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Abstract:

An accurate and consistent approach to the out-of-plane stability design of steel beams and
structures utilising second-order inelastic analysis with strain limits is proposed. The method
is implemented using computationally efficient beam elements, with the ultimate structural
resistance defined either by (i) the ultimate load factor or (ii) the load factor at which a strain
limit, determined on the basis of the continuous strength method (CSM), is attained, whichever
occurs first. Thus far, the method has been established for the in-plane design of steel structures
and structural components; in the present paper, its scope is extended, for the first time, to the
scenarios in which out-of-plane stability effects, with a focus on lateral-torsional buckling
(LTB), govern. The accuracy and safety of the method are assessed against the results of
nonlinear shell finite element (FE) modelling. It is shown that the proposed method consistently
provides more accurate results than the traditional LTB design method of prEN 1993-1-1. In
addition to its accuracy, the proposed approach also streamlines the design process by

eliminating the need for cross-section classification and member design checks.

Keywords: Lateral-torsional buckling (LTB); Continuous strength method (CSM); Strain

limits; Advanced inelastic analysis; Finite element modelling; Out-of-plane stability

1. INTRODUCTION

Steel structures and their components are often susceptible to out-of-plane instability effects,

such as lateral-torsional buckling (LTB) — see Fig. 1. The influence of LTB on the resistance
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of steel beams is generally accounted for in design standards by either: (i) the application of a
buckling reduction factor to the cross-section bending resistance [1-4] or (ii) the determination
of the elastic buckling moment of the beam with a reduced stiffness [5,6-13]. The former
approach has traditionally been adopted in structural steel design standards [14-17] owing to
its suitability for application through hand calculations [11] and its relative ease of extension
to the design of beam-columns through the use of interaction curves [18-27]. However, the
calculations required for considering the influence of bending moment diagram shapes on the
spread of plasticity, the load height with respect to the shear centre and the interaction between
adjacent laterally restrained segments of beams are somewhat drawn-out and often lead to

rather inaccurate resistance predictions.

Geometrically and Materially Nonlinear Analysis with Imperfections (GMNIA), typically
implemented using beam finite elements, is being increasingly employed in the design of steel
structures. This approach brings a number of advantages, including (i) the need for carrying
out individual member design checks can be avoided, (ii) global buckling behaviour (e.g.
flexural buckling and LTB) can be directly and accurately captured and (iii) the structural
failure modes can be explicitly visualised. Beam elements are highly computationally efficient,
but are not able to capture the influence of local buckling on the cross-section resistance and
rotation capacity of steel members. In current structural steel design codes, the influence of
local buckling on the response of steel members is typically considered through the concept of
cross-section classification, which restricts the cross-section resistance (e.g. plastic, elastic or
effective moment capacity in bending) and the structural analysis type (i.e. plastic or elastic)
on the basis of the classes of the cross-sections of the members making up the structure.
However, this approach is not only overly-simplistic but also generates artificial steps in the

resulting resistance predictions.



Recently, a new structural steel design approach utilising advanced analysis, together with the
adoption of the continuous strength method (CSM) strain limits [28] to capture the influence
of local buckling on the resistance of the cross-sections, has been put forward [29]. According
to the proposed design approach, a GMNIA of the structure is performed using beam finite
elements, considering explicitly buckling of the members and frame, the influence of
imperfections and the spread of plasticity throughout the structure. The ultimate load carrying
capacity of the structure is taken as either (i) the peak load factor obtained from the analysis
apeak OF (i) the load factor at which the CSM strain limit is attained acsm at any cross-section in
the considered member or structure, whichever occurs first. The accuracy and reliability of the
proposed approach of design by GMNIA with strain limits have been verified for carbon steel
[30,31] and stainless steel structures [32], considering a range of cases. However, the approach
is currently limited to structures that are not susceptible to out-of-plane instability effects, thus

limiting its scope of applicability.

In this paper, the approach is extended to cover the design of steel I-section beams against
lateral-torsional buckling. A wide range of cases is considered, including variation in cross-
section properties, member slendernesses and bending moment diagram shapes. Application of
the proposed design approach to structural steel members subjected to pure torsion, combined
bending and torsion, and combined shear, bending and torsion is also illustrated. The design
capacity predictions are assessed relative to the results of benchmark shell FE models, which

are themselves validated against existing experiments in the literature.

2. TRADITIONAL APPROACH FOR LTB ASSESSMENT OF STEEL BEAMS

PROVIDED IN EN 1993-1-1 [14] AND PREN 1993-1-1 [15]

In this section, the traditional approach for the LTB assessment of steel beams given in EN

1993-1-1 [14] and prEN 1993-1-1 [15] is briefly described. EN 1993-1-1 [14] provides two



different sets of equations for the LTB assessment of steel beams. The first set of equations,
referred to as the general case, are provided in Clause 6.3.2.2 and are applicable to beams with
any cross-section type, while the second set of equations, referred to as the specific case, are
provided in Clause 6.3.2.3 and are applicable to steel beams with I-shaped cross-sections. Since
the focus of the present study is the LTB of I-section steel beams, only the specific case LTB

assessment equations are described herein. LTB resistance My rq is expressed through Eq. (1):

M
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where y. 7 is the buckling reduction factor, which considers the adverse effects of LTB on the
in-plane (cross-section) resistance of the beam and Mgk is the characteristic (unfactored)
cross-section bending moment resistance equal to the product of yield stress fy and the major
axis section modulus Wy (i.e. Mcrk = Wy fy); Wy is taken as the plastic section modulus W,y for
Class 1 and 2 cross-sections, the elastic section modulus Wey for Class 3 cross-sections, and
the effective section modulus Wessy for Class 4 cross-sections. The LTB reduction factor y, 1 is

calculated using Egs. (2)-(4):
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where a7 is the imperfection factor determined on the basis of the cross-section depth to width
ratios, as explained in EN 1993-1-1 [14], S is a modification factor, },; is the normalised
slenderness, /.1, is the threshold slenderness and My is the elastic critical buckling moment.

To take account of the influence of non-uniform bending on ultimate resistance, the LTB



reduction factor may be modified using Eq. (5), where k. is a correction factor given in EN

1993-1-1 [14] for different bending moment diagram shapes.

Air
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In the upcoming version of EN 1993-1-1 [14], referred to herein as prEN 1993-1-1 [15], the
bending moment resistance of I-section steel beams undergoing LTB are again calculated using

Eq. (1), but the equations used to determine y_t have been improved, as given by Egs. (6)-(7),
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where fy is a factor that accounts for the influence of bending moment gradient and /, is the

normalised member slenderness for minor axis flexural buckling. Note that the definition of
the imperfection factor a1 was also amended, becoming a function of the major Wy and

minor axis We ; elastic section moduli of the beam cross-section.

The influence of local buckling on the cross-section resistances of steel members is considered
through the cross-section classification concept [14-16]. According to this concept, a cross-
section is classified into one of three (compact, non-compact and slender) [16] or four (Class
1, Class 2, Class 3 and Class 4) classes [14,15], based on its susceptibility to local buckling.
Although straightforward to apply, the cross-section classification concept has a number of
shortcomings, including (i) taking no account of the beneficial effect of the interaction between
the individual plate elements making up the cross-section during local buckling [33], (ii)
neglect or over-simplistic treatment of the influence of partial plasticity in Class 3 cross-
sections, (iii) failure to consider material strain hardening in the determination of the ultimate
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resistances of stocky cross-sections and (iv) taking no account of the beneficial effect of non-
uniform bending moment gradients along the lengths of steel members on their local cross-

section stability [30,31,34], as explained in Section 3.3.

3. DESIGN OF STEEL BEAMS BY ADVANCED INELASTIC ANALYSIS USING

BEAM ELEMENTS WITH CSM STRAIN LIMITS

The proposed method of design by second-order inelastic analysis with strain limits involves:
(i) carrying out a GMNIA of the steel member using beam finite elements and (ii) using the
load factor that corresponds to the attainment of the peak load apeak Or the CSM strain limit ocsm,
whichever occurs first, to define the ultimate resistance. Development of the primary
components of the proposed design method for the out-of-plane stability assessment of steel

beams is explained in this section.

3.1 The continuous strength method (CSM): strain limits, cross-section slenderness and
material model

The continuous strength method (CSM) is a deformation-based design approach that
establishes a relationship between the ultimate deformation capacity of a cross-section and its
local slenderness. The CSM was proposed by Gardner [28] and has been applied to the design
of stainless steel [35,36], carbon steel [37,38] and aluminium alloy [39-41] structural members,
as well as planar steel frames [30]. The CSM has two key features: (i) a base curve that defines
the maximum strain &csm that a cross-section can experience prior to its failure, with ecsm

presented relative to the yield strain &, and presented as a function of the cross-section
slenderness Ep and (ii) an appropriate constitutive model describing the stress-strain response

of the structural material. The CSM can be used as an alternative to the cross-section

classification concept and enables a more consistent and continuous treatment of the influence



of local instability effects on the ultimate resistances of cross-sections ranging from Class 1 to

Class 4.

As shown in Fig. 2, the CSM base curve is split into two parts, and the transition point between

the two parts, distinguishing between non-slender and slender cross-sections, is set at Ep =0.68

[36]. For non-slender cross-sections (Ep < 0.68), the CSM strain limit, given by Eq. (8), is

greater than or equal to the yield strain (i.e. ecsm/ey> 1), allowing for the rational exploitation

of the development and spread of plasticity and strain hardening:

Een 0.25
. T =36
&

but <Q for 4, <0.68 ®)

where the upper limit Q is a project specific design parameter that defines the maximum
permitted level of plastic deformation, for which the value of 15 is recommended, complying
with the ductility requirement given for structural steel in EN 1993-1-1 [14]. A second upper
limit to Eq. (8) is required when simplified resistance functions, suitable for hand calculations
[37], are employed, but is not needed in design by advanced analysis when the full material

stress-strain curve is defined, as described below.

For slender cross-sections (0.68 < ip < 1.0), the CSM strain limit, given by Eq. (9), is less than

the yield strain (i.e. ecsmley < 1):

&

com {1— 0'222] L for 0.68<4, <1.0 )

— 1.05 — 1.05
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In Egs. (8) and (9), the cross-section slenderness ,_lp is determined using Eq. (10), where fy is

the material yield stress and ocr s IS the elastic local buckling stress of the full cross-section,
which can be calculated numerically (e.g. through the finite strip software CUFSM [42]), or

using the simplified formulae developed by Gardner et al. [33].
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The second key feature of the CSM is the definition of an accurate and appropriate material
model. In this study, the quad-linear stress-strain model for hot-rolled steels developed by Yun
and Gardner [43] was used. This material model has been shown to provide a very accurate
representation of the stress-strain response of different steel grades and is illustrated in Fig. 3.
Unless otherwise indicated, grade S355 steel has been used in all the cases considered in this
study; thus, the three required parameters for the material model of [43] were taken as the
Young’s modulus E = 210000 MPa, the yield stress fy = 355 MPa and the ultimate stress f, =

510 MPa. The stress-strain relationship over the full range is defined by:

Ee fore<e,
f, fore, <e<e,
o=1f,+E;(e—¢) for e, <e<Cpg, (11)
f,— f
fo, +——2% (¢-Ceg, for Cg, <e<g,
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where the strain g at which strain hardening begins, the ultimate strain ¢, and the strain

hardening modulus Esh are defined by Egs. (12)-(14) respectively.

f
s =01-"~0.055 but 0.015 <&, <0.03 (12)
f
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Finally, in the adopted material model, the constants C; and C; are given by Egs. (15) and (16).
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3.2 FE modelling of steel structures using beam finite elements

The proposed design method is implemented using beam finite elements. In this study, the
finite element analysis software Abaqus [44] was used to carry out the GMNIA simulations.
The shear deformable prismatic Timoshenko beam element referred to as B310S in Abaqus
[44], which is capable of modelling the effects of torsion and warping in open-sections, was
used. Thirty-three section integration points were employed along the widths of each web and
flange plate to accurately capture the spread of plasticity through the cross-section. To enable
the application of the strain averaging approach [31], which is used to take account of the
beneficial influence of local strain gradients along the member lengths on cross-section
resistance, as described in the next subsection, the lengths of the beam elements were defined
to be less than or equal to the corresponding local buckling half-wavelengths Ly cs of the cross-
sections of the modelled beams. The quad-linear material model introduced in the previous
subsection was employed, with the engineering stress-strain curve converted in true stress and
strain. Nominal values of material strengths and geometries, together with the characteristic
value of the Young’s modulus (E = 200000 MPa [15]) were employed in the implementation
of the proposed design approach, as recommended in [32,45]. The combined influence of the
geometric imperfections and residual stresses was accounted for through the use of equivalent
geometric imperfections [15], as is recommended for the practical implementation of the
proposed design method. The equivalent imperfections were modelled through the scaling of
the first LTB eigenmode with the amplitude proposed in a parallel study [46] on the out-of-
plane design of steel members by GMNIA. In this paper, all the investigated steel beams had
fork-end support conditions, allowing warping deformations but fully restraining twisting

about the longitudinal axis of the members at the supports.



3.3 Procedure for application of CSM strain limits in GMNIA

Using GMNIA with beam finite elements, global member instabilities can be captured directly,
but local cross-section instabilities cannot. Thus, in [31], it was proposed that the CSM strain
limits are applied to account for the influence of local buckling on the response; this is
implemented by checking the maximum compressive longitudinal strains against the
corresponding CSM strain limits for all cross-sections in the structure at each load increment,

with the critical section governing the overall design.

In previous research [47-52], it has been observed that steel beams subjected to bending
moment gradients exhibit greater cross-section resistances than beams with the same geometric
and material properties but under uniform bending. This was ascribed to the beneficial effect
of local strain gradients along the member lengths on the local stability of cross-sections
[31,53], i.e. the critical cross-sections receive support from the adjacent less heavily loaded
cross-sections. It was shown in [31] that this effect could be accurately captured by averaging
the maximum compressive longitudinal (normal) strains in the cross-sections over a defined
length and limiting the averaged strains (rather than the peak strains) to the CSM strain limits.
The defined averaging length is taken as the elastic local buckling half-wavelengths Ly cs [31]
which can be obtained numerically, e.g. using the finite strip method software CUFSM [42],

or through the expressions presented in [54].

For steel I-section beams susceptible to lateral-torsional buckling, internal second-order torsion
arises upon the application of the major axis bending moments. The total internal torsion
moment Tgq at any given cross-section has two components: (i) the St. Venant torsion Ts; with
associated St. Venant torsion shear stresses zst and (ii) the warping torsion T, with associated
warping torsion normal stresses ow and warping torsion shear stresses v, as shown in Fig. 4.
In the implementation of the proposed design method by the GMNIA of steel beams with beam

finite elements, the normal strains & resulting from the warping torsion normal stresses oy can
10



be directly extracted and the total maximum compressive normal strains within cross-sections

due to the combination of bending and warping can be checked against the CSM strain limits.

However, the St. Venant torsion zstand the warping torsion shear stresses zy still need to be

considered; the treatment of shear stresses arising from either primary or secondary torsion in

the proposed design method is provided in Section 6.

As shown in Fig. 5, the procedure for the application of the proposed design approach to steel

beams susceptible to LTB is as follows:

Based on the first-order internal force distribution, determine the elastic local buckling
stresses of the cross-sections ocrcs at the middle of each element along the beam length

[33,42].

. Using Eq. (10), calculate the corresponding cross-section slendernesses Zp.

Using the calculated :lp values, determine the strain limits ecsm for the cross-sections at the

middle of each element using the CSM base curve given by Egs. (8) and (9). For elements
under high shear force and/or torsion, reduce the strain limits considering the shear effect

from shear force and/or torsion (see Sections 5.2 and 6.1.3).

. If the strain averaging approach is used, calculate the local buckling half-wavelengths of

the cross-sections Ly s on the basis of the first-order internal force distribution, either using
numerical methods (e.g. CUFSM [42]) or the expressions provided in [54] and determine
the average maximum compressive normal strain for each element ¢gq.av,m as the average
of the peak compressive strains ¢eqm over the local buckling half-wavelengths Lycs, as
shown in Fig. 6. Note that in the calculation of geqav,m, Only the elements that lie fully

within Lpcs should be considered.

. Determine (i) the load increment j (if any) at which the peak load factor is reached and (ii)

the load increment p at which the average strain at any cross-section mg attains the CSM

11



VI.

strain limit, i.e. eed,av,mop = €csm OF EEd,av,mop = Pesm,moEesm OF Ecsm,v,mo TOr members under high
shear and/or torsion (reduction is applied to the CSM strain limit &csm for the latter — see
Sections 5.2 and 6.1.3). If j is less than p, the member is deemed to fail primarily due to
global instability i.e. lateral-torsional buckling, and the characteristic resistance factor arx
Is taken as the peak load factor from the GMNIA apeax (i.6. ark = apeak); Otherwise, the
member is deemed to fail by attaining the cross-section capacity, and the load factor at
which the CSM strain limit is attained acsm is adopted as the characteristic resistance factor
ark (1.€. ORKk = Oicsm).

As recommended in [15,32,45], in the implementation of the proposed design method, the
Young’s modulus should be taken as the characteristic value of E = 200000 MPa, and the
resulting resistance should be assumed to be the characteristic resistance, to which a partial
safety factor (ym1 = 1.0) should be applied. Hence, finally, the design resistance factor of
the member arq is equal to the characteristic resistance factor ark divided by the partial

safety factor ym1, as given by Eq. (17).

Org = Ok | Ym1 (17)

4. BENCHMARK SHELL FINITE ELEMENT MODELLING

4.1 Modelling approach

In this paper, the accuracy of the proposed design approach for the LTB assessment of steel

beams is verified against the results from shell FE modelling considering various cross-section

proportions, member slendernesses and loading conditions. The shell finite element models

were created using the finite element analysis software Abaqus [44]. The four-noded general

purpose S4R shell element, taking into account transverse shear deformations and finite

membrane strains with reduced integration and a large-strain formulation, which has been

successfully employed in previous studies for similar applications [31,55-58], was used to

create all the models. Each web and flange plate of the cross-sections was subdivided into 16
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elements. The number of elements along the member lengths was defined such that the element
aspect ratios were close to unity. The Simpson integration method was adopted, and five

integration points were employed through the thickness of the shell elements [44].

The quad-linear stress-strain model developed by Yun and Gardner [43] for hot-rolled steel
was employed to define the material stress-strain response. The Poisson’s ratio was taken as v
= 0.3 in the elastic range and v = 0.5 in the plastic range. As required by Abaqus [44], the

engineering stress-strain relationships were transformed into true stress-strain curves.

Beam multi-point constraints were employed to connect the web and two flange plates making
up the cross-sections of the investigated members. To avoid overlapping of the web and flange
plates, the web plates were offset by half the flange thicknesses, in line with the approach
adopted in [11,12,55]. Fork-end support conditions enabling warping deformations but
preventing twist were applied at the member ends by the application of coupling constraints.
The ECCS [59] residual stress pattern for hot-rolled steel sections illustrated in Fig. 7 (a) was
adopted in the shell finite element models. Unless otherwise indicated, initial geometric
imperfections in the shape of the first LTB eigenmode with an amplitude of 1/1000 of the
unbraced lengths were incorporated into the FE models. As shown in Fig. 7 (b), local geometric
imperfections were also applied to the shell finite element models by adopting a series of
sinusoidal subpanel imperfections, complying with the recommendations provided in Annex C
of EN 1993-1-5 [60]. For the cases where the web plate was more susceptible to local buckling
than the flange plates, i.e. when o¢rw < ocr s (Where ocrw and ocr s are the elastic local buckling
stresses of the isolated web and flange plates assuming simply-supported boundary conditions),
the magnitude of the local web imperfection was taken as 1/200 of the web heights hy (i.e.
hw/200). Similarly, for the cases where the flange plates were more susceptible to local buckling
than the web plate, the magnitudes of the local flange imperfections were taken as 1/100 of the

flange widths b (i.e. b/100). The local imperfection magnitudes of the non-critical plate
13



elements were defined such that the web-to-flange junctions remained at 90< The local
geometric imperfections were applied to the shell FE models using the local buckling half-
wavelengths Ly cs, Wwhich were obtained from the expressions provided in [54]. It should be
noted that in the case of some members with very short span lengths, the shell FE models did
not exhibit a peak load; in these cases, the failure was defined when the tangent stiffness of the
model degraded to 1% of its initial stiffness, similar to the approach proposed by [61] and

adopted in [31].

4.2 Validation of shell FE models

The shell FE models developed in this study were validated against the results from 59
experiments on beams experiencing LTB collected from the literature [62-69]. The loading
configurations included (i) 3-point bending and 4-point bending [62], (ii) concentrated loading
applied at the free-end of cantilever beams [63,64] and (iii) 3-point bending with eccentrically
applied vertical loading, leading to additional torsion [65-69]. The boundary and loading
conditions employed in the tests were replicated in the FE models. The geometric imperfection
was modelled through the scaling of the first LTB eigenmode. Where reported, the measured
global geometric imperfection amplitudes were incorporated into the FE models. For the cases
where the geometric imperfection magnitudes were not reported, a magnitude of 1/1000 of the
laterally unbraced lengths were used. A summary of the validation study, including the mean
and coefficient of variation (CoV) values of the ratios of the ultimate load carrying capacities
determined using the shell FE models ay sheii to those obtained from the experiments oy est (i.€.
aushell/autest), 1S given in Table 1. As can be seen from the table, the shell FE models created in
this study are able to provide ultimate strength predictions that are very close to those observed

in the physical experiments.

In Fig. 8, the experimental and numerical load-vertical displacement and load-twist curves for

a sample of the beams tested under eccentric 3-point bending in [65] and [66,67] are shown,
14



where P is the applied load, w and ¢ are the vertical displacement and twist at the midspan
respectively and Py st is the ultimate load obtained from the experiments. As can be seen from
the figures, the numerical load-deformation paths obtained from the shell FE models closely
follow the load-deformation paths observed in the experiments, indicating that the shell finite
element models created in this paper are able to accurately replicate the structural response of
steel beams undergoing LTB and can be used to generate benchmark data to evaluate the

accuracy and safety of the proposed design approach.

5. ACCURACY OF PROPOSED DESIGN METHOD FOR STEEL BEAMS

SUSCEPTIBLE TO LTB

In this section, the accuracy of the proposed design method is assessed against the benchmark
results obtained from shell FE modelling for steel beams subjected to uniform and non-uniform
bending. For comparison, the accuracy of the traditional design method provided in prEN 1993-

1-1 [15] for the LTB assessment of steel beams is also investigated.

5.1 Beams under uniform bending
The accuracy of the proposed design approach is assessed for steel I-section beams under

uniform bending in this subsection, covering a broad range of normalised member LTB
slenderness values 0.2 < it =, /Mc,Rk /M, <1.8and a large number of different cross-section
geometries including 10 IPE, 10 HEB and 10 HEA European profiles, where the cross-section

slendernesses 7, ranged between 0.26 and 0.60 (i.e. 0.26 S;lp =/ f, /0, <0.60).

Fig. 9 shows an illustrative example of the application of the proposed method to a steel beam
with an HEA 260 cross-section under uniform bending. The normalised moment-outer fibre
compressive strain response from the shell and beam FE models are displayed in Fig. 9. In the

figure, the applied end bending moment M is normalised by the major axis plastic moment

15



capacity of the cross-section Mpy (i.e. M/Mpiy), while the strain is the average maximum
compressive strain over the local buckling half-wavelength for the critical beam element mg
(which is the element at the midspan in this case) eed,av,m, NOrmalised by the yield strain &y. In
the beam element model, the average strain at the midspan reaches the CSM strain limit gcsm =
1.65¢y prior to the attainment of the peak load factor. Thus, this member is deemed to fail when
the allowable CSM strain limit is reached, with a corresponding bending moment capacity
Muprop = 0.476Mpiy. The corresponding benchmark shell FE model reached a maximum
bending moment of Myshen = 0.480My1y following the occurrence of local buckling of the
compression flange at midspan, which is only 0.8% higher than the ultimate bending moment
resistance determined using the proposed method My prop, illustrating the very high accuracy of
the proposed design approach. Note that if cross-section failure, as defined by the CSM strain
limit, were to have been ignored, an unconservative prediction of the bending resistance, as
given by the peak moment from the beam element model of Mpeak = 0.513Mpy would have
been obtained. The ultimate bending capacity predicted by the traditional design method in
prEN 1993-1-1 [15] Myecs = 0.392Myy is conservative, 18% lower than the benchmark shell
FE result. Note also that in this example and all the considered cases in this study, the strain
outputs and CSM strain limits are determined at the centreline of the wall thicknesses of the

modelled I-sections, as described in detail in [31].

Fig. 10 shows the normalised ultimate bending capacities My/Mpy of all considered 300 steel

beams undergoing LTB determined through the benchmark shell FE models, the proposed

design method and prEN 1993-1-1 [15] for different LTB slendernesses ), . With increasing

LTB slendernesses },;, steel beams become more susceptible to LTB and exhibit lower

ultimate bending moment resistances.
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In Fig. 11, the ultimate bending moment resistances M, of the considered range of steel beams
predicted using the proposed design method and prEN 1993-1-1 [15] are compared against
those obtained from the GMNIA of the benchmark shell FE models My shen. As shown in Fig.
11 (a) and Table 2, the proposed method is able to provide very accurate capacity predictions
— the mean value of the ratios of the ultimate resistances determined through the proposed
method My prop to those determined from the shell FE models Myshen (i.€. My prop/Mu,shen) is equal
to 0.984 with a CoV value 0f 0.016. On the other hand, prEN 1993-1-1 [15] yields less accurate
and more scattered predictions, with a mean value of 0.901 and a CoV value of 0.137 for the
ratios of ultimate resistances determined using prEN 1993-1-1 [15] to those obtained from the

shell finite element models. Note that prEN 1993-1-1 [15] leads to some rather unsafe results
for beams with },; = 0.4 and some overly conservative results for slender members (e.g. /.

> 1.4), as shown in Fig. 11 (b).

5.2 Beams under moment gradients

In addition to steel beams under uniform bending, the accuracy of the proposed design method
is also assessed for 1200 steel beams undergoing LTB and subjected to different bending
moment gradients along their lengths. As summarised in Table 2, the following parameters

were considered: (i) the ratio of the bending moments applied at the beam ends y equal to 0.5,

0, -0.5and -1 (i.e. w = 0.5, 0, -0.5 and -1), (ii) the normalised LTB slenderness },;, ranging
between 0.25 and 1.40 (i.e. 0.25 < J,; < 1.40), and (iii) the cross-section geometry, by
considering 10 IPE, 10 HEB and 10 HEA European profiles, thereby covering a broad range

of cross-section slenderness values ip between 0.26 and 0.60 (i.e. 0.26 < :lp < 0.60).

A bending moment gradient within a steel beam leads to the development of vertical shear
forces along its length; the presence of high shear forces may adversely influence the bending

moment capacity of the beam. To allow for this effect, the approach proposed in [31] was
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adopted in this study; thus, when the design shear force Vy eq exceeds half the plastic major
axis shear resistance of the cross-section Vpy, the interaction between bending and shear is
accounted for through a reduction factor pcsm applied to the CSM strain limit. The expression
for the determination of the reduction factor pesm is given by Egs. (18)-(19). Note that separate
cross-section shear capacity and shear buckling checks are still required in the application of
the proposed design method, which can be carried out using the relevant provisions of EN
1993-1-1 [14] and EN 1993-1-5 [60]. Even though there exist lateral (minor axis) shear forces
within the cross-sections of steel beams experiencing LTB, it was observed that these shear
forces are consistently very small in the large number of steel beams considered in this paper.
Thus, no reduction to the CSM strain limits due to the presence of high minor axis shear forces

is considered necessary in practical LTB design situations.

1 for V,gq <0.5v,,
Pem =1 93 gory 505V, (18)
0.5+p
2V, ’
p=| = —1J (19)
Vpl,y

Comparisons of the ratios of the ultimate bending moment capacities predicted by the proposed
design method and prEN 1993-1-1 [15] to those determined from the benchmark shell FE
models for members under different shapes of bending moment diagrams are shown in Fig. 12.
Both limiting failure conditions i.e. attainment of the peak load factor and the CSM strain limits
were exhibited among the analysed cases. Fig. 12 shows that the proposed design method

generally provides very accurate and safe-sided resistance predictions for different cross-
section slendernesses Ep . As presented in Fig. 12 and Table 2, relative to prEN 1993-1-1 [15],
the proposed design method offers an average improvement of approximately 8% in accuracy,

as well as a consistent reduction in the scatter of the predictions. As shown in Fig. 13, for beams
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with relatively high member slendernesses (e.g. .7 > 1.0), prEN 1993-1-1 [15] provides
overly-conservative resistance predictions, with the predictions becoming increasingly

conservative with increasing beam slendernesses },;; prEN 1993-1-1 [15] is also overly-

conservative for stocky members (e.g. 1, <0.6) due to the neglect of the influence of material

strain hardening on the ultimate resistances. By contrast, as shown in Fig. 14, the proposed
design method offers considerably improved accuracy by allowing for the beneficial influence

of both material strain hardening and local bending moment gradients on cross-section capacity.

The influence of the adoption of the strain averaging approach on the accuracy of the resistance
predictions obtained using the proposed design method is explored in Fig. 15; this figure shows
the ratios of the predicted ultimate bending capacities obtained from the proposed design
method adopting the strain averaging approach Muyprop (€£d,av) @nd without employing strain
averaging My prop (¢ed) (i.€. Muy,prop (¢ed,av)/Muprop (ee4)) fOr steel beams subjected to different
bending moment gradients and failing due to the attainment of the CSM strain limits. In typical
I-section steel beams, relative to the normal strains resulting from the applied major axis
bending moments, the normal strains caused by second-order warping torsion and second-order
minor axis bending moments, which vary along the member lengths, are small. Thus, as can be
seen in Fig. 15, for members under uniform bending (i.e. y = 1), the strain averaging approach
does not have a significant influence on the ultimate resistance predictions, since there is no
variation in the major axis bending moments along the member lengths; only the second-order
warping torsion and the second-order minor axis bending moments vary along the member
lengths, and their influence on the development of the normal strains is considerably lower than
that of the major axis bending. On the other hand, for steel beams subjected to non-uniform

major axis bending, applying the strain averaging approach leads to enhanced ultimate bending

19



moment resistance predictions, which can be up to 14% higher than those determined without

adopting the strain averaging approach.

As previously indicated, high shear forces can adversely affect the bending resistances of steel
beams. In Fig. 16, comparisons between the ultimate bending moment resistances determined
through the proposed design method with or without the application of the shear force reduction
factor pesm to the CSM strain limits are presented, considering the cases where the shear forces
within the beams exceeded half of their cross-section shear resistances Vy,prop/Vpiy > 0.5; note
that in all the cases, failure was due to the attainment of the CSM strain limits in the beams. As
can be seen from Fig. 16, if the adverse influence of the high shear forces on the bending
capacities is ignored, the predictions obtained from the proposed method can become
unconservative. On the other hand, if the reduction factor pesm is applied to the CSM strain
limits for the cases where Vy eda/Vpiy > 0.5, the unconservative predictions shift to the safe side,
indicating the importance of applying the shear force reduction factor pcsm to the CSM limits
for steel beams where the shear forces exceed half of the cross-section shear resistances

Vy,Ed/Vpl'y > 05

6. CONSIDERATION OF TORSION IN THE PROPOSED DESIGN METHOD

In steel structures, pure torsion is relatively unusual; typically, torsion arises in steel members
in combination with bending. As indicated in Section 3.3, in the implementation of the
proposed design method, normal strains &y resulting from warping torsion normal stresses can
be included in the total normal strains that can be directly extracted from the analysis and
checked against the CSM strain limits. However, in this approach, the influence of St. Venant
torsion zst and warping torsion shear stresses zy is not directly considered. The consideration
of these shear effects due to (first or second order) torsion in the application of the proposed

design method is described in this section.
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6.1 Proposed approach for the consideration of torsion effects

6.1.1 Internal torsion effects and torsional resistances of steel cross-sections

In the proposed design approach, St. Venant torsion and warping torsion shear effects are taken
into account through considering the ratios of the internal St. Venant torsion Tsteq to the cross-
section St. Venant torsion resistance Tstrk (i.e. Tsteda/Tstrk) and the internal warping torsion
Tw,ed to the cross-section warping torsion resistance Twrk (i.e. Tw,ed/Twrk). Since the total
internal torsion Tgq Within steel members can be directly extracted from GMNIA using beam
finite elements, but some FE software packages (e.g. Abaqus [44]) do not enable the extraction
of the individual St. Venant Tstgq and warping Tw,eq torsion components, the use of Eq. (20)
and Eq. (21) is recommended for the determination of the internal St. Venant Ts;gq and warping

torsion Tw,eq Within steel elements, respectively [15].

Tsieg = Gli@' (20)

Twed = Ted — Tsiea (21)

In Eq. (20), G is the shear modulus, I; is the St. Venant torsion constant, and ¢' is the first
derivative of twist with respect to distance along the member length, which can be
approximately taken as the ratio of the difference of the twists ¢ at the two end nodes of a beam
element A¢ to the element length | (i.e. ¢' = A¢/l). The accuracy of this approximate approach
is presented in Fig. 17. As can be seen from the figure, for all pure torsion, pure bending and
combined bending and torsion cases, the warping moments determined from beam FE models
using the proposed approximate approach agree well with the values obtained from shell FE

models.

For St. Venant torsion, the associated shear stresses change sign and vary linearly across the
wall thickness for open sections and thus can be considered to have no effect on local buckling
[70]. Therefore, the cross-section St. Venant torsion resistance Tstrk Of all open-sections can

be approximated by the plastic St. Venant section resistance [70], which can be expressed by
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Eq. (22) for I-sections, as given in [71], or can be approximated by Eg. (23), as recommended
in [70], where 7y is the shear yield stress which is equal to f, /\/§ and h, b, t; and ty are the

overall depth, breadth, flange thickness and web thickness of the I-section, as shown in Fig. 4.

Tome =1, {brfz (1— %) + w + %} 22)
Tom = r{btz +W} (23)

For the case of warping torsion, the cross-section warping torsion resistance Twrk IS taken as
elastic warping torsion resistance Tw.el in accordance with [72] in this study. As shown in Fig.
4, the shear force due to warping Vy can be approximated by resolving the warping torsion Ty,
into an equivalent force couple acting within the flanges V= Tw/(h-tr) [73]. By elastic analysis,
the shear stress at the centre of the flange can be approximated by Eq. (24) [72].

15V,
bt;

Hence, the warping torsion resistance Tw,rk Of an I-section, taken as Twel, can be determined as

Tw

(24)

given by Eq. (25).

Ture = 7,0t (h—1t)/1.5 (25)

Note that the plastic warping resistance for I-sections is simply given by Twp = zybts(h-tf).

6.1.2 Interaction of shear and torsion

According to prEN 1993-1-1 [15], for a cross-section subjected to combined torsion and shear,
the plastic cross-section shear resistance should be reduced considering the adverse influence
of shear stresses due to torsion. An expression for the reduced plastic vertical shear resistance
Vpy,T OF I-sections in the presence of St. Venant torsion Tsieq was developed in [74], as given
by Eq. (26). This expression considers the interaction between the shear stresses due to vertical

shear force zyeq, Which are uniformly distributed through the web thickness, and the shear
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stresses due to St. Venant torsion zsteq, Which vary linearly through the web thickness, as shown
in Table 3, and forms the basis of the shear-torsion interaction formula given in prEN 1993-1-

1 [15].

1 _ TSt,Ed V

For I-section, V, oy
St,RKk

plyT —

(26)

Considering the different shear stress distributions through web thicknesses, as shown in Table
3, the equivalent expressions [74] for the determination of the reduced shear resistances of
channels and square or rectangular hollow sections (SHS/RHS) subjected to combined torsion

and shear were also set out in [74], as given by Egs. (27) and (28).

T, T
For channel section, V,, ;= ( 1- TSt'Ed -~ _I_W'Ed val,y (27)
St,Rk w,Rk
TSt,Ed
For SHS/RHS, V1 =| 1- & v (28)
St,Rk

Clearly the ratio of the applied shear force to cross-section shear resistance (i.e. Vyed/Vply,1)
has to be less than or equal to 1.0. In this study, the coefficients #y and 7, are used to represent
the utilisation of a cross-section under combined shear and torsion for shear forces acting
through the cross-section depth (major axis bending cases) and the cross-section width (minor
axis bending cases), respectively. The proposed expressions for the determination of 7y and 7,
are provided in Table 4 for different cross-sections. The expressions for the determination of
ny in the cases where shear forces act through the cross-section depths were developed
considering the shear stress distribution through the web thickness and using Egs. (26)-(28).
Similarly, to determine 5, for the cases where shear forces act through the cross-section widths,
the interaction of the shear stresses due to lateral shear force 7,4, St. Venant torsion zstgq and
warping torsion zw,gq arising in the flanges, as presented in Table 3, was considered. Note that

in Table 4, Vyeqand V,eq are the vertical and lateral applied shear force respectively; Vyrkand
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V. rkare the vertical and lateral cross-section shear resistances, taken as the plastic cross-section
shear resistances Vpiyand Vi, equal to Ayvzy, where Ay is the shear area determined according
to prEN 1993-1-1 [15], and Tstrkand Tw,rk are the cross-section St. Venant torsion and warping
torsion resistances, respectively. Tsirk can be determined using Eq. (23) for I-sections and
channel sections and determined as Tstrk = 2tAozy for SHS/RHS, where t and A are the section
thickness and area enclosed by the mean perimeter [73], respectively; Twrk can be determined
using Eq. (25) for I-sections and determined as Twrk = Tw,el = tilwzy/Sw for channel sections,
where tz, l and Sy, are the flange thickness, cross-section warping constant and warping statical
moment [75], respectively [73]. In the application of the proposed design method, shear checks

for cross-sections should be performed to assess that Eq. (29) is satisfied.

Toted/Tstre< 1.0, 7y < 1.0 and 7, < 1.0 (29)
Note that for cross-sections subjected to shear and/or torsion in which the web slenderness },,
exceeds 0.83/5n, where n = 1.2 is the shear area factor [60], shear buckling should be accounted
for in the determination of the cross-section shear resistances Vyrk and V. rk and the warping

torsion resistance Tw,rk according to [60].

6.1.3 Reduced CSM strain limits for the consideration of shear effects
Similar to the approach adopted in Section 5.2, the use of reduced CSM strain limits gcsm v to
take account of the interaction between bending, shear and torsion is recommended in the

application of the proposed method, as given by:

gcsm,v = &om — py (gcsm - ,uy,ﬂgy) — P, (gcsm - ,uz,wgy) (30)

where py and p; are the reduction factors ranging from 0 to 1.0 to allow for the influence of
high vertical shear (including that resulting from torsion) and high lateral shear (including that

resulting from torsion) on the ultimate cross-section resistance, and uy s and u,,w are given by:
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I\/lﬂ

Hyn = (31)

M ely
M w
lusz - I\/Iel,z . (32)

In Egs. (31) and (32), uy.n is the ratio of the cross-section major axis bending moment resistance
Mg considering the flanges alone (i.e. neglecting the presence of the web) to the elastic major
axis bending resistance of the full cross-section Meiy (i.e. Ma/Meiy) and pzw is the ratio of the
cross-section minor axis bending moment resistance determined neglecting the presence of the
flanges My, to the elastic minor axis bending resistance of the full cross-section Mg, (i.e.
Mw/Me 7); these ratios are used to approximate the effectiveness of a cross-section in bending
when the shear area (i.e. the web for major axis bending and the flanges for minor axis bending)
is fully utilised in shear. Mg can be calculated using Eq. (33); Mw (and hence uzw) can be
conservatively taken equal to O for I-sections, due to the insignificant contribution of the web

to the cross-section minor axis bending resistance.

Mg =Dt (h—t,)f, (33)
Hence, for I-sections, the expression for calculating the reduced CSM strain limits ecsm v can be

simplified to Eq. (34).

For I-sections, &y = &em — Py (Eesm — My 1€y ) = PrEesm (34)
prEN 1993-1-1 [15] accounts for the interaction between vertical shear effects (arising from
shear force and torsion) and major axis bending by reducing the cross-section bending
capacities for the cases where the ratio of the applied shear force to the plastic cross-section
shear resistance exceeds 0.5. The reduced bending moment capacity is determined using a
reduced yield strength (1 — py,ec3)fy for the shear area, where the reduction factor py ecs is given

by Eq. (35).
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\/
0 for £ <05

pLy,T

(35)

Pyecs =
[ Ve,

ply.T

2
v
—1} for 0.5< £ <1.0

ply.T

In this study, the reduction factor py used in Egs. (30) and (34) adopts a similar format, as given
by Eq. (36), where the major axis shear-torsion interaction factor #y is presented in Table 4 and
illustrated in Section 6.1.2.

(2n —l)2 for 0.5<7, <1.0 (36)

{O for n, <0.5
p, =

In prEN 1993-1-1 [15], for members subjected to significant shear forces through their cross-
section widths, the yield strength of the shear area is reduced by p;ecs, which is determined
using Eq. (37) for I-sections and channels and Eq. (38) for SHS/RHS. Note that the von Mises
yield criterion was considered in the development of the expression for I-sections and channel
sections [76] and that the reduction to the yield strength is applied when the ratio of the applied
shear force Vgq to the plastic shear resistance (Vzed/Vpiz) is higher than 0.25.

V.
0 for 252 <0.25

pl,z

2
. . V, V,
For I-sections and channel sections, p, gc; =11 1—( Z'EdJ for O.25<VLE"<1.O (37)

pl,z pl,z

V.
1 for 254 =1.0

pl,z
V
0 for 2E2 <05
I,z
For SHSIRHS, pyeco = - ) i (38)
' \V V
zEd _ for 0.5< 282 <1.0
Vpl,z pl,z

Following the format adopted in prEN1993-1-1 [15], in this study, for I-sections and channel
sections, Eq. (39) is recommended for the determination of the reduction factor p, used in Eqgs.

(30) or (34), as given by
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0 for n,<0.25

For I-sections and channel sections, p, ={1—4/1-n>  for 0.25<7,<1.0 (39)
1 for n,=1.0

For SHS/RHS, the reduction factor p, can be determined using Eqg. (40).

for n, <0.5

0
(27, -1)° for 0.5<n, <1.0 (40)

For SHS/RHS, p, ={

In both Egs. (39) and (40), the minor axis shear-torsion interaction factor #, should be

determined from Table 4.

6.2 Accuracy of proposed design approach for laterally-restrained beams

In this subsection, the accuracy of the proposed approach for the design of laterally-restrained
steel beams under in-plane bending and shear without the presence of torsion is investigated.
Fig. 18 (a) shows the reducing CSM strain limit ecsm /ey determined using Eq. (34), with
increasing Vy eq/Vpiy ratios for steel beams made of grade S355 steel with an HEB 100 cross-
section and subjected to in-plane 3-point major axis bending, while Fig. 18 (b) illustrates the
ultimate capacities of the beams with different normalised member lengths L/L, s obtained
from the shell FE models My shen and the proposed design method My prop USing the unreduced
gcsm and reduced ecsmyv CSM strain limits plus the shear check. It can be seen from the figure
that, for beams with high shear forces, the application of the proposed design method without
the consideration of the shear effects may lead to unconservative member capacity predictions;
on the other hand, employing the reduced strain limits and shear checks shift these

unconservative predictions to the safe side.

Similar conclusions can also be drawn from the results of a number of I-section members
(including 10 IPE, 10 HEB and 10 HEA profiles with 10 varied member lengths) subjected to
3-point major axis bending shown in Fig. 19. Fig. 19 (a) shows the normalised moment-shear
interaction obtained from shell FE models and the proposed design method using the unreduced
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ecsm and reduced ecsmyv CSM strain limits plus the shear check, where V, is the ultimate shear
capacity obtained from different design methods. It can be seen from the figure that in bending-
dominated cases, the beneficial effects from the local moment gradients outweigh the negative
influence from shear effects; thus, with increasing shear forces, increases in the bending
moment capacities can be observed [31]. On the other hand, in the shear-dominated cases,
reducing the CSM strain limits considering high shear effects and performing shear checks
moves unsafe predictions that can be observed without any shear checks to the safe side; this
also can be seen from Fig. 19 (b), which shows a comparison between the member capacities
obtained from the proposed method using ecsm and ecsm v plus the shear check, normalised by
the corresponding shell FE results, versus the value of 7y at the attainment of the peak load

factor or gcgm.

Fig. 20 shows comparisons between member capacity predictions obtained using the proposed
design method My prop With unreduced CSM limits ecsm and reduced CSM limits ecsmv plus the
shear check, which are normalised by shell FE results for I-section members (including 10 IPE,
10 HEB and 10 HEA profiles with 4 different member lengths) subjected to 3-point minor axis
bending and 38 SHS/RHS members subjected to 3-point major and minor axis bending, versus
the value of 7y or 7, at the attainment of the peak load factor or csm. As can be seen from the
figure, the application of the proposed design method with e.sm v provides safe and accurate

member capacity predictions.

6.3 Accuracy of proposed design approach for laterally-unrestrained beams

In this subsection, the accuracy of the proposed design approach for beams subjected to
bending alone and susceptible to LTB, where torsion is induced as a second-order effect, is
investigated. Fig. 21 shows a comparison between the ultimate resistance predictions obtained
from the proposed design method My prop Using the reduced strain limit ecsm v determined from

Eq. (34), which considers the influence of shear stresses resulting from applied shear forces
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and torsion (second-order torsion in this case), and using the reduced strain limit proposed in
[21] pesmeesm (See Section 5.2), which only considers the influence of shear stresses from applied
shear for all studied beams subjected to non-uniform bending. It can be seen from the figure
that the two approaches lead to very close predictions (differences are within 5%) of member
capacities. Since the consideration of shear effects due to second-order torsion generally has
only a slight influence on the strength predictions of steel beams subjected to bending alone,
the formula (Eq. (18)) presented in Section 5.2, which only considers the influence of shear
stresses from applied shear forces, can also be used in these cases as it provides accurate and

safe member capacity predictions.

6.4 Accuracy of proposed design approach for members subjected to torsion
In this subsection, the accuracy of the proposed design method is assessed for steel beams
subjected to torsion (directly applied rather than as a consequence of instability), considering

different cross-sections, member lengths and loading conditions.

In the assessment of the proposed design approach for steel beams with I-sections and subjected
to torsion, (i) 200 steel beams subjected to concentrated lateral load 2P (generating an internal
shear force V;) and concentrated torsion 2T at the midspan with the ratio of 0.5V,L/T =2, 5, 10
and 20, (ii) 200 steel beams subjected to concentrated vertical load 2P (generating an internal
shear force Vy) and concentrated torsion 2T at the midspan with the ratio of
(T/Tstr)/(0.5VyL/Mp1y) = 0.4, 1,4, 7 and 10, (iii) 200 steel beams subjected to uniform bending
M and concentrated torsion 2T at the midspan with the ratio of (T/Tstrk)/(M/Mpiy) = 0.4, 1, 4,
7 and 10 and (iv) 180 extreme cases where steel beams were subjected to only concentrated

torsion moments 2T at the midspan were considered.

In Fig. 22, the ultimate capacities obtained from the proposed design method using unreduced

ecsm and reduced ecsm v Strain limits as well as shear checks versus the maximum shear-torsion
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interaction factors 7y max Or #7z,max along the member lengths at failure due to attainment of the
peak loads or strain limits ecsm without considering shear effects are illustrated. Note that in the
figure, the ultimate strengths determined through the proposed design method are normalised
by the benchmark shell FE results. As can be seen from Fig. 22, the consideration of shear
effects due to torsion now has a significant influence on the strength predictions of the
considered members subjected to torsion. Particularly, for the case of members under pure
torsion, the neglect of the shear effects from torsion in the application of the proposed method
can lead to unsafe torsion resistance predictions Ty prop, Where the predictions can be up to 85%
higher than the torsion resistances obtained from the shell FE models Ty sneir. On the other hand,
as can be seen from Fig. 22, if the shear check and the reduced strain limits &csm,v, which take
account of the shear effect from torsion are employed, the great majority of the unsafe
predictions shift to the safe side with only few predictions remaining slightly on the unsafe, but

with acceptable margins (within 7%).

In addition to I-section steel members, 70 SHS/RHS members subjected to combined
concentrated (vertical or lateral) load 2P, generating a shear force V, and concentrated torsion
2T at the midspan and 15 SHS/RHS members subjected to pure torsion were also studied; the
results are presented in Fig. 23. Similar to the conclusions drawn from the results for I-section
members, Fig. 23 shows that it is necessary to consider the influence of high shear arising from
the application of torsion and employ the reduced strain limits ecsm v plus the shear check in the
application of the proposed design method, to achieve accurate and safe ultimate capacity

predictions.

It should be noted that, in the application of the proposed design method, for members
subjected to combined major or minor axis bending and torsion, the elastic local buckling stress
ocrcs Used to determine the cross-section slenderness A, and hence the CSM strain limit were

calculated considering the normal stress distributions arising from major or minor axis bending
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moments. For the pure torsion cases, since the only normal stresses induced in the member are
warping torsion normal stresses, which are distributed within each flange in a similar fashion
to that when the cross-section is subjected to minor axis bending, as shown in Fig. 4, the elastic
local buckling stress acrcs Was calculated assuming that the cross-section is under minor axis
bending. For members under torsion, local buckling half-wavelengths Lycs used to average
strains were conservatively taken as the lower value of the local buckling half-wavelengths of
the single web and single flange plates with fixed boundary conditions, which is the lower

bound envelope of the local buckling half-wavelength of full cross-sections [54].

7. WORKED EXAMPLE

A worked example is presented in this section to illustrate the implementation of the proposed
design method. The example considers a beam made of grade S355 steel (fy = 355 MPa, f, =
510 MPa, reduced value of E = 200000 MPa and v = 0.3) with a hot-rolled HEA 260 cross-
section and a length of 13000 mm (i.e. L = 13000 mm); the considered beam is subjected to

major axis bending moments My eq = 120 kNm applied at the two ends, as shown in Fig. 24.

The proposed design approach requires a GMNIA of the member using beam finite elements
to be performed, as described in Section 3.2. As shown in Fig. 24 (a), which summarises the
application of the proposed method to the considered beam, the quad-linear material model
described in Section 3.1, converted into a true stress-strain relationship was adopted; 91 B310S
beam elements were used to model the member; the equivalent imperfection was modelled
through the scaling of the first LTB eigenmode with an amplitude of eo 1 = a,L/150 = 42.47
mm, where a; is the imperfection factor taken as 0.49 for the considered cross-section in
accordance with the recommendations made in [46]. After performing GMNIA, the design

resistance factor of the beam can be obtained following the steps set out below.

I. Calculation of full cross-section elastic local buckling stress ocr,cs
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The expressions developed by Gardner et al. [33] are used to determine the elastic local
buckling stress of the full cross-section ocrcs. The plate buckling coefficients for the isolated

flange under uniform compression with simply-supported and fixed boundary conditions are
equal to k® =0.43 and k{ =1.25, respectively. Likewise, the plate buckling coefficients for
the isolated web under pure bending with simply-supported and fixed boundary conditions are

equal to kX°=23.9 and k{ =39.6, respectively. Using these buckling coefficients, the

corresponding elastic buckling stresses of the isolated flange and web are determined as Gcsff =
718.6 MPa, oy, = 2089.1 MPa, o, = 4308.2 MPa, o, = 7138.3 MPa. The lower and upper

bounds to the full cross-section local buckling stress are thus equal to 0> = 718.6 MPa and

crp

UCFW = 2089.1 MPa. The interaction coefficient , to account for the effect of element

interaction [33], is given by:

¢ = max(O.lStt—f¢, ttﬂ(o.4 -0.25¢)) = 0.215 (41)

W f

where ¢=0" /0> =0.167 . The full cross-section elastic local buckling stress ocrcs is

cr.f cr,w

determined as

Oues =0Onp+( (0f , —05, ) =1013 MPa, (42)

cr,cs cr,p O-cr,p “Yerp

Note that the finite strip analysis software CUFSM [42] gives a full cross-section elastic local

buckling stress of 1001 MPa.

1. Calculation of cross-section slenderness Zp

Using Eq. (10), the cross-section slenderness is determined as Zp= /fy /o, =0.99.

I11. Calculation of CSM strain limit ecsm
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Based on the cross-section slenderness, the CSM strain limit can be calculated using Egs. (8)

and (9). For this example, with /Tp: 0.59, the CSM strain limit ecsm/ey is equal to 1.65.

IV. Calculation of elastic local buckling half-wavelength L cs
The expressions developed by Fieber et al. [54] are used to calculate the elastic local buckling

half-wavelength Lycs of the beam. The lower and upper bounds to the local buckling half-
wavelength are given by L;, =214.5mm and L3, =489 mm. Using these values, the elastic

local buckling half-wavelength of the full cross-section is determined as:

Ly = L5 = (L35 — L5, ) =430 mm, (43)
Note that the finite strip analysis software CUFSM [42] provides an elastic local buckling half-
wavelength of 450 mm. Based on the calculated local buckling half-wavelength Ly cs= 430 mm,
within which 3 beam elements fully lie, the average maximum compressive normal strain for

each finite element eeq.av,m along the length of the considered beam can be determined.

V. Determination of failure mode and characteristic resistance factor
The load increments at the attainment of the peak load factor and CSM strain limit in the
GMNIA can now be determined. Fig. 24 (b) shows the load factor a (i.e. M/Myq4) versus
average maximum compressive strain at the critical location (i.e. the midspan in this case) path
of the considered beam. It can be seen that in this case, the average strain at the midspan reaches
the CSM strain limit prior to the attainment of the peak load factor. Thus, the member is deemed
to fail at the load factor acsm = 1.129, and the characteristic resistance factor arxk is equal to
1.129 (i.e. ork = 1.129). Note that at the failure moment, the shear-torsion factors »y = 0 and 7,
=0.010 are very small; thus, the shear due to torsion is negligible, and there is no need to reduce

the strain limits.

V1. Determination of design resistance factor
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As mentioned in Section 3.3, the application of the partial safety factor (ym1 = 1.0 for member
stability calculations) to the characteristic resistance factor is necessary to obtain the design
resistance factor, as given by Eq. (17). Hence, in this worked example, the design resistance

factor of the member is given by:

(XRd = OCRk /yMl :1.129/1.0 :1.129 >1.0. . PaSS (44)

The beam is thus able to withstand the applied forces and its design bending moment resistance
is equal to Mrd = ardMy,ed = 135.48 KNm, according to the proposed method. On the other hand,
using the lateral-torsional buckling design expressions provided in prEN 1993-1-1 [15], the
design bending moment resistance of the beam is calculated as 105.46 kNm, which is equal to
88% of the applied bending moment, indicating that the beam is not able to withstand the
applied bending moment. It is worth noting that the benchmark shell finite element model of
the considered beam provides a resistance factor of aysnenn = 1.134 (i.e. Myshenn = 136.03 KNm),
which is very close to the ultimate resistance factor obtained through the proposed design
method, but is lower than the bending resistance corresponding to the peak load factor apeak =
1.281, i.e. the resistance that would be obtained if cross-section failure, as defined by the CSM

strain limit, were to be ignored.

8. CONCLUSIONS

A new method for the design of steel beams against lateral-torsional buckling (LTB) performed
by advanced inelastic analysis using beam finite elements with CSM strain limits has been put
forward in this paper. The proposed method is performed by carrying out a Geometrically and
Materially Nonlinear Analysis with Imperfections (GMNIA) of a steel member using beam
finite elements and defining the ultimate resistance as (i) the peak load factor apeax after which
the load-deformation curve descends or (ii) the load factor that corresponds to the attainment

of the CSM strain limit acsm, Whichever occurs first. Shell finite element models able to
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replicate the LTB response of steel beams were created and validated against experimental
results from the literature. Using the validated shell FE models, the accuracy of the proposed
design method was extensively verified for 300 steel I-section beams subjected to uniform
bending and 1200 steel beams subjected to non-uniform bending, considering a range of
European cross-section profiles, member slendernesses and bending moment gradients. It was
shown that the proposed method consistently provides more accurate ultimate strength
predictions relative to the traditional beam design method provided in prEN 1993-1-1 [15]. The
high accuracy of the proposed design method derives from (i) recognising the interaction
between cross-section elements during local buckling through the use of the cross-section
slendernesses in the determination of the CSM strain limits, (ii) allowing for strain hardening,
(iii) exploiting of partial plastification in Class 3 cross-sections and (iv) considering the
beneficial effects of local strain gradients along the member lengths. The proposed method also
removes the need for cross-section classification, individual member buckling checks and the
calculation of effective lengths in the determination of the ultimate strengths of members,
thereby significantly streamlining the structural steel design process and providing the ultimate
resistances and failure modes of steel members and systems directly. In addition to steel beams
under bending alone, the proposed method was also developed for and applied to steel I-section
members subjected to (i) bending and shear, (ii) bending and torsion, (iii) bending, shear and
torsion and (iv) pure torsion, where the safety and accuracy of method were illustrated. For
pure bending cases, the consideration of shear effects due to second-order torsion had only a
slight influence on strength predictions, and thus can be eliminated in the proposed design
method, while for members subjected to primary torsion actions, shear effects due to torsion
have to be taken into account. Provisions for considering shear-torsion effects for SHS/RHS
and channel sections were also presented in this study. The research presented herein extends,

for the first time, the scope of the method of design by GMNIA with CSM strain limits from
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in-plane to out-of-plane stability problems, enabling its general applicability to three-

dimensional structural systems.
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approach and prEN 1993-1-1 to those obtained from the benchmark shell finite element models versus (a) cross-

section slenderness ;lp and (b) LTB slenderness ,_1LT for beams under uniform bending
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Fig. 12 Comparison of the ratios of the ultimate bending moment capacities obtained using the proposed design
approach and prEN 1993-1-1 to those obtained from the benchmark shell element models versus cross-section

slenderness Zp for steel beams under non-uniform bending
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Fig. 13 Comparison of the ratios of the ultimate bending moment capacities obtained using the proposed design
approach and prEN 1993-1-1 to those obtained from the benchmark shell element models versus member

slenderness for LTB ), ; for steel beams under non-uniform bending
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Fig. 14 Normalised ultimate bending moment capacities of steel members under non-uniform bending obtained

from the proposed design method, shell FE models and prEN 1993-1-1 versus member slenderness for LTB ELT
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Fig. 15 Ratios between the ultimate bending capacities determined using the proposed design method with strain
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Mu,prop/Mu,shell

0.5

0.4
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Fig. 22 Comparisons between the ultimate capacity predictions determined through the proposed method using
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Fig. 24 Worked example: design of a hot-rolled steel beam made of grade S355 steel with an HEA 260 cross-
section (dimensions shown in mm) under uniform bending

56



Tables

Table 1 Summary of validation study for shell finite element models against experimental results from literature

No. of u shelt/ Ol test
Reference Load configuration tests Mean CoV
Dux & Kitipornchai (1983) [62] 3-point bending; 4-point bending 9 0.959 0.020
Ozbasaran et al. (2015) [63] cantilever beams 9 0.921 0.068
Demirhan et al. (2020) [64] cantilever beams 9 1.075 0.127
Schaper et al. (2019) [65] 3-point bending with eccentricity 7 0.970 0.023
Tusnin & Prokic (2015) [66,67] 3-point bending with eccentricity 6 0.901 0.061
Estabrooks & Grondin (2008) [68] 3-point bending with eccentricity 6 0.982 0.015
Lindner & Glitsch (2004) [69] 3-point bending with eccentricity 13 0.969 0.027
Total 59 0.971 0.084

Table 2 Summary of parameters considered in parametric studies and accuracy of proposed design method and
prEN 1993-1-1 relative to results of benchmark shell FE models for steel beams under uniform and non-uniform
bending

Cross- .
Moment ~ Member Cross- ) No. of  Design
. . section Mu/Mushell
ratio slenderness  section cases method
slenderness
v ALt A N Mean CoV  Max  Min
Proposed 0.984 0.016 1.022 0.928
1 0.20-1.80 300
prEC3 0.901 0.137 1.074 0.519
p .982 031 1.01 .
0.5 0.35_ 1.40 300 roposed 0.98 0.03 010 0.889
10 IPE prEC3 0.904 0.085 0.990 0.674
Proposed 0.988 0.022 1.010 0.888
0  030-121 10HEB 026-060 300 P
10 HEA prEC3 0.910 0.063 1.000 0.721
P d 0989 0.021 1.011 0.891
05 026-117 300 | OPOse
prEC3 0.908 0.054 1.005 0.748
P d 0971 0.036 1.011 0.877
1 025-113 300 | OPose
prEC3 0.914 0.051 1.010 0.786
Proposed 0.983 0.027 1.022 0.877
Total 1500

prEC3 0.907 0.084 1.074 0.519
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Table 3 Shear stress distribution across plate thickness of different types of cross-sections subjected to vertical
shear force Vy,eq, lateral shear force V,eq and torsion moment Teq

I-section Channel section SHS/RHS
T7Ed Twed  TstEd T2 Ed TweEd TstEd T2 Ed TstEd
+ + 55 +_ |+ EE + L
Ty.Ed Ty £d Ty Ed

y A
V. \Y/
V, vvVVYY + y,Ed y,Ed
YvEd/F Yy v vy v
T, z,Ed/{T\
VZ,Ed 4{ + wiEd Vz'Ed +
Teq l + L= Teq
T A Yy Vv y
St,Ed TSt'Ed TSt,Ed

Table 4 Expressions for calculating the factors 7y and #; for considering the combined effects of shear stresses
due to shear force and torsion for different types of cross-sections

Major axis bending

Minor axis bending

) 7, = Vy,Ed <1 n, = Vz,Ed + Tw,Ed <1
I-section y T : T T
St,Ed St,Ed St,Ed
1- T Vy,Rk 1- T V. re 1- TR
St,RK St,Rk St,Rk
) n, = Vy,Ed + TW,Ed <1 n, = Vz Ed + Tw,Ed <1
Channel section Y T T T T
StEd St,Ed St,Ed St,Ed
1- Vy Rk 1- Tw Rk 1- Vz,Rk - Tw Rk
TSt,Rk TSt,Rk Tsere Tsere
V \Y,
ny =<1 n, = <1
SHS/RHS T T
StEd StEd
1- Vy,Rk 1- Vz Rk
TSI,Rk TSt,Rk
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