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Abstract

A popular design for clinical trials assessing targeted therapies is the two-stage adaptive enrichment design
with recruitment in stage two limited to a biomarker-defined subgroup chosen based on data from stage
one. The data-dependent selection leads to statistical challenges if data from both stages are used to draw
inference on treatment effects in the selected subgroup.

If subgroups considered are nested, as when defined by a continuous biomarker, treatment effect estimates
in different subgroups follow the same distribution as estimates in a group-sequential trial. This result is
used to obtain tests controlling the familywise type I error rate (FWER) for six simple subgroup selection
rules, one of which also controls the FWER for any selection rule. Two approaches are proposed; one based
on multivariate normal distributions suitable if the number of possible subgroups, k, is small, and one based
on Brownian motion approximations suitable for large k. The methods, applicable in the wide range of
settings with asymptotically normal test statistics, are illustrated using survival data from a breast cancer
trial.
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1 Introduction

An area of much interest in modern medicine, particularly in oncology, is the development of targeted
therapies that benefit a specific subset of the patient population. This in turn has led to interest in the
design of clinical trials to evaluate effectiveness in settings where the treatment effect may be heterogeneous
(Antoniou et al. 2016, Lin et al. 2019).

One such approach is the adaptive enrichment design (Wang et al. 2009, Simon & Simon 2013, Rosenblum
et al. 2020, Lin et al. 2021). This is a design for confirmatory phase III randomized clinical trials conducted
in two stages. In stage 1, patients recruited from the whole population are randomized to experimental and
control treatments. At the end of stage 1 the observed data are used to decide whether to continue to recruit
from the entire population or to restrict recruitment on the basis of a pre-specified candidate biomarker,
enriching the trial to focus on this chosen subgroup. Further patients are then recruited from the selected
population or subgroup in stage 2. Ho et al. (2012) describe such a trial.

The analysis of such trials raises a number of challenges (Simon 2015). At the end of the trial it is desired
to test if the experimental treatment is superior to the control in the selected subgroup. If data from stage
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1 are included in this test, the use of the same data to select the subgroup and evaluate the effect of the
treatment can inflate the type I error rate. Some proposed solutions to this problem in the general setting
are to include only stage 2 patients in the final analysis (Renfro et al. 2014) or to include all stage 1 patients,
whether or not they are in the selected subgroup, combining these with stage 2 patients in a prespecified
manner (Simon & Simon 2013).

In the specific case of a single binary biomarker with prior belief that a larger treatment effect will be
associated with a positive biomarker, the decision after stage 1 is to continue with the full population or
enrich to include biomarker positive patients only (Wang et al. 2007). Methods for this case have been
proposed by Spiessens & Debois (2010), Jenkins et al. (2011), Friede et al. (2012), Stallard et al. (2014) and
Rosenblum, Luber, Thompson & Hanley (2016). Lai et al. (2019) and Chiu et al. (2018) consider a more
general setting with a number of nested subgroups and selection maximizing the stage 1 likelihood ratio test
statistic.

Here we consider the setting of subgroup selection based on a single pre-specified biomarker that is either
continuous or has multiple levels with it assumed a priori that the effect of the experimental treatment
increases with increasing levels of this biomarker. In this case the subgroups considered are nested as
assumed by Lai et al. (2019). Selection of a subgroup corresponds to choice of a threshold value for the
biomarker, with the selected subgroup comprising all patients with biomarker levels above this threshold, as
explained in more detail in Section 2, where six simple methods for subgroup selection are described.

In Section 3 we show how a combination test, as proposed in a general adaptive design setting by Bauer
& Köhne (1994), can be used to combine evidence from the two stages of the adaptive enrichment design.
The combination testing approach requires construction of a p-value from the stage 1 data allowing for the
subgroup selection. For the case of nested subgroups, analysis of data from different subgroups is analagous
to that of accumulating data in a sequential trial. Together with an assumption of asymptotic normality, this
result is exploited in Section 4 to obtain the distribution of test statistics for the six different selection rules
introduced in Section 2, and hence expressions for the calculation of stage 1 p-values in each case. When the
number of subgroups considered, k, is small or moderate, expressions based on k-dimensional multivariate
normal tail areas can be used, generalizing the approach of Lai et al. (2019) to allow for different selection
rules. Alternative expressions are then given for three of the selection rules based on Brownian motion
approximations that are suitable for use with large k. One method controls the type I error rate for any
selection rule based on the stage 1 data, though may be conservative.

The paper therefore provides methods for analysis of an adaptive enrichment design that controls the
type I error allowing for the selection in stage 1, with specific methods to utilise the full type I error for
a number of common simple selection rules and a conservative method for any selection rule. Asymptotic
results are given that are suitable when the biomarker cutpoint can take many levels, with methods based on
multivariate normal distributions available when the number of levels is small and asymptotic results may
be less accurate.

Section 5 illustrates the methods through analysis of data from 686 patients from the German Breast
Cancer Study (GBCS) (Schmoor et al. 1996). This trial compared survival times for women who were or were
not treated with hormone therapy. Baseline characteristics include the number of progesterone receptors.
We demonstrate the retrospective application of an adaptive enrichment design to investigate identification
of a subgroup for whom hormone therapy is effective. Also presented are simulations based on resampled
GBCS study data, demonstrating accurate type I error rate control. The paper concludes with discussion in
Section 6. R code to implement the methods proposed is available from the author.
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2 Subgroup selection methods

Consider a two-stage adaptive enrichment design. In stage 1 patients are recruited and randomized between
an experimental treatment, T1, and a control treatment, T0, with patient i having biomarker value xi.
Following treatment, we observe some response Yi. We assume higher values of xi are believed to be
associated with larger treatment effects. On the basis of stage 1 data, we will obtain a threshold, λ in some
set Λ. The choice of Λ and some common methods for choosing λ are described below. In stage 2 of the
trial, recruitment is restricted to patients with biomarker values exceeding λ, with patient i having biomarker
value xi > λ. At the end of stage 2 we wish to use data from both stages to assess whether T1 is superior to
T0 for patients with biomarker values exceeding λ.

Let θλ denote the average effect of T1 relative to T0 for patients with xi > λ. Following selection of the
population of patients with x > λ, it is desired to test the null hypothesis Hλ : θλ ≤ 0. As selection of λ is
data dependent, we wish to control the familywise error rate (FWER) in the strong sense for the family of
hypotheses H = {Hλ, λ ∈ Λ}.

At the end of stage 1, for a given choice of λ, defining the subgroup chosen, a test of Hλ may be based on
comparison of responses for patients receiving T1 with those who receive T0 amongst patients with xi > λ.
Without loss of generality, suppose that stage 1 patients are arranged in decreasing order of biomarker value.
If λ1 and λ2 are such that xi > λ1 > λ2 > xi+1 for some i, tests of Hλ1

and Hλ2
will give identical results.

Denoting by k the size of the set Λ, and assuming λ1 > · · · > λk, we can therefore choose λ1, . . . , λk such
that for j = 1, . . . , k − 1, λj > xi > λj+1 for some i, and λk < xi for all i.

Let nj = |{xi : xi > λj}|(j = 1, . . . , k). The set of possible thresholds, Λ, may be prespecified, or chosen
to be, for example, the deciles of the observed biomarker levels from stage 1, or may be chosen to come from
a sufficiently finely spaced set to ensure that nj − nj−1 = 1(j = 2, . . . , k), though in order to avoid selection
of a subgroup based on a very small sample, it is common to set λ1 so as to have n1 sufficiently large.

Denoting θλj by θj , (j = 1, . . . , k), selection of λ based on stage 1 data is equivalent to selecting a value
of j. In order to emphasize that this selection is data-dependent, we will write J for this random variable.
A number of methods have been proposed for subgroup selection. Six relatively simple rules are described
below and considered in detail in the remainder of this paper. More complex rules have also been suggested
(see Discussion).

Selection rule 1 maximizes the test statistic in the subset. Let θ̂j be an estimate of θj based on data

from patients 1, . . . , nj , with estimated variance I−1
j , and let Zj = θ̂jI

1/2
j be a Wald statistic for testing H0

based on these data. Several authors, including Lai et al. (2019), propose selecting j to correspond to the
largest Zj . This will be denoted by J (1) = arg maxj=1,...k{Zj}. This is equivalent to selecting j to minimize
the p-value based on Zj .

Selection rule 2 maximizes the treatment effect estimate, taking j to be J (2) = arg maxj=1,...k{θ̂j}.
Selection rule 3 maximizes the impact, the product of effect size and subgroup prevalence, as proposed

by Zhao & LeBlanc (2020). Since Ij is approximately proportional to nj , this is approximately equivalent

to setting j to be J (3) = arg maxj=1,...k{Sj} with Sj = θ̂jIj .
Selection rule 4 maximizes the test statistic for the interaction term giving the difference between treat-

ment effects in the subgroup and its complement as proposed by Su et al. (2013) and Renfro et al. (2014).
The standardized test statistic for this interaction when the threshold value for the biomarker is λj will

be denoted Z
(int)
j so that a selection rule is to choose j equal to J (4) = arg maxj=1,...k−1{Z(int)

j }, where in
this case the range of j over which the arg max is taken is j = 1, . . . , k − 1 since j = k corresponds to the
subgroup being the entire population so that its complement is empty. Let θ̄λj denote the treatment effect

for patients with x ≤ λj , and let ˆ̄θj be an estimate of θ̄λj based on data from patients nj + 1, . . . , n in stage

1. The test statistic Z
(int)
j is then approximately Z

(int)
j = (θ̂j − ˆ̄θj)(var(θ̂j − ˆ̄θj))

−1/2.
Selection rule 5 maximizes the interaction effect estimate, the difference between the treatment effects in
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the subgroup and its complement, so that j is J (5) = arg maxj=1,...k{θ̂j − ˆ̄θj}.
Selection rule 6 maximizes the interaction effect estimate weighted by the size of the selected subgroup,

taking j to be J (6) = arg maxj=1,...k{Ij(θ̂j − ˆ̄θj)}.

3 Controlling the type I error when combining data from stages
1 and 2

Following selection of j, we wish to test Hj : θj ≤ 0 controlling the FWER over F = {H1, . . . ,Hk}. FWER
is controlled in the strong sense if Hj is rejected when HS =

⋂
i∈S Hi is rejected at nominal level for all

S ⊆ {1, . . . , k} with S 3 j (Markus et al. 1976). For monotonic treatment effects θi ≥ θj , i ≤ j and
H1 ⊆ · · · ⊆ Hk. Thus FWER is strongly controlled by rejecting Hj whenever Hi is rejected at nominal level
for all i ≤ j.

Let J (r)(i) denote the value of j from {i, . . . , k} selected using rule r(r = 1, . . . , 6), so that, for example,
J (1)(i) = arg maxj=i,...k{Zj}. For given selection rule, omitting the superscript (r) for notational conve-
nience, as Hi = ∩ki′=iHi′ , a level α test of Hi can be based on ZJ(i), with a p-value that controls the type I
error at the nominal level obtained from the distribution function of ZJ(i) under Hi, which can be calculated
under the point null H∗i : θi = · · · = θk = 0, since this maximises the p-value over Hi. Denoting this p-value
by pi(ZJ(i)), a p-value for the test of HJ that strongly controls the FWER is maxi=1,...,J{pi(ZJ(i))}.

Bauer & Köhne (1994) propose a method for testing a hypothesis Hi based on independent (one-sided)
p-values, p1 and p2, from the two stages of a clinical trial with stage 2 adapted based on stage 1 data. Given
pre-specified w1, w2 with w2

1 + w2
2 = 1, let

pc = 1− Φ(w1Φ−1(1− p1) + w2Φ−1(1− p2)), (1)

with Φ the standard normal distribution function, then pc ∼ U [0, 1] under Hi, so is a p-value for Hi

(Lehmacher & Wassmer 1999; Brannath et al. 2002).
Following stage 1 selection of subgroup J , let p1 be maxi=1,...,J pi(ZJ(i)), the p-value for a test of HJ

based on stage 1 data allowing for subgroup selection and p2 be a p-value from any valid test of HJ using
stage 2 data, that is with p2 ∼ U [0, 1] under HJ . Since p1 and p2 are independent the combination test will
control the FWER in the strong sense.

4 Construction of stage 1 p-values allowing for subgroup selection

4.1 Notation and distributional assumptions

For v a vector of length l, let vi:l = (vi, . . . , vl)
′ and Σ(v), ΣS(v) and ΣZ(v) be l × l matrices with

Σ(v)i,j = v−1
max{i,j}, ΣS(v)i,j = vmin{i,j} and ΣZ(v)i,j = v

1/2
min{i,j}v

−1/2
max{i,j} (i = 1, . . . , l, j = 1, . . . , l). Let

B(v), C(v) and D(v) be (l − 1) × l matrices with B(v)j,j = (vjvl)
1/2(vl − vj)−1/2, B(v)j,l = −B(v)j,j ,

C(v)j,j = vl(vl− vj)−1, C(v)j,l = −C(v)j,j , D(v)j,j = vjvl(vl− vj)−1, D(v)j,l = −D(v)j,j (j = 1, . . . , l− 1)

and other elements equal to zero. Let A
(j)
l (j = 1, . . . , l) be a l × l matrix with A

(j)
i,i = 1(i = 1, . . . , l),

A
(j)
i,j = −1(i = 1, . . . , l, i 6= j), and other elements equal to 0, with A

(j)
i:l the submatrix obtained from A(j)

by deleting columns and rows 1, . . . , (i− 1). Let B(j)(vi:l) = A
(j)
i:l−1B(vi:l) and C(j)(vi:l) = A

(j)
i:l−1C(vi:l).

Bonetti & Gelber (2004) give the distribution of treatment effect estimates for nested subgroups. This
is identical to that of estimates in a group-sequential trial (Spiessens & Debois 2010, Rosenblum, Qian,

Du, Qiu & Fisher 2016). If 0, I,n, θ̂,S and Z are vectors with j’th elements equal to 0, Ij , nj , θ̂j , Sj and
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Zj respectively, in many settings, including normal, Bernoulli and time-to-event endpoints, asymptotically
under H∗i (i = 1, . . . , k),

θ̂i:k ∼ N (0,Σ(Ii:k)) , Si:k ∼ N (0,ΣS(Ii:k)) and Zi:k ∼ N (0,ΣZ(Ii:k)) (2)

with Ij ∝ nj so that ΣZ(n) approximates ΣZ(I) and Σ(n) and ΣS(n) are approximately proportional to
Σ(I) and ΣS(I) respectively (Jennison & Turnbull 1997).

In this section, for given n = (n1, . . . , nk)′, we obtain approximations, F
(r)
i , for the distribution functions

of ZJ(r)(i)(i = 1, . . . , k, r = 1, . . . , 6), that is corresponding to the selection rules introduced above, suitable

for small to moderate k and further approximations, G
(r)
i , for the distribution functions of ZJ(r)(i)(i =

1, . . . , k, r = 1, 2, 3) suitable for large k.

Given observed ZJ(r) = z, a stage 1 p-value for the test of Hi(i = 1, . . . , k) is given by 1 − F (r)
i (z) or

1−G(r)
i (z). A p-value for a test of HJ(r) that strongly controls the FWER is then given by maxi=1,...,J(r){1−

F
(r)
i (z)} or maxi=1,...,J(r){1−G(r)

i (z)}. Since for any selection rule depending on data from patients recruited

in stage 1 we must have ZJ(i) no larger than ZJ(1)(i) = maxj≥i{Zj}, 1−F (r)
i (z) or 1−G(r)

i (z) also provide a
conservative p-value for that test of Hi using a test statistic based on any such selection rule. In particular,

for large k, maxi=1,...,J(r){1−G(1)
i (z)} provides a conservative p-value for testing HJ(r) with r = 4, 5, 6.

4.2 Correcting for subgroup selection in stage 1 - multivariate normal approach

For small k, it is feasible to obtain the distribution of ZJ(r)(i)(r = 1, . . . , 6) from (2).

Using selection rule 1, to test Hi we select J (1)(i) = arg maxj=i,...,k{Zj} and base a test on ZJ(1)(i) =
maxj=i,...,k{Zj}, with distribution function under H∗i

Pr(Zj ≤ c, j = i, . . . , k) = Φ(k−i+1)(c1,0,ΣZ(Ii:k)) (3)

or approximately

F
(1)
i (c) = Φ(k−i+1)(c1,0,ΣZ(ni:k)), (4)

where Φ(k−i+1)(x, µ,Σ) is the distribution function at x of a (k − i + 1)-dimensional normal distribution
with mean µ and variance Σ, and 1 is a vector with all elements equal to 1.

Using selection rule 2, as J (2)(i) = arg maxj=i,...,k{θ̂j}, ZJ(2)(i) has distribution function

k∑
j=i

Pr(Zj ≤ c, J (2)(i) = j) =

k∑
j=i

Pr
(
θ̂j ≤ cI−1/2

j , J (2)(i) = j
)
. (5)

Let θ̂
(j)
l = θ̂l − θ̂j for l 6= j and θ̂

(j)
j = θ̂j , with θ̂(j) = (θ̂

(j)
1 , . . . , θ̂

(j)
k )′. Then Pr(θ̂j ≤ cI

−1/2
j , J (2)(i) = j)

is Pr(θ̂
(j)
j ≤ cI

−1/2
j , θ̂

(j)
l ≤ 0, l = i, . . . , k, l 6= j). Since θ̂

(j)
i:k = A

(j)
i:k θ̂i:k it follows from (2) that θ̂

(j)
i:k ∼

N(0,A
(j)
i:kΣ(Ii:k)A

(j)
i:k

′
). Thus, since A(j)1 has element j equal to 1 and all other elements equal to 0,

Pr(θ̂j ≤ cI−1/2
j , J (2)(i) = j) = Φ(k−i+1)

(
cI
−1/2
j A

(j)
i:k1,0,A

(j)
i:kΣ(Ii:k)A

(j)
i:k

T
)

and (5) becomes
∑k
j=i Φ(k−i+1)

(
cI
−1/2
j A

(j)
i:k1,0,A

(j)
i:kΣ(Ii:k)A

(j)
i:k

′)
. Recalling that asymptotically Ij is pro-

portional to nj , this can be approximated by

F
(2)
i (c) =

k∑
j=i

Φ(k−i+1)
(
cn
−1/2
j A

(j)
i:k1,0,A

(j)
i:kΣ(ni:k)A

(j)
i:k

′)
. (6)
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Using selection rule 3, as J (3)(i) = arg maxj=i,...,k{Sj}, ZJ(3)(i) has distribution function

k∑
j=i

Pr(Zj ≤ c, J (3)(i) = j) =

k∑
j=1

Pr
(
Sj ≤ cI1/2

j , J (3)(i) = j
)
. (7)

If S(j) = A(j)S, Pr(Zj ≤ c, J (3)(i) = j) is Pr(S
(j)
j ≤ cI

1/2
j , S

(j)
l ≤ 0, l = i, . . . , k, l 6= j) =

Φ(k−i+1)
(
cI

1/2
j A

(j)
i:k1,0,A

(j)
i:kΣS(Ii:k)A

(j)
i:k

′)
and ZJ(3)(i) has approximate distribution function

F
(3)
i (c) =

k∑
j=i

Φ(k−i+1)
(
cI

1/2
j A

(j)
i:k1,0,A

(j)
i:kΣS(Ii:k)A

(j)
i:k

′)
. (8)

Using selection rule 4, we select J (4)(i) = arg maxj=i,...,k−1 Z
(int)
j . Since Ij is approximately proportional

to nj , we have (var(ˆ̄θj))
−1 approximately Īj = Ik − Ij , and Zintj approximately

(θ̂j − ˆ̄θj)(I
−1
j + Ī−1

j )−1/2 =
(
θ̂j − ˆ̄θj

)
(Ij Īj/Ik)1/2. (9)

As the treatment effect estimate from the whole sample is approximately the weighted average of the

estimates from a subgroup and its complement, θ̂k ≈ (Ij θ̂j + Īj
ˆ̄θj)/Ik and

ˆ̄θj ≈ (Ikθ̂k − Ij θ̂j)/Īj . (10)

We will thus take J (4)(i) = arg maxj=i,...,k−1{Z̃j} with

Z̃j =
(
θ̂j − (Ikθ̂k − Ij θ̂j)/Īj

) (
Ij Īj/Ik

)−1/2
= (θ̂j − θ̂k)

(
IkIj/Īj

)−1/2
. (11)

The distribution function of Pr(ZJ(4)(i) ≤ c) can be written as
∑k−1
j=i

∫
Pr(Zj ≤ c, J (4)(i) = j | θ̂k =

q)dFθ̂k(q), where Fθ̂k(q) = Φ(qI
1/2
k ) is the distribution function of θ̂k.

From (11), and recalling that Zj = θ̂jI
1/2
j , we have Zj = Z̃j Ī

1/2
j I

−1/2
k + θ̂kI

1/2
j so that Zj ≤ c if and

only if Z̃j ≤ c(Ik/Īj)
1/2 − θ̂k(IjIk/Īj)

1/2. Thus, setting Z̃
(j)
i = Z̃i − Z̃j , i 6= j and Z̃

(j)
j = Z̃j , ZJ(4)(i) has

distribution function

k−1∑
j=i

∫
Pr
(
Z̃

(j)
j ≤ c(Ik/Īj)1/2 − q(IjIk/Īj)1/2, Z̃

(j)
l ≤ 0, l = i, . . . , k, l 6= j

)
dΦ(qI

1/2
k ).

Setting Z̃ = (Z̃1, . . . , Z̃k−1)′ and Z̃(j) = (Z̃
(j)
1 , . . . , Z̃

(j)
k−1)′, we have Z̃(j) = A

(j)
1:k−1Z̃ and Z̃ = B(I)θ̂. The

distribution function of ZJ(4)(i) is thus

k−1∑
j=i

∫
Φ(k−i)

((
c(Ik/Īj)

1/2 − q(IjIk/Īj)1/2
)

A
(j)
i:k−11,0,B

(j)(Ii:k)Σ(Ii:k)B(j)(Ii:k)
′)
dΦ(qI

1/2
k ).

Lemma 1 in Appendix 1 in the Supplementary material shows that this is

k−1∑
j=i

Φ(k−i)

(
c

(
Ik
Īj

)1/2

A
(j)
i:k−11,0,B

(j)(Ii:k)Σ(Ii:k)B(j)(Ii:k)
′
+

(
Ij
Īj

)
A

(j)
i:k−111′A

(j)
i:k−1

′
)
,
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noting that A
(j)
i:k−111′A

(j)
i:k−1

′
is a (k − i)× (k − i) matrix with element (j + 1− i, j + 1− i) equal to 1 and

all other elements equal to zero. Given that Ij is approximately proportional to nj , with n̄j = nk − nj , this
is approximately

F
(4)
i (c) =

k−1∑
j=i

Φ(k−i)
(
c (nk/n̄j)

1/2
A

(j)
i:k−11,0,

B(j)(ni:k)Σ(ni:k)B(j)(ni:k)
′
+ nj n̄

−1
j A

(j)
i:k−111′A

(j)
i:k−1

′)
.

(12)

Using selection rule 5, we select J (5)(i) = arg maxj=i,...,k−1{θ̂j − ˆ̄θj}. Using (10), this may be ap-

proximated by the rule that selects j corresponding to the largest value of δ̂j =
(
θ̂j − θ̂k

)
Ik/Īj . Since

θ̂j = δ̂j Īj/Ik + θ̂k and Zj = θ̂jI
1/2
j , Zj ≤ c if and only if δ̂j ≤ (c − θ̂kI1/2

j )Ik/(ĪjI
1/2
j ) and the distribution

function of ZJ(5)(i) is

k−1∑
j=i

∫
Pr

(
δ̂

(j)
j ≤

(c− qI1/2
j )Ik

ĪjI
1/2
j

, δ̂
(j)
l ≤ 0, l = i, . . . , k, l 6= j

)
dΦ(qI

1/2
k )

where δ̂(j) is the vector with δ̂
(j)
i = δ̂i − δ̂j , i 6= j and δ̂

(j)
j = δ̂j so that δ̂(j) = C(j)(I)θ̂. The distribution

function of ZJ(5)(i) is thus

k−1∑
j=i

∫
Φ(k−i)

((
(c− qI1/2

j )Ik

ĪjI
1/2
j

)
A

(j)
i:k−11,0,C

(j)(Ii:k)Σ(Ii:k)C(j)(Ii:k)
′
)
dΦ(qI

1/2
k )

which, using the result in Lemma 1 and replacing Ij by nj , is approximately

F
(5)
i (c) =

k−1∑
j=i

Φ(k−i)
(
cnkn̄

−1
j n

−1/2
j A

(j)
i:k−11,0,

C(j)(ni:k)Σ(ni:k)C(j)(ni:k)
′
+ nkn̄

−2
j A

(j)
i:k−111′A

(j)
i:k−1

′)
.

(13)

Using selection rule 6, we select J (6)(i) = arg maxj=i,...,k−1{Ij(θ̂j− ˆ̄θj)}. From (10), this is approximated

by selecting j corresponding to the largest value of ε̂j =
(
θ̂j − θ̂k

)
IjIk/Īj . As Zj ≤ c whenever ε̂j ≤

(c− θ̂kI1/2
j )IkI

1/2
j /(Īj), ZJ(6)(i) has distribution function

k−1∑
j=i

∫
Pr

(
ε̂
(j)
j ≤

(c− qI1/2
j )I

1/2
j Ik

Īj
, ε̂

(j)
l ≤ 0, l = i, . . . , k, l 6= j

)
dΦ(qI

1/2
k )

where ε̂(j) is the vector with ε̂
(j)
i = ε̂i − ε̂j , i 6= j and ε̂

(j)
j = ε̂j so that ε̂(j) = D(j)(I)θ̂.

The distribution function of ZJ(6)(i) is thus

k−1∑
j=i

∫
Φ(k−i)

((
(c− qI1/2

j )I
1/2
j Ik

Īj

)
A

(j)
i:k−11,0,D

(j)(Ii:k)Σ(Ii:k)D(j)(Ii:k)
′
)
dΦ(qI

1/2
k )
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which, again using the result in Lemma 1 and replacing Ij by nj , is approximately

F
(6)
i (c) =

k−1∑
j=i

Φ(k−i)
(
cnkn

1/2
j n̄−1

j A
(j)
i:k−11,0,

D(j)(ni:k)Σ(ni:k)D(j)(ni:k)
′
+ n2

jnkn̄
−2
j A

(j)
i:k−111′A

(j)
i:k−1

′)
.

(14)

4.3 Correcting for subgroup selection in stage 1 - Brownian motion approach

The expressions for the distribution functions, F
(r)
i given by (4), (6), (8), (12) and (13) can be used for

small to moderate values of k using standard software such as mvtnorm (Genz et al. 2020) in R. For larger
k, however, this can be computationally infeasible, particularly for r > 1 that require up to k or k − 2
evaluations of multivariate normal tail areas. We now obtain approximations to the distribution functions

F
(r)
i (r = 1, 2, 3) for k large.

Assume that the subgroups of the stage 1 data considered increase in size in equal increments of some
size g, with some minimum size, a multiple of g; that is that nj = g(j0 + j)(j = 1, . . . , k). This arises with
g > 1 if λ1, . . . , λk are chosen to divide the stage 1 patients into equal groups such as deciles, or with g = 1
where any subgroup of patients with biomarker value exceeding some threshold can be considered, again
subject to some minimum size.

With nj = g(j0 + j), the off-diagonal terms in ΣZ(n) are of the form (j0 + j1)1/2(j0 + j2)−1/2 so that

F
(1)
i does not depend on g. Since F

(2)
i and F

(3)
i depend only on the distribution of Z and J (2) and J (3) and

the latter are unaffected by scaling of θ and S, these also do not depend on g. We thus set g = 1 and take
nj = j0 + j(j = 1, . . . , k). From (2), Si, . . . , Sk have the same distribution as values of a zero-drift Brownian
motion at times Ii, . . . , Ik (Siegmund 1985). Using the argument above, this is the same distribution as
values at times j0 + i, . . . , j0 + k. Approximations to (4), (6) and (8) can thus be based on this Brownian
motion.

For selection rule 1, let Bt denote the value of a zero-drift Brownian motion at time t and let tj = j0 + j,

then (3) is equal to Pr(Btj t
−1/2
j ≤ c, j = i, . . . , k), that is 1 − Pr(Btj ≥ ct

1/2
j , some j = i . . . , k), the

probability that a Brownian motion observed at unit time increments crosses a boundary of the form ct1/2 in

[ti, tk]. Siegmund (1985) gives an approximation to this probability, leading to an approximation to F
(1)
i (c)

of

G
(1)
i (c) = Φ(c)− cφ(c)

∫ c(j0+i)−1/2

c(j0+k)−1/2

x−1e−ρxdx (15)

with ρ = 0.583 and the integral evaluated numerically.
For selection rule 2 we wish to approximate (5). As θ̂j = Sj/Ij , these have the same distribution

as the slopes of chords to points on Bt at times I1, . . . , Ik. The distribution of (θ̂J(2)(i), J
(2)(i)) is thus

approximately the joint distribution of the maximum slope of a chord to Bt with t ∈ (ti, tk) and the time of
this maximum, denoted by Θ̃ti,tk and Rti,tk respectively, with density, fΘ̃ti,tk ,Rti,tk

(θ̃, r), given in Theorem

3 in the Supplementary material. Since Zj ≥ c when θ̃j ≥ cj−1/2, F
(2)
i (c) can be approximated by

1−
∫ tk

ti

∫ ∞
cr−1/2

fΘ̃ti,tk ,Rti,tk
(θ̃, r)dθ̃dr.

Integrating with respect to θ̃ (see Supplementary material Theorem 3), and approximating the integral over
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r ∈ (ti, tk) by a sum over j = j0 + i+ 1, . . . , j0 + k − 1, F
(2)
i (c) is approximately

G
(2)
i (c) = 1−

k−1∑
j=i+1

1

j + j0

[√
2(j0 + i)

π(j − i)
φ(c)Φ

(
c

√
k − j
j + j0

)
+

√
(j0 + i)(j0 + k)

π2(k − j)(j − i)

{
1− Φ

(
c

√
j0 + k

j + j0

)}]
.

(16)

For selection rule 3, we wish to approximate (7). This can be approximated via the joint distribution of
the maximum of Bt in (ti, tk) and the time of this maximum, denoted by B̃ti,tk and Tti,tk respectively. The
density, fB̃ti,tk ,Tti,tk

(b, t), of this joint distribution is given in Theorem 2 in the Supplementary material.

Since Zj ≥ c when Sj ≥ cj1/2, analagous to (8), F
(3)
i (c) can be approximated by

1−
∫ tk

ti

∫ ∞
ct1/2

fB̃ti,tk ,Tti,tk
(b, t)dbdt.

Integrating with respect to b (see Theorem 2 in Supplementary material) and approximating the integral

over t ∈ (ti, t1) by a sum over j = j0 + i+ 1, . . . , j0 + k − 1, F
(3)
i (c) is approximately

G
(3)
i (c) = 1−

k−1∑
j=i+1

{
1− Φ(c

√
(j + j0)/(i+ j0))

π
√

(j − i)(k − j)
+

√
2

πj(k − j)
φ (c) Φ

(
c

√
j − i
j0 − i

)}
. (17)

Note that (15), (16) and (17) are such that G
(r)
i (r = 1, 2, 3) are increasing in i. Thus maxi=1,...,J(r){1−

G
(r)
i (z)} = 1−G(r)

1 (z) so that this provides a p-value for testing HJ(r) .

5 Example and simulation study

This section applies the approaches described above to real and resampled data from the German Breast
Cancer Study (GBCS) comparing survival times with or without hormone therapy treatment. Data are
available at ftp://ftp.wiley.com/public/sci_tech_med/survival/ (see Schmoor et al. 1996; Hosmer
et al. 2008). We investigate if the baseline number of progesterone receptors can be used to identify a
subgroup for whom hormone therapy is effective. We first consider construction of corrected p-values for a
subgroup selected on the basis of the number of progesterone receptors from all 686 women in the GBCS
dataset, that is treating the full dataset as stage 1 of an adaptive enrichment design.

We first consider a case with k small. Approximate deciles of the observed number of progesterone
receptors, X, are 0, 5, 10, 20, 30, 60, 100, 160 and 300. To ensure that subgroups are of a reasonable size, we
will consider k = 9 subgroups with X > λi, i = 1, . . . , 9 for (λ1, . . . , λ9) = (160, 100, 60, 30, 20, 10, 5, 0,−1),
the last value to include all patients.

Table 1 gives results from a Cox model comparing survival times for women in these subgroups who did
and did not receive hormone therapy. For subgroup j, j = 1, . . . , 9, the table gives the number of observations,
nj , estimated log-hazard ratio, θ̂j (positive values corresponding to improved survival in the hormone therapy

group), corresponding Wald statistic, Zj , for a one-sided test of the null hypothesis Hj : θj ≤ 0, nj θ̂j , a
measure of impact from selecting this subgroup, interaction test statistic for comparing treatment effects

in this group and its complement, Z
(int)
j and unweighted and weighted estimated difference in treatment

effects, (θ̂j − ˆ̄θj) and nj(θ̂j − ˆ̄θj). Maxima of Zj , θ̂j , nj θ̂j , Z
(int)
j , (θ̂j − ˆ̄θj) and nj(θ̂j − ˆ̄θj) are given in
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Table 1: Results of analysis of the GBCS data for k = 9 subgroups

j 1 2 3 4 5 6 7 8 9
nj 144 208 277 352 409 475 531 598 686
Zj 2.83 3.36 3.41 3.10 3.41 3.22 3.35 3.28 2.91

θ̂j 1.08 1.06 0.85 0.63 0.64 0.53 0.51 0.46 0.36

nj θ̂j 155.5 219.9 236.7 223.2 262.2 250.7 269.8 272.9 249.7
Z(int) 2.01 2.53 2.27 1.68 2.07 1.83 1.85 2.23 -

θ̂j − ˆ̄θj 0.80 0.87 0.66 0.43 0.52 0.46 0.50 0.71 -

nj(θ̂j − ˆ̄θj) 115.6 180.2 182.0 152.8 213.7 220.8 263.9 423.9 -

Table 2: Results of analysis of the GBCS data with k = 9 and k = 637

k = 9 k = 637
Selection Statistic J (r) ZJ(r) p-value p-value ZJ(r) p-value
rule (r) maximized using F (r) using G(r) (a) using G(r) (a)

1 Zj 5 3.41 0.0016 0.0016 3.86 0.0010

2 θ̂j 1 2.83 0.0065 0.0071 2.85 0.0133

3 nj θ̂j 8 3.28 0.0016 0.0024 3.37 0.0027
4 Z(int) 2 3.36 0.0017 0.0019 3.86 0.0010

5 θ̂j − ˆ̄θj 2 3.36 0.0015 0.0019 3.08 0.0130

6 nj(θ̂j − ˆ̄θj) 8 3.28 0.0012 0.0025 3.08 0.0130
(a) using G(1) for r ≥ 4

bold. The resulting values of J (r) and ZJ(r)(r = 1, . . . , 6) are given in the left hand part of Table 2 together

with p-values given by maxi=1,...,J(r){1 − F (r)
i (ZJ(r)(i))}(r = 1, . . . , 6) and 1 − G(r)

1 (ZJ(r))(r = 1, 2, 3). For

selection rules 4, 5 and 6 values of 1−G((1))
1 (ZJ(r)) are given, providing a conservative test. The values using

F
(r)
i were calculated using the observed values of n1, . . . , nk, whilst those using G

(r)
1 were calculated with

j0 = 1 and k = 9. The p-values obtained using the two approximations are very similar for selection rules 1
or 2, but are slightly more different for selection rule 3, with G(3) leading to a more conservative test than
F (3). The conservatism from using G(1) for selection rules 4 or 5 and particularly rule 6 is illustrated by the
larger p-values.

To illustrate an analysis with large k, the same data were analysed considering subgroups with a minimum
size, n1, of 50 and nj−nj−1 = 1(j = 2, . . . , k) with k = 637 so that nk = 686 and the largest subgroup is the

whole sample. In this case calculation of the multivariate normal probabilities in F
(r)
i would be infeasible.

Figure 1 shows values of Zj , θ̂j , jθ̂j , Z
(int)
j and (θ̂j − ˆ̄θj) (j = 1, . . . , k). Values of J (r)(r = 1, . . . , 6),

corresponding to the largest values of Zj , θ̂j , jθ̂j , Z
(int)
j and (θ̂j − ˆ̄θj), are indicated by dashed vertical lines.

The right hand part of Table 2 gives values of ZJ(r)(r = 1, . . . , 6) and the corresponding p-values given by

1−G(r)
1 (ZJ(r))(j = 1, 2, 3) and 1−G(1)

1 (ZJ(r))(r = 4, 5, 6).
To estimate type I error rates for the approaches proposed an adaptive enrichment design was simulated

with 400 stage 1 patients with event/censored times and censoring indicator drawn with replacement from
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Figure 1: Results of analysis of GBCS data for k = 637

the non-hormone replacement therapy group in the GBCS dataset, with these equally assigned at random
to treated and control groups. Based on these data a subgroup of patients with the number of progesterone
receptors exceeding some threshold was selected using the rules above, and p-values calculated as proposed.
A further 400 stage 2 patients were resampled from the non-hormone replacement therapy GBCS patients
with the number of progesterone receptors exceeding the selected threshold, again equally assigned to treated
and control groups. The p-values from stage 2 and the selected subgroup in stage 1 were then combined
using (1) with w2

1 = w2
2 = 1/2.

Columns three and four of Table 3 give estimated type I error rates for one-sided level 0.025 tests based
on Fr (r = 1, . . . , 6), G(r) (r = 1, 2, 3), and G(1) (r = 4, 5, 6) for k = 9, using the values λ1, . . . , λ9 given
above. Using p-values based on F (r) accurately controls type I error rates, possibly with the exception of
r = 3 where there may be a very slight error rate inflation. The approximation G(r) leads to error rate
inflation for r = 1, 2 suggesting that F (r) should be used when computationally feasible.

Columns five and six of Table 3 give estimated type I error rates for tests based onG(r) using selection rules
r = 1, . . . , 3 and G(1) for selection rules 4, 5 and 6 with (j0, k) = (9, 41) and (j0, k) = (39, 361) respectively
with 400 patients per stage in each case. Type I errors are reasonably controlled in all cases. The test using
G(1) is conservative for selection rules 5 and 6, but less so for rule 4. Empirical distribution functions for
simulated p-values (see Appendix 3 in Supplementary material) indicate that while the approximation G(r)

controls the type I error rate reasonably for α = 0.025, larger p-values based on G(1) for selection rules 1, 4,
5 or 6 may be inaccurate even for large k, as considered in the Discussion.
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Table 3: Simulated type I error and power values

Type I error rates(a) Power(b)

Selection Statistic k = 9 k = 41 k = 361 k = 9
rule (r) maximized using using using using using Simon

F (r) G(r) G(r) G(r) F (r) & Simon
1 Zj 0.0250 0.0286 0.0256 0.0266 0.842 0.764

2 θ̂j 0.0242 0.0307 0.0222 0.0214 0.926 0.864

3 nj θ̂j 0.0269 0.0254 0.02425 0.0262 0.732 0.649
4 Z(int) 0.0245 0.0251(c) 0.0223(c) 0.0219(c) 0.798 0.716

5 θ̂j − ˆ̄θj 0.0244 0.0240(c) 0.0193(c) 0.0149(c) 0.816 0.738

6 nj(θ̂j − ˆ̄θj) 0.0256 0.0194(c) 0.0157(c) 0.0104(c) 0.957 0.924
(a)from 100,000 simulations, (b)from 1,000 simulations, (c)using G(1)

To obtain an indication of the power of the proposed method, simulations were conducted with a treatment
effect imposed. In a resampling approach as described above, all event and censoring times for patients
assigned to the treated group with the number of progesterone receptors more than 100 were multiplied
by exp(0.5). The penultimate columns of Table 3 gives an estimate of the power to reject the global null
hypothesis H1 using F (r)(r = 1, . . . , 6) for k = 9. For comparison, estimated power for the combination test
using all stage 1 patients as proposed by Simon & Simon (2013) is also given, showing the gain in power.

6 Discussion

This paper provides a p-value from an adaptive enrichment design with selection of a subgroup with values
of a continuous biomarker above some threshold. The methods could also be used in single-stage trials with
subgroup selection (see Mandrekar & Sargent 2009; Freidlin et al. 2010). FWER is specifically controlled
for the selection rules described. More complex rules have been proposed (see Ballarini et al. 2020; Ohwada
& Morita 2016; Ondra et al. 2016, 2017; Zhang et al. 2017; Thall 2020; Antoniou et al. 2016; Ondra,
Dmitrienko, Friede, Graf, Miller, Stallard & Posch 2017). As noted, FWER is controlled for any selection
rule using F (1) or G(1) to give a conservative test. Constructing less conservative tests may be challenging,
though approaches like cross-validation (see Zhang et al. 2017) could be used.

Methods proposed are based on normality of test statistics comparing treatments in subgroups of the stage
1 data. Sample sizes will be sufficiently large for asymptotic approximations to hold in most confirmatory
adaptive enrichment trials unless selection of very small subgroups is considered. This is unlikely to arise
in practice, both because of the unreliable performance of selection methods with small subgroups and
because there is unlikely to be a desire to develop treatments for very small patient groups (Lin et al. 2019).
Asymptotic normality also holds when adjusting for covariates, including prognostic biomarkers. The use of
the combination test requires the test statistics from stages 1 and 2 to satisfy the p-clud condition described
by Brannath et al. (2002). This is satisfied, at least asymptotically, if patients recruited in stage 1 analysis
but either excluded from the stage 1 analysis because they did not have data available at that time, or, with
a time to event endpoint, censored in the stage 1 anaylsis, are included in the stage 2 analysis (Wassmer
2006).

Expressions for G(1), G(2) and G(3) are based on Brownian motion approximations. For the analysis of the
data in Section 5.1 with k = 9, p-values are similar whether based on the multivariate normal or Brownian
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motion approximations. The expression for G(1) is based on an assumption that c is large (see Siegmund
1985), so that the approximation might be expected to be less accurate for large p-values. Simulation results
in the Supplementary material show that this is the case, though this may not be a problem in practice, as
interest generally focusses on small p-values. Brownian motion approximations to F (r), r ≥ 4, have not been
obtained. Although G(1) may be used, this can be conservative for small p-values, particularly for selection
rule 5. The interaction test statistic can be related to a Brownian bridge. James et al. (1987), give the
distribution of the maximum, but not the joint distribution with the time at which it occurs as needed for
the distributions of ZJ(r) , r ≥ 4.

This paper has focussed on FWER. Practical questions, including choice of k, the challenge of interim
analysis with long-term follow-up and the properties of selection rules, particularly with stage 1 small,
warrant further research. Brownian motion approximations might also prove fruitful for unbiased estimation
(Kunzmann et al. 2017; Kimani et al. 2015, 2018).
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Supplementary material

Appendix 1 Derivation of result used in Section 4.2

Let φ(k)(x, µ,Σ) and Φ(k)(x, µ,Σ) denote respectively the density and distribution functions of a k-dimensional
multivariate normal distribution with mean µ and variance-covariance matrix Σ evaluated at x.

Lemma 1. Let 1(1) and 1(1,1) denote respectively the k-vector and k×k matrix given by 1(1) = (1, 0, . . . , 0)′

and

1(1,1) =


1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

then for scalar A and B (A 6= 0),∫ ∞
−∞

Φ(k)
(

(Aq +B)1(1), µ,Σ
)
φ(1)(q, µq, σ

2
q )dq = Φ(k)

(
(Aµq +B)1(1), µ,Σ +A2σ2

q1
(1,1)

)
.

Proof. ∫ ∞
−∞

Φ(k)
(

(Aq +B)1(1), µ,Σ
)
φ(1)(q, µq, σ

2
q )dq =∫ ∞

−∞
Φ(k)

(
0, µ− (Aq +B)1(1),Σ

)
φ(1)(q, µq, σ

2
q )dq =∫

x∈(−∞,0]k

∫ ∞
−∞

φ(k)
(
x, µ− (Aq +B)1(1),Σ

)
φ(1)(q, µq, σ

2
q )dqdx =∫

x∈(−∞,0]k

∫ ∞
−∞

φ(k)
(

(Aq +B)1(1), µ− x,Σ
)
φ(1)(q, µq, σ

2
q )dqdx =∫

x∈(−∞,0]k

∫ ∞
−∞

A−kφ(k)
(
q1(1), (µ− x−B1(1))/A,Σ/A2

)
φ(1)(q, µq, σ

2
q )dqdx.

The inner integral is a standard convolution so that the expression is equal to∫
x∈(−∞,0]k

A−kφ(k)
(
0, (µ− x−B1(1))/A− µq1(1),Σ/A2 + σ2

q1
(1,1)

)
dx =

∫
x∈(−∞,0]k

φ(k)
(
0, µ− x− (Aµq +B)1(1),Σ +A2σ2

q1
(1,1)

)
dx =

1



∫
x∈(−∞,0]k

φ(k)
(
x, µ− (Aµq +B)1(1),Σ +A2σ2

q1
(1,1)

)
dx =

Φ(k)
(
0, µ− (Aµq +B)1(1),Σ +A2σ2

q1
(1,1)

)
=

Φ(k)
(

(Aµq +B)1(1), µ,Σ +A2σ2
q1

(1,1)
)
.

2



Appendix 2 Detailed derivation of the expressions given in Sec-
tion 4.3

A2.1 Preliminary results

Let φ and Φ denote respectively the density and distribution function for a standard normal distribution.
We have the following results which will be used in the proofs of Theorems in sections A1.2 to A1.4.

Lemma 2.
1

σ1
φ

(
x− b1
σ1

)
1

σ2
φ

(
x− b2
σ2

)
=

1
σ1σ2√
σ2
1+σ2

2

φ

x− b1σ
2
2+b2σ

2
1

σ2
1+σ2

2

σ1σ2√
σ2
1+σ2

2

 1√
σ2

1 + σ2
2

φ

(
b1 − b2√
σ2

1 + σ2
2

)
.

Proof. The left hand side of the expression in the statement of Lemma 2 is equal to

1

2πσ2
1σ

2
2

exp

{
− 1

2σ2
1σ

2
2

[
σ2

2(b21 − 2b1x+ x2) + σ2
1(b22 − 2b2x+ x2)

]}
. (A.1)

The term [σ2
2(b21 − 2b1x+ x2) + σ2

1(b22 − 2b2x+ x2)] is equal to

(σ2
1 + σ2

2)

[(
x− b1σ

2
2 + b2σ

2
1

σ2
1 + σ2

2

)2

+
σ2

1σ
2
2(b1 − b2)2

(σ2
1 + σ2

2)2

]
,

and substituting into (A.1) and rearranging gives the required result.

Lemma 3. ∫ ∞
b=u

b
1

σ1
φ

(
b

σ1

)
Φ

(
b

σ2

)
db =

σ1φ

(
u

σ1

)
Φ

(
u

σ2

)
+

σ2
1√

2π(σ2
1 + σ2

2)

(
1− Φ

(
u
√
σ2

1 + σ2
2

σ1σ2

))
.

Proof. The left hand side of the expression in the statement in Lemma 3 can be rewritten as∫ ∞
b=u

∫ b

x=−∞
bfB,X(b, x)dxdb

where fB,X(b, x) is the bivariate normal density of (B,X)′ with(
B
X

)
∼ N

((
0
0

)
,

(
σ2

1 0
0 σ2

2

))
.

We can rewrite this using transformation of variables in terms of B and Y = B −X with(
B
Y

)
∼ N

((
0
0

)
,

(
σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2

))
to get ∫ ∞

b=u

∫ b

x=−∞
bfB,X(b, x)dxdb =

∫ ∞
b=u

∫ ∞
y=0

bfB,Y (b, y)dydb.
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This is an expectation of a truncated bivariate normal, and is given by Kan and Robotti (2017) to be
Σ11(c1 + c2) where Σ is the variance matrix of (B, Y )′, so that Σ11 = σ2

1 , and

c =

 1
σ1
φ
(
u
σ1

)
Φ
(
u
σ2

)
1√

2π(σ2
1+σ2

2)

(
1− Φ

(
u
√
σ2
1+σ2

2

σ1σ2

))  ,

giving the stated result.

A2.2 Derivation of joint distribution of value and time of the maximum of a
Brownian motion with drift in an interval

Theorem 1. Consider a Brownian motion with drift µ, Bµt . Let B̃µt0,t1 = maxt0<t<t1 B
µ
t and Sµt0,t1 =

arg maxt0<t<t1 B
µ
t .

The joint density of (B̃µt0,t1 , S
µ
t0,t1) given by

fB̃µt0,t1 ,S
µ
t0,t1

(b, s) =
2√
s
φ

(
b− µs√

s

)[
b

s
Φ

(
b

√
s− t0
st0

)
+

√
t0

s(s− t0)
φ

(
b

√
s− t0
st0

)]
[

1√
t1 − s

φ
(
µ
√
t1 − s

)
− µ

(
1− Φ

(
µ
√
t1 − s

))]
.

where s ∈ (t0, t1).

Proof. Buffet (2003) considers this problem for t0 = 0, and gives the joint density function for (Bµt1 , B̃
µ
0,t1

, Sµ0,t1)
at (a1, b, s) to be

fBµt1 ,B̃
µ
0,t1

,Sµ0,t1
(a1, b, s) =

e−µ
2t1/2+µa1

2b(b− a1)

s(t1 − s)
1√
t1 − s

φ

(
b− a1√
t1 − s

)
1√
s
φ

(
b√
s

)
.

To get the distribution of the maximum in (t0, t1), we can consider a Brownian motion starting at
time t0 with a value Bµt0 = a0 with (Bµt1 − Bµt0 , B̃

µ
t0,t1 − Bµt0 , S

µ
t0,t1 − t0) having the same distribution as

(Bµt1−t0 , B̃
µ
0,t1−t0 , S

µ
0,t1−t0).

The joint distribution of (Bµt0 , B
µ
t1 , B̃

µ
t1,t0 , S

µ
t0,t1) at (a0, a1, b, s) is thus given by

fBµt0 ,B
µ
t1
,B̃µt0,t1

,Sµt0,t1
(a0, a1, b, s) =

e−µ
2t1/2+µa1

2(b− a0)(b− a1)

(s− t0)(t1 − s)
1√
s− t0

φ

(
b− a0√
s− t0

)
1√
t1 − s

φ

(
b− a1√
t1 − s

)
1√
t0
φ

(
a0 − µt0√

t0

)
with a0 ∈ (−∞,∞), a1 ∈ (−∞,∞), b ≥ max{a0, a1} and s ∈ (t0, t1).

The joint distribution fB̃µt0,t1 ,S
µ
t0,t1

(b, s) is then given by integrating this density over a0 ≤ b and a1 ≤ b,

giving ∫ b

−∞
e−µ

2t1/2+µa1
(b− a1)

(t1 − s)3/2
φ

(
b− a1√
t1 − s

)
da1∫ b

−∞

2(b− a0)

s− t0
1√
t0
φ

(
a0 − µt0√

t0

)
1√
s− t0

φ

(
b− a0√
s− t0

)
da0.

(A.2)
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Consider first the first integral, that is∫ b

−∞
e−µ

2t1/2+µa1
(b− a1)

(t1 − s)3/2
φ

(
b− a1√
t1 − s

)
da1 =

exp

(
2µb− µ2s

2

)∫ b

−∞

(b− a1)

(t1 − s)3/2
√

2π
exp

(
−(b+ µ(t1 − s)− a1)2

2(t1 − s)

)
da1.

Setting z = b− a1 + µ(t1 − s), this is equal to

exp

(
2µb− µ2s

2

)∫ ∞
z=µ(t1−s)

z

(t1 − s)3/2
φ

(
z√
t1 − s

)
− µ√

t1 − s
φ

(
z√
t1 − s

)
dz.

Evaluating the integral of the first term using the expression for the expected value of a truncated normal
given by Kan and Robotti (2017), this is equal to

exp

(
2µb− µ2s

2

)[
1√
t1 − s

φ

(
µ(t1 − s)√
t1 − s

)
− µ

(
1− Φ

(
µ(t1 − s)√
t1 − s

))]
=

φ

(
b− µs√

s

)(
φ

(
b√
s

))−1 [
1√
t1 − s

φ
(
µ
√
t1 − s

)
− µ

(
1− Φ

(
µ
√
t1 − s

))]
.

Consider now the second integral in (A.2), that is∫ b

−∞

2(b− a0)

s− t0
1√
t0
φ

(
a0√
t0

)
1√
s− t0

φ

(
b− a0√
s− t0

)
da0.

Applying Lemma 2 and writing b∗ = bt0/s and t∗0 =
√
t0(s− t0)/s, this is equal to

2

s− t0
1√
s
φ

(
b√
s

)∫ b

−∞

b− a0

t∗0
φ

(
a0 − b∗

t∗0

)
da0

which, using the result from Kan and Robotti (2017), is equal to

2

s− t0
1√
s
φ

(
b√
s

)[
(b− b∗)Φ

(
b− b∗

t∗0

)
+ t∗0φ

(
b− b∗

t∗0

)]
.

Since b− b∗ = b(s− t0)/s and (b− b∗)/t∗0 = b
√

(s− t0)/(st0), this is equal to

2√
s
φ

(
b√
s

)[
b

s
Φ

(
b

√
s− t0
st0

)
+

√
t0

s(s− t0)
φ

(
b

√
s− t0
st0

)]
.

Hence

fB̃µt0,t1 ,S
µ
t0,t1

(b, s) = φ

(
b− µs√

s

)(
φ

(
b√
s

))−1
2√
s
φ

(
b√
s

)
[
b

s
Φ

(
b

√
s− t0
st0

)
+

√
t0

s(s− t0)
φ

(
b

√
s− t0
st0

)]
[

1√
t1 − s

φ
(
µ
√
t1 − s

)
− µ

(
1− Φ

(
µ
√
t1 − s

))]
which can be rearranged to give the required expression.
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A2.3 Results for the joint distribution of value and time of the maximum of a
zero-drift Brownian motion in an interval

Theorem 2. Consider a zero-drift Brownian motion, Bt with B̃t0,t1 = maxt0<t<t1 Bt and St0,t1 = arg maxt0<t<t1 Bt.
Then

(i) (B̃t0,t1 , St0,t1)′ has joint density
fB̃t0,t1 ,St0,t1

(b, s) =

√
2√

πs(t1 − s)
φ

(
b√
s

)[
b

s
Φ

(
b

√
s− t0
st0

)
+

√
t0

s(s− t0)
φ

(
b

√
s− t0
st0

)]
(ii) ∫ ∞

u

fB̃t0,t1 ,θt0,t1
(b, s)db =

1

π
√

(s− t0)(t1 − s)

(
1− Φ

(
u√
t0

))
+

√
2

πs(t1 − s)
φ

(
u√
s

)
Φ

(
u√

t0s/(s− t0)

)
.

Proof. (i) This follows directly from Theorem 1 with µ = 0.
(ii) Integrating the density with respect to b, we get∫ ∞

u

√
2√

πs(t1 − s)
φ

(
b√
s

)√
t0

s(s− t0)
φ

(
b

√
s− t0
st0

)
db (A.3)

+

∫ ∞
u

√
2√

πs(t1 − s)
φ

(
b√
s

)
b

s
Φ

(
b

√
s− t0
st0

)
db.

The first integral in (A.3) is∫ ∞
u

√
2t20

π(t1 − s)(s− t0)2

1√
s
φ

(
b√
s

)√
s− t0
st0

φ

(
b

√
s− t0
st0

)
db

which, from Lemma 2, with σ1 =
√
s and σ2 =

√
t0s/(s− t0), so that

√
σ2

1 + σ2
2 = s/

√
s− t0 and

σ1σ2/
√
σ2

1 + σ2
2 =
√
t0, is equal to∫ ∞

u

√
2t20

π(t1 − s)(s− t0)2

1√
t0
φ

(
b√
t0

) √
s− t0
s

φ(0)db =

t0

πs
√

(s− t0)(t1 − s)

(
1− Φ

(
u√
t0

))
.

The second integral in (A.3) is
√

2√
πs2(t1 − s)

∫ ∞
u

b√
s
φ

(
b√
s

)
Φ

(
b

√
s− t0
st0

)
db

which, from Lemma 3, again with σ1 =
√
s and σ2 =

√
t0s/(s− t0), so that σ2

1/
√
σ2

1 + σ2
2 =

√
s− t0, is

equal to √(
2

πs2(t1 − s)

)[√
sφ

(
u√
s

)
Φ

(
u√

t0s/(s− t0)

)
+

√
s− t0

2π

(
1− Φ

(
u√
t0

))]
.

Summing these expressions and collecting together the (1−Φ(u/
√
t0)) terms gives the required result.
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drift = 0
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B'~
t0,t1 = 0

Figure A.1: An example Brownian motion path Bt with steepest chord in (t0, t1) with slope θ̃ at some time
r, and B′t = Bt − θ̃t with maximum in (t0, t1) of 0 also at time r

A2.4 Results for the joint distribution of value and time of the slope of the
steepest chord to a zero-drift Brownian motion in an interval

Theorem 3. Consider a zero-drift Brownian motion, Bt. Let Θt = Bt/t be the slope of a chord to Bt, and
let Θ̃t0,t1 = maxt0<t<t1 Θt and Rt0,t1 = arg maxt0<t<t1 Θt. Then

(i) The joint density of (Θ̃t0,t1 , Rt0,t1)′, fΘ̃t0,t1 ,Rt0,t1
, is equal to√

2t0
π(r − t0)

[
φ(θ̃
√
t1)√

2π(t1 − r)
+ θ̃φ(θ̃

√
r)Φ

(
θ̃
√
t1 − r

)]

(ii) ∫ ∞
u

fΘ̃t0,t1 ,Rt0,t1
(θ̃, r)dθ̃ =√

2t0
π(r − t0)r2

φ(u
√
r)Φ(u

√
t1 − r) +

√
t0t1

π2r2(t1 − r)(r − t0)
(1− Φ(u

√
t1)).

Proof. (i) For given (θ̃, r), to have (Θ̃t0,t1 , Rt0,t1) = (θ̃, r), we must have Br/r = θ̃ and Bt/t ≤ θ̃t for all

t ∈ (t0, t1). Equivalently, writing B′t = Bt − θ̃t, we must have B′t ≤ 0 for all t ∈ (t0, t1) and B′r = 0. The
event (Θ̃t0,t1 , Rt0,t1) = (θ̃, r) can thus be written as (B̃′t0,t1 , T

′
t0,t1) = (0, r) where B̃′t0,t1 and T ′t0,t1 are the

value and time of the maximum in (t0, t1) of B′, a Brownian motion with drift −θ̃. Figure A.1 shows an
example path Bt and B′t with Θ̃t0,t1 = θ̃ and hence B̃′t0,t1 = 0.

The event (Θ̃t0,t1 , Rt0,t1) = (θ̃, r) thus corresponds to that of a Brownian motion with drift −θ̃ having

maximum value 0 occuring at time r, so that the density of (Θ̃t0,t1 , Rt0,t1)′ can be obtained from that of the
value and time of the maximum for a Brownian motion with non-zero drift given by Theorem 1.
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Including the Jacobian for a change of variables, we thus have

fΘ̃t0,t1 ,Rt0,t1
(θ̃, r) = rf

B̃−θ̃t0,t1
,S−θ̃t0,t1

(0, r)

which, from Theorem 1 is

2r√
r
φ

(
θ̃r√
r

)√
t0

r(r − t0)
φ(0)

[
1√
t1 − r

φ
(
θ̃
√
t1 − r

)
+ θ̃Φ(

(
θ̃
√
t1 − r

)]
=

√
2t0

π(r − t0)
φ(θ̃
√
r)

[
1√
t1 − r

φ
(
θ̃
√
t1 − r

)
+ θ̃Φ

(
θ̃
√
t1 − r

)]
.

From Lemma 2 we have φ(θ̃
√
r)φ

(
θ̃
√
t1 − r

)
= φ(θ̃

√
t1)/
√

2π which gives the required result.

(ii) The integral is equal to√
t0

π2(t1 − r)(r − t0)t1

∫ ∞
u

√
t1φ(c

√
t1)dc+

√
2t0

π(r − t0)

∫ ∞
u

θ̃φ(θ̃
√
r)Φ

(
θ̃
√
t1 − r

)
. (A.4)

The integral in the first term is equal to 1−Φ(u
√
t1). By Lemma 3, taking σ1 = 1/

√
r and σ2 = 1/

√
t1 − r

so that
√
σ2

1 + σ2
2 =

√
t1/(r(t1 − r)) and σ1σ2/

√
σ2

1 + σ2
2 = 1/

√
t1, the second integral is equal to

1

r
φ(u
√
r)Φ(u

√
t1 − r) +

√
t1 − r
2πr2t1

(1− Φ(u
√
t1)).

Substituting into (A.4) and collecting the 1− Φ(u
√
t1) terms gives the required result.
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Appendix 3 Additional results from simulations in Section 5

Figures A.2 and A.3 shows empirical distribution functions for p-values calculated using F (1), . . . , F (6) (heavy
black lines) and G(1), G(2), G(3), G(1), G(1) and G(1) (heavy grey lines) for selection rules 1 to 6 from 100,000
trials resampled with no difference between the treatment groups as described in Section 5 with k = 9. As
small p-values are generally considered to be of more interest than larger ones, the Figure A.3 is focussed on
the lower tail of the distributions. Also shown on the plots are a reference line with zero intercept and unit
slope (light line).

Figures A.4 and A.5 shows empirical distribution functions (heavy lines) for p-values calculated using
G(1), G(2), G(3), G(1), G(1) and G(1) from 100,000 trials resampled with no difference between the treatment
groups with (j0, k) = (39, 361), n1 = 40 and ni − ni−1 = 1, i = 2, . . . , k using different selection rules as
described in Section 5, together with a reference line with zero intercept and unit slope (light line). Figure
A.5 is focussed on the lower tail of the distributions.

Figures A.6 and A.7 shows empirical distribution functions (heavy lines) for p-values calculated using
G(1), G(2), G(3), G(1), G(1) and G(1) from 100,000 trials resampled with no difference between the treatment
groups with k = 41 using different selection rules as described in Section 5, together with a reference line
with zero intercept and unit slope (light line). Figure A.7 is focussed on the lower tail of the distributions.
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Figure A.2: Emprirical distribution functions for 100,000 simulated p-values in example with k = 9
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Figure A.3: Emprirical distribution functions for 100,000 simulated p-values in example with k = 9 (lower
tail only)
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Figure A.4: Emprirical distribution functions for 100,000 simulated p-values in example with k = 361
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Figure A.5: Emprirical distribution functions for 100,000 simulated p-values in example with k = 361 (lower
tail only)
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Figure A.6: Emprirical distribution functions for 100,000 simulated p-values in example with k = 41
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Figure A.7: Emprirical distribution functions for 100,000 simulated p-values in example with k = 41 (lower
tail only)
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