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Abstract 

Critical lung diseases such as acute respiratory distress syndrome (ARDS) and chronic 

obstructive pulmonary disease (COPD) are one of the leading causes of death 

worldwide. The most important component of treatment for patients with such 

conditions is mechanical ventilation. However, mechanical ventilation can also cause 

ventilator induced lung injuries (VILI). Consequently, clinicians have for many years 

been conducting extensive investigations using experimental studies in animal models 

and clinical trials in human patients in order to find safer and more effective ventilation 

strategies. To assist these efforts, engineering approaches such as computational 

modelling can also be employed to investigate and develop novel treatment strategies, 

with fewer ethical, practical and cost constraints than in vivo experiments. 

In this thesis, a state-of-the-art computational simulator of cardio-pulmonary physiology 

is used to investigate novel treatments including ventilatory strategies and drug 

interventions for critical lung disease in adults, paediatrics and neonates. First, the 

impact of a novel compound on gas exchange is evaluated in virtual patients with 

COPD and pulmonary hypertension (PH) as a complication, considering both systemic 

administration of the drug and dry powder inhalation. Next, the ability to simulate 

paediatric subjects is incorporated into the model, and a new dataset of paediatric 

ARDS patients is analysed to investigate whether, and how, more lung protective 

ventilation could be achieved in clinical practice. Subsequently, the utility of two recently 

proposed measures of VILI, mechanical power (MP) and driving pressure (∆P), as 

targets to derive maximally protective ventilator settings is tested on two cohorts of 

virtual adult and paediatric ARDS patients. Finally, initial results on the adaptation of 

the computational simulator to investigate neonatal pathophysiology are presented.  
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Chapter 1:  

 

 

Introduction 

1.1. Thesis outline and main contributions 

Computational simulation offers a new approach to traditional medical research that is 

particularly well suited to investigating treatment of critical illness. Critically ill patients 

are routinely monitored in great detail, providing extensive, high quality data-streams for 

model design & configuration and patient-matching. Models based on these datasets can 

incorporate very complex representations of cardiorespiratory pathophysiology that may 

be validated against responses of individual patients, for use as investigational 

surrogates. This thesis develops a number of such models and uses them to perform 

“virtual” clinical trials of novel treatment strategies in a number of different clinical 

scenarios. 

Chapter 2 consists of an introduction to respiratory system modelling and presents the 

key concepts and background material used in this thesis. The important role of 

mechanical ventilation in managing critically ill patients in the intensive care unit is 

discussed. Previous models of the respiratory system are reviewed and the 

computational simulation platform that forms the basis for the studies conducted in this 

thesis is described.   
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In Chapter 3, the efficacy of a modulator of soluble guanylate cyclase (sGC) in COPD 

patients with pulmonary hypertension (PH) is investigated by using computer 

simulation. In this study, close matching of the simulator to data from a clinical trial on 

three COPD patients was demonstrated. The study showed that administering an sGC 

via dry powder inhalation can reduce PH without deteriorating oxygenation, particularly 

when administration is combined with exercise. 

In Chapter 4, computational modelling is used to analyse an extensive new database on 

paediatric acute respiratory distress syndrome (PARDS) patients collected by medical 

collaborators at The Children’s Hospital of Philadelphia. The results of this study 

suggest that these patients may be being routinely over-ventilated (i.e. excessive 

ventilation (low CO2) which may not be necessarily injurious, however, it increases the 

risk of ventilator induced lung injury (VILI)), and that there is scope for achieving more 

protective ventilation without compromising safe gas exchange. The results suggest that 

interventions based on (a) progressively lowering tidal volume (VT) while maintaining 

constant minute ventilation, and (b) adjusting positive end-expiratory pressure (PEEP) 

and VT to reduce driving pressure (∆P), can produce significant reductions in multiple 

key parameters associated with ventilator induced lung injury (VILI) without 

compromising safety. 

In Chapter 5, computational modelling is used to identify novel ventilatory strategies 

that minimize driving pressure, mechanical power (MP), and modified mechanical 

power (MMP) in clinical datasets from adults and children with acute respiratory distress 

syndrome (ARDS). The identified strategies were consistent within each patient group, 

and were similar in both adults and children, suggesting that protective ventilatory 

strategies derived from studies in adults may have utility in children with ARDS. This 

analysis also revealed potential problems with some currently proposed measures of 

VILI, at least in terms of their use as direct targets for optimizing ventilator settings. 

In Chapter 6, the development of the first detailed computational simulator of neonatal 

respiratory physiology in the ARDS disease state is presented. Results of matching the 

model to new patient data collected by medical collaborators at the Queen’s Medical 
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Centre in Nottingham indicate that the responses of individual neonatal patients to a 

range of different ventilator settings are accurately reproduced by the model, confirming 

its potential usefulness for investigating new therapeutic strategies. 

Chapter 7 summarises the main findings from the work conducted in this thesis and 

suggests additional work that could be performed to further develop the models and 

exploit them in future studies of novel treatment strategies for acute respiratory illness.  

1.2. Publications arising from this research 

The work contained in this thesis has been published in the following peer-reviewed 

research papers: 

1. Saffaran S, Das A, Hardman JG, Yehya N and Bates D (2017) “Development 

and validation of a computational simulator for pediatric acute respiratory 

distress syndrome patients”, in the Proceedings of 39th Annual International Conference 

of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, South 

Korea. 

2. Saffaran S, Wang W, Das A, Schmitt W, Becker-Pelster E, Hardman JG, 

Weimann G and Bates D (2018) “Inhaled sGC modulator can lower PH in 

patients with COPD without deteriorating oxygenation.” CPT Pharmacometrics 

and Systems Pharmacology 2018; 7:491–498. 

3. Saffaran S, Das A, Hardman JG, Yehya N and Bates D (2019) “High-fidelity 

computational simulation to refine strategies for lung-protective ventilation in 

paediatric acute respiratory distress syndrome.” Intensive Care Medicine 2019; 1:10–

12. 

4. Saffaran S, Das A, Algarni S, Laviola M, Niklas C, Hardman JG, Sharkey D and 

Bates D (2019) “Computational simulation of mechanically ventilated neonatal 

patients in the intensive care unit” in the Proceedings of 41st Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, 

Germany. 

5. Saffaran S, Das A, Laffey JG, Hardman JG, Yehya N and Bates D (2020) 

“Utility of driving pressure and mechanical power to guide protective ventilator 

settings in two cohorts of adult and pediatric patients with acute respiratory 

distress syndrome.” Critical Care Medicine 2020; doi: 

10.1097/CCM.0000000000004372.
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Chapter 2:  

 

 

Background 

2.1. Pulmonary physiology 

The human pulmonary system comprises all organs and structures within the body that 

play a significant role in the process of respiration i.e. the exchange of oxygen (O2) and 

carbon dioxide (CO2) with the environment in order to facilitate the production of 

energy. Lungs are surrounded by respiratory muscles which assist airflow into and out 

of the body and the pulmonary artery, vein and capillary network which transports 

blood to and from the lungs to allow for gas exchange between blood and air. Lung 

volumes and capacities describe how much air normally fills the lungs. Lung volumes 

fluctuate during the breathing cycle, as the alveoli expand and contract. There are 

various terms that are used to characterize the lung volumes and capacities in different 

points in the breathing cycle. Some of the most common lung volume terms are: 

• Total Lung Capacity (TLC) – The volume of air in the lungs upon the maximum 

effort of inspiration; 

• Residual Volume (RV) – The volume remaining in the lungs after maximal 

exhalation; 

• Tidal Volume (VT) – The amount of air a person inhales during a normal breath; 
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• Functional Residual Capacity (FRC) – The volume remaining in the lungs 

following normal expiration. 

Respiration begins at the nose or mouth, where oxygenated air is brought in. The 

trachea is the starting point to transfer the gas. It is the largest of all the airways and at 

its distal end branches into two bronchi leading to the left and right lung. Each 

bronchus progressively branches into shorter, narrower airways called bronchioles. 

Bronchioles subsequently branch into elastic cavities called alveoli. The lungs consist of 

approximately 300 million alveoli, where different gasses are transferred into and out of 

the bloodstream. The factors that determine the gas flow to and from the alveolar units 

are the airway resistances and the pressure gradient between the mouth and the lungs. 

Each alveolus has a thin surface surrounded by a network of capillaries. From this point, 

O2 is diffused to the blood and CO2 is diffused to the alveolar units. Inhaling 

oxygenated gas provides higher partial pressure of oxygen (PO2) inside alveolar 

compartments than in the corresponding capillaries. This pressure gradient moves O2 

across the alveolar membrane into the blood. The same process happens for CO2 in the 

opposite direction since the partial pressure of carbon dioxide (PCO2) is higher in the 

capillaries than alveoli. The diffusion of gasses continues until the partial pressures in 

both environments are in equilibrium. The rate of diffusion is different for different 

types of gas due to their individual properties. The pulmonary capillaries with 

oxygenated blood mix into the pulmonary vein and consequently converge to the heart 

where oxygenated blood is pumped into systemic circulation. 

Due to higher solubility of CO2, blood carries it in dissolved form while only a relatively 

small portion of the total blood oxygen content is dissolved (reduced solubility of O2). 

Consequently, O2 is mostly carried in the blood as oxyhaemoglobin which is formed by 

the combination of haemoglobin with oxygen. As CO2 is more soluble and more 

chemically reactive, it is present in a higher quantity in blood. Moreover, the dissolved 

CO2 reacts with water to form H2CO3 which accordingly can be dissociated to H+ and 

bicarbonate (HCO–3), this reaction is reversible. This makes CO2 a major regulatory factor 

for controlling pH in the blood. An elevated level of CO2 in the blood leads to higher 
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amounts of H+ ions which subsequently makes the blood more acidic (reducing the 

pH). Raised amounts of HCO–3 cause a reduction in the available H+ ions, which 

increases pH (making the blood more alkaline). The kidneys also play a role in regulating 

and maintaining the pH balance in the human body by absorbing HCO–3 and producing 

H+ ions. 

Information regarding the distribution of gas exchange in the lung can provide 

substantial insight regarding any underlying pathology. Adequate ventilation in the 

presence of sufficient perfusion results in efficient gas exchange. This matched 

occurrence of ventilation and perfusion can be represented by the V/Q 

(ventilation/perfusion) distribution. A V/Q ratio of 1 denotes that the ventilation and 

perfusion are matched whereas values higher than 1 indicate areas of the lung with good 

ventilation but poor perfusion, and values less than 1 indicate areas with low ventilation 

but adequate perfusion. Extreme cases are where there is ventilation with no perfused 

blood (dead space); and where there is perfusion but no ventilation (shunt). Important 

information about the state of the lungs can thus be extracted from the levels of V/Q 

mismatch. However, the involved time-varying parameters such as cardiac output and 

minute ventilation complicate accurate measurement of the V/Q imbalance. 

2.2. Mechanical ventilation 

Since the appearance of the very first satisfactory mechanical ventilator in 1929 (i.e. the 

“Iron Lung” [1]), mechanical ventilation has been one of the most frequent life support 

therapeutic intervention for critically ill patients. It is also the most important 

therapeutic intervention for patients with respiratory failure in intensive care units 

(ICU’s) [2, 3]. 

A number of different studies have indicated that mechanical ventilation along with 

suitable ventilator settings and interventions (i.e. protective ventilation) can reduce 

length of ICU stay, mortality, and associated healthcare costs in patients with acute lung 

injury (ALI) and acute respiratory distress syndrome (ARDS) [2, 4–7]. However, 

clinicians administering mechanical ventilation encounter many challenges in 

determining the safest and most effective ventilator management strategy due both to a 
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lack of comprehensive guidelines and the fact that the settings for each patient should 

ideally be set based on their individual characteristics and disease state [3, 8]. State-of-

the-art advanced mechanical ventilators can aid clinicians in this task by providing 

decision support capabilities and taking advantage of automatic feedback to adjust 

mechanical ventilator settings based on patient data [9, 10]. It should be noted, however, 

that these systems rely solely on measured patient outputs and consider predefined 

ranges of mechanical ventilator settings, and not the individual patient physiology and 

underlying disease [9, 10]. Currently, clinicians in the ICU aim to keep the patient within 

a respiratory comfort region while maintaining adequate oxygenation based on general 

available guidelines [11, 12]. Also, the physicians’ personal experience often plays an 

important role in choosing the best set of ventilator settings [13]. 

Inappropriate ventilation strategies could result in potentially unsafe treatment and 

cause ventilator-induced lung injuries (VILI). The concept of VILI was first introduced 

by Mead et al. in 1970 [14]. The term VILI refers to the lung injury arising due to 

exposure to injurious ventilation contributions such as high airway pressures resulting in 

barotrauma, over-distension of alveoli, repeated alveolar collapse and expansion 

(atelectotrauma) and localised injury and inflammation due to intubation. These high 

pressures and volumes adversely impact the operation of the respiratory system. As a 

result, in spite of its important life-saving role in intensive therapy unit, mechanical 

ventilation can potentially cause prolonged ICU stay, a range of lifelong lung injuries 

and even multiple organ failure and death [13, 15, 16]. A study on a total of 5183 

mechanically ventilated patients by Anzueto et al. [17] revealed that VILI was diagnosed 

in 154 patients (2.9%). Furthermore, another study by Tejerina et al. [18] showed a 

higher rate of incidence (15%) in a larger cohort (2897 patients). Considering the 

sizeable number of patients undergoing mechanical ventilation (e.g. more than 69k 

patients in the UK in 2012 according to the Case Mix Programme), thousands of 

patients are potentially suffering from VILI each year. 

Therefore, the main challenge when mechanically ventilating critically ill patients can be 

summarised as maintaining adequate gas exchange whilst avoiding VILI [19, 20]. Over 

recent years, numerous clinical trials have been conducted aimed at exploring 
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mechanical ventilation strategies that could reduce the risk of VILI. Different 

approaches including the use of low tidal volumes, high PEEP, high-frequency 

oscillatory ventilation, etc. have been investigated to reduce the risk of lung injury for 

mechanically ventilated patients [4, 6, 14, 20–24]. However, although considerable 

progress has been made, there is still significant uncertainty about which strategy will 

minimize VILI for any given clinical scenario, and the mortality rate for ARDS and ALI 

patients receiving mechanical ventilation remains high (30-40%) [14, 25]. Further 

improvements in minimising VILI could potentially be achieved by incorporating 

tailored strategies based on an individual patient’s pathophysiology. However, many 

challenges such as the lack of accurate comprehensive patient data at the bedside and 

the complexity of the underlying pathophysiology hinder clinicians from considering 

individual patient information when making decisions for ventilator management [14, 

25–29]. 

2.3. Previous models of the pulmonary system 

Engineering approaches such as computational modelling can be employed in order to 

create an easier route to development of bespoke treatments, with fewer constraints 

than in vivo experiments. The real-life processes can be reproduced and better 

understood by means of modelling. It also can be engaged in testing and evaluating 

hypotheses [30]. However, the enormous requirements made on the capability of the 

models designed to be used in clinical environments has raised high-maintenance 

expectations on validation of such models with safety-critical applications. 

Consequently, the models need to be validated by means of promising methods to 

guarantee the essential robustness and earn the required reliability, stability and 

credibility in this field. [31–33]. 

Formulating the theoretical principles of the respiratory system such as relationships in 

gas exchange and ventilation paved the way for the mathematical and computational 

modelling. The efforts began by studies of acidosis as well as the equilibrium between 

oxygen and carbonic acid in the blood [34–36]. The work continued in this area 

resulting in a deeper theoretical understanding of the underlying physiology and 
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introducing different relations and equations such as Henderson-Hasselbalch equation, 

Van Slyke equation, etc. which are the cornerstone of the present-day studies of 

pulmonary physiology [37–45]. 

Computational modelling of respiratory system has been involved in different studies 

over the past years, improving the research outcome in the field [46–52]. It was not until 

the middle of the twentieth century that the advances in engineering methodologies 

along with the developed mathematics of respiration resulted in the development of the 

first simple models of the respiratory system. The model established by Grodins and 

colleagues [53, 54] uses differential equation to illustrate the relationship among a single-

compartmental lung with constant volume, blood and tissue. The model describes the 

effect on O2-CO2 interaction by the chemoreceptors, chemical buffering etc. In spite of 

its simplicity and deficiencies such as missing dead space (DS), this model has been the 

base of many other works [55–58]. 

Multi-compartmental models are able to describe the respiratory system in more details. 

A detailed model is more effective when studying features such as compliance, 

resistance, ventilation-perfusion distribution and delivery of gas across the whole lung. 

It also offers the ability to consider inhomogeneity in the lung. Accordingly, many 

studies in the literature have taken advantage of this feature in their models. In such a 

model by Hinds [59, 60], ventilation/perfusion distribution and variations of volume 

and pressure within the lung were illustrated. The effect of series dead space and its role 

in ventilation is explored by another work by Petrini [61]. 

Likewise, the combined effect of recruitment and de-recruitment was studied in a model 

with 27k parallel alveolar units which shed light on the pressure-volume relationship of 

these alveolar compartments [62]. The effects of ventilation-perfusion inequality on the 

lung, gas exchange and pulmonary ventilation were analysed using a model by JB West 

[63]. Moreover, this study also examined the efficiency of the model under a different 

number of alveolar compartments and proposed that, in a multi compartmental model, 

a minimum of 100 compartments are essential to provide the optimal trade-off between 

accuracy and computational complexity. However, this model does not take into 
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consideration the individual alveolar compliances, inflow resistances and vascular 

resistances. 

In another work by Dickinson [64], a model called “MacPuf” was developed. This 

cardiorespiratory simulator takes into account the ventilation control, pulmonary 

circulation, gas exchange and tissue metabolism. Each stage of modelling has been 

carefully designed, considering critical aspects like dissociation curves for O2 and CO2, 

shunt, dead space etc. Furthermore, the model can represent mechanical ventilation 

with PEEP. 

On the other hand, there are many studies utilising single or two-compartmental 

models. These models offer less computational complexity while providing better 

insight into poorly understood physiological behaviour. In a study, Swanson and 

colleagues [65] propose a two-compartmental model to investigate alveolar gas exchange 

under exercise. Other examples of studies using single/two-compartmental models of 

the respiratory system include Hotchkiss et al. [66], Vidal Melo et al. [67, 68], Joyce et al. 

[69], Farmery et al. [70] and Liu et al. [71]. Yet, single/two-compartmental respiratory 

models do not deliver enough accuracy for simulating lung injury under pathological 

conditions and modelling treatments. They are also incompetent when it comes to 

representing ventilation/perfusion distribution, tidal breathing, series or parallel 

resistances etc. 

“VentSim” is a respiratory model introduced by Rutledge [72], which is an expanded 

version of his previous work “VenPlan” [18]. The three chief model components, 

comprising ventilator component, an airway component and a circulation component, 

have been wisely embedded into the model by dint of linked first-order differential 

equations. Yet, the simulator has not been validated with actual ventilated patients’ data. 

“VO2.htm” is an interactive computer simulation of pulmonary gas exchange by 

Kapitan [73] that is web based and indicates the final effect on the arterial blood gas 

composition caused by simultaneous change in multiple factors. For more details on the 

literature of respiratory system modelling over the past years the reader is referred to 

[74, 75]. 
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2.4. A high-fidelity computational simulator of integrated 

cardiorespiratory pathophysiology 

The simulator used as the basis for the studies described in this thesis is a multi-

compartmental computational model that uses an iterative technique to simulate 

integrated respiratory and cardiovascular pathophysiological scenarios. The simulator 

has been developed over the past several years and has been applied and validated on a 

number of previous studies [76–84]. 

In contrast to previous models of pulmonary pathophysiology that included only two or 

three alveolar compartments, this model allows the user to define up to several hundred 

individual compartments (each with its own individual mechanical characteristics) to be 

implemented in the simulation. An alveolar compartment in the model represents a 

cluster of alveoli in the lungs (different lung segments) rather than one alveolus, so that 

the total number of compartments comprises the whole lung. Each of these alveolar 

compartments has a unique and configurable bronchiolar resistance, pulmonary vascular 

resistance, stiffness index, and extrinsic pressure. The ability to adjust these parameters 

individually across all alveolar compartments allows the model to recreate the 

heterogeneous effects of disease, e.g. COPD, on the overall physiology of the lung. 

The model also includes specific equations to represent the effects of alveolar collapse, 

threshold opening pressure, alveolar stiffening, and airway obstruction. The net effect of 

these components of the simulation is that defining, clinical features of acute lung injury 

may be observed in the model, e.g. alveolar gas trapping, collapse-reopening of alveoli, 

pulmonary oedema, etc. However, the model does not currently consider the spatial 

arrangement of different lung regions (i.e. from the top to the bottom of the lung) and 

its effect on V/Q mismatch. 

Moreover, the model includes representations of multiple interacting organ systems 

(cardio-pulmonary-vascular) and incorporates an unprecedented level of physiological 

detail including multiple alveolar compartments, multi-compartmental gas-exchange, 

viscoelastic compliance behaviour, interdependent blood-gas solubility and haemoglobin 

behaviour and heterogeneous distributions of pulmonary ventilation and perfusion. 
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Each model component is described as several mass conserving functions and solved as 

algebraic equations, obtained or approximated from the published literature, 

experimental data and clinical observations. These equations are solved in series in an 

iterative manner, so that solving one equation at the current time instant determines the 

values of the independent variables in the next equation. At the end of the iteration, the 

results of the solution of the final equations determine the independent variables of the 

first equation for the next iteration. 

The pulmonary model consists of the mechanical ventilation equipment, anatomical and 

alveolar dead space, anatomical and alveolar shunts, ventilated alveolar compartments 

and corresponding perfused capillary compartments. The model simulates all relevant 

aspects of pulmonary dynamics and gas exchange such as the transport of air from 

mouth to airway and alveoli, the gas exchange between alveoli and their corresponding 

capillaries, and the gas exchange between blood and peripheral tissue compartment. The 

pressure differential created by the mechanical ventilator drives the flow of gas through 

the system. The model includes series dead space to represent the trachea, bronchi and 

the bronchioles. The volume of dead space is split into 50 stacked layers of equal 

volumes.  No mixing between the compartments of the series dead space is assumed. 

The lung model incorporates up to several hundred independently configurable alveolar 

compartments, implemented in parallel, allow the model to accurately simulate alveolar 

shunt and alveolar dead space. 

Figure 1 shows a simplified, diagrammatic representation of the model. The inhaled air 

is initially assumed to consist of five gases: oxygen, nitrogen, carbon dioxide, water 

vapour and a 5th gas (α) used to model additives. The atmospheric pressure is fixed at 

101.3kPa and body temperature is fixed at 37.2°C. During an iteration of the model, the 

flow (𝑓) of air to or from 𝑖th alveolar compartment is determined by the following 

equation: 

𝑓𝑖 =
( Pv −  P𝑖)

(Ru + RA, 𝑖)
               for 𝑖 = 1, … , NA (1) 
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where  Pv and  P𝑖 are the pressure supplied by the mechanical ventilator and the pressure 

in the 𝑖th alveolar compartment respectively. Ru represents the constant upper airway 

resistance and RA, 𝑖 is the bronchial inlet resistances of the alveolar compartment 𝑖. NA 

is the total number of alveolar compartments (for the studies in this thesis, NA=100). 

The rationale for choosing 100 compartments in this case is based on both a study on 

COPD patients employing the same simulator which found 100 alveolar compartments 

as the optimal trade-off between model accuracy and complexity, and another study in 

the literature which evaluated the efficiency of a multi compartmental model under a 

different number of alveolar compartments [63].  

The total flow of air entering the series dead space is the sum of all flows to/from the 

alveoli. The volume of gas “𝑥” in the 𝑖th alveolar compartment (v𝑖,𝑥), is updated as 

follows: 

v𝑖,𝑥 =  {
v𝑖,𝑥 − 𝑓𝑖 ∙

v𝑖,𝑥

v𝑖
               Exhaling

v𝑖,𝑥 + 𝑓𝑖  ∙ FNSD
             Inhaling 

 (2) 

where 𝑥 is any of the five gases and v𝑖 is the total volume of the 𝑖th alveolar 

compartment (sum of the volume of the five gases in the compartment.) FNDS
 is the 

fraction of gas in the last layer of the dead space. 

Hypoxic Pulmonary Vasoconstriction (HPV) is the intrinsic reaction of the respiratory 

system to low levels of oxygen in blood. This mechanism restricts the blood flow in the 

pulmonary blood vessels where there is not enough oxygen. This is modelled as a simple 

function, resembling the stimulus response curve suggested by [85], and is incorporated 

into the simulator to gradually constrict the blood vessels as a response to low alveolar 

oxygen tension.  
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Figure 1. Diagrammatic representation of the model and its main features. 
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To model the equilibration process between the alveolar compartment and the 

corresponding capillary compartment, small volumes of each gas (O2 and CO2) is 

moved between the compartments until there are identical partial pressures of these 

gases in both compartments (i.e. they differ by <1%). In blood, the total O2 content 

(CO2) is carried in two forms, as a solution and as oxyhaemoglobin (saturated 

haemoglobin): 

CO2 = SO2 ∙ Huf ∙ Hb + PO2 ∙ O2sol
 (3) 

In this equation, SO2 is the haemoglobin saturation, Huf is the Hufner constant, Hb is 

the haemoglobin content and O2sol
 is the O2 solubility constant. In order to describe 

the O2 dissociation curve, the following pressure-saturation relation is used in the 

model, as proposed in [45]: 

SO2  = (((PO2
3 + 150 ∙ PO2 )

−1
× 23400) + 1)

−1

 (4) 

PO2 is the partial pressure of oxygen in the blood. In view of the appropriate correction 

factors in base excess (BE), temperature (T) and pH [44], PO2 is calculated as: 

PO2 = 7.5006168 ∙ PO2 ∙ 10[0.48(pH−7.4)−0.024(T−37)−0.0013∙BE] (5) 

pH is the blood pH level and the constant ‘7.5005168’ is the pressure conversion factor 

from kPa to torr. 

Using the Henderson-Hasselbach logarithmic equation, the plasma CO2 content can be 

calculated (Eq.6). Next, the CO2 content of the blood (CCO2) is deduced from Eq.7, [41]. 

CCO2plasma = 2.226 ∙ CO2sol
 ∙  PCO2 ∙ (1 +  10(pH−pK′)) (6) 

CCO2 = CCO2plasma  ∙  [1 −
0.0289 ∙ Hb

(3.352 − 0.456 . SO2) ∙ (8.142 − pH)
] (7) 



Chapter 2 

 16 

where CO2sol
 is the plasma CO2 solubility coefficient, pK' is the apparent pK, PCO2 is 

the partial pressure of CO2 in plasma, and ‘2.226’ is the conversion factor from 

miliMoles·L-1 to mL·100mL-1. Values for CO2sol
 and pK' can be deduced from, [86]: 

CO2sol
= 0.0307 + 0.0057 ∙ (37 − T) + 0.00002 ∙  (37 − T)2 (8) 

pK′ = 6.086 + 0.042(7.4 − pH) + (38 − T) (0.00472 + (0.00139 −  (7.4 − pH))) (9) 

PCO2 is consequently determined by incorporating the standard Henry’s law and 

CO2sol
. For pH, the Henderson-Hasselbach and the Van Slyke equations [87] are 

combined, resulting in the following equation: 

pH = 6.1 + log (
HCO3

0.225 ∙ PCO2
) (10) 

and bicarbonate concentration (HCO3) can then be calculated by, [87]: 

HCO3 = ((2.3 × Hb + 7.7) × (pH − 7.4)) +
BE

(1 − 0.023 × Hb)
+  24.4 (11) 

In order to update the arterial blood gas “x” content, the non-shunted blood from 

pulmonary capillaries (Ccap,x) as well as the anatomical shunt (Sh) are mixed with arterial 

blood using the equation below: 

Ca,x =
CO ∙ (Sh ∙ Cv,x + (1 − Sh) ∙ Ccap,x) + Ca,x ∙ (va − CO)

va
 (12) 

In the above, CO is cardiac output and va is the arterial volume. The shunt fraction 

(QS/QT) in the model is calculated as: 

QS/QT  =  
Ccap,O2 − Ca,O2

Ccap,O2 − Cv,O2
 (13) 

In the simulator, the peripheral tissue is incorporated as a single compartment. Similar 

to alveolar equilibration, the peripheral capillary and tissue equilibrium is modelled by 
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removing the consumed O2 (VO2) from blood and adding the produced CO2 (VCO2). 

Metabolic production of acids, other than carbonic acid via CO2 production, is not 

modelled. After peripheral tissue equilibration of gases, the venous calculations of 

partial pressures, concentrations and pH calculations are performed using comparable 

equations to those above. 

The total compliance (Edyn) of the lung in the model is calculated using the standard 

equation: 

Edyn =
Vmax − Vmin

Pmax − Pmin
 (14) 

where the end-inspiratory lung volume (Vmax), end-expiratory lung volume (Vmin), 

maximum pressure in lung (Pmax) and the minimum pressure in lung (Pmin) are 

obtained directly from the model at the end of every breath. The simulated patient is 

assumed to be under complete mechanical ventilation. Consequently, the effects of 

ventilatory autoregulation by the patient are not currently incorporated into the models. 

For the 𝑖th alveolar compartment, the pressure of the compartment (P𝑖) is determined 

by: 

P𝑖 = S𝑖(V𝑖 − Vc)2 − Pext,𝑖 (15) 

where 

S𝑖 =
10k𝑖 ∙ NA

2

200000
 (16) 

Vc =
0.2VFRC

NA
 (17) 

V𝑖 is the given volume of alveolar compartment in millilitres. Vc is defined as a 

“collapsing volume” at which the alveolus tends to empty. The parameter Pext is an 

extrinsic pressure which is representative of the net pressure generated outside each 

alveolus, such as the outward pull of the chest wall (positive component indicating 
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distend) and the compressive effect of interstitial fluid in the alveolar wall (a negative 

component indicates compression from outside the alveolus tending to cause collapse). 

S𝑖 is a scalar that determines the alveolar compliance. A higher S𝑖 suggests a stiffer 

compartmental behaviour, which requires a larger pressure from the mechanical 

ventilator to drive air into the compartment. The unit of S𝑖 is “cmH2O mL-2”. All of the 

abovementioned parameters (Pext,𝑖, S𝑖 and Vc) are different yet essential components for 

representing a diseased lung. 

The alveolar compartments in the model are placed in a parallel arrangement and 

interact with the series dead space with respect to the movement of gases. The total 

airway resistance Raw is determined by the following equation for NA parallel 

compartments: 

1

Raw
=

1

RB,1
+

1

RB,2
+ ⋯ +

1

RB,NA

 (18) 

where RB,𝑖 is the bronchial inlet resistance of the 𝑖th compartment given as: 

RB,𝑖 = m𝑖 ∙ RB0 (19) 

and RB0 corresponds to the default bronchial inlet resistance of an alveolar 

compartment. RB0 is set to 10-5·NA kpa ml-1 min-1 (6 cmH2O L-1 s-1) for adults; the inlet 

resistance is higher for a model with more compartments as the volume of each 

compartment decreases; giving, for example, a resistance of 0.001 kpa ml-1 min-1 in each 

compartment for 100 compartments. m𝑖 is a coefficient representing a dynamic change 

in airway resistance and is determined by the following equation: 

m𝑖 = {
1                   Ptrachea ≥ TOP𝑖

105              Ptrachea < TOP𝑖
 (20) 

where Ptrachea is the pressure in the trachea and TOP𝑖  is defined as the threshold 

opening pressure of the 𝑖th alveolar compartment with a value between 5 and 60 

cmH2O [88]. TOP𝑖  indicates a pressure that a collapsed alveolar unit must attain to 
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reopen. Moreover, in order to model recruitment as a time dependant process where 

different airways recruit at different times, the condition Ptrachea ≥ TOP𝑖 has to stay 

satisfied for a specific period of time (τc,𝑖) for a compartment to be recruited. 

Otherwise, m𝑖 is set to 105 again. 

Finally, the pulmonary vascular resistance (PVR) is determined by: 

1

PVR
=

1

RV,1
+

1

RV,2
+ ⋯ +

1

RV,NA

 (21) 

where the resistance for each compartment RV,𝑖 is defined as: 

RV,𝑖 = δV𝑖RV0 (22) 

RV0 is the default vascular resistance for the compartment with a value of 160·NA 

dynes s cm-5 min-1 for adults, and δV𝑖 is a coefficient that can be used in order to modify 

the vascular resistance. 
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Chapter 3:  

 

 

Investigating different administration 

mechanisms for a novel compound to lower 

pulmonary hypertension in COPD 

3.1. Summary 

In this chapter, a highly fidelity computational simulator of pulmonary physiology is 

employed to evaluate the impact of a soluble guanylate cyclase (sGC) modulator on gas 

exchange in patients with chronic obstructive pulmonary disease (COPD) and 

pulmonary hypertension (PH) as a complication. Three virtual COPD patients were 

configured in the simulator based on clinical data. In agreement with previous clinical 

studies, modelling systemic application of a sGC modulator results in reduced partial 

pressure of oxygen (PaO2) and increased partial pressure of carbon dioxide (PaCO2) in 

arterial blood, if a drug-induced reduction of pulmonary vascular resistance (PVR) equal 

to that observed experimentally is assumed. In contrast, for administration via dry 

powder inhalation (DPI), the performed simulations suggest that the treatment results 

in no deterioration in oxygenation. For patients under exercise, DPI administration 

lowers PH while oxygenation is improved with respect to the baseline values. 
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3.2. Introduction 

Chronic obstructive pulmonary disease is one of the leading causes of morbidity and 

mortality in most countries [89, 90]. The World Health Organization (WHO) estimates 

that COPD was the fifth leading cause of death in high-income countries in 2002, and it 

was the sixth leading cause of death in nations of low and middle income [91]. 

Moreover, according to WHO, COPD is predicted to become the third leading cause of 

death in 2030 [92]. COPD has been identified as a major global health burden based on 

its high prevalence and significant health-care costs [93, 94]. 

A serious complication of COPD is pulmonary hypertension (PH), a progressive and 

debilitating condition associated with a sustained increase in mean pulmonary artery 

pressure (mPAP) that results from excessive vasoconstriction and remodelling of the 

pulmonary arteries [95]. It is associated with shorter survival and has been seen as a 

predictive factor for worse clinical outcomes and frequent use of health resources [96, 

97].  Accordingly, there has been significant interest in exploring PH-specific therapies 

in patients with COPD. Various vasodilating drugs with different modes of action have 

been investigated in clinical studies [98]. Most of these studies considered systemic 

applications (oral administration), although some also considered administration via 

inhalation. Generally, these studies aimed for a dilation or relaxation of the pulmonary 

arterial vessels, thus lowering pulmonary vascular resistance. On the other hand, 

unselective vasodilation of pulmonary vessels may also lead to a relief of hypoxic 

vasoconstriction in low-/non-ventilating areas of the lung, and consequently to 

increased ventilation-perfusion (V/Q) mismatch and a deterioration of oxygenation. 

One of the most extensively investigated drugs in COPD-PH is the phosphodiesterase-

5 (PDE-5) inhibitor Sildenafil (Pfizer) [99–104]. When given systemically, i.e. oral or 

intravenous administration, in acute studies Sildenafil (Pfizer) consistently resulted in a 

reduction of mPAP and an improvement of exercise capacity and six-minute walking 

distance [101, 102, 104]. While during exercise there seems to be no adverse reaction, at 

rest the hemodynamic changes occurred at the expense of worsening gas exchange due 

to increased V/Q mismatching [101]. In chronic studies no clear positive effect of the 
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treatment with Sildenafil (Pfizer) as compared to placebo could be observed, with 

positive [100] as well as negative outcomes being reported [99, 103]. 

Trials have also been undertaken with Bosentan (Actelion), an oral endothelin receptor 

antagonist, in treating PH in COPD. Stolz et al. found in severe COPD patients that 

those treated with Bosentan (Actelion) suffered from a decreased quality of life, 

worsening arterial oxygen saturation and an increased alveolar-arterial gradient with no 

change in exercise capacity [105]. In another study the treatment group benefited from 

significant improvements in mPAP, pulmonary vascular resistance (PVR) and six-min 

walk distance without a significant decline in oxygenation [106]. 

Inhalation therapy was investigated in COPD-PH patients with inhaled nitric oxide 

(iNO) [107–114] and the prostacyclin analogue Iloprost (Schering/Bayer)[115–117]. 

The trials with iNO consistently demonstrated a considerable and concentration 

dependent reduction of PVR [107, 109–114]. The response of gas exchange, in 

particular of oxygenation, to iNO therapy is however heterogeneous. Though, clear 

concentration dependence cannot be derived from the different studies, there is at least 

evidence that at lower iNO concentrations arterial oxygenation is improved or remains 

unchanged with iNO inhalation [107, 109, 111, 114], while at higher concentrations 

(>20 ppm) there is no gain in oxygenation [110] or even a deterioration [112, 113]. The 

latter response is presumably the result of increased V/Q mismatch caused by nitric 

oxide releasing hypoxic vasoconstriction in poorly ventilated regions of the lung. 

However, the opposite effect was also observed in another study, where an 

improvement of PaO2 was recorded with high nitric oxide concentrations [114]. 

An inconsistent picture also emerges from the studies with inhaled Iloprost 

(Schering/Bayer). While Boeck and colleagues did not find positive effects but instead a 

worsening of gas exchange for two different Iloprost (Schering/Bayer) doses in a cross-

over study [115], two other studies reported improvements in V/Q matching, gas 

exchange and exercise tolerance [116, 117]. 

Recently Riociguat (Bayer), a stimulator of soluble guanylate synthase (sGC) has been 

approved for treatment of pulmonary arterial hypertension and chronic 
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thromboembolic PH after it showed improved six-minute walk distance, compared with 

placebo, and also improved PVR, functional class, dyspnoea, and health-related quality 

of life in these diseases [118, 119]. Riociguat (Bayer) was also investigated in a single 

dose study with COPD patients with borderline or manifest PH (mPAP >= 23 mmHg) 

[120]. Similar as for other therapies, significant reductions of mPAP and PVR could be 

demonstrated in this patient population. Although some reduction in oxygenation 

occurred with orally administered Riociguat (Bayer) in these studies, this was not at 

levels which were judged to be clinically relevant. 

Overall, the results from the different studies discussed above indicate that: 

• The pharmacological principle of vasodilation is generally appropriate for 

improving pulmonary hemodynamic and exercise tolerance of COPD-PH 

patients 

• Systemic administration of drugs bears a high risk of deterioration of V/Q 

mismatch due to relief of hypoxic vasoconstriction  

• Inhaled administration shows positive effects and may, in contrast to systemic 

administration, lead to improved V/Q mismatching, although also the opposite 

can happen if the distribution of the drug is not strictly limited to well ventilated 

regions of the lung, or if alveolar absorption is high and considerable systemic 

exposure occurs after inhalation. 

One potential limitation to consider is the fact that inhalation with a metered dose or 

dry powder inhaler, typically used in lung diseases such as COPD and asthma [121, 122], 

is associated with a deep breath. This could, however, deteriorate the advantage of 

inhaled administration, as a deep breath may result in drug particles being deposited in 

lung areas that are not ventilated at rest.  

The complexity of the findings summarized above highlights the fact that the role of 

different therapies and corresponding administration methods in COPD related PH 

needs further exploration. In this study, simulation approaches employing a high-fidelity 



Chapter 3 

 24 

simulation model were adopted to evaluate the effects of a vasodilator, in terms of 

hemodynamic and oxygenation, in COPD patients with PH.  

In the following, the ability of the simulation model to recapitulate observed changes in 

gas exchange after systemic administration of the sGC stimulator Riociguat (Bayer) is 

demonstrated, based on the experimentally determined reductions of pulmonary 

vascular resistance. Thus validated, the model is then used to evaluate the effects of 

alternative administration methods (dry powder inhalation via a deep breath and 

inhalation via normal breathing e.g. using a ventilator) of the drug. Also, the 

consequences of administering the drug to patients while under exercise is quantitatively 

investigated. 

3.3. Materials and Methods 

3.3.1. Model matching to patient data 

Over the past years, Genetic Algorithms (GA) has been widely used as a robust search 

and optimisation approach. The method is effective for problems with both large and 

small parameter search spaces. Lately, many studies have also employed GA in a range 

of different problems in physiological modelling [123, 124]. Inspired by the evolutionary 

process concepts observed in nature such as selection, mutation, recombination etc., 

this technique produces a set of fittest candidates from the initial population. The 

randomly sourced initial population of candidates undergoes a repetitive evolutionary 

process of reproduction through selection for mating according to a fitness function, 

and recombination via crossover with mutation. A complete repetitive sequence of 

these genetic operations is called a generation. The performance of each candidate is 

evaluated by means of a fitness function defined from the knowledge domain and 

specific to the problem.  

Global optimisation methods such as GA are more likely to converge to a global 

optimal because of their stochastic nature. However, this improved performance comes 

with the price of higher computation time compared with local methods. The reader is 

referred to [125] for more details of different operators, binary coding schemes and the 
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theory of genetic search. Many different termination criteria can be used to stop the 

process of GA seeking for the best fit. In the current study, an adaptive termination 

criterion is used where the GA terminates the search when there is no improvement on 

the best solution achieved over a specified number of successive generations. 

To speed up the optimization process, a parallelised computer code implementation of a 

genetic algorithm was employed in this study. The cost function evaluation process 

associated with a population can be accelerated hugely by distributing the tasks to 

multiprocessors (multiple cores and/or multiple machines). Optimization of the model 

to patient data was performed using the “Tinis” high performance computing cluster 

provided by the University of Warwick (3488 x Intel Xeon E5-2630 v3 2.4 GHz 

Haswell cores; 16 cores per node; 203 nodes; 64 GB DDR4 memory per node / 4 GB 

per core) running Matlab (2017b) and utilizing the global optimization and parallel 

computing toolboxes. An adaptive termination strategy, which allows the optimization 

algorithm to run as long as necessary, was applied for each case to ensure the global 

optimal was reached.  

For the present work the pulmonary simulator is matched to the characteristics of three 

COPD-PH patients with differing gas exchange properties which were included in the 

previous study with Riociguat (Bayer) [120]. The respective data on PaO2, PaCO2, dead 

space fraction and V/Q at baseline (see Table 1) were taken from the study report. The 

optimization problem is formulated to find the configuration of model parameters that 

minimize the cost function J given below: 

min
𝑥

J = √∑
Ŷ𝑖 − Y𝑖

Y𝑖

5

𝑖=1

 (23) 

with 

Y = [PaO2, PaCO2, DSV, VQ1, VQ2] (24) 
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where Y is the vector of data values and Ŷ is the vector of model estimated values for 

arterial partial pressures of oxygen and carbon dioxide (PaO2 and PaCO2 respectively), 

dead space to ventilation fraction (DSV), 0.001<V/Q<0.1 (VQ1) and 0.1<V/Q<10 

(VQ2). The best set of model parameters which gives the minimum value for J is 

selected as the best match. In case of multiple solutions with similar cost, no difference 

in the performance of different solutions were observed. 

The three example data sets where chosen in order to cover a wide spectrum of COPD 

pathophysiology. For two of the patients, multiple inert gas elimination technique 

(MIGET) was applied in order to determine data on V/Q mismatch, and thus for these 

patients a comparison of data and model outputs on V/Q is also presented. The PVR 

of individual patients were set based on the provided individual data. As there was no 

available data indicating if the patients suffered from alveolar loss or not, this was not 

modelled. Also, the overall high airway resistance of COPD patients is taken into 

account by means of modelling the obstructed airways (i.e. airways with very high 

resistance values). 

Table 1 reports the matching results for all three COPD patients considered. From the 

table, it is clear that the models are closely matched to the data with percentage errors 

below or around 1%. In order to assess the robustness of subsequent findings, 100 

random parameter sets within ±5% of the best fit for each patient were also generated. 

All the analyses described below were applied to the best-fit model, and findings were 

subsequently checked for consistency on all 100 parameter sets around each optimal 

patient parameter set. 

3.3.2. Modelling of drug effects and application methods 

The change from baseline of PVR after drug administration was used as an input for the 

model. In order to specifically simulate the behaviour of Riociguat, the respective mean 

relative PVR curve as measured for a dose of 2.5 mg Riociguat (Bayer) [120] was 

considered for the present simulations (see Figure 2). Individual data on PVR changes 

after treatment with Riociguat (Bayer) were not published in [120] and therefore the 

same mean profile was used for all simulated patients.   
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Table 1. Patient matching results 

 Patient 1 Patient 2 Patient 3 

 data model data model data model 

PaO2 (mmHg) 129.2 129.3 76.8 76.69 66.0 65.5 

PaCO2 (mmHg) 44.1 44.12 49.8 49.85 32.5 32.3 

Dead space (%) 45.8 45.8 39.9 39.8 - 40.0 

0.001<V/Q<0.1 (%) 33.1 33.2 13.6 13.61 - 22.4 

0.1<V/Q<10 (%) 63.7 64.4 84.9 84.29 - 75.1 

 

 

 

 

Figure 2. Mean change of PVR from baseline over time in patients receiving a single dose of 
Riociguat 2.5mg [120]. 
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In the simulator, the pulmonary vessels are modelled as a parallel network with 100 

compartments. Each compartment has a vascular resistance denoted as PVR𝑖 and the 

total pulmonary vascular resistance is defined as: 

PVRtot =
1

1
PVR1

+
1

PVR2
+ ⋯ +

1
PVR100

 (25) 

Reduction of PVR is thus captured by changing the resistances of individual 

compartments due to drug administration. For a given temporal profile of the drug 

induced change of PVR (see Figure 2) the temporal changes of PVR𝑖 in the individual 

compartments are calculated as follows. 

After systemic application the drug substance is delivered to the lung through the blood 

circulation. The assumption in this case is that the drug will act equally on all 

compartments with blood going through them, and produce the same amount of 

vascular resistance reduction: 

PVRi
̅̅ ̅̅ ̅̅ ̅(t) = PVR𝑖

baseline − α(t) ∙ ΔPVR (26) 

Where ΔPVR is a fixed value denoting the equal reduction in resistance for all 

compartments, and 𝛼(t) is a time dependent variable reflecting the variability of the drug 

effects over time. Combining Eqs. 25 and 26, the desired PVR reduction shown in 

Figure 2 can be straightforwardly implemented by adjusting 𝛼. 

In the case of inhaled application of an aerosol, for example, containing the drug, it is 

assumed that deposition of the drug in different compartments of the lung is 

proportional to the extent of ventilation in these compartments. This means that the 

drug only reaches compartments of the lung which are ventilated under normal 

breathing conditions. Also, it is assumed that an inhaled application will not lead to 

systemic exposure causing any systemic effect, nor any effect in the parts of the lung not 

directly addressed via inhalation. 

Despite the assumption that the drug reaches only ventilated areas, and thus only in a 

part of the lung will a vasodilatory effect be induced, a similar reduction of total PVR is 
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assumed to be achievable as observed with the systemic application (Figure 2). This 

assumption is supported by the fact that for inhaled iNO, PVR reductions in the range 

of 25-30% were observed [109, 110, 114]. Yet, as there is no data on the inhaled 

reduction level of PVR with Riociguat, the possibility that the inhaled effect may overall 

be lower when given systemically cannot be ruled out. Furthermore, it is assumed that 

the inhalation process is short, compared to the absorption and induction effect and 

thus the time course of the PVR reduction would be the same as the one observed after 

oral administration (Figure 2). Furthermore, it is assumed that the drug effect is 

proportional to the amount of drug deposited. Accordingly, the changes in vascular 

resistance due to treatment with the drug for each compartment is proportional to the 

ventilation reaching that compartment, and consequently the changed resistance PVRi
̅̅ ̅̅ ̅̅ ̅ is 

given by: 

PVRi
̅̅ ̅̅ ̅̅ ̅(t) = PVR𝑖

baseline(1 − β(t) ∙ ΔPVR𝑖) (27) 

where ΔPVR𝑖 =
VTalv(𝑖)

VT
, β(t) reflects the temporal effect of the drug, VTalv(𝑖)

 is the 

ventilation of alveolar compartment 𝑖 and VT is the total tidal volume. Combining 

Eqs.25 and 27, the desired PVR reduction in Figure 2 can be implemented 

straightforwardly by adjusting β. 

Independent of the application device, dry powder inhalation always needs a deep 

breath for inhaling the drug dose. Deep inhalation (DI) causes a rapid increase of lung 

volume which results in dilating of the airway and a temporary reduction of airway 

resistance [126, 127], which will affect how the drug is delivered. The effect of this 

reduction of airway resistance is modelled, with the underlying assumption that 

compartments with larger initial volumes will exhibit smaller reductions in airway 

resistance. Given that total parallel airway resistance Raw is given by: 

Raw =
1

1
Raw1

+
1

Raw2
+ ⋯ +

1
Raw100

 (28) 
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the new airway resistance for compartment 𝑖 is then given by: 

R̅aw𝑖 = Raw𝑖 ∙ ∆aw𝑖              where    ∆aw𝑖= 
1

1 +
Xaw

Vol𝑖

 (29) 

Where Voli is the volume of compartment i, and Xaw is a scaling parameter related to 

tidal volume. It can be seen that a smaller Voli will lead to a bigger reduction of airway 

resistance. For example, setting Xaw = 20, then: i) if Voli = 20ml, ∆awi = 0.5, ii) if Voli = 

80ml, ∆awi = 0.8. DI is replicated in the virtual patients by applying a threefold increase 

in tidal volume for a period of five respiratory cycles. 

In COPD patients, oxygen consumption is more restrained by impaired pulmonary 

ventilation than by oxygen delivery, which imposes exercise limitations upon these 

patients. Under exercise, VO2 for COPD patients has been shown to increase to 0.7 

L.min-1 (SD=0.25) on average [128, 129]. In response to the elevated VO2, minute 

ventilation and cardiac output rise accordingly to deliver more oxygen to the tissues 

[129, 130]. In our model, the physiological effects of initiating exercise were simulated 

by progressively increasing VO2 every minute to 0.35, 0.5, 0.6, 0.65 and 0.7 L.min-1 in 

the virtual patients. Minute ventilation was subsequently increased as required to 

maintain the arterial blood gases (ABG) at their pre-exercise values, using the 

exponential relation between tidal volume and respiratory rate (RR) in [131]. Cardiac 

output was raised to 8.2 L.min-1 according to the average change observed in [129], and 

following the increase in CO an additional 10% reduction in PVR to that caused by the 

drug was applied [132]. Exercise was simulated to start 30 minutes after administration 

of the drug by inhalation with deep breath and continues for 90 minutes. The at-rest 

and under-exercise values for tidal volume and respiratory rate as well as the 

corresponding changes to PaO2 and PaCO2 due to exercise are presented in Figure 3.  
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Figure 3. Values for tidal volume and respiratory rate as well as the corresponding changes to 
PaO2 and PaCO2 at-rest and under-exercise. 

Minute ventilation was subsequently increased as required to maintain the arterial blood gases 
(ABG) at their pre-exercise values, using the exponential relation between tidal volume and 
respiratory rate (RR) in [131]. 
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3.4. Results 

3.4.1. Systemic application 

The average PVR reduction profile observed with 2.5 mg Riociguat (Bayer) was applied 

to the three configured virtual COPD patients, for each of the three application 

methods (systemic, inhaled and DPI). The changes in gas exchange parameters, PaO2 

and PaCO2 over time were then recorded, and are shown for each patient in Figure 4 

(A) and (B). In the case of systemic application, reductions in PaO2 and increases in 

PaCO2 were observed for all 3 patients. For systemic application, the average percentage 

change for PaO2 is -24.1% and for PaCO2 is +9.2%, which are consistent with results 

reported in a previous clinical study with Riociguat (Bayer) [120]. 

3.4.2. Inhaled application 

In contrast to the systemic application, an inhaled administration leads to considerable 

improvements in oxygenation, as shown in Figure 4 (G) and (H). The maximum 

increases of PaO2 are 11%, 4% and 4% with an average of 6.33%, while the maximum 

decreases of PaCO2 are -11%, -6% and -5%, respectively, with an average of -7.33%. 

This is as expected, since in this case no deep breaths are required on the part of the 

patients and thus the entire compound is delivered only to the normally ventilated 

regions of the lung. 

3.4.3. Dry powder inhaler application at rest and under exercise 

Figure 4 (C) and (D) shows the effects of application of the same compound using dry 

powder inhalation via a deep breath at rest, which is a more realistic scenario for an 

inhaled therapy in COPD. With the same PVR reduction profile, changes of blood gas 

values are in between those calculated for the systemic and continuous inhaled 

applications. In fact, it can be seen that PaO2 is slightly increased and PaCO2 is slightly 

reduced for all 3 patients. The maximum increases of PaO2 are 2%, 1% and 1% with an 

average of 1.33%. The maximum decreases of PaCO2 are -2%, -1% and -1%, 

respectively, with an average of -1.33%. Figure 4 (E) and (F) show that undertaking 

exercise for one hour after application by DPI produces further improvements in 



Chapter 3 

 33 

oxygenation, with maximum increases of PaO2 of 5.1%, 0.8% and 2.5% with an average 

of 2.8%, and maximum decreases of PaCO2 of -2%, -3.3% and -2.5%, respectively, with 

an average of -2.6%. 

3.4.4. Robustness analysis 

To test the robustness of our results, for each patient, all simulations (i.e. systemic 

application, inhalation with deep breath at rest and under exercise and inhalation with 

normal breath) were repeated on 100 parameter sets randomly chosen within bounds of 

±5% of the optimal parameter set found by means of global optimization. Figure 5 

compares the maximum change in PaO2 and PaCO2 observed for each patient and each 

application method using the optimal parameter set (squares) with the average 

maximum change in PaO2 and PaCO2 calculated using 100 random parameter sets 

(circles with one standard deviation (SD) as error bars). The outcomes confirm the 

consistency of the observed responses to the different methods of drug administrations, 

i.e. the average maximum change from baseline for PaO2 and PaCO2 across all random 

sets for each patient closely matches the maximum changes reported when employing 

the optimal parameter set during our previous analysis. Figure 6 to Figure 8 show time-

response plots for the performed robustness analysis.  
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Figure 4. Simulation results for patients using different drug administration methods. 

The systemic administration deteriorates oxygenation while inhalation with normal breath 
improves oxygenation. Inhalation with deep breath had a minimal effect on oxygenation when 
at rest, however, under exercise it improved oxygenation.  
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Figure 5. Comparison of the maximum change in PaO2 and PaCO2 observed for each patient 
and each application method using the optimal parameter set (squares) with the average 
maximum change in PaO2 and PaCO2 calculated using 100 random parameter sets (circles with 
one standard deviation as error bars). 
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Figure 6. Patient 1 - The Results of the simulations for 100 random parameter sets within ±5% 
of the best fit. 

The outcomes confirm the consistency of the observed responses to the different methods of 
drug administrations. 
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Figure 7. Patient 2 - The Results of the simulations for 100 random parameter sets within ±5% 
of the best fit. 

The outcomes confirm the consistency of the observed responses to the different methods of 
drug administrations. 
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Figure 8. Patient 3 - The Results of the simulations for 100 random parameter sets within ±5% 
of the best fit. 

The outcomes confirm the consistency of the observed responses to the different methods of 
drug administrations. 
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3.5. Discussion 

This is the first study to investigate the efficacy of sGC modulators in COPD patients 

with PH by using computer simulation. The capability of the simulator to accurately 

describe the pathophysiological characteristics of gas exchange in COPD patients has 

already been demonstrated in a previous study [83]. That study showed that by including 

sufficient numbers of alveolar compartments in the model, accurate representations of 

both steady-state blood gases and ventilation-perfusion mismatch via V/Q curves could 

be obtained. In this study, close matching of the simulator to data on three patients 

whose hemodynamic was invasively monitored in the study reported by Ghofrani is 

further demonstrated [120]. Calculations of blood gas concentrations for these virtual 

patients, considering the observed temporal profile of average PVR changes after oral 

administration of Riociguat (Bayer), resulted in predictions of changes in O2 and CO2 

partial pressures that were consistent with those observed in the previous clinical study. 

These results can be considered as a validation of the capability of the pulmonary 

simulator to reliably describe the effects on gas exchange of compounds acting on the 

vascular resistance, in particular those stimulating sGC activity. 

As already discussed in previous publications, the systemic application of vasodilating 

drugs may lead to a worsening of V/Q mismatch and in consequence to an impairment 

of blood gas concentrations which limits their clinical use. This arises due to the non-

selective distribution of the drug to all parts of the lung, which together with inhibition 

of hypoxic pulmonary vasoconstriction leads to an excess of blood flowing to poorly 

ventilated parts of the lung.  

One potential way to avoid increases of V/Q mismatch is via inhaled administration, as 

long as the drug can be expected to only reach the ventilated parts of the lung. This 

avoids increasing the perfusion of non-ventilated lung compartments, provided systemic 

exposure stays low enough after inhalation not to be effective. Our results from 

simulations based on this scenario with inhalation of a hypothetical sGC modulating 

drug, which can be applied to act on the lung selectively, supports this hypothesis when 

it is administered by normal breathing. In contrast to the findings from systemic 
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administration, the inhaled application led to improved oxygenation, because perfusion 

of ventilated lung compartments was improved and effects on less well/non ventilated 

areas were limited. However, if the drug is formulated as a dry powder, its inhalation 

will usually be connected with a deep breath, which could cause a certain proportion of 

the compound to be deposited in regions of the lung that are not, or poorly, ventilated 

when returning to normal breathing at rest. To quantitatively investigate the trade-offs 

involved, the effect of inhaled administration of a compound inducing the same effect 

on total PVR as 2.5 mg oral Riociguat (Bayer) in COPD-PH with a deep breath is also 

modelled, causing the temporary recruitment of less well-ventilated areas. The resulting 

simulations reveal that although administering the drug by a deep breath may not 

improve oxygenation to the same extent as inhalation with normal breathing, it does 

avoid the potential deterioration in gas exchange associated with systemic drug 

administration. Moreover, when administered under exercise, most of the non/poorly 

ventilated parts of the lung in which the drug is deposited due to deep breathing 

become ventilated again as a result of increased minute ventilation, leading to further 

improvements in oxygenation. Interestingly, these findings are also in agreement with 

the results of a clinical trial on the systemic administration of the phosphodiesterase-5 

(PDE-5) inhibitor Sildenafil, which produced a worsening of gas exchange due to 

increased V/Q mismatching at rest, but not under exercise [101]. If lower effect on 

PVR is assumed during dry powder inhalation, the inhaled administration of the drug 

can still be more effective by trading off a lower effect on PVR with better preservation 

of V/Q matching in comparison to the systemic route of administration. 

A robustness analysis of these results performed by means of randomly selecting 100 

model parameter sets around the optimal values for each patient produced results that 

were uniformly consistent with the above findings. Our results highlight the potential 

advantages of administering sGC’s to patients via dry powder inhalation, rather than 

systemically, particularly when drug administration is combined with exercise. 
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Chapter 4:  

 

 

Evaluating strategies for lung-protective 

ventilation in paediatric acute respiratory 

distress syndrome using high-fidelity 

computational simulation  

4.1. Summary 

There have been no randomized trials to determine or evaluate lung-protective 

ventilation strategies in paediatric acute respiratory distress syndrome (PARDS), and the 

available observational studies are inconclusive. In this chapter, a new patient dataset is 

analysed to investigate whether, and how, more protective ventilation could be achieved 

in clinical practice. A novel high-fidelity computational simulator of PARDS was 

calibrated against individual patient data from an ongoing observational prospective 

cohort of PARDS from the Children’s Hospital of Philadelphia and used to investigate 

alternative strategies for achieving more protective ventilation without breaching safety 

limits on gas exchange. An initial cohort of 30 PARDS patients (age 3.1 ± 0.4 years 

ventilated via 5.0 mm internal diameter tracheal tubes under neuromuscular blockade) 

was selected for model and strategy development. Two additional cohorts were 



Chapter 4 

 42 

subsequently selected to test the utility and generalisability of our results: 28 patients 

between 1 and 2 years of age, and 19 patients aged between 1 month and 18 years with 

tidal volumes >10 mL.kg-1. Interventions based on progressive reductions in tidal 

volume or driving pressure produced significant average reductions in multiple 

parameters associated with ventilator induced lung injury (tidal volumes, dynamic strain, 

mechanical power and driving pressure) in all three cohorts without compromising 

safety limits on gas exchange. Our results indicate that there may be general scope for 

implementing more protective ventilation in PARDS, suggest strategies for achieving 

this at the bedside, and demonstrate the utility of high-fidelity computational 

simulations in intensive care research. 

4.2. Introduction 

Mechanical ventilation in paediatric acute respiratory distress syndrome (PARDS) is less 

studied than in adults. After introducing the concept of ARDS in 1967 [133], neither the 

subsequent American-European Consensus Conference [134] nor the Berlin definition 

[135] considered differences between adult and paediatric patients when introducing 

definitions and guidelines. Consequently, current guidelines for mechanical ventilation 

in PARDS have largely been adapted from developments in the treatment of adult 

ARDS. In 2015, a paediatric-specific definition for PARDS was proposed by the 

Paediatric Acute Lung Injury Consensus Conference (PALICC) [136], which showed 

improved performance for PARDS, relative to adult ARDS definitions [137, 138]. 

However, recommendations for mechanical ventilation for children from both PALICC 

and the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC)[139] 

largely rely on adult trials, with some contribution from paediatric observational data. 

Convincing evidence from clinical trials suggest that lower tidal volumes can reduce 

mortality in adult ARDS [4, 6, 140]. Recent research has highlighted the potential of 

other lung-protective strategies based on reducing driving pressure and MP to reduce 

ventilator induced lung injury (VILI) [141–144]. To date, there has been no randomized 

trial to determine the appropriate application of protective ventilation in PARDS. 

Observational studies are unclear, with conflicting results [145–148]. Concerns about 
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hypercapnia or increased ventilatory dead space in paediatrics may also contribute to the 

hesitancy to lower VT. There is therefore an urgent need for studies that can provide 

additional evidence regarding how lung-protective ventilation could be safely 

implemented during treatment of PARDS patients. It is hypothesized that analysis of a 

large-scale PARDS dataset using a computational simulator would allow us to (a) 

determine the scope (in terms of lowering VT, ∆P and MP) for safely implementing 

more protective ventilation, and (b) develop, test and directly compare alternative 

strategies for achieving this in practice. 

4.3. Materials and Methods 

4.3.1. Patient selection 

Development cohort  

Patients were selected from an ongoing (since 2011) observational prospective cohort 

[149] of intubated children meeting Berlin criteria for ARDS from the Children’s 

Hospital of Philadelphia (CHOP).  The study was reviewed by the CHOP Institutional 

Review Board, and requirement for informed consent was waived.  As the cohort was 

initiated prior to publication of the PALICC definition of PARDS [136], they were not 

screened based on oxygenation index; however, all patients met PALICC 

criteria.  Thirty subjects between 2.5 and 4 years of age ventilated via a 5.0 mm cuffed 

endotracheal tube during neuromuscular blockade were selected. The initial cohort is 

restricted to this age/size range to limit some of the variability during model 

development: e.g. subjects are selected with 5.0 mm internal diameter tracheal tubes, 

allowing consistency when calculating ventilatory resistance.  Furthermore, this age 

range was close to the median age (4 years) of the overall cohort.  Finally, paralyzed 

subjects are used to ensure reproducibility of the associations between ventilator 

changes and gas exchange, which would be confounded by spontaneous effort. Arterial 

blood gases and ventilator changes during the first 72 hours of PARDS were 

recorded.  The respiratory variables of peak inspiratory pressure (PIP), PEEP, and 

exhaled VT were collected at the ventilator for patients with VT ≥ 100 mL using 
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integrated software provided by the manufacturer (Dräger, Inc., Lübeck, Germany), and 

using a sensor proximate to the endotracheal tube for VT < 100 mL. Ventilator 

management and use of ancillary therapies were not protocolized. 

Test cohorts  

To test the utility and generalisability of the model and associated ventilation strategies, 

the analyses are repeated in a separate cohort of children aged 1 to 2 years.  This age 

group was selected because larger VT are commonly used to overcome perceived 

increases in dead space in younger lungs.  Finally, analyses were repeated in a cohort of 

19 children between 1 month and 18 years of age with VT > 10 mL.kg-1, as this is 

identified as a subgroup in which lung-protective strategies may have the greatest 

impact. The subjects in the test cohort 2 (high tidal volume) are not a subgroup of any 

other two cohorts. 

4.3.2. Simulator development and calibration to patient data 

The paediatric simulator was developed by performing a detailed revision of both the 

structure and parameters of the baseline simulator described in Chapter 2, Section 2.4, 

in light of the key differences between paediatric and adult physiology, as described 

below.   

There are a number of other respiratory physiology simulators for ARDS patients 

available in the literature [27, 64, 72–74, 150, 151], each of varying degrees of 

complexity and proven validity. Of these, only the model reported in [64, 74] can be 

applied to study paediatric patients. However, this model suffers from a number of 

significant limitations. These include the fact that (a) the model simulates the entire lung 

as a single compartment, (b) little justification/explanation is given for selection of 

model parameters, (c) the model specifies a lower age limit of 8 years, (d) the model 

cannot represent the pathophysiology of individual patients or disease states, and (e) no 

attempt has been made to validate its responses against real patient-data. To the authors’ 

knowledge, the results reported here represent the first application of a validated 

computational simulator to investigate novel ventilation strategies for PARDS. 
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There are a number of important differences between adult and paediatric pulmonary 

physiology. Some physiological features such as lung volume, cardiac output, oxygen 

consumption, airway resistance and pulmonary vascular resistance are highly variable in 

children depending on their age and weight. Thus, these different physiological 

parameters are required to be adaptively set in the model based on the age or weight of 

the target population. On the other hand, the stiffer lungs of paediatric subjects need to 

be taken into account when adjusting the volume-pressure equation of single alveolar 

compartments. The corresponding modifications applied to the model are fully 

described in this section. 

Cardiac output and the volume of functional residual capacity are estimated in the 

model using the following equations (The study population fro CO was composed of 

normotensive individuals 1 day to 85 years old and the study population for Vfrc 

included subjects aged 0.1-11.2 years old) [152, 153]: 

CO = 933 × weight(kg)
0.38          (ml. min−1) (30) 

Vfrc = 9.51 × weight(kg)
1.31                     (ml) (31) 

The total airway resistance and pulmonary vascular resistance are greater in children 

than in adults, decreasing as they grow older. The specific airway resistance can be 

estimated by [154]: 

sRtot = 1.3083378 − 0.00016486 ∗ age3 − 0.03670306 ∗ sex            (kPa. s) (32) 

where sex is set to 1 for males and 0 for females (The equation was extracted from data 

on healthy paediatric subjects aged 2-11 years old). The total resistance is calculated as: 

Rtot =
sRtot

Vfrc
                  (kPa. s. l−1) (33) 

and is distributed between the main airway and 100 parallel alveolar compartments in 

the model. Every alveolar compartment also has two resistances placed in series, namely 
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the alveolar inlet resistance and the upper bronchial resistance. The pulmonary vascular 

resistance is calculated by means of the following equation [155]: 

PVR =
80(MPAP − MPCWP)

CO
            (dyn. s. cm−5) (34) 

Note that the difference in values for mean pulmonary arterial pressure (MPAP) and 

mean pulmonary capillary wedge pressure (MPCWP) is virtually identical in children and 

adults. Hence, lower cardiac output plays the main role in generating higher PVR values 

for paediatric subjects. Furthermore, to characterize the stiffer nature of paediatric lungs 

at baseline the denominator of Eq.16 is reduced to 2000, 5000, 12000 and 50000 

cmH2O mL-2 for patients younger than 1, 1 to 2, 3 to 5 and 8 to 10 years old 

respectively. 

The simulator was matched to individual patient data using advanced global 

optimisation algorithms already described in Chapter 3 (see Section 3.3.1). The 

optimization problem is formulated to find the configuration of model parameters that 

minimize the cost function J given below: 

min
𝑥

J = √∑
Ŷ𝑖 − Y𝑖

Y𝑖

7

𝑖=1

 (35) 

with 

Y = [PaO2, PaCO2, PE′CO2, PIP, mPaw, TOPmean, Vfrc] (36) 

where Y is the vector of data values and Ŷ is the vector of model estimated values. 

PE’CO2 is partial pressure of carbon dioxide at the end of an exhaled breath. The 

average threshold opening pressure of all the compartments (TOPmean) is optimized to 

be 20 cmH2O [88]. 
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4.3.3. Strategies for achieving lung-protective ventilation 

After matching the model to each individual patient, the potential for achieving lung-

protective ventilation in these patients was investigated by evaluating four different 

strategies on each of the virtual patients. The primary objective of the ventilation 

strategies was to progressively lower the risk of VILI without violating the following 

safety constraints:  

• PaO2 ≥ 8 (60) kPa (mmHg) 

• PaCO2 ≤ 8 (60) kPa (mmHg) 

• PIP ≤ 35 cmH2O 

• RR ≤ 40 bpm 

PaO2, PaCO2 and RR are partial pressure of oxygen in arterial blood, partial pressure of 

carbon dioxide in arterial blood and respiratory rate, respectively. These constraints are 

based on those used in clinical trials in adult ARDS, adapted to match the requirements 

of paediatrics [4, 156]. Also, the clinicians validated these ranges and the upper limits 

were observed in the current dataset. In cases where the data indicated that a patient’s 

initial settings did not comply with one or more of the aforementioned safety criteria, an 

attempt to reduce VILI was only made if it led to an improvement in the patient’s safety 

parameters (e.g. reducing PaCO2 or PIP). The four strategies were designed using 

volume control mode (VC-CMV) and based on physiological equations that are widely 

used in clinical practice, as follows: 

Strategy 1: VT was reduced in steps of 0.5 mL.kg-1 with each step lasting for 30 minutes. 

ABG and PIP were checked at the end of each phase until any further reduction 

violated one of the above constraints. RR was simultaneously adjusted at each step to 

maintain a constant minute ventilation (MinV) using: 

MinV = VT × RR (37) 

Strategy 2: Alveolar minute ventilation (MinValv) was kept constant instead of the general 

MinV. To do this, the amount of anatomical dead space (VD) must be taken into 

account, and thus MinValv was calculated from the equation [157–159]: 
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MinValv = (VT − VD) × RR (38) 

Strategy 3: Here, a strategy previously employed in [49, 160] was implemented in the 

simulator. In this approach, the MinValv was kept constant using Eq.38, and the 

inspiratory flow kept constant using the equation: 

Finsp =
VT × RR

60 × DC
 (39) 

where Finsp is the square inspiratory flow into the lung from the ventilator (no pause 

time used), and DC is duty cycle. As VT and RR had already been determined (same as 

strategy 2), Finsp could only be manipulated by varying DC in Eq.39. Thus, the difference 

between strategies 2 and 3 is that DC is set as constant for the former, while DC is 

adjusted to maintain a constant Finsp in the latter. 

Strategy 4: A recent study of adult ARDS [141] suggested that reductions in VT are most 

advantageous in terms of lowering mortality when this leads to a corresponding 

decrease in driving pressure (∆P), defined as the difference between plateau pressure 

(Pplat) and PEEP. 

∆P = Pplat − PEEP (40) 

Pplat is calculated directly from the simulator and represents the end inspiratory lung 

pressure. The employed strategy for decreasing ∆P works by increasing the applied 

PEEP and then adjusting VT to keep the plateau pressure constant. For this purpose, 

PEEP was increased by 1 cmH2O (causing a rise in Pplat) and then VT was reduced in 

steps of 0.5 mL kg-1 until Pplat returned to its initial value. The procedure was then 

repeated until one of the safety constraints was violated. 

4.3.4. Additional variables collected 

Strain, strain rate, and mechanical power were also calculated. Dynamic and static strain 

are markers of mechanical load during ventilation and can assist with understanding 

how the whole lung is affected by ventilation [161–163]. Although it is not possible to 
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measure exact values of strain in clinical practice, in the simulator they can be estimated 

as [161]: 

Dynamic Strain =  
VT

Vfrc(ZEEP)
 (41) 

Static Strain =  
VPEEP

Vfrc(ZEEP)
 (42) 

where VPEEP is the volume of gas in the lung due to PEEP and Vfrc(ZEEP) is the volume of 

functional residual capacity when PEEP is zero. Strain rate is strain divided by 

inspiratory time (Ti). 

Strain Rate =
Strain

Ti
 (43) 

Mechanical power is calculated using the below equation [142]: 

MP = 0.098 × RR × {VT
2 × [0.5 × ELrs + RR ×

(1 + I: E)

60 × I: E
× Raw] + VT × PEEP} (44) 

where ELrs is the elastance of the respiratory system, I:E is the inspiratory-to-expiratory 

time ratio, and Raw is the airway resistance. The unit for MP is J min-1. 

4.3.5. Statistical analysis 

Data are presented as mean ± SD, or shown graphically using median, interquartile and 

total ranges. Data for all subjects, even those in whom VILI reductions could not be 

performed without violating safety constraints, is presented. To avoid violation of 

underlying distribution assumptions, variables were compared using nonparametric 

statistics when appropriate, including Spearman's rho, Wilcoxon signed-rank test, 

Mann–Whitney U test and Kruskal–Wallis H test. A two-sided p-value of < 0.05 was 

considered to represent significance. 
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4.4. Results 

4.4.1. The simulator accurately represents individual patient data  

The ability of the simulator to accurately reproduce patient data was first verified by 

comparing its responses against data on the responses (PaO2 and PaCO2values) of 30 

patients (37% mild, 30% moderate, 33% severe per PALICC; 24% mild, 48% moderate, 

28% severe per Berlin) in the development cohort to mechanical ventilation. No strong 

correlation was observed between the reported values of VT (Kruskal-Wallis p = 0.7), 

PEEP (p = 0.4) and RR (p = 0.3) and PARDS severity category. Inspired oxygen 

fraction (FIO2) increased significantly with PARDS severity (Mann–Whitney p < 0.05). 

Average data across the cohort are shown in Table 2, while data for each individual 

patient are presented in Table 3 to Table 5. At baseline, 2 patients in the development 

cohort had VT > 10 mL.kg-1, 10 patients had VT 8–10 mL.kg-1, 16 had VT 6–8 mL.kg-1, 

and 2 had VT < 6 mL.kg-1. 

After model calibration, each individual patient in the cohort was simulated for 30 

minutes (or until reaching steady state) under mechanical ventilation with constant flow 

in the supine position. Figure 9 (A) and (B) compare the outputs of the simulator with 

the original data, expressed as median, interquartile range and actual range. Figure 10 

(A) and (B) shows the Bland-Altman plots for data points versus simulator outputs. To 

further test the reliability of the simulator, an additional validation procedure was 

performed in which PIP or mPaw were left out of the model calibration step, and the 

predicted model responses for these parameters were then checked against the data after 

the model matching stage. Figure 11 illustrates the results of the extended model 

validation on the development cohort by comparing the patient data against simulator 

predicted values expressed as median, interquartile range and actual range. The largest 

difference between the data and estimated values were observed when working with 

large pressure values which are considered unsafe in the clinical practice and violates the 

safety limits of this study as well (i.e. PIP > 35 cmH2O). These results confirm the 

capability of the simulator to accurately replicate multiple output values of the patients 

included in the cohort dataset across a range of different ventilator settings.  



Chapter 4 

 51 

 

 

 

 

 

 

 

Table 2. Patient characteristics and mechanical ventilator settings presented as mean ± SD 
across the cohorts. 

 Patient Data & Ventilator Settings 

Parameters Age Weight FIO2 RR VT PEEP PF OI 

 y kg  bpm mL.kg-1 cmH2O   

Development 
Cohort 

3.1±0.4 14.7±3.2 0.6±0.2 25.9±6.0 7.8±1.6 9.8±2.6 154.7±76.7 13.0±7.1 

Test Cohort 1 1.4±0.3 10.3±1.9 0.6±0.2 26.6±4.4 8.1±1.2 8.7±1.9 178.4±61.6 9.4±4.5 

Test Cohort 2 5.3±6.0 18.2±15 0.6±0.3 23.7±8.0 11.1±1.0 10.8±2.6 157.4±67.8 15.7±12.9 

 Blood Gases & Airway Pressures 

 PaO2 PE’CO2 PaCO2 PIP mPaw 

 kPa (mmHg) cmH2O 

Development 
Cohort 

10.1±2.0 
(75.5±15.2) 

6.0±1.6 
(44.8±12.2) 

7.2±1.8 
(53.9±13.6) 

30.2±7.7 15.9±4.2 

Test Cohort 1 
12.3±3.3 

(92.4±24.8) 
5.4±0.9 

(40.4±7.1) 
6.4±1.0 

(47.7±7.6) 
28.7±5.5 14.5±2.5 

Test Cohort 2 
11.2±4.6 

(84.4±34.4) 
4.6±1.0 

(34.8±7.2) 
5.6±1.6 

(41.9±11.9) 
32.0±6.5 17.8±4.2 
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Table 3. Patient characteristics and mechanical ventilator settings for each individual patient in 
the development cohort. 

ID Age Weigh
t 

FIO2 RR VT PEEP PF OI PaO2 PE’CO2 PaCO2 PIP mPaw 

 (y) (kg)  (bpm) (mL.kg-1) (cmH2O)   (mmHg) (cmH2O) 

# 1 2.8 15 0.45 28 6.7 6 137 8 62 39 46 20 11 

# 2 2.8 14 0.5 20 6.3 14 152 14.5 76 54 72 34 22 

# 3 2.8 14.5 0.6 25 6.8 10 97 15.5 58 42 60 25 15 

# 4 2.8 17 0.5 20 4.5 10 236 5.9 118 37 53 26 14 

# 5 2.8 20 0.21 26 7 10 295 5.1 62 32 32 26 15 

# 6 3 9.5 1 40 8.9 8 78 16.7 78 62 65 22 13 

# 7 3 15 0.5 30 8.7 5 118 6.8 59 37 40 20 8 

# 8 3 13.6 0.5 16 7.4 10 178 7.3 89 43 59 21 13 

# 9 3 15 0.3 24 5.3 10 266 6.4 80 50 56 28 17 

# 10 3 13 0.4 28 7.8 12 230 7 92 59 60 25 16 

# 11 3.3 15 0.5 25 7.5 8 178 7.3 89 43 46 26 13 

# 12 3.5 14 0.35 34 10.3 8 274 5.1 96 54 56 28 14 

# 13 4 17.5 0.55 20 6.9 10 149 10.1 82 43 72 29 15 

# 14 4.3 19 0.6 24 7.2 14 111 18 67 41 56 41 20 

# 15 2.5 12.2 0.3 26 8.9 12 343 5.2 103 60 63 32 18 

# 16 3.7 15 0.4 22 6.7 6 170 5.9 68 48 51 24 10 

# 17 3.3 14 0.55 35 6.5 15 118 21.2 65 55 74 47 25 

# 18 2.8 27 0.8 24 6.7 12 73 24.7 59 33 42 32 18 

# 19 2.9 12 1 32 7.5 10 72 23.6 72 42 48 34 17 

# 20 3 9.5 1 37 8.9 12 78 29.5 78 50 79 42 23 

# 21 3 15 0.8 21 8.7 8 79 17.7 63.2 39 45 31 14 

# 22 3 13.6 1 20 9.6 8 57 26.3 57 30 39 24 15 

# 23 3 15 0.7 30 8 12 130 18.5 91 30 33 46 24 

# 24 3 13 0.4 27 7.5 12 150 12.7 60 72 75 41 19 

# 25 3.1 13 0.55 27 8.1 12 129 14.0 70.95 59 65 36 18 

# 26 3.1 13 0.75 21 8.8 8 112 10.7 84 62 64 20 12 

# 27 3.25 13 1 23 7.7 7 59 18.6 59 20 34 28 11 

# 28 3.3 15.5 0.35 23 8.4 8 237 6.8 82.95 47 59 36 16 

# 29 3.33 15 0.6 24 7.5 6 108 11.1 64.8 26 38 26 12 

# 30 3.5 14 0.35 20 13.6 12 226 8.4 79.1 35 36 37 19 

Mean 3.1 14.7 0.6 25.9 7.8 9.8 154.7 13.0 75.5 44.8 53.9 30.2 15.9 

SD 0.4 3.2 0.2 6.0 1.6 2.6 76.7 7.1 15.2 12.2 13.6 7.7 4.2 
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Table 4. Patient characteristics and mechanical ventilator settings for each individual patient in 
test cohort 1. 

ID Age Weigh
t 

FIO2 RR VT PEEP PF OI PaO2 PE’CO2 PaCO2 PIP mPaw 

 (y) (kg)  (bpm) (mL.kg-1) (cmH2O)   (mmHg) (cmH2O) 

# 1 1.7 12 0.35 30.5 30.6 5 274 4.4 95.9 39 41 26 12 

# 2 1.5 9.8 0.5 23.5 23.3 8 230 4.8 115 47 48 20 11 

# 3 1.4 10 0.4 25 24.8 8 262 5.0 104.8 40 46 28 13 

# 4 1.67 8.8 0.35 25.5 25.7 8 274 5.1 95.9 39 52 30 14 

# 5 1.67 12 0.4 23 22.9 5 195 5.1 78 42 44 21 10 

# 6 2 10 0.5 20.5 20.6 10 226 5.3 113 39 44 17 12 

# 7 1.5 12 0.4 28.5 28.5 8 260 5.4 104 39 47 26 14 

# 8 2 14 0.5 20 20 8 236 5.9 118 39 41 22 14 

# 9 1.4 12.7 0.4 25 25.2 10 242 6.6 96.8 24 33 31 16 

# 10 1.1 10 0.4 29.5 29.4 12 246 7.3 98.4 35 41 37 18 

# 11 1.5 10.5 0.4 29 29 10 200 8.0 80 43 49 32 16 

# 12 1 6.5 0.65 28 28 8 160 8.1 104 54 57 26 13 

# 13 1.4 10 0.4 25.5 25.7 10 197 8.6 78.8 30 41 28 17 

# 14 1.33 8.8 0.45 39 39 8 169 8.9 76.05 39 51 30 15 

# 15 1.5 11 0.5 29 29 8 154 9.1 77 54 55 31 14 

# 16 1.75 11 0.5 23.5 23.4 11 197 9.1 98.5 36 54 39 18 

# 17 1.25 10 0.5 28 28.2 8 146 9.6 73 40 50 29 14 

# 18 1.4 7.5 0.8 22 21.9 8 124 9.7 99.2 46 47 23 12 

# 19 1 7.5 1 35 34.9 12 190 10.0 190 29 39 35 19 

# 20 1.8 12.3 0.7 24.5 24.6 8 135 10.4 94.5 45 58 25 14 

# 21 1.1 11.6 0.5 24 24.2 10 172 10.5 86 43 54 35 18 

# 22 1 8.2 0.8 31 31.2 5 93 10.8 74.4 51 57 24 10 

# 23 1.6 13 0.5 25.5 25.3 8 130 10.8 65 33 37 30 14 

# 24 1.5 10 0.65 21.5 21.7 10 123 12.2 79.95 50 54 29 15 

# 25 1.75 12.7 0.8 21.5 21.7 8 85 14.1 68 37 40 25 12 

# 26 1.1 10 0.9 26 26.1 10 105 16.2 94.5 34 37 35 17 

# 27 1.25 9 0.6 30.5 30.5 12 105 17.1 63 44 57 35 18 

# 28 1.25 7.7 1 30 30.2 8 65 24.6 65 41 61 34 16 

Mean 1.4 10.3 0.6 26.6 26.6 8.7 178.4 9.4 92.4 40.4 47.7 28.7 14.5 

SD 0.3 1.9 0.2 4.4 4.4 1.9 61.6 4.5 24.8 7.1 7.6 5.5 2.5 

  



Chapter 4 

 54 

 

 

 

 

 

 

Table 5. Patient characteristics and mechanical ventilator settings for each individual patient in 
test cohort 2. 

ID Age Weigh
t 

FIO2 RR VT PEEP PF OI PaO2 PE’CO2 PaCO2 PIP mPaw 

 (y) (kg)  (bpm) (mL.kg-1) (cmH2O)   (mmHg) (cmH2O) 

# 1 0.2 5.4 0.5 25 11.7 15 224 9.8 112 40 41 40 22 

# 2 0.5 6 0.35 35.5 11.1 7 194 6.2 67.9 24 31 28 12 

# 3 0.5 7.6 0.4 38.5 10 8 127 11.8 50.8 31 39 26 15 

# 4 0.6 6.8 0.5 39 10.4 6 156 10.3 78 35 63 37 16 

# 5 0.7 7 0.3 32 13 12 250 7.6 75 21 25 36 19 

# 6 0.8 8.5 0.4 23.5 10.4 12 197 8.6 78.8 39 40 25 17 

# 7 0.9 10 0.45 25.5 10.2 10 146 11.6 65.7 50 71 30 17 

# 8 1.25 7.7 1 24.5 10.4 8 65 24.6 65 41 61 34 16 

# 9 2 10 0.5 20.5 11.4 10 226 5.3 113 39 44 17 12 

# 10 3.2 14 0.6 20 10.7 12 148 10.8 88.8 36 38 30 16 

# 11 3.5 14 0.35 20.5 13.6 12 226 8.4 79.1 35 36 37 19 

# 12 3.5 13 1 28.5 10.8 12 59 50.8 59 48 49 42 30 

# 13 4.6 16.4 0.35 20.5 12.1 10 251 5.7 87.9 34 40 26 14 

# 14 8 14 0.45 16.5 11.9 12 153 11.8 68.9 31 35 27 18 

# 15 9.25 40 1 12 11.3 12 199 10.1 199 32 33 37 20 

# 16 10.2 45 1 13.5 10 12 59 33.9 59 30 36 40 20 

# 17 16.33 30 1 22 10 16 55 41.8 55 35 48 32 23 

# 18 17.1 55 0.7 12.5 10.9 12 180 10 126 27 30 28 18 

# 19 17.7 35 1 22 11.1 8 75 20 75 33 37 36 15 

Mean 5.3 18.2 0.6 23.7 11.1 10.8 157.4 15.7 84.4 34.8 41.9 32.0 17.8 

SD 6.0 15.0 0.3 8.0 1.0 2.6 67.8 12.9 34.4 7.2 11.9 6.5 4.2 
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4.4.2. Evaluating strategies for implementing protective ventilation 

Figure 12 to Figure 13 show the effect of each strategy for implementing protective 

ventilation, in terms of its impact on VT, MP and ∆P. Similar reductions in average VT 

across the patient cohort were achieved using strategies 1-3 (15% (1.3 mL.kg-1), 12% (1 

mL.kg-1) and 14% (1.2 mL.kg-1), respectively). RR needed to be increased by a smaller 

amount (15%) for strategy 1, (versus 33% and 37% on average for strategies 2 and 3, 

respectively). After implementing any of the three strategies, the number of patients 

being ventilated using VT > 10 mL.kg-1 fell to zero. There were also reductions in the 

number of patients receiving VT in the ranges of 8–10 mL.kg-1 (-30 % for all strategies) 

and 6–8 mL.kg-1 (-18.8% for strategies 1 and 3, -12.5% for strategy 2). Correspondingly, 

the number of patients receiving VT in the range 4-6 mL.kg-1 rose from 6.7% to 33.3% 

in strategy 1 and to 30% in strategies 2 and 3, respectively. These average reductions 

were achieved despite the fact that there were 8 patients (4 severe PARDS, 4 moderate 

PARDS) whose baseline values of PaCO2 and PIP did not allow any of the strategies to 

be implemented without violating constraints. 

Figure 14 shows significant reductions in dynamic strain for strategies 1 to 3 (-20%, -

19% and -19%, respectively) with corresponding increases in static strain (+9%, +17% 

and +35%, respectively). The rise in static strain indicates larger lung volumes at end-

expiration. In strategy 3, the change in DC (shorter exhalation time) explains the higher 

static strain compared to the other two approaches. To rule out the possibility that 

higher static strains are due to breath-stacking, the difference between the inhaled tidal 

volume (VTi) and exhaled tidal volume (VTe) were examined in all strategies to detect 

possible incomplete exhalation. The change in end-expiratory lung volume was also 

monitored over a 3-hour time period. The results of both investigations confirm (see 

Figure 17) that the higher static strains are not a result of breath-stacking. Likely due to 

the higher RR, static and dynamic strain rates were higher in strategies 1 to 3 – Figure 

15 (A) and (B).  
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Figure 9. A comparison of the simulator outputs with the original patient data in panels (A) and 
(B), expressed as median, interquartile range and actual range. 

The ability of the simulator to accurately reproduce patient data was first verified by comparing 
its responses against data on the responses. 

 

 

 

Figure 10. Panels (A) and (B) show the Bland-Altman plots for simulator outputs and original 
patient data. “R” represents the correlation coefficient of the data and the simulated values. 
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Figure 11. Results of the extended model validation on the development cohort by comparing 
the patient data against simulator estimated values 

Panels (A) and (B) show the results for leaving PIP out of the model matching step and 
subsequently predicting its value. Panels (C) and (D) show the results for leaving mPaw out of 
the model matching step and subsequently predicting its value. In (A) and (C) data are expressed 
as median, interquartile range and actual range whilst (B) and (D) present the Bland-Altman 
plots, and “R” is the correlation coefficient of the data and the simulated values. 
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Figure 12. Development Cohort, panels illustrate the amount of tidal volume reduction. 

Box plot on the left (A) shows data as median, interquartile range and actual range while 
histogram on the right (B) demonstrates the distribution of all patients’ data before and after 
implementing different strategies. Similar reductions in average VT across the patient cohort 
were achieved using strategies 1-3 (15% (1.3 mL.kg-1), 12% (1 mL.kg-1) and 14% (1.2 mL.kg-1), 
respectively). 
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Figure 13. Development Cohort, panels illustrate the change in driving pressure (A)-(B) and 
mechanical power (C)-(D) before and after implementing different strategies. 

Box plots on the left (A)-(C) show data as median, interquartile range and actual range while 
histograms on the right (B)-(D) demonstrate the distribution of all patients’ data. Both ∆P and 
MP were reduced the most in strategies 1 and 4 and raised the most in strategies 2 and 3. 
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Differences emerged when considering the effect of each strategy on mechanical power. 

Strategy 1 produced no significant change (+1%; p=0.2, signed-rank test) but both 

strategies 2 and 3 resulted in large increases (+22% and +19%, respectively; both 

p<0.05). 

Amongst the four safety constraints, limits on PaCO2 and RR played the main role in 

restricting further reduction of VT. Limits on PaO2 were never reached. The changes in 

gas exchange, PE’CO2, PIP and mPaw caused by the VT reductions are presented in 

Figure 16. The values that are outside of the determined safety constrains represent 

those patients whose initial status violated one or other of the safety constraints. Figure 

15 (C) and (D) compares the levels of ventilatory dead space and dead space fraction 

(Eq.45) respectively, for all applied strategies. 

Dead Space Fraction =
Dead Space

VT
 (45) 

When strategy 4 (adjusting PEEP and VT to reduce ∆P) was applied, the PaCO2 limit 

was the only constraint precluding further reductions due to the strategy not 

compensating for MinV. Maintaining MinV is not possible using this strategy, as it 

requires increasing RR, leading to a rise in Pplat which in turn impedes reduction of ∆P. 

Consequently, this approach was only able to reduce ∆P in the 13 patients with the 

lowest initial PaCO2 levels. The average reduction in ∆P was -6% for all 30 patients in 

the dataset and -17% for the 13 patients on which this strategy could be applied. The 

corresponding changes in VT and PEEP were -7% and +10% respectively. This 

compares with changes in ∆P of -4%, +1% and +8% for strategies 1-3, respectively. 

Strategy 4 was the only approach that produced a significant reduction in mechanical 

power (-8%, versus +1%, +22% and +19% for strategies 1-3).  
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Figure 14. Development Cohort, panels compare the dynamic strain (A)-(B) and static strain 
(C)-(D) before and after implementing different strategies. 

Box plots on the left (A)-(C) show data as median, interquartile range and actual range while 
histograms on the right (B)-(D) demonstrate the distribution of all patients’ data. Strategy 3 had 
the most impact on static and dynamic strain. 
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Figure 15. Development Cohort, panels compare the dynamic strain rate (A), static strain rate 
(B), dead space (C) and dead space fraction (D) before and after implementing different 
strategies. 

Box plots show data as median, interquartile range and actual range. All strategies increased 
dead space fraction as they had little effect on dead space while reducing VT. 
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Figure 16. Panels (A) and (B) represent the variations in patients’ responses to tidal volume 
reduction strategies. 

The values that are outside the specified safety constraints are from those patients who had such 
values at baseline. Box plots show data as median, interquartile range and actual range. Amongst 
the four safety constraints, limits on PaCO2 and RR played the main role in restricting further 
reduction of VT. Limits on PaO2 were never reached. 
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Figure 17. Figure shows the difference between the average inhaled tidal volumes (VTi) and 
exhaled tidal volumes (VTe) (red triangles) as well as the change in end-expiratory lung volume 
(EELV) (blue circles) over a 3h time period. 

The results of both investigations confirm that the higher static strains are not a result of breath-
stacking. 
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4.4.3. Additional test cohorts 

To test the utility and generalisability of our results, the same 4 strategies are applied to 

two separate test cohorts of PARDS patients from the CHOP dataset. For both test 

cohorts, the same fidelity in matching simulated outputs to patient data was observed as 

with the initial development cohort. Two patients in Test Cohort 1 and three patients in 

Test Cohort 2 had baseline values of PaCO2 and PIP that would not allow any of the 

proposed strategies to be implemented. 

Similar trends emerged in terms of achieving more protective ventilation for all 4 

strategies with these additional datasets (Figure 18 and Figure 24). Strategy 1 produced 

the largest average reductions in VT (-22% in Test Cohort 1, -28% in Test Cohort 2) and 

dynamic strain (-20% in Test Cohort 1, -27% in Test Cohort 2), with the lowest 

corresponding increase in static strain (+1% in Test Cohort 1, +3% in Test Cohort 2). 

Strategy 1 produced a small reduction in mechanical power (-4% in both cohorts) and 

significant reductions in ∆P (-13% and -16%). Although strategies 2 and 3 achieved 

reductions in VT, ∆P and dynamic strain; this came at the cost of higher increases in 

static strain than required by strategy 1. Both strategies 2 and 3 also produced large 

increases in mechanical power. Finally, strategy 4 produced significant decreases in VT, 

dynamic strain and ∆P in both cohorts, and the largest decreases in mechanical power (-

10% in Test Cohort 1, -23% in Test Cohort 2). Over the three cohorts analysed, Test 

Cohort 2 (initial VT > 10 mL.kg-1) showed the greatest potential for improvements in 

terms of achieving more protective ventilation.  
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Figure 18. Test Cohort 1&2, panels illustrate the amount of tidal volume reduction. 

Box plots on the left (A)-(C) show data as median, interquartile range and actual range while 
histograms on the right (B)-(D) demonstrate the distribution of all patients’ data before and 
after implementing different strategies. All strategies significantly reduced VT. Strategy 1 
produced the largest average reductions in VT (-22% in Test Cohort 1, -28% in Test Cohort 2). 
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Figure 19. Test Cohort 1, panels illustrate the change in driving pressure (A)-(B) and mechanical 
power (C)-(D) before and after implementing different strategies. 

Box plots on the left (A)-(C) show data as median, interquartile range and actual range while 
histograms on the right (B)-(D) demonstrate the distribution of all patients’ data. Both ∆P and 
MP were reduced the most in strategies 1 and 4 and raised the most in strategies 2 and 3. 
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Figure 20. Test Cohort 1, panels compare the dynamic strain (A)-(B) and static strain (C)-(D) 
before and after implementing different strategies. 

Box plots on the left (A)-(C) show data as median, interquartile range and actual range while 
histograms on the right (B)-(D) demonstrate the distribution of all patients’ data. 
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Figure 21. Test Cohort 1, panels compare the dynamic strain rate (A), static strain rate (B), dead 
space (C) and dead space fraction (D) before and after implementing different strategies. 

Box plots show data as median, interquartile range and actual range. All strategies increased 
dead space fraction as they had little effect on dead space while reducing VT. 
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Figure 22. Test Cohort 2, panels illustrate the change in driving pressure (A)-(B) and mechanical 
power (C)-(D) before and after implementing different strategies. 

Box plots on the left (A)-(C) show data as median, interquartile range and actual range while 
histograms on the right (B)-(D) demonstrate the distribution of all patients’ data. Both ∆P and 
MP were reduced the most in strategies 1 and 4 and raised the most in strategies 2 and 3. 
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Figure 23. Test Cohort 2, panels compare the dynamic strain (A)-(B) and static strain (C)-(D) 
before and after implementing different strategies. 

Box plots on the left (A)-(C) show data as median, interquartile range and actual range while 
histograms on the right (B)-(D) demonstrate the distribution of all patients’ data. All strategies 
reduced dynamic strain with a slight increase in static strain. 
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Figure 24. Test Cohort 2, panels compare the dynamic strain rate (A), static strain rate (B), dead 
space (C) and dead space fraction (D) before and after implementing different strategies. 

Box plots show data as median, interquartile range and actual range. All strategies increased 
dead space fraction as they had little effect on dead space while reducing VT. 
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4.5. Discussion 

Four separate strategies have been developed and tested for achieving lung protective 

ventilation in PARDS. A strategy of maintaining MinV allowed for greatest reduction in 

VT with small decreases in mechanical power.  A strategy of minimizing ΔP resulted in 

larger reductions in mechanical power, with smaller reductions in VT.  Conversely, 

strategies aimed at maintaining constant alveolar ventilation, either by manipulating DC 

or inspiratory flow, are capable of reducing VT and ΔP, they come at the expense of 

increasing power.  Although some previous studies utilising a uniform low value of VT 

showed deleterious effects [140], here VT was progressively reduced in patients only as 

long as it did not violate safety constraints on gas exchange or cause any damaging 

effects. Similarly, while increasing RR in isolation could potentially exacerbate VILI 

[164, 165], here only RR is increased by modest amounts to compensate for 

simultaneous reductions in VT. Our results suggest that there is significant scope for 

safely adjusting ventilator settings in PARDS to mitigate VILI and demonstrate the 

utility of simulation to establish testable hypotheses in ventilated children. 

Albuali et al. [146] suggested lower VT was associated with lower mortality in a study of 

164 children with PARDS. However, this retrospective study made no allowance for 

trends showing general improvement in PARDS survival rates over the last decades 

[149, 166]. Conversely, in a prospective, multicentre observational study, Erickson et al. 

[148] found higher VT to be associated with lower mortality. Furthermore, a number of 

other retrospective and prospective studies failed to identify any significant relationship 

between VT and mortality in PARDS [147, 167]. A meta-analysis of observational 

studies [145] could not establish an association between VT and mortality in ventilated 

children, and both PALICC [136] and PEMVECC [139] rely primarily on adult data for 

their recommendations. 

In 2015, PALICC released the first recommendations specifically tailored to PARDS 

[136], and addressed a number of current issues in patient treatment. Strategies limiting 

VT and plateau pressure were marked under “weak agreement.” In addition, a survey on 

stated practice pattern found that although paediatricians theoretically concurred with 
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adult guidelines to ventilate with lower VT and pressure constraints, in actual practice, 

over 25% of PARDS patients are ventilated with VT > 10 mL kg-1 [168], and likely 

higher in obese children when adjusting for ideal body weight. Likewise, a recent study 

by Ward et al. [169] revealed poor adherence rates of only 32% (using a VT cut-off of 

6.5 mL kg-1) and 58% (using a cut-off of 8 mL kg-1) for using low VT.  

Despite this, mortality rates in PARDS have improved over the last two decades, part of 

which may be related to adoption of lung-protective ventilation strategies and 

extrapolation from adult ARDS literature.  Continued resistance to lung-protective 

ventilation in PARDS, particularly use of VT > 10 mL kg-1, may reflect concerns 

regarding whether VT and ventilator pressures can be safely reduced in this population.  

Here, the feasibility of adjusting ventilator settings to mitigate VILI within reasonable 

safety parameters for gas exchange and RR is demonstrated.  The reductions achieved 

are most pronounced in subjects with VT > 10 mL.kg-1 and appear to be generalizable 

throughout the entire age range and severity encountered in PARDS. While studies of 

ΔP and mechanical power limits are in their infancy, preliminary data suggest 

“thresholds” above which these values are associated with worse outcomes [143, 170].  

Analysis of our dataset shows that these thresholds are currently being exceeded in 

many subjects, particularly in children with VT > 10 mL kg-1. 

Static strain represents the initial displacement of the lungs from their original position 

due to PEEP at the start of ventilation and subsequently stays constant during 

ventilation unless PEEP is changed. It has been shown that the lung can tolerate 

increased static strain, provided that the total lung capacity is not exceeded, and that 

dynamic strain is likely to be more injurious [161, 163]. The change in lung strain is also 

correlated with the recruited volume of the lung. A recent study showed that lung 

recruitment causes reduction in dynamic strain while increasing static strain [163]. 

Hence, both the changes in static and dynamic strain observed in our results suggest 

general improvement in lung recruitment as a result of the changes to ventilator settings. 

Strategy 4 resulted in reduced mechanical power. The original power equation (Eq.44) 

by Gattinoni et al. can be simplified and re-written as the equation below [142]: 
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MP = RR × VT × (PIP − 0.5Pplat + 0.5PEEP) = RR × VT × (PIP − 0.5∆P) (46) 

Considering the above equation, it can be expected that an increment in inspiratory flow 

(Eq.39) leads to an increase in power as long as the cause of the change in flow is MinV 

(i.e. RR·VT). However, when MinV was kept constant and a smaller DC raised the flow, 

the resultant change in power depends on how PIP and Pplat respond to the adjustment 

– i.e. specifically the change of (PIP-0.5ΔP). As a result, it cannot be concluded that a 

greater flow would always lead to a rise in the power. Moreover, it should be noted that 

MinV directly impacts the power, not the flow itself. For instance, patients were 

ventilated with the same flow in strategy-1 and strategy-3, while the latter has a larger 

MinV, and so higher power. 

The study has a number of limitations. Data were derived from a single institution, and 

while severity of PARDS and outcomes were similar to other cohorts, generalizability 

remains to be demonstrated. To minimise possible confounding factors, the model is 

currently configured to represent patients that are fully sedated under mechanical 

ventilation, therefore autonomic reflex modules in the model were not utilised. The 

model also does not include the effect of inflammatory mediators commonly found in 

PARDS, which are difficult to quantify and isolate in clinical settings. As the model is 

computational in nature, it does not provide any direct histological or biological 

evidence of the effects of the proposed ventilation strategies on VILI markers, and 

therefore further animal and/or human studies should be performed to provide 

conclusive evidence of their relative effectiveness in achieving more protective 

ventilation. As adolescents may be diagnosed with either Berlin or PALICC criteria 

[171], it is unclear whether they would be more appropriately managed with our 

protocol, or an adult version. The model was developed to focus on VILI, and those 

chose to use PaCO2, rather than pH. While this may not entirely reflect clinical practice, 

in which pH is monitored alongside PaCO2, the simulator cannot accommodate 

something as variable as pH, which is often modified by entire non-ventilator 

interventions, such as volume resuscitation or exogenous bicarbonate. 
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Chapter 5:  

 

 

Evaluating the utility of driving pressure 

and mechanical power to determine 

optimally protective ventilator settings in 

two cohorts of adult and paediatric ARDS 

patients  

5.1. Summary 

Mechanical power and driving pressure have recently been proposed as indicators, and 

possibly drivers, of ventilator-induced lung injury. In this chapter, the utility of these 

different measures as targets to derive maximally protective ventilator settings is tested. 

The computational simulator was matched to individual patient data and used to 

identify strategies that minimize ∆P, MP and a modified version of MP (MMP) that 

removes the direct linear positive dependence between MP and PEEP. Data from the 

low tidal volume arm of the ARDSnet trial (N=100) and from an observational study of 

paediatric ARDS from the Children’s Hospital of Philadelphia (N=77 – the same data 

as used in Chapter 4) was used for the study. Global optimization algorithms evaluated 
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more than 26.7 million changes to ventilator settings (approximately 150,000 per 

patient) to identify strategies that minimize ∆P, MP or MMP. Large average reductions 

in ∆P (23%-Paediatric, 23%-Adult), MP (44%-Paediatric, 66%-Adult) and MMP (61%-

Paediatric, 67%-Adult) were achievable in both cohorts when oxygenation and 

ventilation were allowed to vary within specified safe ranges. Reductions in ∆P (12%-

Paediatric, 2%-Adult), MP (24%-Paediatric, 46%-Adult) and MMP (44%-Paediatric, 

46%-Adult) were still achievable even when no deterioration in gas-exchange was 

allowed. Minimum values of MP and MMP in both cohorts were produced by 

increasing VT and decreasing respiratory rate. Minimising MMP rather than MP resulted 

in higher values of PEEP in both cohorts. In the paediatric cohort, minimum ∆P was 

achieved by reducing VT and increasing RR and PEEP. The adult dataset had limited 

scope for further reducing VT, but ∆P could still be significantly reduced by increasing 

PEEP. Our analysis identified different ventilatory strategies that minimized ∆P or MP 

consistently across adult and paediatric datasets. Minimizing standard and alternative 

formulations of MP led to significant increases in VT. Targeting ∆P for minimisation 

resulted in ventilator settings that also reduced MP and MMP, but not vice versa. 

5.2. Introduction 

Mechanical power (Eq.44) [142–144], and driving pressure (Eq.40) [141], have recently 

been proposed as important measures of VILI in acute respiratory distress syndrome. 

Arguments for the importance of MP focus on the biophysical role of energy 

(stress×strain) and dynamics (rates of airway pressure change and cycling frequency) in 

the injurious potential of mechanical ventilation [144], whereas arguments for the 

centrality of ∆P are supported by statistical and computational analyses of clinical trial 

data that show strong correlations between the level of ∆P applied and relative risk of 

mortality [84, 141]. However, the rationale for both MP and ∆P rely on re-analyses of 

adult ARDS cohorts, and while initial studies are in progress (NCT03616704 and 

NCT03939260), an intervention targeting either parameter has yet to be proven 

efficacious. 
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To date, there has been no randomized trial to determine the appropriate application of 

protective ventilation in PARDS, and observational studies are unclear, with conflicting 

results [145–148].  Ventilator management in children is often extrapolated from adults, 

with uncertain applicability [172]. PARDS has a distinct epidemiology, with different 

inciting aetiologies and predictors of outcome [137, 173], relative to adults, necessitating 

specific investigations in children. Overall, even less evidence is available for children 

regarding the utility of either MP or ∆P as metrics of VILI or as modifiable ventilator 

parameters. 

To investigate the above issues, the high-fidelity computational simulator is employed 

and matched to individual patient data from two separate cohorts, paediatric and adult. 

High-fidelity simulation holds the potential to develop, test, and directly compare 

ventilation strategies prior to exposing vulnerable patients to potentially damaging 

interventions. Global optimization algorithms, implemented on high-performance 

computing clusters, were used to evaluate more than 26.7 million different changes to 

the baseline ventilator settings to identify those that minimized, in each individual 

simulated patient, ∆P, MP, and a modified formulation of MP (MMP) based on 

concerns [174] regarding the direct, positive, linear effect of PEEP on MP in the 

original MP equation. Changes to ventilator settings were constrained within specified 

limits, and maximally protective settings optimizing ∆P, MP, and MMP were calculated 

for two different scenarios (a) allowing, within safe limits, some deterioration in patient 

gas-exchange from baseline values, and (b) without allowing any deterioration in patient 

gas exchange. The primary aim of this study was to assess the scope for achieving more 

protective ventilation by separately minimising ∆P, MP or MMP. A secondary goal of 

the study was to investigate to what extent protective ventilation strategies identified for 

the paediatric cohort were consistent with those computed for the adult cohort. 
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5.3. Materials and Methods 

5.3.1. Patient selection 

Paediatric cohort  

Patients were selected from an ongoing (2011 onwards) observational prospective 

cohort [149] of intubated children meeting Berlin criteria for ARDS from the Children’s 

Hospital of Philadelphia (CHOP). Seventy-seven subjects between 1 month and 18 

years of age (Mean: 3.1, SD: 3.3, 23% severe, 44% moderate and 33% mild ARDS), 

ventilated via cuffed endotracheal tube during neuromuscular blockade, were selected. 

For full details see Section 4.3.1. 

Adult cohort  

Data were extracted from 100 adult ARDS patients randomly selected (14% severe, 

66% moderate, 20% mild) from the low tidal volume arm of the ARMA trial [4]. Access 

to the data was granted by the Biologic Specimen and Data Repository Information 

Coordinating Centre (BioLINCC) of the National Heart, Lung and Blood Institute 

(NHLBI). The data were provided in a de-identified state, and informed consent was 

not required. All patients received mechanical ventilation in assist-control ventilation 

mode. 

5.3.2. Simulator calibration to patient data 

Analyses were carried out using the simulator described in Chapter 2 and Chapter 4 (see 

Section 2.4 and Section 4.3.2). The simulator was matched to individual patient data 

using advanced global optimisation algorithms (see Section 3.3.1).  

5.3.3. Maximally protective ventilation as a constrained optimisation problem 

After matching the model to each individual patient, the potential for achieving 

maximally lung-protective (but acceptably effective) ventilation in these patients was 

investigated by formulating and numerically solving several different optimisation 

problems. For each individual patient, advanced global optimisation algorithms 

implemented on high-performance computing clusters is used to exhaustively search 
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through more than 26.7 million different changes to the reported ventilator settings – 

namely VT, RR, FIO2, PEEP and duty cycle DC (inspiratory-to-total time ratio) to 

identify which settings produced minimum values of the following quantities: 

• Driving pressure (Eq.40); 

• Mechanical Power (Eq.44); 

• A modified version of mechanical power (MMP) [174], given by: 

MMP = 0.098 × RR × VT
2 × [0.5 × ELrs + RR ×

(1 + I: E)

60 × I: E
× Raw] (47) 

which removes the direct linear, positive dependence between MP and PEEP [174]. 

To ensure the relevance of these optimisation problems to clinical practice, it is 

necessary to constrain the search for maximally protective settings to include only those 

that do not compromise the provision of adequate oxygenation and ventilation. This is 

achieved firstly by defining upper and lower allowable limits for the ventilation settings 

themselves (Table 6), and secondly by defining allowable limits for the values of patient 

blood gases PaO2 and PaCO2 and peak inspiratory pressure (Table 6) produced by the 

settings. The upper limit of RR in adults is set slightly higher than that in ARDSnet trial 

(40 vs 35 bpm) as higher RRs were observed at the baseline and were considered a 

plausible limit by clinicians. Ventilation settings that minimized ∆P, MP and MMP while 

keeping values of PaO2, PaCO2 and PIP within their specified limits were then 

computed for each patient (Approach 1). In the paediatric cohort, these limits were 

based on those used in the ARDSnet trial, adapted to match paediatric conventions 

[147, 148, 172, 175]. As the paediatric cohort was developed using decelerating flow, as 

is most common in paediatrics [176], PIP was used as a constraint rather than Pplat. 

When data indicated that a patient’s initial ventilator state did not comply with one or 

more of the specified safety limits, changes to the settings were only made if they led to 

an improvement in the relevant parameters (e.g. reducing PaCO2 or PIP). 

As an alternative strategy, it is also investigated whether changes to ventilator settings 

could be found that minimized ∆P, MP and MMP without resulting in any deterioration 
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in PaO2 and PaCO2 from their baseline values (Approach 2). An upper limit of 35 

cmH2O was again applied for PIP in the paediatric cohort. Due to relatively higher 

baseline PIP values in adults, the upper limit of PIP was set to the corresponding 

baseline values for these patients – Figure 33 and Figure 34. 

5.3.4. Statistical analysis 

Data are presented as Mean ± SD, or shown graphically using median, interquartile and 

total ranges. To avoid violation of underlying distribution assumptions, variables were 

compared using nonparametric statistics when appropriate (i.e. Wilcoxon signed-rank 

test). A two-sided p-value of < 0.05 was considered significant. 

5.4. Results 

5.4.1. The simulator accurately represents individual patient data 

The ability of the simulator to reproduce patient data was verified by comparing its 

responses (PaO2 and PaCO2) against data on the responses of patients from both 

cohorts. After model calibration, each individual patient in the cohort was simulated for 

30 minutes (or until reaching steady state) under volume controlled mechanical 

ventilation with constant flow in the supine position. The results of matching for the 

paediatric cohort has been presented in Chapter 4 (see Figure 9 and Figure 10). For 

adult cohort, Figure 25 (A) and (C) compares the outputs of the simulator with the 

original data, expressed as median, interquartile range and actual range. Also, Figure 26 

(A) and (B) shows the Bland-Altman plots for data points versus simulator output 

values. These results confirm the capability of the simulator to accurately replicate 

multiple output values of the patients included in both cohorts across a range of 

different ventilator settings.  
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Table 6. Allowable ranges of variation for ventilator parameters (approach 1 and 2) and 
predefined safety constraints (approach 1). 

 Paediatric Adult 

 Lower Limit Upper Limit Lower Limit Upper Limit 

Allowable ranges for ventilator parameters 

PEEP (cmH2 O) 5 18 5 20 

RR (bpm) 10 40 10 40 

VT (mL.kg-1) 3 12 3 10 

DC 0.3 0.6 0.2 0.8 

FIO2 0.21 1 0.21 1 

Predefined safety constraints 

PaO2 (mmHg) 60 120 55 100 

PaCO2 (mmHg) - 60 - 60 

PIP (cmH2O) - 35 - 35 
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Figure 25. A comparison of the simulator outputs with the original adult patient data in panels 
(A) and (B), expressed as median, interquartile range and actual range. 

The ability of the simulator to reproduce patient data was verified by comparing its responses 
(PaO2 and PaCO2) against data on the responses of patients from both cohorts. 

 

 

 

Figure 26. Panels (A) and (B) show the Bland-Altman plots for simulator outputs and original 
adult patient data. “R” represents the correlation coefficient of the data and the simulated 
values. 
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5.4.2. Reductions in ∆P, MP and MMP were achieved in both cohorts 

When ABGs were allowed to vary within pre-specified ranges given in Table 6, average 

maximum reductions in ∆P of 3.0±2.2 cmH2O (23%) compared to baseline values in 

the paediatric cohort and 3.2±2.1 cmH2O (23%) in the adult cohort were achievable – 

Figure 27. Reductions in ∆P of over 1 cmH2O were achieved in 95% of paediatric and 

82% of adult patients. The corresponding reductions when targeting MP were 3.3±2.6 

J.min-1 (44%) in the paediatric cohort (87% of whom had MP reduced by more than 

20%) and 21.0±5.4 J.min-1 (66%) in the adult cohort, with all patients reducing MP by 

over than 20%. When targeting the modified formulation of mechanical power MMP, 

the reductions achievable were 3.7±2.3 J.min-1 (61%) in the paediatric cohort and 

15.2±4.9 J.min-1 (67%) in the adult cohort (reductions of more than 20% were achieved 

in 95% and 99% of the paediatric and adult cohorts respectively). Reductions were 

statistically significant in all groups (Wilcoxon signed-rank test p<0.05). In all the above 

cases, more protective ventilation was achieved with no significant deterioration in 

patient oxygenation (PaO2), although values of patient PaCO2 did consistently tend to 

increase towards the upper limits – Figure 28. In both cohorts, settings that minimized 

∆P also reduced MP and MMP, whereas settings that minimized MP and MMP 

increased ∆P (largely due to the resulting increases in VT). 

When the optimisations were constrained to allow no deterioration in gas exchange (i.e. 

only changes to ventilator settings that maintained, or improved, PaO2 and PaCO2 with 

respect to their baseline values were allowed), reductions were achievable in ∆P of 

1.6±1.4 cmH2O (12%) compared to baseline values in the paediatric cohort (58% had 

reductions of more than 1 cmH2O) and 0.4±1.0 cmH2O (2%) in the adult cohort (16% 

had reductions of more than 1 cmH2O) – Figure 29. The corresponding reductions 

when targeting MP were 1.7±1.4 J.min-1 (24%) in the paediatric cohort and 14.4±4.9 

J.min-1 (46%) in the adult cohort, with 57% of paediatric and 98% of adult patients 

having MP reduced by more than 20%. When targeting MMP, the reductions achievable 

were 2.5±1.5 J.min-1 (44%) in the paediatric cohort (90% of whom had reductions of 

more than 20%) and 10.3±4.4 J.min-1 (46%) in the adult cohort, with 97% achieving 

reductions of more than 20%. Reductions were statistically significant in all cases 



Chapter 5 

 85 

(Wilcoxon signed-rank test p<0.05). The individual results for both cohorts are shown 

in Figure 31 and Figure 32. 

5.4.3. Minimum values of ∆P and MP are achieved by distinct ventilation strategies 

Minimum values of MP in both adult and paediatric cohorts were produced by changes 

to ventilator settings that increased VT (Paediatric: 1.4±1.8 mL.kg-1 (+19%), Adult: 

1.9±1.1 mL.kg-1 (+34%)), decreased RR (Paediatric: -8.6±5.1 bpm (-34%), 

Adult: -15.6±5.0 bpm (-56%)), set DC at or close to its specified upper limit of 0.6, and 

set PEEP at or close to its specified lower limit of 5 cmH2O – Figure 35 to Figure 38. 

FIO2 increased in both paediatric and adult cohorts (Paediatric: +39%, Adult: +26%).  

Similar changes in VT, RR and DC were observed in both cohorts when targeting the 

MMP. As expected, minimising MMP rather than MP resulted in higher values of PEEP 

in both paediatric and adult cohorts (Paediatric: 2.9±4.6 cmH2O (+39%), Adult: 3.5±5.0 

cmH2O (+52%)) along with lower values of FIO2 in paediatric patients (-21%). 

In the paediatric cohort, minimum ∆P was achieved by reducing VT (1.3±1.6 mL.kg-1 

(-15%)) while increasing RR and PEEP (2.3±8.2 bpm (+11%) and 2.4±4.5 cmH2O 

(+34%) respectively). In the adult cohort, no significant reductions in VT were possible 

(unsurprisingly, since the selected patients were from the low VT arm of the ARDSnet 

trial), but ∆P could still be reduced, principally by increasing PEEP (2.2±3.5 cmH2O 

(+32%)). No substantial changes in DC were observed in either cohort when targeting 

∆P. Patterns of changes in ventilator settings were strongly consistent in most cases 

between Approach 1 (allowing some deterioration in blood gas values) and Approach 2 

(allowing no deterioration in blood gas values), although when minimising ∆P in 

paediatric patients, Approach 2 produced higher values of FIO2 than Approach 1, in 

order to satisfy the requirement for no deterioration in oxygenation.  
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Figure 27. Approach 1 – Change in driving pressure, mechanical power and modified 
mechanical power when minimising different targets (i.e. ∆P, MP and MMP) and allowing some 
deterioration in patient gas-exchange. Box plots demonstrate data as median, interquartile range 
and actual. Minimising ∆P also reduced MP and MMP while minimising MP or MMP increased 
∆P.  
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Figure 28. Approach 1 – Change in PaO2, PaCO2 and pH when minimising different targets and 
allowing some deterioration in patient gas-exchange. Panels (A) to (C) show results for the 
paediatric cohort and (D) to (F) for the adult cohort. Box plots demonstrate data as median, 
interquartile range and actual. 
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Figure 29. Approach 2 – Change in driving pressure, mechanical power and modified 
mechanical power when minimising different targets (i.e. ∆P, MP and MMP) and allowing no 
deterioration in gas-exchange. Panels (A) to (C) show results for the paediatric cohort and (D) 
to (F) for the adult cohort. Box plots demonstrate data as median, interquartile range and actual. 
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Figure 30. Approach 2 – Change in PaO2, PaCO2 and pH when minimising different targets and 
allowing no deterioration in gas-exchange. Panels (A) to (C) show results for the paediatric 
cohort and (D) to (F) for the adult cohort. Box plots demonstrate data as median, interquartile 
range and actual. 
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Figure 31. Paediatric Patients – Initial and minimised values of ∆P, MP and MMP in individual 
patients. 

Panels (A) to (C) show results for Approach1 (i.e. allowing some deterioration in patient gas-
exchange). Panels (D) to (F) show results for Approach 2 (i.e. allowing some deterioration in 
patient gas-exchange.) 
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Figure 32. Adult Patients – Initial and minimised values of ∆P, MP and MMP in individual 
patients. 

Panels (A) to (C) show results for Approach1 (i.e. allowing some deterioration in patient gas-
exchange). Panels (D) to (F) show results for Approach 2 (i.e. allowing some deterioration in 
patient gas-exchange.) 
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Figure 33. Approach 1 – Change in peak pressure and plateau pressure when minimising 
different targets (i.e. ∆P, MP and MMP) and allowing some deterioration in patient gas-
exchange. 

Panels (A) to (B) show results for the paediatric cohort and (C) to (D) for the adult cohort. Box 
plots demonstrate data as median, interquartile range and actual. Minimising MP was associated 
to lower levels of peak pressure. Minimising MMP increased plateau pressure the most. 
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Figure 34. Approach 2 – Change in peak pressure and plateau pressure when minimising 
different targets (i.e. ∆P, MP and MMP) and allowing no deterioration in gas-exchange. 

Panels (A) to (B) show results for the paediatric cohort and (C) to (D) for the adult cohort. Box 
plots demonstrate data as median, interquartile range and actual. Minimising MP was associated 
to lower levels of peak pressure. Minimising MMP increased plateau pressure the most. 

  

Peak Pressure
0

10

20

30

40

50

60

cm
H

2
O

A

                     Paediatric                     

Plateau Pressure
0

15

30

45

cm
H

2
O

C

Peak Pressure
0

10

20

30

40

50

60

cm
H

2
O

B

                         Adult                         

Data

Minimising P

Minimising MP

Minimising MMP

Plateau Pressure
0

15

30

45

cm
H

2
O

D



Chapter 5 

 94 

 

 

Figure 35. Approach 1 – Figure shows the changes in tidal volume, respiratory rate and PEEP 
that minimize different targets (i.e. ∆P, MP and MMP). 

Panels (A), (C) and (E) show results for the paediatric cohort while (B), (D) and (F) are for the 
adult cohort. Box plots demonstrate data as median, interquartile range and actual. Minimising 
∆P was achieved by lowering VT and increasing RR and PEEP. Minimising MP led to higher 
levels of VT and lower levels of RR and PEEP. 
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Figure 36. Approach 2 – Figure shows the changes in tidal volume, respiratory rate and PEEP 
that minimize different targets (i.e. ∆P, MP and MMP). 

Panels (A), (C) and (E) show results for the paediatric cohort while (B), (D) and (F) are for the 
adult cohort. Box plots demonstrate data as median, interquartile range and actual. Minimising 
∆P was achieved by lowering VT and increasing RR and PEEP. Minimising MP led to higher 
levels of VT and lower levels of RR and PEEP. 
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Figure 37. Approach 1 – Figure shows the changes in FIO2 and duty cycle that minimize 
different targets (i.e. ∆P, MP and MMP). 

Panels (A) and (C) show results for the paediatric cohort while (B) and (D) are for the adult 
cohort. Box plots demonstrate data as median, interquartile range and actual. Minimising MP 
was associated with higher levels of FiO2. Also, the values of duty cycle were close to its upper 
limit when minimising MP and MMP. 
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Figure 38. Approach 2 – Figure shows the changes in FIO2 and duty cycle that minimize 
different targets (i.e. ∆P, MP and MMP). 

Panels (A) and (C) show results for the paediatric cohort while (B) and (D) are for the adult 
cohort. Box plots demonstrate data as median, interquartile range and actual. Minimising MP 
was associated with higher levels of FiO2. Also, the values of duty cycle were close to its upper 
limit when minimising MP and MMP. 
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5.5. Discussion 

Our results provide several new insights into the types of ventilation strategies that are 

likely to minimize different indicators of VILI in ARDS patients. A high degree of 

consistency was observed in settings that minimized ∆P, MP and MMP across the 

diverse patient cohorts in both datasets, providing grounds for optimism that strategies 

for maximally protective ventilation could be developed that would be widely applicable 

in ARDS. 

Perhaps the most counterintuitive result is that maximum reductions in MP and MMP 

are consistently achieved by changes to ventilator settings that involve increasing VT 

(Figure 27) since from both the standard (Eq.44) and modified (Eq.47) formula for MP 

it seems obvious that lowering VT should lower MP.  Crucially, however, this ignores 

the impact of incorporating constraints on allowable deterioration in patient gas-

exchange, which would always exist in treatment strategies implemented at the bedside. 

These constraints, combined with the complexity of making simultaneous adjustments 

to multiple ventilator settings, add a host of other trade-offs, that render the optimal 

combination of ventilator settings almost impossible to predict based on clinical 

intuition alone. The presented results point to a complex interplay between ventilator 

parameters which would support the development of a closed-loop system that can 

incorporate direct patient inputs, thereby providing individualised safe and effective 

mechanical ventilation based on the proposed safety limits and target parameter to 

minimise, input by clinicians at the bedside. However, when designing closed-loop 

system the model needs to consider the dynamic state of a patient so tuning itself as the 

patient physiology changes over time (i.e. the patient gets worse/better). Furthermore, 

the findings can be used to design bespoke guidelines on appropriate ventilator settings 

for clinical trials on low vs high ∆P, MP or MMP. These guidelines would be based on a 

variety of individual patient data such as disease severity, age, etc. rather than a one-size-

fits-all instruction. 

In the paediatric cohort, minimum values of ∆P were consistently achieved by reducing 

VT and increasing RR and PEEP. Interestingly, this strategy has much in common with 
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the ARDSnet trial protocol, which lowered VT while increasing RR. Some have 

postulated that this combination led to increased intrinsic (and hence total) PEEP [177], 

which may have contributed to the mortality benefit in this trial. However, it should be 

noted that subsequent trials of higher versus lower PEEP have not demonstrated a 

mortality benefit in heterogeneous ARDS populations [156, 178–180]. Since the selected 

patients in the adult cohort were from the low VT arm of the trial, no further reductions 

in VT were possible without violating imposed constraints on gas exchange. However, 

∆P could still be significantly reduced in this cohort by moderately increasing PEEP. 

Our findings provide novel and important insights into the challenges of using either 

∆P or MP to develop protective lung ventilatory strategies. In our models, targeting 

reductions in ∆P led to increased RR and increased PEEP. While a strong association 

between higher ∆P and mortality has been demonstrated in multiple datasets, including 

by Amato et al [141], and in the LUNG SAFE global patient cohort [181], ∆P was not a 

therapeutic target in these patients, and causality remains elusive. There is data 

suggesting that increasing RR [165] and PEEP [182] beyond safe thresholds can be 

deleterious in injured lungs. Furthermore, in the Alveolar Recruitment for ARDS Trial 

(ART) clinical trial [183], a ventilatory strategy that decreased ∆P resulted in increased 

mortality. The usefulness of targeting ∆P directly thus remains to be demonstrated. 

These concerns also apply to strategies that target reductions in MP. While MP 

represents a more complete attempt to describe the contributions of multiple 

parameters to VILI by invoking their “energy cost,” the relative contributions of the 

different parameters (i.e., their relatively equal “weightings” in the formula) remains the 

subject of debate. An example is the controversy around how PEEP contributes to MP 

[174]. Our results show that different formulations of the MP equation lead to different 

optimal strategies; specifically, higher PEEP when optimizing MMP. Our finding that 

strategies that minimize MP and MMP increase VT highlights the challenges of targeting 

one specific parameter in designing protective ventilatory strategies. This is particularly 

important given the findings from recent pre-clinical animal studies that, for the same 

MP, strategies employing higher rather than lower VT had increased injury [184, 185]. 

All these findings highlight the need for prospective validation of ventilator strategies 
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that target reduced MP. Of importance, computational modelling of the impact of 

targeting these parameters (or combinations of different VILI indices) may identify 

promising non-intuitive combinations of ventilator settings for clinical testing, and also 

allow more effective stratification of patient populations by revealing differences in the 

effects of ventilation strategies across heterogeneous patient populations. 

The study has a number of limitations. The paediatric dataset was derived from a single 

institution, and while the severity of ARDS and outcomes were similar to other cohorts, 

generalizability cannot be assumed. To minimise confounding, the model was 

configured to represent patients who are fully sedated and/or paralyzed; therefore, 

autonomic reflex modules were not utilised. The model also does not include the effect 

of inflammatory mediators, which are difficult to quantify and to isolate in clinical 

settings. As the model is computational in nature, it does not provide any direct 

physiologic, histological or biological evidence of the effects of the proposed ventilation 

strategies on VILI, and further animal and human studies should be performed to 

provide conclusive evidence of their effectiveness in achieving more protective 

ventilation. The model was developed to focus on ventilator settings affecting VILI; 

thus, constraints are set on PaCO2 rather than pH, which is often modified by entirely 

non-ventilator interventions, such as volume resuscitation or exogenous bicarbonate. 

However, the study also has several unique strengths. Over 26.7 million distinct 

combinations of ventilator settings were implemented and evaluated on two separate 

cohorts of patients with ARDS. It is difficult to imagine such a comprehensive 

exploration of different ventilation strategies ever being possible via animal or clinical 

trials. The study also allows a direct comparison of the effects of protective ventilation 

strategies in adult and paediatric ARDS patients. Our results clearly demonstrate the 

utility of pilot studies using high-fidelity simulation to assess novel interventions 

targeting MP or ΔP (or any other VILI indicator), and hence to inform the design of 

more targeted and effective clinical trials on actual patients. 
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Chapter 6:  

 

 

Computational simulation of mechanically 

ventilated neonates 

6.1. Summary 

This chapter presents preliminary results on the adaptation of the computational 

simulator described in Chapter 2, Section 2.4, to the case of neonatal pathophysiology. 

Model equations and parameters were revised to represent the particular physiological 

characteristics of neonatal patients. The adapted model was matched to new data 

obtained from mechanically ventilated patients in the Neonatal Intensive Care Unit of 

Nottingham University Hospitals and is shown to accurately reproduce the values of key 

physiological parameters. This new model constitutes the first detailed computational 

simulator specifically tailored to neonatal ICU patients, and can be used as an 

investigational tool for developing and evaluating novel therapeutic strategies, as well as 

for developing future closed-loop ventilation modes for this patient group. 

6.2. Introduction 

Along with the administration of antepartum corticosteroids and replacement surfactant 

therapy, mechanical ventilation to provide lifesaving support for infants with respiratory 
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failure has been a key factor in improving neonatal survival, especially for preterm 

infants born before 30 weeks’ gestation with immature lung function. Mechanical 

ventilation of neonatal intensive care unit (NICU) patients is common - according to 

the SUPPORT trial (Study to Understand Prognoses and Preferences for Outcomes and 

Risks of Treatment), more than 80% of premature neonates (<28 weeks gestation) 

require invasive ventilation at some point, due to a number of reasons (e.g. poor gas 

exchange, increased work of breathing, apnoea of prematurity and/or the need for 

surfactant-replacement therapy) [186]. Although mechanical ventilation can be 

lifesaving, it may also cause lung injury resulting in bronchopulmonary dysplasia (BPD), 

a major complication of prematurity with an incident rate of 31% for babies born at 

<32 weeks gestation [187] (when babies still need mechanical ventilation at their original 

due dates, RDS is also considered as BPD). As a result, significant efforts have been 

made to develop new treatment strategies, including the use of early continuous positive 

airway pressure (CPAP) in preterm infants at risk of neonatal respiratory distress 

syndrome (RDS), and strategies for neonatal ventilator care to maintain adequate gas 

exchange but minimize lung damage. 

These efforts have been hampered by a number of factors. Ventilated, critically ill 

newborn babies are prone to sudden and large changes in their respiratory state, 

requiring frequent and rapid interventions by skilled but busy ICU staff.  If not acted on 

promptly, these can increase the risk of brain injury or eye disorders resulting in long-

term disabilities and blindness. Tight physiological control of parameters such as arterial 

oxygen partial pressure (too low increases mortality, too high risks sight loss) and 

arterial carbon dioxide partial pressure (too low risks brain injury, too high risks 

inducing intracranial hemorrhage, consciousness alterations, cataphora, and 

hyperspasmia) is essential to reduce these risks. For example, the recently completed 

Boost II trial [188] demonstrated that failure to keep premature infants in a tight oxygen 

saturation window (91-95%) increased mortality (greater time spent <91%) or blindness 

and chronic lung disease (greater time spent >95%). However, maintaining these strict 

targets is labour-intensive and, in that study, was achieved only 40% of the time [189]. 

Closed-loop ventilation control modes might offer a solution to these problems. Such 
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technologies are now available for adult patients on some ventilators, e.g. 

INTELLiVENT-ASVTM (Hamilton Medical), which automatically control ventilator 

settings such as inspired oxygen and PEEP based on clinician-guided targets and 

physiological inputs from the patient. Clinical trials on adult patients [190–192] have, so 

far, found these systems to be feasible and safe. However, there has only been a single 

study investigating the application of such technologies to paediatric patients [193], and 

the particular challenges associated with neonatal pathophysiology have so far precluded 

the application of these approaches to newborn babies. 

An additional complication is that current guidelines for the mechanical ventilation of 

neonatal patients have largely been adapted from developments in the treatment of 

adult patients, despite widespread acceptance that paediatric patients are not just “little 

adults” [194]. For example, despite its long-standing existence, neonatal respiratory 

distress syndrome remained undefined until the Montreux definition of NARDS was 

introduced in 2017 [195]. However, despite the recommendations for mechanical 

ventilation for children and neonates from PALICC, the Paediatric Mechanical 

Ventilation Consensus Conference (PEMVECC) and European Consensus Guidelines 

on management of NARDS [136, 139, 196],  reducing newborn morbidity and mortality 

still remains a significant global challenge. 

In developing countries the mortality rate in ventilated neonates due to respiratory 

distress syndrome remains high (40-60%) [197]. Furthermore, despite advances in 

intensive care, many newborn premature babies who survive RDS, go on to develop 

chronic lung disease, BPD or barotrauma as a consequence of ventilator induced lung 

injury as well as other side effects such as long-term brain injury and blindness. 

Clinician workload has been shown to be directly linked to patient outcomes [198], and 

a significant number of life-threatening human errors regularly occur (1.7 human errors 

per ICU patient per day) [199]. The number of patients undergoing mechanical 

ventilation in ICUs is expected to continue to increase (e.g. a study [200] showed that, 

overall, admission rates during the 6-year study period increased from 64.0 to 77.9 per 
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1000 live births), with significant associated costs to healthcare services due to 

prolonged periods of mechanical ventilation. 

A high-fidelity computational simulator that could be shown to reproduce individual 

patient responses to changes in ventilation settings would be a valuable tool for 

evaluating novel treatment strategies, and for developing and validating closed-loop 

ventilation modes for neonatal patients. Several respiratory physiology simulators have 

been developed for adult and paediatric patients, [27, 64, 72, 73, 151], each of varying 

complexity and demonstrated validity. However, there is currently no such model 

available for neonatal subjects. This chapter introduces such a model, which has been 

adapted from the highly detailed representation of cardiorespiratory pathophysiology 

described in Chapter 2. The model has been modified to simulate neonatal patients by 

performing a detailed revision of both the model structure and parameters, as detailed 

below. 

6.3. Materials and Methods 

6.3.1. Patient selection 

To date, data have been collected from 8 neonatal patients from the neonatal intensive 

care unit of the Queen’s Medical Centre, Nottingham University Hospital, for the 

purposes of model calibration and validation as part of the NeoPredict Study (East 

Midlands NHS Ethics Committee 18/EM/0033). Patients’ gestational age ranged from 

26 to 36 weeks. An endotracheal tube (3 mm internal diameter) was used for all patients. 

The relevant patient and mechanical ventilation data are listed in Table 7. In the table, 

blood sample type C denotes capillary blood, V denotes venous blood and A denotes 

arterial blood. All patients were preterm. 

6.3.2. Simulator development and calibration to patient data 

The neonatal simulator was developed by performing a detailed revision of both the 

model structure and parameters in light of the key differences between neonatal and 

adult physiology. The extremely small volumes of neonates’ lungs, as well as their large 

respiratory and vascular resistances make simulating the neonatal respiratory system 
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challenging. Physiological features such as lung volume, cardiac output, oxygen 

consumption and airway resistance are weight-dependent in neonates, and some 

parameters such as pulmonary vascular resistance are highly variable during the first 

hours of life. The cardiac output and the volume of functional residual capacity are 

estimated in the model using the following equations [201, 202]: 

{

CO = 265 ×  weight                       weight < 1.5 (kg)
CO = 253 ×  weight           1.5 < weight < 2.5 (kg)
CO = 241 ×  weight                       weight > 2.5 (kg)

   (mL min−1) (48) 

Vfrc = (20.7 × weight) − 6.3                      (ml) (49) 

In the above, the units for CO and Vfrc are mL min-1 and mL respectively. The total 

airway resistance is notably higher in neonatal patients than in adults and decreases as 

babies grow older. This resistance is distributed between the main airway and 100 

parallel alveolar compartments in the model. Every alveolar compartment also has two 

resistances placed in series, namely the alveolar inlet resistance and the upper bronchial 

resistance. The pulmonary vascular resistance is very large during foetal life, and drops 

sharply to about 3-4 mmHg min L-1 during the first 24 hours of life as gas exchange is 

the primary function of the postnatal lung [203]. 

Both anatomical and alveolar dead spaces have been shown to increase with decreasing 

weight and gestation. Moreover, newborn babies have larger total anatomical dead space 

per kg of body weight in comparison with adults, due to the larger head to body mass 

ratio. The value of VD is 3 to 6 mL kg-1 in preterm infants weighing around 1 kg [204, 

205]. Newborn babies have a higher haemoglobin concentration compared to adults, 

with a minimum acceptable value of about 110 g L-1. This value begins to fall within the 

first week after delivery [206, 207]. Oxygen consumption in neonates is also more than 

twice that of adults on a per kg basis. There is a large rise in metabolic rate in the first 24 

hours for normal term babies; however, the rate of increase is slower in those born 

prematurely. Preterm babies also have a lower oxygen consumption rate compared with 
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term babies. The optimized value for oxygen consumption in the model is selected from 

a range of 4 to 10 mL kg-1 min-1 [208, 209]. 

Furthermore, to characterize the stiffer nature of paediatric lungs at baseline (i.e. lower 

alveolar compliance) the denominator of Eq.16 is reduced to 2000, 5000, 12000 and 

50000 cmH2O mL-2 for patients younger than 1, 1 to 2, 3 to 5 and 8 to 10 years old 

respectively. These values are obtained experimentally so that the pressure-volume 

equation of each alveolar compartment produces the appropriate level of pressures at 

the baseline, given the small tidal volumes in neonatal subjects.  

The simulator was matched to individual patient data using advanced global 

optimisation algorithms described in Chapter 3 (see Section 3.3.1). The variable model 

parameters (x) that were allowed to vary in the optimization include the three key 

alveolar features mentioned previously (Pext, k and TOP) independently for each of the 

100 alveolar compartments, as well as values for the respiratory quotient (RQ), total 

oxygen consumption, haemoglobin, volume of anatomical dead space and anatomical 

shunt. The optimization problem is formulated to find the configuration of model 

parameters (x) that minimize the cost function J given below: 

min
𝑥

J = √∑
Ŷ𝑖 − Y𝑖

Y𝑖

6

𝑖=1

 (50) 

with 

Y = [PO2, PCO2, PIP, mPaw, Pmin, TOPmean] (51) 

where Y is the vector of data values and Ŷ denotes the vector of model estimated values. 

Table 8 presents a summary of the parameters included in (x), with their dimensions and 

allowable range of variation (chosen to reflect physiologically reasonable limits).  
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Table 7. The neonatal patient data and ventilator settings 

ID RR FIO2 DC PEEP VT Sample 
Type 

PO2 PCO2 Pmin PIP mPaw 

 (bpm)   (cmH2O) (mL) (kPa) (cmH2O) 

#1 47 0.21 0.24 5 4.3 C 5.2 7.0 4.7 11 6.3 

#2 45 0.21 0.29 5 4.7 V 4.4 7.5 4.6 21 9.3 

#3 40 0.21 0.26 5 6.1 C 4.9 5.4 4 29 10 

#4 50 0.21 0.25 5 5.5 C 4.1 6.8 4.9 15 7 

#5 55 0.25 0.30 7 5.5 V 4.8 7.2 6.8 20 11 

#6 61 0.27 0.31 6 5 A 8.4 5.3 5.7 20 10 

#7 50 0.21 0.23 5 6.3 A 7.8 3.9 4.7 21 11 

#8 66 0.21 0.36 5.5 11.5 A 6.4 4.3 4.6 18 7.9 

 

 

 

 

 

Table 8. Model parameters (x) used for matching patient data, dimensions and ranges 

Parameter (x) Size Range 

Pext 100 [-70,10] 

 k 100 [-2,1] 

TOP (cmH2O) 100 [5,100] 

RQ 1 [0.7,0.9] 

VO2 (mL kg-1 min-1) 1 [4,10] 

Hb (g L-1) 1 [110,200] 

Anatomical shunt (%) 1 [1,2] 

VD (mL kg-1) 1 [3,6] 
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6.4. Results 

Currently, the simulator can be only matched to either venous or arterial blood gasses, 

since the blood from arterial or venous samples is fully oxygenated or deoxygenated, 

and consequently it is known at what stage to feed the data into the model. For safety 

reasons, clinicians try to avoid taking arterial or venous samples in neonatal subjects, 

preferring to use capillary blood gas values instead. However, with capillary samples, 

tissue gas exchange may not have been completed, and thus these data are more difficult 

to use for model calibration. 

Hence, only the five patients with arterial or venous blood samples have been used in 

the study at this point; all patients were diagnosed with neonatal respiratory distress 

syndrome. Patients were simulated for 30 minutes under mechanical ventilation with 

constant flow inflation and with no recruitment manoeuvre intervention. Reduced 

alveolarization was not modelled in the patients as there was no data on it, although it 

could be incorporated into the simulator by combining multiple alveolar compartments 

into one compartment. Table 9 compares the outputs of the simulations with the 

original patient data. All presented model outputs have been averaged over 1 minute. As 

shown, the simulator accurately reproduced the measured values of several key 

ventilation parameters for all patients. 
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Table 9. Results for neonatal dataset – data vs. values computed by the simulator 

ID 
Sample 
Type 

PO2 
(kPa) 

PCO2 
(kPa) 

Pmin 
(cmH2O) 

PIP 
(cmH2O) 

mPaw 
(cmH2O) 

Data Model Data Model Data Model Data Model Data Model 

#2 V 4.4 4.8 7.5 7.2 4.6 5.1 21 21.0 9.3 9.1 

#5 V 4.8 4.8 7.2 7.0 6.8 6.9 20 20.1 11 10.9 

#6 A 8.4 8.4 5.3 5.2 5.7 6.0 20 20.1 10 9.9 

#7 A 7.8 7.7 3.9 3.9 4.7 5.0 21 21.2 11 10.9 

#8 A 6.4 6.4 4.3 4.3 4.6 5.5 18 18.1 7.9 7.7 

 

The model was demonstrated to accurately reproduce the available clinical data for five preterm 
neonatal patients with measurements of arterial or venous blood gas values.   
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6.5. Discussion 

The first results from the development of a detailed, highly-fidelity computational 

simulator of neonatal cardiorespiratory physiology have been presented. The model was 

demonstrated to accurately reproduce the available clinical data for five preterm 

neonatal patients with measurements of arterial or venous blood gas values – data from 

several more patients is currently being collected and will be incorporated in any future 

studies. As it is refined and developed, this model will provide a novel and useful tool 

for investigating novel treatment strategies, improving recommendations and guidelines 

for choosing ventilator settings, and developing closed-loop ventilation control modes 

that are specifically tailored to neonates. 

Capillary gas tensions (and pH) always lie somewhere between the arterial values and the 

local venous values. The problem is that how close the CBG is to the ABG is 

unpredictable. High local flow, or low local metabolism can ‘arterialise’ the values, while 

poor flow or high local oxygen consumption can make the values more like central 

venous values. Some of that concern is theoretical, since CBG tend to be taken from 

tissues of low metabolic activity (i.e. skin). The other issue is that some values change a 

lot between arterial and venous blood (e.g. PO2, particularly when supplemental oxygen 

is given, such that PaO2 is high), while some values only change a little (e.g. PCO2). 

Future work will focus on incorporating physiologically realistic representations of 

capillary blood characteristics into the model, which will significantly increase the 

numbers of patients from whom data for model calibration and validation can be 

obtained. 
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Chapter 7:  

 

 

Conclusions and future work 

It is widely accepted that modification of existing approaches to mechanical ventilation 

to incorporate novel treatment strategies could reduce pulmonary injury, cardiovascular 

impairment, and mortality rates, particularly if combined with novel pharmaceuticals. To 

date, however, the complex and often opaque dynamical interactions of the alveoli, 

airways, chest wall, heart and blood vessels has severely limited progress towards the 

development of therapeutic strategies optimised to specific diseases and individual. 

Critically ill patients are routinely monitored in great detail, providing extensive, high 

quality data-streams for model design & configuration and patient-matching. Models 

based on these datasets can incorporate very complex system dynamics that may be 

validated against responses of individual patients, for use as investigational surrogates. 

In contrast to trials on animal models and humans, in silico models of individualised 

patient and disease pathology are completely configurable, reproducible and reusable – 

different treatments, or combinations of treatments, can be applied to the same patient 

or subset of virtual patients, in order to understand mode of action, quantitatively 

compare effectiveness in various scenarios, and optimise interventions for particular 

clinical objectives and particular patient groups (or individuals).  

This thesis has presented work advancing research in this area on several fronts. 
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Chapter 3 investigated the efficacy of a modulator of soluble guanylate cyclase in COPD 

patients with PH by using computer simulation. In this study, close matching of the 

simulator to data on three patients was demonstrated. Calculations of blood gas 

concentrations for these virtual patients, considering the observed temporal profile of 

average PVR changes after oral administration of Riociguat (Bayer), resulted in 

predictions of changes in PaO2 and PaCO2 that were consistent with those observed in 

the previous clinical study. These results can be considered as a validation of the 

capability of the pulmonary simulator to reliably describe the effects on gas exchange of 

compounds acting on the vascular resistance, in particular those stimulating sGC 

activity. Additional validations can be achieved by confirmation of the outcomes in a 

clinical trial. Furthermore, this study showed that administering an sGC via dry powder 

inhalation can reduce pulmonary hypertension without deteriorating oxygenation, 

particularly when administration is combined with exercise. These results highlight the 

potential advantages of administering sGC’s to patients via dry powder inhalation, 

rather than systemically. 

Analysis of an extensive database on PARDS patients in Chapter 4 suggested patients 

may be being routinely over-ventilated, and that there is scope for achieving more 

protective ventilation without compromising gas exchange. The results suggest that 

interventions based on (i) progressively lowering VT while maintaining constant MinV, 

and (ii) adjusting PEEP and VT to reduce ΔP, can produce significant reductions in 

multiple key parameters associated with VILI without compromising safety. Such 

interventions could be readily implemented at the bedside by clinicians directly (similar 

to recruitment manoeuvres), or automatically via closed-loop control algorithms in next-

generation ventilators, although actual implementation will require a prospective trial. 

Although previous studies of the effects of lowering VT in PARDS have yielded 

inconclusive results, our results indicate that such strategies can be implemented safely, 

supporting the design of true randomized trials to better delineate the role of low tidal 

volume ventilation in PARDS. Finally, the results suggest a number of other potentially 

beneficial interventions which could also be evaluated in future simulation and in vivo 
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studies, including minimizing RR by using a long inspiratory time, and minimizing strain 

rate either by reducing inspiratory flow or by increasing FRC through adding PEEP. 

In Chapter 5, novel ventilatory strategies were identified that minimized ∆P, MP, and 

MMP in datasets from adults and children with ARDS. The identified strategies were 

consistent within each patient group, and were similar in both adults and children, 

suggesting that protective ventilatory strategies derived from studies in adults may have 

utility in children with ARDS. Minimising MP resulted in the use of higher VT; since this 

contradicts the current consensus on using lower VT it raises questions regarding the use 

of MP as a direct target to minimize VILI, at least as currently formulated. Although, it 

should be noted that lowering MP could generally be possible by lowering VT, but the 

lowest value of MP is associated with use of higher VT which suggests ∆P is a better 

target to be minimised rather than MP. Overall, these findings demonstrate the 

limitations of ventilatory strategies that target either ∆P or MP, highlighting the need to 

continue to refine these targets, and for ultimate validation of these strategies in clinical 

trials. 

Chapter 6 presented the development of the first detailed computational simulator 

capable of modelling neonatal respiratory physiology in the RDS disease state. The 

preliminary results of matching the model to the data collected from the Queen’s 

Medical Centre indicate that all the available clinical data on the responses of individual 

patients to a range of different ventilator settings are accurately reproduced by the 

model. The application of this model to investigate novel treatment strategies could 

make an important contribution to the field, in terms of obtaining better understanding 

of the disease, evaluating different treatment strategies such as recruitment manoeuvres 

and improving recommendations and guidelines for choosing ventilator settings. Using 

the simulator, multi-intervention treatment strategies for specific clinical objectives can 

be simulated and evaluated in a safe, and cost-efficient manner. The simulation model 

can be used for investigating alternative ventilator settings that could lower that risk of 

VILI. Drug intervention effects can also be integrated into the model. These questions 

are the subject of current research by the author. 
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