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Abstract 

In this study, artificial neural network (ANN) was adopted to predict the quality of SPR joints. Three ANN 

models were developed respectively for the key joint quality indicators: the interlock, the remaining bottom 

sheet thickness at the joint center (Tcen) and under the rivet tip (Ttip). Experimental SPR tests were performed 

and the results verified the high prediction accuracy of the ANN models. The mean absolute errors (MAE) 

between the experimental and prediction results for the interlock, Tcen and Ttip reached 0.058mm, 0.075mm and 

0.059mm respectively, and the corresponding mean absolute percentage errors (MAPE) were 14.2%, 22.4% 

and 10.9%. Moreover, two innovative approaches were proposed to simplify the selection of rivet and die for 

new joint designs. One was realized by combining the genetic algorithm (GA) with the ANN models, and can 

generate optimal rivet and die combinations for different joint quality standards. The second was achieved by 

plotting application range maps of different rivet and die combinations with the help of ANN models, and can 

quickly select the suitable and accessible rivet and die. Furthermore, interaction effects between different 

joining parameters on the joint quality were also discussed by analyzing the contour graphs plotted with the 

ANN models. 

Keywords: Self-piercing riveting; Artificial neural network; Genetic algorithm; Rivet and die selection; 

Application range map; Interaction analysis. 

1 Introduction 

Self-piercing riveting (SPR), as a mechanical joining process, is suitable to join structures made of similar or 

dissimilar materials, especially lightweight materials like aluminum alloys [1][2]. It achieved a rapid 

development in the past two decades due to the strong demands from the automotive industry. Nowadays, the 

SPR technique has been widely applied to assemble the aluminum alloy body-in-white (BIW) structures [3][4].  

For a new SPR joint, it is critical to select suitable rivet and die parameters in order to meet the quality standards. 

The rivet length, rivet shank diameter, rivet material and rivet hardness level are the four important rivet 

parameters [5][6][7]. The die type (e.g. Flat die or pip die), die diameter, die depth and pip height are the 

critical factors for the die selection [8] [9]. In addition to the rivet and die, the effects of the sheet properties, 
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thickness and sequence on the joint quality should also be considered carefully [10] [11]. For example, Abe et 

al. [10] reported that the interlock decreased with the increment of bottom steel sheet strength. Ma et al. [11] 

found that, for the studied sheet thickness, the interlock increased with the increment of the rivet length, but 

too long rivet resulted in an undesired Tmin. A higher joint quality is more likely achieved when the thicker 

sheet is used as the bottom layer rather than as the top layer [12]. A large number of studies have been carried 

out, and effectively extended the understandings of the sheet, rivet and die parameters’ impact on the SPR joint 

quality [3]. However, there is not a straightforward way to select the suitable rivet and die for new SPR joints. 

Till now, the selection of rivet and die still heavily depends on experimental SPR tests designed and assessed 

by experienced engineers. It would be a great contribution to practical applications if a simpler approach could 

be developed to facilitate the selection of rivet and die. 

To reduce the number of experimental SPR tests during the selection of rivet and die, in last two decades, 

many finite element analysis (FEA) models have been successfully developed to predict the SPR joint quality. 

For instance, Mucha [12] successfully developed a two-dimensional (2D) axisymmetric SPR model in MSC 

Marc Mentat. Carandente et al. [13] established an improved 2D model of SPR process using 

Simufact.Forming, in which the thermal softening and strain hardening effects on the sheet material strength 

were considered. Atzeni et al. [14] also established a three-dimensional (3D) simulation model using ABAQUS 

to predict the SPR joint quality. In addition, a combination of the FEA models and other optimization 

algorithms was also reported to simplify the selection of rivet and die. For example, through the analysis of 

variance (ANOVA) using a developed 2D FEA model of clinched joint, Chen et al. [15] successfully selected 

the suitable reshaping rivet for the clinched joint with 2.0mm+2.0mm AA6061 sheets. This could effectively 

reduce the dependence on skilled engineers’ practical experience during the selection of rivet and die, but a 

considerable number of FEA simulations are required for each new joint prior to experimental confirmation. 

Moreover, for general engineers without an in-depth knowledge of FEA and the SPR process, running such 

simulation models is still a big challenge. Therefore, a much easier quality prediction tool for SPR joints is 

desirable for practical applications. 

Mathematical models can give a straightforward prediction and effectively minimize the above-mentioned 

disadvantages of FEA models. There are already some mathematical models reported in the public domain to 

quickly predict the SPR joint quality. Zhao et al. [16] successfully developed multiple regression models to 

prediction the joint quality of 1.5mm+1.5mm AA5754 sheets with varying rivets and dies. Zhang et al. [17] 

developed response surface equations to predict the quality of SPR joints with 2.0mm AA5052 top sheet and 

2.0mm AA6061 bottom sheet. With the Kriging technique, Tassler et al. [18] established a mathematical model 

to predict the quality of SPR joints with different sheet thicknesses and yield stresses, rivet lengths and blank-

holder forces. The above studies confirmed the effectiveness of mathematic models in SPR joint quality 

prediction. However, there are two potential challenges during the mathematic model development. The first 

challenge is that the relationships between the inputs (i.e. joining parameters) and outputs (i.e. joint quality 

indicators) should be pre-defined in order to select a suitable structure of mathematic model. With the 

increment of joint design space (i.e. the number and scopes of joining parameters), the variation trends of joint 

quality indicators will become highly nonlinear. This raises the complexity of relationships between the joining 
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parameters and quality indicators, and therefore increases the difficulties for the model structure selection. The 

second challenge is the identification of unknown coefficients during the mathematic model development. The 

model structure will become increasingly complicated with the increment of joining parameters considered. 

This will inevitably increase the number of unknown coefficients and therefore increase the difficulties in 

coefficient identification. For example, Tassler et al. [18] proved the effectiveness of Kriging technique in the 

joint quality prediction, but also demonstrated the complex procedures to determine all the unknown 

coefficients in the model. Expert knowledge of optimization algorithms (e.g. genetic algorithm) is required in 

order to use the Kriging technique.

Different from the mathematic models, artificial neural network (ANN), which has an excellent fitting ability 

to describe complex relationships between inputs and outputs [19], is much more suitable to develop easy-to-

use quality prediction tools. It can involve multiple joining parameters and joint quality indicators, and thus 

achieve a wider application range. Meanwhile, the development of the prediction tool is straightforward 

because the ANN can automatically establish the relationships between inputs and outputs by optimizing the 

weights of connected neurons [20]. To the authors’ knowledge, there are few studies relevant to the application 

of ANN on the SPR joint quality. Fang et al. [21] developed surrogate models of SPR simulation model with 

the radial basis function (RBF) network, and analyzed the effects of different joining parameters on the joint 

cross-section dimensions and maximum punch force. Many successful applications of ANN in other industrial 

fields have been reported in the public domain. For example, Khorasani et al. [22] accurately predicted the 

average surface roughness (Sa) on laser powder bed fusion process using the multi-layer perceptron ANN. 

With the back-propagation (BP) neural network, Wang et al. [23] successfully predicted the weld morphology 

of Al alloy-CFRP welding-rivet hybrid bonding joint. Taking advantages of the FEA model and radial basis 

function (RBF) neural network, Liu et al. [24] accurately predicted the workpiece deformation induced by the 

large riveting force during the joining process with a dual-machine-based riveting system. Owing to the 

powerful self-learning capability and strong robustness, the ANN was introduced in this study to predict the 

quality of SPR joints. 

To further simplify and optimize the selection of rivet and die, genetic algorithm (GA) could be a promising 

tool in combination with the ANN. The GA is a popular optimization algorithm inspired from the biological 

evolution process [25]. It is a very powerful tool to deal with the multi-objective optimization problems, and 

has been widely applied to solve practical optimization issues in different industrial fields. For example, Wang 

et al. [26] successfully optimized the geometric parameters of the composite honeycomb tip with the help of 

GA. By combining the response surface methodology (RSM) with the GA, Udayakumar et al. [27] developed 

a multi-objective optimization method to optimize the process parameters in friction welding process. Zhang 

et al. [28] also successfully employed the genetic algorithm NSGA-II to optimize the sheer strength and peer 

strength of friction stir spot welding joint. The experiment results verified the effectiveness of the generated 

Pareto front, and proved the strong capability of GA to deal with multi-objective problems. Considering the 

multiple quality indicators of SPR joints, the GA together with the ANN was utilized in this study to optimize 

and simplify the selection of rivet and die. 

The main objectives of this study are to develop an easy-to-use quality prediction tool for SPR joints with the 
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ANN, and to optimize/simplify the selection of rivet and die for new joint design. To overcome the time and 

financial requirements of experimental SPR tests, a verified FEA model of SPR process was employed to 

collect the training and testing data for the ANN development. The optimal structures of the ANNs were 

determined using the trial-and-error method. Laboratory experimental SPR tests were carried out to validate 

the prediction accuracy of the developed ANNs. The genetic algorithm (GA) was utilized together with the 

ANNs to automatically select optimal rivets and dies for new sheet combinations. In addition, application 

range maps for different rivet and die combinations were created using the ANNs to further simplify the rivet 

and die selection. Contour graphs of joint quality indicators were also plotted with the developed ANNs to 

address the interaction effects between different joining parameters on the SPR joint quality. 

2 Finite element analysis (FEA) model 

2.1 Self-piercing riveting process and joint quality evaluation  

Fig. 1 illustrates the four steps of the SPR process, including the clamping, piercing, flaring and tools releasing 

[29]. At the end of the process, the multiple sheets are tightly connected by the mechanical interlock formed 

between the rivet shank and the bottom sheet. Generally, as shown in Fig. 2, the SPR joint quality is assessed 

by three characteristic indicators measured on the joint cross-sectional profile [30][31], including the rivet 

head height, the interlock and the minimum remaining bottom sheet thickness (Tmin). The rivet head height 

directly affects the cosmetic appearance of the connected structure and the joint corrosion resistance. 

Meanwhile, it also influences the final rivet position in the substrates and therefore affects the magnitudes of 

the interlock and Tmin  [32]. The interlock is very important for the joint mechanical strengths and failure 

behaviors. SPR joints with too small interlocks usually have low shearing strengths, and more likely undergo 

pull-out failures of the rivet shank from the bottom sheet [33]. The Tmin is highly associated with the joint 

corrosion resistance and water-proof performance. Zero or negative Tmin would inevitably lead to moisture or 

water invasion. This would accelerate the corrosion between the steel rivet and aluminum sheets, and cause 

premature corrosion failure of SPR joints. According to different application requirements, quality standards 

of the three indicators usually vary from company to company. 

\

Punch

Blank-holder

Top sheet

Bottom
sheet

Die

Rivet

Clamping Piercing Flaring Tools releasing

Fig. 1 Schematic of the four steps during the self-piercing riveting process 

Tmin

Interlock

Rivet head height
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Fig. 2 Joint cross-sectional profile and the three quality characteristic indicators 

2.2 Model description 

To collect the training and testing data for the ANN development, a previously developed two-dimensional 

(2D) FEA model of SPR process was adopted. This model was developed using the software Simufact.Forming. 

As shown in Fig. 3, all the freedoms of die were fixed while the sheet edges could move freely during the 

riveting process. A 5.3kN clamping force (F1) was applied on the blank-holder to clamp the top and bottom 

sheets together. The punch had a constant speed (v1=300mm/s) and moved downward to press the rivet into 

the sheets. The punch, blank-holder and die were modelled as rigid bodies, while the boron steel rivet and 

AA5754 sheets were modelled as elastic-plastic bodies. As shown in Fig. 4, plastic stress-strain curves were 

implemented to model the material deformations of the rivet and sheets. The temperature effect on the material 

properties was only considered for the AA5754. All the deformable parts were meshed using the quad element 

with four gauss points. The mesh sizes for the rivet, the top sheet and the bottom sheet were set to 0.10mm, 

0.10mm and 0.12mm respectively. Automatic element re-meshing was applied to deal with the severe element 

distortion caused by the large plastic deformations of the top and bottom sheets. A geometric criterion was 

employed to model the top sheet fracture and the threshold thickness was set to 0.04mm. The Coulomb friction 

model was adopted and the friction coefficients between different contact parts are given in Table 1. More 

details of the FEA model can be found from the authors’ previous study [9]. 

1-Punch 3-Blank holder

4-Top sheet 5-Bottom sheet 6-Pip die

2-Rivet

Refinement 
zones

1

2

3
4

5

6

v1

F1

Fixed

Fig. 3 The two-dimensional FEA model of the self-piercing riveting process 
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Fig. 4 Plastic stress-strain curves for (a) Aluminum alloy AA5754 (strain rate=1s-1)[13] and (b) Boron steel rivet (20°C, strain 

rate=0.01s-1) [9] 

Table 1 Friction coefficients used in the FEA model [9] 

Contact pairs 
Punch-
Rivet 

Blankholder- 
sheets 

Rivet-
Sheets 

Top sheet-
Bottom sheet 

Bottom 
sheet-Die 

Others 

Friction coefficients 0.10 0.10 0.10 0.10 0.22 0.10 

2.3 Model validation 

Before using the FEA model to collect training and testing data for ANN, the prediction accuracy of the 

developed FEA model was verified again via laboratory experimental SPR tests. As listed in Table 2, twenty 

SPR joints with different configurations were manufactured experimentally. Fig. 5 illustrates the cross-

sectional profiles of the sheets, the semi-tubular rivet and the pip die used in the experiments. The aluminum 

alloy AA5754 sheets and boron steel rivets were used throughout the experiments. The rivets and dies were 

supplied by the Tucker GmbH, and the AA5754 sheets were provided by Jaguar Land Rover (JLR). The rivet 

diameter, rivet hardness and die pip height were fixed at 5.3mm, H0 (280±30HV10) and 0.0mm respectively. 

Different top sheet thicknesses (T1), bottom sheet thicknesses (T2), rivet lengths (L1), die diameters (D1) and 

die depths (H1) were used to enhance the performance evaluation of the FEA model. Three repetitions were 

made for each joint configuration using the Tucker servo SPR system shown in Fig. 6. The punch speed and 

the clamping force were the same as that used in the FEA model. 

All the specimens were sectioned along the central plane of the rivet, and the joint cross-sectional profiles were 

captured using an optical microscope. Then, the three quality indicators (i.e. the rivet head height, the interlock 

and the Tmin) were measured on the joint cross-sectional profiles. The mean values of these indicators from the 

three repetitions were calculated for each joint configuration, as listed in Table 2. All the 20 SPR joints were 

also simulated using the developed FEA model. For easier comparison between the experimental and 

simulation results, the mean value of the experimentally measured rivet head height for each SPR joint was 

implemented as the termination criterion of the corresponding SPR simulation. The simulated three quality 

indicators for each joint were also extracted as listed in Table 2. 

Table 2 Experiment design and results for the validation of FEA model 

Joint configurations Experimental and simulation results 

Joint 
no. 

Stack 
/mm 

(AA5754) 

Rivet 
length 
L1/mm 

Die Rivet head height/mm Interlock/mm Tmin/mm 

Diameter 
D1/mm 

Depth 
H1/mm 

Tested 
(Mean) 

Simulated 
Tested 
(Mean) 

Simulated 
Tested 
(Mean) 

Simulated 

E-1 1.0+1.5 5.0 10.0 1.8 0.03 -0.03  0.44  0.43  0.32 0.22  

E-2 1.0+1.5 5.0 9.0 1.6 0.02 0.02  0.60  0.59  0.28 0.17  

E-3 1.0+2.0 5.0 9.0 1.6 -0.09 0.01  0.76  0.64  0.51 0.43  

E-4 1.5+1.0 5.0 10.0 1.8 -0.19 -0.01  0.16  0.12  0.36 0.23  

E-5 1.5+1.0 5.0 9.0 1.6 -0.08 0.03  0.31  0.30  0.23 0.19  

E-6 1.5+1.0 6.0 10.0 1.8 0.01 0.00  0.59  0.40  0.13 0.07  

E-7 1.5+1.0 6.0 9.0 1.6 -0.08 0.10  0.74  0.68  0.1 0.18  

E-8 1.5+1.5 5.0 10.0 2.0 -0.05  0.02  0.25  0.20  0.37  0.34  

E-9 1.5+1.5 5.0 10.0 1.8 -0.07  0.01  0.33  0.27  0.48  0.43  
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E-10 1.5+1.5 5.0 9.0 1.6 0.02 0.03  0.42  0.39  0.53 0.48  

E-11 1.5+1.5 5.0 8.0 2.0 -0.04  0.02  0.35  0.34  0.38  0.23  

E-12 1.5+1.5 6.0 10.0 1.8 0.04 0.00  0.69  0.57  0.32 0.28  

E-13 1.5+1.5 6.0 9.0 1.6 0.01 0.07  0.77  0.73  0.41 0.31  

E-14 1.5+2.0 5.0 9.0 1.6 -0.06 0.03  0.56  0.46  0.72 0.70  

E-15 1.5+2.0 6.0 10.0 1.8 -0.1 0.00  0.76  0.72  0.56 0.57  

E-16 1.5+2.0 6.0 9.0 1.6 -0.12 0.06  0.93  0.76  0.43 0.62  

E-17 2.0+1.5 6.0 10.0 1.8 -0.13 0.02  0.43  0.40  0.37 0.21  

E-18 2.0+1.5 6.0 9.0 1.6 -0.11 0.05  0.61  0.56  0.22 0.25  

E-19 1.8+2.0 6.0 9.0 1.6 0.06 0.01 0.71 0.64 0.39 0.55 

E-20 2.0+2.0 6.0 9.0 1.6 0.02 0.04  0.65  0.58  0.37 0.37  

L1

Ø5.3

H1
Pip Pip 

height

0

D1

T1

T2

Boron steel
(280±30HV10) 

AA5754

AA5754

Fig. 5 Cross-sectional profiles of the top sheet, bottom sheet, the semi-tubular rivet and the pip die 

Fig. 6 Structure of the Tucker SPR system 

Fig. 7 shows the comparisons of joint cross-sectional profiles extracted from the experimental SPR tests and 

FEA simulations. By visual observation, a reasonable agreement was found between the simulation and 

experimental results. The simulated shapes of the deformed rivet and sheets matched well with the 

experimentally tested ones. Comparisons between the tested and simulated interlock and Tmin are given in Fig. 

8. The calculated mean absolute error (MAE) for the interlock and the Tmin were 0.064mm and 0.079mm 

respectively, and the corresponding Pearson’s correlation coefficient (r) were 0.97 and 0.84. These results 

verified the high prediction accuracy of the FEA model for the interlock and the Tmin under various joint 

configurations. Therefore, the FEA simulation model was used to collect training and testing data for the ANN 

development. 
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Fig. 7 Comparisons of the joint cross-sectional profiles from the experimental tests and the FEA simulations 
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Fig. 8 Comparisons of the experimentally tested and FEA simulated (a) interlock and (b) Tmin

3 Development of ANN prediction models  

3.1 ANN model architecture 

The artificial neural network (ANN) has very powerful self-learning ability, strong robustness and high fault 

tolerance. It is suitable to describe the complex nonlinear relationships between the inputs and outputs [34] of 

the SPR process. Compared with the mathematic prediction models (e.g. Kriging technique), the development 

process of an ANN is much more straightforward and faster because the ANN can automatically learn the 

highly nonlinear relationships between the multiple joining parameters and quality indicators. The ANN model 

employed in this study is classified to the feedforward neural network. The back-propagation algorithm was 

utilized to optimize the internal weights and biases in the ANN models. As shown in Fig. 9, it consists of one 

input layer, one hidden layer and one output layer. The five joint parameters, including the top sheet thickness 

(T1), bottom sheet thickness (T2), rivet length (L1), die diameter (D1) and die depth (H1), were designed as the 

inputs of neural network. To improve the prediction accuracy and to reduce the difficulty of model training, 

only one of the joint quality indicators (i.e. interlock, Tcen or Ttip) was selected as the output. There is also one 

bias neuron in the input and hidden layer respectively. The neurons in each layer are connected to all neurons 

in the adjacent layer. The weight (Wx,y
(i)) assigned to each connection indicates the intensity of the signal 
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transmission between the connected neurons [35]. In the Wx,y
(i), the x and y denote the numbers of the two 

connected neurons in the later layer and in the previous layer respectively, and the i denotes the layer number 

in the ANN. The activation functions are the ‘tansig’ for the hidden layer and the ‘purelin’ for the output layer. 

The ANN model was established and trained using the software MATLAB R2020a. 
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Fig. 9 Structure of the three-layer artificial neural network (ANN) 

3.2 Training and testing data acquisition  

In this study, the five critical process parameters (T1, T2, L1, D1 and H1) were involved in the ANN prediction 

models. To collect enough training and testing data for the development of ANN models, the full factorial 

design (35) with five parameters and three levels was adopted as listed in Table 3. The aluminum alloy AA5754 

sheets and boron steel rivets were used. The rivet diameter, rivet hardness and die pip height were also fixed 

at 5.3mm, H0 and 0.0mm respectively. The rivet head height directly links with the final position of the rivet 

inserted into the sheets and thus affects the final values of the interlock and Tmin  [32]. For consistency, a 

uniform rivet head height (i.e. 0.0mm) was set for all SPR joints by controlling the rivet displacement. A total 

of 243 joints with different configurations were simulated using the verified FEA model. 

Table 3 Full factorial design with five joint parameters and three levels (35) 

Level 
Top sheet 
thickness 

T1/mm 

Bottom sheet 
thickness 

T2/mm 

Rivet 
length 
L1/mm 

Die 
diameter 
D1/mm 

Die 
depth 

H1/mm 
1 1.0 1.0 5.0 8.0 1.6 
2 1.5 1.5 5.5 9.0 1.8 
3 2.0 2.0 6.0 10.0 2.0 

After all of the simulations were completed, the joint quality indicators of the 243 joints were measured on the 

simulated joint cross-sectional profiles. The interlock is always formed around the rivet tip and thus relatively 

easy to measure. In contrast, the formation position of the Tmin is not fixed but changes under different joint 

configurations. Fig. 10 illustrates four potential positions that the Tmin may appear. Because of the uncertain 

position of the Tmin, it is very difficult to establish a single ANN model to predict the Tmin directly. By analyzing 

formation positions of the Tmin in the 243 joints, it was found that the Tmin had a higher possibility to locate at 

the joint center (Position 1 in Fig. 10(a)) or under the rivet tip (Position 3 in Fig. 10(c)). Therefore, in this 
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study, the remaining bottom sheet thickness at the joint center (Tcen) and under the rivet tip (Ttip) in each SPR 

joint were measured for the ANN model development. To keep data consistency, the Tcen and the Ttip were 

always measured along the vertical direction. All of the interlock, Tcen and Ttip values in the 243 joints were 

recorded as the training and testing data to develop the ANN models. 

Tcen

Ttip
(a) Position 1 (b) Position 2 (c) Position 3 (d) Position 4

Fig. 10 Potential positions of the minimum remaining bottom sheet thickness (Tmin) in SPR joints 

To eliminate the influences of scope difference between the input parameters, all the five inputs of the 243 

SPR joints were normalized using the z-score method (Eq.(1)). All the outputs were calculated with the min-

max normalization into the range 0~1 using the Eq.(2). During the training of ANN, the learning rate was set 

to 0.001 to ensure a high probability of global convergence and a maximum of 5000 iterations was selected to 

determine the weights. 

input

norm

x
x






 (1) 

where xnorm is the standardized input value, xinput is the original input value, μ and σ are the mean and the 

standard deviation of all input values.  

min

max min

output

norm

y y
y

y y





(2) 

where ynorm is the normalized output value, youtput is the original output value, ymin and ymax are the minimum 

and maximum values among all the output values. 

3.3 ANN for the interlock 

The trial-and-error method was applied to select the appropriate number of hidden layer neurons (Nh). Fig. 11

illustrates the procedures to determine the optimal ANN for the interlock. First, the ANN with three hidden 

layer neurons (Nh=3) was set up. The 243 SPR joints were divided randomly into training data (70%) and 

testing data (30%) in each circle. The training and testing stages for the neural network were carried out, and 

the performance indexes of this developed ANN were calculated and recorded, including the mean absolute 

error (MAE) in Eq.(3) and the correlation coefficient (r) in Eq.(4) between the FEA simulated and ANN 

predicted values. The smaller MAE value, the more accurate of the developed ANN model. The closer the r

value is to 1, the more relevant the predicted and actual results are. To eliminate the influences of data 

partitioning and the weights initialization on the performance of ANN, the above developing steps were 

repeated 20 times. The mean values of all the recorded MAE and r were calculated to evaluate the performance 

of the current ANN. Seven ANN models with 3~9 neurons in the hidden layer were individually trained and 

tested. Finally, the performances of these ANNs were compared to choose the optimal one. 
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Fig. 11 The algorithm flow chart to select the optimal ANN model for the interlock 
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where the yj,s and yj,p  denote the simulated value by the FEA model and the predicted value by the ANN model 

of the jth SPR joint. The n is the total number of the SPR joints.  
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(4) 

where the Ys and Yp are the matrixes of the FEA simulation results and the predicted results from the ANN 

model separately. The n is the total number of the SPR joints.  

The values of MAE and r for the seven ANNs are compared in Fig. 12. For the training data, it can be seen 

that the value of MAE rapidly decreased and the corresponding value of r gradually increased when the number 

of hidden layer neurons (Nh) increased from 3 to 9. However, for the testing data, the MAE value firstly 

decreased but then increased, whilst the corresponding r value firstly increased and then decreased with the 

increment of the Nh. The smallest MAE and the largest r were observed in the ANN with 5 hidden layer neurons. 

This indicated that the ANN with 5 hidden layer neurons had the best fitting degree. The performance 

degradation of the ANNs with the Nh greater than 5 might attributed to the over-fitting problem. Therefore, the 
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ANN with 5 hidden layer neurons was selected as the optimal one for the interlock. Comparisons between the 

FEA simulated and the ANN predicted interlock values are shown in Fig. 13. Good correlations were found 

for both of the training and testing data. The mean values of MAE for the training and testing data were 

0.017mm and 0.023mm respectively, and the corresponding average correlation coefficient (r) were 0.994 and 

0.990. Therefore, the optimized ANN for the interlock demonstrated a very high prediction accuracy. 
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Fig. 12 The performances of ANNs with different numbers of hidden layer neurons (Nh) for the interlock: (a) MAE and (b) 

correlation coefficient (r) 
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Fig. 13 Comparisons between the ANN predicted and the FEA simulated interlock values: (a) Training data and (b) Testing data  

3.4 ANNs for the Tcen and Ttip

Similar procedures, as the optimal ANN selection for the interlock illustrated in Fig. 11, were also carried out 

to determine the optimal structures of ANNs for the Tcen and Ttip. The performances of nine ANNs for the Tcen

with different hidden layer neurons (Nh=3 ~11) are presented in Fig. 14. It can be seen that the ANN with 8 

hidden layer neurons achieved the smallest MAE and the second largest r for the testing data, and thus was 

selected as the optimal ANN for the Tcen. Comparisons between the FEA simulated and the optimal ANN 

predicted Tcen in Fig. 15 indicated the good correlations for the training and testing data. The mean values of 

MAE for the training and testing data were 0.011mm and 0.022mm respectively, and the corresponding 

average values of r reached up to 0.998 and 0.992. According to the performances of the nine ANNs for the 

Ttip shown in Fig. 16, the ANN with 7 hidden layer neurons was chosen as the optimal one. Fig. 17 also 

demonstrates the good correlations between the FEA simulated and the optimal ANN predicted Ttip for the 

training and testing data. The mean values of MAE were 0.018mm and 0.033mm respectively for the training 

and testing data, and the average values of r reached 0.998 and 0.994. Thus, the optimal ANNs for the Tcen and 

Ttip also achieved high prediction accuracies for SPR joints within the studied ranges. 
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3.5 Validation of the ANN models 

To validate the prediction accuracy of the developed ANNs, another 23 new SPR joints with different 

configurations, as listed in Table 4, were experimentally fabricated using the Tucker servo SPR system shown 

in Fig. 6. All of the experimental conditions were the same as that used in the validation tests for the FEA 

model. Three repetitions were performed for each joint configuration, and the mean values of the interlock, 

the Tcen and the Ttip were recorded in Table 4. Moreover, the three quality indicators of the 23 joints were also 

predicted with the FEA model and the developed ANNs, as shown in Table 4. For easier comparisons, the 

joint quality data in Table 4 are also plotted in line graphs as shown in Fig. 18 and Fig. 19. 

Comparisons between the interlock values from the experimental tests, the FEA model and the developed 

ANN are presented in Fig. 18. It can be seen that the changing trends of the interlock were almost the same on 

the three curves. The interlock predicted by the ANN agreed well with that from the experimental tests in 20 

out of the 23 SPR joints, except for the joints E-23, E-34 and E-36. The MAE, mean absolute percentage error 

(MAPE) and r between the experimentally tested and ANN predicted interlocks were 0.058mm, 14.2% and 

0.978 respectively. In SPR joints with relatively small interlocks, such as in E-26 and E-42, the small absolute 

errors (0.04mm, 0.03mm) between the tested and the ANN predicted interlocks still led to large absolute 

percentage errors (22.2%, 23.1%). This directly caused the relatively large MAPE for the interlock (i.e. 14.2%). 

Considering the magnitudes of the MAE and r, it can be concluded that the developed ANN for the interlock 

could give an accurate prediction result for SPR joints within the studied ranges. In addition, the interlock 

values predicted by the ANN were quite consistent with that predicted by the FEA model. The calculated MAE, 

MAPE and r values between the ANN predicted and FEA simulated interlock values were 0.039mm, 9.7% 

and 0.994. This means that the prediction accuracy of the ANN reached almost the same accuracy level as the 

FEA model. 

Fig. 19(a) shows the values of the Tcen from the ANN, FEA model and experimental tests. It can be seen that, 

in the majority of the 23 SPR joints, the changing trend and magnitudes of the Tcen predicted by the ANN 

showed reasonable agreements with that from the experimental tests. The corresponding MAE, MAPE and r

values were 0.075mm, 22.4% and 0.881 respectively. The joint E-23 was excluded when calculating the MAPE 

because the absolute percentage error in this joint was extremely large (800%). The predicted Tcen from the 

FEA model and the ANN were almost the same for all joints, and the calculated MAE, MAPE and r values 

were 0.033mm, 7.5% and 0.978 respectively. This means that the prediction accuracy of the ANN for Tcen also 

reached almost the same level as the FEA model. 

Fig. 19(b) illustrates the values of the Ttip obtained from the experimental tests, the FEA model and the ANN. 

It can be seen that the developed ANN not only successfully predicted the changing trend of the Ttip but also 

accurately predicted the magnitudes of the Ttip in almost all of the 23 SPR joints. The calculated MAE, MAPE 

and r values for Ttip between the experimental tested and the ANN predicted results were 0.059mm, 10.9% and 

0.996 respectively. These indicate that the developed ANN is capable of accurately predicting the Ttip within 

the studied ranges. Moreover, The MAE, MAPE and r values between the predicted Ttip from the FEA model 

and the ANN were 0.038mm, 7.0% and 0.993 respectively. This means that the prediction accuracy of the 
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ANN for Ttip is also as high as that of the FEA model. Based on the above results, it is reasonable to conclude 

that the developed ANNs for the interlock, the Tcen and the Ttip reached the same prediction accuracy levels as 

the FEA model, and can be used to predict the SPR joint quality within the defined parameter ranges. 

Table 4 Experiment design and results for the validation of ANNs 

Joint configurations Experiment, prediction and simulation results 

Joint
no. 

Stack 
/mm 

(AA5754) 

Rivet 
length 
L1/mm 

Die Interlock/mm Tcen/mm Ttip/mm 

Diameter
D1/mm 

Depth 
H1/mm 

Predicted 
(ANN) 

Simulated 
(FEA) 

Tested 
(Mean) 

Predicted 
(ANN) 

Simulated 
(FEA) 

Tested 
(Mean) 

Predicted 
(ANN) 

Simulated 
(FEA) 

Tested 
(Mean) 

E-21 1.0+1.8 

5.0 

8.0 2.0 

0.53  0.58  0.59 0.71 0.66 0.70 0.33 0.35 0.39 

E-22 1.5+1.8 0.38  0.37  0.41 0.54 0.56 0.22 0.85 0.75 0.90 

E-23 2.0+1.8 0.19  0.18  0.30 0.18 0.16 0.02 1.42 1.24 1.51 

E-24 1.0+1.8 

10.0 2.0 

0.46  0.51  0.49 0.73 0.70 0.76 0.37 0.38 0.47 

E-25 1.5+1.8 0.29  0.31  0.33 0.59 0.57 0.50 0.89 0.80 0.93 

E-26 2.0+1.8 0.14  0.19  0.18 0.16 0.18 0.11 1.39 1.40 1.54 

E-27 1.2+1.0 

5.0 

8.0 2.0 

0.49  0.50  0.48 0.29 0.34 0.33 0.10 0.14 0.12 

E-28 1.2+1.5 0.48  0.52  0.51 0.52 0.56 0.35 0.29 0.32 0.34 

E-29 1.2+2.0 0.48  0.55  0.52 0.7 0.72 0.62 0.71 0.73 0.80 

E-30 1.2+1.0 

10.0 2.0 

0.20  0.23  0.16 0.27 0.32 0.41 0.25 0.24 0.27 

E-31 1.2+1.5 0.33  0.36  0.34 0.54 0.51 0.56 0.35 0.37 0.41 

E-32 1.2+2.0 0.42  0.46  0.49 0.71 0.72 0.68 0.76 0.71 0.83 

E-33 1.2+1.8 5.0 
8.0 2.0 

0.47  0.51  0.53 0.63 0.64 0.55 0.50 0.50 0.57 

E-34 1.2+1.8 6.0 0.68  0.73  0.86 0.67 0.75 0.67 0.28 0.33 0.36 

E-35 1.2+1.8 5.0 
10.0 2.0 

0.39  0.44  0.47 0.65 0.63 0.66 0.57 0.55 0.63 

E-36 1.2+1.8 6.0 0.76  0.84  0.90 0.71 0.69 0.71 0.23 0.24 0.29 

E-37 1.2+1.8 
5.0 

9.0 1.6 0.53  0.60  0.59 0.7 0.61 0.73 0.44 0.46 0.47 

E-38 1.2+1.8 10.0 1.8 0.42  0.47  0.48 0.67 0.63 0.65 0.49 0.51 0.48 

E-39 1.2+1.2 

5.0 10.0 1.8 

0.28  0.32  0.36 0.39 0.40 0.49 0.28 0.29 0.24 

E-40 1.2+1.8 0.42  0.47  0.47 0.67 0.63 0.64 0.49 0.51 0.50 

E-41 1.5+1.5 0.27  0.27  0.33 0.45 0.43 0.48 0.54 0.56 0.63 

E-42 1.8+1.2 0.10  0.13  0.13 0.25 0.21 0.19 0.62 0.63 0.63 

E-43 1.8+1.8 0.23  0.25  0.26 0.44 0.40 0.21 1.16 1.04 1.26 
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Fig. 18 Comparisons of the interlock from the experimental tests, FEA simulation model and the ANN 
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Fig. 19 Comparisons of the (a) Tcen and (b) Ttip from the experimental tests, the FEA model and the ANNs 

3.6 Graphical user interface (GUI) 

For the convenience of practical applications, a graphical user interface (GUI) integrating the three established 

ANNs was developed using the App Designer in MATLAB R2020a, as shown in Fig. 20. By simply entering 

the five pre-defined joint parameters, this GUI will call the three ANNs to calculate the interlock, Tcen and Ttip, 

and then display the prediction results to the user within seconds. Compared with the experimental SPR test 

and the FEA model, this GUI is quicker, more user-friendly and more suitable for industry applications.  

Fig. 20 The graphical user interface (GUI) for the SPR joint quality prediction 

4 Genetic algorithm (GA) for the selection of rivet and die 

The ANNs are capable to predict the joint quality, but cannot automatically select suitable rivets and dies for 

a given sheet combination. To reduce the dependence on engineers’ experience, the developed ANNs in 

combination with the genetic algorithm (GA) are used to simplify and optimize the selection of rivet and die. 

This can be achieved by maximizing the interlock, Tcen and Ttip. However, because of the contradictory 

relationships among the three quality indicators, it is impossible to achieve the maximum values of the three 

quality indicators concurrently [28]. The optimal combination of rivet and die always changes with the 

variation of the selected joint quality criteria. Therefore, instead of only one optimal solution, in this study, a 

Pareto optimal solution set of rivet and die combinations was generated using the GA to meet the requirements 

of different joint quality standards. 



17 

4.1 Optimization procedure 

The optimization process was carried out using the Global Optimization Toolbox in MATLAB R2020a. The 

built-in function ‘gamultiobj’, which integrates a controlled elitist genetic algorithm (i.e. a variant of Non-

dominated Sorting Genetic Algorithm II (NSGA- II)), was employed to get the Pareto optimal solution set. 

This controlled elitist GA has a very good exploration performance [28] and can effectively maintain the 

population diversity [36]. Fig. 21 illustrates the multi-objective optimization procedures with the GA and the 

three ANNs. Firstly, the population size was assigned, and the initial population was created. Then, the scores 

for the population were generated by calculating the objective functions, and were also evaluated to determine 

whether the termination conditions were met or not. If yes, the optimization iteration was terminated and the 

Pareto optimal solutions were obtained. Otherwise, the main iteration in function ‘gamultiobj’ was processed, 

including the selection of parents for next generation, creation of the next generation with mutation and 

crossover, scoring the children, combining the children to the extended population, trimming the extended 

population for diversity conservation and forming a new population. The evaluation procedure continued until 

the stopping criterion was met. The three ANNs for the interlock, Tcen and Ttip were called to calculate the 

scores of the population. For a specific sheet combination, the rivet length (L1), die diameter (D1) and die depth 

(H1) were optimized using the GA by maximizing the three joint quality indicators. By predefining the scopes 

of three quality indicators, the GA can directly generate a Pareto optimal solution set satisfying the selected 

joint quality standard. In this study, to recognize optimal rivet and die combinations complying different 

quality standards, the variation ranges of the quality indicators were not constrained. 

Initial population

Create the next generation by 
mutation and crossover

Score the children 

Meet the stopping 
criterion?

Start

Rank and select the parents 
for the next generation

Yes

No

Combine the children into 
one extended population

Score the population by 
calculating the objective 

function values

Trim the extended population 
by retaining the diversity

New 
population

Three ANNs 

Pareto optimal 
solution set

Training

Fig. 21 Flow chart to optimize the rivet and die with the ANNs and genetic algorithm (GA) 
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As listed in Table 5, five different sheet combinations were used to demonstrate the proposed optimization 

procedures for the selection of rivet and die in practical applications. Table 6 shows the detailed setting 

parameters of the GA and the bounds of the L1, D1 and H1. The population size was set to 50, and the maximum 

generation was 500. The crossover and migration rates were 0.80 and 0.20 respectively. The Pareto front 

population fraction was set to 0.35 to get 18 Pareto optimal solutions for each sheet combination. These Pareto 

optimal solutions are non-dominated with respect to each other. In other words, when moving from one Pareto 

solution to another, a certain amount of gain in one objective(s) is always companied with a certain amount of 

sacrifice in the other(s). 

Table 5 Five top and bottom sheet combinations 

Case 
No. 

Top sheet thickness T1/mm 
(AA5754) 

Bottom sheet thickness 
T2/mm (AA5754) 

1 1.0 1.0
2 1.0 2.0
3 1.5 1.5
4 2.0 1.0 
5 2.0 2.0

Table 6 Setting parameters used in the genetic algorithm 

Optimization options Setting condition 

Rivet and die bounds 
5.0 ≤ L1 ≤ 6.0 

8.0 ≤ D1 ≤ 10.0 
1.6 ≤ H1 ≤ 2.0 

Population size 50 
Selection function Tournament with size 2 
Creation function Feasible population 

Crossover fraction 0.80 
Mutation function Adaptive feasible 
Crossover function Scattered 

Migration direction Forward 
Migration fraction 0.20 
Distance measure function Distance crowding 

Pareto front population fraction 0.35 

4.2 Optimization results 

For the Case No. 1 (i.e. 1.0mm+1.0mm), the eighteen Pareto optimal solutions are listed in Table 7. It can be 

seen that the interlock, Tcen, and Ttip reached their maximum values in different Pareto optimal solutions: the 

maximum interlock (0.89mm) in Solution No.18, the maximum Tcen (0.58mm) in Solution No.13 and the 

maximum Ttip (0.21mm) in Solution No.1. To clearly show the changing trends of these quality indicators 

within the 18 optimal solutions, the joint quality results in Table 7 were plotted in Fig. 22(a). Obviously 

opposite changing trends were found between the interlock and the Ttip. By optimizing the L1, D1 and H1, the 

interlock increased from 0.30mm to 0.89mm, while the corresponding Ttip decreased from 0.21mm to nearly 

zero. The Tcen was less affected by the rivet and die, and just fluctuated within the range of 0.46mm to 0.58mm.  

Using the Fig. 22(a), the optimal rivet and die under different quality standards for the 1.0mm+1.0mm sheet 

combination can be easily identified. For example, according to the standard of a world-leading car 

manufacturer, the interlock and Tmin should be greater than 0.4mm and 0.2mm respectively for SPR joints with 

aluminum alloy bottom sheet [3]. By adding two reference lines (black for the interlock and green for the Tmin) 
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onto the Fig. 22(a), it can be clearly seen that the 1.0mm+1.0mm sheet combination could not be successfully 

connected by optimizing the L1, D1 and H1 within the studied ranges. Further optimization of other rivet and 

die parameters, such as the rivet diameter, the rivet type and the die type, is required in order to improve the 

joint quality. However, if reducing the quality standard of the Tmin from 0.2mm to 0.1mm (yellow reference 

line), there would be five Pareto optimal solutions (in Zone1) conforming to the modified quality standard. 

Considering the importance of the interlock for the joint mechanical strengths, the Solution No.8 with a larger 

interlock (0.59mm) might be the best solution for the 1.0mm+1.0mm sheet combination. 

Table 7 Pareto optimal solution set for Case No.1 (1.0mm+1.0mm) 

Solution 
No. 

Sheets /mm 
Optimized rivet and die Joint quality results (ANN) 

Rivet length L1/mm Die diameter D1/mm Die depth H1/mm Interlock /mm Tcen /mm Ttip /mm

1 1.0+1.0 5.0  10.0  1.6  0.30  0.47  0.21  

2 1.0+1.0 5.0  10.0  1.6  0.30  0.47  0.21  

3 1.0+1.0 5.0  10.0  1.7  0.30  0.45  0.20  

4 1.0+1.0 5.3  9.8  1.6  0.43  0.47  0.17  

5 1.0+1.0 5.0  9.5  1.7  0.46  0.44  0.16  

6 1.0+1.0 5.2  9.5  1.6  0.51  0.47  0.16  

7 1.0+1.0 5.3  9.5  1.6  0.56  0.47  0.14  

8 1.0+1.0 5.3  9.5  1.7  0.59  0.46  0.13  

9 1.0+1.0 5.3  9.0  1.6  0.61  0.48  0.10  

10 1.0+1.0 6.0  10.0  1.7  0.61  0.49  0.08  

11 1.0+1.0 6.0  9.8  1.6  0.67  0.51  0.07  

12 1.0+1.0 5.9  8.0  1.6  0.70  0.57  0.02  

13 1.0+1.0 6.0  8.0  1.6  0.71  0.58  0.01  

14 1.0+1.0 6.0  8.0  1.7  0.74  0.53  0.01  

15 1.0+1.0 6.0  8.0  1.7  0.76  0.52  0.00  

16 1.0+1.0 6.0  8.1  1.7  0.78  0.51  0.00  

17 1.0+1.0 6.0  9.5  1.8  0.81  0.49  0.04  

18 1.0+1.0 6.0  9.0  1.7  0.89  0.49  0.02  

0 4 8 12 16 20

0.0

0.2

0.4

0.6

0.8

1.0

V
al

u
e 

/m
m

Solution No.

 Interlock

Tcen

Ttip

0 4 8 12 16 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
al

u
e 

/m
m

Solution No.

 Interlock

Tcen

Ttip

0 4 8 12 16 20

0.0

0.2

0.4

0.6

0.8

1.0

V
al

u
e 

/m
m

Solution No.

 Interlock

Tcen

Ttip

(a) (b) (c)

0 4 8 12 16 20

0.0

0.2

0.4

0.6

0.8

1.0

V
al

u
e 

/m
m

Solution No.

 Interlock

Tcen

Ttip

0 4 8 12 16 20

0.0

0.4

0.8

1.2

1.6

2.0

V
al

u
e 

/m
m

Solution No.

 Interlock

Tcen

Ttip

(d) (e)

Zone1

Zone2 Zone3

Zone4 Zone5

Fig. 22 Changing trends of the interlock, Tcen and Ttip with the optimized rivet and die: (a) 1.0mm+1.0mm, (b) 1.0mm+2.0mm, (c) 

1.5mm+1.5mm, (d) 2.0mm+1.0mm and (e) 2.0mm+2.0mm 
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The Pareto optimal solutions for other four sheet combinations are also plotted in Fig. 22(b)(c)(d)(e) to 

facilitate the selection of optimal rivet and die. For clarity, the detailed Pareto optimal solutions are not 

presented in tabular form anymore. It can be seen that the interlock, Tcen and Ttip in Fig. 22(b)(c)(d)(e) 

demonstrated very similar changing trends to that in Fig. 22(a): the increment of interlock was always 

accompanied with the rapid decrease of Ttip and the fluctuation of Tcen within a small range. According to the 

joint quality standard from [3] (i.e. interlock > 0.4mm and Tmin > 0.2mm), all of the four sheet combinations 

can be successfully connected by optimizing the L1, D1 and H1. From the acceptable solutions in Zone2 of Fig. 

22(b), the optimized rivet and die in the Solution No.16 might be the best option for the 1.0mm+2.0mm sheet 

combination. Similarly, the best solutions for the rest three sheet combinations were also easily identified from 

the acceptable solutions shown in Zone3 of Fig. 22(c), Zone4 of Fig. 22(d) and Zone5 of Fig. 22(e): the 

Solution No.18 for the 1.5mm+1.5mm sheet combination, the Solution No.18 for the 2.0mm+1.0mm sheet 

combination and the Solution No.18 for the 2.0mm+2.0mm sheet combination. 

By comparing the acceptable solution ranges (Zone2, 3 and 4) in Fig. 22(b)(c)(d), it was also found that the 

sheet combination with a thin top sheet and a thick bottom sheet (e.g. 1.0mm+2.0mm) is more compatible with 

the rivet and die, and therefore much easier to be successfully connected. In contrast, the sheet combination 

with a thick top sheet and a thin bottom sheet (e.g. 2.0mm+1.0mm) is more demanding for the rivet and die, 

and thus more difficult to be connected successfully. This is in a good agreement with the results reported in 

study [12]. Meanwhile, the Tmin was more likely formed around the rivet tip in the sheet combination with a 

thin top sheet and a thick bottom sheet (Ttip < Tcen in Fig. 22(b)), but more likely formed around the joint central 

area in the sheet combination with a thick top sheet and a thin bottom sheet (Ttip > Tcen in Fig. 22(d)). 

Based on the above case studies, it can be concluded that the developed joint quality optimization tool could 

effectively simplify the selection of rivet and die according to different joint quality standards. 

5 Application range map for the selection of rivet and die 

In addition to the aforementioned rivet and die selection approach with the ANNs and GA, suitable rivet and 

die combinations for a new sheet combination can also be quickly identified by plotting application range maps 

of different rivet and die combinations with the help of developed ANNs. Fig. 23 shows the four steps to 

determine such application range map: (a) Select a rivet and die combination; (b) Plot the three contour graphs 

of interlock, Tcen and Ttip within the selected thickness ranges of the top and bottom sheets (e.g. 1.0mm~2.0mm) 

using the developed ANNs; (c) Divide each contour graph into ‘Passed’ and ‘Failed’ regions according to the 

selected joint quality standard (e.g. interlock >0.4mm and Tmin >0.2mm); (d) Overlap the three contour graphs 

together to visualize the suitable (i.e. green region) and unsuitable (i.e. yellow region) application ranges for 

the selected rivet and die combination.  
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Fig. 23 Four steps to identify the application range map of a specific rivet and die combination 

The application range generally varies with different rivet and die combinations. For example, the application 

ranges of two rivet and die combinations (i.e. Combination 1: L1=5.0mm, D1=9.0mm and H1=1.6mm; 

Combination 2: L1=6.0mm, D1=9.0mm and H1=1.6mm) are plotted in Fig. 24 following the procedures 

presented in Fig. 23. The sheet thickness range is 1.0mm~2.0mm, and the joint quality standard employed is 

that the interlock > 0.4mm and Tmin > 0.2mm. It can be seen that the application ranges of the two rivet and die 

combinations are quite different. As shown in Fig. 24(b), the Combination 1 is more suitable for joints with a 

small total sheet thickness. Joints with a too large total sheet thickness could not be successfully connected 

due to undesired interlock values as presented in Fig. 24(a). In contrast, as shown in Fig. 24(d), the 

Combination 2 is more suitable for joints with a large total sheet thickness. Joints with a too small total sheet 

thickness could not be properly jointed because of the unsatisfied remaining bottom sheet thickness around the 

rivet tip, as presented in Fig. 24(c). From the suitable application ranges (i.e. green regions) shown in Fig. 

24(b)(d), it was also noticed that the two rivet and die combinations are capable of connecting the majority of 

sheet combinations within the selected sheet thickness range 1.0mm~2.0mm. 

With these application range maps, it is very convenient and straightforward for engineers, even inexperienced 

engineers, to identify whether or not a new sheet combination can be successfully connected by the selected 

rivet and die combination. Taking the sheet combinations 1.5mm+1.0mm, 1.5mm+1.5mm, 1.5mm+2.0mm as 

examples, the way to use the above two application range maps in practical applications was demonstrated. 

After locating the positions of the three sheet combinations on the application range maps shown in Fig. 

24(b)(d), it became very clear that the 1.5mm+1.0mm sheet combination cannot be successfully connected by 

either of the two rivet and die combinations. The 1.5mm+1.5mm sheet combination could only be successfully 

jointed by the rivet and die Combination 2. While the 1.5mm+2.0mm sheet combination could be connected 

by both of the two rivet and die combinations. These prediction results agreed well with the experimental tests, 

as listed in Table 8. Only the joint E-10 was not properly predicted because the tested interlock value (0.42mm) 

was too close to the quality threshold of interlock (0.4mm). 

Different from the rivet and die selection approach proposed with GA, the application range map, once 

obtained, can be directly used to guide the selection of rivet and die without the need of running the ANNs 
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again. It is also a reliable tool to ensure that the workable rivet and die for a new sheet combination are selected 

from the accessible/existing rivets and dies. Such capability can potentially reduce the number of rivet and die 

combinations used in an automated assembly line, and thus is very valuable for practical applications. A 

practical application could be the design of a new vehicle and layout of a manufacturing line with SPR as the 

major joining technique. 
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Fig. 24 Comparisons between application range maps of two rivet and die combinations (Quality standard: Interlock > 0.4mm & 

Tmin > 0.2mm) 

Table 8 Quality evaluation results with different rivet and die combinations 

Joint configurations Experimental results 
Predicted 
(ANN) 

Joint 
no. 

Stack 
/mm 

(AA5754) 

Rivet 
length 
L1/mm 

Die Rivet head 
height /mm 

(Mean) 

Interlock /mm 
(Mean)

Tmin /mm
(Mean) 

Passed 
/Failed 

Passed 
/Failed Diameter 

D1/mm 
Depth 
H1/mm 

E-5 1.5+1.0 5.0 9.0 1.6 -0.08 0.31  0.23 Failed Failed 

E-7 1.5+1.0 6.0 9.0 1.6 -0.08 0.74  0.1 Failed Failed 

E-10 1.5+1.5 5.0 9.0 1.6 0.02 0.42  0.53 Passed Failed 

E-13 1.5+1.5 6.0 9.0 1.6 0.01 0.77  0.41 Passed Passed 

E-14 1.5+2.0 5.0 9.0 1.6 -0.06 0.56  0.72 Passed Passed 

E-16 1.5+2.0 6.0 9.0 1.6 -0.12 0.93  0.43 Passed Passed 
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6 Interaction analysis of joining parameters on joint quality 

Another useful application of the developed ANNs is to analyze the interaction effects between different 

joining parameters on the joint quality. Fig. 25 shows the interaction plots of the five joining parameters (i.e. 

T1, T2, L1, D1 and H1) on the interlock, Tcen and Ttip. The almost parallel trend lines suggest weak interactions, 

while the non-parallel trend lines indicate significant interactions between these parameters. Under the studied 

joint configurations, significant interaction effects on the interlock were observed between the D1 and any of 

the other three parameters (T2, L1 and H1) as shown in Fig. 25(a). While only the T1 and T2 demonstrated 

apparent interaction effects on the Tcen and Ttip as shown in Fig. 25(b)(c). Therefore, the corresponding five 

contour graphs of the interlock, Tcen and Ttip were plotted with the ANNs, and discussed in the following 

sections.  
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Fig. 25 Interaction plots of the five joining parameters on (a) the interlock, (b) the Tcen and (c) the Ttip

6.1 Interaction effects on the interlock 

6.1.1 Between the bottom sheet thickness (T2) and die diameter (D1) 

When the T1, L1 and H1 were fixed at 1.2mm, 5.0mm and 2.0mm, the contour graph of the interlock with 

varying T2 and D1 is plotted in Fig. 26. The non-parallel contour lines indicated the apparent interaction effects 

between the T2 and D1 on the interlock. It can be seen that the interlock always increased with the increment 

of the T2. A greater increasing speed of the interlock was found with a larger D1. In contrast, the interlock 

always decreased with the increment of the D1. A greater decreasing speed of the interlock was found with a 

smaller T2. To confirm such interaction effects, the cross-sectional profiles of joints corresponding to the points 

a ~ i were obtained from experimental SPR tests and FEA simulations, as shown in Fig. 27. Six of the nine 

joints were made experimentally due to the availability of dies. It can be seen that not only the changing trends 

but also the magnitudes of interlock matched well between Fig. 26 and Fig. 27.  
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Fig. 26 Contour graph of the interlock with varying bottom sheet thickness T2 and die diameter D1 (T1=1.2mm, L1= 5.0mm, H1= 

2.0mm) 

Fig. 27 Joint cross-sectional profiles with varying bottom sheet thickness T2 and die diameter D1 (T1=1.2mm, L1= 5.0mm, H1= 

2.0mm) 

By analyzing the gradients of contour lines in Fig. 26, it can be seen that the interlock demonstrated a higher 

sensitivity to the T2 with a large die diameter (e.g. 10.0mm at the points a to c) than with a small one (e.g. 

8.0mm at the points g to i). This is mainly attributed to the different bottom sheet rigidities and the relative 

magnitudes of the rivet volume (Vr) and die cavity volume (Vd) shown in Fig. 27(d)(e). When the D1 was 

10.0mm, the Vd (142.84mm3) was much greater than the Vr (90.0mm3). Due to the large unfilled die cavity 

space, the 1.0mm bottom sheet with a low rigidity was pressed backward rather than pierced by the rivet shank 

as shown in Fig. 27(a). While as shown in Fig. 27(c), the 2.0mm bottom sheet with a sufficient rigidity 

effectively prevented too much backward movement, and therefore allowed the rivet shank to flare deeply into 

the bottom sheet. So, the tested interlock rapidly increased from only 0.16mm to 0.49mm with the increment 

of the T2. In contrast, when the D1 was 8.0mm, the Vd (89.07mm3) almost equaled to the Vr (90.0mm3). The 

small die diameter effectively limited the large movement of the bottom sheets, especially the 1.0mm one in 
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Fig. 27(g). Almost the same backward movements of the bottom sheets were observed as presented in Fig. 

27(g)(h)(i), and the rivet shank deeply flared into the bottom sheet in all of the three joints. Thus, the tested 

interlock just slightly increased from 0.48mm to 0.51mm with the increment of the T2.  

In addition, the different gradients of contour lines also suggested that the interlock was more sensitive to the 

D1 in SPR joints with a thin bottom sheet (e.g. 1.0mm at the points g to a) than with a thick one (e.g. 2.0mm 

at the points i to c). This phenomenon is also caused by the combined effects of the bottom sheet rigidity and 

the differentiation between the rivet and die volumes, and hence not discussed in detail. 

6.1.2 Between the rivet length (L1) and die diameter (D1) 

When the T1, T2 and H1 were fixed at 1.2mm, 1.8mm and 2.0mm, the contour graph of the interlock with 

varying L1 and D1 is shown in Fig. 28(a). The non-parallel contour lines indicated the apparent interaction 

effects between the L1 and D1 on the interlock. With the different D1, the interlock always showed an increasing 

trend when the L1 increased from 5.0mm to 6.0mm. Meanwhile, a slightly larger increment speed of the 

interlock was discovered with the D1=10.0mm than with the D1=8.0mm. In contrast, with the different L1, the 

changing trends of the interlock varied when the D1 increased from 8.0mm to 10.0mm. For example, the 

interlock demonstrated a decreasing trend with the 5.0mm long rivets, but first increased and then decreased 

with the 6.0mm long rivets. Fig. 29 shows the cross-sectional profiles of joints corresponding to the points a~i 

from experimental tests and FEA simulations. Among the nine profiles, four of them were experimentally 

obtained using the accessible dies. By comparing the Fig. 28(a) and Fig. 29, it can be seen that, although the 

interlock value at the point i was underestimated by the ANN, the predicted changing trends of the interlock 

from the ANN still showed reasonable agreements with that from both of the experimental tests and FEA 

simulations. 
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Fig. 28 Contour graphs of (a) the interlock and (b) the Vr−Vd with varying rivet length L1 and die diameter D1 (T1=1.2mm, 

T2=1.8mm, H1=2.0mm) 
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Fig. 29 Joint cross-sectional profiles with different rivet length L1 and die diameter D1 (T1=1.2mm, T2=1.8mm, H1=2.0mm) 

The interaction effect between the D1 and L1 on the interlock is also highly associated with the relative 

magnitudes of the Vr and Vd. Fig. 28(b) illustrates the contour graph of the difference (Vr−Vd) between the rivet 

and die cavity volumes with varying D1 and L1. With the 8.0mm die diameter, the Vr of the 5.0mm long rivet 

(90.0mm3) almost equaled to the Vd (89.07mm3). Further increment of the L1 led to a greater Vr than the Vd. 

The rivet shank underwent a high pressure after the die cavity was fully filled, and therefore was inevitably 

buckled as shown in Fig. 29(i). At the same time, the relatively small die diameter (D1=8.0mm) also limited 

the rivet shank flare. In contrast, with the 10.0mm die diameter, the Vr was always smaller than the Vd

(142.84mm3) as shown in Fig. 28(b). The 1.8mm bottom sheet was rigid enough to prevent large backward 

movements, and the rivet shank still flared effectively into the bottom sheet, as shown in Fig. 29(a)(b)(c). As 

a result, with the increment of the L1 from 5.0mm to 6.0mm, the interlock showed a larger increasing speed 

with the 10.0mm die diameter than with the 8.0mm one. Similarly, when the D1 increased from 8.0mm to 

10.0mm, the different interlock changing patterns with varying L1 can also be explained by the changes of the 

rivet shank flare and buckling degrees induced by the different volumes between the rivet and die. To avoid 

repetition, detailed discussions about this part are omitted.  

The contour graph not only demonstrated the interaction effects but also visualized the maximum interlocks 

with possible optimal rivet and die combinations under the pre-defined conditions. For example, the yellow 

stars marked in Fig. 28(a) presented the maximum interlocks with the optimal D1 for different length rivets. 

From the positions of these yellow stars, it can be seen that the optimal D1 slightly increased with the increment 

of L1, and the maximum interlock occurred (i.e. red star) when the L1 reached its maximum value 6.0mm. Due 

to such strong interactions between the L1 and D1, the influences of the L1 and D1 on the interlock should be 

considered simultaneously. 

6.1.3 Between the die diameter (D1) and die depth (H1) 

When the T1, T2 and L1 were fixed at 1.2mm, 1.8mm and 5.0mm, the contour graph of the interlock with 
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varying D1 and H1 is shown in Fig. 30(a). The non-parallel contour lines confirmed the apparent interaction 

effects between the D1 and H1 on the interlock. It can be seen that the changing trend of the interlock varied 

with the changes of the D1 and H1. For example, when the D1 increased from 8.0mm to 10.0mm, the interlock 

first increased and then decreased with the H1=1.6mm, while it demonstrated a decline trend with the 

H1=2.0mm. Similarly, when the H1 increased from 1.6mm to 2.0mm, the interlock also demonstrated different 

variation trends with the D1=8.0mm and D1=10.0mm. The cross-sectional profiles of joints corresponding to 

the points a~i obtained from the experimental tests and FEA simulations are presented in Fig. 31. Four of the 

nine joints were made experimentally using the accessible dies. By comparing the contour graph with the joint 

cross-sectional profiles, it can be concluded that the predicted changing trends of the interlock from the ANN 

showed a reasonable agreement with that from both of the experimental SPR test and FEA simulation. 
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Fig. 30 Contour graphs of (a) the interlock and (b) the Vr−Vd with varying die diameter D1 and die depth H1 (T1=1.2mm, T2=1.8mm, 

L1=5.0mm) 

Fig. 31 Joint cross-sectional profiles with different die diameter D1 and die depth H1 (T1=1.2mm, T2=1.8mm, L1=5.0mm) 

The interaction effects between the D1 and H1 on the interlock are also highly associated with the relative 

magnitude of the Vr and Vd. Fig. 30(b) illustrates the contour graph of the difference between the Vr and Vd
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with varying D1 and H1. As mentioned above, if the Vd is smaller than the Vr, it would be very difficult for the 

rivet shank to further flare into the bottom sheet after the die cavity is fully filled. Instead, the rivet shank 

buckling happens and imposes negative influences on the interlock formation. On the other hand, if the Vd is 

greater than the Vr, the bottom sheet would undergo a large displacement towards the die cavity and thus could 

not be effectively pierced by the rivet shank. This would also impose a negative influence on the interlock 

formation. The increment of the H1 from the points g to a effectively increased the Vd as shown in Fig. 30(b). 

This provides enough volume for the rivet shank to flare, but not too much for the bottom sheet to deform 

freely into the die cavity. As a result, the rivet shank buckling degree was effectively reduced as shown in Fig. 

31(g)(d)(a), which led to the increasing trend of the interlock with the 8.0mm die diameter. In contrast, from 

the points h to b and from the points i to c, the increment of the H1 led to an increasingly larger Vd compared 

with the Vr as shown in Fig. 30(b). As a result, the interlock showed decreasing tendencies with the 9.0mm 

and 10.0mm die diameters. The same principles can also be applied to explain the different changing trends of 

interlock when the D1 increased from 8.0mm to 10.0mm. As shown in Fig. 30(a), when the H1=1.6mm, the 

interlock first increased due to the reduction of rivet shank bulking degree and then decreased because of the 

increasingly larger backward movement of the bottom sheet. While when the H1=2.0mm, the interlock showed 

a decreasing trend because the Vd became increasingly larger than the Vr. 

Similar to the previous section, the contour graph also visualized the maximum interlocks with possible 

optimal combinations of the D1 and H1 under the pre-defined conditions. For example, the yellow stars marked 

in Fig. 30(a) presented the maximum interlocks with the optimal D1 for different H1. From the positions of 

these yellow stars, it can be seen that the optimal D1 slightly increased with the decrease of H1, and the 

maximum interlock occurred (i.e. red star) when the H1 reached around 1.65mm. By observing the relative 

rivet and die volumes on Fig. 30(b) corresponding to the locations of these yellow stars on Fig. 30(a), the 

importance of choosing similar rivet and die volumes to maximize the interlock for a SPR joint was highlighted. 

6.2 Interaction effects on the Tcen and Ttip

As mentioned above, strong interaction effects on the Tcen and Ttip were only discovered between the T1 and T2. 

When the L1, D1 and H1 were fixed at 5.0mm, 10.0mm, 1.8mm, the contour graph of the Tcen with varying T1

and T2 is shown in Fig. 32(a). The apparent interaction effects between the T1 and T2 on the Tcen were 

highlighted by the non-parallel contour lines. The tested and FEA simulated cross-sectional profiles of joints 

corresponding to the points a ~ i are shown in Fig. 33. Five of the nine joints were made experimentally due 

to the availability of dies. It can be seen that the predicted changing trends of the Tcen from the ANN showed a 

reasonable agreement with that from the experimental SPR tests and the FEA simulations. With the different 

T2, the Tcen always decreased when the T1 increased from 1.2mm to 1.8mm. A slightly greater decreasing speed 

of Tcen was captured with a larger T2. The decline of the Tcen is because the thicker top sheet takes a longer time 

to be penetrated by the rivet shank [9], while the greater speed of the Tcen might be mainly attributed to the 

relatively higher rigidity of the thicker bottom sheet. In contrast, with the different T1, the Tcen always increased 

when the T2 changed from 1.2mm to 1.8mm. A larger increasing speed of Tcen was found with a smaller T1. 

The increment of the Tcen is directly linked with the increment of the initial bottom sheet thickness at the joint 

center, while the larger speed of the Tcen might be attributed to the relatively lower pressure applied around the 
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center of the bottom sheet by the thinner top sheet. The largest Tcen was captured on the top left corner while 

the smallest value was observed on the lower right corner of the contour graph. 
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Fig. 32 Contour graph of the (a) Tcen and (b) Ttip with varying top and bottom sheet thicknesses (L1=5.0mm, D1=10.0mm, 

H1=1.8mm) 

Fig. 33 Joint cross-sectional profiles with varying top and bottom sheet thicknesses (L1=5.0mm, D1=10.0mm, H1=1.8mm) 

When the L1, D1 and H1 were fixed at 5.0mm, 10.0mm, 1.8mm, the contour graph of the Ttip with varying T1

and T2 is shown in Fig. 32(b). The non-parallel contour lines demonstrated the interaction effects between the 

T1 and T2 on the Ttip. The predicted changing trends of the Ttip from the ANN in Fig. 32(b) showed a reasonable 

agreement with that from the experimental SPR tests and the FEA simulations in Fig. 33. It can be seen that 

the Ttip always showed an increasing trend with the increments of the T1 and T2. This is because the increment 

of the T1 or T2 increased the total sheet thickness and led to a larger distance between the final position of the 

rivet tip and the bottom of the die cavity. When the T2 increased from 1.2mm to 1.8mm, a larger increasing 

speed of Ttip was found with a thicker top sheet. Similarly, when the T1 changed from 1.2mm to 1.8mm, a 

larger increment speed of Ttip was also observed with a thicker bottom sheet. This phenomenon is attributed to 

the different impact degrees of the sheet thickness changes on the rivet shank flare. For instance, Fig. 34 shows 

the rivet shank deformations from points a to c with T2=1.8mm and from the points g to i with T2=1.2mm. An 
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apparent increase of the deformed rivet length along the vertical direction was found from points g to i due to 

the smaller rivet shank flare. While the deformed rivet length along the vertical direction kept almost constant 

from the points a to c. The increment of the deformed rivet length directly led to a smaller Ttip. Thus, with the 

increment of the T1, a larger increment speed of Ttip was observed with a thicker bottom sheet. Different from 

the Tcen, the largest Ttip was found on the top right corner while the smallest value was observed on the lower 

left corner of the contour graph. 

Fig. 34 Deformed rivet shank i3n SPR joints with different top and bottom sheet thicknesses 

7 Conclusions 

In this study, artificial neural network (ANN) models involving five critical joining parameters were developed 

to predict the SPR joint quality. Two innovative approaches were also proposed to simplify and optimize the 

selection of rivet and die for new sheet combinations. In addition, the interaction effects between five joining 

parameters on the joint quality indicators were also discussed with the contour graphs plotted by the developed 

ANNs. The main conclusions are summarized below: 

 (1) Three ANN models for the interlock, Tcen and Ttip were established respectively for prediction of the SPR 

joint quality. The varying optimal ANN structures suggested that developing an individual ANN model for 

each quality indicator could maximize the prediction accuracy. The verified FEA model of SPR process can 

be used to collect training and testing data for ANN model development. 

(2) The accuracy of developed ANNs was validated with experimental SPR tests. The MAE, MAPE and r for 

the interlock between the experimental SPR test and ANN were 0.058mm, 14.2% and 0.978 respectively. The 

corresponding MAE, MAPE and r for the Tcen were 0.075mm, 22.4% and 0.881. The MAE, MAPE and r for 

the Ttip were 0.059mm, 10.9% and 0.996 respectively. 

(3) The genetic algorithm (GA) combined with the developed ANNs can be used to simplify and optimize the 

selection of rivet and die for new sheet combinations. With the generated Pareto optimal solution set, the 

suitable rivet and die combinations can be easily selected to achieve the optimal joint quality according to 

different quality standards. 
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(4) Application range maps of different rivet and die combinations can be created with the help of the 

developed ANNs. In practical applications, these maps offer a simple but effective solution for the selection 

of suitable and accessible rivet and die for new sheet combinations. It also has great potential to be applied in 

the design of a new vehicle and layout of a manufacturing line with SPR as the major joining technique.  

(5) The developed ANNs showed very good performances in the interaction analysis between different joining 

parameters. Under the studied joint configurations, significant interaction effects on the interlock were 

identified between the D1 and any of the other three parameters (T2, L1 and H1), while only the T1 and T2

demonstrated apparent interaction effects on the Tcen and Ttip. The strong interaction effects on the three quality 

indicators were discovered to be highly associated with the relative magnitude of the rivet and die volumes, 

the rivet shank flare and the sheet rigidity. 
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