa in size (35,36). CHC 59 

consists of five domains called the trimerization domain, proximal domain, distal domain, 60 

ankle domain, and terminal domain, as shown in figure 2A (37). The trimerization domain 61 

consists of a 45-residue carboxy-terminal segment responsible for binding to other CHC 62 

carboxy terminal regions to create a protein complex in the form of a triskelion structure. The 63 

next region consists of 42 zig-zagging alpha-helices that form the proximal, distal and ankle 64 

domains, which are responsible for the curved legs of the clathrin triskelion that create its 65 

tripod-like structure. The final region, the terminal domain, consists of a seven-bladed WD40 66 

repeat beta-propeller at the amino-terminal responsible for interactions between clathrin 67 

and other CME adaptor proteins. The structure of a CLC consists of a long alpha-helix in the 68 

centre of its structure responsible for interactions with the CHC proximal domain, disordered 69 

terminal regions whose interaction with CHC is unclear, and a folded helical region close to 70 

the C terminus that is embedded in and stabilises the CHC trimerization domain (37–40). The 71 

structure of a bovine clathrin triskelion and the location of CLCs, CHCs and CHC domains is 72 

shown in figure 2B. 73 
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 74 

Figure 2 – Clathrin structure 75 

A) Domain organisation within CLC and CHC (41). B) Model of a clathrin triskelion including the bovine CHC 76 
model (Protein Data Bank (PDB): 3IYV) (37) informed by fitting the high resolution x-ray structure (PDB: 77 
1B89) (42) into cryo-EM density maps and the porcine CLC model produced from cryo-EM density maps 78 
(PDB: 6SCT) (41). C) Model of a bovine clathrin cage (EMD: 5119) with fitted clathrin triskelion model 79 
produced from cryo-EM density maps (PDB: 1XI5) (37). D) Recent 4.7 Å porcine clathrin hub structure with 80 
fitted PDB model (PDB: 6SCT) produced from cryo-EM density maps (EMD: 0126) (41). E) Model of a rat CHC 81 
terminal domain produced from x-ray diffraction density (PDB: 1BPO), with location of binding sites for 82 
different motifs highlighted (43). All structure visualization was performed with UCSF Chimera (44). 83 

Clathrin triskelia interact with each other to form clathrin cages in vitro, and clathrin lattices, 84 

CCPs and CCVs in vivo. The size and shape of clathrin coats and lattices varies and this allows 85 
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vesicles to accommodate the required size and quantity of cargo being imported. For 86 

example, bovine brain CCVs have smaller diameters of 60 - 80 nm compared to human 87 

placenta CCVs that produce larger CCVs of 100 – 135 nm  (10,45,46). This size variability is 88 

possible due to clathrin’s ability to assemble into different configurations, including   89 

pentagon and hexagon arrangements, and, less frequently, heptagons and squares (10,41). 90 

Clathrin  assembles into empty coat structures in vitro, also known as clathrin cages or 91 

baskets, if placed in a buffer at pH 6.5 or less with magnesium and calcium ions present (35). 92 

Formation of clathrin cages in vitro has allowed cryo-electron microscopy analysis of these 93 

large multi-protein complexes at high resolution, which led to the production of the 7.8 Å D6 94 

dihedral symmetry clathrin coat structure shown in figure 2C, and the more recent 4.7 Å 95 

clathrin consensus hub substructure demonstrated in figure 2D (37,41,47,48). Within each of 96 

these structures, a clathrin triskelion is centred at each hub or lattice point, with the triskelion 97 

legs interacting with other triskelia which causes the legs to bend inwards. The degree of 98 

bending of the triskelion leg varies depending upon the clathrin cage or lattice configuration, 99 

indicating some flexibility most likely due to the arrangement of paired alpha-helices oriented 100 

perpendicular to the long leg axis in the proximal, distal and ankle domains, which would be 101 

able to change conformation to produce a variety of different leg configurations (37,41). 102 

The clathrin terminal domain 103 

The clathrin terminal domain is the primary interaction point between clathrin and CME 104 

adaptors. It consists of a seven-bladed -propeller at the CHC amino-terminal joined to short 105 

-helices that connect to the ankle region of the CHC. X-ray crystallography has been used to 106 

determine the terminal domain's structure to 2.6 Å, shown in figure 2E (43). Additional 107 

analysis of terminal domain interactions with CME adaptors has identified four binding sites 108 
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within the seven-bladed -propeller called the clathrin box, the W-box, the arrestin box and 109 

the Royle box, indicated in figure 2E (20). The clathrin box is located in a groove between 110 

blades one and two of the -propeller and binds to the highly conserved clathrin box motif 111 

which comprises acidic and bulky hydrophobic residues L(L, I)(D, E, N)(L, F)(D, E) (LX[DE]) 112 

(49). The clathrin box motif has been found in several adaptors including the 3-appendage 113 

of AP3, amphiphysin, arrestin3 segments, and -arrestin 1 and -arrestin 2 (50–54). The 114 

arrestin box is located between blades four and five of the -propeller and binds to the 115 

arrestin box motif, which is found in arrestin proteins and consists of residues [LI][LI]GXL (55). 116 

The W-box is located towards the centre of the -propeller rather than on the blades' 117 

outskirts like the other binding sites and binds to the W-box motif, which consists of residues 118 

PWXXW. Amphiphysin 1 is one CME adaptor that contains a W-box motif which binds to the 119 

W-box with a compact helical structure as determined at 2.3 Å via x-ray crystallography (56). 120 

The final binding site, called the Royle box, is found on the seventh blade of the -propeller. 121 

The nature of the motif required to bind to the Royle box is currently unknown (57) but 122 

Muenzner et al 2017 present crystal structures showing three different peptides bound to the 123 

Royle box which facilitated further definition of this site (58). This study together with work 124 

from Zhou et al 2015 (59) also suggests there is a degree of degeneracy in the sequence of 125 

motifs interacting with different terminal domain sites, enabling some motifs to bind to more 126 

than one site on the clathrin terminal domain.  127 

Other motifs, called DLL and DLF motifs that have been identified in a number of clathrin 128 

adaptors including assembly protein 180 kDa (AP180), which can also bind to the clathrin 129 

terminal domain via weak interactions with a Kd value of around 2 x 10-4 M (60,61). Since 130 

there are multiple such motifs within the AP180 sequence their combined effect, or avidity, 131 
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produces stable interactions (61). As individual DLL and DLF motifs only associate with clathrin 132 

via weak interactions, this allows for rapid association and dissociation between CME 133 

adaptors and clathrin, which could be vital for AP180 to capture clathrin whilst allowing a 134 

clathrin lattice to form (20,62). 135 

Clathrin mediated endocytosis 136 

CME involves the coordination of around fifty different adaptor or accessory proteins, which 137 

can interact with clathrin and or each other to complete different stages of CME. Each adaptor 138 

has a different role and may be involved in one or several stages, which have so far been 139 

described as nucleation and assembly, stabilisation and maturation, neck constriction and 140 

scission, and clathrin uncoating (11,63,64). A visual representation of each CME stage is 141 

presented in figure 3. During CME, adaptor proteins may arrive at CME sites in stages, 142 

resulting in fluctuations of local concentrations of adaptor proteins depending on the stage 143 

clathrin assembly has reached (63,65–68). 144 
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 145 

Figure 3 – Stages in clathrin mediated endocytosis  146 

Schematic diagram illustrating different stages in CME, including A) nucleation and assembly, followed by B) 147 
stabilisation and maturation, followed by C) constriction and scission, followed by D) clathrin uncoating. 148 
Figure is not to scale. 149 

Nucleation and assembly 150 

Initiation of CME occurs upon formation of an ‘interaction nucleus’, which is required for 151 

recruiting adaptors and forming a clathrin coat. How this nucleus develops is under debate, 152 

as it could be due to interactions between multiple accessory proteins including Fer/Cip4 153 

homology domain-only proteins 1 and 2 (FCHo1/2), adaptor protein 2 (AP2), epidermal 154 

growth factor receptor substrate 15 (Eps15), Eps15 receptor (Eps15R), intersectins 1/2, and 155 

potentially other adaptors that have yet to be identified (29,66,69). However, evidence from 156 

several groups indicates that the FCHo1/2 complex and the AP2 complex could be the primary 157 

initiators for the formation of the CME nucleus (29,69–73). Once the CME nucleus has formed, 158 

adaptor proteins can recruit cargo to the site through interactions with the cytosolic regions 159 
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of transmembrane cargo or transmembrane cargo receptors, allowing the importing of cargo 160 

and associated lipids into the cell (74–77). Some of the known cargo adaptors include AP2, 161 

FCHo1, Eps15, and clathrin-assembly lymphoid myeloid leukaemia protein (CALM) (78,79). As 162 

these four adaptors are associated with initiation, it seems possible that cargo can play a role 163 

in recruiting adaptor proteins to form a nucleation point and thereby initiate CME (80–82). 164 

Despite the large surface area of cell membranes, CME nucleation tends to occur at spatially 165 

distinct sites, for example as in neuronal synapses (83). The location of CME nucleation may 166 

be due to differing levels of availability of CME adaptors across the cell, such as AP2 and 167 

phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), and the local formation of cortical actin 168 

(84). PI(4,5)P2 is necessary for nucleation site formation since depletion of PI(4,5)P2 prevents 169 

the formation of CCPs , and many CME adaptors bind to PI(4,5)P2 at the cell membrane 170 

(85,86).  It is possible that  different local concentrations of PI(4,5)P2 and CME adaptors may  171 

explain why CME occurs at spatially distinct sites (85,86). Nucleation can occur randomly at 172 

positions in the cell membrane where endocytosis does not usually occur, possibly due to 173 

stochastic collisions between CME adaptors, however, the majority of nucleation sites are 174 

formed at spatially distinct locations (70,76). 175 

For CME to occur at spatially distinct sites, there must be some level of organisation, 176 

potentially through the use of nucleation factors and organisers such as FCHo1/2 and Sorting 177 

Nexin 9 (SNX9), for example. Changes in the expression levels of FCHo1/2 and SNX9 have been 178 

found to impact the quantity of CCP formation and spatial clustering of CCPs, respectively 179 

(29,84). FCHo1/2 is responsible for engaging with AP2 and the scaffold proteins eps15 and 180 

intersectin to sculpt the nucleation site to create a CCP, and so by having high local 181 

concentrations of FCHo1/2, cells can ensure high quantities of CCPs are formed which is of 182 
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great functional value for, for example, neuron synapses which require localised synaptic 183 

vesicle recycling (29,70). 184 

Quality control in CME is critical to ensure that productive vesicles are developed that contain 185 

sufficient cargo. CCP intermediates are frequently aborted, as observations of nucleation 186 

events have shown weak or short-lived CCPs in cells, but multiple checkpoints may determine 187 

the level of CME turnover (76). Checkpoints may include the presence or quantity of cargo in 188 

CCPs, the ubiquitination of cargo adaptors, or other factors (4,76,82,87,88). If CCPs are 189 

incapable of clearing the checkpoint, then CCP formation can be delayed or aborted. The 190 

recruitment of dynamin could also be viewed as a checkpoint controlling the level of CME 191 

turnover, as dynamin is responsible for the final stage of CME, scission (89). 192 

Stabilisation and maturation 193 

Once a CCP has formed, the CCP undergoes stabilisation and maturation so that it develops a 194 

vesicle-like structure filled with cargo. Several proteins that have either direct roles in 195 

membrane bending or act indirectly by influencing clathrin assembly are recruited to the CCP, 196 

including epsin, CALM, clathrin, heat shock cognate 71 kDa protein (Hsc70), Cyclin G-197 

associated kinase (GAK), auxilin and actin. Clathrin’s ability to form lattices and polyhedral 198 

cages consisting predominantly of hexagonal and pentagonal arrangements helps stabilise 199 

and potentially induce curvature in cell membranes (10,41). When bound to clathrin, the 200 

amphipathic helices found within epsin and CALM can wedge into the cell membrane to bend 201 

and curve the membrane in the area (13,90,91). CLCs help to stabilise the developed 202 

membrane curvature by binding to CHCs in clathrin lattices which causes clathrin lattices to 203 

become more rigid (92,93). Hsc70, GAK and auxilin, the adaptors responsible for clathrin 204 
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uncoating, have also been proposed to be involved in reorganising the clathrin lattice as the 205 

CCP develops (94–99).  206 

The actin cytoskeleton helps to further stabilise the CCP by assembling around CCP sites, 207 

particularly around clathrin coats and the base of CCPs, potentially acting as a  scaffold that 208 

can generate and transmit a force to promote membrane curvature (100–103). The 209 

presence of the actin cytoskeleton helps support CME during periods of high membrane 210 

tension, as live cell imaging studies have shown that perturbations in the actin cytoskeleton 211 

inhibit CME (65,83,104–110). For actin to stabilise or contribute to membrane bending it 212 

needs to couple with the clathrin coat. This is thought to occur via epsin and (Huntington-213 

interacting protein 1-related protein) HIP1R, both of which  are known to bind to actin, 214 

clathrin and PI(4,5)P2 (111–115). 215 

Neck constriction and scission 216 

Once the CCP has fully formed, Bin/Amphiphysin/Rvs (BAR) domain proteins will bind to the 217 

CCP and, when recruited in high densities, will tubulate the membrane to constrict the CCP 218 

neck (116–118). The level of membrane curvature has been shown to influence recruitment 219 

of BAR domain proteins, with F-BAR domain and N-BAR domain proteins being preferentially 220 

recruited to low and high membrane curvature respectively (119,120). Once the neck of the 221 

CCP has constricted, and the vesicle is ready to be released into the cell, BAR domain proteins 222 

will recruit the GTPase dynamin to conduct the scission process (119,121,122). Dynamin 223 

assembles around the neck of the vesicle as tight oligomers around 20 nm in diameter, and 224 

upon GTP binding and hydrolysis, constrict to stimulate membrane fission (123). However, it 225 

should be noted that scission cannot occur by dynamin constriction alone, as the scission 226 
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process requires the presence of several dynamin partners to ensure that preconditions for 227 

scission are met, such as control of membrane tension and/or remodelling by actin, 228 

synaptojanin and endophilin (124–128). How the scission process occurs in vivo is thus still 229 

under debate. 230 

Clathrin uncoating 231 

Upon the CCV being released from the membrane and into the cell, the clathrin coat is 232 

disassembled. Removal of the clathrin coat allows the vesicle to be trafficked to the early 233 

endosome and CME adaptors associated with the clathrin coat to be recycled. Synaptojanin 234 

and Oculocerebrorenal syndrome of Lowe inositol polyphosphate 5-phosphatase (OCRL1) 235 

have been implicated in the uncoating of clathrin-coated vesicles and have been proposed to 236 

act via dephosphorylation of PI(4,5)P2 to PI(4)P (24,129–134). Loss of PI(4,5)P2 from the  CCV  237 

is thought to weaken binding of coated vesicle adaptors such as AP-2, AP180 and epsin (134–238 

136), and has been proposed to stimulate recruitment of the chaperone auxilin  (94,137–141), 239 

which in turn recruits the ATPase Hsc70 and adenosine triphosphate (ATP) via its J-domain to 240 

enable clathrin disassembly (95,142). The phosphatase and tensin homolog deleted on 241 

chromosome ten (PTEN) domain within auxilin is important for auxilin to bind to the CCV 242 

membrane, via interactions with negatively charged lipids such as PI(4,5)P2 (132,133,143). 243 

The PTEN domain is not essential for clathrin uncoating but does increase auxilin’s functional 244 

efficiency, potentially by allowing auxilin to be positioned in a suitable  orientation for 245 

efficient clathrin uncoating (140,143–145). The J-domain in auxilin, however, is vital for 246 

clathrin coat disassembly due to its role in recruiting Hsc70 bound to ATP to assembled 247 

clathrin.  Auxilin has been shown to act catalytically, enabling recruitment of multiple Hsc70 248 

molecules to CCVs for clathrin disassembly.  (139,146–149).  249 
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The binding of Hsc70 to auxilin’s J-domain occurs predominantly via electrostatic interactions, 250 

with auxilin surface residues Tyr866, Arg867, Lys868, His874, Asp876 and Lys877 being 251 

involved in crucial electrostatic interactions with Hsc70 (150,151). Upon recruitment to a CCV, 252 

the Hsc70-ATP complex binds to the QLMLT motif at the CHC carboxy-terminus. The three 253 

copies of the QLMLT motif available per triskelion provide Hsc70 with the opportunity to bind 254 

to up to three sites per clathrin vertex (141,147,152–154). In vitro studies of have shown that, 255 

when bound to auxilin and clathrin,  the ATPase activity of Hsc70 is enhanced, which in cells 256 

would likely promote vesicle uncoating (148). Upon ATP hydrolysis, Hsc70 binds stably to 257 

clathrin, and the J-domain is released, setting in train events leading to clathrin disassembly 258 

(153,155,156). The stability of the clathrin coat will impact the level  of structural perturbation 259 

required to break triskelion interactions and thus will impact the rate of uncoating and the 260 

number of Hsc70 molecules required for coat disassembly (155). As few as one Hsc70 261 

molecule for every two clathrin trimers has been observed for initiating clathrin coat 262 

disassembly, but this stoichiometric value depends on pH (154,155,157). CLCs help regulate 263 

the interaction between auxilin and clathrin to control clathrin coat stabilisation and control 264 

auxilins ability to perform catalytically (147). Regulation of auxilin is achieved via 265 

phosphorylation of CLCs which promote auxilin dissociation from clathrin (147,158).  266 

As clathrin coats are disassembled, triskelia have been observed in yeast to separate from the 267 

CCV as partially uncoated intermediates consisting of two or more triskelia which will 268 

continue to depolymerise in the cytosol (159). The depolymerised clathrin triskelia remain 269 

bound to Hsc70 and adenosine diphosphate (ADP), but auxilin dissociates (140). In vitro 270 

experiments show that Hsc70 and ADP remain bound to dissociated triskelia, leading the 271 

clathrin coat disassembly reaction to follow burst kinetics, where the addition of a limited 272 
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quantity of Hsc70 causes an initial burst of rapid uncoating followed by a slower steady-state 273 

rate where most of the Hsc70 remains bound to the dissociated triskelia (148,154,160). The 274 

Hsc70-ADP complex can be released from clathrin by the nucleotide exchange factor heat 275 

shock protein 110 (Hsp110) which allows ADP to dissociate from Hsc70 and ATP to bind, thus 276 

allowing Hsc70 and clathrin to be recycled for additional rounds of endocytosis (161–165). 277 

In vitro studies of clathrin cage disassembly have shown that a ratio of one auxilin molecule 278 

per clathrin triskelion is sufficient for clathrin to disassemble at the maximum rate, although 279 

up to three auxilins can be bound per vertex in cages (160). In cells, auxilin appears to bind to 280 

CCVs in transient bursts immediately after scission of CCPs occurs, with only a small number 281 

of auxilin molecules observed, ranging from 2 to 20, bound to CCVs of 36 and 100 clathrin 282 

trimers in size (94,132,166). However, both in cells and in in vitro studies, auxilin has been 283 

shown to act catalytically, with one auxilin molecule capable of recruiting multiple Hsc70 284 

molecules in sequential order and potentially moving to different clathrin vertices upon 285 

dissociation from clathrin after ATP hydrolysis (132,154,160). While maximal rates of 286 

disassembly in vitro have been shown to require Hsc70 to be present in excess compared with 287 

clathrin and auxilin  (160), the situation in cells is different. It has been inferred from studies 288 

in a human cell line that CCVs formed of around 60 clathrin trimers have less than 10 Hsc70 289 

molecules bound at a time during uncoating (132). This difference could be due to the 290 

presence of nucleotide exchange factors in cells that would facilitate recycling of Hsc70 and 291 

to the possibility that disassembly at the maximum rate is not utilised under cellular 292 

conditions. 293 

The mechanics by which Hsc70 and auxilin disassemble clathrin coats is intriguing because of 294 

the intricate shape of clathrin assemblies and the comparatively small size of the Hsc70 and 295 
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auxilin molecules that achieve disassembly. Discussion has so far centred around two main 296 

models: the steric wedge/Brownian ratchet model, and the entropic pulling or wrecking ball 297 

model. A schematic representation of each model is presented in figure 4. The steric wedge 298 

model proposes that when auxilin recruits Hsc70, this results in an increase in the excluded 299 

volume below the clathrin coat vertices that stabilises a locally strained conformation. 300 

Disassembly is favoured by  an accumulation of these distortions caused as further Hsc70 301 

molecules bind favours disassembly  (141,153). 302 

Following ATP hydrolysis, Hsc70 no longer binds to the auxilin J domain and becomes tightly 303 

associated with the flexible clathrin carboxy-terminal domain, with the potential to move 304 

freely, as if a ball on a string, unless sterically hindered by the surrounding structures of the 305 

clathrin vertex.  The entropic pulling model suggests that the increase in entropy occasioned 306 

by increased freedom of movement when Hsc70 moves away from the constraints of the 307 

clathrin vertex creates a directional force that pulls on the clathrin carboxy-terminal domain 308 

and ultimately disrupts clathrin proximal-distal interactions (99,167–169). 309 

By showing that attachment of Fab fragments bound to clathrin at the Hsc70 binding site 310 

could cause cage disassembly, Sousa et al 2019 (167) elegantly demonstrated that the energy 311 

of ATP hydrolysis was not required to disassemble clathrin per se. When the Fab fragment 312 

binding site was moved away from the clathrin vertex, clathrin disassembly continued, 313 

suggesting that physical leverage of Hsc70 against the clathrin vertex was not critical for 314 

clathrin disassembly. However, disassembly became progressively slower as the distance of 315 

the Fab/Hsc70 binding site from the clathrin vertex was increased and was consistent with 316 

the effect on rate predicted by the calculations of De los Rios and Goloubinoff, lending weight 317 
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to the proposal that the driving force for disassembly lay with an entropic pulling/collision 318 

pressure model (168).  319 

 320 

Figure 4 – Models for clathrin cage disassembly 321 

Schematic diagram demonstrating two different models for hsc70 driven disassembly of clathrin cages, 322 
including A) the steric wedge/Brownian ratchet model, and B) the wrecking ball/entropic pulling model. 323 

Diagram is not to scale. 324 

Diversity of clathrin function in cells 325 

The import of molecules into cells via clathrin-mediated endocytosis has been well-studied 326 

over many years and comprehensively reviewed (20,170,171). However, clathrin plays more 327 

diverse cellular roles that go beyond internalisation of cargo. Here we discuss the diversity of 328 

roles CME, and elements of CME machinery, in synaptic vesicle recycling, hormone 329 

desensitisation and spermiogenesis, and how clathrin participates in creating other 330 

structures, such as tubules and bridges, to aid with cellular migration and mitosis (See Figure 331 

5). 332 
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 333 

Figure 5 – Clathrin structures in cells 334 

EM images reproduced from published works demonstrating the different shapes clathrin complexes can 335 
make. A) Flat clathrin lattice formed primarily of hexagonal arrangements. Yellow arrows highlight other 336 
arrangements including pentagonal (arrowheads) and heptagonal (arrows). B) Flat clathrin lattices with a 337 
distorted or incomplete connecting lattice between the two, indicated by a yellow arrow, as well as possible 338 
attached remnants of cytoskeletal filaments, indicated by yellow arrowheads. A and B are reprinted from 339 
Akisaka et al (2021) (172) with permission from Elsevier. Scale bar represents 0.2 μm. C) Clathrin coated 340 
vesicles formed primarily in a pentagonal arrangement. Reproduced and adapted with permission from the 341 
Heuser lab. D&E) Orthogonal (D) and longitudinal (E) slices of kinetochore fibres, with bridges indicated by 342 
white arrows. It has been suggested that clathrin contributes to the composition of these bridges.  Images 343 
are from Royle et al (2012) (173), reproduced and adapted with permission from The Company of Biologists 344 
Ltd. Original EM images from ©1970 Rockefeller University Press. Originally published in Hepler et al (1970) 345 
(174). F) Collagen fibres (red) with clathrin lattices (green) forming tubular structures around the fibers. 346 
From Elkhatib et al (2017) (175). Reproduced and adapted with permission from AAAS. Panels C-F: No scale 347 
bars  were available from original publication. 348 
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Synaptic Vesicle Recycling 349 

Clathrin is essential for SV recycling during neurotransmission. Neurotransmission is the 350 

process of transmitting a signal from one nerve cell to another through synapses, allowing 351 

the sensory and nervous systems to communicate with one another. For neurotransmission 352 

to occur, an action potential is generated: a short-lived rise and fall of a membrane’s electrical 353 

potential caused by Na+ and K+ transport across the membrane. Upon the action potential 354 

reaching a synapse, calcium will flood into the pre-synaptic terminal and prompt SV's to fuse 355 

with the plasma membrane and release the neurotransmitters found within them, allowing 356 

the neurotransmitter to bind to receptors on the post-synaptic terminal to initiate an action 357 

potential in the adjacent neuron. SV recycling is critical for maintaining the population of SV’s 358 

in neurons, with defects in SV recycling causing neurodegeneration and impaired neuronal 359 

function (176).  360 

Endophilin is a membrane binding protein that senses and generates curvature in cellular 361 

membranes (66,122,177–179). It interacts with clathrin and other CME adaptors including 362 

synaptojanin and dynamin, contributing both to clathrin-mediated endocytosis and a newly 363 

identified form of endocytosis called fast endophilin-mediated endocytosis (FEME). While 364 

clathrin is essential for synaptic vesicle regeneration, its precise role has been re-examined in 365 

light of developments such as the identification of FEME and activity-dependent bulk 366 

endocytosis (ADBE), reviewed in Chanaday et al 2019 J Neuroscience (180).  CCV uncoating 367 

has long been identified as an essential component of synaptic vesicle regeneration (178,181–368 

183) but further light has been shed on this by a report from Farsi et al 2018 that 369 

reacidification of synaptic vesicles occurs rapidly following Hsc70-driven removal of clathrin 370 

coats (184).  Farsi et al propose a model whereby steric hindrance by the assembled clathrin 371 
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scaffold inhibits vATPase activity.  This intriguing possibility further highlights the versatility 372 

of clathrin in different functional contexts.  373 

Hormone desensitisation 374 

Hormone desensitisation is essential for controlling the cellular response to hormones in the 375 

environment. Desensitisation follows sustained stimulation of receptors, leading them to lose 376 

their ability to respond to the hormone. Clathrin-mediated  endocytosis has been shown to 377 

facilitate desensitisation through internalisation of a wide range of receptors, including the 378 

parathyroid hormone receptor, 2-adrenergic receptor, and delta-opioid receptor (185–187). 379 

In the case of G-protein-coupled receptors (GPCR) (188,189), desensitisation is mediated 380 

through phosphorylation of the GPCRs, which often occurs within their C-terminal tail. This 381 

stimulates arrestins (such as beta-arrestin) to bind to the GPCR, which prevents activation of 382 

the associated G-protein and targets the GPCR for internalisation via CME through the 383 

interaction of arrestin with the clathrin terminal domain and AP2 (190–194). It is now 384 

understood that there are multiple routes for GPCR internalisation that employ both clathrin-385 

independent endocytic pathways and clathrin and AP-2 dependent, but arrestin-386 

independent, routes (195).  387 

Spermiogenesis 388 

Spermiogenesis must be performed to create functional sperm cells, which is the process of 389 

forming matured elongated spermatids. CME is vital during spermiogenesis as it ensures germ 390 

cells take up the proteins and molecules required to create components for the flagellum and 391 

acrosome (196). For example, the spreading and shaping of the acrosome over the nucleus 392 

and establishing distinct regions in the acrosome have been attributed to coated vesicle 393 
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formation at the acrosomes posterior and the trafficking of vesicles between the Golgi 394 

apparatus and acrosome (197). 395 

CME adaptors may also have other roles besides enabling CME during spermiogenesis. 396 

Stromal membrane-associated protein 2 (SMAP2) is an ADP ribosylation factor (Arf) GTPase-397 

activating protein that interacts with CALM and clathrin. During spermiogenesis, SMAP2 398 

deficiency impairs acrosome formation and nucleus reorganisation, and causes the trans-399 

Golgi network structure to be distorted and produce larger proacrosomal vesicles, as CALM is 400 

not recruited to the trans-Golgi network. This suggests that CALM regulation of proacrosomal 401 

vesicle size at the trans-Golgi network is vital for acrosome formation (198).  Another example 402 

involves endophilin. The endophilin III n-terminal BAR domain protein called endophilin A3 403 

has been found to interact with the protein DPY30 domain-containing protein 1 (DYDC1), 404 

which is exclusively expressed in the brain and testis and accumulates around the acrosome 405 

during the late stages of spermiogenesis. Knockdown of DYDC1 negatively impacts acrosome 406 

formation, suggesting that endophilin A3 and DYDC1 are required for acrosome formation 407 

(199). Endophilin A3 has also been found to form a complex with activated epidermal growth 408 

factor receptor and interact with Synaptojanin I, with endophilin A3, clathrin and 409 

synaptojanin being colocalised in elongated spermatids (196). This evidence suggests that the 410 

CME adaptors endophilin A3, Synaptojanin I, CALM, and clathrin are necessary for acrosome 411 

development during spermatogenesis. 412 

Collagen and Cell Migration 413 

Clathrin’s shape shifting ability is further illustrated in the context of cell migration. Regulation 414 

of integrin endocytosis is required for adhesion disassembly and cell movement, which is 415 

achieved through the recruitment of clathrin coated structures (CCS) to focal adhesions 416 
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(200,201). Focal adhesions form contacts between intracellular actin bundles and 417 

extracellular substrates and are mostly observed at the extremities of elongated cells during 418 

cell migration (202).  419 

During cell migration, CCS’s will also interact with collagen fibres. In comparison to other 420 

areas of the cell, CCS’s are found to nucleate preferentially along collagen fibres, and when in 421 

contact with collagen fibres, CCS's are longer lived (175). As CCSs that interact with integrin 422 

can form tight contacts with planar substrates (203,204), CCSs bound to collagen fibres allow 423 

cells to anchor cellular protrusions to collagen fibres by forming tight contacts with integrin-424 

containing focal adhesions. Pinching of collagen fibres by CCSs may also create friction to help 425 

cells produce long protrusions for cell migration (175). The clathrin-coated structures 426 

identified by Elkhatib et al (2017) (175) showed previously unseen clathrin lattices with a 427 

cylindrical shape, further emphasising the versatility of clathrin assemblies (See figure 5).  428 

Elkhatib et al (2017) (175) also showed that the endocytic adaptors Disabled-2 (Dab2) and 429 

AP2 were essential for cellular migration  (175). Dab2 is required for recruiting integrins. 430 

Silencing of Dab2 inhibits the clustering of integrins on CCS’s, leading to reduced CCS lifetimes 431 

on collagen fibres. This suggested that Dab2 and integrin are required for balancing out 432 

budding forces created by CCS’s on collagen fibres. Silencing of Dab2 and AP2 also caused a 433 

more pronounced retraction of cellular protrusions, further supporting the idea that CCSs 434 

stabilise cellular protrusions by anchoring collagen fibres to focal adhesions, allowing cells to 435 

sustain high tension and form long protrusions during cell migration (175). 436 
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Mitosis 437 

Perhaps one of the more unusual roles clathrin adopts in cells is in mitosis, since here its 438 

function does not appear to be associated with the formation of the curved or planar lattices 439 

that have become a hallmark of clathrin function in other contexts. In mitosis, a cell divides 440 

into two identical daughter cells. To carry this out, mitotic spindles attach to the kinetochore 441 

complex on chromosomes and bring the chromosomes together. The chromosomes are then 442 

aligned during the metaphase stage and segregated towards the poles of the cell during the 443 

anaphase stage. Clathrin has been found to colocalise alongside tubulin at mitotic 444 

spindles (18,173,205–207). The mitotic spindle requires the presence of clathrin triskelia 445 

which have been shown to stabilise kinetochore fibres (18,208–210). The N-terminal domains 446 

of clathrin are responsible for interactions between clathrin and microtubules within the 447 

mitotic spindle. The bridge hypothesis suggests that clathrin increases kinetochore stability 448 

by bracing between two to three microtubules within a kinetochore fibre, which is possible 449 

due to its trimeric structure. Experiments using clathrin constructs with altered trimeric 450 

structural properties have shown that clathrin triskelia's native structure is vital for its 451 

stabilising function during metaphase and anaphase (209). CHC acts with transforming acidic 452 

coiled-coil containing protein 3 (TACC3) and colonic hepatic tumour overexpressed gene (ch-453 

TOG; also known as cytoskeleton-associated protein 5, CKAP5) in performing this function. 454 

Depletion of CHC has been found to stop TACC3 relocation to the mitotic spindle, which 455 

causes disorganised spindles and chromosome misalignment (211). Recent work by Rondelet 456 

et al 2020 (212) has identified an additional protein in this complex, GTSE1, which binds to 457 

clathrin via the N-terminal domain and inhibits the microtubule depolymerase MCAK. This 458 
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discovery directly links clathrin-adaptor interactions classically associated with endocytosis, 459 

with stabilisation of microtubules during mitosis.  460 

Interestingly, the clathrin light chain subunit, CLCa, also interacts with mitosis adaptors, such 461 

as mitotic arrest deficient 2-like protein 2 (MAD2B). MAD2B binds to the proteins cell division 462 

cycle protein 20 homolog (CDC20) and or cadherin-1 to inhibit the anaphase promoting 463 

complex, and colocalise at the mitotic spindle. Depletion of MAD2B stops CLCa from being 464 

concentrated at the mitotic spindle, which inevitably leads to an increase in misaligned 465 

chromosomes (208). The precise structures that clathrin adopts when associated with 466 

kinetochores have not yet been determined. However, the current morphological 467 

information available suggests that any structure adopted by clathrin is likely to differ from 468 

the classical polyhedral arrays seen in clathrin-coated vesicles and flat lattices, since such 469 

structures have not been observed in mitotic spindles (213). 470 

Pathogen entry into cells facilitated by clathrin  471 

 One more dramatic form of shape-shifting performed by clathrin is in engulfment of large 472 

cargoes, and particularly microorganisms. Early studies  showed that large areas of the plasma 473 

membrane surrounding vesicular stomatitis virus exhibited a clathrin coat as demonstrated 474 

in figure 6A and 6B, and that internalisation depended on clathrin (214–217).  Since then, 475 

many viruses have been shown to enter cells by endocytosis, many through clathrin-476 

dependent pathways (218).  Viruses present a sizeable cargo, but in 2005 it was shown that 477 

clathrin was essential for the internalisation of an even larger cargo, the bacterium Listeria 478 

monocytgenes, which can reach lengths of 2 – 6 μm long (219–222).  This led to further 479 

discoveries  of a requirement for clathrin in internalisation of other bacteria including S. 480 
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aureus and Enteropathogenic E. coli (EPEC), and the fungal pathogen Candida albicans 481 

(220,221,223–226). 482 

 483 

Figure 6 – Early images of viral entry into cells 484 

TEM images of CME during viral entry. A and B) CME of vesicular stomatitis virus in MDCK cells. A) CCV 485 
formation around virus. B) Partially coated CCV around internalised virus. A and B reprinted from Matlin et al 486 
(1982) (217) with permission from Elsevier. C) and D) Formation of clathrin-coated structures during infection 487 
of Jeg3 cells by L. monocytogenes. The arrow points to a clathrin-coated structure close to the internalised 488 
bacterium. This is shown as an enlarged view in D. Image was provided by M. Bonazzi  and P. Cossart and 489 
adapted by permission. 490 

Bonazzi et al (2011) (221) investigated the mechanism by which clathrin might be employed 491 

to engulf cargo of such a size. Observations from electron microscopy images of cells 492 
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undergoing infection by either Listeria or enteropathogenic E. coli (EPEC) showed that 493 

complete clathrin-coated vesicles were not observed in the vicinity of the bacterium. Rather 494 

clathrin-coated pits, of a size and shape similar to those observed in uninfected cells, were 495 

seen in the membrane surrounding the bacterium.  Immunolabelling of clathrin in HeLa cells 496 

infected with L. monocytogenes showed that it was always associated with curved 497 

invaginations, and was not seen in areas where the membrane was flat. In the case of EPEC-498 

infected cells, clathrin in the vicinity of EPEC-induced actin pedestals also appeared in the 499 

form of coated pits rather than complete vesicles.  Further investigations by Bonazzi et al 500 

(2011) showed that coated pit formation required the adaptor Dab2 and this in turn 501 

facilitated recruitment of actin via Hip1R and the clathrin light chain. Actin recruitment 502 

depended on tyrosine phosphorylation of the clathrin heavy chain. Once assembled, this 503 

machinery was then able to recruit the motor protein Myosin VI which could provide a pulling 504 

force.  Thus, in an alternative form of shape-shifting, the invading bacterium triggers clathrin 505 

and its associated machinery to organise actin to generate structures that facilitate uptake of 506 

a cargo far exceeding the size of a clathrin-coated vesicle. 507 

GLUT4 Trafficking and the role of CHC22 508 

So far we have discussed the action of clathrin that in humans is encoded by the gene CLTC 509 

on chromosome 17 and is termed CHC17. However, in jawed vertebrates there is a second 510 

form of clathrin, CHC22, encoded by the gene CLTCL1 on chromosome 22 (227,228). This form 511 

of clathrin is expressed most highly in muscle and adipose tissue and has been shown to play 512 

a key role in transport of insulin-regulated glucose transporter 4 (GLUT4). GLUT4 is a glucose 513 

transporter found in adipocyte and muscle cells which is transported to the cells plasma 514 

membrane upon insulin signalling (229,230). This is achieved through sorting of GLUT4 into 515 
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insulin-responsive vesicles for selective transport (230). CHC22 interacts with GLUT4 as well 516 

as the ER-to-Golgi intermediate compartment (ERGIC) tether p115, sortilin, IRAP, and GGA2 517 

to sort GLUT4 in the GLUT4 storage compartment in cells (229,231). Unlike CHC17 which is 518 

involved in CME and other cellular pathways like mitosis and cell migration, CHC22 is limited 519 

to retrograde sorting as it does not support vesicle formation at the plasma membrane in the 520 

presence or absence of CHC17, and also forms a more stable coat which cannot be removed 521 

by the same disassembly complex used to remove CHC17 (229,232). CHC22 is also restricted 522 

in its tissue and species expression, whereas CHC17 is not (229). Several studies however have 523 

suggested another role for CHC22 besides sorting GLUT4 involving the initiation of GLUT4 524 

sequestration upon an insulin response. Downregulation of either p115 or CHC22 reduces 525 

trafficking of GLUT4 to the plasma membrane, suggesting CHC22 initiates GLUT4 526 

sequestration from the ERGIC in humans and conducts retrograde sorting of GLUT4 (231). 527 

Additionally, functional studies of different CHC22 allotypes identified differences in GLUT4 528 

transport in response to insulin; these results suggested that changes in diet (i.e. a shift from 529 

eating mostly meat to more plant-based foods) have impacted the allotype of CHC22 selected 530 

in humans, causing an alteration in the effectiveness of CHC22’s role in insulin-regulated 531 

GLUT4 transport (227). Further studies on the mechanism by which CHC22 sorts and 532 

transports GLUT4, as well as structural studies on a CHC22 coat that might explain its 533 

additional stability are needed to determine how this different form of clathrin CHC 534 

contributes to its more specialised function (227,229–232). 535 
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Clathrin shapeshifting 536 

Clathrin exchange and the dynamic coat assembly model 537 

Clathrin is remarkable for its ability to form both planar and curved lattice structures within 538 

its diverse cellular roles. This has led to debate about how, or whether these clathrin lattice 539 

structures might shapeshift to form planar or curved arrangements. High energy costs have 540 

been predicted for remodelling of a planar clathrin lattice to a curved CCP due to the 541 

structural rearrangements between triskelion leg contacts that would be required (233,234). 542 

Two models have emerged within this debate (235). The first has been termed the ‘constant 543 

curvature’ model, in which clathrin assembles into a curved lattice as the membrane 544 

invaginates to form a CCP (19,236). In the second ‘dynamic coat’ or ‘constant area’ model, 545 

the area of membrane coated by the clathrin lattice remains constant during budding while 546 

curvature increases (19,233,234,237–239). These two models of CCV formation are 547 

demonstrated in figure 7A. 548 

One means proposed by which a planar clathrin lattice could transform into a curved lattice 549 

involves dynamic exchange of clathrin between the invaginating membrane and a soluble 550 

pool of clathrin triskelia (96,240). The mechanism by which this exchange could take place 551 

may utilise the coated vesicle uncoating apparatus of ATP-dependent clathrin disassembly by 552 

Hsc70, recruited to the vesicle by auxilin/GAK, and there is experimental evidence supporting 553 

this (139,241–243).  Exchange of clathrin in a ‘wrong’ conformation for new clathrin able to 554 

adopt a ‘right’ conformation that is fuelled by an existing ATP-driven system for clathrin 555 

disassembly neatly addresses the question of how established planar lattices could be 556 

remodelled to produce a curved coated pit  (98,238,241,244). However, arguing against this 557 
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is the observation that in genome-edited cells, endogenously labelled auxilin and GAK could 558 

not be detected during the early stages of vesicle development (132).  559 

 560 

Figure 7 – Models for CCV and flat lattice formation 561 

Schematic diagrams demonstrating models for CCV and flat lattice formation. A) Two models for CCV 562 
formation, including the constant curvature model where no clathrin exchange occurs, and the dynamic coat 563 
model where all clathrin is recruited into a lattice prior to membrane bending and requires clathrin 564 
exchange for curvature formation. B) Comparison of the hexagonal flat lattice model with the constrained 565 
flat lattice model proposed by Sochaki et al (2020) (245). 566 

A planar lattice is not, however, the only route to clathrin-coated vesicle formation.  Clathrin-567 

coated structures have been observed in a number of systems (108,246–248) to have formed 568 

independently, suggesting that a planar lattice is not a prerequisite for generation of 569 

curvature. Indeed, curved clathrin lattices have been shown to form spontaneously both in 570 

vitro and in unroofed cells (31,245) suggesting that lattice remodelling may not be essential 571 

in coated vesicle formation.  572 
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Evidence in support or otherwise of mechanisms for achieving clathrin modelling has been 573 

carefully discussed in several reviews (16,19,235) but as some authors point out (19,235) it 574 

seems likely that there are multiple routes to curvature. Such alternative routes may be 575 

influenced by the need to regulate import of cargo, as shown by Maib et al (2018) (249). In 576 

this study, the import of the GPCR P2Y12 into neuronal cells differed from that of transferrin 577 

in requiring clathrin rearrangement dependent on phosphorylation of CLCb and the presence 578 

of auxilin. This suggested that different modes of lattice formation may be required for certain 579 

cargos, which in turn could provide additional layers of control for their uptake.  580 

Interestingly, recent work from Sochacki et al (2020) presents a comprehensive analysis of 581 

the morphology of clathrin lattices seen in eight different mammalian cell lines (245). As a 582 

result of this analysis the authors propose a new model for clathrin coated vesicle formation 583 

whereby the potential to form curved structures is ‘pre-programmed’ within a planar lattice. 584 

This model is based on new structural detail obtained using cryo-electron tomography that 585 

has revealed irregular structures within planar lattices showing the potential for curved 586 

structures to form upon release of constraints holding the planar lattice in place (245). This is 587 

in contrast to previous assumptions that such lattices would be fully formed hexagonal arrays, 588 

upon which energetic calculations for changes in morphology had been based (233,234). 589 

Figure 7B demonstrates the differences between the old and new models. This model 590 

suggests a new way to see clathrin shape-shifting – as the outcome of the balance achieved 591 

between opposing forces generated through interactions between membrane, adaptors and 592 

clathrin, membrane tension and the mechanical properties of these components.  593 



 
31 

A structural basis for clathrin shape-shifting 594 

This review has so far focussed on the way that clathrin participates in cellular processes and 595 

in the involvement of binding partners in formation of multiple clathrin lattices.  But clathrin 596 

is able to adopt different shapes in the absence of other cellular components, as shown in 597 

early studies (35,36,250–253) where multiple cage arrangements similar to those observed 598 

in coated vesicles could be induced using only purified protein (254). Later studies showed 599 

that clathrin could also adopt more unusual conformations such as cube arrangements 600 

(shown in Figure 8) and tetrahedral cages (255,256). On the other hand, formation of 601 

biochemically generated flat lattices seemed to require involvement of additional support 602 

such as stabilisation of clathrin association with a flat surface or membrane through use of an 603 

adaptor protein (31,92,257). Thus, in this final section we discuss how the structural 604 

properties of clathrin itself lead to formation of multiple distinct lattice arrangements.  605 

 606 
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Figure 8 – Cube lattice structures formed by clathrin in vitro 607 

Unusual structures formed from clathrin triskelia in vitro. A) Electron micrograph of clathrin cubes that have 608 
formed into an open square-packed array. Image provided by R. A. Crowther. B and C) Clathrin cube structures 609 
imaged by negative stain electron microscopy. Circled cubes in B have been enlarged and presented in C 610 
alongside fitted schematics of clathrin cubes to the images. Image provided by and adapted with permission 611 
from M. Halebian (Smith lab). 612 

The mechanical properties of clathrin are determined by the tertiary structure of the CHC legs 613 

which are composed of pairs of short, stacked alpha helices, and the strong association of the 614 

CLC long helix which acts as a brace, giving strength and rigidity to the triskelion leg 615 

(92,233,234,258–261). The trimerization domain, strengthened by additional helices 616 

contributed by the light chain c-terminus, joins three CHC subunits together via a highly stable 617 

interaction to form the triskelion structure that serves as clathrin’s smallest functional 618 

structural unit in classical clathrin lattices (260–263). The arrangement of alpha helices in 619 

stacked pairs within the heavy chain leg seems to confer flexibility to the leg, as with the coils 620 

in a spring, that is then braced where the light chain binds. This is supported by structural 621 

studies showing that in conformations adopted by triskelion legs within a cage, most flexibility 622 

is seen beyond the reach of the bound light chain (41,264). Further, the mode of binding of 623 

the light chains has been shown to influence heavy chain conformation (261) and a recent 624 

study has demonstrated a role for the light chain in controlling how clathrin deforms lipid 625 

membrane. Redlinghofer et al (2020) (93) showed that the quality of clathrin lattices and the 626 

size and shape of clathrin-coated buds varied according to the composition of CLC isoforms a 627 

and b, and their neuronal splice variants, suggesting a means by which lattice size and shape 628 

could be controlled to meet the needs of the cell.  629 

The relationship between leg conformation and lattice structure was explored by Morris et al 630 

(2019) (41) who determined cryo-EM structures for 5 different types of cage arrangement, 631 

with three of these at sufficient resolution to support further analysis.  Superimposition of 632 
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the paths adopted by triskelion legs in several different cage forms showed that the leg 633 

shapes varied most through changes in the angle between the CHC distal joint and distal 634 

domain, ranging between 7 and 17.  Furthermore, the shapes of legs from similar types of 635 

local structure (e.g. a hexagonal or pentagonal face) could not always be superimposed, and 636 

no pattern between the leg angles adopted and the type of local structure formed could be 637 

seen.  This suggested there were multiple ways in which legs could come together to arrive 638 

at the same overall cage structure. In contrast, however, no significant differences in 639 

intermolecular contact patterns were observed at the resolutions obtained, regardless of the 640 

type of local structure formed. This suggested that clathrin triskelia adopt a universal mode 641 

of assembly, and that multiple combinations of particular leg conformations can lead to 642 

structures with the same lattice geometry through adaptation of the shape of one leg to that 643 

of another (41).  Thus, assuming the energetic requirements of rearranging contacts could be 644 

met, clathrin seems to be uniquely adapted to being able to transition from planar to curved 645 

lattices simply through making relatively small changes in the leg angles adopted by clathrin 646 

triskelia. This in turn allows clathrin molecules to accommodate varying curvature and 647 

differing local geometric environments.  648 

Conclusions 649 

Clathrin’s unusual structure and capacity to assemble into multiple lattice types gives it a 650 

remarkable ‘shape-shifting’ ability. In addition to forming lattices, clathrin is also able to bind 651 

multiple partners via its terminal domains. Lattice assembly together with coordination of 652 

multiple protein-protein interactions fits clathrin for multiple roles within cells.  The best-653 

known function is the formation of clathrin-coated vesicles which are employed in a variety 654 

of contexts including absorption of nutrients and other required molecules at the plasma 655 
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membrane, receptor down-regulation, intracellular trafficking, synaptic vesicle recycling and 656 

spermiogenesis. The precise nature of the shape shifting required to achieve coated vesicle 657 

formation is still debated, but advances in cryo-electron tomography and correlative light and 658 

electron microscopy techniques, large scale statistical analyses and single molecule light 659 

microscopy are revealing these processes in increasing detail (48,132,245,265,266), and 660 

recent developments in time-resolved cryo-electron microscopy may enable the capture of 661 

conformational changes in clathrin and its assemblies on a millisecond timescale (267).  662 

Alongside formation of clathrin-coated vesicles, clathrin forms other structures with different 663 

roles. The prevalence of flat clathrin lattices, or plaques, in cells has recently been termed 664 

‘frustrated endocytosis’. Roles in signal transduction, cell migration and cell adhesion have 665 

been proposed and recently tubular clathrin structures have been observed around collagen 666 

fibres. These lattices appear to lend a stabilising force in situations where the cell makes 667 

contact with a surface, a large potential cargo, or neighbouring cells.  These examples 668 

illustrate the versatility of the clathrin structure for different cellular roles and in these cases 669 

clathrin is seen to form different lattice morphologies. However, in the case of mitosis the 670 

situation appears to be different. Clathrin has been shown to stabilise the kinetochore within 671 

the mitotic spindle but so far none of the commonly observed clathrin lattices have been 672 

observed, suggesting that the shape adopted by clathrin in this role is unlike the classic 673 

polyhedral lattices we commonly see.  674 

In conclusion, we see clathrin able to form a remarkable range of lattice structures in cells, 675 

and within different functions. At the core of this lies the ability of clathrin molecules to 676 

flexibly adapt to the shape of a neighbouring triskelion leg, whilst maintaining a universal 677 

mode of assembly. Discussion continues as to how these structures are formed but 678 
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comprehensive studies of different cell types combined with high resolution structural 679 

analysis show promise in addressing the many questions such structural arrangements pose. 680 
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CKAP5 – Cytoskeleton-associated protein 5 710 

CLC – Clathrin light chain 711 

CME – Clathrin mediated endocytosis 712 

Dab2 – Disabled-2 713 
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DYDC1 – DPY30 domain-containing protein 1 714 

Eps15 – Epidermal growth factor receptor substrate 15 715 

Eps15R – Epidermal growth factor receptor substrate 15 receptor 716 

FEME – Fast endophilin-mediated endocytosis 717 

FBXO32 – F-Box Protein 32 718 

FCHo1/2 – Fer/Cip4 homology domain-only proteins 1 and 2 719 

FRAP – Fluorescence recovery after photobleaching 720 

GAK – Cyclin G-associated kinase 721 

GHSR-1a – GH secretagogue receptor subtype 1a 722 

GPCR – G-protein coupled receptor 723 

HIP1R – Huntington-interacting protein 1-related protein 724 

Hsc70 – Heat shock cognate 71 kDa protein 725 

Hsp110 – Heat shock protein 110 726 

LX[DE] – L(L, I)(D, E, N)(L, F)(D, E) 727 

MAD2B – Mitotic arrest deficient 2-like protein 2 728 

OCRL1 – Oculocerebrorenal syndrome of Lowe protein 1 729 

PDB – Protein Data Bank 730 
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PI(4,5)P2 – Phosphatidylinositol 4,5-bisphosphate 731 

PTEN – Phosphatase and tensin homolog deleted on chromosome ten 732 

RME – Receptor mediated endocytosis 733 

SMAP2 – Stromal membrane-associated protein 2 734 

SNX9 – Sorting Nexin 9 735 

SV – Synaptic vesicle 736 

TACC3 – Transforming acidic coiled-coil containing protein 3 737 

TIRF – Total internal reflection fluorescence 738 

 739 

 740 

Legends to Figures 741 

Figure 1 – Clathrin-mediated endocytosis in cellular processes 742 

Schematic diagram demonstrating the variety of cellular processes in which clathrin is used, including but not 743 
limited to endocytosis, spermiogenesis, cell migration, hormone desensitisation, mitosis, and SV recycling (1–744 
4,14–19). Diagram is not to scale. 745 

Figure 2 – Clathrin structure 746 

A) Domain organisation within CLC and CHC (41). B) Model of a clathrin triskelion including the bovine CHC 747 
model (Protein Data Bank (PDB): 3IYV) (37) informed by fitting the high resolution x-ray structure (PDB: 1B89) 748 
(42) into cryo-EM density maps and the porcine CLC model produced from cryo-EM density maps (PDB: 6SCT) 749 
(41). C) Model of a bovine clathrin cage (EMD: 5119) with fitted clathrin triskelion model produced from cryo-750 
EM density maps (PDB: 1XI5) (37). D) Recent 4.7 Å porcine clathrin hub structure with fitted PDB model (PDB: 751 
6SCT) produced from cryo-EM density maps (EMD: 0126) (41). E) Model of a rat CHC terminal domain 752 
produced from x-ray diffraction density (PDB: 1BPO), with location of binding sites for different motifs 753 
highlighted (43). All structure visualization was performed with UCSF Chimera (44). 754 

Figure 3 – Stages in clathrin mediated endocytosis  755 
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Schematic diagram illustrating different stages in CME, including A) nucleation and assembly, followed by B) 756 
stabilisation and maturation, followed by C) constriction and scission, followed by D) clathrin uncoating. Figure 757 
is not to scale. 758 

Figure 4 – Models for clathrin cage disassembly 759 

Schematic diagram demonstrating two different models for hsc70 driven disassembly of clathrin cages, 760 
including A) the steric wedge/Brownian ratchet model, and B) the wrecking ball/entropic pulling model. 761 
Diagram is not to scale. 762 

Figure 5 – Clathrin structures in cells 763 

EM images reproduced from published works demonstrating the different shapes clathrin complexes can 764 
make. A) Flat clathrin lattice formed primarily of hexagonal arrangements. Yellow arrows highlight other 765 
arrangements including pentagonal (arrowheads) and heptagonal (arrows). B) Flat clathrin lattices with a 766 
distorted or incomplete connecting lattice between the two, indicated by a yellow arrow, as well as possible 767 
attached remnants of cytoskeletal filaments, indicated by yellow arrowheads. A and B are reprinted from 768 
Akisaka et al (2021) (172) with permission from Elsevier. Scale bar represents 0.2 μm. C) Clathrin coated 769 
vesicles formed primarily in a pentagonal arrangement. Reproduced and adapted with permission from the 770 
Heuser lab. D&E) Orthogonal (D) and longitudinal (E) slices of kinetochore fibres, with bridges indicated by 771 
white arrows. It has been suggested that clathrin contributes to the composition of these bridges.  Images are 772 
from Royle et al (2012) (173), reproduced and adapted with permission from The Company of Biologists Ltd. 773 
Original EM images from ©1970 Rockefeller University Press. Originally published in Hepler et al (1970) (174). 774 
F) Collagen fibres (red) with clathrin lattices (green) forming tubular structures around the fibers. From 775 
Elkhatib et al (2017) (175). Reproduced and adapted with permission from AAAS. Panels C-F: No scale bars  776 
were available from original publication. 777 

Figure 6 – Early images of viral entry into cells 778 

TEM images of CME during viral entry. A and B) CME of vesicular stomatitis virus in MDCK cells. A) CCV formation 779 
around virus. B) Partially coated CCV around internalised virus. A and B reprinted from Matlin et al (1982) (217) 780 
with permission from Elsevier. C) and D) Formation of clathrin-coated structures during infection of Jeg3 cells by 781 
L. monocytogenes. The arrow points to a clathrin-coated structure close to the internalised bacterium. This is 782 
shown as an enlarged view in D. Image provided by M. Bonazzi  and P. Cossart and adapted by permission. 783 

Figure 7 – Models for CCV and flat lattice formation 784 

Schematic diagrams demonstrating models for CCV and flat lattice formation. A) Two models for CCV 785 
formation, including the constant curvature model where no clathrin exchange occurs, and the dynamic coat 786 
model where all clathrin is recruited into a lattice prior to membrane bending and requires clathrin exchange 787 
for curvature formation. B) Comparison of the hexagonal flat lattice model with the constrained flat lattice 788 
model proposed by Sochaki et al (2020) (245). 789 

Figure 8 – Cube lattice structures formed by clathrin in vitro 790 

Unusual structures formed from clathrin triskelia in vitro. A) Electron micrograph of clathrin cubes that have 791 
formed into an open square-packed array. Image provided by R. A. Crowther. B and C) Clathrin cube structures 792 
imaged by negative stain electron microscopy. Circled cubes in B have been enlarged and presented in C 793 
alongside fitted schematics of clathrin cubes to the images. Image provided by and adapted with permission 794 
from M. Halebian (Smith lab). 795 
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