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GEOMETRIC STRUCTURES, THE GROMOV ORDER,
KODAIRA DIMENSIONS AND SIMPLICIAL VOLUME

CHRISTOFOROS NEOFYTIDIS AND WEIYI ZHANG

We introduce an axiomatic definition for the Kodaira dimension and classify
Thurston geometries in dimensions � 5 in terms of this Kodaira dimension.
We show that the Kodaira dimension is monotone with respect to the partial
order defined by maps of nonzero degree between 5-manifolds. We study
the compatibility of our definition with traditional notions of Kodaira di-
mension, especially the highest possible Kodaira dimension. To this end, we
establish a connection between the simplicial volume and the holomorphic
Kodaira dimension, which, in particular, implies that any smooth Kähler
3-fold with nonvanishing simplicial volume has top holomorphic Kodaira
dimension.

1. Introduction

The Kodaira dimension provides a very successful classification tool for complex
manifolds. This concept has been generalized by several authors to symplectic
manifolds, especially in dimensions two and four [McDuff and Salamon 1996; 1998;
LeBrun 1996; 1999; Li 2006; Dorfmeister and Zhang 2009], to almost complex
manifolds [Chen and Zhang 2018], as well as to manifolds with a geometric
decomposition in the sense of Thurston in dimensions three and four [Zhang 2017;
Li 2019]. Our first goal is to generalize the traditional notions of Kodaira dimensions
by introducing a more systematic study of the Kodaira dimension �g for manifolds
that carry a geometric structure, especially in the sense of Thurston, and provide a
complete classification in dimensions � 5.

Our proposed approach takes into account both coarse geometric (e.g., curvature)
and group theoretic (e.g., fundamental group) structures of the manifold. On the one
hand, manifolds that contain factors with compact universal coverings are assigned
the lowest possible Kodaira dimension (�1). On the other hand, the presence
of some form of hyperbolicity on the manifold, as generalized by the notion of
irreducible locally symmetric spaces of noncompact type (or the nonvanishing of
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the simplicial volume, explained below), motivates the highest possible value (half
of the dimension). These values generalize the well-known case of holomorphic
Kodaira dimension for surfaces. Beyond the two ends, we treat in a uniform way
solvable (Euclidean-by-Euclidean) geometries and introduce a more systematic
consideration of half values as implied by the existence of fiber bundle structures
for spaces that do not fall into the two boundary values of the Kodaira dimension.

A significant question in topology, suggested by Gromov [1999] and Milnor and
Thurston [1977], is whether a given numerical homotopy invariant � 2 Œ0;1� is
monotone with respect to maps of nonzero degree, that is, whether the existence of a
map of nonzero degree M !N implies �.M /� �.N /. In [Zhang 2017; Neofytidis
2018b], this question was answered in the affirmative for the Kodaira dimension of
manifolds of dimension � 3 and for geometric manifolds in dimension four. We
will show the monotonicity of the Kodaira dimension of geometric 5-manifolds.

Theorem 1.1. Let M and N be two closed oriented geometric 5-manifolds. If there
is a map of nonzero degree from M to N , then �g.M /� �g.N /.

This clearly implies the following:

Corollary 1.2. Let M and N be two closed oriented geometric 5-manifolds. If
there are maps of nonzero degree M �N , then �g.M /D �g.N /.

One of the most prominent examples of monotone invariants is the Gromov
norm [Gromov 1982]. For a topological space X and a homology class ˛2Hn.X IR/,
the Gromov norm of ˛ is defined to be

k˛k1 WD inf
�X

j

j�j j

ˇ̌̌ X
j

�j�j 2 Cn.X IR/ is a singular cycle representing ˛
�
:

If X is a closed oriented n-dimensional manifold, then the Gromov norm or simpli-
cial volume of X is given by kXk WD kŒX �k1, where ŒX � denotes the fundamental
class of X . The simplicial volume satisfies an even stronger condition than mono-
tonicity: If f WM !N is a map of degree degf , then

(1) kM k � jdegf jkN k;

and equality holds when f is a covering map. The nonvanishing of the simplicial
volume is a powerful tool to show nonexistence of maps of nonzero degree, and
the classification of Kodaira dimension suggests that manifolds with top Kodaira
dimension are those with nonvanishing simplicial volume. Results of Gromov [1982]
for hyperbolic manifolds and Lafont and Schmidt [2006] and Bucher [Bucher-
Karlsson 2007] for irreducible locally symmetric spaces of noncompact type will
motivate one of our building axioms, namely to set the Kodaira dimension of a
closed manifold M in the above classes to be

�g.M /D
dim M

2
:
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Together with vanishing results, our choice, indeed, establishes the following
connection between top Kodaira dimension and simplicial volume:

Theorem 1.3. A closed geometric 5-manifold M has nonzero simplicial volume if
and only if �g.M /D 5

2
.

It is natural to examine the compatibility of our Kodaira dimension with the
existing notions of Kodaira dimensions, such as the holomorphic Kodaira dimen-
sion �h for complex 2n-manifolds and the symplectic Kodaira dimension �s of
minimal symplectic 4-manifolds. As Theorem 1.3 suggests, for the top Kodaira
dimension the positivity of the simplicial volume is the connecting principle. We
thus need to answer the following questions for the holomorphic and symplectic
Kodaira dimension, respectively (in this paper we will concentrate on �h):

Question 1.4 (Question 3.13 in [Zhang 2017]).

(1) Let M be a smooth 2n-dimensional complex manifold with nonvanishing
simplicial volume. Is �h.M /D n?

(2) Let M be a smooth 4-dimensional symplectic manifold with nonvanishing
simplicial volume. Is �s.M /D 2?

When M is a Kähler surface, the above question was positively answered by
Paternain and Petean [2004], who showed that M admits an F-structure in the sense
of Cheeger and Gromov [1986] if and only if the Kodaira dimension is different
from two. The existence of an F-structure implies the vanishing of the simplicial
volume [Cheeger and Gromov 1986; Paternain and Petean 2004]. Moreover, all
known examples of compact complex surfaces which are not of Kähler type have
F-structure and thus vanishing simplicial volume. In other words, the complex part
of Question 1.4 for complex surfaces is reduced to answering the following: Does
every complex surface of Class VII have vanishing simplicial volume?

Here, we will address the first part of Question 1.4, giving a uniform treatment
in all dimensions, and an affirmative answer for Kähler 3-folds will follow from
results in algebraic geometry.

Theorem 1.5.

(1) If M is a smooth complex projective n-fold with nonvanishing simplicial
volume, then �h.M /¤ n� 1, n� 2 or n� 3.

(2) If M is a smooth Kähler 3-fold with nonvanishing simplicial volume, then
�h.M /D 3.

In fact, our argument shows that the first part of Question 1.4 for projective
manifolds follows from two well-known conjectures in algebraic geometry, due to
Mumford and Kollár (Conjectures 4.3 and 4.4, respectively). When the complex
dimension is no greater than three, both conjectures are known to be true. The second
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part of Theorem 1.5 then follows from algebraic approximations of compact Kähler
3-folds. Moreover, the first part of Theorem 1.5 is actually true for Moishezon
manifolds, and the second part works for complex 3-folds of Fujiki class C.

2. The Kodaira dimension for Thurston geometries

In this section, we give a definition of the Kodaira dimension and classify, in terms
of this notion, closed manifolds that possess a Thurston geometry in dimensions� 5.

Let Xn be a complete simply connected n-dimensional Riemannian manifold.
We say that a closed manifold M is an Xn-manifold, or that M is modeled on Xn,
or that M possesses the Xn geometry in the sense of Thurston, if it is diffeomorphic
to a quotient of Xn by a lattice � in the group of isometries of Xn (acting effectively
and transitively). The group � is the fundamental group of M . Two geometries
Xn and Yn are the same whenever there exists a diffeomorphism  WXn ! Yn

and an isomorphism Isom.Xn/! Isom.Yn/ which sends each g 2 Isom.Xn/ to
 ıg ı �1 2 Isom.Yn/.

2A. Axiomatic definition. Let G be the smallest class of manifolds that contains all
� points;

� manifolds modeled on a compact geometry;

� solvable manifolds;

� irreducible symmetric manifolds of noncompact type;

� fiber bundles or manifolds modeled on fibered geometries, whose fiber and
base (geometries) belong in G.

We define the Kodaira dimension �g of an n-manifold M 2 G as follows:
(A0) If M is a point, then �g.M /D 0;

(A1) If M is modeled on a compact geometry, then �g.M /D�1;

(A2) If M is solvable, then �g.M /D 0;

(A3) If M is irreducible symmetric of noncompact type, then �g.M /D n
2

;

(A4) If M is a fiber bundle or is modeled on a fibered geometry F! Xn! B and
does not satisfy any of (A1)–(A3), then

�g.M /D sup
F;B

f�g.F /C �g.B/g;

where the supremum runs over all possible manifolds F and B that occur in
a fibration F !M !B or are modeled on F and B, respectively, and which
satisfy one of (A1)–(A3).

An immediate consequence of the above definition is the following:

Lemma 2.1. Let M 2 G and suppose M !M is a finite covering. Then M 2 G
and �g.M /D �g.M /.
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2B. Classification in dimensions � 5.

Dimension zero. The Kodaira dimension of a point is equal to zero by (A0).

Dimension one. The only closed 1-manifold is the circle S1 D R=Z, i.e., it is
modeled on the real line. In particular, S1 is solvable satisfying (A2), hence

�g.S1/D 0:

Dimension two. Let†h be a surface of genus h. If hD0, then†0DS2 satisfies (A1).
If h D 1, then †1 D T 2 D R2=Z2, i.e., it possesses the Euclidean geometry R2

which satisfies (A2). Finally, if h� 2, then †h is hyperbolic, that is, it is modeled
on H2 and satisfies (A3). Hence, to summarize, we have

�g.†h/D

8<:
�1; if hD 0I

0; if hD 1I

1; if h� 2:

Dimension three. By Thurston’s geometrization picture in dimension three, there
exist eight geometries [Scott 1983; Thurston 1997]. The compact geometry S3

satisfies (A1), the geometries R3 (Euclidean), Nil3 (nilpotent) and Sol3 (solvable
but not nilpotent) satisfy (A2), and the hyperbolic geometry satisfies (A3). We are
left with the three product geometries which do not belong to (A1)–(A3). For the
geometry S2�R we have, according to (A4) and the Kodaira dimensions for 1- and
2-manifolds,

�g.S2
�S1/D �g.S2/C �g.S1/D�1:

Every 3-manifold M modeled on H2 � R or fSL2 is finitely covered by a circle
bundle over a closed hyperbolic surface †h. Hence, (A4), Lemma 2.1 and the
Kodaira dimensions for the circle and hyperbolic surfaces, give us

�g.M /D �g.S1/C �g.†h/D 1:

Summarizing,

�g.M /D

8̂̂̂<̂
ˆ̂:
�1; if M is modeled on S3 or S2 �RI

0; if M is modeled on R3;Nil3 or Sol3I
1; if M is modeled on H2 �R or fSL2I

3
2
; if M is modeled on H3:

Dimension four. In his thesis, Filipkiewicz [1983] classified the 4-dimensional
geometries. According to that, there exist nineteen geometries, eighteen of which
have representatives which are compact manifolds. We now enumerate those
geometries following the axioms in Section 2A. For the notation and details on
the structure of each geometry and of manifolds modeled on them, we refer to
the thesis of Filipkiewicz [1983], as well as to the papers of Wall [1985; 1986]
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and the monograph of Hillman [2002]; see also [Neofytidis 2018a] for some new
characterizations for certain geometries of nilpotent and solvable type.

There are three compact geometries, namely S4, CP2 and S2 �S2, and they
satisfy (A1). Thus, a manifold M modeled on any of those geometries has Kodaira
dimension

�g.M /D�1:

There are six solvable geometries satisfying (A2): the Euclidean R4, the nilpotent
Nil4 and Nil3 �R, and the three solvable but not nilpotent geometries Sol40, Sol41
and Sol4m;n (note that Sol4m;m D Sol3 �R). Hence, for those geometries we have

�g.M /D 0:

Next, (A3) is satisfied by the real and complex hyperbolic geometries, H4 and
H2.C/, respectively, as well as by the irreducible H2 �H2 geometry. We thus have
for a manifold M that possesses one of those geometries

�g.M /D 4
2
D 2:

Finally, we deal with the remaining seven geometries which satisfy (A4): If a
manifold M is modeled on one of the geometries S2 �R2, S2 �H2 or S3 �R,
then it has a finite cover which is a fiber bundle with S2- or S3-fiber. Thus
�g.M /D�1, because �g.Sn/D�1 for n� 2. A manifold M modeled on one
of the geometries H2 �R2 or fSL2 �R has Kodaira dimension �g.M /D 1 by the
corresponding classifications in lower dimensions, and, for the same reason, if M

is an H3�R-manifold, then �g.M /D 3
2

. Finally, if M is modeled on the reducible
geometry H2 �H2, then it is virtually a product of two hyperbolic surfaces, hence
�g.M /D 2 by the fact that hyperbolic surfaces have Kodaira dimension one. Note
that �g.M /D 2D 4

2
for irreducible H2 �H2-manifolds, as we have seen above.

All this is summarized as follows:

�g.M /D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

�1; if M is modeled on S4;CP2;S2 �X2 or S3 �RI

0; if M is modeled on R4;Nil4;Nil3 �R;Sol4m;n;Sol40 or Sol41I
1; if M is modeled on H2 �R2 or fSL2 �RI
3
2
; if M is modeled on H3 �RI

2; if M is modeled on H4;H2.C/ or H2 �H2:

Dimension five. Recently, Geng [2016a] gave a classification of the 5-dimensional
geometries. According to Geng’s list, there exist fifty-eight geometries, and fifty-
four of them are realized by compact manifolds. (Counting from Geng’s list one finds
fifty-nine geometries, because the geometry Sol3�R2, which is Sol4m;n�R for mDn,
is counted individually.) As before, we will enumerate these geometries following
(A0)–(A4). For a description of each geometry, as well as for the terminology, we
refer to the three papers from the thesis of Geng [2016a; 2016b; 2016c]. In particular,
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for the virtual properties of a manifold modeled on each geometry, we refer to the
individual sections/results as given in the statements of [Geng 2016b, Theorem 1.1]
and [Geng 2016c, Theorem 1.1]. These descriptions will be used as well in Section 3.
Furthermore, as it is remarked in [Geng 2016a, Section 4], a similar classification
for the Thurston geometries was partially done in dimensions six and seven (and
thus the Kodaira dimensions of those manifolds can be similarly determined).

Manifolds satisfying (A1). There are three compact geometries: the 5-sphere S5,
the Wu symmetric manifold SU.3/=SO.3/ and the product S2�S3. A manifold M

modeled on these geometries has Kodaira dimension

�g.M /D�1:

Manifolds satisfying (A2). Naturally, this is one of the most rich classes of new
geometries with the various (irreducible) extensions of solvable-by-solvable geome-
tries. There are two nilpotent and six solvable but not nilpotent extensions of type
R4 ÌR, denoted by

A5;1;A5;2 and A
a;b;�1�a�b
5;7

;A
1;�1�a;�1Ca
5;7

;A
1;�1;�1
5;7

;A�1
5;8;A

�1;�1
5;9

;A�1
5;15;

respectively. There are two nilpotent geometries of type Nil4 ÌR, denoted by A5;5

and A5;6. There is one nilpotent and one solvable but not nilpotent geometry of
type .R�Nil3/ÌR denoted by A5;3 and A0

5;20
, respectively. There is a solvable

but not nilpotent extension R3 Ì R2 denoted by A
�1;�1
5;33

. The last irreducible
solvable geometry is Nil5. The remaining solvable geometries are built out of
products of lower dimensional geometries: the Euclidean R5, the nilpotent Nil3�R2,
Nil4 �R, and the solvable but not nilpotent Sol40 �R, Sol41 �R, Sol4m;n �R (note
that Sol4m;m�RD Sol3�R2). A manifold M modeled on any of these geometries
has Kodaira dimension

�g.M /D 0:

Manifolds satisfying (A3). Any manifold modeled on one of the irreducible symmet-
ric geometries of noncompact type H5 or SL.3;R/=SO.3/ has Kodaira dimension

�g.M /D 5
2
:

Manifolds satisfying (A4). A manifold M modeled on one of the geometries:

S2 �S2 �R; S2 �R3; S2 �Nil3; S2 �Sol3;
S2 �H2 �R; S2 �fSL2; S2 �H3; S2 �H3;

S3 �R2; S3 �H2; S4 �R; CP2
�R;

Nil3 �R S3; fSL2 �˛ S3; L.a; 1/�S1 L.b; 1/; T 1.H3/

satisfies (A4) with fiber or base one of the compact geometries S2, S3, S4 or CP2.
Hence, �g.M /D�1 by the classification of Kodaira dimensions of manifolds of
dimension � 4.
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Now, a manifold M modeled on one of the geometries:

R3 �H2; Nil3 �H2; Sol3 �H2;fSL2 �R2; R2 ÌfSL2; Nil3 �R
fSL2

is fibered with involved geometries H2 and a solvable geometry. Hence, �g.M /D 1.
Every representative M of the H3 � R2 geometry satisfies (A4), where the

supremum is achieved with the geometries H3 and R2, i.e., �g.M /D 3
2

.
Next, we deal with 5-manifolds which are fibrations over a space of Kodaira

dimension two, namely they are modeled on one of geometries:

H2 �fSL2; H2 �H2 �R; fSL2 �˛
fSL2;

H4 �R; H2.C/�R; EU.2;1/=U.2/:
Indeed, those geometries are fibered over one of the geometries H2 �H2, H2 or
H2.C/. Hence, any 5-manifold modeled on the above geometries has Kodaira
dimension �g.M /D 2.

Finally, a manifold M modeled on the product geometry H2�H3 has top Kodaira
dimension �g.M /D 1C 3

2
D

5
2

.
We summarize the Kodaira dimensions of geometric 5-manifolds below:

�g.M /D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

�1; if M is modeled on SU.3/=SO.3/;S5;S2�X3;S3�X2;S4�R;

CP2
�R;Nil3�RS3;fSL2�˛S3;L.a;1/�S1 L.b;1/ or T 1.H3/I

0; if M is modeled on R5;R4ÌR;R3ÌR2;Nil5;Nil4�R;Nil3�R2;

Nil4ÌR; .R�Nil3/ÌR;Sol40�R;Sol41�R or Sol4m;n�RI

1; if M is modeled on H2�R3;H2�Nil3;H2�Sol3;R2�fSL2;

R2ÌfSL2 or Nil3�R
fSL2I

3
2
; if M is modeled on H3�R2I

2; if M is modeled on H2�fSL2;fSL2�˛
fSL2;H

2�H2�R;

H4�R;H2.C/�R or EU.2;1/=U.2/I
5
2
; if M is modeled on H5;SL.3;R/=SO.3/ or H3�H2:

2C. Remarks on the definition and classification.

Half integers and bundle additivity. Half integers for the Kodaira dimension were
introduced in [Zhang 2017] for hyperbolic 3-manifolds. This is a natural develop-
ment, taking into account the known top Kodaira dimension for complex manifolds
and the simplicial volume; see also Section 4. Moreover, an additivity condition
for fiber bundles was introduced in [Li and Zhang 2011], similarly to (A4). Hence,
although in [Zhang 2017] the Kodaira dimension for H3�R is defined to be one, it
seems natural to define it to be equal to 3

2
. Indeed, a closed 4-manifold M modeled

on H3 � R is finitely covered by a product F � S1, where F is a hyperbolic 3-
manifold. Since solvable manifolds (in this case, the circle) have Kodaira dimension
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zero (by (A2)), we obtain the value

�g.M /D �g.F /C �g.S1/D 3
2
:

The requirement on the supremum in (A4) becomes now clear: If F is a mapping
torus of a pseudo-Anosov diffeomorphism of a hyperbolic surface † (every hyper-
bolic 3-manifold is virtually of this form [Agol 2013]), then M is a fiber bundle
†!M ! T 2. In that case, † is irreducible locally symmetric of noncompact
type, the 2-torus is solvable and therefore �g.†/C �g.T 2/D 1. The supremum,
however, is achieved with the fibration F !M ! S1.

Note that the monotonicity result for the Kodaira dimension of 4-manifolds with
respect to maps of nonzero degree given in [Neofytidis 2018b, Theorem 1.2] is
not affected with this new value for H3 �R-manifolds. In fact, it reveals exactly
the difference with the two 4-dimensional geometries with Kodaira dimension one,
namely H2 �R2 and fSL2 �R: As shown in [Neofytidis 2018b, Theorem 1.1], not
only does no H3 �R-manifold admit a map of nonzero degree from a manifold
modeled on one of the geometries H2 �R2 or fSL2 �R, but, moreover, given any
manifold N which is modeled on one of the latter two geometries, then there is an
H3 �R-manifold M and a map M !N of nonzero degree.

Generalized Class VII surfaces. Our Kodaira dimension is compatible with the
holomorphic one for Kähler manifolds. However, according to (A2), the Kodaira
dimension for Sol40- and Sol41-manifolds is zero instead of �1 as defined in [Zhang
2017]. This is again compatible with (A4), because those geometries are solvable-
by-solvable, and lower dimensional solvable geometries have Kodaira dimension
zero. In [Zhang 2017], the Kodaira dimension for Sol40- and Sol41-manifolds was
defined to be �1 following Wall’s scheme for complex non-Kähler surfaces [Wall
1986]. We could have required the Kodaira dimension of those manifolds, as well
as of Sol4m¤n-manifolds, to be indeed �1 as they have vanishing virtual second
Betti number and thus admit no symplectic structures. However, in this paper, we
have chosen to introduce the Kodaira dimension taking a unified value (zero) for
solvable manifolds, thus keeping our axiomatic approach natural with the least
possible assumptions.

Remark 2.2. Axiom (A4) is also strongly related to the conjecture of Iitaka [1971],
which states that the holomorphic Kodaira dimension for an algebraic fibration
F !M ! B satisfies

�h.M /� �h.F /C �h.B/:

In fact, our set of Axioms matches with the picture of Iitaka fibration in algebraic
geometry, which is applied to compute the simplicial volume in Section 4.

Geometries with no compact representatives. A phenomenon that appears in di-
mensions four and above is that of geometries that have no compact representatives,
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but still manifolds with finite volume. Being interested mostly in the monotonicity
of the Kodaira dimension with respect to nonzero degree maps, and thus in compact
manifolds, we omitted those geometries from our classification. It is nevertheless
worth giving their values:

� In dimension four, the geometry F4 is realized by T 2-bundles over punctured
hyperbolic surfaces [Hillman 2002]. According to our axioms, any manifold M

modeled on F has �g.M / D 1. This coincides with the definition given
in [Zhang 2017].

� In dimension five, one has the geometries T 1.R1;2/D R3 ÌSO.1; 2/0=SO.2/,
F4 �R, and two quotients of Nil3 ÌfSL2, which are denoted by F5

0
and F5

1
. A

manifold M modeled on any of those geometries has virtually the structure
of a circle bundle over an F4-manifold [Geng 2016c], hence it has Kodaira
dimension �g.M /D 1.

Beyond Thurston’s geometries. The definition and classification of Kodaira dimen-
sion goes well beyond Thurston’s geometries. Such a classification was given
in [Zhang 2017] for 3-manifolds, following the torus and sphere decompositions for
3-manifolds. One cannot hope for such a general result in higher dimensions based
on geometric structures, as there exist manifolds that do not possess geometric
structures or decompositions. Moreover, there are diffeomorphic Kähler n-folds
with different Kodaira dimensions when n� 3 [Răsdeaconu 2006]. Nevertheless,
following decomposition results in dimension four [Hillman 2002] and developing
a similar theory for the recently classified geometries in dimension five, one should
be able to associate a numerical homotopy invariant for a much wider class of
manifolds that will contain Thurston’s geometries which is monotone with respect
to maps of nonzero degree. We might include more manifolds by considering
decomposition with pieces of Einstein manifolds.

Furthermore, our definition includes many more general classes that are not
geometric. For example, in dimension four, the Kodaira dimension of a (not
necessarily geometric) fiber bundle F !M ! B is

�g.M /D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

�1; if one of F;B is S2 or finitely covered by #m�0S2 �S1I

0; if F D B D T 2; or one of F;B is a 3-manifold which is not
finitely covered by #m�0S2�S1 and contains no H2�R; fSL2

or H3 pieces in its torus or sphere decompositionI
1; if one of F;B is T 2 and the other is hyperbolic, or one of F;B

is a 3-manifold which has at least one H2�R or fSL2 piece
and no H3 pieces in its torus or sphere decompositionI

3
2
; if one of B;F is a 3-manifold with at least one H3 piece in

its torus or sphere decompositionI
2; if both F and B are hyperbolic surfaces:



GEOMETRIC STRUCTURES, THE GROMOV ORDER, KODAIRA DIMENSIONS 219

The connection to the simplicial volume suggested by Theorem 1.3 is appar-
ent: For the above fibration, kM k > 0 if and only if F and B are hyperbolic
surfaces [Bucher and Neofytidis 2020, Corollary 1.3]. Also, this definition should
be absolutely compatible with maps of nonzero degree. Namely, Gromov asks
whether, given any manifold N , we can find a surface bundle M and a map M!N

of nonzero degree [Gromov 2009, pg. 753, Topological version of Bogomolov’s
question].

3. The Gromov order

Given two closed oriented n-manifolds M and N , we say that M dominates N if
there is a map M !N of nonzero degree, and we denote this by M �N . In 1978,
Gromov suggested studying the domination relation as a partial order [Carlson and
Toledo 1989]. In dimension two, the domination relation is a total order given by
the genus, as it can be easily seen that †g � †h if and only if g � h. In higher
dimensions, however, such an order is impossible. Nevertheless, various results
have been obtained with respect to this order by many authors [Carlson and Toledo
1989; Wang 1991; Rong 1992; Belegradek 2003; Kotschick and Neofytidis 2013;
Bharali et al. 2015; Neofytidis 2018b]. As suggested by the monotonicity of the
simplicial volume (inequality (1)), one hopes to be able to understand whether
a numerical invariant is monotone with respect to the domination relation; see
Gromov [1999] and Milnor and Thurston [1977]. The Kodaira dimension is indeed
monotone in dimensions two (obviously), three [Zhang 2017] (see also [Neofytidis
2018b] for an alternative proof based on [Wang 1991; Kotschick and Neofytidis
2013]) and four [Neofytidis 2018b].

We prove that the Kodaira dimension for geometric 5-manifolds is monotone
with respect to Gromov’s order.

Theorem 3.1. Let M and N be two closed oriented geometric 5-manifolds. If
M �N , then �g.M /� �g.N /.

Before proceeding to our argument, let us first recall some tools and properties
that we will need at various stages of the proof.

Passing to finite coverings. We will use virtual properties of manifolds under
consideration, such as a desired product or fiber bundle structure. We will do that
after lifting our maps as follows: Given a (hypothetical) map of nonzero degree
f WM !N , the group f�.�1.M // has finite index in �1.N /, and so we can lift f
to a �1-surjective map Qf WM ! eN , where eN !N is the covering corresponding
to f�.�1.M //. Sometimes this alone is enough. If we want to achieve further
virtual properties, then we consider the finite covering pW bN ! eN (which is also a
finite covering of N ) that has the desired virtual property (e.g., bN has a product
or fiber bundle structure). Then there is a covering qW eM !M corresponding to
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Qf �1
� .p�.�1.bN /// such that Qf ı q lifts to a �1-surjective map Of W eM ! bN . If eM

has the desired properties (e.g., product or fiber bundle structure), then we work
with that map. Otherwise, let OqW bM ! eM be the finite covering with the desired
properties and either we work with the map Of ı OqW bM ! bN or we lift further Of ı Oq
to a �1-surjective map.

Killing normal subgroups. In certain cases, after passing to finite covers as ex-
plained above, the existence of a normal solvable subgroup in the fundamental
group of the domain will simplify the argument. For instance, let f WM ! N

be a �1-surjective map, where M and N are aspherical n-manifolds. Moreover,
suppose �1.M / has nontrivial center C.�1.M //, such that �1.M /=C.�1.M //

has cohomological dimension < n. By �1-surjectivity, we obtain f�.C.�1.M ///�

C.�1.N //. Thus, if C.�1.N //D 1, then we immediately obtain that Hn.f /D 0,
because f factors, up to homotopy, through a space of lower cohomological dimen-
sion. Hence, degf D 0.

Realization of homology classes by manifolds. Another tool in showing nonexis-
tence of certain maps of nonzero degree is given by the solution of Thom [1954]
of Steenrod’s realization problem [Eilenberg 1949]: If X is a topological space
and ˛ 2 Hk.X IZ/, then there is an integer d > 0 and a closed k-manifold E,
together with a continuous map gWE ! X , such that Hk.g/. ŒE� / D d˛. For
k � 6, we can take d D 1. Suppose now f WM ! N �B is a map of nonzero
degree, and let � WN �B ! B be the projection to B, where dim B < dim M .
Then, by Poincaré Duality, there is a nontrivial homology class ˛ 2Hdim B.M IQ/

such that Hdim B.� ıf /.˛/D ŒB�. Thom’s theorem [Thom 1954] guarantees the
existence of a manifold E of dimension dim B together with a continuous map
hD� ıf ıgWE!B, such that Hdim B.h/. ŒE� /¤ 02Hdim B.BIZ/. In particular,
E �B. Hence, if we knew that the latter is not possible, i.e., E �B, then we arrive
at a contradiction, and so degf D 0.

Proof of Theorem 3.1. We will show that M �N , whenever �g.M / < �g.N /. We
organize the proof according to the Kodaira dimension of M or N . More specifically,
we first examine the cases where �g.M /D�1; 0; 1 or 3

2
and �g.N /¤ 5

2
. Then

we give a uniform treatment for the case �g.N / D 5
2

, using only the simplicial
volume (although other of our arguments would apply as well), proving in particular
Theorem 1.3.

Case I: �g.M /D�1. Let B�1.M / be the classifying space of �1.M / and denote
by cM WM ! B�1.M / the classifying map. Since M is modeled on a geometry
which is a (possibly trivial) fibration with a compact fiber or base, we conclude that
the induced homomorphism H5.cM /WH5.M IQ/!H5.B�1.M /IQ/ is zero. On
the other hand, if N is a manifold modeled on one of the other geometries with
Kodaira dimension 0; 1; 1

2
or 2, then N is aspherical and, thus, its classifying map



GEOMETRIC STRUCTURES, THE GROMOV ORDER, KODAIRA DIMENSIONS 221

is homotopic to the identity. Suppose now f WM ! N is a continuous map and
let Bf�WB�1.M /! B�1.N / be the induced map between the classifying spaces.
Then there is the commutative diagram:

H5.M IQ/
H5.f /

//

H5.cM /

��

H5.N IQ/

H5.cN /

��

H5.B�1.M /IQ/
H5.Bf�/

// H5.B�1.N /IQ/

Since H5.cM /D 0 and H5.cN /D id, we conclude that

H5.f /DH5.cN ıf /DH5.Bf� ı cM /D 0;

which implies degf D 0.

Case II: �g.M /D0. Suppose M possesses a solvable geometry, and let f WM!N

be a �1-surjective map, i.e., f�.�1.M //D �1.N /. If N has Kodaira dimension
1; 3

2
or 2, then �1.N / is not solvable, and thus degf D 0 by the following group

theoretic lemma whose proof is left to the reader:

Lemma 3.2. Let H1;H2 be two groups and 'WH1 ! H2 be a homomorphism.
If H1 is solvable, then '.H1/�H2 is a solvable subgroup.

Case III: �g.M /D 1. First, let M be a manifold modeled on one of the geometries
H2 �R3, R2 �fSL2 or R2 ÌfSL2. Then, up to finite covers, M is a circle bundle
over a (semi)direct product E of the 2-torus with a (possibly punctured) hyperbolic
surface; see [Geng 2016c, Section 5], [Geng 2016c, Proposition 6.23 and Table
6.24] and [Geng 2016c, Proposition 6.17 and Tables 6.19 and 6.21], respectively.
In particular, �1.M / has nontrivial center.

Remark 3.3. Note that an aspherical 5-manifold M modeled on a nonsolvable
product geometry X�Rk , 1� k � 3, is virtually a product of an X-manifold with
the k-torus by arguments similar to those of [Hillman 2002]. Adapting the argument
of [Hillman 2002, Theorem 9.3], given for the 4-dimensional geometries H2 �R2,
H3�R and eSL2�R, the fundamental group of the 5-manifold M has (up to finite
index subgroups) center C.�1.M //Š Zl �Zk , where l is the maximum rank of
the center of the fundamental group of a manifold N modeled on X, which is H4,
H2.C/, H2�H2, H3, fSL2 or H2 (i.e., l D 0 or 1). Then similarly to [Hillman 2002,
Theorem 9.3] the projection to the Euclidean factor maps C.�1.M // injectively and
�1.M / preserves the foliation of the model space by copies of the Euclidean factor.

Every map from E to a 4-manifold B, which is modeled on one of the geometries
H4, H2.C/ or H2�H2, has degree zero, because kBk> 0 and kEkD 0 by [Gromov
1982; Lafont and Schmidt 2006; Bucher-Karlsson 2008]. Now, every 5-manifold N

of Kodaira dimension two is a circle bundle over a 4-manifold modeled on one
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of the geometries H4, H2.C/ or H2 �H2; see [Geng 2016c, Proposition 6.23 and
Tables 6.24 and 6.29] for the geometries H2 �fSL2, fSL2 �˛

fSL2 and H2 �H2 �R

and [Geng 2016c, Propositions 4.1 and 4.2 and Table 4.3] for the geometries
H4 � R, H2.C/ � R and EU.2;1/=U.2/. Hence, the following lemma, which is a
straightforward generalization of [Neofytidis 2018b, Lemma 5.1], tells us that any
map f WM !N has degree zero:

Lemma 3.4 [Neofytidis 2018b]. For i D 1; 2, let S1!Mi!Bi be circle bundles
over closed oriented aspherical manifolds Bi of the same dimension, so that the
center of �1.M2/ remains infinite cyclic in finite covers. If B1�B2, then M1�M2.

If N has Kodaira dimension 3
2

, then it is virtually a product F �T 2, where F is
a hyperbolic 3-manifold; cf. [Geng 2016c, Section 5] or Remark 3.3. Since �1.M /

contains Z2 as a normal subgroup (which is moreover central for the geometries
H2�R3 and R2�fSL2), we deduce that any �1-surjective map f WM !N factors
through a map Nf WB ! F , where B is a 3-manifold modeled on the geometry
H2 �R, when M is an H2 �R3-manifold, or on the geometry fSL2, when M is
an R2 �fSL2- or R2 ÌfSL2-manifold. Hence, Nf factors through a surface, which
implies deg Nf D 0. By a statement similar to that of Lemma 3.4, we deduce that
degf D 0.

Now let M be modeled on one of the geometries Nil3 �H2 or Nil3 �R
fSL2. In

this case, M is virtually a circle bundle over T 2 �†g, g � 2; cf. [Geng 2016c,
Proposition 6.23 and Tables 6.24 and 6.29]. Hence, as above, there is no map of
nonzero degree from M to any manifold of Kodaira dimension two. Suppose now
that the target N has Kodaira dimension 3

2
, i.e., it is virtually a product F �T 2,

where F is a hyperbolic 3-manifold, and let f WM ! F � T 2 be a continuous
�1-surjective map. Let � WF �T 2! F be the projection to the F -factor. Since
the center of �1.M / is infinite cyclic given by the S1-fiber, the composite map
� ı f WM ! F factors through the bundle projection pWM ! T 2 � †g. If
H3.p/ D 0, then H3.f / D 0, which means that degf D 0, because otherwise
H3.f /WH3.M /! H3.F � T 2IQ/ ¤ 0 would be surjective. If H3.p/ ¤ 0 and
degf ¤ 0, then there is an induced map Nf WT 2 �†g! F , such that H3. Nf /¤ 0.
Since

H 3.T 2
�†g/Š .H

2.T 2/˝H 1.†g//˚ .H
1.T 2/˝H 2.†g//;

we conclude that there is a map of nonzero degree from T 3 or S1 �†g to F

(cf. [Thom 1954; Neofytidis 2017]), which is impossible, as such a map would
factor through a surface. Thus, degf D 0.

Finally, let M be a Sol3�H2-manifold. We may assume (after passing to a finite
cover, if necessary) that M DE �†g, where E is a mapping torus of an Anosov
diffeomorphism of T 2; cf. [Geng 2016c, Prop 6.23 and Table 6.24] and [Scott
1983]. We first observe that every map from M to a manifold that possesses the
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geometry H3 � R2 has degree zero: Indeed, suppose f WE �†! F � T 2 is a
map of nonzero degree, where F is a hyperbolic 3-manifold. Let the composition
� ıf WE �†! F , where � WF �T 2! F is the projection to the F -factor. Since

H 3.E�†g/Š .H
3.E/˝H 0.†g//˚.H

2.E/˝H 1.†g//˚.H
1.E/˝H 2.†g//;

we conclude by [Thom 1954; Neofytidis 2017] that there is a map of nonzero
degree from E or S1 � †h (h � 1) to F , which is a contradiction, as such a
map would factor through the circle or a surface, respectively. This means that
degf D 0. Similar arguments apply when the target N is an fSL2 �H2-manifold
(see [Neofytidis 2018b] and also [Neofytidis 2020] for a general characterization
regarding such products, as well as [Kotschick and Neofytidis 2013] for projections
to the geometry fSL2) or N is modeled on H2 �H2 �R, H4 �R or H2.C/�R; for
the last three geometries, note that any nontrivial class in

H 4.E �†g/Š .H
3.E/˝H 1.†g//˚ .H

2.E/˝H 2.†g//

is realized either by the product of a Sol3-manifold with the circle or by the product
of the 2-torus with a hyperbolic surface.

We are thus left with the cases where the target N is virtually a nontrivial
circle bundle over a hyperbolic or an H2 �H2-manifold. In those cases, we will
apply the theory of groups (not) infinite index presentable by products developed
in [Neofytidis 2018a].

Definition 3.5. A group H is called presentable by products if there exist two
infinite elementwise commuting subgroups H1;H2�H , such that the multiplication
homomorphism H1�H2!H surjects onto a finite index subgroup of H . If both Hi

can be chosen with ŒH WHi �D1, then H is called infinite index presentable by
products, or IIPP.

The property IIPP is a sharp refinement between reducible groups, i.e., groups
that have a finite index subgroup which splits as a direct product of two infinite
groups, and groups presentable by products, which were introduced in [Kotschick
and Löh 2009]. The following gives a criterion such that the conditions IIPP and
reducible are equivalent for central extensions:

Theorem 3.6 (Theorem D in [Neofytidis 2018a]). Let � be a group with center
C.�/ such that the quotient �=C.�/ is not presentable by products. Then, � is
reducible if and only if it is IIPP.

A prominent class of groups not presentable by products is given by nonelemen-
tary hyperbolic groups [Kotschick and Löh 2009]. Hence, Theorem 3.6 applies to
the geometry EU.2;1/=U.2/, because if N is an EU.2;1/=U.2/-manifold, then, up to
finite covers, N has the structure of a nontrivial circle bundle over a closed complex
hyperbolic 4-manifold B. Clearly �1.N / is not reducible, hence, by Theorem 3.6,
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it is not IIPP. Thus, every map from a Sol3 �H2-manifold to N has degree zero,
by the following theorem:

Theorem 3.7 (Theorem B in [Neofytidis 2018a]). Let S1!N ! B be a circle
bundle over a closed oriented aspherical manifold B, so that �1.N / is not IIPP
and its center remains infinite cyclic in finite covers. Then P �N for any nontrivial
direct product P .

The same argument applies when the target N is a nontrivial circle bundle over
a 4-manifold B that possesses the irreducible H2�H2 geometry, because �1.B/ is
not presentable by products and �1.N / is irreducible, and thus not IIPP [Neofytidis
2018a].

The criterion of Theorem 3.6 is not any more valid once we relax the condition
on �=C.�/ being not presentable by products. Such an example is given by the
fundamental group of a Nil5-manifold N , which is irreducible and IIPP [Neofytidis
2018a, Section 8], and fits into the central extension

1 �! Z �! �1.N / �! Z4
�! 1:

As shown in [Neofytidis 2018a, Section 8], N still does not admit maps of nonzero
degree from products. We will show below that a similar argument applies to the
case of fSL2 �˛

fSL2-manifolds.
Let N be modeled on fSL2 �˛

fSL2, such that, after passing to finite covers, it is
a nontrivial S1-bundle over the product of two hyperbolic surfaces †h1

�†h2
, and

�1.N / fits into the central extension

1 �! Z �! �1.N / �! �1.†h1
/��1.†h2

/ �! 1:

Since N is not modeled on fSL2 �H2 or H2 �H2 �R, we conclude that �1.N / is
irreducible. However, �1.N / is IIPP, and a presentation is given by the multiplication

H1 �H2 �! �1.N /;

where Hi D ha1; b1; : : : ; ahi
; bhi

; z j Œa1; b1� � � � Œahi
; bhi

�D zt ; t 2 Z n f0gi.
Suppose, now, that there exists a �1-surjective map f WX1�X2!N of nonzero

degree, where 0< dim.Xi/ < 5. We then obtain a short exact sequence

(2) 1 �! �1\�2 �! �1 ��2

'
�!�1.N / �! 1;

where �i WD im.�1.f jXi
//� �1.N /, �1\�2 � C.�1.N //D Z and ' is the mul-

tiplication homomorphism. Moreover, we obtain two nontrivial rational homology
classes

(3) ˛i WDHdim Xi
.B�1.f jXi

/ ı cXi
/. ŒXi � /¤ 0 2Hdim Xi

.B�i IQ/;

where cXi
denotes the classifying maps; see [Kotschick and Löh 2009] or [Neofytidis

2018a]. Since �1.N / is irreducible, �1 \ �2 is isomorphic to Z. Now both Z
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and �1.N / are Poincaré Duality groups of cohomological dimension one and five,
respectively, hence �1��2 is a Poincaré Duality group of cohomological dimension
cd.�1��2/D 6 and each �i is a Poincaré Duality group [Bieri 1972; Johnson and
Wall 1972]. We need to examine the cases where cd.�1/D 1; 2 or 3.

If cd.�1/ D 1, then �1 D Z, and so B�1 ' BZ D S1. The nonvanishing of
˛12Hdim X1

.S1IQ/ implies that dim X1�1, that is, X1DS1. Hence S1�X2�N ,
which is impossible by the following Factorization lemma:

Lemma 3.8 (Lemma 4.8 in [Neofytidis 2018a]). Let S1!N !B be a nontrivial
circle bundle over a closed oriented aspherical manifold B. Suppose that the Euler
class of N is not torsion and that the center of �1.N / remains infinite cyclic in
finite covers. Then X �S1 �N for any closed oriented manifold X .

If cd.�1/D 2, then �1 is a surface group [Eckmann 1987]. Since ZD�1\�2�

C.�1/, we conclude that �1 Š Z2. Since ZD �1 \�2 � C.�2/, we deduce that
rank C.�1 � �2/ � 3. But �1 � �2 fits into the short exact sequence (2), where
C.�1 \ �2/ D C.�1.N // D Z. This gives us a contradiction [Neofytidis 2018a,
Lemma 6.23].

The last case is cd.�i/D 3. Since �i are Poincaré Duality groups and C.�i/¤ 1,
we deduce that �i must be fundamental groups of closed 3-manifolds modeled on
R3, Nil3, H2�R or fSL2 by theorems of Bowditch [2004] and Thomas [1995]. The
geometry R3 is excluded due to the rank of the center, as above. Hence, B�i are
realized by closed manifolds. (Note that at least one of them must be modeled on
H2�R or fSL2, because �1.N / is not nilpotent [Neofytidis 2018a].) We have shown
that there are two nontrivial homology classes ˛i 2Hdim Xi

.B�i IQ/ such that

H5.B'/.˛1 �˛2/D .degf /ŒN �:

For one of the ˛i , say ˛1, we have by (3) a continuous map

B�1.f jX1
/ ı cX1

WX1 �! B�1;

where in our case X1 DE is a Sol3-manifold and B�1 is realized by a 3-manifold
modeled on Nil3, H2 �R or fSL2. Since ˛1 ¤ 0, the above map is nontrivial in
degree three homology. This is a contradiction because, by the growth of the first
Betti number (see for example [Scott 1983]), there are no maps of nonzero degree
from a Sol3-manifold to any 3-manifold possessing one of the geometries Nil3,
H2 �R or fSL2. Therefore, degf D 0 as claimed.

Case IV: �g.M /D 3
2

. Let M be a manifold modeled on H3 �R. We can assume
that M is the product of a hyperbolic 3-manifold F and the 2-torus. In particular,
Z � Z2 D C.�1.M //. Suppose f WM ! N is a �1-surjective map, where N is
a manifold of Kodaira dimension two. In all cases, we can assume that N is a
circle bundle whose base B is modeled on one of the geometries H4, H2.C/ or
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H2 �H2. In particular, C.�1.N // D Z. Hence f� factors through a surjection
Nf�W�1.M /=Z!�1.B/, where �1.M /=Z is realized by S1�F . Since S1�F �B,

Lemma 3.4 implies that degf D 0.

Case V: �g.N / D 5
2

. In this case, N is modeled on one of the geometries H5,
SL.3;R/=SO.3/ or H3�H2, which implies kN k> 0. This is a consequence of the
theorems of Gromov [1982] for hyperbolic 5-manifolds and products of hyperbolic
2- and 3-manifolds, by the inequality

kE1 �E2k � kE1kkE2k;

and a consequence of a theorem of Bucher [2007] for SL.3;R/=SO.3/. On the other
hand, any manifold M with Kodaira dimension �1; 0; 1; 1

2
or 2 has zero simplicial

volume. For if M is modeled on a compact geometry, then the classifying space of
�1.M / has virtual dimension less than five (see also Case I), and thus Gromov’s
Mapping theorem [Gromov 1982] tells us that kM k D 0. If M is virtually a fiber
bundle with amenable fiber, then kM k D 0 (again by Gromov [1982]). For any
manifold which is virtually a product with a factor that belongs in the above cases
(and thus has zero simplicial volume), it has zero simplicial volume by Gromov’s
inequality

kE1 �E2k �

�
dim.E1 �E2/

dim E1

�
kE1kkE2k:

In the remaining cases, M virtually fibers over a compact geometry and thus
kM k D 0 (again by the Mapping theorem [Gromov 1982]). By kN k > 0 and
kM k D 0, we conclude that M �N ; cf. inequality (1). The proof of Theorem 3.1
is now complete. �
Remark 3.9. Note that Case V proves, in particular, Theorem 1.3.

4. Kähler manifolds with nonvanishing simplicial volume

In this section, we prove Theorem 1.5, giving, in particular, a complete answer to
Question 1.4(1) for Kähler 3-folds. In fact, we will present a uniform treatment
for all dimensions, and, then, known results in algebraic geometry will imply
an affirmative answer for Kähler 3-folds. This gives further evidence for the
compatibility of our axiomatic Kodaira dimension with other existing Kodaira
dimensions for manifolds with nonzero simplicial volume.

We start with a lemma which shows that the simplicial volume is a birational
invariant.

Lemma 4.1. Birationally equivalent smooth projective varieties (respectively, bi-
meromorphic smooth Kähler manifolds) have the same simplicial volume.

Proof. The Mapping theorem of [Gromov 1982] implies that if there is a continuous
map f WX1!X2 such that the induced homomorphism of fundamental groups is
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an isomorphism, then kX1k D kX2k. In particular, it applies when f is a blowup.
By the weak factorization theorem [Abramovich et al. 2002], any bimeromorphic
map between complex manifolds can be factored as a composition of blowups
and blowdowns at a smooth center, and each intermediate variety is a complex
manifold. Moreover, if we start with a birational map between smooth projective
varieties, then each intermediate variety is a smooth projective variety. Hence,
birationally equivalent smooth projective varieties, respectively bimeromorphic
Kähler manifolds, have the same simplicial volume. �

We first deal with uniruled manifolds.

Proposition 4.2. Any uniruled manifold has vanishing simplicial volume.

Proof. For a uniruled n-fold X , there is a complex (n� 1)-fold Y and a dominant
and generically finite rational map f WY � CP1Ü X . Up to blowups, we can
choose Y to be smooth.

By the resolution of singularities of Hironaka [1964], there is a birational mor-
phism gWZ ! Y �CP1, obtained as the composition of blowups along smooth
centers, such that f ıg is a morphism.

Since CP1
Š S2, the product inequality for the simplicial volume implies

kY �CP1
k D 0 (or by [Gromov 1982; Yano 1982] due to the circle action). By

the Mapping theorem of [Gromov 1982], we have jjZk D kY �CP1
k D 0. Finally,

since kZk � j deg.f ıg/jkXk � kXk, we conclude that kXk D 0. �
Apparently, any uniruled manifold has holomorphic Kodaira dimension �hD�1.

The converse is one of the major open problems, often attributed to Mumford, in
the classification theory of projective manifolds (see, e.g., [Boucksom et al. 2013]).

Conjecture 4.3 (Mumford). A smooth projective variety with �hD�1 is uniruled.

This is known to be true for projective 3-folds [Mori 1988]. In general, it follows
from the Abundance conjecture, which says that the Kodaira dimension agrees with
the numerical Kodaira dimension [Kollár and Mori 1998].

The key for the vanishing of the simplicial volume for smooth projective varieties
with 0� �h.M /� n� 1 is the case of �h D 0. We have the following conjecture
(see, for example, [Kollár 1995, (4.1.6)]):

Conjecture 4.4 (Kollár). Let X be a smooth and proper variety with �h.X /D 0.
Then X has a finite étale cover X 0 such that X 0 is birational to the product of an
Abelian variety and of a simply connected variety with �hD 0. In particular, �1.X /

has a finite index Abelian subgroup.

In particular, an affirmative solution to Conjecture 4.4 would imply that such X

has amenable (virtually Abelian) fundamental group, and thus kXk D 0. In the
following, we show that any smooth projective n-fold with nonvanishing simplicial
volume must have �h D n, up to the above two well-known conjectures:
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Theorem 4.5. Up to Conjecture 4.4, any smooth 2n-dimensional complex projective
variety M with �h.M /� 0 and kM k> 0 has �h.M /D n.

In particular, assuming Conjecture 4.3, then any smooth projective variety with
nonvanishing simplicial volume is of general type.

Proof. When �h.M /> 0, then we know that M admits an Iitaka fibration. Precisely,
M is birationally equivalent to a projective manifold X which admits an algebraic
fiber space structure �WX ! Y over a normal projective variety Y such that the
Kodaira dimension of a very general fiber of � has Kodaira dimension zero. By
Lemma 4.1, we conclude kM k D kXk.

We recall a vanishing result which is a corollary of the Mapping theorem [Gromov
1982]: If a closed manifold X can be mapped into a topological space Y whose
covering dimension dim Y < dim X , such that the pullback of every point in Y has
an amenable neighborhood in X , then kXk D 0. In our situation, Y is a normal
variety, which could be blown up to a smooth projective variety Y 0. Since the
blowup map is holomorphic, it is an open map by the Open Mapping theorem in
complex analysis. Moreover, we know that the smooth manifold Y 0 has covering
dimension dim Y , by sending open subsets to Y through the surjective birational
morphism.

Hence, in our setting, the problem is reduced to showing that every fiber of an
Iitaka fibration has a neighborhood whose fundamental group is amenable.

A general fiber of an Iitaka fibration is a smooth projective variety of Kodaira di-
mension zero, and therefore, by (the second part of) Conjecture 4.4, it has amenable
fundamental group. Thus any regular fiber has a product neighborhood which has
the same fundamental group as the fiber, thus amenable.

When 1�kD�h.M /<n, we know dimC Y Dk. We are in the setting of [Kollár
1995, Theorem 2.12], which we recall below for the convenience of the reader.

Theorem 4.6. Let X and Y be irreducible normal complex spaces and f WX ! Y

a morphism. Assume that there is a Zariski open dense set Y 0 � Y such that
f WX 0 WD f �1.Y 0/! Y 0 is a topological fiber bundle with connected fiber Xg.
Let y 2 Y be a point such that there is an x 2 f �1.y/ satisfying dimx f

�1.y/D

dim X � dim Y . Then

(1) there is an open neighborhood y2U�Y such that imŒ�1.Xg/!�1.f
�1.U //�

has finite index in �1.f
�1.U //;

(2) iff is proper, then imŒ�1.Xg/!�1.f
�1.y//� has finite index in �1.f

�1.y//;

(3) iff is smooth at x, then imŒ�1.Xg/! �1.f
�1.U //� is surjective.

In our case, we can apply Theorem 4.6(1). Since the fundamental group of a
general fiber is amenable, it implies that we can find a neighborhood U of p 2 Y ,
such that �1.f

�1.U // is amenable (in fact, by Theorem 4.6(2), we also know that
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any fiber of an Iitaka fibration is amenable). Hence, kM k D kXk D 0 by the above
mentioned vanishing result of [Gromov 1982]. �

In dimension no greater than 3, both Conjectures 4.3 and 4.4 are known to be
true, by [Mori 1988] and [Kollár 1995], respectively. Hence, we have the following:

Corollary 4.7. Let M be a smooth complex projective n-fold with nonvanishing
simplicial volume. Then �h.M / cannot be n�1; n�2 or n�3. If , moreover, nD 3,
then �h.M /D 3.

Proof. The fundamental group of a smooth projective n-fold, n � 3, of Kodaira
dimension zero is amenable. The case of nD 1; 2 follows from the classification.
By [Kollár 1995, (4.17.3)], the fundamental group of a smooth projective 3-fold
of Kodaira dimension zero has a finite index Abelian subgroup. In particular, it
is amenable. Hence, the first part of our corollary follows from the argument of
Theorem 4.5.

We still must show that any smooth complex projective 3-fold with �h.M /D�1

must have kM k D 0. It follows from [Mori 1988] that any complex projective
3-fold has �h D �1 if and only if it is uniruled. Then Proposition 4.2 implies
kM k D 0. �

We remark that Theorem 4.5 also provides an alternative argument that any
smooth Kähler surface with nonvanishing simplicial volume is a surface of general
type: First, by classification of complex surfaces, any Kähler surface can be de-
formed to, in particular it is diffeomorphic to, a projective surface. By Theorem 4.5,
any smooth projective surface with nonvanishing simplicial volume and nonnegative
Kodaira dimension must have �h D 2. On the other hand, any Kähler surface with
�h D�1 is rational or ruled, which has vanishing simplicial volume.

We can answer Question 1.4(1) for smooth Kähler 3-folds with the help of KX -
MMP and the Abundance conjecture which is established for Kähler 3-folds [Höring
and Peternell 2016; Campana et al. 2016]. In fact, by [Claudon et al. 2019; Lin
2017], we know that for any compact Kähler manifold X of complex dimension
three, there exists a bimeromorphic Kähler manifold X 0 which is deformation
equivalent to a projective manifold. Hence, by Lemma 4.1 and Corollary 4.7,
we have

Theorem 4.8. If X is a smooth Kähler 3-fold with nonvanishing simplicial volume,
then �h.X /D 3.

Combining Corollary 4.7 and Theorem 4.8 we obtain Theorem 1.5. Then, by
Lemma 4.1, Corollary 4.7 works for Moishezon manifolds and Theorem 4.8 works
for complex 3-folds of Fujiki class C.

Moreover, any smooth Kähler n-fold with �h D n � 1 must have vanishing
simplicial volume, since it satisfies the above mentioned version of algebraic
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approximation [Claudon et al. 2019]. This approach might be generalized to
higher dimensional Kähler manifolds. Although there are Voisin’s examples in
each even complex dimension � 8 of compact Kähler manifolds all of whose
smooth bimeromorphic models are homotopically obstructed to being a projective
variety [Voisin 2004], these examples are all uniruled. In fact, it is conjectured
by Peternell that this phenomenon cannot happen when the Kodaira dimension is
nonnegative [Lin 2017].

There is a more direct approach. By running the MMP for a Kähler 3-fold X ,
we obtain a Q-factorial bimeromorphic model Xmin of X with at worst (isolated)
terminal singularities whose canonical bundle KXmin is nef. By the Abundance
conjecture, which is known for Kähler 3-folds, there is some positive number m

such that mKXmin is base-point free and that the linear system jmKXmin j defines
a fibration with base dimension �h.X /. We can blow up the total space to get a
fibered smooth Kähler manifold. The argument for Theorem 4.5 still applies.
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