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Abstract

The consumption of green space land due to urban development has evolved
to become a key global concern. Whilst assumed to be a critical component
in the control of land change, national planning policies have largely been
omitted from analyses. Explorations of the effects associated with the transition
between policy frameworks may therefore be considered a crucial element in
advancing our understanding of the relationship.

This thesis applies novel statistical techniques to analyse the effects attributable
to the introduction of the Localism Act 2011 and National Planning Policy
Framework, using green space as a primary indicator.

An initial analysis of green space loss using exploratory methods and Change
Point Detection identified the existence of different structural patterns within
the data, associable with the introduction of the revised policy framework. It
further challenged extant concepts of the temporal dynamics of policy impact,
suggesting evidence of increased land loss within 2 years.

Through Interrupted Time Series Analysis using dynamic linear models a
policy intervention effect was obtained, which reported the policy to have led
to a significant increased loss of green space, based upon both area and as
a proportion of rates of residential development, intended to account for the
underlying effect of economic drivers.

A final element of research evidenced a paradigmatic shift from a policy of
urban containment to one permissive of expansion into the proximate rural
periphery, using multiple datasets. Rates of green space and ‘brownfield’
development within urban boundaries were shown to have seen minimal effects
under the revised framework. However, green space situated outside of said
boundary was lost at an average rate 177% greater than under the preceding
framework.

The research constitutes the first to provide robust empirical evidence that the
policy reform impacted upon rates and patterns of land change. In so doing
offering new insight with which to augment understanding of the functional
dynamics of policy in the regulation of land use.
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CHAPTER1
Introduction:

The Enduring Idyll?

“Meanwhile, at social Industry’s command,

How quick, how vast an increase. From the germ,

Of some poor hamlet, rapidly produced,

Here a huge town, continuous and compact,

Hiding the face of the earth for leagues - and there,

Where not habitation stood before,

Abodes of men irregularly massed,

Like trees in forests - spread through spacious tracts.

O’er which the smoke of unremitting fires,

Hangs permanent, and plentiful as wreaths,

Of vapour glittering in the morning sun,

And, whereso’er the traveller turns his steps,

He sees the barren wilderness erased,

Or disappearing.”

The Excursion
Wordsworth (1820)

1.1 Introduction

Throughout the world, the Twentieth and Twenty First Centuries have
evidenced a rapid demographic transition from predominantly rural to urban
living (Galea et al., 2005). By 2008 over half of the global population
were recorded as resident in urban settlements (Budruk et al., 2009). As a
consequence of the resultant increased demand for additional accommodation,
infrastructure and resources, allied to the finite availability of land, significant
pressure has been placed upon undeveloped natural areas, such as green space
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(Budruk et al., 2009; Folke et al., 1997). This developmental pressure upon
land is expected to continue to intensify as the increase in urban populations
shows no abatement (Patra et al., 2018). The extent of urban settlements
is predicted to triple by 2030, consuming an additional 1.2 million km2 of
predominantly natural surfaces, in order to accommodate an extra 1.35 billion
people globally (Biello, 2012; Seto et al., 2012).

In parallel, natural and previously undeveloped land has increasingly
become recognised as integral to environmental sustainability (European
Commission, 2016), based upon the provision of ecosystem services, which
reflect ‘the benefits human populations derive, directly or indirectly from

ecosystem functions’ (Costanza et al., 1997). These incorporate supporting

services, which reflect biotic and abiotic processes (such as photosynthesis)
(Thaiutsa et al., 2008); regulating services, which comprise a diverse range
of regulatory functions (such as the amelioration of air quality (Bolund
and Hunhammar, 1999)); provisioning services, which relate to resources
obtained from the ecosystem (such as agricultural production (Power,
2010)); and cultural services, which constitute immaterial benefits (such as
positive effects upon physical and mental health (Lee and Maheswaran, 2011)).

Although the extent of undeveloped land is influenced by environmental
factors and agricultural intensification (Ståhle, 2010), the most significant
threat is often portrayed as development of built environment (Haaland and
van Den Bosch, 2015). The loss of derived ecosystem services associated with
the expansion of urban environments is therefore considered to represent one
of the most significant challenges to sustainability (OECD, 2018), formally
recognised as an international policy priority (European Commission, 2016).
Of particular concern is land which represents the periphery between urban
and rural usage (Benito et al., 2010).

Whilst patterns of urban induced land use change are understood to be
influenced by interrelated socio-economic, political, natural, technological
and cultural forces (Bürgi et al., 2005), the role of planing policy in both a
regulatory and facilitative function is considered crucial (Hersperger et al.,
2018). Consequently, planning systems must be utilised efficiently in order
to ensure patterns of sustainable development which retain natural and
semi-natural land (Egoh et al., 2008).
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However, the development of an understanding of the relationship between
policy and land change has only recently become established as a research aim
(Hersperger et al., 2018). Primarily advanced through new forms of digital
data, which provide the opportunity to monitor and analyse land change over
a more consistent period (Juliev et al., 2019), allied to the entrenchment of
evidence and outcome based policy within structures of governance (Gertler
et al., 2016; Head, 2008; White and Masset, 2018).

A growing research basis has evolved with a focus upon the exploration of
the relative conceptual role of spatial planning as a driver of urban induced
land change (Hersperger et al., 2018). However, empirical analyses constitute
a sparse field (Kasraian et al., 2019), generally restricted to targeted policy
provisions (such as conservation measures (Verburg et al., 2004)), with limited
focus upon comparative policy impacts (Mu et al., 2016). Correspondingly,
evaluation of planning policy has tended to concentrate upon outputs (such
as policy documents and plan performance) rather than outcomes (such as
intended and unintended land use change) (Shahab et al., 2019). In order to
address this issue it is contended research must focus upon establishing robust
empirical evidence of the causal impact of policy upon landscapes (Bürgi
et al., 2005; Morrison and Pearce, 2000; Plieninger et al., 2016).

Particular focus is placed upon examples drawn from policies implemented in
the context of stable landscapes, where existing measures may be considered
factors in the regulation of change (Bürgi et al., 2005; Plieninger et al., 2016).
Having previously been explored in relation to the United Kingdom (Dallimer
et al., 2011), the subsequent adoption of a revised policy framework provides
a pertinent example through which to explore cognate effects.

1.1.1 Planning Redefined

Upon election in 2010, the Conservative led coalition government espoused
radical reform of the previous planning system as one of the core tenets of its
policy agenda (Cabinet Office, 2010). Embedded into the nebulous concept of
‘localism’ (Haughton and Allmendinger, 2013) and promoted as the means
by which to stimulate economic recovery in the aftermath of the global
financial crisis (DCLG, 2011), the revisions were intended to vastly simplify
planning procedure with an enforced “presumption in favour of sustainable
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development” (DCLG, 2011) at its heart.

Initially through the Localism Act 2011 and subsequently the National

Planning Policy Framework [NPPF] (2012) a system defined by over a
thousand pages of separate, detailed planning policy guidance was replaced by
a single, minimally prescriptive 65 page document (Fisher et al., 2013).

A number of retrospective analyses have since contended the revised system
was constrained by an inherent path dependency (Raco, 2014), as a result
of which it merely reflected a continuation of the prevailing neo-liberal
principles, which had dominated British politics since the 1980s (Davoudi,
2011; Haughton and Allmendinger, 2013; Raco, 2014; Slade, 2018). However,
throughout the consultation process undertaken prior to enactment, vociferous
opposition was raised by myriad non-governmental organisations, including
environmental stake-holders (such as the Campaign to Protect Rural England,
Countryside Alliance and Chartered Institution of Water and Environmental
Management), whom perceived it to represent a significantly increased threat
to the natural environment (Sibley-Esposito, 2014).

Consequently, the revised planning framework under the NPPF rapidly
became portrayed in the media as a “builders’ charter” (Wright, 2012), which
threatened the cultural inviolability of the rural idyll (Harrison and Clifford,
2016). Despite conciliatory amendments to the policy (Sibley-Esposito, 2014),
concerns persisted that it represented a fundamental ideological shift from
urban containment to sprawl (Harrison and Clifford, 2016), ultimately driven
by vested economic interests (Tait and Inch, 2016).

This discourse in relation to the developmental threat to natural land has been
augmented by limited empirical analysis to date (CPRE, 2018). Whilst as an
example of the transition between two differing approaches to planning policy
within a highly urbanised country (Dallimer et al., 2011), the examination of
this change can provide additional insight in regards to a previously minimally
explored relationship with land change.
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1.2 Research Aim and Objectives

This thesis was designed to develop a novel empirical understanding of the
developmental impacts of the Localism Act 2011 and National Planning Policy

Framework upon the prevalence and patterns of undeveloped green space
land. It is intended to contribute to the nascent development of a body of
knowledge that improves understanding of how national level planning policy
may directly or indirectly impact upon land use change. Whilst the outcomes
can be used to inform future ex ante evaluation and predictive modelling in
order to support the policy cycle.

To achieve this aim the following research objectives were adopted:

1. Derive a methodologically consistent, spatio-temporal green space loss
dataset incorporating periods prior to and after the implementation of
the policy reforms;

2. Apply geospatial data analytic methods to assess the evidence of a
structural change in relation to the rate of development occurring on
green space and whether such is associated with the introduction of the
Localism Act 2011 and National Planning Policy Framework;

3. Empirically investigate the effect of the policy reforms upon the rate of
development upon green space;

4. Empirically investigate whether the policy reforms have altered spatial
patterns of development from a focus upon containment within extant
urban boundaries to the facilitation of urban expansion.

1.3 Research Questions and
Thesis Contributions

The thesis can be understood to address three key research questions, which
cumulatively account for the first empirical analysis of the impact of the
revised policy upon green space land. They additionally, suggest the potential
of data-driven analytical methods as a means through which to estimate the
effects attributable to national planning policy, such that similar approaches
could be employed to assess the impact of policies upon different urban areas.
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Jointly, the three elements of the thesis [chapters 4, 5 and 6] incorporate
aspects of the research priorities identified as imperative to exploring the
underlying forces which determine land change (Bürgi et al., 2005; Plieninger
et al., 2016), within the context of planning policy. The data upon which
analyses are founded augments the growing body to utilise alternatives to
prevailing remote sensed resources (Plieninger et al., 2016) and presents the
efficacy of vector maps. Analyses enable the identification of trajectories of
land change over time (Bürgi et al., 2005), providing new insights in regards
to the temporal dynamics which underpin the relationship between national
policy and green space loss. Conceptually, the research investigates the
impact of changes associated with regulatory functions, which are intended
to counteract the influence of other underlying drivers (Bürgi et al., 2005;
Plieninger et al., 2016), potentially enabling the isolation of a single factor.
Additionally, two robust methods are deployed as means through which to
discern and quantify a causal relationship (Bürgi et al., 2005; Morrison and
Pearce, 2000; Plieninger et al., 2016).

Research Question 1:Has the area of green space which was subject to
development evidenced alteration in rates which could be associated with the
adoption of the Localism Act 2011 and National Planning Policy Framework

(2012)?

Following the enactment and introduction of the revised planning system
concern was raised by conservation organisations that it would lead to
increased loss of green space (Sibley-Esposito, 2014). This perspective
was disputed by government, whom outlined its increased provision for the
protection of publicly valued green space (DCLG, 2011) and the retention of
a ‘plan-led’ approach, in which Local Authorities would be able to control
patterns of development (Rhodes, 2011). However, this discourse has been
augmented by limited ex post facto empirical analysis (CPRE, 2018), which
could provide novel insights in regards to the specific effects of policy change
and a more general understanding of the dynamic relationship between policy
and land change.

Contribution 1: Through the novel application of a systematic, evidence
based method of data analysis the research provided the first empirical
indication of the effect of the adoption of the revised policy regime on the
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developmental pressure upon green space. The applied methodology suggests
the potential expansion of change point detection as a means through which
to empirically test the existence of policy interventions based upon temporal
shifts in land change data. The research further addresses the need for analysis
that advances the conceptual model of the relationship between policy and
land change through examination of temporal dynamics.

Research Question 2: What impact have the Localism Act 2011 and National

Planning Policy Framework had upon the total area of green space subject to
development?

The majority of quantitative analyses have focused upon assessment of the
relative contribution of policy to land change, rather than as an isolated
determinant (Hersperger et al., 2018). Where focused upon the identification of
policy impact, predominant methods have been restricted to ‘pretest-posttest’
designs or linear regression (Dallimer et al., 2011), which are considered
subject to risks related to internal validity (Dimitrov and Rumrill Jr, 2003;
St. Clair et al., 2014). Within other fields of policy impact research where a
randomised controlled trial is not feasible, quasi-experimental methods have
been established as robust alternatives (McDowall et al., 2019). However, such
have been subject of limited use in regards to land use change (Ramachandra,
2019) and not previously been applied to planning policy.

Contribution 2: This research employs a previously unused approach
to statistical analyses, which enabled the establishment of a quantified
intervention effect deemed likely to be attributable to the adoption of the
revised planning framework. Consequently, it can be considered to improve
understanding of the dynamic relationship between changes to policy and
urban induced land change, addressing the demand for robust methods of
causal inference.

Research Question 3: Do analyses of rates of development upon green space
offer insights in regards to the extent to which the revised planning framework
can be characterised as enabling urban expansion?

It has previously been established that the planning system is crucial in
the containment of development to extant urban boundaries (Mu et al.,
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2016). Whilst, National ‘Green Belt’ policies within the UK have been
evidenced to have been highly effective in this regard (Baing, 2010), the role
of wider deregulatory policy provisions have not been analysed (Pauleit et al.,
2005). A supposition was posited that the revised framework would increase
developmental pressure upon land outside of existing urban boundaries (CPRE,
2018). However, there has been no definitive empirical analysis undertaken to
test this hypothesis.

Contribution 3: The final contribution of this thesis investigated the impact
of policy change upon the spatial pattern of development in relation to existing
urban boundaries, using methods consistent with established policy impact
evaluation. It evidenced an association between the adoption of a policy which
could be considered broadly more permissive of development and a rapid
alteration to the distribution of development. This validates existing research
(Dallimer et al., 2011; Mu et al., 2016) and informs the wider development of
theories relating to the role of policy in regards to patterns of urban expansion.

1.4 Thesis Structure

In chapter 2 core theoretical, conceptual and methodologically relevant
literature were reviewed to establish the academic foundation upon which
subsequent research was founded. As this research can be considered to
reside at the confluence of green space, land change science and policy impact
analysis fields, each were explored from theoretical and methodological
perspectives.

Chapter 3 addressed the methodological approaches which underpin each
section of the thesis. It outlines the development of the primary green space
loss dataset, which was utilised in all subsequent analyses. Original data
sources and relevant temporal ranges were described. The minimum change
identification method was summarised. A distinct sampling methodology was
set out, including relevant foundational data sources. Finally derived data sets
were presented in advance of the methods of data analysis utilised in chapters
4, 5 and 6.

The first contribution chapter (4) sought to augment current knowledge of the
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relationship between national level policy and land change through the novel
application of quantitative methods in regards to a previously unexplored
policy. By means of simple summary statistics and change point detection it
suggested a relationship between the transition to a new policy regime and
an increased rate of development upon green space land. In so doing, the
research presented change point detection as a reliable means through which
to identify a structural shift in data in response to policy, which could be
applied in regards to myriad policy areas.

Extending this initial analysis, chapter 5 empirically established a quantifiable
intervention effect associated with the previously identified policy change. The
research tested the use of a robust methodology, used extensively in alternative
areas of public policy, which could address issues related to causal inference
considered to have limited previous studies. Interrupted time series analysis
enabled the role of policy in the regulation of land use to be conceptualised in
a novel manner. It further offered an empirical evidence base for anecdotal
concerns raised in regards to the revised policy framework.

To expand upon both prior contribution chapters, the research undertaken in
chapter 6 introduced Interrupted Time Series analysis as a robust method
through which to investigate patterns of development within ‘Green Belts’ and
the rural fringe. The role of national policy in facilitating the expansion of
urban areas into peri-urban green space had not previously been addressed
using such causal inference models. The research suggested the revision of
national policy had led to a significant increase in the area of land lost to
development outside of extant urban boundaries. It emphasised the important
role played by policy in ensuring the pursuit of compact city principles.

Finally, chapters 7 and 8 reflected upon the cumulative contribution of the
research to the advancement of a conceptual model of the relationship between
planning policy and land change. Implications of the research for urban science
and policy making were discussed. Limitations associated with the existing
work were subsequently used to inform the development of a future research
model, which should accordingly seek to build upon this work as a foundation.
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CHAPTER2
Literature Review

What Would William Morris Say?

“King Street was gone, and the highway ran through wide sunny

meadows and garden-like tillage. The Creek, which we crossed

at once, had been rescued from its culvert, and as we went

over its pretty bridge we saw its waters, yet swollen by the tide,

covered with gay boats of different sizes. There were houses

about, some on the road, some amongst the fields with pleasant

lanes leading down to them, and each surrounded by a teeming

garden.”

News From Nowhere
Morris (1897)

2.1 Introduction

The potential impact associated with different national policy approaches
to the regulation of land change is a crucial consideration as pressure upon
the rural-urban fringe increases (European Commission, 2016). This study,
which seeks to address the need for exploratory research based upon ex

post facto impact evaluation (Shahab et al., 2019), using the controversial
transition to the National Planning Policy Framework in the United Kingdom
(Sibley-Esposito, 2014), can be considered to reside at the confluence of green
space, land change and policy analysis fields.

Accordingly, both the importance of and benefits associated with the retention
of green space land are outlined within the context of an ecosystem services
approach. Contemporary concepts related to the identification of factors
that are deemed to facilitate and regulate land change are described. Whilst
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quantitative approaches to the estimation of policy effects are examined.
Additionally, relevant contextual detail is provided in relation to the operation
of the planning system within the United Kingdom and the interpretation of the
legal provisions within the revised planning framework, which are considered
to have led to an increased threat of development.

2.2 Key Definitions

2.2.1 Drivers

Within comparable land change literature, the concept of driving forces
(commonly referred to as ‘drivers’), collectively incorporating the myriad
“forces that cause observed land change” (Bürgi et al., 2005) frame theoretical
and experimental understanding (Thelin, 2014). Implicitly, ‘drivers’ assume
a causal relationship with land change, but do not describe the causal
mechanisms by which said change occurs (Meyfroidt, 2016).

Although both the identification of and effects associated with ‘drivers’ have
been adopted as the core focus of research (Hersperger et al., 2010), the
term is commonly used to encompass a wide range of processes operating
at different scales (Thelin, 2014). Discussed jointly, ‘drivers’ are commonly
deemed to include both underlying and proximate causes of change [refer
to 2.5], considered as elements of a fundamental ‘causal chain’ (Meyfroidt,
2016), in which they interact within the context of a complex system (Thelin,
2014). Underlying drivers are generally categorised as either anthropogenic
or environmental factors which result in a subsequent process producing a
physical change to land use or land cover (Lambin et al., 2001; Ostwald et al.,
2009; Plieninger et al., 2016; Turner et al., 2007). For example, a National
Planning Policy acts as an underlying driver, determining developmental
priorities (Kasraian et al., 2019), which is filtered through local development
plans and the actions of individual actors representing the proximate causes of
recorded physical land change (Hersperger et al., 2018).

Whilst recognised as elements of complex adaptive systems (Hersperger et al.,
2018), analysis of ‘drivers’ as single factors used to explain transitions between
land use represent a fundamental assumption within land change science
(Ostwald et al., 2009). Accordingly ‘drivers’ are explicitly interpreted as
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features in regards to which there is evidence of casual association, but not
necessarily sufficient evidence through which to definitively establish a casual
effect or extrapolate as to the mechanisms underpinning such (Meyfroidt, 2016).
In line with prior research, this thesis defines ‘drivers’ as both underlying and
proximate causes of land change, including “political, economic, cultural,

technological and natural” processes (Bürgi et al., 2005). With the ‘driver’
subject to analysis within this research representing the transition between the
revised policy framework (in the form of the Localism Act 2011 and National

Planning Policy Framework) and the preceding policy.

2.2.2 Causal Inference

A number of key assumptions underpin the causal inferences derived
throughout this thesis. From a statistical stand point the adopted methods are
fundamentally predicated upon the concept of single causality (Trafimow,
2017), related to an identifiable and isolable driver of land change (Morrison
and Pearce, 2000). In so doing they are largely consistent with precedent land
change research (Dallimer et al., 2011; Ganser and Williams, 2007; Ganser,
2008; Mu et al., 2016), which often assume a simple, positivistic, linear
relationship between drivers and land change (Hersperger et al., 2010).

Common to ‘Single Interrupted Time Series Analysis’ the research undertaken
assumes association based upon a counterfactual theory of causation (Baicker
and Svoronos, 2019), in which the recorded outcome is compared to a
circumstance in which the subject intervention did not occur (Bavli, 2019).
Despite said method reportedly performing comparably to a Randomised

Controlled Trial within an epidemiological context (Fretheim et al., 2013),
counterfactual causation is fundamentally dependent upon the capacity to
control for extraneous variables (Linden, 2017), rendering it less reliable in
relation to complex systems (HM Treasury, 2020a). However, it is contended
to remain a robust quantitative approach in circumstances in which the context
remains relatively stable and where largely exploratory analysis is intended to
estimate impact.

Both planning policy and land change dynamics are considered likely to
reflect complex adaptive systems (Hersperger et al., 2018; Kasraian et al.,
2019). Whilst the applied methods accounted for the most highly cited
confounding variable (in the form of economic influences) (Morrison and
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Pearce, 2000), allowed for a high degree of counterfactual uncertainty
(Brodersen et al., 2015), and post-analytical consideration was given to
plausible alternatives (Roemmele et al., 2011) reported causal relationships
are restricted to association (Young et al., 2014). The outlined causal inference
is ultimately dependent upon the stability of extraneous drivers, assuming
that policy represented the single factor regulating the complex interacting
forces recognised as driving land change (including individual actors). Whilst
statistically, this approach may be deemed to offer a more robust estimation of
causal association than in comparable land change research (Dallimer et al.,
2011), the absence of formal methods accounting for underlying complexity
must be born in mind (Trafimow, 2017). Within the context of Interrupted

Time Series Analysis the outlined approach offers robust causal association
(Bernal et al., 2017), but cannot be understood to identify causality between
the the introduction of the revised policy framework and land change. In
light of the inherent complexity associated with the research, the potential for
extraneous variables to account for or contribute towards the outcome is high
(HM Treasury, 2020a), with their omission from the statistical methodology
and potential for concurrent effects to bias inference crucial (Linden, 2017).

2.2.3 Green Space

Despite an increasing prominence within research and ubiquity beyond, green
space can be considered to represent an ill defined term, subject to contrasting
organisational, academic and social interpretations (Taylor and Hochuli, 2017).
Conceptually, Taylor and Hochuli (2017) suggest relevant definitions could
loosely be categorised as either designations of all ‘natural’ space (including
bodies of water) or specifically vegetated surfaces associated with urban
environments.

Commonly, public accessibility represents a key feature of the definitions
(Barbosa et al., 2007; Bertram and Rehdanz, 2015; Maas et al., 2006),
particularly in regards to urban environments (Lachowycz and Jones, 2013),
upon which the majority of research has been focused (Taylor and Hochuli,
2017). However, this should be understood to be directly attributable to the
research hypotheses, in which focus is upon social interaction with such
spaces (for example in relation to mental and physical health effects (Lee and
Maheswaran, 2011)).
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Whilst definitions associated with environmental amelioration or ecology may
be more specific (such as the urban tree canopy (Bolund and Hunhammar,
1999)), where applied to the overarching principle of ecosystem services they
generally include all vegetative land cover (Swanwick et al., 2003; Taylor and
Hochuli, 2017).

Within the context of spatial planning and concomitant planning policy the
term remains subject to differing interpretations, ranging from any vegetated
land cover (Dallimer et al., 2011) to publicly accessible defined examples
with minimum area criteria (Moseley et al., 2013). In general the adopted
definitions are inexorably bound to the methodological approach undertaken
(Taylor and Hochuli, 2017). For example, in Senanayake et al. (2013) ‘green

spaces’ were identified using a Normalised Difference Vegetation Index

[NDVI] derived from satellite imagery and therefore could only be categorised
as any surface with vegetation. Whereas due to the utilisation of detailed
vector data Moseley et al. (2013) were able to restrict green space to 14
defined publicly accessible typologies.

For research related to the planning framework within the United Kingdom
additional complexities must be addressed. Under the commonly applied
definitions of green space within research, three distinct types of land may
be discerned which are subject to different regulation and must be addressed
accordingly (Adams and Watkins, 2002).

2.2.3.1 Greenfield

Although not a statutorily designated term, land which has not previously been
subject to development is commonly termed ‘greenfield’ (Cullingworth and
Nadin, 2003). There are no specific provisions within planning policy for such
(Adams and Watkins, 2002), but it should be considered synonymous with
green space within research.

2.2.3.2 Brownfield

Whereas land on which there has previously been developed form is referred
to colloquially as ‘brownfield’ (Adams and Watkins, 2002). This is not to say
that ‘brownfield’ sites may not be dominated by vegetative cover (Bardos et al.,
2016) or recognised as ecologically and socially productive spaces (Macadam
and Bairner, 2012). Such land can better be understood as a designation
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through which to reduce urban sprawl (Cullingworth and Nadin, 2003), aimed
at the constraint of the built environment to its previous footprint (Adams and
Watkins, 2002).

2.2.3.3 Green Belt

In addition to the outlined, exists the concept of ‘Green belt’, which represents
a designated planning term relating to the control of urban development
(Cullingworth and Nadin, 2003). Conventionally, ‘Green belt’ land surrounds
an urban settlement, with the defined intention to;

• check the unrestricted sprawl of large built-up areas;

• prevent neighbouring towns merging into one another;

• assist in safeguarding the countryside from encroachment;

• preserve the setting and special character of historic towns; and

• assist in urban regeneration, by encouraging the recycling of derelict

and other urban land.

(Garton and Barton, 2019)

Having been included within planning policy since 1955, the ‘Green belt’ is
subject to specific development regulation (Amati and Taylor, 2010).

For the purpose of this research a definition of green space was adopted which
incorporated all vegetative land cover upon which it could be identified there
had not previously been development. Accordingly, it incorporated the nine
urban land categories discerned by Bell et al. (2007) (representing ‘parks

and gardens; natural and semi-natural spaces; green corridors; outdoor

sports facilities; amenity greens spaces; provision for children and young

people; allotments, community gardens and urban farms; cemeteries, disused

churchyards and other burial grounds; and public space’), allied to rural
equivalents based upon Alcock et al. (2015) (primarily agricultural land).

2.3 Green Space Benefits

The importance of both urban and rural undeveloped green space has become
an increasing focus of multi-disciplinary research (Wolff et al., 2020). Whilst
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predominantly concerned with urban environments (Burgess et al., 1988; Wolf,
2004; Caspersen et al., 2006; Bertram and Rehdanz, 2015), jointly the benefits
and values associated additionally with rural spaces can be framed within the
concept of ecosystem services (Young, 2010). The outlined framework relates
green space to “the benefits human populations derive, directly or indirectly

from ecosystem functions” (Costanza et al., 1997). Relevant functions are
structured under four categories of provisioning, regulating, cultural and
supporting services (Bolund and Hunhammar, 1999), with the network of
urban and rural ‘green spaces’ considered as a single ecosystem (Young, 2010).

Supporting services can be understood to reflect the biotic and abiotic
processes which underpin other functions (Bolund and Hunhammar, 1999)
(such as photosynthesis (Thaiutsa et al., 2008) and nutrient cycling (Bolund
and Hunhammar, 1999)). In an urban context relevant services are provided by
natural vegetative surfaces, such as street trees (Salmond et al., 2016). Whilst
it has also been evidenced areas of rural grassland contribute to core nutrient
cycling functions (Schroter-Schlaack et al., 2016). Additionally, the combined,
interconnected network of ‘green spaces’ represent the foundation of habitat
provision for a range of species of flora and fauna (Swanwick et al., 2003),
with even small areas of land acting as transitional natural corridors enabling
movement (Dunnett et al., 2002).

The extent to which a green space provides a foundational habitat has been
evidenced to be dependent upon both area and quality (Swanwick et al.,
2003). However, whilst large monoculture fields have been shown to provide
more limited species diversity (Srivastava et al., 1996) than some incidental
vegetated urban spaces (Threlfall et al., 2017), they represent a key element
of a functional green network (De Montis et al., 2016), often bordered by
hedgerows which serve as both transitional refuges (Lecq et al., 2017) and
dedicated habitats (Ernoult and Alard, 2011).

Both relevant urban and rural green space are also considered to contribute
towards key regulating services (Schroter-Schlaack et al., 2016), such as the
amelioration of air quality (Bolund and Hunhammar, 1999), reduction of
surface temperature (Swanwick et al., 2003), sequestration of Carbon Dioxide
(Fryd et al., 2011) and regulation of surface water (Swanwick et al., 2003).
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Although determined by physical structure (Vieira et al., 2018), vegetative
cover has been evidenced to both permanently and temporarily reduce the
prevalence of air pollution (Bolund and Hunhammar, 1999). Pollution
particulate matter can either be absorbed and metabolised within the
microbiome (Weyens et al., 2015) or retained upon leaf surfaces (Mitchell
et al., 2010). Ameliorating effects have been evidenced locally in relation
to the presence of urban parks and street trees (Bolund and Hunhammar,
1999), whilst at a larger scale a forested area situated at the boundary of an
urban conurbation has been shown to reduce pollution across the entire city
(Baumgardner et al., 2012).

Similar effects have been associated with the regulation of surface temperatures
(Swanwick et al., 2003), with the increased evapotranspiration attributable to
‘green spaces’ estimated to reduce temperatures by between 2◦C and 5◦C at a
local level (Bolund and Hunhammar, 1999). Having evidenced a reduction in
temperature of 0.1◦C (Maheng et al., 2019) the conversion of any such area to
man made surfaces is understood to have a significant effect. Although areas
of green space situated outside of cities have minimal impact upon the urban
heat island effect their retention is considered crucial to wider climate control
(Trenberth, 2004).

Additionally, areas of undeveloped green space have been evidenced to
contribute towards the regulation of the climate through the sequestration of
Carbon Dioxide (CO2) (Fryd et al., 2011). This occurs both directly through
photosynthesis (Raven and Karley, 2006) and subsequently as a result of
storage in soil aggregates (Lal, 2004). However, both the type of vegetative
cover and land management practices are deemed to be crucial to this process
(Bolund and Hunhammar, 1999), with certain grazing practices evidenced to
emit excess Carbon, primarily related to biotic functions (Ostle et al., 2009).
Conversely, a single Hectare of dense vegetated green space can be considered
to sequester around one tonne of atmospheric CO2 (Bolund and Hunhammar,
1999). Thus, the benefits attributable to green space are more complex, but the
prevalence of such surfaces is generally characterised as beneficial to climatic
conditions (Lal, 2004).

Primarily due to the greater permeability of soil substrates related to green
space, such land cover is highly influential in regards to hydrological flow
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(Bolund and Hunhammar, 1999). Areas of green space have been associated
with reduced surface run-off in comparison to man made surfaces (Swanwick
et al., 2003). Notably, research into impacts upon urban environments have
suggested that lower densities of sealed surfaces offer greater regulation of
water flow than the retention of bounding areas (Gill et al., 2007). Therefore, it
could be inferred ensuring developmental pressure was reduced within extant
urban boundaries is the most critical aspect to flood protection (Farrugia et al.,
2013). However, the contribution of all forms of green space as permeable
surfaces are highlighted as integral to building hydrological resilience
(Schroter-Schlaack et al., 2016).

The provisioning services derived from green space include fibre, food, fuel,
genetic resources and water (Young, 2010). Through both urban allotments
(Swanwick et al., 2003) and large areas of rural agricultural land one of
the core functions of green space in the United Kingdom pertains to food
production (Amati and Taylor, 2010). Designated ‘Green Belt’ land is
fundamental to such, with 16% of the 1,063,645 Hectares used for agriculture
registered as being of the highest quality (Grades 1 and 2) (CPRE, 2010).
Based upon a study of 29 cities Folke et al. (1997) estimated that in order for
an urban conurbation to have access to sufficient resources to be considered
sustainable it would need to be bounded by an area of undeveloped land
between 565 and 1,130 times greater than itself. Thus, the area of green space
could be deemed essential.

Direct societal benefits associated with green space are broadly categorised
under cultural services, which include positive effects upon physical and
mental health (Lee and Maheswaran, 2011) and the improvement of social
cohesion (Jennings and Bamkole, 2019). Whilst a strong evidential base has
evolved during the last two decades to support the ameliorating effects upon
health related to both access to and sensory interaction with green space
(Van Dillen et al., 2012), particularly in regards to mental health and well being
(Wood et al., 2017), it is dominated by urban studies relating to accessibility
(Lee and Maheswaran, 2011). Primarily attributable to complex rights in
regards to access, negligible research has been undertaken in relation to rural
spaces (Schroter-Schlaack et al., 2016). However, with evidence suggestive of
attributes associated with rural spaces alleviating stress (Grahn and Stigsdotter,
2010), such spaces can be conceived of as contributing to core cultural services.
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Whilst it is acknowledged a number of the key benefits and values associated
with green space are more heavily influenced by quality rather than area (Wood
et al., 2018), the potential impacts associated with significant loss of such
spaces represent established research and political priorities (Young et al.,
1994), facilitated through analysis of land change (Turner et al., 2007).

2.4 Land Change Science

Key Definitions

Land Cover Change: Within research the term land cover

change refers to the physical conversion of a terrestrial surface to
an alternative land form (such as the change from vegetated to
artificial surfaces) (Yadav et al., 2019).

Land Use Change: Land use change is defined as the alteration to
the anthropogenic use derived from the land (such as the change
from arable to pastoral agriculture) (McConnell, 2015)

Although distinct terms, land cover and land use change are commonly
explored concurrently (Juliev et al., 2019) and have evolved as a key
environmental priority during the last two decades (Friedl and Brodley,
1997; Hersperger et al., 2010; Lambin et al., 2001; Turner et al., 2007),
recognised as such by inter-governmental agencies (including the European

Environment Agency (Manakos and Braun, 2014) and Organisation for

Economic Co-operation and Development (OECD, 2018)).

Land change science can be conducted based upon data derived from maps,
official resources (such as governmental statistics (MHCLG, 2019d)), field
surveys, Cadastral records and social surveys (Harrison et al., 2002; Plieninger
et al., 2016). In order for research to be deemed practicable at the large
geographic extent required to derive generalisable inference, research tends to
rely upon remote sensed data, pre-classified digital maps or records of official
statistics (Plieninger et al., 2016).
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In one approach, research may be based upon pre-classified vector data
commonly produced by official agencies (such as Ordnance Survey in the

UK) (Bibby, 2009). Due to such data typically being subject to licence it
is rarely used within a research context (Dennis et al., 2018), but forms the
basis of governmental monitoring (Bibby and Brindley, 2013). Land change
can reliably be understood as any polygon, in regards to which relevant
classification criteria have altered between two time periods (Bibby and
Brindley, 2013). As a result of additional classification detail, such vector data
is considered to provide insight into thematic land use change in a way that is
not easily replicable in regards to remote sensed imagery (Dennis et al., 2018).
However, relevant data sets are subject to delays between the occurrence and
recording of change (Ordnance Survey, 2009), which must be incorporated
into analysis (Orford and Radcliffe, 2007), whilst they cannot be used to detect
vegetative cover quality.

Figure 2.1: Source: DCLG (2015a):
Example thematic land use change derived from vector data (OS
Mastermap ®).

Each alternative data source offers different advantages and issues, which
must be assessed against the intentions of analysis (Lu et al., 2004). As
mentioned previously, remote sensed data allows for extensive geographical
coverage, at a range of resolutions, which is theoretically accessible at regular
intervals (around every 15 days in the case of the Landsat programme (Zhu
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and Woodcock, 2014)) (Fonji and Taff, 2014). Accordingly it can provide
a consistent historical record often difficult to access in alternative formats
(Zomeni et al., 2008) and has been utilised extensively in myriad studies to
successfully monitor large scale land cover change (Turner et al., 2007).

However, obtaining a consistent temporal range can be significantly hindered
by cloud cover obstruction (Fonji and Taff, 2014). Sano et al. (2010) identified
maximum cloud cover of 10% as optimal, which can limit the viability of a
large number of images (Shen et al., 2016), particularly in relation to examples
such as the United Kingdom (Grey et al., 2003). In part this issue may account
for the large and inconsistent time intervals often applied in relevant research.
For example, in a study intended to compare urban expansion in regards to
50 global cities between 1985 and 2010, Bagan and Yamagata (2014) were
only able to access data relating to 1995 and 2000 for Glasgow (UK) and
1985 and 2000 for Cape Town (South Africa) due to inhibitory cloud cover.
This issue also commonly restricts the number of research observations, as a
consequence of which appropriate inferential modelling techniques may be
limited (Zhang et al., 2011).

Whilst satellite data can offer resolutions of 30cm (Shermeyer and Van Etten,
2019), the most commonly used available resources (such as Landsat Thematic

Mapper) tend to range between 20m and 30m (Li et al., 2017b) and as a
result can be contended to be too coarse for the identification of some types
of change (Fonji and Taff, 2014). Despite such concerns the 30m x 30m
resolution of Landsat Thematic Mapper has been deemed adequate to enable
identification of large scale land cover change in a range of research (Vittek
et al., 2014). As long ago as 1994 the U.S. Geological Survey utilised data
from Landsat Thematic Mapper as a medium through which to identify
different crop type coverage (Raymond and McFarlane, 1994) supporting
the notion that its resolution would be capable of being used to identify
more significant land use change, such as from green space to developed
artificial land (Kerr and Ostrovsky, 2003). However, where seeking to
categorise small area changes, such medium resolution satellite data may
remain inadequate (Fisher et al., 2018). This could be a prominent issue
in regards to the identification of urban infill developments (Huang et al., 2017).

Arguably of greater significance to the suitability of satellite data is degree
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of contrast between land types (Fonji and Taff, 2014; Horning and DuBroff,
2004). As an example, the occurrence of deforestation for the purpose of
intensive agriculture can be reliably identified (Souza Jr et al., 2013), based
upon the succession from dense forest to sparse vegetative land cover [figure
2.2]. However, where land cover is more temporally heterogeneous, such
as the transition from building to ‘brownfield’ higher resolution imagery is
required (Banzhaf and Netzband, 2004).

Figure 2.2: Source: NASA (2019):
Landsat image reflecting an area of deforestation within the
Amazon obtained through 30m resolution data.

Furthermore, although satellite imagery using vegetation indices can provide
estimates of the quality of vegetative land cover (Wulder et al., 2012), used in
isolation they are less reliable for the identification of land use (Fonji and Taff,
2014).

Conversely, vector resources provide data at a high degree of granularity
(Orford and Radcliffe, 2007), which enables both the identification of small
scale change and increased accuracy. Significantly more advanced land use
detail can be obtained through such resources, enabling the differentiation
between types of green space, which may be similar in regards to vegetative
cover (Moseley et al., 2013). Openly accessible governmental records further
offer data at consistent time intervals, unaffected by climatic conditions (Fuchs
et al., 2015).

However, due to the complexity of the data significant storage and processing
resources are required, generally relying upon management through relational
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database systems (Yao and Li, 2018) [figure 2.3]. Consequently, it is largely
impractical to undertake analysis using vector data for large geographic extents
(such as an entire country). Allied to which, the development of analytical
algorithms is complicated (Yao and Li, 2018). As a result the use of vector
data has been minimal in land change research (Smith et al., 2007).

Figure 2.3: Source: Yao and Li (2018):
Example data structure related to a relational database.

2.5 Identifying Drivers

The primary function of land change science has evolved from a focus upon
simply monitoring patterns of change (Hersperger et al., 2018) towards
the development of conceptual models that advance understanding of the
causes which drive the conversion of landscapes (Garcia-Martin et al., 2020).
Relevant driving forces are conceived of as either proximate or underlying
(sometimes referred to as distal) factors (Lambin et al., 2001; Ostwald et al.,
2009; Plieninger et al., 2016; Turner et al., 2007). A proximate driver can
be understood to reflect a direct, physical cause of land change (Ostwald
et al., 2009), primarily in the form of local level anthropogenic activities
(Plieninger et al., 2016), such as the expansion of urban areas (Turner et al.,
2007). Whereas, underlying drivers constitute the processes that generate such
physical changes (for example population dynamics (Plieninger et al., 2016)).

Hersperger et al. (2010) outlined four theory of change models through which
to conceptualise the relationships between land change and those factors
considered likely to influence such [referred to as driving forces]. In the form
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of the ‘Driving Force - Land Change’, ‘Driving Force - Actor - Land Change’,
‘Driving Force/Actor - Land Change’ and ‘Actor - Land Change’ models
(Hersperger et al., 2010) (Hersperger et al., 2018).

The first model [‘Driving Force - Actor’], upon which the majority of land
change research is based (Hersperger et al., 2010) assumes a direct, linear
relationship between the occurrence of a physical change and existence
of a driving force. Such as, between increased household income and the
conversion of larger areas of agricultural land to urban (Alig et al., 2004).
Whilst contended to be causally weak due to its presumption of single causality
(Bunge, 2017), it has been applied as the prevailing model in a large range of
land science research undertaken at different spatial scales (Hersperger et al.,
2010), including that upon which this thesis is founded (Dallimer et al., 2011).

The ‘Driving Force - Actor - Land Change’ model assumes a slightly more
complex relationship in which a driving force influences an actor’s decisions
and subsequently the land change they produce (Hersperger et al., 2010). For
example, changes to land taxation policies were considered to have been
evidenced to have caused agricultural land owners to convert crop lands to
grazing (Thapa and Rasul, 2006). The practical application of the outlined
model to research tends to rely upon a mixed methods approach (Hersperger
et al., 2010), with land change data based upon existing physical resources,
but the role of actors determined through surveys.

Although similar to the above, the ‘Driving Force/Actor - Land Change’
model is based upon the understanding that driving forces have a complex
relationship with actors (allowing for feedback loops) and combine to induce
land change (Hersperger et al., 2010). In example, Gennaio et al. (2009)
analysed the influence of local development plans upon relevant organisational
actors and their subsequent decisions in regards to the revision of succeeding
local development plans, which were subsequently related to resultant
physical land use change. Whilst embracing ideas of complexity and offering
descriptive insights in regards to the relationship between actors and drivers,
the use of methods built upon this model have been limited and deemed largely
inappropriate at large geographic scales (Hersperger et al., 2010).

Whilst acknowledging the existence of driving forces, the ‘Actor - Land
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Change’ model places the decisions of actors as the core cause of land change
(Hersperger et al., 2010). The aim of research within the context of this model
is to uncover the role of individual decision making upon individual parcels
of land. Similarly to the ‘Driving Force - Land Change’ model, relevant
methods assume single causality with complex relationships between multiple
actors not commonly addressed as a result of practical issues in obtaining data
(Hersperger et al., 2010).

Empirical methods through which to statistically explore the relationship
between land change and these driving forces (both proximate and underlying)
have been developed (Plieninger et al., 2016). The primary of which, is
designed to identify the relative roles of different drivers upon individual
instances of land change (Hersperger et al., 2018), to support both predictive
and explanatory modelling (Millington et al., 2007).

Commonly, this approach is founded upon regression techniques (primarily
multinomial logistic regression), in which land change is a dependent
variable and potential drivers (for instance elevation, land shape, distance to
infrastructure or land ownership) represent independent variables within the
model (Corbelle-Rico et al., 2015). Ostensibly, the statistical significance
associated with each independent variable (driving force) represents a
quantification of the difference between models including different variable
profiles (Martı́nez et al., 2011).

In a simple explanatory example, Millington et al. (2007) examined the
influence of 12 environmental and socio-economic drivers using a Multinomial
Logistic Regression model. The relative statistical significance of each
hypothesised driver was derived from a hierarchical partitioning approach
based upon comparison of fit between all models that included the driver
and those from which it was omitted. Analysis suggested the proximity
to alternative land use, potential yield, mean farmer age and percentage of
population employed in agriculture were the key drivers in the transition from
agriculture to scrub land. However, results were ultimately inconclusive and
offered limited means by which to interpret effects associated with individual
variables (Millington et al., 2007).

Whilst the outlined methods have been evidenced to support predictive models

25



(Verburg et al., 2004), the extent to which they offer understanding of the
processes which facilitate or regulate change remains limited (Plieninger
et al., 2016). Where proximate drivers have been robustly quantified within
models, the links to underlying factors are less well established (Plieninger
et al., 2016). This issue may in part account for the limited use of quantitative
analyses within relevant literature, which is dominated by qualitative methods
(Hersperger et al., 2018; Plieninger et al., 2016).

The most widely cited research relating to underlying drivers of land change
was conducted by Brandt et al. (1999), in which a simple descriptive analytical
framework is outlined as a means to establish correlation between drivers and
land use at different spatial scales (Bürgi et al., 2005). Five core underlying
drivers of land change were identified based upon transitions in agricultural
land, categorised as “political, economic, cultural, technological and natural

factors”. The outlined drivers have evolved as the primary accepted framework
and have influenced the majority of subsequent research (Plieninger et al.,
2016). Whilst similar “policy, economic, social and biophysical” driving
forces were associated with urban induced land use change, allied to
“proximate interactions” (which refers to spatial autocorrelation between new
and existing land types) (Nuissl and Siedentop, 2020).

Research has suggested that underlying and proximate drivers cannot be
considered in isolation (van Vliet et al., 2016), with all five underlying
factors identified as cumulatively contributing towards patterns of land change
(Plieninger et al., 2016). However, research has been largely unable to address
issues of causal inference, with new approaches which focus upon processes
contended to represent research priorities (Bürgi et al., 2005; Hersperger et al.,
2018; Plieninger et al., 2016). Bürgi et al. (2005) identified seven research
areas required to advance the development of conceptual models relating to
driving forces of land change. These could be interpreted as;

• comparative analysis of land change in regards to areas that cross
administrative borders;

• analysis of regulatory functions, which restrict land change;

• the development of methods and data which account for inherently
dynamic landscape change;

• analysis relating to temporal rates of change;
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• the development of models related to factors that promote the location
of development;

• the existence of precursory change that may signify subsequent land
change; and

• the advancement of experimental methods through which to actively test
the causal relationships between hypothesised drivers and types of land
change.

Based upon a systematic literature review, Plieninger et al. (2016) built upon
the outlined priorities, firstly identifying the need to “[expand] the scope

of studies to include underrepresented countries, biogeographic regions,

and land-use systems and to also consider drivers of landscape stability”.
The prioritisation of stable landscapes was contended to be critical as they
characterise the majority of developed nations; offer valuable insights in
regards to the role of regulatory functions, which can be used to mitigate
against driving forces of change; and provide historical repositories. This can
be considered in conjunction with the recommendation to analyse factors
which restrict development (Bürgi et al., 2005).

Plieninger et al. (2016) further advocated “[t]he deployment of more robust

tools and methods to quantitatively assess the causalities of landscape change,

while maintaining the holistic character of landscape studies”. This concept
links into the recommendation for methods to be developed, which can test for
causal relationships between drivers and land change as exploratory functions
(Bürgi et al., 2005).

Whilst, the adoption of “[l]ong term studies that go beyond the use of satellite

imagery, considering diverse types of data on landscape change”, can be
understood to relate to the need to account for the underlying natural dynamics
of land change processes (Bürgi et al., 2005).

Additionally, primarily based upon the conceptualisation of models proposed
by Hersperger et al. (2010), separate recommendations were made to develop
“conceptual clarity with regard to the role and identification of actors vs.

driving forces of landscape change” and the “design of multi-scale studies that
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consider distal relations between actors, drivers, and patterns of landscape

change” (Plieninger et al., 2016).

2.5.1 Spatial Scale

Urban analytic research is commonly considered subject to potential bias as
a result of the ‘modifiable areal unit problem’, which recognises analytical
outcomes are dependent upon the spatial scale and size at which relevant
data is aggregated (Wong, 2004). For example, Openshaw and Rao (1995)
evidenced that by adopting different spatial scales correlations between
employment status and access to personal transport ranged from -1 to +1.
With reported correlations generally considered more likely in circumstances
where aggregation occurs at a larger scale (Lee and Kemp, 2000).

Whilst it is identified that the optimal spatial unit for any analysis is
dependent upon both the dependent variable and geographic extent of interest
(Flowerdew, 2011), the majority of research focused upon the United Kingdom
is aggregated to ‘Ward’ or ‘Enumeration District Area’ level (Tranmer and
Steel, 2001; Lloyd, 2016). It is contended the adoption of said scale is largely
associable with population level analysis derived from census methodologies
(Lloyd, 2016).

The ‘modifiable areal unit problem’ is not generally addressed within the
context of land change research, in which the primary focus is upon the
identification of a spatial scale at which changes would be evident in available
data (Kozak and Szwagrzyk, 2016). Such is therefore primarily conducted
using urban boundaries, which are considered to act as a sample reflecting
national scale outcomes (Dallimer et al., 2011). Therefore, discussion of
relevant research needs to be understood as potentially producing different
analytical outcomes based upon the adoption of different spatial scales either
amounting to different sample areas or subsamples of previously utilised spatial
units (Lloyd, 2016).
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2.6 The Relationship Between Planning Policy
and Land Change

Despite an implicit theoretical presumption that planning policy represents one
of the key underlying factors determining and regulating urban land change
(Couclelis, 2005), there has been relatively little research dedicated to the
explicit examination of such (Hersperger et al., 2018; Li et al., 2017a). One
contention posited by Briassoulis (2009) suggests this can be accounted for by
the situation of research at the intersection between social geography, in which
concepts of space are considered to be uncertain and land change science,
which seeks to identify causal links. Alternatively, it can be associated with
issues related to wider research of underlying drivers (Plieninger et al., 2016).

However, examples of qualitative and quantitative analyses can be identified,
mostly relating to local or regional case studies (Hersperger et al., 2018).
Relatively few operate at a national scale (Kasraian et al., 2019), reflecting
limitations associated with data and processing resources (Fonji and Taff,
2014). The majority utilise between 3 (Dallimer et al., 2011; Pagliarin, 2018;
Warren et al., 2011) and 5 time intervals (Kasraian et al., 2019). Whilst,
relevant data sources ranged from digitised historic maps (Bieling et al., 2013)
to satellite imagery (Mu et al., 2016).

Qualitative methods can broadly be categorised into two paradigms. The first
of which considers policy as one of a number of potential factors influencing
general trends in land change (Hersperger et al., 2018). For example, Bieling
et al. (2013) identified the percentage of an area to undergo change from
undeveloped to developed form in regards to three case study localities, based
upon 3 time intervals. Due to data access each locality was analysed at slightly
different temporal ranges (Lauterach: 1820 - 1913, 1913 - 1952, 1952 - 2009;
Unterlenningen: 1828 - 1905, 1905 - 1955, 1955 - 2009 ; Zainingen: 1824 -
1901, 1901 - 1958 and 1958 to 2009). Based upon the derived land change
data, historical records were analysed for proximate explanatory drivers, such
as population shifts or the introduction of regulatory frameworks. Said records
were deemed to suggest the transition from marginal grasslands and heath to
developed form were partially attributable to policy, but offered negligible
means of identifying its individual role.
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The second qualitative approach attempts to distil the role of policy as an
individual factor relative to other drivers and actors (Hersperger et al., 2018).
In Hersperger and Bürgi (2010), types of land change were assigned drivers
based upon document analysis and expert interview. For example, ‘loss of

orchard due to new construction’ would be assigned ‘Cantonal transportation

and infrastructure policy’ as one of the drivers inducing change. Subsequent
categorisation enabled each assigned driving force to be associated with
underlying drivers (conforming to the 5 types identified by Bürgi et al. (2005)),
from which political factors could be separately analysed. This suggested
that political factors (restricted to policies, spatial planning, international
agreements and political actors) were a driver in regards to around a quarter of
all land change. Land use planning was identified as a significant factor in
regards to urbanisation in each time interval. The outlined results were deemed
to highlight the crucial role played by planning policies in the direction of
development. However, analysis of the effects associated with relevant policies
were deemed to require more robust examination.

Whilst such qualitative methods were advanced as a key exploratory stage
in the analysis of driving forces (Bürgi et al., 2005; Hersperger et al., 2018),
the development of conceptual models relating to the role of policy were
contended to be dependent upon data-driven analyses (Morrison and Pearce,
2000).

To date, quantitative alternatives reflect a small field of research (Hersperger
et al., 2018), in part attributable to the contention that they are dependent upon
a reductive interpretation of policy (McNeill et al., 2014). The main method
applied is based upon the use of regression models to discern the relative role
of policies in relation to individual changes in land use (Hu and Lo, 2007;
Kasraian et al., 2019; Liu et al., 2011) (replicating the standard approach
referred to in section 2.5).

Kasraian et al. (2019), adopted a generalized linear model in which the
dependent variable (land change) was modelled against independent variables
which included three distinct policy provisions coded using binary variables,
in conjunction with infrastructure proximity (Hersperger et al., 2018). The
three policies subject to analysis could all be categorised as broadly regulatory
(Galle et al., 1997), with the most long standing (‘Green Heart’ policy)
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intended to conserve a large expanse of undeveloped land (Kühn, 2003), the
second (‘Growth Centre’ policy) implemented to direct suburban expansion
(Verburg et al., 2004) and the third (‘Vinex’ policy) to contain development
within existing urban boundaries (Galle et al., 1997). Land change focused
upon urbanization and was identified as any 500m by 500m cell, in which the
proportion of urban land cover changed between two time intervals [figure 2.4].

Figure 2.4: Source: Kasraian et al. (2019):
recorded urbanisation during study period.

At decadal intervals, land change data was interpreted as highly supportive
of the significant role of each policy in guiding development. For example,
between 1960 and 2000, cells that would be subject to the provisions of
the ‘Vinex’ policy were evidenced as less likely than other cells to undergo
urbanization. However, in 2010 relevant cells were 64.3% more likely to
be subject to development. This both intimated as to the role of policy in
directing development (Kasraian et al., 2019) and suggested a significant
temporal lag in the policy, introduced in 1990, causing change.

The ‘Growth Centre’ policy introduced in 1960 evidenced an increase in the
likelihood of a relevant cell being subject to development (relative to other
cells) of 10.6% in 1970, 19.2% in 1980, 19.7% in 1990, 18.7% in 2000 and
17.9% in 2010. In so doing the research addressed the need for analysis
relating to rates of change (Bürgi et al., 2005). However, at decadal intervals,
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isolating the influence of policy could be considered problematic. Whilst the
original resolution (25m) at which change was identified may underestimate
the influence of small scale developmental loss (Fonji and Taff, 2014).

There has been limited research based upon the association between
policy and general trends of development, particularly at a national
level (Hersperger et al., 2018). Based upon comparison of the total area
dedicated to each land type at 5 time intervals, Mu et al. (2016) reported
that national policy measures, which relaxed regulatory constraint, were
a significant factor in the conversion of large areas of agriculture to urban form.

Within the context of the United Kingdom, policy measures have been the
subject of two primary research studies. Dallimer et al. (2011) empirically
investigated the extent to which the reform of the national policy agenda in
2000, with a defined focus upon densification, had increased the loss of urban
green space to development. To do so it measured the change which occurred in
the total area of green space across 13 cities identified as the largest based upon
population. Whilst both geographically dispersed [figure 2.5] and reflective of
a range of socio-economic profiles (Dallimer et al., 2011), the restriction of
the sample to just 13 cities which may be subject to similar external influences
(Cullingworth and Nadin, 2003) rendered generalisation difficult.
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Figure 2.5: Source: Dallimer et al. (2011)
Location of 13 sample cities identified in indicative Southern
(black), Central (mid-grey) and Northern (light-grey) regions.

Methodologically, the research adopted two distinct approaches. The primary
data sources for the initial approach were medium resolution (30m x 30m)
satellite images obtained for each of the sample cities in 1991, 2001 and 2006
(Dallimer et al., 2011). The extent of built environment and green space within
the urban boundaries at each time interval were identified using a supervised
classification technique based upon the Maximum Likelihood Estimation

[MLE] algorithm and were subsequently compared. For each city an average
change in green space area was derived per annum for the two intervals (1991
to 2001 and 2001 to 2006).

In the second method, data represented 250m x 250m resolution, pre-processed
Enhanced Vegetation Index [EVI] images obtained at 16 days intervals between
2000 and 2008. In order to account for the potentially confounding effects of
external variables, (such as climatic conditions) upon the data, the research
used a metric based upon the difference between the mean EVI values obtained
within the defined urban boundary and within a 2 to 5km ‘rural’ buffer
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surrounding said boundary [equation 2.1].

EV Idif = EV Iin − EV Iout (2.1)

Where EV Idif is the difference metric, EV Iin represents the average
annual EVI score relating to the pixels within an urban boundary and EV Iout
is the annual EVI score for the pixels contained within an indicative rural buffer.

The results from the initial analysis evidenced nine of the thirteen cities
underwent an increase in green space area prior to the policy (1991 to 2001),
but recorded reductions in area during the period after (2001 to 2006). These
results can be considered in parallel with evidence presented by Ganser and
Williams (2007), which suggested that a smaller proportion of ‘greenfield’
land [outside of urban boundaries] was subject to development in 2002 than
1992. Both indicate the occurrence of a change in the type of land cover
subject to development.

Based upon linear regression, the EVI difference metric utilised in the second
method evidenced that cumulatively, the area within the urban boundary
was becoming less green relative to the surrounding rural buffer. This was
interpreted as suggestive of the influence of infill development, which created
pressure upon undeveloped spaces within the urban boundary (Dallimer et al.,
2011). However, this temporal effect was only reliably evidenced in regards to
3 sample cities.

Dallimer et al. (2011) provided a conceptual basis for policy impact analysis
through general trends in land change data, which directly addressed the
lack of ex post facto research (Shahab et al., 2019) and can be considered
to represent the core contribution to the field (Haaland and van Den Bosch,
2015). The responsive dynamic relationship between policy and land change
outlined by Dallimer et al. (2011) contrasted with the continuing legacy of
prior regimes noted by Kasraian et al. (2019), but may be attributable to the
underlying differences of the policy approaches (discretionary and zoning)
(Oxley et al., 2009).

Significantly, statistical analyses in Dallimer et al. (2011) were primarily
based upon ‘pretest - posttest’ principles or linear regression, considered less
reliable than alternatives where seeking to establish causal inference (Shadish
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et al., 2002), particularly in regards to policy analysis (Morrison and Pearce,
2000). Additionally, the research did not explicitly suggest that it accounted
for the potential lag between policy implementation and it’s effect upon the
planning system associated with the application and approval of development
Lichfields (2016). However, the modelled post-policy trend may be considered
to mitigate against confounding bias.

The results evidenced by Dallimer et al. (2011) were broadly consistent with
studies based upon governmental records of rates relating to the numbers
of new homes built on both previously developed and undeveloped land
(Ganser and Williams, 2007). For three time intervals (1992, 2003 and 2006)
the proportion of development which occurred on previously developed
land increased from 46% to 56% and finally 58%. These results were
largely supportive of the influential role of targeted regulatory policies in the
containment of development (Baing, 2010). However, they also intimated
as to the potential for unintended consequences of policies, suggesting the
imposition of targets had led to an increase in total development and net loss
of green space.

Interpreted holistically, the outcomes reported in each research project
indicated the material role of regulatory policy in the containment of
development. This can be deemed analogous with the work conducted by
Kasraian et al. (2019) and may suggest the effectiveness of strongly regulated
development within diverse policy settings (Oxley et al., 2009). Whilst both
Colantoni et al. (2016) and Fiorini et al. (2019) reported from the study of
the spatial growth patterns of informal settlements that in the absence of
any regulation areas would expand outwards. Both were based upon single
settlement studies within the vicinity of large urban conurbations in countries
with similar economic profiles. The significant role of economic drivers were
reported in each study, but demographic change was only relevant in one. Such
informal and unapproved developments offer limited insight alone in regards
to the effect associated with regulatory function and suggested the need
for analysis to be undertaken based upon differing degrees of deregulatory
systems (Colantoni et al., 2016). Both Dallimer et al. (2011) and Kasraian
et al. (2019) also recommended the need to conduct future research in relation
to the two broadly deregulatory policy frameworks, which were introduced
subsequent to the research period in each.
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Both the qualitative and quantitative approaches adopted in a variety of research
suggest policy is a strong contributory factor in relation to rates and patterns
of development. It was noted in Morrison and Pearce (2000) that research was
required in which the focus shifted from the association of policy with land
change to the use of land change as an indicator of policy effects. In pursuance
of this, methods were needed with which to explore the impacts associated
with policy in isolation, based upon a prediction of the outcomes that would
have been evidenced without the policy. In regards to which practical examples
of a clear transition between policies were deemed to be necessary. Whilst, in
light of the ineluctable need for systems to balance environmental protection
with population pressures, Dallimer et al. (2011) highlighted the absence of
analyses which sought to explore the impacts associated with different policy
approaches to urban containment.

2.7 Policy Evaluation

From the systems thinking perspective commonly adopted in policy practice,
evaluation is considered to encompass administrative functions, outputs and
outcomes (Vedung, 2017), which can be framed around three categories of
question (“descriptive”, “normative” and “cause-and-effect”) (Imas and Rist,
2009). Accordingly, scholars such as Vedung (2017) draw a clear distinction
between evaluation, which incorporates the holistic process, including design
and implementation (McCall et al., 2016); and impact evaluations (Lan
and Yin, 2017), intended to explore the effect associated with a targeted
intervention (Venetoklis, 2002).

In contrast to the largely reductionist, positivistic frameworks commonly
applied in impact evaluations (Haynes, 2008), prevailing methods in policy
evaluation incorporate underlying concepts of complexity science (Sanderson,
2002). Based upon an understanding that most policy interventions are
implemented within complex adaptive systems (Haynes, 2008) or are
themselves complex systems (Shiell et al., 2008), approaches including
agent-based models, causal loop diagrams, qualitative comparative analysis,
and qualitative case studies have been incorporated into evaluation process
(Barbrook-Johnson et al., 2021; HM Treasury, 2020a). Crucial to such is a
foundation upon a theory of change model (HM Treasury, 2020b), with the
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adoption of appropriate methods dependent upon the characteristics of the
system under analysis (Haynes, 2008).

Commonly a combination of multiple approaches may be utilised to ensure
robust inference founded upon myriad sources of data and information
(Sanderson, 2002). Relevant methodological approaches can be categorised
as ‘participatory’, in which they are subject to real time feedback from actors;
‘theory based’, which focus upon the causal mechanisms; ‘configurational

case-based’, through which to derive the combination and relative roles of
factors which produce the subject effect; ‘counterfactual based’, which utilise
experimental techniques to quantify effects; ‘statistical association’, which
employ exploratory techniques to support causal inference; and ‘synthesis

designs’, that bring together results from multiple analyses (HM Treasury,
2020a). The prevailing complexity based approaches to evaluation represent an
epistemological perspective intended to derive effects, causal mechanisms and
values associated with a policy intervention (Sanderson, 2000). Accordingly,
impact evaluation can be considered a single constituent of this approach, alone
insufficient to account for evaluation of complex policy systems, but forming
an element of an holistic approach to such (Haynes, 2008).

2.7.1 Quantitative Analysis of Policy Impacts

Impact evaluations (sometimes referred to as Impact Assessments or Outcome
Based Evaluation [OBE] (Schalock, 2001)) have a single focus upon the
causal effects attributable to a defined policy intervention (Gertler et al., 2016).
They are considered a vital component to the prevailing evidence and outcome
based policy agenda (Gertler et al., 2016; Head, 2008; White and Masset,
2018), contributing to accountability and learning (HM Treasury, 2020b),
which can subsequently inform future ex ante evaluation (Mergaert and Minto,
2015) and predictive modelling (Gilbert et al., 2018).

The most commonly adopted methods of impact evaluation are framed
around experimental or quasi-experimental approaches (Ferraro, 2009). The
foundation of which are based upon the capacity to analyse the outcome
achieved with the intervention having occurred against the outcome which
would’ve occurred without the intervention (referred to as the ‘counterfactual’)
(Gertler et al., 2016) [figure 2.6].

37



Figure 2.6: Source: Mendelsohn and Ghali (2019)
Conceptual Framework for Policy Intervention Impact Analysis.

The most prominently advocated method is based upon the replication of
experimental concepts using Randomised Controlled Trials [RCT] (Haynes
et al., 2012), in which different interventions are assigned to defined
representative sample, study groups (which may consist of individuals
or regions) and compared against a relevant control (Pearce and Raman,
2014). Ostensibly, an intervention effect can therefore be represented by the
difference between the group who received the intervention and the control
(Haynes et al., 2012).

At a practical level the use of a controlled design is precluded in regards
to retrospective analysis (Kontopantelis et al., 2015) and population-wide
implementation (Bernal et al., 2017). In such circumstances quasi-experimental
alternatives can be considered (HM Treasury, 2020b).

2.7.2 Interrupted Time Series Analysis

Interrupted Time Series [ITS] analysis represents a strong, quasi-experimental
alternative to the use of Randomised Controlled Trials (Biglan et al., 2000;
Wagner et al., 2002), advocated as a reliable and statistically robust means
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through which to derive causal inference in regards to the relationship between
an intervention and recorded outcomes (McDowall and McCleary, 2014;
Bernal et al., 2017). It is deemed to be of particular value in regards to the
retrospective analysis of secondary data derived from a single group without
feasible access to a relevant control (Linden and Yarnold, 2016). A scenario
in which policy intervention must often be assessed due to population-wide
implementation (Bernal et al., 2017) or as a consequence of ethical and
practical limitations (Wagner et al., 2002).

Accordingly, iterations of the ITS method have been applied to policy
impact analysis in a variety of fields (Britt et al., 1996), most prominently
in regards to public health (Murry et al., 1993; Ansari et al., 2003; Bloor
et al., 2003; Andersson et al., 2006; Dowding et al., 2011; Serumaga et al.,
2011; Penfold and Zhang, 2013; Bernal et al., 2017). Examples of its
use include the assessment of the direct impact of a national advertising
campaign upon rates of road traffic collisions (Murry et al., 1993), the
implementation of a ban on smoking in public areas upon cardiac event
admission rates (Barone-Adesi et al., 2011) and the adoption of new regulations
relating to the prescription of antibiotics on rates of its use (Ansari et al., 2003).

Having primarily evolved through public health (Bernal et al., 2017), the
method has since been applied to research within the spheres of education
(Wong et al., 2009; Hallberg et al., 2018), criminal justice (Britt et al., 1996;
Ramirez and Crano, 2003; Humphreys et al., 2017), fiscal (Bonham et al.,
1992; King-Meadows and Lowery, 1996; Campbell and Allen, 2001) and less
frequently agricultural (Ryu et al., 2017) policy or legislative and regulatory
interventions. Notably, there has been negligible published research adopting
an ITS methodology where undertaking analysis of planning and development
policy (Galster et al., 2004).

In essence, this methodology utilises standard statistical modelling techniques
to comparatively assess data within a single time series that has been
partitioned into two epochs (Kontopantelis et al., 2015), representative of
the periods both prior and subsequent to a defined implementation point
related to the subject intervention (McDowall et al., 2019). The most prevalent
statistical model applies segmented regression (Jandoc et al., 2015), in which
the level (Cruz et al., 2017) and trend (referred to as slope) for the two
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periods are separately quantified, utilising appropriate regression techniques
(such as ordinary least squares, Poisson, logistic (Bernal et al., 2017) and
non-linear (Penfold and Zhang, 2013)), ultimately determined by the intrinsic
characteristics of the data (Beard et al., 2019).

Commonly, a synthesised counterfactual scenario can be estimated, based
upon the extrapolation of the pre-intervention model (Lopez Bernal et al.,
2018), predicated upon the assumption that extant patterns would continue
unaltered across the entire time period were it not for the intervention (Turner
et al., 2019) [figure 2.7]
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Figure 2.7: Source: Bernal et al. (2017)
The figure overlays modelled data relating to rates of ACE
admissions between 2002 and 2006, relating to two respective
segments based upon the time period prior to the enactment of a
national public smoking ban and after, reflected by the white and
grey backgrounds respectively. The continuous red line evidences
the trends based upon the observed data, whilst the dashed red line
synthesises the ‘counterfactual’ scenario.

As a result ITS methods can account for the existence of secular trends in the
pre-policy period (Penfold and Zhang, 2013), which could otherwise comprise
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the validity of the intervention effect.

Fundamentally, where the models produced in regards to the two comparative
segments reflect a statistically significant difference, the effect of the
intervention can be inferred (Linden and Yarnold, 2016). In the example
of analysis based upon segmented regression the effect of the intervention
can be expressed as either the difference between the slopes and levels of
the two distinct periods (Wagner et al., 2002; Kontopantelis et al., 2015)
or as an absolute difference between the estimated values derived from the
post-intervention regression and the counterfactual scenario at a specific point
in time (Tt) (Wagner et al., 2002).

2.7.3 Impact Evaluation Within the Context of Planning
Policy

The incorporation of evaluative procedure into the planning system is well
established (Guyadeen and Seasons, 2018). However, it has been dominated
by ex-ante evaluation and in instances where ex post facto analysis has been
conducted it has predominantly been focused upon outputs (such as plans and
policies) rather than outcomes (Shahab et al., 2019).

Throughout relevant literature planning policy is recognised as consisting of
two distinct approaches (Berke et al., 2006; Feitelson et al., 2017; Laurian et al.,
2010; Oliveira and Pinho, 2010; Shahab et al., 2019). From the prevailing
positivist epistemological perspective, the limited ex post impact evaluation
undertaken regularly assumes a conformance based approach (Laurian et al.,
2010), focused upon the extent to which patterns of development adhere to the
original intention of the plan (Bulti and Sori, 2017).

For example Berke et al. (2006) investigated the degree of conformance to
nine categories of developmental design intended to reduce potential storm
related hydrological events. Based upon a combination of quantitative (derived
from codes applied to planning permits) and qualitative data (based upon
surveys), a conformance metric was derived, which reflected the percentage
of relevant design techniques applied to each development. Whilst offering
insight in regards to the relative success of the policy in achieving its intended
aim of altering design approaches it could be accused of failing to measure the
implicit outcome of reduced rates of surface run-off (Shahab et al., 2019) and
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gave little account for either unintended consequences (Oliver et al., 2020) or
comparative analysis of the extent to which the policy had altered existing
practice.

The alternative approach adheres to a performance based method, in which the
evaluative procedure considers the impact of the plan upon decision-making
process (Berke et al., 2006). Due to the nature of the process it is contended
that there is limited scope for empirical analysis (Shahab et al., 2019), with
qualitative assessment providing evidence around the perceptions of impacts
rather than robust data relating to measurable outcomes (Baker et al., 2006).

With a narrow focus upon the success of a policy in regards to the delivery of
intended outcomes (Shahab et al., 2019), allied to limited access to relevant
data and the complexity of both the developmental stage (Laurian et al., 2010)
and tangible outcomes (Hersperger et al., 2018), analytical research has been
restricted (Hersperger et al., 2018; Shahab et al., 2019). Where quantitative
analyses have been undertaken there has been a tendency to focus upon the
associations between planning approaches and the patterns of development
(Hersperger et al., 2018). To date there has been negligible research dedicated
to the understanding of planning policy as an intervention (Dallimer et al.,
2011), which could induce a change in the patterns of land use and land cover.

2.8 Planning in the United Kingdom

The planning system operated within the United Kingdom is considered
relatively unique (Tewdwr-Jones, 1999), in so far as it has historically been
characterised as broadly discretionary (Booth, 1995). Since the inception
of formal planning procedures through the Town and Country Planning

Act 1947 (Cullingworth and Nadin, 2003), the approach has required Local
Authorities to produce plans, which are intended to guide development at
local level (Grant, 1992). Therefore, the majority decisions made in regards to
development are made within the lowest tier of local governmental structures
(DCLG, 2015b).

Within such a discretionary system decisions in regards to each application
to develop are made on a case by case basis (Grant, 1992). Whilst
decisions should generally abide by the agenda outlined within the local
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plan (Cullingworth and Nadin, 2003), there exists power to account for
material considerations in the making of individual decisions (DCLG, 2015b).
Although Allmendinger (2006) suggested the plan-led system had increasingly
become analogous with a discretionary zoning system, planning within
England has not shifted to a formal regulatory zoning approach, in which
specific land parcels are allocated for particular land uses and where compliant
development will be approved automatically (Gurran and Whitehead, 2011).

Local plans must be informed by and compliant with relevant National policy
(Oxley et al., 2009). Consequently, National level planning policy can be
understood to advance a development agenda (Oxley et al., 2009) and wields
significant influence over changes to land use and land cover (Tewdwr-Jones,
1997).

Although access to green space has to some extent implicitly informed the
planning system since it’s foundation (Cullingworth and Nadin, 2003), there
have been limited explicit policy or legislative provisions to protect such
(Rydin, 1998). Where Howard (1946) developed the concept of ‘garden cities’,
in which planned urban settlements would both contain ‘green spaces’ (Ward,
2005) and be encircled by functional, protected natural and semi-natural
spaces (Buder, 1990), formal planning within the United Kingdom has
not traditionally included provisions beyond the establishment of National
‘Green Belts’ (Cullingworth and Nadin, 2003). Potentially due to initial
criticisms related to economic constraint and the aesthetic desecration of rural
environments (Edwards, 1913), the ‘garden cities’ approach did not evolve to
inform early policy.
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Figure 2.8: Source: Howard (1946)
Diagram of proposed concentric
lay-out of the garden city.

Figure 2.9: Source: Miller (1983)
Illustrative diagram outlining the
conceptual structure of the spatial
relationship between the garden and
central city.

Whilst the formal adoption of the ‘garden cities’ approach did not occur, its
influence was evident in the adoption of the principles of National ‘Green
Belts’, which have persisted within the UK since 1955 (Cullingworth and
Nadin, 2003).

Despite recognition of the importance of access to green space in regards
to physical and mental health, no relevant conditions are incorporated into
planning policy.

2.8.1 The Localism Act 2011 and
The National Planning Policy Framework

The legislative basis for the revised planning framework was largely similar
to its predecessor, with the Town and Country Planning Act 1990, Planning

and Compulsory Purchase Act 2004 and Planning Act 2008 remaining in
force (Winter et al., 2016). However, such were supplemented and amended
by the Localism Act 2011, which established the National Planning Policy
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Framework as the foundation for local plans (The Planning Inspectorate, 2019).

Whilst the revised framework remained contingent upon and constrained by
the system of local plans (Slade, 2018), key provisions were considered likely
to lead to a more permissive systems (Sibley-Esposito, 2014).

At a structural level the most significant change related to the abolition of
Regional Spatial Strategies (Boddy and Hickman, 2013), which were intended
to inform a strategic approach to growth (CLG, 2011), with protection of
the environment recognised as a material consideration (ODPM, 2004).
In conjunction with other key provisions, the revised framework could be
interpreted as resulting in an increased degree of threat to ‘green space’
and more specifically may contribute to a policy more encouraging of the
expansion of urban areas beyond existing boundaries (Sibley-Esposito, 2014).

The most relevant elements of which are considered below, including; a) the

adoption of a presumption in favour of sustainable development; b) the use of

previously developed land; and c) the protection afforded to ‘Green Belt’.

Figure 2.10: Source: Ministry of Land, Infrastructure, Transport
and Tourism, Japan (2020)
UK National and Local Government Planning Structures both prior
to and after the implementation of the National Planning Policy
Framework.
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2.8.1.1 Presumption in Favour

The NPPF introduced an underlying ‘presumption in favour of sustainable

development’, to which local plans would be required to adhere in order to be
assessed as valid (Lees and Shepherd, 2015).

At the heart of the National Planning Policy Framework is a

presumption in favour of sustainable development, which should

be seen as a golden thread running through both plan-making and

decision-taking. (National Planning Policy Framework [s.14])

Under the provisions of the policy “sustainable development” is loosely
defined around three dimensions of economic, social and environmental
responsibilities (DCLG, 2012a). Considered in conjunction with a requirement
for Local Authorities to “positively seek opportunities to meet the development

needs of the area” (National Planning Policy Framework [s.14]) the lack
of clear prescription (Nathan and Overman, 2011) saw the term conflated
with both economic growth (Hannis and Sullivan, 2012) and residential
development (Bell, 2018). With the most substantial weight afforded to
developmental needs (Harris, 2012) unless, “any adverse impacts of doing

so would significantly and demonstrably outweigh the benefits” (National
Planning Policy Framework [s.14]) or land is subject to policies that “indicate

development should be restricted” (National Planning Policy Framework
[s.14]) (such as ‘Green Belt’ designation) the provision may be considered
more akin to a general ‘presumption in favour of development’ (Bell, 2018).

It could reasonably be anticipated therefore that local plans must necessarily
allocate larger areas of undeveloped land to meet development needs in
order to avoid appeals (Harris, 2012) and the grounds upon which to refuse
development would require a demonstrable negative impact. Subsequently,
where green space is not subject to any additional protections the restriction of
development would be unlikely. This can be considered a particular issue in
relation to informal amenity spaces or pastoral agriculture, where there may
be limited biodiversity or social value (Swanwick et al., 2003), but potentially
core regulating services (Bolund and Hunhammar, 1999).

Crucially, in circumstances where a local plan was “absent, silent or relevant

policies [were] out-of-date” (National Planning Policy Framework (2012)
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[s.14]) a Local Authority should not refuse development. Partially due to the
abolition of Regional Spatial Strategies, which had formerly informed local
plans (Hanusch and Glasson, 2008), and a revised method through which
to assess housing need (MHCLG, 2015), the majority of Local Authorities
were practically incapable of completing a review of local plans within
the transitional period of 12 months (Lichfields, 2019). This was largely
corroborated by research which evidenced that over a quarter of all Local
Authorities remained without an approved plan by 2019 (Lichfields, 2019).

As a result, a greater number of speculative applications to develop upon
‘greenfield’ sites may have been submitted in the early period following the
implementation of the revised framework based upon the assumption that
they would have to be assessed against policies formed prior to the NPPF

coming into force. Accordingly, where rejected such applications would be
considered against an ‘out-of-date’ plan afforded little weight in law under
appeal if it failed to evidence sufficient land to meet a five-year housing supply
(Harris, 2012). Therefore, making it likely such proposals would be approved,
particularly if shown to be providing residential accommodation.

CPRE (2018) reported rates of speculative application to build upon ‘Green

Belt’ were higher in 2018 than at any point since 2009. However, consideration
must be given to the organisation’s partiality (Slade, 2018) and the retention of
protections within the framework, which were not overridden in the absence of
a local plan (Bleasdale, 2013). Conversely, Sibley-Esposito (2014) presented
evidence through which to suggest the lack of clarity within the reduced
framework had led to unintended interpretations of the policy in regards to
‘Green Belt’, which may account for increased speculative applications.
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Figure 2.11: Source: Harris (2012)
Conceptual framework of outcomes of an application to develop as
outlined in the NPPF

In consequence a supposition can be posited that additional areas of green
space would be subject to developmental pressure both due to inclusion within
local plans and as a result of appeal.

2.8.1.2 Encourage the Redevelopment of
‘Brownfield’ Sites

Allied to provisions which may be associated with increased levels of
development (Bell, 2018), the restrictions to the type of land upon which such
should occur have been diminished (Sibley-Esposito, 2014). Under the policy
framework established by the New Labour government the developmental
onus had been upon the redevelopment of existing built sites, with explicit
targets for the majority of new housing to be located on such (CLG, 2006).

However, where said prior policy established the reuse of previously developed
land as an explicit “priority” (Planning Policy Statement 3 [s.36]), under the
terms of the NPPF it was only encouraged.

Planning policies and decisions should encourage the effective

use of land by re-using land that has previously been developed

(brownfield land), provided that it is not of high environmental

value. (National Planning Policy Framework [s.111])

Whilst the NPPF replicated an intention to make “effective use of land by

re-using land that has previously been developed” (Planning Policy Statement
3 [s.40]), it effectively removed the prior commitment towards a ‘brownfield’
first approach (Sibley-Esposito, 2014).
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Ganser and Williams (2007) evidenced that the application of an explicit 60%
target for ‘brownfield’ development had resulted in reduced ‘greenfield’ loss.
It is therefore suggested as logical that the removal of the outlined target
would potentially lead to an increase in development upon ‘greenfield’ land. It
can be assumed that residential development on ‘greenfield’ sites may offer
increased revenue for developers. Initial costs associated with development on
‘brownfield’ sites are higher than ‘greenfield’ equivalents, primarily as a result
of preparatory commitments, including remedial ground works (Hutchison
and Disberry, 2015). In addition to which, a relationship has been evidenced
between the proximity of accessible green space and the price of housing
(Morancho, 2003). Such access is more easily achievable where there already
exists an abundance of green space, with significantly higher costs associated
with the development of green areas upon land previously without vegetative
cover.

The effect of this diminution in commitment to ‘brownfield’ development may
have been evident by 2014. Despite sufficient land for the provision of 1.5
million homes on sites which had previously been subject to development
(Sinnett et al., 2015), the number of applications to develop on ‘greenfield’
sites increased (Sinnett et al., 2014).

2.8.1.3 Green Belt Provisions

Based upon a simple interpretation of the provisions within the ‘NPPF’ it
could be reasoned ‘Green Belt’ land retained near identical protection to that
which it was afforded under the previous regime [PPG 2 (DCLG, 2006)].
However, such provisions were the subject of the most notable concern,
primarily through the Campaign to Protect Rural England (Sibley-Esposito,
2014).

The NPPF transposed the five core purposes for the inclusion of land within
a ‘Green Belt’ (National Planning Policy Framework [s.80]) and replicated
relevant clauses from the prior framework through which to restrict designated
land from inappropriate developmental threats.
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As with previous Green Belt policy, inappropriate development is,

by definition, harmful to the Green Belt and should not be approved

except in very special circumstances. (National Planning Policy
Framework [s.87])

The types of “very special circumstance” in which development would be
permitted also broadly conformed to the previous regime, with such being
restricted to developments where the harm was demonstrably outweighed by
other material considerations (DCLG, 2012a). Although the policy would
additionally permit the development of prescribed facilities associated with,
“outdoor sport, outdoor recreation and for cemeteries” and, “the extension of a

building provided that it does not result in disproportionate additions” (DCLG,
2012a), neither were considered of significant risk to increased development
(Bevan, 2017).

However, when considered in combination with other provisions within the
policy and as a result of the removal of detail from the overall system (Upton,
2019), there were reasons to suggest the approach to development on ‘Green
Belt’ had been interpreted as less restrictive than had been intended by
government (Sibley-Esposito, 2014).

2.9 Research Literature Summary

The outlined research literature highlights the value and significance of
green space as an environmental priority (Wolff et al., 2020), associating
its preservation with planning policy (Hersperger et al., 2018). With
evidence suggestive of the potential for the revised policy framework
(under the provisions of the Localism Act 2011 and National Planning

Policy Framework) having altered the degree to which such land would be
afforded protection from development (Sibley-Esposito, 2014). However, this
proposition has not been statistically explored based upon data derived from a
consistent methodology.

Considered as a driver or regulator of land change, analysis of the impact
associated with national level planning policies is considered subject to
common research priorities advocated by both Bürgi et al. (2005) and
Plieninger et al. (2016), including the utilisation of non-remote sensed
data, sample areas characterised by contextual stability and application of
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statistically more robust methods. In conjunction with prior UK based analyses
relating to preceding policy, a research focus was developed to analyse the
impact upon green space associable with the Localism Act 2011 and National

Planning Policy Framework, as an example of an isolable policy driver
implemented within the context of a largely stable system (Morrison and
Pearce, 2000), using practical impact evaluation tools (such as Interrupted

Time Series Analysis).
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CHAPTER3
Methodology

Where Not Habitation Stood Before

3.1 Introduction

Cumulatively the elements of research undertaken in contribution to this
thesis were designed to augment understanding of the influence of national
planning policy as an underlying driver and regulator of land change due
to urbanisation. It is contended the advancement of the field requires an
improved understanding of the effects attributable to different policy systems
(Alexander, 2016; Laurian et al., 2010; Shahab et al., 2019), adhering to a new
conceptual framework through which to examine the myriad factors driving
land use change (Plieninger et al., 2016).

Said framework recommends “the deployment of more robust tools and

methods to quantitatively assess the causalities of landscape change” and
advocates the use of a wider range of data sources than the reliance upon the
predominant satellite imagery (Plieninger et al., 2016). However, such an
approach is contingent upon the existence of a clear transition between two
differing policy approaches within a single nation, supported by data relating
to a discernible indicator of impact (Morrison and Pearce, 2000).

This research sought to address this gap by adopting a single land use change
indicator, in the form of green space (upon which prior analysis had been
undertaken and evidenced as effective (Dallimer et al., 2011; Mu et al.,
2016)), in relation to the transition to the Localism Act 2011 and National

Planning Policy Framework in England. As an apposite subject of research,
this policy change had been contended to have increased developmental threat
to previously undeveloped land (Sibley-Esposito, 2014) and operated within
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a system previously hypothesised as responsive to policy change (Dallimer
et al., 2011).

As the existence of a causal relationship was intended to be assessed, a
quantitative approach was evolved (Morrison and Pearce, 2000). It was first
intended to examine whether data could offer initial insight as to the existence
of a structural change within rates of development upon green space, for
which change point detection was employed. Prior to the use of Interrupted

Time Series analysis as a means of discerning the effect associated with the
policy change (Ramachandra, 2019). In the final stage of research the same
ITS method was employed to investigate the extent to which the policy had
potentially relocated development from existing urban boundaries to the rural
fringe.

The outlined approach can be considered as an adaptation of the principal
components described in Ramachandra (2019) for analysis of deforestation.
Change point detection represents an established method through which
to identify the occurrence of events through data analysis (van den Burg
and Williams, 2020). Whilst the use of Interrupted Time Series analysis is
expanding as a measure of intervention effects (McDowall et al., 2019).

3.2 Developing a Robust Land Change
Data Set

In order to address the need for quantitative analysis of planning policy
impacts (Plieninger et al., 2016) using the example of the Localism Act 2011

and NPPF, data relating to the rate of development upon green space were
required which continuously covered the period from before implementation
to after. Whilst governmental records describing the extent of land undergoing
transition from ‘non-developed’ to ‘developed’ forms were available for
calendar years [January to December] between 1989 and 2011 (except
1999)(MHCLG, 2012) and financial years [April to March] between 2013 to
2014 and 2017 to 2018 (MHCLG, 2019a), methodological changes restricted
the extent to which they can be reliably considered consistent and comparable.

Furthermore, relevant governmental data was not available in spatial format,
therefore restricting analysis to the temporal. Although not the primary
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focus of the research it was essential to create a dataset that could be utilised
both temporally and spatially, particularly to provide the means with which
to investigate the extent to which different effects were evident within and
outside of existing urban boundaries.

Thus, the initial stage of research aimed to produce a methodologically
consistent, spatio-temporal green space loss dataset, upon which subsequent
analyses can be conducted.

3.3 Sampling Methodology

Where practicable, analyses should be undertaken at a spatial scale consistent
with that of the subject driver (Verde et al., 2020). Therefore, the impacts
associable with the national level policy within this research would reflect
outcomes derived from the whole of England. However, due to largely
prohibitive data storage requirements, analysis was undertaken in regards to an
aggregated sample (consistent with prior reseaarch (Dallimer et al., 2011)). 42
individual case studies were identified, based upon Local Authority Areas, at
which level the planning process is generally administered (DCLG, 2015b)
and funding pressures would be most keenly felt (Mell, 2016). It should be
noted that said samples were not analysed individually as outcomes were
considered likely to reflect local drivers rather than national policy effects. The
aggregation of said samples were considered to represent a national spatial
scale (Lloyd, 2016). Therefore, results must be understood to be associated
with the identified spatial scale and are subject to potential spatial bias in
accordance with the minimum areal unit problem (Openshaw and Rao, 1995).

Across the majority of England local government is structured as a two-tier
system in which responsibility for relevant services are apportioned between
the County [upper level] and District Councils [lower level]. However,
a number operate within a single-tier, in which all services are unified
(Local Governemnt Group, 2010). As of 2018 there were a total of 343
local authorities in England, incorporating 26 County Councils with a
concomitant 192 District Councils, alongside 125 operating under a single
tier of governance, which included 55 Unitary Authorities, 36 Metropolitan
District Councils and 32 London Boroughs (Sandford, 2018).
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In most instances responsibility for the majority of core planning functions
resides within the outlined structure, under the jurisdiction of relevant
single-tier authorities or District Councils, where a two-tier system exists
(Sandford, 2018). There are exceptions in regards to significant infrastructural
projects (such as in regards to transport, mineral extraction and waste) where
County Council’s act as the Local Planning Authority (DCLG, 2015b). In
addition to which, central powers through the Greater London Authority allow
for strategic oversight and enable it to make decisions in regards to some
planing applications.

However, for the purpose of the research a decision was made to select samples
from the core structure of District and single-tier Authorities. Therefore, the
derived sample of 42 can be understood to reflect around 14% of the total
eligible.

Sample LAAs were restricted to England only, due to both the limited
availability of consistent authority profile data and existence of differing
legislative or policy frameworks in regards to both Scotland and Wales prior to
the start of the research period (Winter et al., 2016), thus limiting comparability.

3.3.1 Urban and Rural Designations

Local Authority Areas are classified as either ‘urban’ or ‘rural’, based upon
the proportion of the population resident within permanent settlements with a
recorded population of 10,000 or more (Bibby and Brindley, 2013). Where
74% or more of the total population reside within such areas an Authority is
categorised as predominantly ‘urban’. With ‘rural’ Authorities representative
of areas in which fewer than 74% live within defined built-up areas (Bibby
and Brindley, 2013).

At its most basic there are 6 distinct designations, which are advised to be
used as the basis of statistical analyses due to the differing profiles of authority
areas (DEFRA, 2011).
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Figure 3.1: Source: DEFRA (2017)
Rural-Urban classification structures relating to Local Authority Districts in
England from the 2011 census.

It must be understood however, the majority of a Local Authority Area may
consist of open land cover, but be deemed ‘urban’ if 74% or more of the
population reside within its urban settlements (Bibby and Brindley, 2013).

3.3.2 Sample Data

Certain key physical, economic and social characteristics pertaining to Local
Authority Areas were recognised as materially influencing the extent to
which developmental pressure may be applied (Briassoulis, 2009) and were
consequently considered relevant to sample selection. Criteria included
“population pressure” (Soemarwoto, 1985), total land area, the area of land
subject to conservation protection, the area of land identified as being subject
to the greatest risk of flooding (The Government Office for Science, 2010) and
the promotion of economic growth (Travers, 2012).

In order to account for the potential influence of the outlined variables, relevant
data was obtained to inform sample selection.

• UK Census Data 2011:
Including Rural-Urban Code, Rural-Urban Descriptor, Rural

Population, Total Population, Total Area (Ha) and Population Density.
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• Household Projections for England:
The “population pressure” (Soemarwoto, 1985) upon each Local
Authority Area could be considered to constitute the recorded housing
need. With no standardised mechanism through which to derive
estimated data prior to 2016, household projections were utilised as
an alternative, replicating a method described by Bramley et al. (2010).
The annual change in population projections between 2006 and 2017 was
calculated, with the average subsequently used as a proxy for “population
pressure”.

• Housing Need Consultation Data (2017):
In the adoption of a new standardised approach to the assessment of
housing need, data included a record of the proportion of Local Authority

land area covered by Green Belt, National Parks, Areas of Outstanding

Natural Beauty or Sites of Special Scientific Interest.

• Flood Map for Planning (Rivers and Seas) – Flood Zone 3 (2016):
Data through which to identify areas at risk of flooding was accessed
in polygonal form, through the governmental open data repository
and represents land within Flood Zone 3. Land within Flood Zone

3 is assessed as having a 1% or higher annual risk of experiencing
fluvial flooding or 0.5% or greater of coastal flooding. Its use is
well established in research fields (Faulkner and Wass, 2005; Gil and
Steinbach, 2008; Percival et al., 2019) and acts as the primary basis for
risk assessment within planning (Jones, 2008).

The proportion of LAA area to constitute land at risk of flooding
therefore was based upon the intersection between the Flood Zone 3 data
and the Authority Boundary.

• Indices of Multiple Deprivation (2010):
Indices of multiple deprivation have previously been recognised as an
indicator of the broad economic circumstances associated with different
administrative levels within the UK (Abel et al., 2016). Data represents
a relative assessment of deprivation based upon 38 weighted indicators,
categorised under seven domains (income deprivation, employment
deprivation, health deprivation and disability, crime, barriers to housing
services and living environment deprivation) (Communities and Local
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Government, 2007). As data was originally obtained at Lower Super

Output Area [LSOA] level, which forms the lowest geographic layer
within a Local Authority Area, the utilised deprivation score reflects the
average of all LSOAs contained within the relevant LAA (Communities
and Local Government, 2007).

Concentrations of deprivation were evidenced to be heavily associated
with urbanity and geography (Communities and Local Government,
2007). 97% of the LAAs with the highest levels of deprivation were
‘urban’ and a larger number were situated in the North East and North
West regions (Communities and Local Government, 2007).

The outlined data sets were subsequently joined to form a single matrix based
upon common Local Authority Area Codes and Names (outlined in figure 3.2).
This combined matrix was then split into ‘urban’ and ‘rural’ subsets. Due to
the wide range of values associated with the different sample variables all were
standardised to reflect a z-score [equation 3.1] (Jajuga and Walesiak, 2000).

z =
x− µ
σ

(3.1)

z represents the standardised value, x the original value, µ the population
mean and σ the standard deviation of the population.

A framework representing relevant data structures is presented in figure 3.2

3.3.3 Sample Selection Considerations

In light of the potential for both individual characteristics and spatial
correlation to influence the way in which planning policy may have been
implemented (Briassoulis, 2009), sample Local Authority Areas were sought,
which could be considered to represent the widest range. Thus, a simple
randomly sampled approach to case study selection was rejected (Sharma,
2017). Whilst the adoption of non-random sampling techniques is commonly
interpreted as weakening inferential analysis (Copas and Li, 1997), alternative
methods may in some circumstances be more appropriate to the population
(Schreier, 2018).

As an alternative, Chipeta et al. (2017) presented a spatially regular sampling
design, through which to ensure spread within a population, thus reducing the

58



C
en

su
s 

D
at

a 
2
0
1
1

•
L

A
A

 C
o

d
e

•
L

A
A

 N
am

e

•
R

u
ra

l-
U

rb
an

 C
o
d
e

•
R

u
ra

l-
U

rb
an

 D
es

cr
ip

to
r

•
R

u
ra

l 
P

o
p
u

la
ti

o
n

•
T

o
ta

l 
P

o
p
u

la
ti

o
n

•
P

o
p

u
la

ti
o

n
 D

en
si

ty

•
T

o
ta

l 
A

re
a 

(H
a)

H
o

u
se

h
o
ld

 

P
ro

je
ct

io
n
s

(2
0
1
6
)

•
L

A
A

 C
o
d

e

•
L

A
A

 N
am

e

•
E

st
im

at
ed

 H
o

u
se

h
o

ld
 

C
h
an

g
e 

(2
0
0
6
 t

o
 2

0
1
7

)

H
o

u
si

n
g
 N

ee
d

 

C
o

n
su

lt
at

io
n

 d
at

a 

ta
b

le

(2
0

1
7
)

•
L

A
A

 C
o

d
e

•
L

A
A

 N
am

e

•
P

ro
p

o
rt

io
n

 o
f 

p
ro

te
ct

ed
 

la
n

d

F
lo

o
d
 M

ap
 f

o
r 

P
la

n
n

in
g
 (

R
iv

er
s 

an
d

 S
ea

s)
 –

F
lo

o
d

 

Z
o

n
e 

3
 (

2
0
1

6
)

In
d

ic
es

 o
f 

M
u

lt
ip

le
 

D
ep

ri
v

at
io

n

(2
0

1
0

)

•
L

A
A

 C
o

d
e

•
L

A
A

 N
am

e

•
P

ro
p

o
rt

io
n

 o
f 

ar
ea

 

su
b

je
ct

 t
o

 f
lo

o
d

 r
is

k

•
L

A
A

 C
o

d
e

•
L

A
A

 N
am

e

•
L

A
A

 A
v

er
ag

e 

D
ep

ri
v

at
io

n
 S

co
re

L
A

A
 C

o
d

e

L
A

A
 N

am
e

D
er

iv
e 

z-
sc

o
re

s

L
A

A
 S

am
p

le

M
at

ri
x

L
A

A
 

C
o
d

e 
≥

 4

‘U
rb

an
’ 

S
u
b
g
ro

u
p

‘R
u

ra
l’

 

S
u

b
g
ro

u
p

N
o

Y
es

Fi
gu

re
3.

2:
Sa

m
pl

e
da

ta
st

ru
ct

ur
e

59



risk of spatial correlation. Where this approach was deemed likely to yield
a spatially representative sample, it would not explicitly account for other
confounding factors. Therefore, an adapted maximum variation method was
proposed.

In essence, maximum variation sampling is a purposive technique designed
to ensure a sample reflects the widest range of the population (Cohen and
Crabtree, 2006). It is conventionally utilised in qualitative survey based
research (Marshall, 1996; Higginbottom, 2004), especially in circumstances
where required to incorporate complex population dynamics (such as ethnicity)
(Cohen and Crabtree, 2006). Although, not regularly applied to quantitative
analyses, it was regarded as justifiable for this research as it would allow
for the control of variables, which could be considered likely to otherwise
confound inferential analysis (Cullingworth and Nadin, 2003). Whilst it also
has established precedence in relation to intervention analysis (Fortin et al.,
2019).

3.3.4 Sample Selection

The final sample was subsequently obtained through a method based upon
maximum variation concepts and attempted to incorporate elements that could
flexibly contribute to multiple analyses.

All data were processed using base functions in R (R Core Team, 2019).
Within the ‘urban’ and ‘rural’ subgroups a single difference statistic was
derived between each authority, reflecting the sum of the individual differences
from the standardized core criteria (proportion of rural population, average
change in projected population, proportion of land within LAA subject to legal
protection, proportion of land area designated as being at the highest risk of
flooding [Flood Zone 3] and deprivation score).

Based upon the outlined approach, samples were identified from each group as
follows.

1. A primary sample Local Authority Area was identified at random.

2. A subsequent random sample was selected from the decile with least
similarity based upon their cumulative difference statistics.
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3. A final random sample was selected from the decile with most similarity
based upon their cumulative difference statistics.

The summarised process was repeated until a total sample of 42 Local
Authority Areas were obtained. Due to differences in area between each Local
Authority a simple distance based proximity exclusion radius could not be used
to ensure geographical dispersion. Therefore centroids were derived for each
LAA. Where an Authority was selected as a primary sample the 10 nearest
other LAAs were identified using a ‘Nearest-Neighbour’ function (PostGIS,
2018) and excluded from subsequent selection as primary samples. As a result
the derived sample Areas were geographically dispersed and reflected a wide
range in regards to the sample variables [figure 3.3].

Figure 3.3: Source: Ordnance Survey (2018b)
Distribution of sample Local Authority Area, with ‘rural’ LAAs
identified in blue and ‘urban’ identified in red.
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1 Babergh 15 Forest of Dean 29 Portsmouth
2 Barrow-in-Furness 16 Gedling 30 Redcar and Cleveland
3 Birmingham 17 Harlow 31 Rossendale
4 Blaby 18 Hart 32 Sandwell
5 Boston 19 Hastings 33 Selby
6 Brentwood 20 Herefordshire, County of 34 South Bucks
7 Bristol, City of 21 Kingston upon Hull, City of 35 South Gloucestershire
8 Chiltern 22 Leeds 36 South Kesteven
9 Cornwall 23 North Tyneside 37 South Northamptonshire
10 County Durham 24 North Warwickshire 38 Taunton Deane
11 Coventry 25 Norwich 39 Tendring
12 Doncaster 26 Oldham 40 Tower Hamlets
13 East Staffordshire 27 Pendle 41 Warrington
14 Eden 28 Plymouth 42 Wyre

Table 3.1: List of the derived 42 sample Local Authority Areas.

3.3.5 Research Data

3.3.6 OS MasterMap® Topography Layer

Corresponding to the current governmental Land Use Change methodology
(DCLG, 2015a), the primary data source in regards to the identification of
both contemporary and historic green space was Ordnance Survey Mastermap

(Ordnance Survey, 2017). This data is advanced as reliably and meticulously
representing a comprehensive topography of the United Kingdom (Regnauld
and Mackaness, 2006), including clear delineation of land use and land cover
types (Barbosa et al., 2007). Deemed to offer a sufficiently high degree of
spatial and temporal accuracy, the data has been utilised at both National
(DCLG, 2015a) and Local scales (Liverpool City Council, 2010), in addition
to which it has significant academic precedence in regards to green space
identification (Barbosa et al., 2007; Tratalos et al., 2007; Davies et al., 2008;
Moseley et al., 2013).

The digitally mapped data can be understood to be constructed from a nexus of
polygonal, linear and point forms (Ordnance Survey, 2009), representative of
relevant physical or social features (Regnauld and Mackaness, 2006), ranging
from buildings to administrative boundaries (Orford and Radcliffe, 2007). The
data comprises 5 separate elements, including topographic area, topographic

point, topographic line, cartographic text and cartographic symbol (Ordnance
Survey, 2017).

For the purpose of this research the primary source of data was the topographic

62



area layer, in which physical features (such as buildings, roads, paths and
land forms) are recorded (Orford and Radcliffe, 2007). Each feature is
categorised under one of five ‘Make’ designations based upon its form
(‘manmade, multiple, natural, unclassified, unknown’), which act as a primary
classification criteria [figure 3.4]. Two additional sub-groups (Descriptive

Group and Descriptive Term) offer further detail in regards to particular
features (Ordnance Survey, 2017) [table 3.3.6].

Primary Classifier
(Make)

Secondary Classifier
(Descriptive Group)

Tertiary Classifier
(Descriptive Term)

Manmade Building N/A
General Surface N/A
Path N/A
Road or Track Traffic Calming
Structure N/A

Multiple General Surface N/A
Natural General Surface N/A

Natural Environment
Coniferous Trees; Coppice or Osiers; Heath; Marsh; Reeds or Saltmarsh;
Non-coniferous Trees; Orchard; Rough Grassland; Scrub

Rail N/A
Roadside N/A
Road Or Track Track

Unclassified Unclassified N/A
Unknown Unknown N/A

Table 3.2: OS Data Structures representing primary (‘Make’),
secondary (‘Descriptive Group’) and tertiary (‘Descriptive Term’)
classification criteria.
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Figure 3.4: Data Source: Ordnance Survey (2018b)
Example of topographic layer data classified by ‘Make’ and
‘Descriptive Group’ (Ordnance Survey, 2017).

The features to be included as defined green space are predominantly portrayed
within the data as individual polygons (Ordnance Survey, 2017) which can
be identified through designation as ‘natural’ form (based upon primary
classifier) (Barbosa et al., 2007; Tratalos et al., 2007; Mitchell et al., 2011).
It should be noted however, that a single, large area green space, such as a
park, accordingly consists of a collection of individual, unconnected polygons,
restricting the capacity to identify an overall site [figure 3.5].
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Figure 3.5: The figure shows an indicative sample of the
representation of a 48.5 Ha public park in Coventry. Within the
data said park consists of 102 separate ‘natural’ polygons and 52
classified as ‘non-natural’.

The designation of any ‘natural’ land form as green space within this research
was intended to include all elements of the urban typology identified by
Swanwick et al. (2003) [figure 3.6], under the categories of amenity, functional

and linear ‘green spaces’, allied to semi-natural habitat. In addition to which,
it would also incorporate all rural green spaces, in adherence to relevant land
cover types outlined by Alcock et al. (2015).
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Figure 3.6: Source: Swanwick et al. (2003)
Categorisation of urban green space land types proposed by (Swanwick et al.,
2003)

Whereas features indicative of developed form were founded upon the
identification of any polygon where the primary classifier (Make) was recorded
as ‘manmade’, ‘multiple’ or ‘unclassified’ (Ordnance Survey, 2017).

Additional relevant fields within the data included; a unique ID [TOID],
assigned to each polygon, which will remain throughout the life-cycle of
the feature (Ordnance Survey, 2017); a reason for change, which acts as a
record of the feature; and a change date which identifies the dates on which a
polygon is created or undergoes significant amendment.

3.3.7 OS Address Base Premium

Allied to the topographic area layer outlined above, this research also
incorporated OS AddressBase Premium® data, as a means by which to improve
validity.
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AddressBase Premium® represents any feature, which has an appropriate
postal address and consists of around 40 million dated, geo-referenced spatial
points (Ordnance Survey, 2016). It therefore provides a comprehensive record
of every commercial and residential property within the UK and the dates
at which said address was first recorded or was removed from the database
(Ordnance Survey, 2018a).

In addition to the built environment, it includes certain classifications, which
can be used to identify land and land use under broad categories of ’agriculture,
burial grounds, forestry, allotments, amenity space, public open space and
public parks’, previously utilised in relevant research (Mason et al., 2020).

3.3.8 Temporal Range

Having been stored in an accessible, archived data repository since 2007,
Mastermap® data can be tracked over time, enabling direct comparison of land
use change between 2007 and 2018 (Ordnance Survey, 2017). For each of the
42 sample Local Authorities, 12 digital maps were downloaded in geodatabase

form (Zeiler, 1999), from the archive based upon available dates [table 3.3].

Research Time Period OS Archive Date Time Between Data Sets
(Months)

2007 January 2007 N/A
2008 March 2008 14 Months
2009 March 2009 12 Months
2010 June 2010 15 Months
2011 June 2011 12 Months
2012 June 2012 12 Months
2013 December 2013 18 Months
2014 December 2014 12 Months
2015 January 2016 13 Months
2016 December 2016 11 Months
2017 November 2017 11 Months
2019 May 2019 18 Months

Table 3.3: Source: Ordnance Survey (2018b)
Dates associated with accessible archive of Mastermap® data.

Accordingly, the data relating to each time period reflects a record of the
mapped data on the date at which it was archived (Sutton et al., 2007). Due
to its large scale, all data was imported into and managed within Postgis, a
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geospatial, relational database system, which uses Structured Query Language
[SQL] commands to manage and query spatial data (Corti et al., 2014).

3.3.9 Minimum Change Identification Method

For the purpose of this methodology the OS MasterMap® topographic layer

data can be considered to consist of 12 distinct time points (T0, T1, ...T11).

It should be noted that an accurate change data set could not be based solely
upon the existence of a feature in time T , that did not exist in time T−1. This
was primarily attributable to both the update policy operated by Ordnance

Survey (Ordnance Survey, 2020) and the method in which change was
identified.

Under the terms of the published revision policy, Ordnance Survey categorise
change into one of four distinct groups, each of which are subject to different
time-frames in which to be recorded within the data (Ordnance Survey,
2020). Both Prestige Sites and Category A changes are recorded under a
continuous process, within a maximum of 6 months of their occurrence.
Whereas Category B and C changes are only subject to cyclical update,
ranging from between a minimum of two and maximum of ten years, unless
directly associated with a Prestige Site or Category A change and identified
during the continuous update process (Ordnance Survey, 2020).

Therefore in regards to this research, relevant changes were restricted to those
associated with either Prestige Site or Category A developments.

Examples of such consist of;

• nationally significant infrastructure projects (such as transport networks
and associated termini);

• Sites dedicated to the provision of core public services (such as hospitals
and educational establishments);

• Regional and National sports stadia;

• Retail and Industrial developments;

• New residential dwellings (including large residential development

sites);
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• New built development (except residential, agricultural or forestry) sites

of any type;

• A new building within an existing site or an extension to an existing

building that exceeds 0.10 Ha in area;

• The expansion or reduction of an existing [built environment] site that

involves a change of topographic area where the total area changed is

greater than 0.25 Hectares;

• A new built agricultural site greater than 0.25 Hectares.

Throughout the development of the ‘minimum change’ method a range of
approaches were developed and tested manually against both available aerial
imagery and planning applications to ensure validity. Therefore, the final
methodology summarised briefly below [outlined in full in Appendix A]
represents the culmination of an iterative process.

Stage 1: All Recorded Change

The first step in change identification utilised the fact that the unique ID
of any new topographical object recorded in the data at time T would not
exist in the equivalent data for time T−1. Such would not imply that the new
polygon necessarily constituted a genuine change, but provided the basis for
subsequent stages.

Stage 2: Identification of Prestige Buildings
and New Residential Features

Based upon their prominence within the revision policy, both buildings
associated with a Prestige site and all new residential developments
were prioritised (Ordnance Survey, 2020). Relevant sites were identified
where they contained a new building associated with one of 26 relevant
AddressBasePremium® classification codes (which only existed in the data after
time T−1). Subsequently all new built infrastructure (categorised as ‘manmade’
or ‘multiple’) contained within the development site was incorporated as
change data [figure 3.7].

69



Figure 3.7: Data Source: Ordnance Survey (2018b)
Indicative change data. Land which has transitioned from ‘green
space’ to new residential building is denoted by grey polygons.
Land which has transitioned from ‘green space’ to any ‘manmade’
or ‘multiple’ form are shown in blue. Land which has transitioned
from ‘green space’ to associated non-residential buildings are red.
The dotted line reflects the indicative boundary of the site upon
which development occurred.

Stage 3: Retail and Industrial Development

In regards to both retail and industrial development included within the
terms of Category A change, a broadly similar approach to stage 2 was applied.

Initially therefore, commercial retail or industrial sites were identified as
any polygon which contained a new building (as identified in stage 1)
where AddressBase Premium® recorded it as such. Thereafter, all other new
‘manamde’ features within the site were joined as constituents of change data
[figure 3.8].
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Figure 3.8: Data Source: Ordnance Survey (2018b)
Indicative industrial change data. Land which has transitioned
from ‘green space’ to new industrial building is denoted by grey
polygons. Land which has transitioned from ‘green space’ to any
‘manmade’ form is shown in blue. Land which has transitioned
from ‘green space’ to associated non-industrial building is red. The
dotted line reflects the indicative boundary of the site upon which
development occurred.

Stage 4: Agricultural Developments

Within the revision policy, both new and expanded built features associated
with agricultural sites must be of 0.25 Ha or greater in order to be classified
as Category A and thus identified within 6 months of occurrence. Due to
the terms of the outlined condition it was possible to identify both new and
extended features within a single stage.

Consequently, such sites were distinguished within the data using an adapted
approach. Where previously the initial stage of identification was based upon
relevant AddressBase Premium® data being contained within a new building,
for agricultural sites it included association with any recorded ‘manmade’
surface.

All new features categorised as ‘manmade’ or ‘multiple’ contained within the
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indicative agricultural site were merged to form a single polygon. The relative
area for this site was calculated and if equal to or in excess of 2500m2, its
constituent elements were included within the relevant change data [figure
3.9].

Figure 3.9: Data Source: Ordnance Survey (2018b)
Indicative agricultural change data. Land which has transitioned
from ‘green space’ to new industrial building is denoted by grey
polygons. Land which has transitioned from ‘green space’ to any
‘manmade’ form is shown in blue. Land which has transitioned
from ‘green space’ to associated non-industrial building is red.

Stage 5: Developmental Preparation

Although excluded from the government’s land use change methodology
(DCLG, 2015a), OS categorise land which is in the process of undergoing
development using the ‘unclassified’ designation (Ordnance Survey, 2017).
Consequently, it is feasible to identify land at the earliest stages of development
and include such as a form of change. This encompasses both the occurrence
of development upon designated ‘natural’ and existing built forms [figures
3.10 and 3.11].
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Figure 3.10: Data Source: Ordnance
Survey (2018b)
Site in time T−1 consisting of both
‘natural’ and ‘non-natural’ features.

Figure 3.11: Data Source: Ordnance
Survey (2018b)
Site at time T , in which it has
undergone change to ‘unclassified’.

As the ID of an ‘unclassified’ polygon remained the same as the largest feature
it had replaced, such data was not identified as an element of the ‘provisional
change’ data set produced in stage 1. Therefore, the identification of land
subject to development between time intervals can be understood to reflect the
spatial intersection of two polygons, which were classified as one form at time
T−1, but had become ‘unclassified’ in time T .

Whilst not explicitly outlined, it is assumed the primary reason for the
omission of changes to ‘unclassified’ form was based upon the fact that the
development may subsequently restore elements consistent with the previous
‘make’. Thus not necessarily reflecting a genuine change of land use. However,
with the research focus upon understanding the impact of development it was
deemed imperative to include such.

Consequently, there is the potential to over-estimate the area of land lost
permanently to development. However evidence suggests green space land
directly associated with developments is often perceived as inaccessible
(Wendel et al., 2012). Whilst additionally, it offers the only means by which
to identify large scale developments, which may occur over many years, at
a point more consistent with their approval. Furthermore, with an identical
methodology applied to the entire data set the inclusion of such should not be
deemed to compromise derived inferences.

Stage 6: Combined Change

Having created four distinct change data sets (stages 2 to 5), the individual
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elements were joined into a single multi-polygon file reflecting the minimum
change which had occurred in time T . The area to have undergone transition
from green space to indicative developed form, therefore represented the
spatial intersection between any area identified as ‘natural’ in time T−1 and
the derived change dataset [figure 3.12].

Figure 3.12: Source: Ordnance Survey (2018b) An example of
the total identified area of change from ‘natural’ to indicative
developed form in a single LAA [Coventry] between 2007 and
2008.

Stage 7: Removal of Indicative ‘Brownfield’ Change

Where based solely upon the designation of land as ‘natural’, sites were
included which would be categorised as ‘brownfield’ for the purpose of
planning policy. Therefore, in any circumstance in which the ‘natural’ space
(in time T−1) upon which development occurred contained an AddressBase

Premium® classification code denoting the existence of built infrastructure at
any point prior to time T−1 it was removed from the ‘green space loss’ data
and stored as a separate dataset.

Each geospatial polygon of the derived green space loss data set comprised
pre-change and post-change unique IDs; geometric attributes (such as area
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(m2), shape and location); both pre-change and post-change classification
criteria (‘Make’, ‘Descriptive Group’ and ‘Descriptive Term’); and a time of
change identifier (consisting of quarter and year).

3.4 Primary Green Space Loss Datasets

Throughout the research a number of distinct green space datasets were
utilised. Chapters 4 and 5 are based upon analysis of cumulative green
space loss derived through the ‘minimum change methodology’ [3.3.9] and a
‘construction normalised’ equivalent. Whereas chapter 6 focuses upon green
space loss which occurred within designated ‘Green Belt’; green space loss in
relation to indicative urban boundaries; and ‘brownfield’ loss contained within
urban boundaries.

The primary datasets (utilised in chapters 4 and 5) are detailed in the following
section, but those used in regards to chapter 6 are described in the relevant
section [6.3.3].

3.4.1 Primary Green Space Loss Data

Using the time of change identifier, two distinct univariate time series were
derived, consisting of 12 (inter-annual) (t0, t+1, ..., t+11) and 48 (inter-quarter)
(t0, t+1, ..., t+47) observations respectively. Each represent the aggregate area
of green space loss, which had occurred during each time interval, relating to
the 42 sample authority areas. As such, it could be understood to reflect the
sum of the area (m2) of land which was recorded as as having changed from
green space to an indicative ‘developed’ classification [as defined in section
3.3.9] between any two consecutive time intervals within the research period
and is represented mathematically in equation 3.2.

For a time series Υ, consisting of 0, ...,m observations (where m = 12 for
annual and m = 48 for quarterly data), the area of green space loss at times
t0, ...tn (where n = +11 for annual and n = +47 for quarterly data) is;

GSLt = DΥ ∩GSΥ−1 for Υ = 0, ...,m (3.2)

the area of intersection (∩) between land recorded as ‘developed’ in time Υ

(DΥ) and green space in time Υ− 1 (GSΥ−1).
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Figure 3.13: Data Source: Ordnance Survey (2018b)
An example of an individual polygon reflecting ‘green space loss’
data.

Local Authority Year Quarter Time Recorded Area Green Space
(2007 - GS Loss)

GS Loss
(m2)

Coventry 2007 1 1 43159162.54 38340.18
Coventry 2007 2 2 43120822.36 0.00
Coventry 2007 3 3 43120822.36 10788.75
Coventry 2007 4 4 43110033.61 52098.35
Coventry 2008 1 5 43057935.26 4044.89
Coventry 2008 2 6 43053890.38 15214.89
Coventry 2008 3 7 43038675.49 167.37
Coventry 2008 4 8 43038508.12 249.85
Coventry 2009 1 9 43038258.27 237.75
Coventry 2009 2 10 43038020.52 43.08
Coventry 2009 3 11 43037977.43 77766.21
Coventry 2009 4 12 42960211.23 16590.64

Table 3.4: Example of generated green space loss data relating to Coventry
(2007 - 2009).

In order to account for the availability of relevant land, the data was converted
to reflect the area of green space (m2) which underwent development as a
proportion of the total available area of green space (Ha) at the time in which
the change occurred, hereafter referred to as the ‘green space loss ratio’
[equation 3.3].

For a time series t, consisting of 0, ..., n observations (where n = +11 for
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annual and n = +47 for quarterly data).

GSLRt = GSLt/(GLAt−1/10000) for t = 0, ..., n (3.3)

GSLR should be understood to reflect green space loss as a proportion of the
total available area of green space (m2/Ha), GSL the total area of green space
identified as having undergone change to developed form (m2) and GLA the
total area of green space (m2).

3.4.2 Confounding Variables

Where undertaking research based upon the identification of causal inference
Morrison and Pearce (2000) recommends the need to address the potential
influence of confounding variables. Through relevant literature a variety of
economic, natural, cultural and technological factors were identified (Bürgi
et al., 2005; Hersperger et al., 2018; Morrison and Pearce, 2000; Nuissl and
Siedentop, 2020).

Due to the dual identification of change through both OS MasterMap®

and AddressBase Premium® built environment (Ordnance Survey, 2017,
2018a) classification criteria the effect of natural drivers of land change was
considered unlikely. Natural induced land change (such as landslides (Bürgi
et al., 2005)) would neither be reflected as change under the topographic

layer revision policy adopted for this research (Ordnance Survey, 2020) nor
associated with a new ABP postcode record (both of which were required for
change to be verified).

Similarly, the identification method was considered a reliable control for
potential technological drivers of change, which generally relate to conversion
between different agricultural uses (Corbelle-Rico et al., 2015).

Whilst research has recently evidenced a cultural shift towards a preference
for less dense accommodation across much of Europe (Nuissl and Siedentop,
2020), there is little evidence of a similar effect in the United Kingdom, where
housing preferences have remained similar (Orford and Radcliffe, 2007).
Equally it is contended the regulatory functions of planning policy offer
the means through which to limit the effects of this driver (Baing, 2010)
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and therefore should be considered unlikely to invalidate the inference of
this research. Whilst the effects of neighbourhood interactions, such as the
distance between residential and industrial land uses (Nuissl and Siedentop,
2020), were considered unlikely to have altered during the period.

The most significant inferential threat was associated with the effect of
economic circumstance upon overall rates of development. The research
period coincided with the global economic crisis of 2008 to 2009 (Tatliyer,
2017), which was identified as suppressing both construction (Edmund et al.,
2009) and planning applications (Marrs, 2019). Where research in which
the effects of the recession were similarly considered likely to affect the
inferential outcome a standard approach has been to exclude the period prior
to 2009 (Lane and Hall, 2019). However, in regards to this research within the
context of the planning system, the potential for a lagged effect upon rates of
construction was considered to require an alternative measure of control.

Therefore, to control for the potential for the data to merely reflect trends
attributable to the economic climate rather than the effects of the policy
intervention, authority level construction statistics were obtained, in the form
of governmental records of the number of residential building projects started
within each quarter (MHCLG, 2020c). Data was suitably lagged by 2 quarters
to account for the time frame associated with the Ordnance Survey revision
policy (Ordnance Survey, 2020).

Local Authority Year Quarter Time Total Building Lagged Year Lagged Quarter Lagged Time
Coventry 2006 3 -1 350 2007 1 1
Coventry 2006 4 0 180 2007 2 2
Coventry 2007 1 1 310 2007 3 3
Coventry 2007 2 2 280 2007 4 4
Coventry 2007 3 3 330 2008 1 5
Coventry 2007 4 4 150 2008 2 6
Coventry 2008 1 5 60 2008 3 7
Coventry 2008 2 6 40 2008 4 8
Coventry 2008 3 7 100 2009 1 9
Coventry 2008 4 8 30 2009 2 10
Coventry 2009 1 9 90 2009 3 11
Coventry 2009 2 10 50 2009 4 12

Table 3.5: Example of construction statistics, reflecting the number of
residential building construction sites begun in relevant quarters. The outlined
example reflects data relating to Coventry for the period equating to 2007 to
2009.

An adjusted ‘construction normalised green space loss’ variable was derived
for the quartered data set, reflecting the ‘green space loss ratio’ per 100,000
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developments started [equation 3.4]. This data was also subsequently rescaled
to the annual time series to enable comparable analysis. Consequently, where
there was reduced total development, the area of green space undergoing
transition to developed form would constitute a more significant figure than
the same area at a time where rates of total development were higher.

For a time series t, consisting of 0, ..., n observations and a second time series
θ, consisting of −2,−1, 0, ..., n observations, the ‘green space loss ratio’ per
100,000 developments started at times σ0, ...σn (where n = +47) is;

CWGSσ = GSLRt/(CONθ−2/100000) for t = 0, ..., n

and θ = −2, ..., n (3.4)

where CWGS represents the construction normalised ‘green space loss ratio’,
GSLR ‘green space loss ratio’ and CON the total recorded development
projects started.

For example, in regards to the years 2007 and 2008 ‘green space loss

ratio’ was recorded as 2.07m2/Ha and 1.79m2/Ha respectively. However,
when normalised by total development, comparable data was recorded
as 6.96m2/Ha (per 100k development projects) in regards to 2007 and a
higher figure of 9.86 m2/Ha (per 100k development projects) in regards to 2008.

Said data was deemed to offer a suitable proxy, which accounted for
both contemporaneous, direct economic impacts (Brauers et al., 2013)
and consequential effects attributable to rates of applications for planning
permission. In addition, the outlined data was available at a spatial
scale consistent with the research samples, which was not the case with
alternative control variables, such as weighted Gross Domestic Product
data (Murphy, 2009), which could have been incorporated into relevant models.

However, it should be understood that as relevant data only account for
residential developments it may underestimate the extent of change occurring at
each interval. Despite this caveat, rates of residential development were highly
reflective of the recession and recovery (Department for Business, Innovation
and Skills, 2013), intimating they can be considered to offer a stable estimation
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of the economic profile (Lichfields, 2016) and represented the most viable data
set through which to control (Olga and Antonios, 2019).

3.4.3 Change Point Detection

The methodological approach to change point detection undertaken in chapter
4 is summarised below. For a more detailed description refer to section 4.2.6.

In regards to the research time series (for example t0, ..., t+47), change points
reflect any quarter (τ ) in which the statistical properties associated with
t0, ..., tτ are structurally different from tτ+1, ..., t+47.

The primary Change Point Detection method, assuming a single point of
change, applies a Maximum log likelihood ratio technique (Killick and Eckley,
2014). The change point is identified as the point in time at which the difference
between the test statistic (e.g mean, variance or both) relating to two segmented
time periods is least similar to the same statistic derived from the entire period
[equation 3.5] and exceeds a defined threshold (referred to as a penalty).

τ̂ = argmax{log(x1:τ ) + log(xτ+1:n)− log(x1:n)} > λ (3.5)

Where τ̂ represents the time interval in the data estimated as the most likely
change point, τ the time interval tested as the change point, x green space loss

ratio data, n the final time interval and λ the penalty value.

As a means through which to enhance the strength of this research (Messer,
2019), the test statistic was defined as the mean and variance of the area of
‘green space loss’. It was not assumed that a single change point would occur
within the data, therefore an adapted approach allowing for multiple structural
changes was adopted (Haynes et al., 2017).

An identical process was followed in regards to each data set (cumulative
and subset (‘urban’/‘rural’) ‘green space loss’ and ‘construction normalised

green space loss’). Initially, a range of logical penalty values were tested using
in-built Pruned Extract Linear Time [PELT] and Change Points for a Range of

PenaltieS [CROPS] algorithms (Killick et al., 2012). Said algorithms calculated
the negative log-likelihoods associated with each possible segmentation of
the data. Subsequently, the derived cpt value was used to identify the optimal
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number of change points and relevant penalty value (Haynes et al., 2017),
which was applied to the programme as a manual value.

3.4.4 Interrupted Time Series Analysis

To derive a quantifiable policy intervention effect, an Interrupted Time Series

analysis approach was adopted. In light of the fact that the research was
focussed upon the retrospective analysis of the effect of a policy, for which
it was reliant upon secondary data and access to a viable control group was
infeasible, the ITS method was considered to offer the most robust inferential
scope (Wagner et al., 2002). In addition to which it has widely been utilised in
policy research across a variety of sectors [section 2.7.2] and is advocated
as addressing matters of complexity through the use of a mathematically
synthesised counterfactual (HM Treasury, 2020b).

The criteria upon which research is deemed suitable for ITS analysis is based
upon three core elements, encompassing the ability to accurately define pre-

and post-policy periods, the identification of an interpretable outcome and the
availability of suitable data (Bernal et al., 2017). Each of which can be met for
this research.

Whilst there is no minimum observation number required for ITS analysis,
with the uniform distribution of data around the intervention and the absence
of confounding characteristics (such as seasonality and autocorrelation)
highlighted as more significant (Bernal et al., 2017), there is evidence to
suggest that a larger number of observations would improve the validity of
regression based inferences (Zhang et al., 2011; Jandoc et al., 2015).

It was primarily for this reason all data was divided into 48 inter-quarter
observations, with relevant pre-analytical tests undertaken in regards to
seasonality and autocorrelation.

To support the derived inferences two distinct approaches to ITS analysis
were adopted. The first replicated existing standard methods through the
use of segmented regression with an adaptive generalised least squares

regression (Lane and Hall, 2019). Whilst the second applied a forecast model
technique (Linden, 2018), in which a dynamic linear model was utilised as an
alternative to more common ARIMA or Holt-Winters models, in regards to
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which insufficient observations existed to enable implementation (Chen et al.,
2008; Jandoc et al., 2015).

The ITS methods applied throughout this research can be considered to consist
of three stages, the first of which establishes relevant pre-policy, post-policy

and transitional periods. Subsequently, appropriate statistical models were fit
to the data, with a synthesised ‘counterfactual’ extrapolated for the post-policy

period based upon the supposition that prior trends would continue unaffected
without the policy change. Finally, intervention effects were calculated using
two different methods, reflecting both standard, existing approaches and an
adapted alternative.

The segmentation of data was consistent in regards to the methods applied
in both chapters 5 and 6 and is discussed below. Whilst the principles
underpinning further stages are summarised with detail provided in relevant
sections.

Temporal Segmentation

As outlined, a core consideration in regards to the ITS approach related to the
differentiation of accurate pre- and post-policy intervention periods (Bernal
et al., 2017). Whilst the revised policy framework could be identified as
having been introduced in two stages, between November 2011 (Localism
Act, 2011) and March 2012 (MHCLG, 2012), a significantly lagged effect
was anticipated (Crane and Weber, 2015). In circumstance in which such
lagged effects are expected researchers have traditionally adopted one of two
approaches, either modelling the transitional period separately (Wagner et al.,
2002; Lane and Hall, 2019) or removing it from analysis (Penfold and Zhang,
2013; Hopewell et al., 2012).

Accordingly, the research must be understood within the context of the
relevant administrative and physical time frames associated with the planning
process, from application to the commencement of construction on site. Allied
to which, additional consideration should be given to the potential impact
of the data revision policy operated by Ordnance Survey (Ordnance Survey,
2020).
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The maximum anticipated time delay between the implementation of the
policy and evidence of effects that could be associated with it, is based upon
the total time between application and the start of construction, with the
addition of the maximum delay between such and it being recorded in the data
by Ordnance Survey [equation 3.6].

Whereas, the minimum assumes that approvals made after the date of
implementation were dependent upon the revised policy and accounts only for
the time between the approval of an application and beginning of construction,
allied to the same maximum data update time [equation 3.7].

max(lag) = τ p1 + τ p2 +max(τ os (3.6)

min(lag) = τ p2 +max(τ os) (3.7)

Where τ p1 represents the time between the submission of a planning
application and approval (by the Local Planning Authority), τ p2 the
time between approval and the start of construction on site, and max(τ os)

is the maximum time in which Ordnance Survey would record the development.

Time Frames

In its most simple form the time between the submission of a planning
application and a decision being made should be between a minimum of
eight and maximum of sixteen weeks, dependent upon circumstances (DCLG,
2015b). However, in regards to more complex cases and where the decision
is subject to an appeal to the Planning Inspectorate this time frame can
increase to a total of around twenty-two weeks (DCLG, 2015b). Governmental
data suggests that between 58% of major and 81% of other developments
were approved within relevant statutory time frames during the first year
under the provisions of the NPPF [2012/2013](MHCLG, 2020b). Whilst,
based upon a sample of 12 planning authorities [including 1 used within
this research] Ball et al. (2009) reported a mean average of 8 weeks, with
an associated maximum of 14 weeks. Therefore, it was deemed logical
to assume a conservative 3 month time frame between application and approval.

Determined by the type, the maximum period after approval in which

83



construction must begin was limited to five years prior to 2009 and three years
thereafter (MHCLG, 2020d), with limited exceptions. Therefore, an absolute
maximum delay between approval and construction for the period of interest
to the ITS analysis was three years. In practice however, the time frame
between approval and the commencement of ground works was evidenced
as being substantially lower (Shelter, 2019). Based upon the 1.7 to 3.2 year
time frame reported by the Callcutt Review (Callcutt et al., 2007), 2.6 year
average identified by the Local Government Association and between 10
and 18 months, dependent upon site scale reported by Lichfields (2016), a
2019 study by Shelter (2019) applied a two-year estimate to the lag between
planning approval and the completion of construction on a site. From the
outlined estimates a time frame of 12 months was adopted for the purpose of
subsequent sensitivity testing.

As outlined within the published revision policy, Ordnance Survey endeavour
to ensure that the types of change incorporated into the ‘green space loss’
dataset would be recorded within no more than six months of their occurrence
(Ordnance Survey, 2020).

Based upon the above a maximum lag of 21 months was estimated, whilst
the minimum was 18. Within the context of the temporal range of the data,
these estimated lags were considered to equate to the years 2012 and 2013,
which would therefore be recorded as a transitional phase and removed from
the respective modelling. However, sensitivity testing was conducted during
the modelling stage in order to assess the validity of this supposition.

Defined Analytical Segments

Initially, the pre-policy period was defined as the 20 observations between
quarter 1 of 2007 and quarter 4 of 2011, with the respective post-policy period
equating to the 20 observations relating to quarter 1 of 2014 to quarter 4 of
2018. This approach assumed that the transitional phase [between 2012 and
2013] would primarily continue to reflect the active policy framework prior to
2011, with any intervention effect not being evident until at least 2014 [figure
3.14].

Whilst not included within modelling of the pre-policy period, the transitional
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period is accounted for within analysis in order to maintain sufficient
observations with which to ensure the validity of such (Lane and Hall, 2019).
By adopting this approach to segmentation it also ensured an equal distribution
of observations within both the pre- and post-policy periods, in adherence to
recommended procedure (Bernal et al., 2017).
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Figure 3.14: Representation of data segmentation applied in regards to all
ITS analyses.

Segmented Regression

In chapter 5 a segmented regression approach was undertaken, representing
the standard methodology, in which a single generalized linear model was
applied to the complete time series (Kontopantelis et al., 2015), utilising
indicative variables to segment the differing periods during analysis (Huitema
and Mckean, 2000). Prior to the identification of the appropriate approach to
modelling the data, relevant tests were undertaken in regards to seasonality

and autocorrelation using both the seastest package in R (Ollech, 2019) and
Durbin-Watson test (Tillman, 1975) respectively.

The intervention effect was subsequently calculated as the difference between
the slopes and intercepts of the models fit to the pre- and post-policy periods
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(Wagner et al., 2002; Beard et al., 2019), including a separate transitional
period (Lane and Hall, 2019) [equation 3.8].

Yt = β0 + β1Tt + β2 + β3 + β4Xt (3.8)

In the above equation (based upon Wagner et al. (2002); Lopez Bernal et al.
(2018); Hudson et al. (2019)), Yt is the estimated intervention effect at quarter
t; β0 constitutes the modelled baseline level (the pre-policy intercept); β1 can
be considered to represent the rate of change in area between each quarter of
the pre-policy period (the pre-policy trend); T denotes the ‘Time’ identifier
(relating to quarters); β2 corresponds to the level change which occurs between
the pre-policy and transitional periods; β3 the level change between the
transitional and post-policy periods; β4 represents the difference between the
rate of change in area in the post-policy period when compared to the pre-policy

equivalent (the change in trend); andX designates the dummy ‘Trend’ variable.
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Figure 3.15: Graphical representation of intervention effects model.

Forecast Modelling

In chapters 5 and 6 an alternative approach to ITS was undertaken, whereby
an appropriate model was separately fit to the pre-policy period, from which
forecast, synthesised counterfactual estimates could be derived in regards to
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the post-policy period (Linden, 2018).

In relevant literature pertaining to the forecast approach the pre-intervention

segment is commonly modelled using either ARIMA or Holt-Winters methods
(Linden, 2018; Bridge et al., 2020). However, in this analysis a dynamic linear

model was utilised as an alternative, primarily as the data did not consist of a
suitable number of observations to meet the recommended minimum required
for ARIMA modelling [cited as 50 or greater] (Chen et al., 2008) and due to
practical advantages over comparable Holt-Winters exponential smoothing
(Roberts, 1982), such as their suitability to modelling short time series and
incorporation of uncertainty (Michel and Makowski, 2013).

This method can be considered a manual replication of the core functions
which underpin the Causalimpact package (Brodersen and Hauser, 2020) used
in (Ramachandra, 2019).

Dynamic Linear Models allow for the regression coefficients to change over
time and are recognised as being useful in analyses of time series derived from
environmental data, where the underlying drivers of events may not exert a
constant influence (Laine, 2020). Crucially, they are capable of modelling
non-stationary data (West, 1995) and account for autocorrelation and cyclical
components, whilst being applicable to short time series with limited
observations (Fei et al., 2011). Consequently, it was deemed appropriate to
model the 20 observations which constituted the pre-policy period.

Relevant dynamic linear model programming was undertaken within R, using
the dedicated dlm package, which provides a flexible framework suitable
for both simple and complex state space structures (Petris and An, 2010),
including non-gaussian and non-linear data (Petris et al., 2009). The package

includes a specific function through which to estimate unknown model
parameters, based upon maximum likelihood (dlmMLE) (Petris and Petrone,
2011) and the capacity to estimate future values and variance (dlmForecast)
both of which were utilised in this research.

In regards to the Forecast model ITS approach the intervention effect
should be considered to reflect the absolute differences between the
modelled post-policy period and predicted counterfactual values at times
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t+28, t+29, ...t+47 (Mohr, 1995; Wagner et al., 2002; Shin, 2017; Linden, 2018).

Due to the uncertainty built into the synthesised counterfactual by the
model, derived values are reported as an estimated ‘minimum intervention
effect’, based upon the difference between relevant modelled values and the
corresponding upper or lower threshold of the 95% prediction interval [figure
3.16] (Lin and Liu, 2005).
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Figure 3.16: Graphical representation of estimated minimum intervention
effect using annual data.
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CHAPTER4
Illusions of Space

Analysing Temporal Patterns in Green Space

“The village of Shottery, a hamlet of Stratford, is, altogether,

much the same as it must have been at that sunny time in the

Poet’s life when, after the exit of the school-boy , he trod the

stage of the world as the lover. And the fields through which the

footpath leads, the hedges, the stiles, and the general aspect of

the place, are perhaps now, much the same as they were three

centuries ago.”

Remarks on Shakespeare
Smith (1877)

To some extent the rural landscape around Shottery to which Smith (1877)

alluded, had remained largely untouched in the succeeding hundred years.
Whilst the expansion of the village through the Nineteenth and Twentieth
Centuries had consumed much of the undeveloped land to the North and East
(Stratford-on-Avon District Council, 1992), the extensive green pasture land to
the West, which once constituted part of the Hewlands Farm estate had been
retained in much its original form recorded in 1543.

Despite pressure to deliver additional land for the development of
accommodation, the submission of plans to convert the patchwork of fields to
large-scale housing (Boyer, 2009) was rejected by Stratford-on-Avon Council

in 2011 (Stratford-on-Avon Council, 2011). In arriving at this decision it was
adjudged that the damage to the rural aesthetic of the village and in particular
to the estate associated with the Grade 1 listed Anne Hathaway’s cottage, was
substantial (Stratford-on-Avon Council, 2011). As such, the proposal was
deemed to contravene the Local Authority’s District Plan (1996 - 2011).
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The subsequent appeal, submitted by the applicant in 2012, would become the
subject of one of the most important test cases for the planning framework
introduced by the Coalition Government earlier in the year (Geoghegan, 2013)
and was appropriated as a symbol of the existential, environmental threat it
posed (CPRE, 2013).

The Secretary of State For Communities and Local Government overturned the
decision, allowing 800 homes and associated infrastructure to replace the 54.81
Hectares of agricultural land (DCLG, 2012b) against the will of the Local
Authority. Citing the failure of Stratford-on-Avon Council to identify adequate
land to meet evidentially valid housing need as a material consideration
(DCLG, 2012b), the case reportedly set precedence for interpretation of the
provisions within the National Planning Policy Framework (Geoghegan, 2013).

The loss of green space to urban development is commonly portrayed as
relating to a variety of driving forces (Hersperger et al., 2018). However, the
role of policy in the protection of natural land remains relatively under-explored
(Bürgi et al., 2005). Examples of the chronology associated with the Shottery

site can therefore be deemed indicative of the underlying relationship between
policy and land.

4.1 Introduction

Through legislative and policy interventions, national governments are
assumed to play a significant role in the shaping of land cover and land use
(Garcia-Martin et al., 2020). With the regulation of land loss representing one
of the motivating factors behind the evolution of planning policy (Cullingworth
and Nadin, 2003; Nuissl and Siedentop, 2020). As the retention of natural
and semi-natural surfaces has become politically recognised as integral to
both global and local environmental commitments (Bulkeley et al., 2011), the
development of a conceptual model relating to the role of policy has come to
constitute a research imperative (Hersperger et al., 2018; Morrison and Pearce,
2000).

Similarly to other policy fields, it is contended the determination of the
relationship between policy interventions and outcomes requires robust
quantitative analyses (Fischer and Miller, 2017; Plieninger et al., 2016)
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founded upon ex post facto impact evaluation of substantive examples (Shahab
et al., 2019). However, research describing this relationship remains limited,
largely associated with a methodological discord between policy and land
science scholars, in regards to the extent to which quantitative data can
encapsulate the complexities inherent to the planning system (Hersperger
et al., 2018).

Whilst research has evolved around single types of land use (commonly
‘natural’ land (Bengston et al., 2004; Dallimer et al., 2011; Kasraian et al.,
2019; Mu et al., 2016)) as functional indicators of policy effects (Hersperger
et al., 2018; Morrison and Pearce, 2000), methods have generally reflected the
occurrence of change between two distinct points with lengthy time intervals
(Kasraian et al., 2019; Mu et al., 2016) or patterns of development throughout
a post policy period (Dallimer et al., 2011). To date, no studies have sought to
investigate whether green space data covering a continuous period between
two distinct policy agendas can be used to discern a point after which an effect
appears evident. The establishment of such can be considered a core element
in the advancement of the conceptual model as it can offer a more nuanced
insight in regards to the process underlying change (Awe et al., 2020).

The outlined research gap can largely be associated with three issues inherent
to data sources. Although taken at regular intervals, developing a consistent
temporal range through satellite imagery can be restricted where land cover is
obscured by climatic conditions (such as cloud shadow or solar haze) (Asner,
2001; Kirui et al., 2013). It is further complicated by a dependence upon large
amounts of data, requiring significant processing power. Consequently, it is
generally impractical to acquire data relating to a continuous period (Kasraian
et al., 2019). This can be considered to have influenced analyses of secondary
data, in which assumptions related to the extended time frames between a
policy instrument being introduced and evidence of its effect are subject to
similar pre-post methods (Ganser and Williams, 2007).

Furthermore, the identification of land change is highly influenced by both
the resolution of data and homogeneity of land surface, which influence
the contrast between different land types (Horning and DuBroff, 2004).
For example, if an area of verdant forest is cleared and replaced with
an artificial concrete surface, the contrast between the original green
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pixels and subsequent grey is easily discerned (Erener and Düzgün, 2009).
However, the conversion of an area of allotment to pre-development
construction site would be less simply identified as land use change.
Thus, change based upon remote sensed data primarily equates to large
area conversion between ‘natural’ land and completed built development
(Turner et al., 2015), which is subject to significant time lags (Lichfields, 2016).

Finally, there is a need for data to relate to the transition between two policy
approaches within the context of a planning system, which is shown to be
highly responsive to policy change (Morrison and Pearce, 2000; Shahab et al.,
2019). Where Kasraian et al. (2019) evidenced a zoning system to be subject
to prolonged legacy effects, in which previous policy approaches continued
to influence patterns of development, Dallimer et al. (2011) reported the
discretionary system operated in England to be responsive to policy.

In light of both the availability of uninterrupted, alternative data sources
(Plieninger et al., 2016) and anticipated suitability of the example (Dallimer
et al., 2011), the research adopted a case study derived from contemporary
policy reform within England. Under the Conservative led coalition
government of 2010 to 2015, fundamental reforms of national planning policy
were introduced in the form of the Localism Act 2011 and National Planning

Policy Framework (Davoudi, 2011). It was contended that considerable
provisions which had previously directed development away from green space
were weakened (Sibley-Esposito, 2014). As a result of which it was suggested
the loss of undeveloped land would increase (Gosden, 2014). However, despite
a strong a priori basis for the proposed effect, negligible research had been
undertaken to empirically investigate the validity of such (CPRE, 2018).

4.1.1 Primary Research Aim

Accordingly, this research aimed to investigate the extent to which novel data
and analytical methods could be used to discern impacts upon land associable
with policy change. It aimed to develop the first quantitative evidence of the
effects associated with the transition between two distinct policy frameworks
based upon a continuous time period. Through which it could be used to
augment existing knowledge pertaining to the dynamic relationship between
planning policy as a regulatory agent and land use change (Hersperger et al.,
2018). By undertaking analysis which related to the period subsequent to that
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which informed Dallimer et al. (2011) it builds towards a coherent picture of
continuous land use change under different types of policy within the context
of the discretionary system operated in the United Kingdom.

Despite significant media scrutiny (Gosden, 2014; Watts, 2017), the extant
debate around the developmental threat to green space associated with
Localism Act 2011 and National Planning Policy Framework (2012) has not
been supplemented by formal statistical analysis and offers a germane case
study.

It is therefore the primary aim of this research to address the outlined issue
through investigation of the area of green space identified as being subject
to development across a consistent period accounting for the previous and
revised policy frameworks.

In seeking to do so, the following research question is explored to test the
hypothesis that:

the area of green space land which underwent development

in the period after the implementation of the revised policy

framework was greater than that which occurred in the

period prior.

Research Question 1: Has the area of green space which was subject to
development evidenced alteration in rates which could be associated with the
adoption of the Localism Act 2011 and National Planning Policy Framework

(2012)?

4.1.2 Contribution

Through the novel application of a change point detection method to quarterly
land change data this research identified a time period after which the rate of
development on green space land underwent a structural shift, based upon the
example of the Localism Act 2011 and National Planning Policy Framework.
In so doing it can be considered to both corroborate reported concerns related
to the revised framework (Sibley-Esposito, 2014) and offers a data-driven
methodology through which to associate land change with national planning
policy.
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Consequently, this research can be considered to address the need for
alternative data sources to be utilised in regards to analysis of underlying
drivers (Plieninger et al., 2016) and applied a robust method which can
advance understanding of the conceptual model relating to the role of national
policy as a regulator of land use (Hersperger et al., 2018; Morrison and Pearce,
2000; Shahab et al., 2019).

It represents the first analysis of the impact attributable to the Localism Act

2011 and National Planning Policy Framework, enhancing the ongoing debate
(CPRE, 2018; Gosden, 2014; Sibley-Esposito, 2014). Whilst, to the researchers
knowledge being the only use of change point detection in relation to planning
policy and enhancing its limited prior application within the context of policy
more generally (Friede et al., 2006). Thus, offering an example of the methods
potential to discern a policy impact based upon an indicative variable.

4.1.3 Chapter Structure

The sample of Local Authority Areas, which underpin the research is detailed
in section 4.2.1. After which both the temporal range [4.2.2] and dependent
variables [4.2.3 and 4.2.4] are described. Both initial exploratory analysis
[4.2.5] and change point detection [4.2.6] methodologies are outlined. Results
are presented in regards to each approach in section 4.3 and a discussion
is examined in section 4.4. Finally, conclusions are drawn around the
implications of the research [4.5].

4.2 Methods

This chapter consists of two cognate methodological approaches, the first of
which seeks to apply techniques pursuant to exploratory analysis intended to
inform subsequent analytical methods (McCue, 2014). The second, reflects
the application of a change point detection method as a means through which
to identify the existence of a temporal event after which the data profiles
diverged (Killick et al., 2012), previously established in regards to land change
in Ramachandra (2019).
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Figure 4.1: Outline structure of methodological approach.
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4.2.1 Sample

Consistent with the previously outlined methodology, the research undertaken
in this analytical chapter is derived from the complete sample of 42 Local
Authority areas identified in section 3.3. Said sample comprises an equal
distribution of 21 urban and 21 rural authorities (figure 4.2), obtained from a
maximum variation sampling technique [refer to 3.3].

Figure 4.2: Source: Ordnance Survey (2018b)
Distribution of sample Local Authority Area, with ‘rural’ LAAs
identified in blue and ‘urban’ identified in red.

1 Babergh 15 Forest of Dean 29 Portsmouth
2 Barrow-in-Furness 16 Gedling 30 Redcar and Cleveland
3 Birmingham 17 Harlow 31 Rossendale
4 Blaby 18 Hart 32 Sandwell
5 Boston 19 Hastings 33 Selby
6 Brentwood 20 Herefordshire, County of 34 South Bucks
7 Bristol, City of 21 Kingston upon Hull, City of 35 South Gloucestershire
8 Chiltern 22 Leeds 36 South Kesteven
9 Cornwall 23 North Tyneside 37 South Northamptonshire
10 County Durham 24 North Warwickshire 38 Taunton Deane
11 Coventry 25 Norwich 39 Tendring
12 Doncaster 26 Oldham 40 Tower Hamlets
13 East Staffordshire 27 Pendle 41 Warrington
14 Eden 28 Plymouth 42 Wyre

Table 4.1: Reference Table: Local Authority Area samples
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Based upon the identification of green space as any land polygon classified as
‘natural’ by OS (Barbosa et al., 2007; Davies et al., 2008), a cumulative area
of 1,658,460 Ha was recorded across the 42 sample authority areas in 2007,
representing the baseline in regards to which subsequent data is framed.

Therefore, within the context of the data, in 2007 green space could be
considered to constitute 82.85% of the total area (2,001,792 Ha) [including
bodies of water]. This compares to the National scale, where the total green
space area was recorded as around 90% in both 2005 (Office of the Deputy
Prime Minister, 2006) and 2011 (Watson and Albon, 2011).

However, significant differences were evident in relation to each of the
authority areas, with both the smallest area and proportion of green space
relating to Tower Hamlets, where just 101.46 Ha of green space comprised
5.13% of the total Local Authority Area. Whilst the largest area of green space
was recorded in regards to Cornwall, which contained 277,254.40 Ha, the area
in which green space accounted for the highest proportion of total area was
Eden, at 95.83%.

Clear distinctions can be drawn between the profiles of ‘rural’ and ‘urban’
LAAs. The 21 authorities which can be broadly categorised as ‘rural’
comprised a total area of 1,656,565 Ha, of which 1,447,918 Ha (87.40%) was
recorded as green space. Respective means for the area of green space for
each authority and its proportional equivalent, were reported as 68,948.47 Ha
and 84.31% [table 4.2].

For the ‘urban’ comparators, the total area of 345,227.4 Ha, contained
210,541.8 Ha (60.99%) of green space. Both the mean area of green space
and percentage of total area, per authority were significantly smaller than the
‘rural’, at 10,025.8 Ha and 46.41% [table 4.2].

Urban Rural
Total Area
(Ha) 345,227.40 1,656,565.00

Area of Green Space
(Ha) 210,541.80 [60.99%] 1,447,918.00 [87.40%]

Mean Area Green Space
per LAA (Ha) 10,025.80 [46.41%] 68,948.47 [84.31%]

Table 4.2: Summary of sample Local Authority Area green space profiles.
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4.2.2 Temporal Range

Throughout this section of research all data relates to a continuous period
between the start of January 2007 and end of December 2018. Therefore,
consisting of 4 years (2007 - 2010) or 19 complete quarters (Q1 2007 - Q3
2011) prior to the commencement of the first relevant legislative provisions
(Localism Act 2011. [s.240]) in November 2011; 2 years (2011 and 2012) or 2
quarters (Q4 2011 and Q1 2012) during which relevant provisions came into
force; and 6 years (2013 - 2018) or 27 quarters (Q2 2012 to Q4 2018) after
which both were in operation.

4.2.3 ‘Green Space Loss’

In regards to both analytical methods utilised within this research, ‘green

space loss ratio’ data was adopted as the primary green space loss metric.

Therefore, data represent two univariate time series, reflecting separately the
cumulative area of green space on which data indicated development had
occurred (as a proportion of the total available area of green space at said time)
per annum and per quarter. Accordingly they can both be understood to reflect
the annual or quarterly sum derived from the spatial intersection between
parcels of land which were recorded as green space in one time (t− 1) and the
succeeding ‘developed’ form in time (t) (where t = 0, ...,+11 for annual data
and t = 0, ...,+47 for quarterly data).

Figure 4.3: Data Source: Ordnance Survey (2018b)
An example of an individual polygon reflecting ‘green space loss’
data.
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For example, t0 in the quarterly data represents the cumulative area of
green space from quarter 1 of 2007, on which either a building and relevant
infrastructure or preparatory site development was recorded as having occurred
in quarter 2 of 2007.

Data was retained as an annual variable for the purpose of initial exploratory
analysis, as a way to adhere to the temporal ranges applied in commensurate
research (primarily (Dallimer et al., 2011)). However, in order to adhere to
relevant minimum recommendations in regards to temporal analyses (Jandoc
et al., 2015; Jebb et al., 2015; Zhang et al., 2011) the quartered subset was
adopted for change point detection.

4.2.4 Confounding Variables

A full description of the rationale behind the adoption of confounding variables
can be found in section 3.4.2.

To mitigate against the potential confounding influence of economic drivers
of land change (Morrison and Pearce, 2000), particularly associated with
the effects of the global financial crisis and subsequent recession upon rates
of construction (Tatliyer, 2017), ‘construction normalised green space loss’
equivalents were also analysed.

Said data can be understood as the ‘green space loss ratio’ (m2/Ha) per 100,000
newly built houses within the same time period. Consistent with ‘green

space loss ratio’ data, the ‘construction normalised’ equivalents comprise
two univariate time series of 12 and 48 observations, representing annual and
quarterly loss respectively.

4.2.5 Exploratory Data Analysis

As an initial stage of analysis, a variety of descriptive, summary statistics were
calculated in conjunction with visual inspection of a simple plot based upon
the annual ‘green space loss ratio’ data. Relevant data were considered as
two segmented time series, representing a priori defined pre- and post-policy

intervention periods, simply partitioned around the year 2012, during which
the policy framework changed. Thus replicating the standard approach to
segmentation (Dallimer et al., 2011; Ganser and Williams, 2007; Mu et al.,
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2016).

Accordingly, the first segment [pre-policy] refers to the inter-annual changes
between 2007 and 2011, whilst the second [post-policy] encompasses 2012
through to 2018. It should be noted whilst a revised NPPF was published in
July 2018 it was not considered likely to impact upon the data used in this
research due to the 6 month delay in the Ordnance Survey revision policy
(Ordnance Survey, 2009).

This preliminary approach is deemed fundamental to subsequent analyses
(McCue, 2014), establishing a core understanding of the data through the
identification of distributions, trends and patterns (Nick, 2007). Accordingly,
analysis includes the most common statistics, with measures of central
tendency (Weisberg and Weisberg, 1992), through arithmetic mean and median
values (Thompson, 2009); measures of dispersion, including ranges, variance
and standard deviation (Fisher and Marshall, 2009); and distributions or
frequencies (Nick, 2007).

4.2.6 Change Point Detection

The methodology outlined within this section relies upon core functions from
the changepoint package in R (Killick and Eckley, 2014).

Change Point Detection refers to methods intended to identify abrupt
variations in time series, which imply the occurrence of some event which has
altered the process generating the data (Aminikhanghahi and Cook, 2017).

A Maximum log likelihood estimation method was adopted, allowing for the
identification of multiple change points based upon both mean and variance
(Killick and Eckley, 2014). Broadly, a change point can be understood to
reflect any quarter in which the sum of the negative log-likelihood of the test
statistic (mean and variance of green space variables) derived from the segment
of data up to and including that point and the succeeding segment exceed a
defined penalty value (which is dependent upon the number of change points)
[equation 4.1].

min
k,τ

{
k+1∑
i=1

[−l(zτi−1:τi)] + λf(k)

}
(4.1)

100



Relating to a number of prospective change points identified as k, with
positions τ = (τ0, τ1, ..., τk+1), where τ0 = t0 and τk+1 = t+47, z reflects the
mean and variance of the dependent green space variable, λ is a fixed penalty
value and f a penalty function.

Relevant penalty values between 1 and 100 were sequentially tested in advance
based upon the Change of Points for a Range of PenaltieS [CROPS] algorithm
(Haynes et al., 2017). As a result of which the optimal number of change
points were identified using in-built diagnostic plot functions (Killick et al.,
2012). A list of all penalty values was also derived, with the maximum value
reflecting that which would produce one change point and the second highest
the maximum at which multiple changes would be detected.

Using the Pruned Extract Linear Time algorithm (Killick et al., 2012) separate
analyses were run for the following time series;

• Full sample ‘Green Space Loss Ratio’

• Rural subset ‘Green Space Loss Ratio’

• Urban subset ‘Green Space Loss Ratio’

• Full sample ‘Construction Normalised Green Space Loss’

• Rural subset ‘Construction Normalised Green Space Loss’

• Urban subset ‘Construction Normalised Green Space Loss’

As an initial element of analysis the PELT algorithm was run with a penalty
set to the optimal value identified in the previous step. Where a single change
point was detected the algorithm was subsequently rerun with the penalty
value set to the maximum at which multiple change points were detected.
Conversely, in instances where multiple change points were detected in the
optimal scenario, the penalty was reset to its maximum value (at which a
single point would be detected).

Derived results accordingly report mean and variance associated with the
optimal change points and compare outcomes from alternative penalty values.
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4.3 Results

4.3.1 Exploratory Data Analysis
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Figure 4.4: Raw green space loss ratio data rendered as bar plot

Year

Total Area Recorded as Green Space
(2007 - Green Space Loss)

(Ha)

Total Area of Green Space

(m2)

‘Green Space Land
Cover Change Ratio’

(m2/Ha)
2007 1658459.64 3430526.33 2.07
2008 1658116.59 2966475.54 1.79
2009 1657819.94 2019838.17 1.22
2010 1657617.95 2243564.77 1.35
2011 1657393.60 2473118.69 1.49
2012 1657146.29 2675914.29 1.61
2013 1656878.69 3342817.55 2.02
2014 1656544.41 7188287.18 4.34
2015 1655825.58 7105202.00 4.29
2016 1655115.06 8178600.44 4.94
2017 1654297.20 9797195.04 5.92
2018 1653317.48 9162822.98 5.54

Table 4.3: Green space loss data. Table reflects the total area of green space
in each year, the total area of green space recorded as having undergone
development and the derived ‘green space loss ratio’ based upon the two
prior columns.

102



Initial interpretation of the graphical representation of the data suggested the
existence of different data profiles within the time series. The evident decline
in the area which underwent development between 2007 and 2009 followed
by the subsequent increase between 2010 and 2013 could be considered to
potentially reflect the influence of economic effects upon the data. Whilst the
existence of five consecutive years in which the area was notably higher than
at any previous point were deemed to substantiate the need for further analysis.

The simple arithmetic average per-annum area of green space loss which
occurred during the pre-policy period (2007 to 2011) was recorded as
1.58m2/Ha, with an associated standard deviation of 0.34. Whereas during
the post-policy comparative period (2012 to 2018) it had more than doubled
(158.50%) to 4.10m2/Ha, in conjunction with a much larger standard deviation
of 1.67.

Relative median values were calculated as 1.49m2/Ha in regards to the
pre-policy period, compared to 4.34m2/Ha following the implementation of
the revised policy framework. The difference between the two periods could
be considered to equate to a 190.81% increase. In regards to each of these
two main summary statistics the post-policy segment evidenced discernible
increases upon the pre-policy equivalents.

Between 2007 and 2011 (pre-policy) the range was just 0.85m2/Ha, derived
from a minimum value of 1.22m2/Ha, which was recorded as the change
which occurred in 2009, and maximum of 2.07m2/Ha, relating to 2007.
Whereas, the equivalent post-policy period saw greater variation, with a range
of 4.31m2/Ha, relating to values of 1.61m2/Ha (2012) and 5.92m2/Ha (2017)
[table 4.4].

103



2007 - 2011 2012 - 2018
Mean
(m2/Ha) 1.58 4.10

Standard Deviation
(m2/Ha) 0.34 1.67

Median
(m2/Ha) 1.49 4.34

Range
(m2/Ha) 0.85 4.31

Table 4.4: Mean, Standard Deviation, Median and Range for full sample
‘green space loss ratio’ data.

In accordance with the assumption that rates of development could be
influenced by economic circumstance it was deemed notable the maximal
value in the pre-policy period occurred in the single year prior to the financial
crisis and the minimum was recorded in 2009. However, across the two
time series it was also identified that the values recorded in regards to five
of the seven intervals during the indicative post-policy period exceeded the
maximum area in the pre-policy segment, from 2014 to 2018 consecutively.

Visualised as violin plots (Hintze and Nelson, 1998) [figure 4.5], the two
periods appear to reflect very different data profiles, with the pre-policy

period loosely resembling a Gamma distribution, whilst the post-policy can
be characterised as minimally bimodal. The slightly bimodal distribution of
the post-policy period may be considered to imply that it incorporates data
related to two distinct variables, supporting the hypothesis that the effects of
planning policy reform may take up to two years to become evident in rates of
development (Shelter, 2019).
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Figure 4.5: Violin plots for the segmented pre and post policy periods.

In relation to the ‘construction normalised’ equivalent data, relevant
summary statistic continued to evidence material differences between the
two originally defined periods. For every 100,000 residential developments
which were undertaken in the post-policy period an average green space area
of 17.98m2/Ha (standard deviation of 5.80) underwent transition to developed
form. This figure represented a 115.23% increase upon the relative value of
8.35m2/Ha (standard deviation of 1.32) recorded in the pre-policy period.

The difference between medians grew to 157.56%, derived from values of
7.66m2/Ha in the pre-policy period and 19.73m2/Ha in the post. Whilst the
respective ranges were recorded as 2.90m2/Ha (pre-policy) and 14.37m2/Ha
(post-policy) [table 4.5].

2007 - 2011 2012 - 2018
Mean
(m2/Ha) 8.35 17.98

Standard Deviation
(m2/Ha) 1.32 5.80

Median
(m2/Ha) 7.66 19.73

Range
(m2/Ha) 2.90 14.37

Table 4.5: Mean, Standard Deviation, Median and Range for full sample
‘construction normalised green space loss’ data.

During the pre-policy period the smallest annual area of green space loss
(per 100k residential developments) occurred in regards to 2007. However,
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contrasting starkly with the raw data, in both 2008 and 2009 the largest two
areas of change were recorded for the first segment. The post-policy period
was again defined by values in excess of the maximum recorded prior to 2012
in every year between 2014 and 2018.
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Figure 4.6: Violin plots for the ‘Construction normalised’ segmented pre
and post policy periods.

The distributions of both the pre- and post-policy periods remained broadly
similar to the raw data [figure 4.6]. This remained suggestive of the two
periods being characterised as having come from different populations and
could be considered to support the potential existence of a structural change
existing within the data.

To investigate further, the pre-policy and post-policy periods were redefined
as 2007 to 2013 and 2014 to 2018 respectively. Means of 1.65m2/Ha (sd of
0.32) and 5.00m2/Ha (sd of 0.72) were recorded based upon the ‘green space

loss ratio’ data. Reflecting an increase in mean of 203.36% and difference in
standard deviation of 0.4. Whilst the median in the pre-policy period (2007 to
2013) was 206.01% lower than the equivalent post-policy value (1.61m2/Ha
and 4.94m2 respectively). Rates of recorded green space loss within the
revised pre-policy period were within 0.85m2/Ha of each other, from 1.22m2

to 2.07m2. This was identical to the original pre-policy period (2007 to 2011),
with the values recorded for 2012 and 2013 residing within the prior range.
However, the range in the revised post-policy period was 1.44m2/Ha, showing
a greater degree of consistency throughout the segment [table 4.6].
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2007 - 2013 2014 - 2018
Mean
(m2/Ha) 1.65 5.00

Standard Deviation
(m2/Ha) 0.32 0.72

Median
(m2/Ha) 1.61 4.94

Range
(m2/Ha) 0.85 1.44

Table 4.6: Mean, Standard Deviation, Median and Range for full sample
‘green space loss ratio’ data. Revised pre and post-policy periods.

Updated means derived for the ‘Construction normalised’ data evidenced a
141.91% increase between the two periods (8.78m2/Ha and 21.232), with
relative standard deviations of 1.30 (pre-policy) and 2.02 (post-policy). The
medians reflected a 118.34% difference between the two periods, based upon
values of 9.66m2/Ha and 21.10m2/Ha. The redefinition of the pre-policy
period resulted in a range of 3.05m2/Ha, derived from a minimum of
6.96m2/Ha and 10.01m2/Ha. In regards to the revised post-policy period the
range of values was recorded as 5.05m2/Ha. This reflected a slight increase
upon the original segment in relation to the pre-policy data, but a significant
decrease where applied to the post-policy. Cumulatively, results obtained from
the revised periods suggested the data could be characterised as reflective of
two periods relating to 2007 to 2013 and 2014 to 2018 [table 4.7].

2007 - 2013 2014 - 2018
Mean
(m2/Ha) 8.78 21.23

Standard Deviation
(m2/Ha) 1.30 2.02

Median
(m2/Ha) 9.66 21.10

Range
(m2/Ha) 3.05 5.05

Table 4.7: Mean, Standard Deviation, Median and Range for full
sample ‘construction normalised green space loss’ data. Revised pre
and post-policy periods.
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Figure 4.7: ‘Green space loss ratio’
violin plots relating to revised pre
(2007-2013) and post (2014 - 2018)
policy periods.
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Figure 4.8: ‘Construction normalised’
violin plots relating to revised pre
(2007-2013) and post (2014 - 2018)
policy periods.

The changes to the distributions between the original and revised policy
periods were interesting [figure 4.7 and 4.8]. Whilst the distribution of the
‘green space loss ratio’ pre-policy data was similar to under the original
segmentation, the post-policy period evidences reduced dispersion. A similar
effect was evidenced in regards to the ‘construction normalised’ equivalent.
However, the pre-policy segment appeared to suggest the existence of two
distinct data profiles. In both instances the data appear to show divergent
structures between the two periods.

Whilst not forming the core of this research, the outlined exploratory results
suggested there were grounds to undertake more detailed analysis of the data
using time series modelling methods, such as change point detection.

4.3.2 Change Point Detection

Based upon methods using both mean and variance, the null hypotheses (that
no change had occurred within the data) were rejected in all instances, as
the likelihood of the existence of a change point exceeded all logical penalty
values.

In relation to the raw ‘green space loss ratio’ data, calculations based upon
mean and variance identified a single likely change point between quarters 3
and 4 of 2013. The maximum log-likelihood ratio statistic was recorded as
82.05, which was derived from means and variance of 0.38 and 0.02 for the
period prior to the identified change point and 1.19 and 0.16 after [table 4.8].
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Q1 2007 - Q3 2013 Q4 2013 - Q4 2018
Mean 0.38 1.19
Variance 0.02 0.16

Table 4.8: Summary of ‘green space loss ratio’ mean and variance relating
to the identified segments identified around the change point, based upon
the optimal penalty value [82.05].

Prior diagnostic tests using the PELT algorithm identified the penalty value for
a single change point as 82.05. Whereas in order to identify multiple changes
the relevant penalty would need to be reduced to 19.75, in which case 3 change
points were identified as quarter 3 of 2013, quarter 4 of 2015 and quarter 2 of
2016.
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Figure 4.9: Change Point Detection: Raw ‘green space loss ratio’. A
single change point was identified as having occurred between quarters 3
and 4 of 2013.

The identified change point was broadly consistent with the existence of a
two-year lag between the approval of a planning application and subsequent
completion of the approved development project (Shelter, 2019) [figure
4.9], which would imply that any effects associated with the revision of the
planning system would not be evident until at least two-years after introduction.
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Additional change point detection methods were separately run in regards to
the 21 ‘urban’ and 21 ‘rural’ Authorities. The indicative ‘rural’ area analysis
could be considered analogous with the overall data, but recorded a single
change point as between quarter 4 of 2013 and quarter 1 of 2014 [table 4.9].
The calculated maximum log-likelihood ratio statistic was 81.57. Relative
means for the period prior to and after the change point were 0.23 and 0.72,
whilst variance was recorded as <0.00 and 0.08 respectively.

Q1 2007 – Q4 2013 Q1 2014 - Q4 2018
Mean 0.23 0.72
Variance < 0.00 0.08

Table 4.9: Rural Subset: Summary of ‘green space loss ratio’ mean and
variance relating to the segments identified around the change point, based
upon the optimal penalty value [81.57].

In contrast the diagnostic plot for the ‘urban’ subset discerned two significant
change points, which were identified as having occurred between quarters 1
and 2 of 2008 and quarters 3 and 4 of 2013. The respective mean and variance
prior to quarter 2 of 2008 were 2.50 and 0.86, whilst between quarter 2 of
2008 and quarter 3 of 2013 both had decreased to 1.05 and 0.11, prior to a
sharp increase from quarter 4 of 2013 where they reached 4.30 and 3.05 [table
4.10]. Interestingly, where the penalty value was increased (from the original
33.43 to 56.52) to ensure the identification of a single change point only, it
was identified as having occurred after quarter 3 of 2013.

Q1 2007 – Q1 2008 Q2 2008 – Q3 2013 Q4 2013 - Q4 2018
Mean 2.50 1.05 4.30
Variance 0.86 0.11 3.05

Table 4.10: Urban Subset: Summary of ‘green space loss ratio’ mean and
variance relating to the segments identified around the change point, based
upon the optimal penalty value [33.44].

As alluded to previously, it can be speculated the initial change point in 2008
may be attributable to a decline in rates of total development associated with the
impacts of the 2008 to 2009 recession upon the construction sector (Edmund
et al., 2009). As such consideration should be given to the extent to which the
subsequent change point may reflect economic recovery rather than reflecting
the altered policy circumstances.
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Figure 4.10: Graphical representation
of Change Point Detection undertaken
in regards to ‘rural’ Authority
samples
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Figure 4.11: Graphical representation
of Change Point Detection undertaken
in regards to ‘urban’ Authority
samples

A single change point between quarters 3 and 4 of 2013 was also identified
in relation to the ‘construction normalised data’, based upon a maximum
log-likelihood ratio of 61.86. The means before and after the change point
were recorded as 8.33 and 20.62, whilst variance went from 8.60 to 33.64

[table 4.11]. Where the penalty value was reduced to 11.13 to allow for the
existence of multiple change points, two were identified between quarters 1
and 2 of 2013 and quarters 2 and 3 of 2014. Notably, neither was within the
indicative pre-policy period [figure 4.12].

Q1 2007 - Q3 2013 Q4 2013 - Q4 2018
Mean 8.33 20.62
Variance 8.60 33.64

Table 4.11: Summary of ‘Construction normalised green space loss’ mean
and variance relating to the identified segments identified around the
change point, based upon the optimal penalty value [61.86].

Significantly, the outlined results could be interpreted as suggestive of
economic circumstances not appearing to be the primary driver of change
in regards to the aggregated data.
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Figure 4.12: Change Point Detection: Raw ‘green space loss’. A single
change point was identified as having occurred between 2013 and 2014.

However, where applied to ‘rural’ authorities only, two change points were
discernible within the data, after quarter 3 of 2008 and quarter 1 of 2014
[figure 4.13]. Between quarters 1 of 2007 and 3 of 2008 the mean area of
green space which underwent development was 9.59, with a variance of 1.02.
In the second identified segment of the time series (Q4 2008 to Q1 2014) the
respective means and variance had increased to 15.83 and 33.98. Whilst from
quarter 2 of 2014 the mean had become 29.60 and variance 73.17 [table 4.12].

Q1 2007 – Q3 2008 Q4 2008 – Q1 2014 Q2 2014 - Q4 2018
Mean 9.59 15.83 29.60
Variance 1.02 33.98 73.17

Table 4.12: Rural Subset: Summary of ‘Construction normalised green
space loss’ mean and variance relating to the segments identified around
the change point, based upon the optimal penalty value [23.79].

The outlined multiple change points were identified based upon a penalty value
of 23.79. To force a single point to be detected the relevant penalty increased
to 40.20 and restricted the change point to occurring between quarters 1 and
2 of 2014. The results presented above suggest rates of development on
green space per 100,000 residential developments increased during the period
defined by recession.
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In contrast, the ‘urban’ subset was analogous with the overall ‘Construction

normalised’ data and distinguished a single change point after quarter 3 of
2013 [figure 4.14]. Significant differences were recorded between means, with
the period after the change point reflecting an area of 132.94, whereas the
prior segment was 44.80. Similarly notable deviation was reported in relation
to the two variance statistics, logged as 3,327.30 after quarter 3 of 2014 and
458.84 before [table 4.13].

Q1 2007 – Q4 2013 Q1 2014 - Q4 2018
Mean 44.80 132.94
Variance 458.84 3,327.30

Table 4.13: Urban Subset: Summary of ‘Construction normalised green
space loss’ mean and variance relating to the segments identified around
the change point, based upon the optimal penalty value [57.61].

The relevant derived penalty value required to identify multiple change points
was 11.95, whereas the single point discussed above was associated with a
penalty of 57.61.

Through comparison between the raw and ‘construction normalised’ data it
is notable the ‘construction normalisation’ removed the initial change point
identified in regards to the ‘urban’ subset, but detected an additional one in the
‘rural’. This can be interpreted as suggestive of distinct effects associated with
economic circumstances in regards to each subset of the aggregated data.
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Figure 4.13: Graphical representation
of Change Point Detection undertaken
in regards to ‘rural’ Authority
samples based upon ‘Construction
normalised’ change.
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Figure 4.14: Graphical representation
of Change Point Detection undertaken
in regards to ‘urban’ Authority
samples based upon ‘Construction
normalised’ change.
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It is noted in regards to each data set, the occurrence of a structural change
was identified at some point between quarters 3 of 2013 and 1 of 2014. With
the periods after the change reflecting a mean area of green space subject to
development, which was between 86.99% (‘Construction normalised’ rural
subset) and 309.52% (raw ‘green space loss ratio’ urban subset) higher than
the prior period.

4.4 Discussion

This research represents the first quantitative analysis to focus upon the
developmental threat to green space that can be associated with the adoption
of the Localism Act 2011 and National Planning Policy Framework. In so
doing it sought to apply novel methods as a means through which to explore
the relationship between planing policy and green space.

For clarity, the research question which constitutes the aim of this study is
reproduced:

Research Question 1: Has the area of green space which was subject to
development evidenced alteration in rates which could be associated with the
adoption of the Localism Act 2011 and National Planning Policy Framework

(2012)?

4.4.1 Key Findings

Initial exploratory comparisons of annual data segmented into pre-defined pre-

(2007 to 2011) and post-policy (2012 to 2018) periods evidenced sufficiently
different data profiles to suggest further analysis was needed. For example,
mean values within the post-policy period were recorded as 190% and 142%
higher than the corresponding post-policy periods.

Of particular note, the broadly bimodal distributions evidenced in the
post-policy periods (2012 to 2018) suggested the existence of two distinct
segments, which were considered to potentially reflect the persistence of the
prior policy regime. By redefining the policy periods, in accordance with the 2
year estimate between approval and completion used in research by Shelter
(2019), the data evidenced highly divergent profiles.
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The outlined differences in both ‘green space loss’ and ‘construction

normalised’ data evidenced the existence of a structural change having
occurred in the data at some point during the research period. Whilst the
redefinition of the pre and post-policy periods supported the existence of
a lagged effect (Shelter, 2019), which had not been explicitly discussed in
relevant research (Dallimer et al., 2011) and should be incorporated as an
essential consideration in future analyses.

From the perspective of policy analysis it can be contended the summary
methods utilised in this section of research do not reflect a robust measure
of causal inference (McDowall and McCleary, 2014). However, they are
analogous with elements of comparable studies, which reported pre-test -

posttest results (Ganser and Williams, 2007; Kasraian et al., 2019; Mu et al.,
2016). Furthermore, it was consistent with the approach described in Dallimer
et al. (2011), which evidenced a reduction in the proportional green space
coverage between 2001 and 2006. Considered in combination, Dallimer et al.
(2011) and the results reported in this research advance a diminishing area of
green space under two contrasting policy regimes between 2001 and 2018.

However, the extent to which this effect can be associated with the
implementation of the Localism Act 2011 and National Planning Policy

Framework required additional analytical methods (Plieninger et al., 2016).
Subsequent application of mean and variance based change point detection

methods indicated the most likely point at which a change occurred in the
process which generated said data. In regards to both data sets the same
change point was identified as quarter 3 of 2013. However, it should be
understood that due to the delay between change occurring and it being logged
within the data this may include data related to quarter 1 of 2013 (Ordnance
Survey, 2020).

The outlined results develop a clear picture of the rate of development upon
green space having materially changed. However, the direct attribution of
this effect to the revised policy agenda is more problematic in light of the
complex socio-economic, geophysical, technological (Hersperger et al., 2018)
and cultural (HOXHA et al., 2014) influences upon land use change, in
conjunction with structural delays inherent to the planning process (Callcutt
et al., 2007; Lichfields, 2016; Shelter, 2019).
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Due to the pronounced, abrupt impact evident within the data an assumption
was made the change was unlikely to have been caused by significant
geo-physical, technological or cultural factors. The effects of such influences
are considered likely to be more gradual (Hersperger et al., 2018) and therefore
would not be anticipated to result in an easily discernible change point (Vogt
et al., 2015).

Consequently, it was deemed reasonable to restrict consideration of the
potential causes for the outlined change to a combination of socio-economic
or policy features. Within the research period, the most feasible of
which were identified as the amended policy, the economic crisis and
subsequent recovery (Edmund et al., 2009; Department for Business,
Innovation and Skills, 2013) or the increased pressure upon Local Authorities
to sell land as a result of the austerity agenda (Neal et al., 2016; Locality, 2018).

Within the research, through analysis of ‘construction normalised’ data,
which reported the area of green space upon which development occurred per
100,000 residential construction projects, attempts were made to control for
the influence of the economic crisis (Olga and Antonios, 2019). Critically, the
same single change point was identified (quarter 3 of 2013), with a penalty
value four times larger than the minimum at which multiple change points
would be detected. Furthermore, when relevant penalty values were adjusted
to allow for multiple change points to be detected both occurred between 2013
and 2014.

Provisionally, these results could be interpreted as precluding the economic
crisis as the central reason for the change. However, this is predicated upon the
validity of the data as a means by which to account for economic circumstance.
Whilst the Department for Business, Innovation and Skills (2013) reported
rates of non-residential development were unaffected between 2007 and 2010,
rates of residential development were recognised as highly reflective of the
recession and recovery.

Therefore, the area of green space upon which development occurred as a
proportion of total development would be reduced in the years 2007 to 2010
when compared to residential only. Should the post-policy period have been
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marked by increased non-residential development as well, relative statistics
might be considered an over-estimation. With no equivalent data relating to
the period after 2012 it is difficult to establish the potential effect upon the
data. However, the weighted economic value of non-residential construction
in the years after 2012 was evidenced to have remained below levels recorded
in 2007 and 2008 (ONS, 2018b), from which it can reasonably be conjectured
rates of development would be unlikely to significantly skew the data.

Furthermore, analysis of GDP noted that despite nascent signs in 2013, the
construction sector did not fully recover until 2015 (ONS, 2018a). Were the
recorded increased rate of development on green space directly associated
with such it would be anticipated a change point would only be detected
during or after 2015.

Accordingly, the outcome of the ‘construction normalised’ data was deemed
likely to provide a reliable means through which to mitigate against economic
drivers affecting the analysis (Olga and Antonios, 2019).

However, separate consideration must be afforded to the potential influence of
the ‘austerity’ agenda upon land sales. Under pressure to generate revenue it
has been reported that Local Authorities have increasingly relied upon the
sale of publicly owned land (Locality, 2018). The value of said land is highly
dependent upon planning rights (Catney and Henneberry, 2019), which may
imply that to ensure adequate remuneration Local Authorities would allocate
such as appropriate for development. Therefore, released land may be more
likely to undergo development. Accessible land ownership information was
incorporated into the research data (Ordnance Survey, 2016) to address the
outlined issue, but analysis was unable to establish such for large amounts of
identified land. Therefore, consideration is afforded to alternative relevant
resources.

In reality public land sales have been dominated by existing built infrastructure,
particularly where situated within existing urban cores (Shrubsole, 2019). In
addition to which the extent of Local Authority land ownership Nationally
represents around 4% of the total area (Shrubsole, 2019). Therefore, it could
reasonably be inferred that the effect of this issue upon the outcome of the
analysis would be minimal.
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In view of research which suggests the time frame between planning approval
and the completion of development can range from anywhere between
10 months (Lichfields, 2016) and 3.2 years (Callcutt et al., 2007), the
seven quarter (21 month) interval between the introduction of the NPPF

(representing the latest policy change) and identified change point appears
consistent with attribution of the effect to such. It should additionally be born
in mind the data can be considered to reflect the start of ground works for
development and therefore should be subject to a reduced time interval.

Correspondingly, in the only UK based conceptually comparable research
produced to date, the altered profile of land cover change data across the
research period was deemed to constitute evidence of the impacts associated
with planning policy (Dallimer et al., 2011). Said research was based upon
cumulative pre and post-policy differences and as such did not empirically
test for an attributable change point. However, in attempting to assess the
impact of the policy which preceded that which was analysed in this research,
both results considered collectively evidence an accelerating reduction of
green space between 1991 and 2018. Dallimer et al. (2011) further presented
a framework in which land cover was assumed to rapidly respond to policy
effects, which is empirically corroborated by this research.

Although potentially considered as a reductive approach (Hersperger et al.,
2018), there is a sufficiently robust research foundation which has established
policy as the most influential reason for land use and land cover change (Salata
et al., 2015; Wu et al., 2019). Therefore, it is argued there exists judicious
evidence through which to suggest the detected change point could likely be
significantly attributed to the policy change.

Based upon such, this research conceptually presented change point detection

as a method through which to empirically test for the existence of policy
effects using land change data. Having only previously been applied to
satellite imagery (Ramachandra, 2019) as a means to detect an economic event
through deforestation the expansion of the approach to include other drivers
appears practicable. However, the evidential impact of economic factors
upon the data suggests the need to consider relevant confounding influences
(Hersperger et al., 2018).
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This research further suggests vector based resources could support urban
science in developing models of change at a highly granular spatial scale not
achievable with most remote sensed imagery (Orford and Radcliffe, 2007).
Although the validity of such requires the incorporation of complex revision
processes (Ordnance Survey, 2020).

4.4.2 Strengths and Limitations

The strengths and limitations associated with this section of research are
restricted solely to the analytical methodology. Wider issues related to data
(such as the influence of land banking) and inferential validity are primarily
discussed in chapter 7.

Change point detection is recognised as a strong method through which to
identify material changes in time series data through mean and variance (Xu
et al., 2015). Although more commonly applied to manufacturing quality
control (Nair et al., 2000) or cyber security (Polunchenko et al., 2012) it
has previously been utilised in regards to testing intervention effects (Friede
et al., 2006). In Ramachandra (2019) change point detection was evidenced
to successfully identify the occurrence of a significant economic event
based upon the area undergoing deforestation. This study corroborates the
capacity of this method to identify patterns in rates of land use change and
suggests it could be deployed as a means through which to detect policy effects.

Where multiple change points were detected, the first in each instance
coincided with a pre-identified economic event (Tatliyer, 2017). However,
more substantial changes were identified as having occurred after the
hypothesised transitional period.

Through accounting for changes in the profile of the data in a consistent period
ranging from prior to and after the policy, the research is commensurable with
equivalents (Dallimer et al., 2011). Whilst attempts to control for the most
likely external influences upon analysis were undertaken, the relatively short
pre-policy period may not accurately account for the developmental narrative
under the previous policy regime.
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Crucially the method does not appropriately account for prior trends and
can therefore be considered more akin to pretest - posttest designs, which
have been shown to be less inferentially robust than alternative policy impact
assessments (such as Interrupted Time Series Analysis) (Cruz et al., 2017).
Although this issue can to some extent be addressed through the use of both
mean and variance as test statistics (Killick et al., 2012), as applied in this
research.

A contention is also posited that change point detection methods are less
reliable when applied to short time series (Cruz et al., 2017) and do not
account for auto-correlated structures (Jarušková, 1997), which were present
in the data. Furthermore, caution is recommended where standard methods,
such as maximum likelihood approaches are used in relation to data with
significant deviation from a normal distribution in the presence of outlying
observations (Fearnhead and Rigaill, 2019).

However, the PELT algorithm utilised in this research has been evidenced to
have performed reliably in relation to time series consisting of as few as 15
observations (van den Burg and Williams, 2020). Thus, the length of the time
series is considered unlikely to invalidate the results. It is further contended
cumulative mean and variance based methods reduce susceptibility to error
associated with autocorrelation (Lund et al., 2007). Whilst the significance
of the difference between the identified segments and testing for both single
and multiple change points offer robust support for the validity of the results
(Haynes et al., 2017).

Aminikhanghahi and Cook (2017) highlight the most prominent issue with
change point detection methods as offering limited detail in regards to the
effect or causes of change. However, as a primary indicator of the existence of
change within core parameters they remain a useful research method (Killick
et al., 2012) and have been utilised successfully in regards to environmental
data, in the form of climate change (Gallagher et al., 2013) and hydrology
(Chu et al., 2012). Whilst additionally proposed and tested as viable in regards
to land use change (Ramachandra, 2019).
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4.4.3 Implications

The outcome of this research is suggestive of national level policy representing
a powerful regulatory instrument through which to influence patterns of land
use and protect green space from development. This both supports and builds
upon prior research, which reported national policy provisions as a significant
underlying factor in land change (Dallimer et al., 2011; Ganser and Williams,
2007; Mu et al., 2016), offering empirical evidence supportive of a tacit
assumption which underpins policy making (Garcia-Martin et al., 2020).

It suggests that minimal reductions in the protection explicitly provided
to green space or the removal of targets for ‘brownfield’ development
may dramatically alter the rate of development occurring on previously
undeveloped land within relatively short time scales. Where Kasraian et al.
(2019) evidenced regulatory policy to retain a long term residual effect, this
research identified a significant change to the profile of development within a
period of less than 2 years, implying policy change has the capcity to alter
lanscapes more quickly than previously suggested. To date the relationship
between policy and land change has assumed a long transitional period
(Bengston et al., 2004; Kasraian et al., 2019; Morrison and Pearce, 2000; Mu
et al., 2016), which is challenged by the outlined time frame.

One can speculate as to methodological causes of this disparity. Namely, the
use of highly granular vector data, which enabled the identification of small
scale land use change potentially less easily discerned in satellite equivalents
(Horning and DuBroff, 2004). Additionally, it is the only research to provide a
consistent data set based upon a quarterly time interval, facilitating a more
rigorous, empirical determination of the point at which effects became evident.
Contextual attributes must also be addressed, with the largely discretionary
system operating within England evidenced to be highly responsive to policy
effects (Dallimer et al., 2011), which may not be replicated within systems
dominated by zoning (Booth, 1995).

However, the research should inform policy practice by offering new insights
in regards to the time frames associated with the transition between policy
instruments (Morrison and Pearce, 2000). From a UK perspective or nations
adopting similar approaches, policy makers could consequently seek to develop
evaluation instruments based upon a short time frame, which allow for
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potentially negative effects to be redressed quickly. Whilst future research
can build upon this foundation and continue analysis of the policy effects
using the outlined as a base line. However, it is important to further develop a
conceptual understanding of the extent to which the impacts of policy reflect a
place neutral approach (McGuinness and Mawson, 2017), whereby they are
felt homogeneously across all land types or evidence differentiated effects
upon distinct land types.

4.5 Conclusion

The vital importance of green space as a contributor to core ecosystem service
functions means it is imperative to develop a clear understanding of its
relationship with spatial planning policies, which represent the primary means
of regulation (Hersperger et al., 2018). Increased rates of development upon
such land can threaten habitats with total loss or fragmentation, reduce air
quality, exacerbate flood risk, reduce the capacity to provide food and severely
impact upon social well being.

Empirical analysis of the area of green space which was subject to development
between 2007 and 2018 suggests the occurrence of a change point in quarter 3
of 2013, after which rates increased. Whilst difficult to establish with certainty,
the research presents a sound evidential basis with which to add to the existing
discussion related to the impacts attributable to the introduction of the revised
planning framework, under the Localism Act 2011 and NPPF.

Although it can be argued individual provisions may not reflect a fundamental
change to previous policy, outlined results support the existence of an implicit
diminution to the protections afforded to previously undeveloped land.
Through association with a perceived pro-development tone, which resides
at the core of the framework, the subsequent amendment published in 2018
might be considered unlikely to have reduced the developmental threat to the
majority of green space. This highlights the need for reform of planning policy
to be informed by ex post facto research, in order to ensure that detrimental
impacts are identified and addressed within the policy cycle.

Through change point detection the existence of a policy effect can be
identified, but provides no means through which to reliably understand the
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magnitude of such. Without which, the advancement of sustainable solutions
become less likely.
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CHAPTER5
England Green and England Grey

Quantifying Policy Effects

“And that will be England gone,

The shadows, the meadows, the lanes,

The guildhalls, the carved choirs.

There’ll be books; it will linger on,

In galleries; but all that remains,

For us will be concrete and tyres.”

Going, going
Larkin (1972)

Incongruously nestled within the dense suburban environment of the London
Borough of Ealing is situated a 2.8 Hectare [Ha] (Ealing Council, 2012) area of
undeveloped, allotment land, which has resolutely endured through 188 years
of relentlessly encroaching urbanisation (Watts, 2017). The vast, virescent
tapestry of agricultural land within which the ‘Ealing Dean Allotments’ site
was once situated had been lost to housing development by the early 1800s
(Bolton et al., 1982). However, the 8.3 Hectares (Ealing Dean Allotments
Society, 2014) of common land enclosed as allotments under the provisions of
the Poor Relief Act 1832 (Bolton et al., 1982) remained largely undiminished
until the 1970s (Watts, 2017).

By 2017, whilst the site had been reduced to under forty percent of its
original land area (Ealing Council, 2012), it continued to provide 141 plots
for the local community (Ealing Dean Allotments Society, 2017) and was
bounded by hedgerow designated as a ‘site of local importance for nature

conservation’ (Ealing Council, 2008), through which it was recognised
as being of value to wildlife and biodiversity (Greater London Authority, 2017).
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Despite evidenced social (Howe and Wheeler, 1999) and natural value (Speak
et al., 2015), in 2017 the ‘Ealing Dean Allotments’ site was subject to an
approved development proposal, which would reduce its area by a further ten
percent (Pathways, 2016). Whilst the proposal was subsequently withdrawn,
the developmental narrative of ‘Ealing Dean’ can be considered to offer a
simple illustration of the tension between the provision of housing and retention
of green space, which resides at the heart of contemporary planning. Despite
evidence of a shift in balance, which threatens ‘natural’ land with increased
development [chapter 4], the effect associated with policy change has not been
quantified.

5.1 Introduction

Balancing the needs of an expanding urban population (Budruk et al., 2009)
against the environmental and social impacts associated with the loss of
natural land constitutes a core element of sustainable development (Bruff and
Wood, 2000) and subsequently a key concern for planning (Rydin, 1995). This
concept has been enshrined within the European Union’s political agenda
through a commitment to ‘no net land take’ by the year 2050 (European
Commission, 2016). The role of policy is consequently theorised as a
regulatory function through which to direct and constrain development.
However, the empirical impact evaluation of this role has been limited.

In order for planning policy to meet varied objectives, such as the retention
of undeveloped land to support sustainable development, it is considered
essential that policy makers have a posteriori knowledge of the intended and
unintended effects associated with different instruments (Alexander, 2016;
Laurian et al., 2010). The development of evaluative procedure has been
recognised as a research priority since the early 2000s (Morrison and Pearce,
2000), but remains unresolved to date (Shahab et al., 2019).

Single effect studies to explore the impact of particular policies upon patterns
of development have been undertaken. For example, analyses of the efficacy
of ‘Green Belt’ and equivalent regulatory policies (Bengston and Youn, 2006a;
Elson et al., 1993; Kasraian et al., 2019) or the imposition of ‘brownfield’
development targets in contributing to the retention of undeveloped land
(Baing, 2010; Dallimer et al., 2011; Ganser and Williams, 2007; Ganser, 2008).
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However, the majority have struggled to apply methods to systematically
discern the degree to which the identified effect can be attributed to the policy
(Morrison and Pearce, 2000).

This ‘attribution problem’ (Bovaird, 2014) is identified as being related to
two factors (Morrison and Pearce, 2000). The first concerns the ability to
isolate the effects from other driving forces (Hersperger et al., 2018; Morrison
and Pearce, 2000). Whilst the second relates to the development of a reliable
counterfactual scenario, representing the outcome that would have occurred
without the policy (Morrison and Pearce, 2000; Shahab et al., 2019). Robust
impact evaluation further requires a clear transition from one policy state
to another (Morrison and Pearce, 2000) in conjunction with consistent and
sufficient data relating to both periods (Vedung, 2017). This issue is commonly
more difficult than assumed, particularly in relation to a set of national
provisions, which is the reason most analyses focus upon specific provisions
(Morrison and Pearce, 2000).

The transition to the Localism Act 2011 and National Planning Policy

Framework in England offered a contemporary subject of inquiry. Although
much of the prior legislative framework remained in place (Winter et al., 2016),
the reforms were considered to constitute a significant shift in developmental
tone (Sibley-Esposito, 2014). Said reforms had also been identified as of
significant interest in research related to the transition to the prior policy
regime (Dallimer et al., 2011) and as a result provide an apposite continuum.

Chapter 4 identified a distinct change point in the rate of development
upon green space and suggests the ability to distinguish the effect of policy
through accounting for the predominant confounding effects (the economy
and construction sector (Morrison and Pearce, 2000)). Therefore, this chapter
expands upon the earlier work by applying a synthetic counterfactual approach
(HM Treasury, 2020b) in order to evolve a quantitative policy effect.

5.1.1 Primary Research Aim

In Chapter 4 analysis established that the area of green space subject to
development underwent a statistically significant change after quarter 3 of
2013 of the data. A rationale was introduced whereby the most feasible cause
of the identified change was the delayed effect associated with the introduction
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of a revised planning framework around 2012.

However, a key element in the evaluation of policy, thus influencing the means
to inform future practice requires clear, quantifiable effects (Krizek et al.,
2009; Crato and Paruolo, 2019). Historically, within the context of planning
such evidence has been lacking (Shahab et al., 2019), as a result of which
reform has been dominated by historical path dependency (Raco, 2014), acting
as a restraint upon change (Haughton and Allmendinger, 2013), or reflects the
cyclical nature of prevailing political ideology (Davoudi, 2011).

For example, governmental reform of national planning occurred in 2004,
2008 and 2011 (Davoudi, 2011), with negligible reference made to previous
outcomes. There are a variety of reasons for a lack of integration between
evidence and policy (Head, 2010), chief amongst which is the absence of
sufficient quality data (Boaz and Ashby, 2003). This is a particular issue for
the planning paradigm, which is often intended to achieve myriad outcomes
(Hersperger et al., 2018), in regards to which access to reliable data is often
limited (Bengston et al., 2004). Whilst, the complexity inherent to the
interaction between the planning system and land use (Sengupta et al., 2016)
requires robust analytical techniques (HM Treasury, 2020b).

Therefore, through the use of a robust quasi-experimental method, utilised in
other policy analyses (Kontopantelis et al., 2015) this research is intended to
address the following research question.

Research Question 2: What effect have the Localism Act 2011 and National

Planning Policy Framework had upon the total area of green space which has
been subject to development?

5.1.2 Contribution

This research employs a previously unused approach to statistical analyses,
which enabled the establishment of a quantified intervention effect deemed
likely to be attributable to the adoption of the revised planning framework.
Consequently, it can be considered to improve understanding of the dynamic
relationship between changes to policy and urban induced green space land
change.
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In all prior research, which has sought to explore the effects associated with
policy (Bengston et al., 2004; Dallimer et al., 2011; Kasraian et al., 2019;
Mu et al., 2016), analytical methods have either used regression models
(Dallimer et al., 2011; Kasraian et al., 2019) or simple pretest-posttest designs
(Dallimer et al., 2011), considered less robust (particularly in relation to
complex systems (HM Treasury, 2020b)) than methods which employ a
counterfactual (McDowall et al., 2019). Although well established as a means
of intervention analysis within the spheres of public health (Andersson et al.,
2006; Ansari et al., 2003; Bloor et al., 2003; Bernal et al., 2017; Dowding
et al., 2011; Murry et al., 1993; Penfold and Zhang, 2013; Serumaga et al.,
2011), social welfare (Pridemore et al., 2007, 2013), criminal justice (Britt
et al., 1996; Lane and Hall, 2019; Ramirez and Crano, 2003; Humphreys
et al., 2017) and economic policy (Bonham et al., 1992; Campbell and Allen,
2001; King-Meadows and Lowery, 1996), the adopted methodology has not
previously been applied within the context of planning.

Methodologically, the research tests the potential use of Interrupted Time

Series Analysis to support inferential analysis of planning policy and provides
a basis upon which comparable methods could be applied in other contexts.
Additionally, it augments a limited field of research in which Interrupted Time

Series Analysis is modelled using State-Space principles (Brodersen et al.,
2015), which can account for non-stationarity and uncertainty (Fei et al., 2011).
It further expands the application of the conceptual algorithm proposed by
Ramachandra (2019) as an approach to interpret the impact of interventions
upon land change.

5.1.3 Chapter Structure

Relevant sections within this chapter respectively outline; a brief description
of the method upon which analysis is founded [section 5.2]; derived results
[section 5.3]; a discussion framed around the related research that has informed
said approach [section 5.4]; and a conclusion, which includes implications for
policy practice [section 5.5].

5.2 Methods

To address the outlined research question an Interrupted Time Series analysis
approach was employed. The use of this method has become well established
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within commensurable policy contexts (Britt et al., 1996; Bernal et al., 2017)
and has been adopted recently in regards to the interpretation of land change
effects (Ramachandra, 2019). The method reflects a computational systems
modelling approach through which to derive a synthesised model of the state
of interest in the absence of the policy, which can be compared with the real
outcomes (HM Treasury, 2020b).

My approach to implement this method applied two distinct models, in the
form of standard segmented regression (Bernal et al., 2017; Lane and Hall,
2019) and an alternative Bayesian forecast model (Brodersen et al., 2015).
With the following steps undertaken and discussed in the subsequent sections:

1. Definition of variables used in the research;

2. Temporal range and segmentation around policy implementation;

3. Pre-analytical tests for the presence of seasonality and auto-correlation;

4. Analysis of intervention effects based upon segmented regression
methodology;

i. Selection of an appropriate model through comparison of
alternative structures using AIC values;

ii. Application of the final model to the complete time series;

iii. Prediction of a synthesised ‘counterfactual’ for the relevant
post-policy period;

iv. Derive the intervention effect based upon the relevant regression
model;

5. Analysis of intervention effects based upon forecast model methodology;

i. Derive variance estimates for dynamic linear model parameters;

ii. Conduct functional test of fit against comparable OLS, GLM and
ARIMA models using MAE and RMSE;

iii. Application of best fitting model [dlm] to the defined pre-policy

period;

iv. Forecast a counterfactual scenario through the extrapolation of
pre-policy trend;

v. Application of dlm to post-policy period to model the trend;
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vi. Derive an intervention effect based upon the absolute difference
between the counterfactual prediction and modelled post-policy

values;

5.2.1 Research Data

Green Space Loss Ratio

The ‘green space loss ratio’ data used in this research was primarily obtained
from OS Mastermap® topography layer data (Ordnance Survey, 2017),
supplemented by AddressBase Premium® classification criteria (Ordnance
Survey, 2018a).

OS Mastermap® topography layer is a digital, geospatial, vector data resource,
which represents the majority of UK landscape features (including built forms
and natural features) (Orford and Radcliffe, 2007). It is both highly detailed
and accurate (Smith et al., 2007), with three tiers of classification criteria
(Ordnance Survey, 2017). Whilst, previous iterations of identical geographic
areas can be accessed in archival form from 2007 (Ordnance Survey, 2018b).

OS AddressBase Premium® is a geo-referenced record of contemporary and
historic features, for which a postal address has been recorded (Ordnance
Survey, 2018a). Relevant records also include building classification criteria
and dates of entry or deletion.

‘Green space loss’ was derived through a ‘minimum change’ methodology
(outlined in detail in Appendix A), which ostensibly used relevant OS

Mastermap® ‘make’ and ‘descriptive group’ classifiers to identify the area of
land which underwent transition from ‘natural’ form to ‘built’ environment
(including the start of ground works preceding complete development)
between time intervals. To ensure validity, a change was only included
within the data where it could be verified against an appropriate AddressBase

Premium® record.

The final data set therefore, represents the aggregate area of green space, which
was subject to development during each quarter, as a proportion of the available
green space area at that time (hereafter referred to as the ‘green space loss

ratio’).
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Figure 5.1: Source: Ordnance Survey (2018b)
An example of the ‘green space loss’ data identified using the
‘minimum change’ method.

Construction Normalised Green Space Loss

In addition to the ‘green space loss ratio’ data, a separate ‘construction

normalised’ measure was used in order to control for economic drivers of
land use change. This data represented the aggregate area of green space loss
per 100,000 residential developments begun within each quarter.

5.2.2 Temporal Range and Segmentation

Both data sets reflect univariate time series, comprising 48 quarterly
observations, accounting for quarters 1 of 2007 to 4 of 2018.

Where referred to mathematically within the text the entire temporal range is
represented as t0, t+1, t+2, t+3...t+47, where t0 is quarter 1 of 2007.

For the purpose of subsequent Interrupted Time Series analyses the data was
segmented into periods in line with the intervention under consideration
(Lane and Hall, 2019). The periodisation of the data was complicated by the
existence of a 6 month delay in regards to data generation (Ordnance Survey,
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2020), allied with an estimated period between the approval and completion of
development ranging from 10 months (Lichfields, 2016) to 3.2 years (Callcutt
et al., 2007). With the data underlying this research incorporating the period
between approval and the beginning of preparatory developmental works, a
two-year estimated lag was applied (Shelter, 2019). This was also supported
by the prior analysis undertaken in chapter 4, (which suggested the existence
of a change point between quarter 3 of 2013 and 1 of 2014) in accordance
with the conceptual method outlined by Ramachandra (2019).

Therefore, the data was segmented into defined pre-policy (Q1 2007 to Q4
2011), transitional (Q1 2012 to Q4 2013) and post-policy (Q1 2014 to Q4 2018)
periods. Two ‘dummy’ intervention identifier variables were coded into the
data. The first, as ‘0’ for quarters 1 of 2007 to 4 of 2011 (pre-policy) and ‘1’ in
regards to quarters 1 of 2012 to 4 of 2018 (transitional and post-policy). Whilst
in the second, quarters 1 of 2007 to 4 of 2013 (pre-policy and transitional)
were coded as ‘0’, with quarters 1 of 2014 to 4 of 2018 coded as ‘1’ [table 5.1].

Intervention Code Lagged Intervention Code
Pre-policy
(Q1 2007 - Q4 2011) 0 0

Transitional
(Q1 2012 - Q4 2013) 1 0

Post-policy
(Q1 2014 - Q4 2018) 1 1

Table 5.1: Structural example of ‘dummy’ intervention
identification variables. Each period can be identified based upon
the values of both columns.

5.2.3 Pre-analytical Data Examination

Whilst pre-analytical tests utilising the seastest package in R (Ollech, 2019),
excluded the existence of a seasonal effect upon the data, the Durbin-Watson

test (Tillman, 1975) confirmed a significant positive auto-correlated structure
(statistic reported 1.4357 and p-value 0.0152).

This informed subsequent model choice, with generalized least squares [GLS]
regression and dynamic linear models adopted, which could account for such
structures within the data (Huitema and Mckean, 2000).
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5.2.4 Segmented Regression

In adherence to standard approaches to segmented regression, the key variables
(‘green space loss ratio’ and ‘construction normalised change’) were retained
and analysed as single datasets, with segments identified through ‘dummy’
variables (Bernal et al., 2017).

In addition to the intervention identification variables discussed in section
5.2.2, ‘trend’ and ‘time’ variables were appended to the data. The ‘trend’
variable was coded as ‘0’ for each pre-policy period observation and a single
increment increasing integer (1 to 28) in regards to transitional and post-policy

observations. The ‘time’ variable consisted of numbers 1 to 48 across the
entire time period [table 5.2].

Intervention
Code

Lagged Intervention
Code Trend Time

Pre-policy
(Q1 2007 - Q4 2011) 0 0 0 1:20

Transitional
(Q1 2012 - Q4 2013) 1 0 1:8 21:28

Post-policy
(Q1 2014 - Q4 2018) 1 1 9:28 29:48

Table 5.2: Structural example of ‘dummy’ trend and time variables.

For the purpose of regression analysis, the data was log transformed in order
to both ensure an approximately normal distribution (Beard et al., 2019) and
enable the recorded intervention effect to be reported as a simple percentage
change (Lane and Hall, 2019). Relevant correlograms (limited to a maximum
lag of 12) for auto-correlation and partial auto-correlation were utilised as a
means by which to identify viable autoregressive-moving average [ARMA]
terms [figures 5.2 and 5.3]. Consequently, a variety of viable GLS model
variants were tested against the data, with different ARMA functions (Lane
and Hall, 2019).

133



−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

D
eg

re
e 

of
 A

ut
oc

or
re

la
tio

n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5.2: Plot of autocorrelation
(log transformed quartered subset)
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Figure 5.3: Plot of partial
autocorrelation (log transformed
quartered subset)

Based upon AIC values the most appropriate regression model in regards to
both the ‘green space loss ratio’ and ‘construction normalised’ data included
first order autoregressive (p) and moving average (q) ARMA terms.

The identified model was fit to the log transformed data, with the intervention
effect subsequently derived from the changes in both level and trend between
the pre-policy, transitional and post-policy periods [equation 5.1].

Yt = β0 + β1Tt + β2 + β3 + β4Xt (5.1)

In the above equation (based upon Wagner et al. (2002); Lopez Bernal et al.
(2018); Hudson et al. (2019)), Yt is the estimated intervention effect at quarter
t; β0 constitutes the modelled baseline level (the pre-policy intercept); β1 can
be considered to represent the rate of change in area between each quarter of
the pre-policy period (the pre-policy trend); T denotes the ‘Time’ identifier
(relating to quarters); β2 corresponds to the level change which occurs between
the pre-policy and transitional periods; β3 the level change between the
transitional and post-policy periods; β4 represents the difference between the
rate of change in area in the post-policy period when compared to the pre-policy

equivalent (the change in trend); andX designates the ‘Trend’ dummy variable.

Data was processed and modelled using dplyr (Wickham et al., 2015) and nlme

(Pinheiro et al., 2007) packages in R (R Core Team, 2019), with relevant code
reproduced in Appendix C.1.
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5.2.5 Forecast Model

In the second distinct method to Interrupted Time Series Analysis a forecast
model approach was utilised (Linden, 2018), based upon dynamic linear

models (Bayesian State-space models) (Brodersen et al., 2015).

A dynamic linear model allows for the variation of parameters over time (Laine,
2020) and comprises observation and evolution equations (Petris and An, 2010)
[equations 5.2 and 5.3].

yt = Ftθt + vt, vt N(0, Vt) (5.2)

θt = Gtθt−1 + wt, wt N(0, wt) (5.3)

The observation equation, yt represents the product of the area of ‘green space

loss’, in the form of Ft and the state equation, θt, to which a mean zero error is
added, vt. Whilst Gt is the evolution vector, in this instance a 1 by 1 matrix
representing time and wt the underlying state errors assumed to have a mean
of zero.

Firstly, relevant pre-policy period model variances were identified using
maximum likelihood functions (Petris and An, 2010). Derived values in
regards to ‘green space loss ratio’ data were 0.013 for the observed variance
(v) and 0.002 in regards to the underlying state (w). Whilst for the construction

normalised equivalent v was 8.81 and w was less than 0.001.

Applying the derived variance values, a first order polynomial dynamic linear

model (evolving mean) was fit to the pre-policy data (Q1 2007 to Q 4 2011)
based upon a Kalman filter algorithm (Petris and Petrone, 2011).

Following this step, the outlined models were assessed for fit against
functional alternatives. In regards to the discussed ARIMA models, in each
instance the most appropriate was identified (using auto.arima functions in R

(Hyndman et al., 2007)) as a zero mean model (0,0,0), most likely as a result
of insufficient data.

Both MAE and RMSE comparisons evidenced the respective dynamic linear

models to out perform the estimation of the observed data derived from each of
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the other models [table 5.3]. Therefore, subsequent analyses were undertaken
using the first order polynomial dynamic linear model outlined previously.

Model Mean Absolute Error
(MAE)

Root Mean Squared Error
(RMSE)

Quartered ‘Green Space Loss’
Ordinary Least Squares 0.08 0.12
Generalized Linear Model 0.08 0.12
ARIMA (0,0,0) 0.09 0.14
Dynamic Linear Model 0.07 0.09
Quartered ‘Construction normalised’
Ordinary Least Squares 2.50 2.86
Generalized Linear Model 2.50 2.86
ARIMA (0,0,0) 2.48 2.89
Dynamic Linear Model 2.23 2.70

Table 5.3: MAE and RMSE comparison of prospective quartered pre-policy
models (OLS, GLM, ARIMA and DLM)

The dlmForecast function (Petris and Petrone, 2011) was applied to the
data with a 95% prediction interval based upon variance values. Initially
a viable range of future mean states were estimated for each of the four
observations within the first transitional year (2012), in which it was
considered unlikely policy effects would be evident, based upon both the OS
revision policy (Ordnance Survey, 2020) and relevant case law (DCLG, 2012b).

There was insufficient data with which to formally validate the models against
available out-of-sample observations (Hansen and Timmermann, 2012).
Representative of a common issue in policy analysis, where dependent upon
real world data (Gertler et al., 2016). However, said prediction interval could
be assessed against the small number of true observations. In regards to each
observation for quarters 1 to 4 of 2012 the true value was within the range of
the prediction interval [figures 5.4 and 5.5]. Accordingly, forecasts based upon
such were deemed appropriate to act as a counterfactual, offering a robust
approximation of ‘green space loss’ under the continuation of the previous
policy.
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Figure 5.4: Graphical representation
of counterfactual fit with
out-of-sample future observation -
‘green space loss ratio’ data
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Figure 5.5: Graphical representation
of counterfactual fit with
out-of-sample future observation -
‘Construction normalised change’
data

Subsequently, the post-policy periods (Q1 2014 to Q4 2018) for each data set
were modelled using the same approach outlined above. They reflected higher
observed and state variances in their initial construction than the pre-policy

equivalents. Relevant variance values were recorded as 0.153 (v) and 0.004

(w) in relation to ‘green space loss ratio’, allied to 34.281 (v) and 0.500 (w) in
regards to ‘construction normalised change’. Both can be considered to reflect
the distinct data profiles across the two periods suggested by change point

detection.

Pre-Policy Post-Policy
‘Green Space Loss’
Mean Absolute Error (MAE) 0.07 0.09
Root Squared Mean Error (RMSE) 0.93 0.76
‘Construction normalised’
Mean Absolute Error (MAE) 2.23 10.97
Root Squared Mean Error (RMSE) 2.70 11.56

Table 5.4: Comparison of MAE and RMSE values associated with pre- and
post-policy periods.

Comparison of relative Mean Absolute Error and Root Mean Squared Error

statistics showed the post-policy models evidenced significantly larger error
statistics than in the pre-policy equivalents, primarily as a result of the
existence of greater variance.

The intervention effect for each quarter during the post-policy period was
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calculated as the absolute difference between the maximum value associated
with the counterfactual prediction interval and the modelled post-policy

equivalent [equation 5.4].

ˆIEτ = ŷpostτ − ŷpreτ for τ = t+28...t+47 (5.4)

Where ˆIE is the estimated minimum intervention effect, ŷpostτ the modelled
post-policy value and ŷpre the maximal predicted counterfactual value, based
upon the continuation of the pre-policy model.

A cumulative intervention effect based upon the entire post-policy period was
then calculated as the mean of the individual effects relating to t+28...t+47.

5.3 Results

5.3.1 Segmented Regression

Within this section results are initially presented in relation to the ‘green space

loss ratio’ dataset, before subsequent analysis of the ‘construction normalised’
equivalent. All analysis reflects the log transformed data and as such can
be considered to estimate level and trend change intervention effects as log
differences, which are considered to equate to a percentage equivalent (Lane
and Hall, 2019).

Coefficient (95% CI) Standard Error P-value
Baseline Intercept
(β0) -0.840 (-0.982 to -0.698) 0.086 <0.001

Pre-Policy Trend
(β1) -0.021 (-0.034 to -0.008) 0.008 0.010

Level Change in
Transitional Period
(β2)

0.287 (0.089 to 0.485) 0.120 0.021

Level Change in
Post-Policy Period
(β3)

0.744 (0.488 to 0.999) 0.155 <0.001

Trend Change in
Post-Policy Period
(β4)

0.041 (0.023 to 0.060) 0.011 <0.001

Table 5.5: Intervention Effect model parameter estimates (with 95%
Confidence Intervals), standard errors and P-values estimating log transformed
area of green space which was subject to development.
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Overall, the Intervention Effect model estimated that the area of green
space subject to development increased by 28.72% (P = 0.022) during
the transitional period. Followed by a further 74.36% (P <0.001) in the
post-policy period. During the pre-policy period the area undergoing change
each quarter was evidenced to have declined by 2.10% (P = 0.010). However,
after the implementation of the revised policy framework (excluding the
transitional period) this trend had reversed, showing a 2.04% increase per
quarter, reflecting a total change in trend of 4.14% (P <0.001) per quarter
[table 5.5].

From the outlined results it was notable that there was evidence of a level
change between the pre-policy and transitional periods, reflecting an increased
area of green space upon which development occurred.

However, the significant level (74.36%) and slope (4.14%) changes reflected
in the post-policy period can be considered to be broadly supportive of a
structural change having occurred between 2012 and 2014. Said analysis
shows that the area undergoing development in the post-policy period exceeded
the pre-policy equivalent and markedly reversed the evident quarterly decline.
These effects combine to cause an appreciable divergence between the
post-policy period and synthesised counterfactual.
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Figure 5.6: GLS Modelled ITS analysis of ‘green space loss ratio’
data

It appears plausible that this effect could be attributed to the introduction of
the revised planning framework. However, it can be contended that such
fundamentally disregards the potentially confounding effect of the 2008 to
2009 recession (Edmund et al., 2009; Marrs, 2019) upon the pre-policy period.
This is particularly pertinent in regards to the declining trend reported for
the pre-policy period, which appears to have been heavily influenced by
pre-recession quarters.

Therefore, it was imperative that data which sought to control for the potential
effects of the recession were also analysed. Results relating to the ‘construction

normalised’ data should be understood to reflect the area of green space, which
underwent development (m2/Ha) per 100 thousand residential development
projects where ground works began in the same time period.
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Coefficient (95% CI) Standard Error P-value
Baseline Intercept
(β0) 1.860 (1.743 to 1.976) 0.710 <0.001

Pre-Policy Trend
(β1) 0.015 (-0.005 to 0.026) 0.006 0.019

Level Change in
Transitional Period
(β2)

-0.058 (-0.217 to 0.102) 0.097 0.554

Level Change in
Post-Policy Period
(β3)

0.691 (0.481 to 0.902) 0.128 0.001

Trend Change in
Post-Policy Period
(β4)

-0.004 (-0.019 to 0.011) 0.001 0.688

Table 5.6: Intervention Effect model parameter estimates (with 95%
Confidence Intervals), standard errors and P-values related to log transformed
‘construction normalised’ data.

A level change equating to a 5.79 % (P = 0.554) decrease in area was reported
between the pre-policy and transitional periods, suggestive of the policy
having negligible effect during the first eight quarters. However, the results
estimated that within the post-policy period the area of green space undergoing
transition to developed form was 69.15% (P <0.001) higher than would have
been anticipated under the previous policy framework. There was a negligible
change identified between the trends in the pre- and post-policy periods, of -

0.371 % (P = 0.688) per quarter [table 5.6].

Crucially, it should be noted that a significant level change remained between
the pre- and post-policy periods, suggesting that the area of development
to take place on green space was 69.15 % greater than would have been
anticipated under the continuation of the previous framework. It is also
worthy of note that the gradually increasing trend (1.54 %) evidenced in the
pre-policy period changed minimally (<1 % per quarter) after the adoption of
the revised framework. This effect may indicate the ‘construction normalised’
data suitably accounts for the underlying features which can be considered to
contribute to rates of development.

141



0
5

10
15

20
25

30

 

C
on

st
ru

ct
io

n 
N

or
m

al
is

ed
 G

S
 L

os
s 

(m
2

H
a)

Q
1 

20
07

Q
2 

20
07

Q
3 

20
07

Q
4 

20
07

Q
1 

20
08

Q
2 

20
08

Q
3 

20
08

Q
4 

20
08

Q
1 

20
09

Q
2 

20
09

Q
3 

20
09

Q
4 

20
09

Q
1 

20
10

Q
2 

20
10

Q
3 

20
10

Q
4 

20
10

Q
1 

20
11

Q
2 

20
11

Q
3 

20
11

Q
4 

20
11

Q
1 

20
12

Q
2 

20
12

Q
3 

20
12

Q
4 

20
12

Q
1 

20
13

Q
2 

20
13

Q
3 

20
13

Q
4 

20
13

Q
1 

20
14

Q
2 

20
14

Q
3 

20
14

Q
4 

20
14

Q
1 

20
15

Q
2 

20
15

Q
3 

20
15

Q
4 

20
15

Q
1 

20
16

Q
2 

20
16

Q
3 

20
16

Q
4 

20
16

Q
1 

20
17

Q
2 

20
17

Q
3 

20
17

Q
4 

20
17

Q
1 

20
18

Q
2 

20
18

Q
3 

20
18

Q
4 

20
18

Quarter

Legend
Observed Data
GLS Modelled Data
Counterfactual

Figure 5.7: GLS Modelled ITS analysis of ‘construction
normalised green space loss’ data.

5.3.2 Forecast Model

It is reiterated that throughout this section the primary recorded results reflect
an estimated,‘minimum intervention effect’ based upon the absolute difference
between the modelled data relating to the post-policy period and the upper
threshold of the corresponding synthesised counterfactual, based upon a 95%
prediction interval. Brief comparison is made with results pertaining to the
observed post-policy data in order to inform inference.

Results derived from the raw ‘green space loss ratio’ data set are reproduced
in table 5.7. On average, the area of green space land identified as having
been subject to development in the post-policy period exceeded that which
would have been predicted under the previous policy framework by 56.54%
per quarter based upon the mean intervention effect.
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Year

Absolute Difference
Modelled Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Absolute Difference
Observed Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Q1 2014 0.14 22.04% 0.14 22.04%
Q2 2014 0.09 14.01% 0.05 7.56%
Q3 2014 0.45 69.46% 1.15 175.83%
Q4 2014 0.39 59.55% 0.25 37.91%
Q1 2015 0.35 51.93% 0.21 31.93%
Q2 2015 0.39 58.22% 0.60 88.64%
Q3 2015 0.36 53.43% 0.27 39.38%
Q4 2015 0.36 51.88% 0.35 51.38%
Q1 2016 0.35 49.92% 0.33 47.14%
Q2 2016 0.34 48.13% 0.32 45.81%
Q3 2016 0.36 50.78% 0.50 71.50%
Q4 2016 0.42 59.48% 0.80 113.08%
Q1 2017 0.48 66.94% 0.82 114.76%
Q2 2017 0.42 58.03% 0.12 16.40%
Q3 2017 0.56 76.96% 1.38 188.85%
Q4 2017 0.55 74.20% 0.49 66.44%
Q1 2018 0.47 63.78% 0.09 12.80%
Q2 2018 0.47 63.37% 0.51 67.86%
Q3 2018 0.46 61.28% 0.42 56.19%
Q4 2018 0.59 77.52% 1.33 175.46%

Table 5.7: Estimated Intervention effect derived from quartered ‘green space
loss’ data. Results based upon the primary metric are highlighted in bold.

Based upon the counterfactual scenario it was anticipated that development
would have occurred on a maximum 0.70m2/Ha of green space per quarter.
However, the modelled post-policy period recorded the actual area which
underwent change from green space to developed form to be 1.10m2/Ha per
quarter, thus suggesting that an additional 0.40m2/Ha was lost to development
in each quarter since the implementation of the revised framework.

This can be considered to translate to an average area of 68.62 Ha per quarter
(around 96 football pitches) and a cumulative area of 1,372.33 Ha (0.8% the
size of London) across the entire post-policy period.

Positive intervention effects were recorded in regards to each quarter of the
post-policy period, representing evidence of additional green space land being
lost to development, where measured against the absence of the policy change.
The smallest effect estimated a 14.01% (0.09m2/Ha) increase in quarter 2
of 2014. Whilst, it was estimated development occurred on an area 77.52%

(0.59m2/Ha) greater than anticipated in quarter 4 of 2018, representing the
largest single quarter intervention effect.

The general trend modelled in the post-policy period evidenced an increasing
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area of green space land being lost per quarter, at an average rate of around
0.02m2/Ha. During the first ten quarters under the revised policy framework
the average intervention effect recorded a 47.68% increase in the area on
which development occurred. Whereas, between quarter 3 of 2016 and quarter
4 of 2018 it had risen to 65.23% and contained 7 of the 10 largest recorded
single quarter intervention effects. Such can be considered to suggest the
intervention may have caused a sustained and increasing effect upon green
space development (Bernal et al., 2017) [figure 5.8].
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Figure 5.8: Graphical representation of quartered subset DLM ITS
Analysis

Results derived separately based upon the difference between the post-policy

observations and counterfactual boundary were significantly different, with a
per quarter average effect estimated as 71.55%. The disparity between the
two statistics can be attributed to the large variance in regards to the observed
data and the influence of outliers upon the results, such as the large effects
associated with quarters 3 of 2014, 4 of 2016, 1 and 3 of 2017, and 4 of 2018.

However, the observed data relating to individual quarters may be subject to
anomalies, which could distort results. Therefore, the use of the underlying
trend can contribute to more reliable inference.
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From the outlined results, across the entire post-policy period the inferred
intervention effects suggest the area of green space subject to development
exceeded the predicted rate assumed under the previous regime by an average
of 56.54%.

However, the attribution of this effect to the provisions within the Localism Act

2011 and NPPF can be cast in doubt, particularly in light of the concurrence
with a seismic economic event in the form of the recession of 2008 to 2009
and subsequent recovery.

Where data reflected the area of green space upon which development
occurred per 100,000 residential developments, results continued to suggest
a significant intervention effect [refer to table 4.5]. It was estimated each
quarter saw a mean average green space area 45.59% larger than predicted
under the previous policy framework subjected to development. Where the
median was applied as an alternative the intervention effect rose to 49.27%.

An average difference of 5.97m2/Ha (per 100k development projects) was
recorded, based upon the 13.08m2/Ha (per 100k development projects)
predicted based upon the counterfactual and 19.05m2/Ha (per 100k
development projects) modelled upon the same period subject to the revised
framework.

Therefore, for every 100,000 residential developments an average additional
area of green space equating to 1,023.36 Ha per quarter (around 1,433 football
pitches) was lost since the adoption of the Localism Act 2011 and NPPF.
Accordingly, throughout the post-policy period a total green space area of
203,571.80 Ha (1.29 times the size of London) which would not have been
predicted to be subject to development was built upon.

In the modelled post-policy period, after quarter 1 of 2014, in which no
intervention effect was estimated, the area of green space undergoing change
subsequently remained above the maximal predicted counterfactual. The
estimated intervention effect ranged from 5.31% in regards to quarter 2 of
2014 to 68.07% in quarter 4 of 2018, with an underlying trend which reported
an average 3.58% increase per quarter.
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Between quarter 1 of 2014 and quarter 2 of 2016 the average area of green
space which underwent development was 32.75% greater than under a null
effect scenario. During the second half of the post-policy period (quarter 3
of 2016 to quarter 4 of 2018) the area was 58.43% higher, supporting the
existence of an increasing effect.

Interestingly, based upon the difference between the observed data and
counterfactual the average intervention effect (59.32%) was relatively
similar to that which was recorded by the modelled raw post-policy data
(56.54%). This may imply the dynamic linear model suitably accounted for
the underlying economic influence (Laine, 2020).

Year

Absolute Difference
Modelled Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Absolute Difference
Observed Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Q1 2014 0.00 0.00% 0.00 0.00%
Q2 2014 0.69 5.31% 1.39 10.62%
Q3 2014 5.17 39.50% 13.80 105.49%
Q4 2014 4.17 31.87% 1.37 10.44%
Q1 2015 3.94 30.14% 3.12 23.86%
Q2 2015 6.14 46.90% 15.6 119.28%
Q3 2015 5.58 42.67% 2.85 21.81%
Q4 2015 5.61 42.87% 5.75 43.97%
Q1 2016 5.6 42.82% 5.56 42.52%
Q2 2016 5.95 45.46% 8.12 62.06%
Q3 2016 6.76 51.64% 12.07 92.28%
Q4 2016 7.41 56.67% 11.90 90.93%
Q1 2017 8.05 61.53% 12.51 95.65%
Q2 2017 7.04 53.85% 0.00 0.00%
Q3 2017 8.16 62.36% 16.29 124.52%
Q4 2017 7.92 60.53% 6.15 46.98%
Q1 2018 7.09 54.21% 0.91 6.92%
Q2 2018 7.58 57.95% 11.28 86.20%
Q3 2018 7.53 57.54% 7.12 54.39%
Q4 2018 8.90 68.07% 19.43 148.56%

Table 5.8: Estimated Intervention effect derived from quartered ‘Construction
normalised green space loss’ data. Results based upon the primary metric are
highlighted in bold.

The ‘Construction normalised green space loss’ data evidenced a continuing,
significant difference between the post-policy observations and counterfactual
predictions, suggestive of a long term intervention effect potentially associated
with the revised planning policy framework. The area of green space land upon
which development occurred was assessed as 45.59% higher under the new
framework than was modelled based upon the continuation of the previous
planning policy [figure 5.9].
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Figure 5.9: Graphical representation of ‘Construction normalised’ quartered
subset DLM ITS Analysis

5.4 Discussion

The research presented within this chapter sought to empirically investigate
the impact upon the prevalence of green space associated with the adoption
of different approaches to National Planning Policy within the context of a
single country. To address this research gap the outlined core question was
investigated.

Research Question 2: What effect have the Localism Act 2011 and National

Planning Policy Framework had upon the area of green space which has been
subject to development?

5.4.1 Key Findings

By applying an established quasi-experimental method, which is recognised as
offering robust inferential analysis of impacts associated with interventions
(Fretheim et al., 2013), this research estimated the effect of a change to
national planning policy upon rates of development on green space land.
Derived results indicate a significantly larger area of green space was subject
to development in the defined post-policy period than would have been
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predicted based upon the continuation of pre-policy trends.

The consistent level changes presented by segmented regression (69% and
74%), allied to positive intervention effects (46% and 56%) recorded by
the forecast model can be interpreted as suggestive of a significant effect
associated with the modelled intervention.

Whilst there is evidence of the NPPF being cited as a material consideration
in developments approved under appeal to central government from October
2012 (DCLG, 2012b), based upon both the structural time scales inherent to
the planning process (Ball et al., 2009; Shelter, 2019) and the minimal number
of such appeal cases, the reported increase in loss during the transitional
period is unlikely attributable to the implementation of the revised planning
framework. The outlined would suggest the transitional period most likely
reflects the continuation of the collaborative influence of both the previous
policy regime and changes to economic circumstances.

Although there is no directly equivalent research against which to assess the
significance of the reported intervention effect, comparison can be drawn
with general ITS research. Based upon nine studies relating to various forms
of legal or procedural adjustments, effects ranging from 4% (Barone-Adesi
et al., 2011) to 78% (Devkaran and O’Farrell, 2015) were termed as such.
Whilst conversely, those which assessed there to have been no indication of
impact, relied upon intervention effects of less than 1% (Ramirez and Crano,
2003; Harper and Bruckner, 2017). It must be born in mind that policy effects
should be considered within the specific context to which they apply, but the
estimated intervention effects recorded from this research can be deemed to
reflect a material effect upon green space area.

Reasons for the outlined change can be speculated upon within the context
of the provisions of the revised planning framework. However, individual
elements must be understood as constituents of a complex structure which
interacts with and is influenced by a number of socio-political factors
(Hersperger et al., 2018), including growing political pressure to resolve an
exacerbating housing crisis (Mulheirn, 2019).

As discussed previously, whilst many of the provisions within the framework
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can be understood semantically to differ little from previous systems (Davoudi,
2011; Haughton and Allmendinger, 2013), the joint effects of the omission
of clarity around key details (Sibley-Esposito, 2014) and implicit change in
tone (Conservative Party, 2010) could account for the increased loss in the
post-policy period. This supposition is supported by Sibley-Esposito (2014),
who reported governmental recognition that the intentions of the policy were
commonly misinterpreted at a local level, where developments were approved
on land eligible for protection.

Whilst across both approaches significant intervention effects were recorded,
reported differences are worthy of note. In accordance with expectation the
intervention effects associated with the ‘construction normalised’ data were
lower than the non-normalised equivalents. There is an implication as such,
that in relation to the ‘green space loss ratio’ data the increased rate could
be attributed to total development. This would appear to be corroborated by
national residential development data, which showed a sustained increase from
2014 (MHCLG, 2020a) and may be deemed to support one of the original
intentions outlined for the revised framework (Cabinet Office, 2010).

The issue outlined above highlights the importance of data which accounts
for other drivers of change (referred to in some research as additionality), but
is not commonly applied to planning policy research (Morrison and Pearce,
2000). Whilst economic data has previously been considered as a variable
within regression models (Kasraian et al., 2019), the complex relationship
between economic circumstance, construction and planning applications
(Edmund et al., 2009; Marrs, 2019) could not be reliably captured. Therefore,
data which can explicitly control for the influence of confounding variables
provided enhanced causal inference (Morrison and Pearce, 2000).

Despite the strength of the results, it remains difficult to discern the impact
which can be associated with the intervention from other potential factors.
Identified as a common issue in regards to the complex systems in which
policies operate (Daviter, 2019), particularly for planning where multiple
outcomes may be intended (Hersperger et al., 2018).

The existence of a persistent and increasing trend may suggest there was
limited direct effect associated with the isolated impact of appeal decisions in
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the absence of current local plans, which allocate sufficient land for housing
need (Sibley-Esposito, 2014). Were such to have been influential an argument
can be made data would reflect an initial peak followed by a gradually
decreasing trend thereafter as Authorities updated relevant documents.
However, such inference is difficult to verify as it was evidenced that over a
quarter of Authorities did not have a valid plan in place by 2018 (Lichfields,
2019) and rates of appeal were shown to increase between 2015 and 2018
(MHCLG, 2019).

Where the data accounted for total residential development, there remained
a significant sign of a policy effect. Results indicated that on average
the area of green space per hundred-thousand new residential buildings
was 45% larger than under the counterfactual scenario. This could suggest
a change to both the types and density of development in the post-policy period.

Research has previously shown, where not constrained by urban boundaries,
residential development tends to be of a lower density (Bibby, 2009). It can be
speculated this may be attributable to the dominance of free-market principles
upon the residential sector (Slater, 2016), with evidence of lower land prices
(Livanis et al., 2006), concomitant reduced costs associated with remedial
works (De Sousa, 2000) and the effect of the proximity of large areas of
green space upon house prices (Morancho, 2003). This can be interpreted as
suggesting that the significantly increased loss of green space under the revised
framework is associable with a transition from a focus upon densification
(Baing, 2010) to urban expansion. However, the outlined supposition cannot
be verified based upon the existing research.

5.4.2 Strengths and Limitations

In the absence of a viable research control, Interrupted Time Series analysis
represented a strong quasi-experimental alternative (Wagner et al., 2002;
Fretheim et al., 2013; McDowall and McCleary, 2014; Bernal et al., 2017),
which had been applied extensively to other areas of policy research, but not
previously used in regards to planning and development. This approach made
all reasonable attempts to account for patterns, which existed in the data prior
to the implementation of the revised policy, thus enabling the most robust
inferential analysis available in the circumstances (McDowall and McCleary,
2014; Lopez Bernal et al., 2019)
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By formally testing for stationarity, autocorrelation and seasonality, which
contributed to model choices, it was ensured that some of the key threats
(Turner et al., 2019) to which such analyses are often susceptible were
mitigated against (Ramsay et al., 2003; Jandoc et al., 2015; Harper and
Bruckner, 2017). Neither seasonal nor cyclical components were identified as
present across all data. Whilst, the adoption of first order polynomial dynamic

linear models in the forecast approach accounted for both non-stationarity

(West, 1995) and autocorrelation (Fei et al., 2011). Whereas, auto-correlated
features were explicitly incorporated into the generalized least squares

segmented regression, with the dummy ‘time’ and ‘trend’ variables controlling
for relevant linear patterns (Lane and Hall, 2019). Furthermore, in each
instance the absence of autocorrelation in the residuals was tested for and
confirmed during analysis.

Despite applying relevant data controls as discussed above, the ITS approach
remains vulnerable to historical bias (Bernal et al., 2017). In the absence of
a comparative control group, there are limited means by which to exclude
the identified change reflecting the effects of an external event occurring
concurrently with the policy change (Linden, 2017).

This concern is increased by the existence of an extended transitional period in
which there is greater scope for external factors to influence the data (Galster
et al., 2004; Penfold and Zhang, 2013). In comparable Interrupted Time Series

analyses the maximum delay between an intervention and its effect was 6
months (for example Lane and Hall (2019)). However, a strong evidential
basis was presented with which to support the application of such a lengthy
delay (Callcutt et al., 2007). Assessments of the time between approval of
planning decisions (made under the policy at that time) and the completion of
development estimated a range of between 10 months (Lichfields, 2016) and
3.2 years (Callcutt et al., 2007).

In this instance, the risk of historical bias materially affecting the reported
intervention effect also appears unlikely, primarily due to relevant data
controls. The time-scales which determine development (Callcutt et al.,
2007; Lichfields, 2016; Shelter, 2019) (even if one assumes such to have
been reduced under the NPPF as intended (Paterson, 2012)) would require
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a confounding event to have taken place between 2009 and 2011. The
most likely identifiable event within this time-frame was the economic
recovery, with 2014 identified as the year in which national GDP returned
to pre-recession levels (ONS, 2018a). However, the same statistical analysis
noted that despite nascent signs in 2013, the construction sector did not fully
recover until 2015 (ONS, 2018a). In any event this influence was notionally
accounted for through the analysis of separate ‘construction normalised’ data,
which retained significant reported effects.

Whilst, the outlined can be considered to suggest the research has a relatively
high degree of internal validity (Biglan et al., 2000), the extent to which
it can be considered to offer generalizable outcomes is more difficult to
establish (Penfold and Zhang, 2013). As the data does not relate to the entire
population, the derived inferences can only reliably be reported in regards to
the sample (Biglan et al., 2000). Said sample constitutes around 14% of the
total population and was designed to offer a broad range of Local Authority
Area types, but cannot be considered to replicate a truly representative sample
due to the high degree of variability between such. Therefore, inferences
should be considered cautiously when applied to the entire country.

However, by employing a robust sample of Local Authority Areas with a
diverse profile, in regards to which systematic bias is deemed unlikely, the
strong evidence derived from this research can be considered suggestive of
a general trend. With Dallimer et al. (2011) previously identifying hugely
variable impacts between different Local Authorities, future research may be
required to confirm this.

With appropriate model choice identified as a critical factor in ITS based
research (Wagner et al., 2002), the adoption of two distinct modelling
approaches can be contended to offer additional inferential support (Harrop
and Velicer, 1985). Applied to the same data, each reflected positive
intervention effects in the post-policy period. Additionally, in each instance
comparison was made with alternative models and assessed accordingly.

Additionally, due to the highly stochastic nature of the data and some
uncertainty in regards to the dates at which developments may have been
approved, the use of a dynamic linear modelled post-policy period, which
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attempts to account for such should be considered to increase the strength of
analysis (Brodersen et al., 2015; Brodersen and Hauser, 2020).

All inferences must be considered as constituents of synergistic relationships,
in regards to which the attribution of increased rates of development upon
green space to the policy reforms alone remain difficult (Galster et al., 2004).
However, many of these factors, such as the growing political pressure to
resolve an exacerbating housing crisis (Mulheirn, 2019), should be understood
as influential both directly to the policy reform and indirectly to its subsequent
application.

5.4.3 Implications

With green space the subject of increasing developmental pressure globally, it
is vital that the implications associated with policy provisions are understood
(Alexander, 2016; Hersperger et al., 2018). The Interrupted Time Series

analysis methodology applied in this research addressed one of the core
issues identified by Morrison and Pearce (2000), establishing a counterfactual
scenario, representing the outcome in which the policy did not come into
force.

Consequently, where data exists to act as an indicator of policy impact (often a
conceptually difficult stage in conformance based evaluation (Morrison and
Pearce, 2000)) the ITS method could be utilised to assess the outcomes of both
national and local planning provisions.

The outcomes indicated by this and previous research (Dallimer et al., 2011)
should be used to inform evaluation within the policy cycle, providing
evidence for reform (Jann and Wegrich, 2007). When the NPPF was the
subject of revision in 2018, responses to statutory consultation raised concerns
that it had failed to adequately balance environmental needs (MHCLG, 2018a).
Similar issues were identified by the Campaign to Protect Rural England

around the failure to contribute to sustainable development in submission to
the Raynsford Review of Planning (CPRE, 2017). CPRE (2017) reported an
increase in low density residential development leading to a loss of green
space. However, without clear quantitative evidence the organisation’s position
was difficult to substantiate.
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This research substantiated the outlined and analogous concerns (RSPB, 2011)
and can be considered to support requests that additional provisions were
included to ensure the unnecessary loss of undeveloped land was guarded
against (MHCLG, 2018a).

It can further be used to inform future ex ante evaluation, responding to a
common issue relating to the lack of high granularity data (Smismans, 2015).
Whilst predictive modelling of future scenarios under the different policy
approaches could incorporate the outcomes as a means of augmenting existing
data profiles.

The extent of the increase in the loss of previously undeveloped land raises
significant concerns in relation to a variety of ecosystem services (Bolund and
Hunhammar, 1999). Advocating recommendations made in the Raynsford

Review of Planning, it suggests the need to evolve a legal duty for the planning
system to deliver sustainable development, including management of the “use,

development and protection of land” (TCPA, 2020).

5.5 Conclusion

This research aimed to broaden understanding of the impacts upon green space
associated with planning policy reforms, using the Localism Act 2011 and
National Planning Policy Framework as an example. Strong evidence was
presented of an increased area of land having been subject to development
during the post-policy period than would have been anticipated under the
previous framework.

Based upon the interpretation of the revised system as representing a less
regulated approach to development (Sibley-Esposito, 2014), it suggests such
may lead to persistent and increasing loss of environmentally important green
space. Whilst some caution may be deemed prudent in light of the potentially
confounding effects of external factors and uncertain elements of the data, the
capability of dynamic linear models to account for such can be considered to
offer a more robust insight.

However, there is evidence to suggest the effects upon green space
may be different based upon its location within urban boundaries or the
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peri-urban fringe (Dallimer et al., 2011). Therefore, analysis which provides
understanding of the impact of policy change upon different types of green
space land should be deemed a core element of future research.
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CHAPTER6
The Inviolable Idyll?

Quantitatively Analysing the Policy Impact upon Rural Land

“The coffin of our English dream,

Lies out on the village green,

While agri-barons CAP in hand,

Strip this green and pleasant land,

Of meadow, woodland, hedgerow, pond,

What remains gets built upon.”

Country Life
Knightly (2003)

Mixed within the ancient broad-leaved woodland landscape of the High

Weald Area of Outstanding Natural Beauty (Anderson, 1981) are situated a
verdant patchwork of fields connected by diverse hedgerows (Bannister, 2017),
which form an interconnected ecosystem for a variety of species, including
White Admiral butterflies [Limenitis camilla], Eurasian Treecreepers [Certhia

familiaris] and Wood Sorrels [Oxalis] (Patmore, 2000).

The retained woodland constitutes 7% of the total area contained within
England and has occupied the site continuously for over 400 years at least
(The High Weald AONB, 2020). Whilst the surrounding fields have provided
agriculture, commons and pastures since medieval times (Bannister, 2017).
Surrounded by this 146,000 Ha area is the town of Crowborough, an urban
island in a vast sea of green (Anderson, 1981). Due to this location within a
designated AONB the town has been to some extent constrained by a natural
rural boundary.

However, in 2020 a 6.5 Ha site, consisting of 4 fields delineated by native
hedgerow, part of which remains common land was approved for development
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(Wealden District Council, 2020), marking the incursion of the urban into the
rural fringe. Such rural hinterlands are envisioned as the next key battleground
in the inexorable march of urbanisation (Gant et al., 2011), with regulation
through policy one of the tools to support containment (Millward, 2006). The
threat to the High Weald may be emblematic of a wider trend and presage a
greater developmental loss than previously evidenced.

6.1 Introduction

Although somewhat incongruous with widely held perceptions of England as a
predominantly urban country (Lock and Cole, 2011), as of 2011 only 10.6%
[1,382,187 Ha] of total land cover was recorded as such (Watson and Albon,
2011). Additionally, it can be noted that said urban designation did not directly
equate to built land, with urban green spaces, blue spaces and private gardens
recorded as accounting for almost three-quarters of the recorded area (Watson
and Albon, 2011). Despite this seeming abundance of undeveloped land,
developmental pressure upon rural areas represents both a politically emotive
issue (Gant et al., 2011) and reflects an increasing global concern (Bart, 2010).

Within the context of the UK, the inviolability of rural land cannot be
extricated from the cultural significance of the ‘rural idyll’ (Harrison and
Clifford, 2016), which evolved in response to the rapid urbanisation associated
with the Industrial Revolution (Žmolek, 2013) and has influenced public
perception of planning policy since its inception (Cullingworth and Nadin,
2003). The adoption of ‘Green Belts’ as a means through which to protect
rural land from urban expansion represents one of the founding principles of
modern planning (Elson et al., 1993). However, as the pressure of urbanisation
continues to grow and the concomitant restricted supply of land has become
linked to an unprecedented crisis in regards to access to housing (Cheshire,
2013), the continued retention of ‘Green Belt’ land has become the subject of
debate (Papworth, 2015).

This discourse represents one of the fundamental issues in regards to planning
policy, as it attempts to balance the impacts associated with the constraint
of urban areas against those associated with expansion into the rural fringe
(Ståhle, 2010). Having ostensibly been characterised by a prolonged period of
focus upon urban densification (Cullingworth and Nadin, 2003), the Localism
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Act 2011 and National Planning Policy Framework were portrayed as a radical
shift towards urban expansion (Sibley-Esposito, 2014).

However, this contention could largely be attributed to a perceived diminution
in regards to the protection afforded to ‘Green Belt’ land (Sibley-Esposito,
2014), claimed by the Campaign to Protect Rural England. Whilst
governmental data related to both rates of development and applications to
build upon ‘Green Belt’ sites have been used to support this view (CPRE,
2018), there has been no quantitative analysis to assess the extent to which
the policy may threaten protected areas. Furthermore, there has been limited
analysis related to wider rural land.

This research therefore, builds upon the foundations outlined in chapters 4 and
5, which cumulatively established the existence of a structural shift related to a
strong intervention effect, evidencing the occurrence of increased development
upon green space land. However, neither enabled the exploration of the extent
to which developmental loss related to designations of urban and rural land,
considered crucial to the development of a conceptual model of policy as a
regulator of urban expansion (Dallimer et al., 2011).

6.1.1 Primary Research Aim

The encroachment of urban areas into previously undeveloped rural fringe
land represents a burgeoning issue in a number of rapidly developing nations
(Yang and Jinxing, 2007), as a result of the pressures of population growth
and economic migration (Colantoni et al., 2016). Effective control of this
phenomenon is considered essential to both local (Zhao, 2010) and global
sustainability (Bart, 2010). With lessons learnt from policies intended to
guide urban compaction in Nations that have previously undergone analogous
periods of growth assumed to be an important tool to support this endeavour
(Stead, 2012).

However, the consequences associated with common strategies utilised to
restrict urban expansion have become the subject of debate (Bengston and
Youn, 2006a). Regulatory ‘Green Belts’ have been shown to have merely
displaced development to other natural areas (Bae and Jun, 2003) and broader
policies of containment have been cited as a significant factor in the UK
housing crisis (Cheshire, 2013).
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Similarly to other analyses relating to drivers of land use change, to date the
majority of research has relied upon satellite imagery as a primary data source,
which may fail to identify more subtle elements of change (Plieninger et al.,
2016), explicitly in the rural fringe (Gallent, 2006). Furthermore, quantitative
assessments of policy effect have been limited in methodological approach
and are contended to offer limited inferential strength (Morrison and Pearce,
2000). This debate can therefore be augmented by both novel data sources
(such as highly granular vector data (Smith et al., 2007)) and robust inferential
methods (McDowall et al., 2019).

It is contended both individual provisions within the National Planning Policy

Framework and the general tone it sets are indicative of a paradigm shift
in planning policy from a focus upon densification, in which development
is restricted to existing urban boundaries, to the enablement of expansion
into proximate rural areas (Dallimer et al., 2011; Sibley-Esposito, 2014;
Slade, 2018). This was particularly associated with the tacit removal of a
‘brownfield’ first provision (Sibley-Esposito, 2014), which had been evidenced
to have contained development under the prior policy framework (Ganser and
Williams, 2007). Although media focus has primarily related to a purported
diminution in the protection afforded to ‘Green Belt’ land.

It is therefore the intention of this research to investigate the extent to which
this supposition is supported by quantitative analysis of green space loss
data. More formally the research can be considered to have been designed to
address the following research question.

Research Question 3: Do analyses of rates of development upon green space
offer insights in regards to the extent to which the revised planning framework
can be characterised as enabling urban expansion?

To address this research question two elements were adopted. The first focused
upon the estimation of an intervention effect in regards to the occurrence
of development on ‘Green Belt’ land, responding to the need for a robust
empirical analysis to augment prior reports of effects (CPRE, 2018). Whereas
the second was designed to assess the impact upon the urban-rural fringe,
commonly omitted from research, but deemed a political priority (Gallent,

159



2006). In this approach, the work directly builds upon the focus of preceding
research undertaken by Dallimer et al. (2011), in which rates of development
both within and outside urban areas were assessed under the prior policy
framework. In order to enhance the inferential validity of the study, separate
intervention effects were derived for ‘green space loss’ and ‘brownfield’ land.

6.1.2 Contribution

The final contribution of this thesis investigated the impact of policy change
upon the spatial pattern of development in relation to existing urban boundaries,
using methods consistent with established policy impact evaluation (Bernal
et al., 2017). Through analysis of the impacts upon designated ‘Green Belt’
and in relation to urban boundaries it developed an empirical evidence base
to inform understanding of provisions intended to promote densification or
urban expansion. It evidenced an association between the adoption of a policy
which could be considered broadly more permissive of development and a
rapid alteration to the distribution of development, suggestive of increased
development within the rural fringe. This validates existing research (Dallimer
et al., 2011; Mu et al., 2016) and informs the wider development of theories
relating to the role of policy in regards to patterns of development.

The analysis represents a response to the the demand for research to be
undertaken with regard to the land impacts associated with different approaches
to densification as identified by Dallimer et al. (2011). It adopts an analogous
set of primary indicators of land change (green space and ‘brownfield’) and
relates to a policy interpreted as a mechanism discouraging of urban expansion
in the same research. Furthermore, considered in conjunction with this
preceding work the research contributes towards the expansion of a theoretical
basis with which to inform the balance between developmental needs and
green space conservation.

6.1.3 Motivating Examples

Prior to the research undertaken in regards to the outlined aim, this section
presents a motivating example based upon existing governmental records
related to rates of development on designated ‘Green Belt’ land. Whilst the
outlined data has informed popular debate around the impact of the revised
framework (Marrs, 2018), methodological issues cast doubt as to the validity
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of the outcome.
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Figure 6.1: Source: MHCLG (2012)
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Figure 6.2: Source: MHCLG (2019e)

The Campaign to Protect Rural England [CPRE] reported that from analysis
of governmental records pertaining to the rate of residential development
within the designated ‘Green Belt’, it was “highly likely that the NPPF”
had resulted in increased loss of green space (CPRE, 2018). Said data is
reproduced above [figure 6.1] based upon the same original data (MHCLG,
2012), which was used by CPRE. A simple ordinary least squares line of
linear regression for the periods both before and after the implementation of
the revised legislative and policy framework was fit to the data and would
appear to suggest that a change occurred during the intervening period.

Between years 2014 and 2017 an average of 251 Ha of green space were
developed upon per annum within the ‘Green Belt’. This can be compared
to a recorded average of 50 Ha per annum between years 2007 and 2011.
Interpreted graphically it appears evident that there has been a significant
change in both the intercept and slope within the second period.

However, it should crucially be noted that the methodological approach
to identifying the area of land upon which development occurred was
significantly amended in 2012 (DCLG, 2015a). As a result of which the
area of land identified as having changed would inevitably be much higher
than that recorded under the previous regime (DCLG, 2015a). Consequently,
relevant data should be considered unreliable for comparison, with explicit
advice not to interpret such as evidence of temporal change in rates. Whilst
the effect of the methodology upon land within the designated ‘Green Belt’
may be considered less likely to be affected by this alteration, it requires more
robust statistical support.
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Supplemental data based upon separate governmental records of the total area
of land designated as ‘Green Belt’ in England can be considered to strengthen
the CPRE’s assertion in spite of the outlined methodological concerns.
MHCLG record the total area of land designated as ‘Green Belt’ per annum,
based upon data submitted by individual Local Authorities (MHCLG, 2019c).
Whilst changes in area merely reflect the removal of the legal designation from
land rather than that development has occurred, said data can be considered
to offer some insight into the effects of the planning system as it generally
precipitates future development.

Interestingly, the data for England shows a rapid increase in the area of
land from which the designation was removed between 2016 and 2017 in
particular, allied to a more general pattern associated with the period after the
implementation of the NPPF [figure 6.2]. Comparison of recorded average
change between the period prior (2007 - 2012) and subsequent (2012 - 2019)
to the implementation, record an increase of around 1,530 Ha and decrease
of 2,618 Ha respectively. Within reporting published in 2018, the outlined
data was supplemented by analysis of planning applications, which showed
an increase from 27 applications in 2009 to over 155 in 2019 (CPRE, 2018).
Similarly to the other data discussed in this section, alone the above does not
offer robust inference (McDowall et al., 2019), but portrays a general pattern
of increased land loss. Therefore, supplementing the existing body of evidence
with analysis of data derived from a consistent methodology may therefore
be considered essential to developing inference through which to augment
understanding of the role of policy.

6.2 Chapter Structure

This chapter is hereafter structured as follows. Section 6.3 describes the
method undertaken in this research, including the temporal range, two distinct
samples and five univariate time series upon which it is based. The analytical
process employed to conduct Interrupted Time Series Analysis is outlined.
Results [section 6.4] are structured in two parts, around the ‘Green Belt’ and
urban boundary analyses. Section 6.5 discusses the key findings, relative
strengths and weaknesses associated with the applied methodology and
implications of the research. With conclusions presented in section 6.6.
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6.3 Methodology

Responding to the need to utilise robust quantitative analytical methods to
inform the development of a conceptual model of policy impacts upon land use
(Plieninger et al., 2016), the methodology outlined within this research applies
Interrupted Time Series Analysis (Bernal et al., 2017), using dynamic linear

models (Brodersen et al., 2015). The aforementioned approach was validated
in 5 and extends the use of methods proposed in Ramachandra (2019), whilst
complying with recommendations for policy analysis (HM Treasury, 2020b).

Analysis is conducted in two stages relating to the occurrence of green space
loss within designated ‘Green Belt’ and subsequently outside existing urban
boundaries. With both collectively intended to provide insight into the effects
of the subject policy change upon patterns of development. In regards to the
research relating to urban boundaries three distinct indicators of land change
were utilised, in the form of ‘green space loss’ within the urban boundary,
‘green space loss’ outside the urban boundary and indicative ‘brownfield’ loss
within the urban boundary.

The methodology hereafter describes relevant samples and datasets, prior to
illustration of the analytical methods undertaken.

6.3.1 Sample

Two distinct samples were utilised in regards to the analyses of the estimated
policy impacts upon both land within the ‘Green Belt’ and in relation to
indicative urban boundaries respectively.

Where related to relevant urban boundaries, the sample comprised 42 Local
Authority Areas in England, derived through an adapted maximum variation
methodology (Cohen and Crabtree, 2006) section 3.3. It consists of a
geographically dispersed range of 21 designated ‘urban’ and 21 designated
‘rural’ authorities, reflective of diverse economic and physical profiles (Bibby
and Brindley, 2013).

However, the ‘Green Belt’ sample was restricted to a subset of twenty-two,
which were identified as containing relevant designated land in 2007. In total,
the outlined subset sample contained a ‘Green Belt’ area of 2,120,818km2,
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ranging from a mere 0.2km2 in Blaby to 339,776.4km2 in regards to Leeds
(based upon MHCLG (2019b) ‘Green Belt’ data). Of the twenty-two
authorities which constitute this sample, fourteen are classified as ‘urban’ and
eight as ‘rural’ (Bibby and Brindley, 2013). This disparity can be attributed to
the association between ‘Green Belt’ designation and existing urban boundaries
(Garton and Barton, 2019).

Figure 6.3: Data Sources: Ordnance Survey (2018b); MHCLG (2019c)
Sample Local Authority Areas with designated ‘Green Belt’ (2007).

Local Authority Green Belt Area (km2) Local Authority Green Belt Area (km2)
12 Leeds 339776.4 15 Oldham 62556.9
8 Doncaster 232559.8 1 Birmingham 41888.8
20 South Gloucestershire 232300.9 17 Rossendale 31732.1
18 Selby 192828.4 7 Coventry 30324.3
5 Chiltern 173801.6 16 Pendle 20733.4
14 North Warwickshire 172843.9 13 North Tyneside 16609.5
3 Brentwood 137498.0 22 Wyre 7528.3
19 South Bucks 123441.7 11 Harlow 6370.8
21 Warrington 114220.7 4 Bristol, City of 6086.0
10 Gedling 90111.8 9 East Staffordshire 393.3
6 County Durham 87211.0 2 Blaby 0.2

Table 6.1: Area of ‘Green Belt’ (2007) for each sample LAA based
upon MHCLG (2019b) data.
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6.3.2 Temporal Range

Throughout this section of research all relevant data consist of 48 observations
obtained at quarterly intervals between quarter 1 of 2007 and 4 of 2018.

In accordance with prior analyses [chapter 5], data were segmented into
common pre-policy (Q1 2007 to Q4 2011), transitional (Q1 2012 to Q4
2013) and post-policy (Q1 2014 to Q4 2018) periods to support Interrupted

Time Series analysis (Lane and Hall, 2019). The identification of which
were informed by evidence outlined in detail in section 4.3.3.1 and can be
considered to be broadly based upon an average two-year delay between
planning approval and the completion of development (Shelter, 2019).

6.3.3 Green Space Loss Data

Green space data comprises over 300,000 geospatial polygons derived from
OS Mastermap® digital topographic data (Ordnance Survey, 2017). Each
depicts areas recorded as buildings and associated infrastructure (including
private gardens), manmade surfaces or sites undergoing development, which
were identified as indicative of the existence of previously undeveloped green
space at the prior time interval.

Accordingly, each green space loss area polygon consists of geometric
attributes (such as area (m2), shape and location), both pre-change and
post-change classification criteria and a time of change identifier (quarter
and year).

6.3.4 Change to Land Within Designated ‘Green Belt’

‘Green Belt’ data were sourced through the governmental open data platform
(MHCLG, 2019b). Said data consists of collated geo-spatial shapefiles,
depicting both the geometric attributes and location of designated ‘Green Belt’
recorded at regular intervals and accessed for the following available time
periods:
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• 2003

• 2007

• 2007 - 2008

• 2008 - 2009

• 2009 - 2010

• 2010 - 2011

• 2011 - 2012

• 2013 - 2014

• 2014 - 2015

• 2015 - 2016

• 2016 - 2017

• 2017 - 2018

It should be noted data was not available for any calendar year between 2003
and 2007 or reporting year 2012 - 2013.

Due to the regular revision of ‘Green Belt’ boundaries (Garton and Barton,
2019) two distinct measures relating to the area of development within such
were adopted. They relate to land which was designated as such at the time
of the change and land from which the designation was removed prior to the
occurrence of the change.

The first is concerned only with the occurrence of development within areas of
land which were designated as ‘Green Belt’ at the time of the change (based
upon the most recently available data). Accordingly it can be understood to
reflect the spatial intersection between the area of ‘green space loss’ recorded
in regards to a time (t) and land registered as ‘Green Belt’ at the last time (i)
prior to or at time t− 1.

For a time series t0, ..., t+47, loss within designated ‘Green Belt’ (GSGBL) is;

GSGBLt = GSLt ∩GBi for t = 0, ..., 47 (6.1)

where GSLt is the ‘green space loss’ which occurred between times t− 1 and
t; and GB is land registered as ‘Green Belt’ in i, where i is the most recent
time period in the ‘Green Belt’ dataset up to time t− 1.

Whilst the second also included all development which has occurred
upon land from which the designation was removed prior to the change.
Methodologically, in relation to the changes which took place during the
pre-policy period, said data can be understood to reflect the spatial intersection
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between the ‘green space loss’ data and land which was registered as ‘Green
Belt’ in any year prior to said change occurring (2003 to 2011). Whereas, for
post-policy change data, it is restricted to land from which the designation was
removed after 2012.

Accordingly the data comprises individual polygons showing the intersection
between ‘green space loss’, which occurred at time t and land registered as
‘Green Belt’ at any time (i) prior to or at time t− 1.

For a time series t0, ..., t+47, loss within designated ‘Green Belt’ (GSGBL) is;

GSGBLt = GSLt ∩GBi for t = 0, ..., 47 (6.2)

where GSLt is the ‘green space loss’ which occurred between times t− 1 and
t; and GB is land registered as ‘Green Belt’ in i, where i is any time period in
the ‘Green Belt’ dataset up to time t− 1, but greater than tτ , representing the
point at which the intervention occurred.

Figure 6.4: Area of ‘green space loss’ which is contained within
the ‘Green belt’ boundary.

For example, for an area of green space loss recorded as having occurred in
quarter 4 of 2018:
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• ‘Green Belt’ at time of change: represents the spatial intersection with
the ‘Green Belt’ area recorded in regards to 2017 - 2018.

• ‘Green Belt’ at any point prior to change: represents the spatial
intersection with any ‘Green Belt’ area recorded between 2013 - 2014
and 2017 - 2018.

Derived data was aggregated by quarter and subsequently reflects the area of
green space loss (m2) to have occurred across the full sample as a proportion
of the total available area of green space (Ha) within the ‘Green Belt’ at that
time (m2/Ha).

6.3.5 Change to Green space Land
Within and Outside of Urban Boundary

The area of green space in relation to urban boundaries is founded upon
the dataset outlined in section 6.3.3 and used previously in chapter 5. As
such, it should be understood to reflect areas of previously undeveloped land,
(classified as ‘natural’ by Ordnance Survey (Ordnance Survey, 2009)), which
have been reclassified and are considered suggestive of development having
occurred between any two consecutive time intervals in adherence to the
outlined methodology.

Relevant urban boundaries were derived from both 2001 (UK Data Service,
2018) and 2011 (ONS, 2019) census data, accessed in spatial vector
form from open source governmental repositories. Whilst the technical
methodology by which each dataset was produced had altered, both identified
urban form as areas of at least 200km2 of built environment and considered
areas within 200m of each other to be contiguous for this purpose (ONS, 2013).

Where the 2001 data had been manually identified and digitised, in 2011
areas were based upon a predominantly automated process whereby land
was divided into 50m grid squares and categorised by the percentage of
particular land types (“Buildings and Glasshouses, Areas of tarmac, concrete

and Primarily gardens”) contained within (ONS, 2013). Although direct
comparison between the two boundary areas is advised to be undertaken with
caution, data were evidenced to be broadly consistent [figure 6.5] (ONS, 2013)
and deemed to offer the most suitable resource available.
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Figure 6.5: Source: ONS (2013)
Graphical comparison of 2011 grid based boundary (left) and 2001
manually digitised equivalent (right)

The resultant research data therefore, represents two univariate time series.

Change Within the Indicative Urban Boundary

Green space loss within the urban boundary can be characterised as the area of
spatial intersection between land that was classified as green space at time
t − 1, but had become ‘developed’ by time t; and the relevant built-up area
boundary (2001 for the pre-policy period and 2011 for the post-policy period).

Therefore, interpreted mathematically it should be understood as;

UGSLt = GSLt ∩ UBi for t = 0, ..., 47 (6.3)

where GSLt is the ‘green space loss’ which occurred between times t− 1 and
t; and UB is land contained within the urban boundary in i; where i is the
relevant urban boundary.

Change Outside of the Indicative Urban Boundary

Corresponding green space loss outside the urban boundary can be
characterised as the area of spatial difference between land that was classified
as green space at time t− 1, but had become ‘developed’ by time t; and the
relevant built-up area boundary (2001 for the pre-policy period and 2011 for
the post-policy period).
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RGSLt = GSLt \ UBi for t = 0, ..., 47 (6.4)

where GSLt is the ‘green space loss’ which occurred between times t− 1 and
t; and UB is land contained within the urban boundary in i; where i is the
relevant urban boundary.

Figure 6.6: Inside extant urban
boundary

Figure 6.7: Outside extant urban
boundary’

As with previous data, the final metric upon which analysis was undertaken
consisted of two aggregated green space loss figures reflecting 48 area
observations as a proportion of the relevant area of green space either contained
within or outside of the existing urban boundary at the time of the change
(m2/Ha).

6.3.6 Change to Indicative ‘Brownfield’ Land
Within Urban Boundary

In addition to the green space data outlined above, an indicative ‘brownfield’
metric was also developed in order to more closely resemble comparable
research (Dallimer et al., 2011) and act as a viable control (Cruz et al., 2017).

The identification of ‘brownfield’ development was more complex than
the transition between green space and built form. As a result this data
jointly represents any artificial surface (classified as either ‘manmade’ or
‘multiple’ (Ordnance Survey, 2017)), which was recorded as having become
‘unclassified’ between any two consecutive time intervals, allied to any
previously removed ‘natural’ surfaces, which were identifiably related to
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existing or previously removed built environment, upon which subsequent
development occurred.

Figure 6.8: Data Source: Ordnance
Survey (2018b).
Example of ‘brownfield’ change
identified through re-classification
from built form to ‘unclassified’.

Figure 6.9: Data Source: Ordnance
Survey (2018b).
Example of ‘brownfield’ change
identified through indicator of prior
development.

The method by which the outlined ‘brownfield’ data were derived did not
enable the reliable identification of areas which underwent change without
being re-classified and should therefore not be considered an exhaustive
resource. However, as a general indication of rates of change on land which
had previously been developed it was deemed to offer suitable accuracy and
corresponded to methods previously used in academic research (Dennis et al.,
2018).

The subsequent data can thus be understood to reflect the area of spatial
intersection between land that was classified as ‘brownfield’ at time t− 1, but
had become ‘developed’ by time t; and the relevant built-up area boundary
(2001 for the pre-policy period and 2011 for the post-policy period).

UBLt = BLt ∩ UBi for t = 0, ..., 47 (6.5)

where BLt is the brownfield loss which occurred between times t− 1 and t;
and UB is land registered as contained within the urban boundary in i; where i
is the relevant urban boundary.

Aggregated ‘brownfield’ data reflected the area of identified land to undergo
development as a proportion of the land cover, which was not classified as
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green space at the time of the change (m2/Ha).

6.3.7 Analytical Methods

Adopted methods were based upon Interrupted Time Series Analyses using
dynamic linear models (Petris and An, 2010). Prior to formal analysis being
undertaken all data was assessed for the existence of ‘seasonal’ patterns and
‘autocorrelation’ using designated functions within R (R Core Team, 2019).
Neither seasonality nor autocorrelated structures were identified within either
the ‘Green Belt’ or urban boundary data.

The method consisted of five stages, repeated for each of the five distinct
analyses. Initially data was segmented into relevant periods, in regards
to which appropriate models were fit to the pre-policy and subsequently
post-policy periods. Finally, intervention effects were derived for each
post-policy observation, reflecting the difference in area between the modelled
post-policy period and counterfactual scenario based upon the extrapolation
of the pre-policy trend (Linden, 2017). The process undertaken can be
conceptualised as;

• i. Data segmented into pre-policy, transitional and post-policy periods;

• ii. Appropriate model fit to pre-policy period based upon functional test
of fit (based upon MAE and RMSE);

• iii. Extrapolated ‘counterfactual’ for transitional and post-policy

periods;

iv. Equivalent model fit to post-policy period;

v. Estimated intervention effect calculated between post-policy model and
extrapolated pre-policy prediction.

6.3.8 Segmentation

In all instances data was segmented into pre- (2007 to 2011), transitional (2012
to 2013) and post policy periods (2014 to 2018), based upon the assumption
that there may exist a lag of between 1 and 2 years between planning approval
and the commencement of noticeable developmental ground works (explored
in section 5.2.2) (Callcutt et al., 2007; Lichfields, 2016; Shelter, 2019).
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Therefore, the pre-policy period consisted of 20 observations recorded in
regards to quarters 1 to 4 of 2007 to 2011. Whilst the post-policy comparator
ranged from quarter 1 of 2014 to quarter 4 of 2018. The transitional period
(from quarter 1 of 2012 to quarter 4 of 2013) was excluded from analysis, but
used to assess the validity of the predicted counterfactual.

6.3.9 Pre-Policy Models

For all relevant data sets the pre-policy period was initially tested against a
variety of model types in which the dependent variable was the relevant land
change data. Tested models included Ordinary Least Squares; Generalized

Linear Models; Autoregressive, Integrated Moving Average; and Dynamic

Linear Models (Lane and Hall, 2019) and were analysed for fit based upon
RMSE and MAE values.

Model Mean Absolute Error
(MAE)

Root Mean Squared Error
(RMSE)

‘Green Belt’ Change (Current)
Ordinary Least Squares 0.22 0.36
Generalized Linear Model 0.22 0.36
ARIMA (2,1,0) 0.23 0.34
Dynamic Linear Model 0.20 0.31
‘Green Belt’ Change (Historic)
Ordinary Least Squares 0.34 0.56
Generalized Linear Model 0.34 0.56
ARIMA (0,0,0) 0.37 0.58
Dynamic Linear Model 0.33 0.50
GS Change Inside Urban Boundary
Ordinary Least Squares 12.32 15.33
Generalized Linear Model 11.23 14.67
ARIMA (0,0,0) 13.20 17.29
Dynamic Linear Model 7.53 10.13
GS Change Outside of Urban Boundary
Ordinary Least Squares 0.58 0.81
Generalized Linear Model 0.58 0.81
ARIMA (0,0,0) 0.60 0.82
Dynamic Linear Model 0.57 0.74
Brownfield Change Inside Urban Boundary
Ordinary Least Squares 0.98 1.18
Generalized Linear Model 0.98 1.18
ARIMA (0,0,0) 1.06 1.35
Dynamic Linear Model 0.73 0.95

Table 6.2: MAE and RMSE comparison of prospective pre-policy models
(OLS, GLM, ARIMA and DLM)
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Based upon relevant outlined comparisons dynamic linear models were
identified as the best method through which to model the pre-policy data in all
instances.

Relevant parameters for first order polynomial dynamic linear model

observation and evolution equations were derived in regards to each data
set using maximum likelihood functions (Petris and An, 2010).

yt = Ftθt + vt, vt N(0, Vt) (6.6)

θt = Gtθt−1 + wt, wt N(0, wt) (6.7)

The observation equation, yt represents the product of the area of ‘land loss’
(for each data set), in the form of Ft and the state equation, θt, to which a
mean zero error is added, vt. Whilst Gt is the evolution vector, in this instance
a 1 by 1 matrix representing time and wt the underlying state errors assumed
to have a mean of zero.

Derived variances were coded to be automatically inserted into relevant
models, which were then fit to the ‘pre-policy’ data using a Kalman filter

(Petris and An, 2010). Based upon the outlined modelled system states, the
dlmForecast function (Petris and An, 2010) was used to obtain the anticipated
transitional and post-policy period future observation values. Relevant
95% prediction intervals were derived for each forecast future observation,
assuming normal distributions. An indicative predictive validity was assessed
using the observations relating to the transitional period (quarters 1 to 4
of 2012), with the prediction interval evidenced to contain the transitional
observations in each circumstance.
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Figure 6.10: Example of dlm prediction interval informal validity test
based upon green space development within designated ‘Green Belt’

6.3.10 Post-Policy Models

The post-policy period was both modelled using the dynamic linear model

approach (Petris and An, 2010) and retained as raw observations in order to
facilitate comparison between the two approaches.

Statistical comparison was derived in regards to the fit of the models between
the pre- and post-policy periods. Generally, due to larger variance in the
post-policy periods models reflected a worse fit and may be considered likely
to potentially underestimate the intervention effect as a result. However, in
the example of brownfield change the alternative was true, suggesting inferred
intervention effects may over-estimate.
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Pre-Policy Post-Policy
‘Green Belt’ Change (Current)
Mean Absolute Error (MAE) 0.20 1.07
Root Squared Mean Error (RMSE) 0.31 1.36
‘Green Belt’ Change (Historic)
Mean Absolute Error (MAE) 0.33 1.09
Root Squared Mean Error (RMSE) 0.50 1.40
GS Change Inside Urban Boundary
Mean Absolute Error (MAE) 7.53 22.94
Root Squared Mean Error (RMSE) 10.13 30.13
GS Change Outside of Urban Boundary
Mean Absolute Error (MAE) 0.57 7.28
Root Squared Mean Error (RMSE) 0.74 7.44
Brownfield Change Inside Urban Boundary
Mean Absolute Error (MAE) 0.73 0.17
Root Squared Mean Error (RMSE) 0.95 0.23

Table 6.3: Table recording comparative statistics (MAE and RMSE) between
pre- and post-policy models.

In spite of the outlined concerns the approach was deemed to offer robust
analysis of the change which occurred in the trends between the two periods
and can be considered likely to account for underlying external influences
(Ahn et al., 2017). The adoption of a common approach also allows for clear
comparison between comparable elements of research.

6.3.11 Intervention Effects

In Interrupted Time Series Analysis results are commonly referred to as an
‘intervention effect’ (McDowall et al., 2019), which is determined either
directly or indirectly through comparison between the predicted counterfactual,
which assumes the continuation of the pre-policy trend, and modelled
post-policy period.

For this research, the reported intervention effects were estimated for each
time interval in the post-policy periods as the difference between the maximal
values of the counterfactual scenario (based upon a 95% prediction interval)
and the modelled post-policy equivalents (Mohr, 1995; Wagner et al., 2002;
Shin, 2017; Linden, 2018) as both raw area [equation 6.8] and percentage
[equation 6.9].

ˆIEτ = ŷpostτ − ŷpreτ /ŷpreτ for τ = t+28...t+47 (6.8)
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ˆIEτ = (ŷpostτ − ŷpreτ /ŷpreτ )100 for τ = t+28...t+47 (6.9)

In each equation ˆIE represents the intervention effect, ŷpostτ should be
understood as the post-policy modelled data and ŷpreτ the upper boundary of
the counterfactual prediction interval.

In order to allow for a coherent and interpretable result for the cumulative
post-policy period, a single overall effect was computed based upon the mean
of the intervention effects reported for times t+28, t+29, ...t+47 [equation 6.10].

ˆIEtot = (
48∑
i=28

ˆIEi)/20 (6.10)

In the above ˆIEtot is the overall intervention effect derived for the entire
post-policy period and ˆIEi reflects the individual intervention effects at times
t+28, t+29, ...t+48.

All results were computed using base functions within the R (R Core Team,
2019) framework.

6.4 Results

6.4.1 Green Belt at the Time
of the Occurrence of Change

Core results derived from the Interrupted Time Series analysis are reproduced
in table 6.4. The analysis estimated a mean area of green space within the
‘Green Belt’ 26.39% larger than anticipated under the continuation of the
previous policy regime. This effect could be considered to equate to an
additional 4.97 Ha of green space being lost per quarter during the post-policy

period.
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Quarter

Absolute Difference
Modelled Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Absolute Difference
Observed Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Q1 2014 0.00 0.00% 0.00 0.00%
Q2 2014 0.00 0.00% 0.00 0.00%
Q3 2014 0.54 59.02% 2.54 277.18%
Q4 2014 0.20 22.02% 0.00 0.00%
Q1 2015 0.12 12.86% 0.00 0.00%
Q2 2015 0.92 97.30% 4.95 524.95%
Q3 2015 0.67 70.03% 0.00 0.00%
Q4 2015 0.50 51.79% 0.00 0.00%
Q1 2016 0.34 35.22% 0.00 0.00%
Q2 2016 0.28 28.54% 0.00 0.00%
Q3 2016 0.18 18.67% 0.00 0.00%
Q4 2016 0.14 13.94% 0.00 0.00%
Q1 2017 0.22 22.24% 1.34 133.23%
Q2 2017 0.14 13.45% 0.00 0.00%
Q3 2017 0.26 25.50% 2.11 206.98%
Q4 2017 0.19 18.85% 0.00 0.00%
Q1 2018 0.12 11.49% 0.00 0.00%
Q2 2018 0.07 6.74% 0.00 0.00%
Q3 2018 0.13 12.35% 1.35 128.03%
Q4 2018 0.08 7.87% 0.00 0.00%

Table 6.4: Estimated Intervention effect representing difference between
post-policy period and maximum predicted counterfactual boundary (95%
Prediction Interval).

The modelled pre-policy period evidenced a slightly declining trend in the area
of green space undergoing development, potentially associated with economic
drivers (Tatliyer, 2017).

Whilst the majority of observations in the post-policy period (75%) fell
within the prediction interval, the trend modelled by the dynamic linear

model evidenced additional development more consistently. This effect
can be considered to represent an affectation associated with the nature of
development, which will not occur constantly, therefore there will necessarily
exist significant peaks, which contribute to a more general trend.

The largest single quarter increase (based upon both the modelled and
observed data) occurred in quarter 2 of 2015, in which the intervention effect
was estimated as an increase of 97.30%. This can be understood as part of a
broader trend, in which the first ten quarters of the post-policy period (quarter
1 2014 to quarter 2 2016) were characterised by an average intervention effect
of 37.32%, whereas in the subsequent ten it was just 15.11%. This effect
could be interpreted as suggestive of the intervention leading to increased
development in its early stages, which subsequently diminished and plateaued
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[figure 6.11].

Where based upon observed data the average intervention effect increased
significantly to 63.52% per quarter. However, a little under half of this effect
was attributable to the occurrence of a single large developmental quarter
discussed previously (quarter 2 of 2015).
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Figure 6.11: Graphical representation of ITS Analysis relating to
rates of development within land considered to be ‘Green Belt’ at
the time of change.

When converted to reflect the area within the ‘Green Belt’ as a proportion
of the total recorded development on green space the results become more
interesting. The modelled post-policy period is mostly within the bounds of
the prediction interval throughout. Only in regards to quarters 2 and 3 of
2015 did the modelled post-policy data exceed the counterfactual scenario,
suggesting per quarter during the post-policy period, the intervention effect
could be estimated as a 1.12% increase in area [figure 6.12].

However, the observed data retained five instances in which the proportion
of development exceeded the counterfactual, resulting in an estimated
intervention effect of 20.10% per quarter. Over half of this intervention effect
was attributable to development which occurred in a single quarter (quarter 2
of 2015) and appears incongruous with general trends. Where this data was
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excluded from analysis the intervention effect reduced to 8.67%.

The outlined results can be considered to indicate as a proportion of
development levels had not altered significantly between the two periods.
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Figure 6.12: Graphical representation of ITS Analysis of the
development within the ‘Green Belt’ as a proportion of total green
space development.

6.4.2 Green Belt at any Point Prior
to the Occurrence of Change

When updated to include development which occurred upon land from
which the ‘Green Belt’ designation was previously removed, the reported
intervention effect, based upon a modelled post-policy period, was a 29.96%
(0.29m2/Ha) increase in area per quarter. This translated to an average area of
green space 5.56 Ha larger than would have been developed under the prior
framework.

It also reflected a slight increase (3.57%) upon the previous ‘Green Belt’
analysis, which it can be speculated may relate to the increased area of land
from which the designation was removed in the post-policy period (CPRE,
2018).
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Quarter

Absolute Difference
Modelled Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Absolute Difference
Observed Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Q1 2014 0.00 0.00% 0.00 0.00%
Q2 2014 0.00 0.00% 0.00 0.00%
Q3 2014 0.53 57.52% 2.53 273.64%
Q4 2014 0.20 21.47% 0.00 0.00%
Q1 2015 0.12 12.88% 0.00 0.00%
Q2 2015 0.92 98.26% 4.96 527.99%
Q3 2015 0.68 71.62% 0.00 0.00%
Q4 2015 0.51 53.88% 0.00 0.00%
Q1 2016 0.36 37.67% 0.00 0.00%
Q2 2016 0.30 31.41% 0.00 0.00%
Q3 2016 0.21 21.80% 0.00 0.00%
Q4 2016 0.17 17.41% 0.00 0.00%
Q1 2017 0.26 26.44% 1.37 141.23%
Q2 2017 0.17 17.78% 0.00 0.00%
Q3 2017 0.33 33.41% 2.54 259.64%
Q4 2017 0.26 26.75% 0.00 0.00%
Q1 2018 0.19 19.30% 0.00 0.00%
Q2 2018 0.14 14.55% 0.00 0.00%
Q3 2018 0.21 20.73% 1.40 140.83%
Q4 2018 0.16 16.24% 0.00 0.00%

Table 6.5: Estimated intervention effect representing rates of development on
land which had been designated as ‘Green Belt’ at any time.

The maximum intervention effect was recorded as 98.26% in regards to quarter
2 of 2015. Between quarters 1 of 2014 and 2 of 2016 the average intervention
effect was 38.47%. Whilst in the subsequent period (quarters 3 of 2016 to 4 of
2018) it had declined to 21.44%. Accordingly, the declining trend evidenced
in the second half of the post-policy period was less acute than the equivalent
derived for loss upon land where ‘Green Belt’ designation remained in place
[figure 6.13].
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Figure 6.13: Occurrence of development upon green space within
land designated as ‘Green Belt’ at any point prior to the change.

As a proportion of total development upon green space, the area of ‘Green
Belt’ development modelled for the post-policy period adhered to the predicted
counterfactual throughout. Therefore, no change could be inferred as a result
of the revised policy framework. It is noted, a single observation remained
outside of the counterfactual interval, reflecting an average intervention effect
of 4.82%. However, this could potentially be interpreted as an anomaly due to
its significant deviation from the general trend [figure 6.14].
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Figure 6.14: Graphical representation of ITS Analysis of the
development within the ‘Green Belt’ as a proportion of total green
space development, based upon land designated as ‘Green Belt’ at
any point prior to the occurrence of change.

The two data sets reflected broadly similar patterns, with the modelled data in
each showing the area of ‘Green Belt’ subject to development in the post-policy

period as between 26% and 29% greater than would have been anticipated
based upon no intervention having taken place. However, as a proportion of
total green space development there was not sufficient evidence to suggest a
change had occurred. This could imply under the revised policy framework
additional developmental pressure on green space within the ‘Green Belt’ is
more likely attributable to an increased overall rate of development than an
explicit diminution in the legal protection afforded to such.

6.4.3 Urban and Rural Change

Results presented within this section of research reflect separately the area
of green space loss which occurred outside of the urban boundary, the area
of green space which occurred inside the urban boundary and the the area of
‘brownfield loss’ which occurred inside the urban boundary. Together they are
used to form a picture of the structure of development.

Analysis of rates of development both within and outside of the defined
indicative urban boundaries reported significantly different intervention effects.
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Quarter

Absolute Difference
Modelled Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Absolute Difference
Observed Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Q1 2014 0.00 0.00% 0.00 0.00%
Q2 2014 0.00 0.00% 0.00 0.00%
Q3 2014 0.00 0.00% 0.00 0.00%
Q4 2014 0.00 0.00% 0.00 0.00%
Q1 2015 0.00 0.00% 0.00 0.00%
Q2 2015 0.00 0.00% 0.00 0.00%
Q3 2015 0.00 0.00% 0.00 0.00%
Q4 2015 0.00 0.00% 0.00 0.00%
Q1 2016 0.00 0.00% 0.00 0.00%
Q2 2016 0.00 0.00% 0.00 0.00%
Q3 2016 0.00 0.00% 0.00 0.00%
Q4 2016 0.00 0.00% 0.00 0.00%
Q1 2017 0.00 0.00% 0.00 0.00%
Q2 2017 0.00 0.00% 0.00 0.00%
Q3 2017 0.00 0.00% 2.18 6.36%
Q4 2017 0.00 0.00% 0.00 0.00%
Q1 2018 0.00 0.00% 0.00 0.00%
Q2 2018 0.00 0.00% 0.00 0.00%
Q3 2018 0.00 0.00% 0.00 0.00%
Q4 2018 0.00 0.00% 0.00 0.00%

Table 6.6: Estimated intervention effect representing rates of development on
green space land contained within existing urban boundaries.

The area of development on green space land within the urban boundary was
consistent with the prediction derived from the previous policy regime, with no
overall effect noted. The modelled post-policy period was recorded as being
within the prediction boundary in each quarter, whilst only one observation
exceeded the counterfactual [figure 6.15]. Although there was a slight trend
towards increased development within the post-policy period (0.13m2/Ha per
quarter), it could not be excluded such was related to external influences
(such as economic circumstances).

A single observation was recorded as exceeding the counterfactual prediction
interval (quarter 3 of 2017), but could not be considered to represent the
general developmental trend. Of the five quarters in which the largest area of
green space loss was recorded, three occurred within the pre-policy period.
Although the largest single area loss was recorded in quarter 3 of 2017.
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Figure 6.15: DLM Modelled ITS analysis of green space inside
the indicative urban boundary

The results presented in table 6.7 show the intervention effects recorded in
relation to the area of ‘brownfield’ land situated within the urban boundary,
which underwent development.

Quarter

Absolute Difference
Modelled Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Absolute Difference
Observed Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Q1 2014 0.00 0.00% 0.00 0.00%
Q2 2014 0.00 0.00% 0.11 1.68%
Q3 2014 0.00 0.00% 0.00 0.00%
Q4 2014 0.00 0.00% 0.00 0.00%
Q1 2015 0.00 0.00% 0.00 0.00%
Q2 2015 0.00 0.00% 0.00 0.00%
Q3 2015 0.00 0.00% 0.00 0.00%
Q4 2015 0.00 0.00% 0.00 0.00%
Q1 2016 0.00 0.00% 0.00 0.00%
Q2 2016 0.00 0.00% 0.00 0.00%
Q3 2016 0.00 0.00% 0.00 0.00%
Q4 2016 0.00 0.00% 0.00 0.00%
Q1 2017 0.00 0.00% 0.00 0.00%
Q2 2017 0.00 0.00% 0.00 0.00%
Q3 2017 0.00 0.00% 0.00 0.00%
Q4 2017 0.00 0.00% 0.00 0.00%
Q1 2018 0.00 0.00% 0.00 0.00%
Q2 2018 0.00 0.00% 0.00 0.00%
Q3 2018 0.00 0.00% 0.00 0.00%
Q4 2018 0.00 0.00% 0.00 0.00%

Table 6.7: Estimated intervention effect representing rates of development on
’brownfield’ land contained within existing urban boundaries.
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The area of development to occur upon indicative ‘brownfield’ land during
the post-policy period also registered no intervention effect. In regards to
every quarter the modelled post-policy period was wholly contained within
the prediction interval associated with the counterfactual scenario [figure
6.16]. The area which underwent development during the pre-policy period
evidenced a generally declining trend. Between quarter 1 of 2007 and quarter
4 of 2011 it reduced by an average of 2.52 m2/Ha per quarter.

A decreasing trend was also modelled in the post-policy period (0.20m2/Ha),
with a single observation reflecting a 1.69% positive intervention effect in
quarter 2 of 2014. Both the green space and indicative ‘brownfield change’
data evidenced the policy change to have had a negligible impact upon the area
undergoing development.
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Figure 6.16: DLM Modelled ITS analysis of ‘brownfield change’
inside the indicative urban boundary.
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Quarter

Absolute Difference
Modelled Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Absolute Difference
Observed Data

(Maximum 95% CI)

(m2/Ha)

Percentage Difference
(Maximum 95% CI)

Q1 2014 0.34 102.63% 0.34 102.63%
Q2 2014 0.26 78.97% 0.18 55.88%
Q3 2014 0.63 191.89% 1.33 404.46%
Q4 2014 0.56 170.64% 0.37 113.5%
Q1 2015 0.53 160.21% 0.41 124.98%
Q2 2015 0.56 170.92% 0.70 213.17%
Q3 2015 0.55 166.25% 0.48 145.73%
Q4 2015 0.52 157.52% 0.38 116.00%
Q1 2016 0.51 154.47% 0.46 139.11%
Q2 2016 0.51 155.79% 0.54 162.74%
Q3 2016 0.54 164.24% 0.69 209.82%
Q4 2016 0.61 185.04% 0.99 299.69%
Q1 2017 0.67 204.39% 1.03 312.77%
Q2 2017 0.62 188.48% 0.32 98.34%
Q3 2017 0.73 220.51% 1.33 403.45%
Q4 2017 0.74 223.70% 0.80 241.99%
Q1 2018 0.69 208.01% 0.39 117.49%
Q2 2018 0.68 207.04% 0.66 201.44%
Q3 2018 0.68 205.79% 0.65 198.50%
Q4 2018 0.80 241.84% 1.49 451.35%

Table 6.8: Estimated intervention effect representing rates of development on
green space land located outside of existing urban boundaries.

In stark contrast, green space loss outside said boundary estimated an
additional area of 177.92% (0.59m2/Ha) per quarter to have been the subject
of development since the implementation of the revised framework. Across
the sample Local Authority Areas an average area of 100.62 Ha per quarter
greater than would have been anticipated under the previous policy was the
subject of development [figure 6.17].
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Figure 6.17: DLM Modelled ITS analysis of ‘green space loss’
outside of the indicative urban boundary

Results also evidenced an increasing trend in the area of development,
culminating in the highest single quarter intervention effect of 241.84% in
relation to quarter 4 or 2018. With the smallest intervention effect having
occurred in quarter 2 of 2014 (78.97%). Between quarter 1 of 2014 and quarter
2 of 2016 the average intervention effect was estimated as a 150.93% increase
in the occurrence of development on green space, whereas in the remaining
period from quarter 3 of 2016 to quarter 4 of 2018 it was recorded as 204.90%.
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Quarter

Intervention Effect
‘Green Space Loss’

Within Urban Boundary

(%)

Intervention Effect
‘Brownfield Change’

Within Urban Boundary

(%)

Intervention Effect
‘Green Space Loss’

Outside of Urban Boundary

(%)
Q1 2014 0.00% 0.00% 102.63%
Q2 2014 0.00% 0.00% 78.97%
Q3 2014 0.00% 0.00% 191.89%
Q4 2014 0.00% 0.00% 170.64%
Q1 2015 0.00% 0.00% 160.21%
Q2 2015 0.00% 0.00% 170.92%
Q3 2015 0.00% 0.00% 166.25%
Q4 2015 0.00% 0.00% 157.52%
Q1 2016 0.00% 0.00% 154.47%
Q2 2016 0.00% 0.00% 155.79%
Q3 2016 0.00% 0.00% 164.24%
Q4 2016 0.00% 0.00% 185.04%
Q1 2017 0.00% 0.00% 204.39%
Q2 2017 0.00% 0.00% 188.48%
Q3 2017 0.00% 0.00% 220.51%
Q4 2017 0.00% 0.00% 223.70%
Q1 2018 0.00% 0.00% 208.01%
Q2 2018 0.00% 0.00% 207.04%
Q3 2018 0.00% 0.00% 205.79%
Q4 2018 0.00% 0.00% 241.84%

Table 6.9: Table showing combined estimated intervention effects for areas
of green space and ‘brownfield change’ within and green space outside of the
indicative urban boundary.

A significantly increased area of green space located outside of existing urban
boundaries was evidenced to have been subject to development than would
have been anticipated based upon the extrapolation of the general trend under
the prior regime. Conversely, both green space and ‘brownfield’ development
contained within the urban boundary showed a negligible intervention effect.

6.5 Discussion

In Chapter 5 evidence was presented in the form of an estimated intervention
effect, which suggested the post-policy period had been defined by
development upon green space in excess of that which would have been
anticipated under the previous framework. The extent to which this could be
ascribed to the Localism Act 2011 and National Planning Policy Framework

actively enabling development to encroach into previously unaffected rural
land at the fringes of urban conurbations (Harrison and Clifford, 2016) had not
been assessed quantitatively in an academic context.

With much of the controversy associated with the Localism Act 2011 and
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National Planning Policy Framework relating to its purported threat to
protected ‘Green Belts’ and rural fringe land, this element of research was
designed to address the extent to which it could be deemed to have increased
urban expansion. The containment of urban areas represents one of the core
concerns for policy-makers and land change scientists (European Commission,
2016).

Research Question 3: Do analyses of rates of development upon green space
offer insight in regards to the extent to which the revised planning framework
can be characterised as enabling urban expansion?

6.5.1 Key Findings

6.5.2 Green Belt Change

The limited direct analysis of rates of development on green space land within
designated ‘Green Belt’ under the terms of the revised planning framework has
depicted an increasing rate of loss (CPRE, 2018). In conjunction with evidence
of a higher number of applications to develop upon ‘Green Belt’ (Glenigan,
2018) and the release of a greater area of land than during the majority of
years under the previous policy regime (CPRE, 2018), the Localism Act 2011

and National Planning Policy Framework have been characterised as leading
to the erosion of vital rural land (Sibley-Esposito, 2014). A contention was
posited in regards to whether such could be attributed to a shift in tone towards
developmental sprawl or the explicit weakening of protections afforded to
‘Green Belt’ (Sibley-Esposito, 2014; CPRE, 2018).

In regards to each of the prior analyses (referred to above), stated policy effects
were based upon direct comparison of single figures recorded in the pre- and
post-policy periods (broadly reflecting a pretest-posttest approach) or reported
the post-policy trend alone (CPRE, 2018). By applying an Interrupted Time

Series approach as a means through which to address the attribution problem
(Morrison and Pearce, 2000) this research offered robust corroboration of the
policy having led to an increase in the rate of development within ‘Green
Belt’.

However, it should be noted the reported effect associated with the revised
planning framework was substantially lower than the relative loss previously
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outlined. Furthermore, the post-policy model evidenced substantive peaks
prior to quarter 3 of 2015, but appeared to reduce in effect to a relatively
static level thereafter, in direct contrast with the increasing trend reported by
CPRE (2018). It can be contended this disparity could be a direct consequence
of the differing methodological approaches adopted. The most prominent
feature amongst which, was the sample of twenty-two Authorities, which
should be compared with national data with some degree of caution in light of
the large differences between local rates of development (Dallimer et al., 2011).

It could alternatively relate to the use of a robust counterfactual based
quantitative methodology, capable of accounting for trends associated with the
previous policy framework (Morrison and Pearce, 2000). Whilst, the dynamic

linear model based approach to Interrupted Time Series analysis was shown to
account for variance associated with the influence of economic fluctuation it
may conversely have resulted in an overestimated prediction interval, thus
reducing the estimated effect.

Interestingly, the results presented in this research evidenced that as a
proportion of total development occurring on green space, the loss of ‘Green
Belt’ land within the post-policy period broadly adhered to predicted rates
under the previous regime. It could be inferred from such, any additional
development within the designated ‘Green Belt’ should be attributed to an
increase in total development rather than the diminution of relevant protection
afforded in policy. This view to some extent substantiates assertions that
provisions within the NPPF reflected the continuation of previous protections
(Slade, 2018) and could be deemed to suggest additional loss may be more
attributable to an overall shift in tone, adopting de-regulation as a means by
which to engender free market growth (Sibley-Esposito, 2014).

The effectiveness of ‘Green Belt’ and similar policies (such as the ‘Green
Heart’ in the Netherlands (Kasraian et al., 2019)) in containing development
has been evidenced previously (Bengston and Youn, 2006b; Morrison and
Pearce, 2000). However, their efficacy is considered to be associated with
combined measures, such as ‘brownfield’ land targets (Baing, 2010). If it
is accepted that ‘Green Belt’ provisions remained broadly consistent, the
recorded increase in the occurrence of development on such land may indicate
the influence of a reduction in other policy constraints.
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The most prominent alteration between the NPPF and its predecessor in
relation to ‘Green Belt’ policy [PPG2 (DCLG, 2006)] relates to the clarity
of definition around the “very special circumstances” in which development
should be permitted. There is evidence to suggest that decision-makers
interpreted elements of the policy in such a way that it led to insufficient
protection being afforded to designated land (Sibley-Esposito, 2014).
Therefore, it may be speculated that the initial increase followed by subsequent
declining trend within the post-policy period relate to the evolution of policy
through clarification and case law (Cullingworth and Nadin, 2003).

Evidence of increased development within the ‘Green Belt’ during a short
time period does not strictly adhere to established theory around the persistent
effects of regulatory provisions, which imply that they continue to restrain
development even after abolition (Kasraian et al., 2019). However, the
highly responsive nature of the UK system may account for this disparity
(Dallimer et al., 2011). Whilst no previous analysis has been undertaken
on the transition from a strong regulatory system to a more permissive
equivalent (Kasraian et al., 2019). It is in this regards where the Localism Act

2011 and NPPF operating within the a discretionary system offer novel insight.

However, ‘Green Belt’ policies cannot be considered exclusively from the
cultural context, which they have acquired since inception (Gant et al., 2011).
Nor extricated from the political cache they hold through prominent lobby
representation (Rootes, 2009).

6.5.3 Urban and Rural Change

The results presented in regards to the 42 sample Local Authority Areas
evidence materially different intervention effects in regards to development
within and outside of indicative urban boundaries. Development upon both
green space and ‘brownfield’ sites within urban boundaries were consistently
in line with the forecast counterfactual, representing the continuation of
the previous policy regime. Whilst a single observation in the green space
data suggested the post-policy period reflected increased development, the
modelled data, which should be considered to account for uncertainties, was
wholly within the prediction interval. The post-policy data did suggest an
increasing trend in the area of development on land within the urban boundary,
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but such appears more likely to be attributable to economic circumstance than
directly linked to the policy change.

However, strong evidence was presented of a significant change (173%)
in the area of green space subject to development in the fringe rural areas
surrounding existing urban boundaries. Such findings provide a basis upon
which to suggest the revised policy framework did actively enable urban
expansion to an extent the preceding framework did not. Allied with the
depiction of a declining trend in rates of development upon ‘brownfield’ sites,
it can be hypothesised the effects may be attributable to the weakening of the
prior ‘brownfield’ priority.

As previously stated, the effect of ‘brownfield’ development targets in
protecting ‘greenfield’ sites had been established in prior research. Although
mostly founded upon assessments of secondary, governmental data sources
(Baing, 2010; Ganser and Williams, 2007; Ganser, 2008), the restriction of
development from encroaching into rural areas was evidenced in satellite
imagery (Dallimer et al., 2011). In analysing policy reform, which included
the removal of this target, the increased rate of development within the rural
fringe can be interpreted as supportive of the efficacy of ‘brownfield first’
approaches in this regard.

Antecedent studies have primarily based inference of the relationship between
land loss associated with urban expansion and policy upon the binary presence
or absence of regulatory functions (Colantoni et al., 2016; Fiorini et al.,
2019; Kasraian et al., 2019). The outlined results intimate as to a more
nuanced relationship, with minimal diminution of protections correlated with
a significant effect. Whether such is attributable to the actual terms of the
amended provisions or merely perceptions of tonal shift (Sibley-Esposito,
2014) require further investigation.

There is evidence that policies aimed at containment can cause negative effects,
including increased pressure upon ‘green spaces’ within urban boundaries
(Dallimer et al., 2011) and inflated land prices (Cheshire, 2013). The former
issue appears not to have been redressed through the implemented reforms as
rates of green space loss within the urban boundary remained consistent with
that which would have been predicted based upon the prior regime. Crucially,
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there was evidence to suggest it may have reduced the extent of development
upon ‘brownfield’ sites.

One implication of this combined effect, allied with prior research (Baing,
2010; Ganser and Williams, 2007; Ganser, 2008), is that policy-makers could
consider the adoption of similar ‘brownfield’ targets as a strong measure
through which to influence the containment of urban expansion globally.

It is broadly accepted that uncontrolled development favours patterns of urban
expansion (Fiorini et al., 2019), with socio-economic trends and governmental
planning theorised as the two primary causes of such (Dieleman and Wegener,
2004). Although Dieleman and Wegener (2004) suggested the crucial tier of
governance related to regional and local administration, this research presents
strong evidence that national changes can induce similar effects.

In 2011 Dallimer et al. (2011) evidenced that a policy of densification had
placed pressure upon green space within urban boundaries. It was also
intimated that the policy reforms studied in this research (in draft at the time)
would likely reverse this effect. The results outlined seem to corroborate
this hypothesis, which can be considered to relate to the conceptualisation of
policy as a strong function driving and regulating land change.

This research elucidates upon the role of policy measures intended to contain
development as a regulator of other social and economic drivers (Bürgi et al.,
2005; Hersperger et al., 2018). Morancho (2003) reported that for every
additional 100m between a house and green space the value dropped by
e 1,800. Therefore, areas with abundant green space may be considered
likely to maximise developmental revenue. With both physical limitations
and prohibitive costs associated with the provision of such within existing
boundaries, the rural fringe can be considered at higher risk.

6.5.4 Strengths and Limitations

Through the use of novel data, which allows for the identification of small
scale changes to land use within the rural fringe (Smith et al., 2007), allied
to analytical methods that synthesise a counterfactual alternative under the
prior framework this research constitutes the first to address significant issues
identified as crucial to the development of improved understanding of policy
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as a driver of patterns of land change (Plieninger et al., 2016).

Whilst remote sensed data has been proven to be successful in recording
general patterns of development (including large scale urban expansion)
(Mu et al., 2016), the detection of small scale incursions into previously
undeveloped land at the edge of existing urban conurbations may be improved
by data with greater granularity.

Unlike satellite based alternatives the pre-classified data used in this research
contained land use detail, which enabled land with differing status within
planning policy to be estimated. Whilst the Interrupted Time Series analysis
methodology provides a more robust estimation of the degree of change which
may be attributable to the policy (Morrison and Pearce, 2000; Bernal et al.,
2017).

However, the inconsistency in spatial scales between the green space data
and relevant urban boundaries (ONS, 2013) may represent a threat to the
validity of these results. Due to the 50m resolution of the urban area
data, in some cases existing development may exceed the boundary (ONS,
2013), with proximate land change subsequently reflecting a false rural
fringe. Whilst considered a genuine concern, the extent to which this could
invalidate the results is largely addressed through the application of the same
boundaries throughout, meaning that the patterns of change must be deemed
consistent. Furthermore, the same boundary data has been utilised in prior
research (Dallimer et al., 2011) and was considered adequate in regards to such.

A related issue is identified in regards to the temporal consistency between
land change and boundary data. The urban boundary applied in regards to
the pre-policy period was published in 2001 (UK Data Service, 2018) (6
years prior to the start of the research period). Therefore, development could
have expanded urban areas within the intervening period, resulting in an
under-estimation of said boundary in 2007. The post-policy equivalent related
to 2011 (3 years prior to the first recorded post-policy data) and may be subject
to a corresponding effect. Should this have transpired, the rates of ‘green

space loss’ to have occurred outside of relevant boundaries would account
for a larger area than in actuality. Similarly to the previously discussed issue,
this is assessed as unlikely to materially alter the outcome of the research as a
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result of the reliance upon trends derived from aggregated data based upon a
robust sample and the application of prediction intervals (Lin et al., 2018).

By considering three types of data (internal urban green space, external rural
green space and ‘brownfield’ sites) the ITS method included a measure of
control (Cruz et al., 2017). It would be anticipated that each development
type would be subject to the same external forces (such as economic drivers),
therefore the differing effects can more confidently be attributed to the policy.

Interestingly, where governmental records related to ‘brownfield’ development
must be understood within the context of different definitions of such land
adopted under different policies (Sinnett et al., 2014), the consistent measures
adopted in this research could be contended to offer more robust inference.

Due to the relatively small sample of Authorities used in relation to ‘Green
Belt’ data, results can be disproportionately influenced by single instances of
large development. Of the total area of 1146978m2, which underwent change
in quarter 2 of 2015, 1143084m2 (99.66%) related to a the development of
a single site, inland freight facility in Doncaster (Doncaster Council, 2011).
However, the proposal was originally approved in August 2011 (prior to the
implementation of the revised policy framework) and highlights one of the
most significant concerns around the analysis. Instances such as this appear to
be limited, but must be considered of high risk, particularly where reporting
observed data rather than trend modelled equivalents.

There also exists a concern that without a subset of Local Authority specific
data, the reported effect could be biased by large scale development in regards
to those with particular profiles. For example, if the evidenced loss of land
outside of urban boundaries was heavily concentrated in ‘rural’ authorities and
the decreasing ‘brownfield’ development was respectively recorded in regards
to ‘urban’ equivalents a different dynamic is emphasised.

Similarly to previous chapters the ITS approach builds a predicted
counterfactual based upon the extrapolation of patterns of data derived during
the pre-policy period and should therefore be considered robust. However,
were the model considered to have overfit the data the prediction interval
may be unreliable (Greenwood and Matyas, 1990). This issue was primarily
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addressed throughout with the adoption of prediction intervals, allowing for a
range of uncertainty within the post-policy period.

The use of aggregated data has precedence in similar research (Dallimer
et al., 2011) and due to the robustness of the sample reduces the scope for
bias. However, the influence of local and regional variation (evidenced in
prior studies (Dallimer et al., 2011)) was not addressed in this research. Due
to the highly localised administration of planning within England (Bruton
and Nicholson, 2013), it would be interesting to explore the differences
encountered in regards to Local Authority Areas. This concept could be
investigated using the data profile developed for this research, but was outside
of the initial scope.

Analogously, with the quality and types of green space recognised as
more influential than area (Wood et al., 2018) the development of analysis
incorporating consistent land use should be undertaken to advance the field
further.

6.5.5 Implications

The rate of development which occurs upon rural land situated outside of
existing urban boundaries appears to be influenced by national planning
provisions, although filtered through local governance structures. With similar
effects evidenced in regards to a ‘zoning’ based system within China (Mu
et al., 2016), it hints towards a universal relationship. This view is to some
extent challenged by Dieleman and Wegener (2004) whom reported regional
tiers to play a significant role in urban containment.

Evidence that green space loss within the ‘Green Belt’, as a proportion of
total loss, adhered to the predicted range based upon the prior framework is
supportive of both the consistency between policies and potentially alludes
to the cultural importance embedded into the identification of land as such
(Cheshire, 2013). Having formed a key constituent of planning since inception
(Cullingworth and Nadin, 2003), it can be hypothesised there may exist
a legacy effect associated with ‘Green Belt’ similar to the ‘Green Heart’
conservation policy described in Kasraian et al. (2019).

However, rural land without regulatory protection suffered a dramatic
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reduction under the revised framework. Based upon prior analysis, which
emphasised the key role of ‘brownfield’ targets in directing development away
from rural sites (Ganser and Williams, 2007), the outlined effect is contended
to be linked to the weakening of ‘brownfield first’ policy commitments (Harris,
2012). However, it also must be considered within the context of a general
tone supportive of increased rates of development. This concentration of
increased development outside of existing urban boundaries may also suggest
different types of land loss (primarily agricultural (Colantoni et al., 2016)) and
different types of development, reflecting lower densities (Bibby, 2009).

Under the preceding framework, the area of green space within urban
boundaries was reported to have diminished relative to the area outside
(Dallimer et al., 2011). The subsequent increased loss of land situated outside
of urban boundaries under the revised framework, allied with little evidence of
reduced rates of green space loss within said boundaries suggests the policy
changes have not delivered an improved balance between development and
environmental protection. Perhaps reinforcing the view outlined in Barker
(2008) that “there is no getting away from the fact that more undeveloped land

will be needed [for development], imposing an environmental cost”. If this
is the case there is a need to develop policy procedures to ensure protection
is afforded to land based upon robust assessment of its ecosystem services
(European Commission, 2016).

6.6 Conclusions

Following the transition to the Localism Act 2011 and National Planning

Policy Framework cumulative analysis of rates of development upon
green space and ‘brownfield’ sites suggest a move away from a policy
onus upon containment. A significant increase in the occurrence of such
upon green space within the rural fringe was evidenced. Whilst increased
loss within designated ‘Green Belt’ also reflected a fundamental change in tone.

Although difficult to report the association between these effects and specific
provisions within the policy, there was evidence to suggest changes to
‘Green Belt’ protections had a less notable impact than those associated with
‘brownfield’ land. In fact, the limited effect noted in regards to ‘Green Belt’
development as a proportion of total green space suggested protections had
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not been significantly diminished.

The role of national planning as a driver and regulator in relation to patterns
of land change was supported by the outlined outcomes. Across a sample of
diverse localities the cumulative effect was highly likely to be attributable to
the national intervention.

With policies intended to constrain urban areas a global priority, the outcome
of this research and its inference in regards to the relationship between national
level policy and patterns of development adds to existing understanding.
Understood within the context of prior research in relation to formal targets for
‘brownfield’ development (Baing, 2010; Ganser and Williams, 2007; Ganser,
2008) there is evidence to support the efficacy of such as a generalizable
approach to development. However, measures must be implemented in
conjunction with developmental design, which prioritises the role of green
spaces and accessibility (Paterson, 2012).
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CHAPTER7
Discussion

Under pressure of urbanisation, the loss of undeveloped green space to
growing cities has evolved as a global priority. The role of policy in the
regulation of this process has tacitly been acknowledged, but remains lacking
in robust quantitative methods of analysis. This thesis was intended to develop
an advanced understanding of the relationship between planning policy and
land use, through exploration of effects associated with the transition between
two policy frameworks within England.

In order to undertake this aim, three interconnected elements of research were
developed to address the following questions.

Research Question 1: Has the area of green space which was subject to
development evidenced alteration in rates which could such be associated
with the adoption of the Localism Act 2011 and National Planning Policy

Framework (2012)?

Research Question 2: What impact have the Localism Act 2011 and National

Planning Policy Framework had upon the total area of green space subject to
development?

Research Question 3: Do analyses of rates of development upon green space
offer insights in regards to the extent to which the revised planning framework
can be characterised as enabling urban expansion?

The cumulative contribution of these questions towards understanding of the
relationship between national level policy and land change through empirical
methods is discussed in the following section.
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7.1 Key Findings

Under the provisions of the Localism Act 2011 and National Planning Policy

Framework a greater area of green space was lost to urban development than
would have been the case under the preceding regime. The vast majority
of this loss was concentrated outside of existing urban areas, suggesting
a paradigmatic shift towards urban expansion. Although based upon an
expanded range of indicators the results largely adhered to the effect presented
by the Campaign to Protect Rural England, based upon analysis of recorded
development and applications to develop within the ‘Green Belt’ (CPRE,
2018).

Previously, the absence of regulation has been identified as a highly significant
factor in enabling patterns of urban sprawl (Colantoni et al., 2016; Fiorini
et al., 2019). This was considered to emphasise the power of underlying
social, economic and territorial drivers (Colantoni et al., 2016) and leads to a
rational inference that regulatory policies are a key tool in the containment
of development, advocated by subsequent studies focused upon dedicated
approaches to densification (Ganser and Williams, 2007; Hersperger et al.,
2018; Kasraian et al., 2019). In tandem with Mu et al. (2016), the outcomes of
this thesis relate similar effects to a mere diminution of regulatory function.
Semantically, the revised policy framework was largely congruent with its
predecessor, intimating that minimal change can result in material shifts to the
spatial patterns of development.

As mentioned in chapter 4 the evidence of changes to both rates and patterns
of development in regards to the research indicator challenges existing a

posteriori understanding of the temporal dynamics, which were assumed to
underpin the relationship between policy and land change (Bengston et al.,
2004; Kasraian et al., 2019; Morrison and Pearce, 2000; Mu et al., 2016). In
relation to two different policies, Kasraian et al. (2019) identified subsequent
land change to be influenced within a decade, but reported long term legacy
effects in the succeeding decades. The three elements of this thesis all indicate
the occurrence of change attributable to the policy within a period of two years.
Whether this is consistent with Kasraian et al. (2019) and is solely as a result
of the utilisation of a data source obtained at shorter time intervals can be
speculated upon. However, it would suggest there is a less discernible legacy
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effect, which could be attributed to the difference between active ‘zoning’
policies intended to direct development (Kasraian et al., 2019) and responsive,
discretionary policies operated within the United Kingdom (Booth, 1995).

It can be postulated different temporal dynamics would be evidenced between
the two systems as a ‘zoning’ approach would necessarily incur a lag between
the allocation of land for development and the beginning of construction.
Whereas under an equivalent discretionary system the policy can influence the
decisions to approve applications to develop from the date of implementation.

Based upon proportional change in area, Dallimer et al. (2011) reported the
planning framework in place between 2001 and 2006 to have resulted in a
loss of green space. Therefore, the subsequent increased rate of green space
loss reported in this research (based upon a coincident period and policy)
indicates a continuing trend in which undeveloped land has been consumed
by urbanisation. However, due to methodological differences, including the
separation of ‘brownfield’ sites, this inference must be interpreted with caution.

The outlined findings also offer strong evidence of an association between
national level policy and the area of undeveloped green space. In this regards
it is concordant with existing literature (Hersperger et al., 2018).

7.2 Overall Contribution

In conjunction the work undertaken throughout this thesis explored the causal
relationship between national level policies and the regulation of land change,
using novel quantitative methods as a means through which to augment
existing conceptual models (Hersperger et al., 2018). Whilst empirical
research has formulated a strong foundation for the relative role of policy
as an underlying driver of land change (primarily using regression models
(Kasraian et al., 2019)) the effect associated with policy change had not been
assessed in accordance with counterfactual based, outcome focused, impact
models (Morrison and Pearce, 2000). Addressing this with data based upon
substantive policy cases can be contended to represent a key element in the
advancement of an understanding around the dynamics behind the role of
national policy.
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Alternative data sources were utilised throughout as a means to address issues
associated with the identification and categorisation of relevant urban induced
land change (Bürgi et al., 2005; Plieninger et al., 2016). Further enabling the
incorporation of small scale development as an indicator. Each analytical
chapter expanded existing knowledge in regards to the temporal dynamics
associated with national policy (Bürgi et al., 2005), challenging existing
preconceptions (Bengston et al., 2004; Kasraian et al., 2019; Mu et al., 2016).
Whilst focused upon the effect of changes in regulatory function based upon
stable landscapes, which had largely been omitted from prior research (Bürgi
et al., 2005; Plieninger et al., 2016).

In so doing, the research represents an apt extension to work undertaken by
Dallimer et al. (2011), which evidenced a shift in developmental patterns upon
green space to within existing urban boundaries. This effect was attributed to
the policy framework which constituted the pre-policy period within this thesis.
In tandem they offer a strong quantitative foundation through which to inform
the mechanisms for policy to balance environmental and developmental needs,
identified as a critical aim to global sustainability (Dallimer et al., 2011).

7.3 Implications for Urban Science

Through employing an inter-disciplinary approach based upon foundational
concepts of land science, geoinformatics and data analytics, this thesis
evidenced how robust statistical techniques utilised widely in other fields of
research could offer new insights, addressing some of the methodological
challenges raised in regards to the interpretation of planning policy (Morrison
and Pearce, 2000). Change Point Detection was established as an approach
through which to derive understanding of the temporal dynamics of policies.
As urban science evolves a plethora of data through which to monitor urban
dynamics from individual to population level (Kontokosta, 2018), online
Change Point Detection could be used to both identify the existence of an
effect associated with a policy and provide vital information as to the time
frames in which it occurred. Whilst Interrupted Time Series analysis using
accessible sources of large scale longitudinal data and advanced computational
modelling techniques provided a robust estimation of intervention effects.
However, to date such policy impact evaluation processes have been lacking in
urban science (Daniel, 2017).
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The research developed a green space land change dataset combining detailed
topographical and functional use resources, which enabled the distinction
between green space and ‘brownfield’ land. Subsequently, spatially joined to
openly accessible boundary data, this provided the means to assess relative
rates of change and offered potential insight in regards to the identification of
provisions within the policy framework.

The work undertaken throughout this thesis also highlights the value of
retrospective data-driven, longitudinal studies in support of the advancement
of conceptual understanding of the factors influencing urban development.
Whilst longitudinal analyses form a core aspect of urban science, in reality
such constitute a relatively minimally explored element of research to date
(Kitchin, 2016).

In recent years data-driven approaches to urban planning have evolved,
including the use of digital models intended to simulate changes to patterns
of land use under different policy scenarios (Koomen and Stillwell, 2007).
Population dynamics, climatic conditions and economic drivers of growth are
well established within these models (Pettit et al., 2020). However, policy
scenarios commonly apply relatively binary assumptions based upon regulated
constraint of development or largely deregulatory expansion (Dorning et al.,
2015; Han et al., 2015; Pettit et al., 2020). This may in part be attributed to a
scarcity of data derived from ex post facto impact evaluation with which to
inform such (Shahab et al., 2019).

The impact upon green space land associated with subtle changes to national
level planning policy derived from this research can contribute novel insight
in this regard. The two distinct methods (Change Point Detection and
Interrupted Time Series Analysis) used in chapters 4, 5 and 6 represent the
first application within the context of planning policy. They cumulatively
address the identified need to adopt more robust methods around causal
inference in regards to planning policy as an underlying driver of land change
(Morrison and Pearce, 2000; Plieninger et al., 2016). With the ITS approach
in particular offering a widely applicable computational system modelling
approach through a synthetic counterfactual.
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It further emphasises the discord between urban analytics and planning policy
practice alluded to by Hersperger et al. (2018), which may be deemed reflective
of wider challenges. Where much urban science research implies a potential
to influence policy a fracture remains (Thakuriah et al., 2017). By reframing
the focus of research from land change processes to the use of land change as
data to support an explicit analysis of policy the outlined may move towards
advancing a minimally addressed field of research.

7.4 Implications for Planning Policy

This thesis is the first work to present robust empirical evidence that the
transition to the Localism Act 2011 and National Planning Policy Framework

has resulted in a significantly larger rate of green space loss than would have
occurred under its predecessor. Whilst the revised provisions may not have
been deemed to reflect a ‘radical’ reform agenda (Davoudi, 2011; Haughton
and Allmendinger, 2013; Raco, 2014), an implicit shift in tone, allied to the
weakening of regulatory requirements appears to have induced this effect.

The National Planning Policy Framework was originally outlined as
intended to “protect the environment and cultural landscapes” and
support sustainable development (Bolton, 2011) amongst other aims. The
evidence of the increased loss of natural land presented in this research would
imply it failed to adhere to the outlined objectives in the face of other pressures.

Politically, consideration of contemporary planning policy in the United
Kingdom cannot be extricated from the perceived ‘housing crisis’, which
has led successive government’s to commit to programmes of increased
development (Cheshire, 2013). Thus, the revised framework and its effects
must be understood within the context of this divisive issue. Across each year
of the post-policy period identified by this research (2014 to 2018), the largest
recorded number of new residential developments begun nationally within
each year was recorded as 166,560 (2018 - 2019), which was 3,880 lower
than in 2007 to 2008 (MHCLG, 2020c). This reflects a similar pattern to the
research sample and would suggest the additional green space loss incurred
under the revised framework has not been offset by the provision of more
housing. In light of this evidence it adds support to the contention that the
policy reforms merely served to prioritise economic growth at the expense of
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our environmental future (Tait and Inch, 2016).

The persistence of the trend towards greater green space loss under the
revised framework also suggests the policy has potentially led to local plans
being forced to commit larger areas of green space for future development
(Harris, 2012), which will have had a continuing effect in the years since 2018.
Although analysis of the impacts of the 2018 reforms would be necessary it
may be considered likely the retention of a generally more permissive tone
will mean similar effects are evidenced.

However, the highly responsive dynamic seen in the transition between the
prior regime and National Planning Policy Framework, allied to similar effects
reported by Dallimer et al. (2011) would enable mitigatory reform to respond
to this issue more quickly than may have been anticipated.

Both the significant increase in the area of green space loss outside of existing
urban boundaries and diminishing trend in development on ‘brownfield’
land within, suggested targeted policy provisions (such as ‘brownfield’ first
measures) weakened in the revised framework were potentially pivotal (Ganser
and Williams, 2007). This has coincided with reports that there is sufficient
‘brownfield’ land to allow for the development of 1.8 million new homes
(CPRE, 2019). In combination with the institution of ‘Brownfield Land
Registers’ (DCLG, 2017), the pre-approval of residential development on such
sites could help to alter patterns of development (European Commission, 2016).

Regional factors were previously identified as critical to the containment of
development (Dieleman and Wegener, 2004). However, the reported impact
confirms Central Government as an influential driving force (Mu et al., 2016).
Therefore, suggesting the national planning agenda, as outlined in relevant
policy, will be crucial in striking a balance between developmental needs
and the retention of environmentally important undeveloped green space
(Dallimer et al., 2011). To facilitate a policy both supportive of development
and which affords appropriate protection to green space, impact evaluation
must be prioritised (Dallimer et al., 2011; Shahab et al., 2019). The highly
granular vector data (scale of 1:2500) utilised throughout the research and
novel application of previously unused analytical methods offer replicable
approaches to address this need.
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7.5 Limitations

7.5.1 Limitation 1: Land Change Data Accuracy

Throughout the research a single data source was utilised. Although all
measures were taken to ensure the validity of derived land change three issues
could be highlighted as potentially limiting. The first relates to the adopted
change metric. The second to the external influence of ‘land banking’. Whilst
the third is associated with issues of temporal accuracy.

Commonly, land change studies compare the total areas recorded as green
space at separate time intervals (Dallimer et al., 2011). In addition to which
they predominantly only identify change at the completion of development,
primarily as a result of identification of change through satellite imagery, in
which the transition from green space to pre-developmental ground-work is
less easily discerned (Erener and Düzgün, 2009).

However, this research adopted the area of green space which underwent
development as a more reliably defined identifier of change within the OS data
set. This also included the transition between ‘natural’ surfaces and initial
ground-works.

Therefore, the data accounted for neither the extent of green space, which
would be reinstated following the completion of development (Thomas and
Littlewood, 2010) nor ‘biodiversity offsetting’ (Sibley-Esposito, 2014), in
which the environmental functions are compensated for at a replacement site
(Sullivan and Hannis, 2015). Furthermore, the provision of well designed
green space has become a core component of development, inextricably bound
to the maximisation of revenue (Panduro and Veie, 2013). Thus, the extent
of green space provision upon redeveloped sites could be significantly higher
than recorded. Combined, these factors could be considered to lead to an
over-estimate of the policy effect, particularly in light of the National Planning

Policy Framework formally prescribing a commitment to ‘green infrastructure’
as a component of local plans, which should;

plan positively for the creation, protection, enhancement and

management of networks of biodiversity and green infrastructure

(National Planning Policy Framework [s.114]).
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The area of green space restored to sites identified as being under development
is considered unlikely to have biased the results, as an identical approach
was undertaken to the classification of change across the entire research
period. Therefore, it would be anticipated that the pre-policy and post-policy

periods would be equally affected. However, the validity of this assumption
is predicated upon the accuracy of land cover identification administered
through OS throughout the research period. There is little evidence to suggest
this could have been an issue with both a consistent methodology and update
procedure applied since prior to 2007 (Ordnance Survey, 2004).

Were rates of ‘biodiversity offsetting’ to be evidenced to have changed
during the research period it could to some extent bias the outcomes of the
research. There is little accessible data with which to assess the number of
‘offsetting’ schemes undertaken within the UK, therefore making it difficult
to address this concern. However, the efficacy and practical applicability of
such schemes have been disputed based upon analysis of sites in the United
States of America (Taherzadeh and Howley, 2018). With schemes rarely
delivering commensurate ecosystem services, particularly in regards to public
accessibility.

The second and third issues outlined in regards to the underlying change data
set can be considered jointly. Although adopted analytical time frames were
informed by prior research (Shelter, 2019) the identification of the date upon
which a change was approved was subject to some degree of uncertainty. In
one example, a large area of development, which was identified as having
occurred in 2015 (under post-policy conditions) was actually approved under
the prior framework (2011) (Doncaster Council, 2011). The extended time
period between approval and development in this instance could be attributed
to the site forming part of a regional infrastructure project, with elements
subject to procurement processes (Williams, 2013). The influence of approval
dates upon the data should be considered a significant issue. However, the
consistency offered by the identification methodology and model of general
trends should to some extent mitigate against bias associated with this risk.

Further to the outlined, the reliable identification of dates at which recorded
change could be associated with approval is potentially confounded by
instances of ‘land banking’, in which developmental approval is obtained, but
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does not occur (HBF, 2014). Land may be retained until such time as it is
financially more beneficial to begin development (Payne et al., 2019), at which
point it would be identified as change within the data. Conditions requiring
development to begin within defined time frames are intended to address this
issue (MHCLG, 2020d), and should generally limit delays between approval
and identification within this data set to between 5 and a half (pre-policy) and
3 and a half years (post-policy). However, the purported prevalence of the
technique (Payne et al., 2019) could reduce the identified rates of development
in both periods.

Evidence from governmental reviews has suggested the issue is less significant
than commonly implied (MHCLG, 2018b) and the practice was shown to have
reduced after the 2008 financial crash (Payne et al., 2019). Equally, the issue
is of greater concern for housing supply, with the practice only impacting
upon the derived data if development was to begin. Allied to the evidence of a
defined structural shift in the data, which could only have been induced by a
large scale single release of land into the supply, significant bias based upon
such appears unlikely.

A final issue related to the identification of change concerned development
which occurred in distinct phases over a prolonged period. Where large scale
projects are undertaken on complex sites or future capital is structured around
initial sales (Lichfields, 2016), land change may occur over multiple time
intervals. This could have led to bias within the data if portions of development
during the post-policy period were associated with phased development
approved and initiated in the pre-policy period. As the proximity to recent
development constitutes a material factor in regards to the location of new
sites (Nuissl and Siedentop, 2020) there were no means by which to reliably
identify phases of single projects based upon spatial characteristics. However,
as with other concerns the existence of significant bias appears unlikely based
upon the robust types of analysis undertaken.

7.5.2 Limitation 2: Adopted Policy Indicators

In general, planning policies are intended to address a variety of complex,
interdependent aims within a single framework (Bengston and Youn, 2006a).
Consequently, the identification of appropriate indicators of effects are
considered a conceptual problem (Morrison and Pearce, 2000). The adoption
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of a simple binary indicator of policy effects (such as green space) is contended
to offer a reductive approach, which is ill-equipped to address the complexity
inherent to the system (Hersperger et al., 2018). However, single indicator
studies have previously been undertaken, with loss of natural land considered
to reflect a strong proxy for unintended policy effects (Bengston et al., 2004;
Bengston and Youn, 2006a; Dallimer et al., 2011; Elson et al., 1993; Kasraian
et al., 2019; Mu et al., 2016).

7.5.3 Limitation 3: Importance of Quality and Area

The research undertaken throughout this thesis assigned equal importance to
all forms of green space, conceptualising sustainable development within the
context of the ‘no net land take’ principle (European Commission, 2016).
However, the ecosystem service functions associated with land are recognised
as being heavily influenced by quality (Brindley et al., 2019; Wood et al.,
2018). Therefore, analyses which envisage space as a neutral concept will fail
to account for the nuances crucial to the development of urban forms that meet
multi-functional needs (McGuinness et al., 2018).

As a result of the adopted change identification method, the data incorporated
small area changes (including incidental spaces (Swanwick et al., 2003))
within aggregated forms, which did not account for indicators of quality
(such as ecological richness). This issue can be considered in relation to the
UK housing crisis, which has come to redefine planning in the Twenty-First
Century. Barker (2008) suggested “there was no getting away from the fact

that more undeveloped land will be needed”. Based upon the understanding
that a small area of highly verdant land cover can provide greater ecosystem
service functions than a large area of amenity grassland (Brindley et al., 2019),
the adoption of spatial planning principles which prioritise the protection and
enhancement of some ‘green spaces’, whilst enabling sensitive development
upon others may be a more beneficial approach. This is recognised as a
particular issue in regards to quality accessible urban spaces, which have
been shown to come under increased pressure where densification is pursued
(Dallimer et al., 2011).

The outlined approach also does not account for the environmental and social
value which can bee attributed to ‘brownfield’ land (Macadam and Bairner,
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2012). Particularly from a biodiversity perspective, undeveloped land can
provide greater benefits than large scale rural areas dominated by intensively
farmed monoculture crops (Hunter, 2014). Further research, building upon this
basis may therefore be deemed crucial to build in issues of quality. However,
such is difficult to achieve in regards to large sample, temporal analysis based
upon historic data (Salkind, 2010).

7.5.4 Limitation 4: Causal Inference

Whilst the Interrupted Time Series analysis methodology is designed to offer
robust estimation of causal relationships based upon the concept of statistical
counterfactual causality (McDowall et al., 2019), it is underpinned by
reductive assumptions of linearity (Linden, 2017). As an exploratory approach
it is contended to offer strong internal validity (Baicker and Svoronos, 2019)
and offer insight of causal association (Young et al., 2014), but in isolation
does not adhere to conditions required for causality to be identified (Athey and
Imbens, 2017) (particularly in light of the presence of systemic complexity
(Trafimow, 2017)).

The method remains vulnerable to inferential challenges. The most commonly
cited of which relates to historical bias (Linden, 2017). Within this research
potentially confounding events, such as the economic recovery were discussed
and attempts were made to account for them accordingly. However, there are
limited means by which to exclude the impact of external factors upon the
derived inference. In the analysis undertaken in chapter 6 the differing effects
noted in relation to ‘brownfield’ and green space sites within existing urban
boundaries were highly suggestive of policy impact as they would likely have
been the subject of similar external factors.

This is a particular issue in regards to the highly complex environment in
which planing policy is required to operate (Hersperger et al., 2018). Although
the degree of uncertainty built into analysis through the use of dynamic

linear models and additionality associated with economic normalisation
(Morrison and Pearce, 2000) addressed this issue to some extent. The ITS

method did not explicitly account for complexity and in the absence of
a viable control group must therefore be considered subject to potential
bias as a result of extraneous variables (Linden, 2017). Post-analytical
consideration was given to plausible alternatives for the evidenced effect
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(Roemmele et al., 2011), but should not be considered to have addressed the
potential for such to be related to a combination of complex, interacting drivers.

This issue is exacerbated by the existence of an extended period between the
implementation of the policy and modelling of its effects (Lane and Hall,
2019). Although a priori research was used to inform the modelling of this
period (Lichfields, 2016; Shelter, 2019), the existence of a significant lagged
effect diminishes the derived inference (Galster et al., 2004; Penfold and
Zhang, 2013).

The second threat concerns the validity of the pre-policy model and thus the
extrapolated ‘counterfactual’ scenario (Biglan et al., 2000). This issue is
highlighted as of particularly concern in regards to highly stochastic data.
Throughout the research, dynamic linear models were evidenced to be the best
fitting approach under formal testing against alternatives. Said models are
suited to stochastic data (Brodersen et al., 2015; Brodersen and Hauser, 2020),
whilst the number of observations could be considered to mitigate against bias
associated with outliers (Zhang et al., 2011). Additionally, the adoption of a
functional prediction interval attempted to account for a degree of underlying
uncertainty within the structure of the data.

The threat associated with instrumentation (Linden and Yarnold, 2016)
was considered minimal throughout. Internal validity can be reduced in
circumstances where the methods of data production are subject to change
during the research period (Bernal et al., 2017) (such as the methodological
change to governmental records on land use change (DCLG, 2015a)). By
developing a new land change dataset using the same criteria for each time
step, founded upon a consistent revision policy (Ordnance Survey, 2020),
derived data was considered unlikely to have resulted in bias.

7.5.5 Limitation 5: Generalisation

A robust sample of Local Authority Areas in England was derived for this
thesis, which consequently may be considered likely to reflect national
trends. However, analysis at an aggregated scale should be interpreted
cautiously in relation to individual local and regional areas, previously
evidenced to respond differently to policy influences (Dallimer et al.,
2011). This concept was provisionally tested within the research, but
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requires more detailed analysis of the relationship between local features and
the impact of the policy (such as political control, location or economic profile).

Research outcomes must also be understood within the context of the relatively
unique context of a discretionary system (Booth, 1995). Despite the system
of local plans moving towards an implicit zoning approach (Allmendinger,
2006), formal zoning systems may have evidenced distinct effects under similar
deregulatory provisions. Furthermore, the recorded effects may be attributable
to interconnected external factors determining the specific provisions of the
revised framework. Therefore, the extent to which the research can inform
global sustainable development may be limited. However, the work was
supportive of prior research undertaken within a global context (Colantoni
et al., 2016; Fiorini et al., 2019; Kasraian et al., 2019; Mu et al., 2016) and as
such may indicate the role of regulatory functions to be crucial in a variety of
contexts.

7.5.6 Limitation 6: Spatial Scale

Due to practical limitations the research could not be conducted at a spatial
scale corresponding to the national level of the subject intervention, considered
most appropriate (Kozak and Szwagrzyk, 2016). Adhering to the approaches
utilised in prior analyses (Dallimer et al., 2011; Kasraian et al., 2019; Mu et al.,
2016) it was therefore based upon a sample designed to reflect a broad range
of contextual criteria intended to estimate representation of the national scale
(Cullingworth and Nadin, 2003). In line with the administration of planning
research was aggregated upon Local Authority Areas. Said LAAs were not
analysed individually, whilst the spatial scale differed significantly from that
which is commonly applied in comparable urban studies (Lloyd, 2016).

Therefore results must be interpreted in relation to the modifiable areal unit

problem (Openshaw and Rao, 1995). Should the research have been conducted
in regards to different spatial scales it could be liable to produce different
outcomes. Similarly, a selection of different Local Authority Area samples
may lead to a report of a different intervention effect. Particularly in light of
more significant correlations being reported at a larger aggregated scale, there
is the potential for bias to have been introduced (Lee and Kemp, 2000).
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CHAPTER8
Conclusions and Future Work

8.1 Future Research

The advancement of a reliable conceptual model relating to the role of national
level policy as a driver and regulator of land use change requires consistent
long term monitoring (OECD, 2018). Allied to Dallimer et al. (2011) this
research can provide a basis upon which to extend to future planning policy
changes. With comparable analysis of the land change effects associated with
the revision of the NPPF in 2018 potentially providing insight in regards to
the extent to which the outlined effects were attributable to specific provisions
or a general shift in tone (Davoudi, 2011).

One of the weaknesses of this research related to the identification of the date
upon which development was approved, which could be considered crucial.
This issue could be addressed through access to relevant planning application
data relating to each sample Local Authority Area and would build upon
a growing aspiration to utilise such in support of evidence based decision
making (Mills, 2020). Whilst data relating to a small number of sample
Authority Areas was accessed and geo-located using RegEx functions based
upon postcode pattern matches (Mitchell et al., 2014), future research will be
required in order to develop more consistent, replicable methods.

Planning research to date, including this thesis has treated land and land use as
a broadly neutral concept (McGuinness et al., 2018). In light of the importance
of the characteristics of green spaces to the ecosystem services which can be
derived (Brindley et al., 2019; Wood et al., 2018), further research must evolve
to incorporate concepts of quality, which have been used previously in regards
to analyses of green space accessibility (Barbosa et al., 2007). Such research
would provide essential understanding of the effects associated with different
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policy approaches upon different types of land. The required longitudinal
studies for causal inference are commonly restricted by the limited availability
of historic data relating to quality (Feltynowski et al., 2018). Therefore,
as an initial stage of research there is a need to develop a consistent green
space quality database, which could undergo regular revision and is stored in
accessible archival format.

Having provided a robust sample as a proof of concept, the extension of the
outlined methodology to large scale national data represents a future research
priority. It must also be replicated within different contexts, such as in relation
to ‘zoning’ systems (Booth, 1995) and alternative governmental structures in
order to ensure understanding of the relationship is advanced.

There is significant scope to extend this research to analyse the degree of
variation between individual Local Authorities, in order to develop a model
of the influence of regional policy. Based upon the large variation noted by
Dallimer et al. (2011), it would be anticipated that similar effects would be
evidenced in this context. Subsequent investigation of local development
plans would further advise as to optimal approaches for intended outcomes.
Machine learning techniques, including decision tree architecture and
k-means clustering could be utilised to explore the relationships between
individual Authority characteristics and the extent of green space loss
under different policy regimes. However, this endeavour would require a
larger sample than was utilised in this research and extensive processing power.

The replication of this research in regards to various subsets of the sample
could augment the outlined knowledge, exploring differences between ‘urban’
and ‘rural’ Authorities, economic profiles or geographical location. Whilst,
the establishment of typologies relating to parcels of green space land, using
combined Local Authority, remote sensed and OS data, could be used to
develop an advanced predictive model for future land use change, building
upon work undertaken by amongst others Stanilov and Batty (2011).

There may be value in undertaking research to investigate the extent to which
different policy effects are evidenced in regards to green space associated with
Local Authority socio-economic profiles. Barbosa et al. (2007) identified that
areas characterised by higher deprivation were supported by larger areas of
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public green space. Whether loss induced by policy has altered this profile
could inform the degree of regulatory protection afforded to such spaces under
future policy provisions. Similar research could be undertaken based upon
the local political profile, such as to investigate whether Authority Areas or
Wards served by different political parties saw differing effects. How this links
to public participation within the planning system could also be investigated
using the outlined methods.

It would be beneficial for research to consider the same policy change and time
period, but address the issue using an alternative indicative variable, such as
the total number of new residential buildings, number of planning applications
or adjusted value of commercial revenue. Finally, there would be value in
replicating the analytical methods for data derived from remote sensed sources.

8.1.1 Key Recommendations

Whilst offering novel insights at an aggregated spatial scale, building upon the
foundations of Dallimer et al. (2011), the research presented within this thesis
does not actively address the vast scope of data to support analysis of local
influences. As a result, the following key future research recommendations are
outlined.

1. In light of the potentially significant effects upon analysis associated
with the adopted spatial scale (Openshaw and Rao, 1995; Wong, 2004;
Lloyd, 2016), differential impacts between localities recorded by
Dallimer et al. (2011) and influence of local decisions upon planning
procedure (Cullingworth and Nadin, 2003), it would appear crucial that
research is subsequently undertaken with which to discern the impact of
the policy in relation to different areas. An initial approach based upon
the data utilised in this thesis proposed the use of K-means clustering

using the outcomes of individual ITS as a method through which to
identify common characteristics between different Local Authority
Areas.

There may further be significant inferential value to the research being
repeated in relation to a different set of local authority areas in order to
identify the extent to which the reported effect could be associated with
those specific samples selected.
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2. Similarly, supplementing the outlined research with qualitative and
mixed-methods approaches to support understanding of the influence
of local decisions and external actors upon rates of development
(Cullingworth and Nadin, 2003) would permit a more nuanced
analysis of the causal relationship between the policy and land change
(Hersperger et al., 2018), whilst contributing towards the advancement of
a theory of change model currently absent from the agenda (Hersperger
et al., 2010). In this regard, the thesis could offer a foundation upon
which to build a qualitative research basis challenging the assumptions
underpinning the research.

3. Addressing issues related to the confidence of the temporal dynamics
associated with the policy should further be considered critical. To
achieve such, future analyses should be designed to incorporate planning
application data, openly accessible via either user interface systems
or increasingly application programming interfaces (ul Hussnain et al.,
2020). However to undertake such, geo-located data would be required,
which was shown to be insufficient to support this research.

4. The extent to which the outcomes evidenced by this thesis may be
deemed to have been influenced by the input change data should
further be tested. Relevant land change data should be obtained based
upon remote sensed images, enabling analysis to potentially discern
deterioration in the quality of green space [through vegetation indices]
not available in the vector resources originally relied upon.

5. It is suggested the effects of national policies can only be analysed
appropriately at a national scale (Verde et al., 2020), particularly where
consideration is given to land change, which is likely to be evidenced
differently at different spatial scales (Dallimer et al., 2011). However,
this research was restricted to an aggregated sample primarily as a
result of practical limitations. With national scale analysis a priority,
subsequent research could employ sequential coding and clusters or
super-computer resources in order to expand the methods to a national
scale.

6. Through the application of similar approaches, in conjunction with
methods such as Qualitative Comparative Analysis, it may be possible to
develop an understanding of the role of policy in determining the type of
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land undergoing change (Kasraian et al., 2019). Such would rely upon
the detailed identification of land use and land cover types with relevant
data (primarily in the form of binary variables) for the existence of key
social and physical conditions.

7. In light of the diverse outcomes intended to be achieved through planning
policy future studies should seek to adopt different indicative variables,
such as the number of new residential buildings. Such data is available
through governmental resources and could be accessed easily to support
analysis of an intervention effect.

8.2 Conclusion

The influence of national level planning policy over rates and patterns of land
use change represents a growing concern as developmental pressure upon
natural land increases (Biello, 2012; Seto et al., 2012). Despite its significance
few studies have been undertaken through which to explore this relationship
based upon quantitative methods of analysis (Hersperger et al., 2018). The
development of this field of study through ex post facto impact evaluation of
implemented policies is considered imperative (Morrison and Pearce, 2000;
Shahab et al., 2019).

This research addressed this issue using the example of the transition to the
Localism Act 2011 and National Planning Policy Framework, investigating
the extent to which novel data and methods could identify the existence of
a structural change attributable to policy [RQ 1], quantify the effect of the
policy change [RQ 2] and the extent to which it resulted in different effects
upon distinct ‘urban’ and ‘rural’ land [RQ 3]. Cumulatively the research
findings indicate the change from the prior framework to the NPPF resulted in
a significant increase in the rate at which development occurred upon green
space. This increase appears to have been largely concentrated on land situated
outside of extant urban limits. Accordingly, the revised policy framework can
be empirically presented as a change in emphasis towards a system which is
more permissive of urban expansion.

Under the Coalition and subsequently Conservative governments between
2010 and 2018, green space has been subject to a greater developmental
threat than would likely have been evidenced under the preceding framework
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administered by New Labour. With provisions including the “presumption in

favour of sustainable development” (National Planning Policy Framework
[s.14]) and weakening of ‘brownfield’ first commitments hypothesised as
critical changes.

These elements extend knowledge relating to the role of policy as a driver
of land use change, addressing issues identified by Plieninger et al. (2016)
and Morrison and Pearce (2000). Overall, it provides evidence of a causal
relationship through the use of novel methods (in the form of Change Point

Detection and Interrupted Time Series Analysis) and suggest relatively minimal
policy reform can have a profound effect upon a development profile within
time frames not previously considered plausible. Wordsworth’s enervated
epitaph for the loss of natural land appears to have been forgotten.
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APPENDIXA

A.1 Full Change Methodology

A.1.1 Stage 1: All Recorded Change

The first step in change identification utilised the fact that the unique ID
of any new topographical object recorded in the data at time T would not
exist in the equivalent data for time T−1. Such would not imply that the new
polygon necessarily constituted a genuine change, but provided the basis for
subsequent stages.

Instances where a feature had been given a new ID, but ostensibly remained
the same, in so far as it retained an identical ‘make’ classifier and constituted
95% of the original area were removed. To achieve this, the area of spatial
intersection was calculated between the polygons from times T and T−1. Said
area was subsequently divided both by the areas of the original shape (time
T−1) and new polygon(time T ). Only where both derived values were equal to
or greater than 0.95 was the object removed.

The resultant is referred to hereafter as ‘provisional change’ data.
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Figure A.1: Stage 1 minimum change identification process.

A.1.2 Stage 2: Identification of Prestige Buildings
and New Residential Features

Based upon their prominence within the revision policy, both buildings
associated with a Prestige site and all new residential developments were
prioritised (Ordnance Survey, 2020). The identification of relevant built
changes can most clearly be understood in two steps, which were elements of
a single nested spatial join function.

Firstly, the ‘provisional change’ data was restricted to features which could be
identified as a ‘building’ based upon the ‘Descriptive Group’ classifier. Where
said ‘building’ was shown to contain an AddressBase Premium® record, which
identified it as one of 26 relevant classification codes (which only existed in
the data after time T−1) it was recorded as a change [figure A.2].
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Figure A.2: An example of a Prestige Building or Category A new
residential development (Ordnance Survey, 2020) identified using
AddressBase Premium® spatial point data.

To ensure the identification of all buildings which could be deemed to be
associated with or likely identified concurrently with prestige buildings or
residential developments an additional stage was undertaken. Firstly, an
indicative development site was identified as the original polygon (from time
T−1) upon which the change had occurred. Subsequently, all buildings with a
new ID contained within said development site were assumed to represent
genuine developmental change and included within the data [figure A.3].
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Figure A.3: Derived indicative development site boundary with
all new buildings. Those in grey represent buildings identified
using AddressBase Premium® data. Whilst those in red represent
buildings identified as part of the development site.

Finally all new features categorised as ‘manmade’ or ‘multiple’ (Ordnance
Survey, 2020) which connected to an identified building were incorporated
[refer to figure A.4]. A summary of the individual elements which were
undertaken in this stage are presented in figure A.5
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Figure A.4: Identified new built infrastructure associated with new
buildings (represented in blue).
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Figure A.5: Stage 2 minimum change identification process.

A.1.3 Stage 3: Retail and Industrial Development

In regards to both retail and industrial development included within the
terms of Category A change, a broadly similar approach to stage 2 was applied.
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Initially therefore, appropriate developments were designated as any new
building (as identified in stage 1) within which an AddressBase Premium®

record indicated it was a commercial retail or industrial site not associated
with agriculture (Ordnance Survey, 2020).

The site upon which said development took place was separately identified
through the use of spatial functions and any unidentified building contained
within such was incorporated into the change data. Thereafter, all other new
‘manamde’ features which intersected with the defined buildings were joined
as constituents of change data [refer to figure A.6].

Figure A.6: Example of identified new industrial development with
associated infrastructure.
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Figure A.7: Stage 3 minimum change identification process.

A.1.4 Stage 4: Agricultural Developments

Within the revision policy, both new and expanded built features associated
with agricultural sites must be of 0.25 Ha or greater in order to be classified
as Category A and thus identified within 6 months of occurrence. Due to
the terms of the outlined condition it was possible to identify both new and
extended features within a single stage.

Consequently, such sites were distinguished within the data using an adapted
approach. Where previously the initial stage of identification was based upon
relevant AddressBase Premium® data being contained within a new building,
for agricultural sites it included association with any recorded ‘manmade’
surface [refer to figure A.8].
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Figure A.8: Example of identified new agricultural building based
upon AddressBase Premium® record.

Secondly, connected new ‘manmade’ features, which could be deemed to
constitute the overall agricultural site were discerned [figure A.9] based upon
a proximity criteria to the originally identified agricultural form. This technique
replicated relevant governmental land use change methods (DCLG, 2015a).
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Figure A.9: All ‘manmade’ features connected to the initially
identified agricultural building. Blue features represent general
‘manmade’ surfaces, whilst red polygons denote additional
buildings.

The subsequently identified agricultural site was amalgamated into a single
polygonal form based upon a spatial clustering function. The relative area for
this indicative site was calculated and if equal to or in excess of 2500m2, its
constituent elements were included within the relevant change data [refer to
figure A.10].
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Figure A.10: A complete new agricultural site consisting of 5
features.

In the outlined example the agricultural site comprised 5 individual elements,
including two buildings and three general surfaces (representing associated
hard standing). As the site was less than 0.25 Ha it was not identified as
constituting a Category A change and consequently was not included within
the ‘minimum change’ data.

ID OS Descriptive Group
Classifier

Area
(m2)

1000002562087720 Building 758.98
1000002562087716 General Surface 642.44
5000005194840898 General Surface 583.52
5000005194840822 General Surface 103.32
5000005194841092 Building 73.92
Total 2,162.18

A final flow chart is included in order to provide greater clarity in regards to
the elements of the stage [figure A.11].
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Figure A.11: Stage 4 minimum change identification process.

A.1.5 Stage 5: Developmental Preparation

Although excluded from the government’s land use change methodology
(DCLG, 2015a), OS categorise land which is in the process of undergoing
development using the ‘unclassified’ designation (Ordnance Survey, 2017).
Consequently, it is feasible to identify land at the earliest stages of development
and include such as a form of change. This encompasses both the occurrence
of development upon designated ‘natural’ and existing built forms [Figures
A.12 and A.13].

Figure A.12: Site in time T−1

consisting of both ‘natural’ and
‘non-natural’ features.

Figure A.13: Site at time T , in
which it has undergone change to
‘unclassified’.

As the ID of an ‘unclassified’ polygon remains the same as the largest feature
it has replaced, such data was not identified as an element of the ‘provisional
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change’ data set produced in stage 1. Therefore, the identification of land
subject to development between time intervals can be understood to reflect the
spatial intersection of two polygons, which were classified as one form at time
T−1, but have become ‘unclassified’ in time T .

Whilst not explicitly outlined, it is assumed the primary reason for the
omission of changes to ‘unclassified’ form was based upon the fact that the
development may subsequently restore elements consistent with the previous
‘make’. Thus not necessarily reflecting a genuine change of land use. However,
with the research focus upon understanding the impact of development it was
deemed imperative to include such.

Consequently, there is the potential to over-estimate the area of land lost
permanently to development. However evidence suggests green space land
directly associated with developments is often perceived as inaccessible
(Wendel et al., 2012). Whilst additionally, it offers the only means by which
to identify large scale developments, which may occur over many years, at
a point more consistent with their approval. Furthermore, with an identical
methodology applied to the entire data set the inclusion of such should not be
deemed to compromise derived inferences.

A.1.6 Stage 6: Combined Change

Having created four distinct change data sets (stages 2 to 5), the individual
elements were joined into a single multi-polygon file reflecting the minimum
change which had occurred in time T . The initial estimation of the area to have
undergone transition from green space to indicative developed form, therefore
represented the spatial intersection between any area identified as ‘natural’ in
time T−1 and the derived change dataset [figure A.14].
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Figure A.14: An example of the total identified area of change from
‘natural’ to indicative developed form in a single LAA [Coventry]
between 2007 and 2008.

A.1.7 Stage 7: Removal of Indicative ‘Brownfield’ Change

Where based solely upon the designation of land as ‘natural’, sites were
included which would be categorised as ‘brownfield’ for the purpose of
planning policy. Therefore, in any circumstance in which the ‘natural’ space
(in time T−1) upon which development occurred contained an AddressBase

Premium® classification code denoting the existence of built infrastructure at
any pint prior to time T−1 it was removed from the ‘green space loss’ data.
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APPENDIXB

B.1 Green Space Loss Data

Local Authority Year Quarter Time Period Recorded Area Green Space (2007 - Chng) GS Loss (m2)
Babergh 2007 1 1 549082546.2 0
Babergh 2007 2 2 549082546.2 14804.62
Babergh 2007 3 3 549067741.6 21112.96
Babergh 2007 4 4 549046628.6 29558.06
Babergh 2008 1 5 549017070.6 23764.97
Babergh 2008 2 6 548993305.6 0.01
Babergh 2008 3 7 548993305.6 46829.69
Babergh 2008 4 8 548946475.9 1588.86
Babergh 2009 1 9 548944887 15747.05
Babergh 2009 2 10 548929140 21095.07
Babergh 2009 3 11 548908044.9 7562.09
Babergh 2009 4 12 548900482.8 49324.51
Babergh 2010 1 13 548851158.3 5736.17
Babergh 2010 2 14 548845422.1 3997.01
Babergh 2010 3 15 548841425.1 15325.18
Babergh 2010 4 16 548826100 7516.83
Babergh 2011 1 17 548818583.1 31123.96
Babergh 2011 2 18 548787459.2 6546.76
Babergh 2011 3 19 548780912.4 0
Babergh 2011 4 20 548780912.4 80609.12
Babergh 2012 1 21 548700303.3 4426.42
Babergh 2012 2 22 548695876.9 6173.14
Babergh 2012 3 23 548689703.7 117136.47
Babergh 2012 4 24 548572567.2 1314.39
Babergh 2013 1 25 548571252.9 20229.07
Babergh 2013 2 26 548551023.8 0
Babergh 2013 3 27 548551023.8 19962.38
Babergh 2013 4 28 548531061.4 5814.61
Babergh 2014 1 29 548525246.8 4174.59
Babergh 2014 2 30 548521072.2 0
Babergh 2014 3 31 548521072.2 29765.91
Babergh 2014 4 32 548491306.3 47708.68
Babergh 2015 1 33 548443597.6 986.82
Babergh 2015 2 34 548442610.8 53667.88
Babergh 2015 3 35 548388942.9 10545.74
Babergh 2015 4 36 548378397.2 1847.33
Babergh 2016 1 37 548376549.9 2253.44
Babergh 2016 2 38 548374296.4 215.4
Babergh 2016 3 39 548374081 23460.82
Babergh 2016 4 40 548350620.2 26067.58
Babergh 2017 1 41 548324552.6 13410.22
Babergh 2017 2 42 548311142.4 0
Babergh 2017 3 43 548311142.4 30417.39
Babergh 2017 4 44 548280725 18393.17
Babergh 2018 1 45 548262331.8 63977.86
Babergh 2018 2 46 548198354 7627.49
Babergh 2018 3 47 548190726.5 12480.33
Babergh 2018 4 48 548178246.1 200181.24
Barrow-in-Furness 2007 1 1 60875896.36 578.19
Barrow-in-Furness 2007 2 2 60875318.17 0
Barrow-in-Furness 2007 3 3 60875318.17 0.01
Barrow-in-Furness 2007 4 4 60875318.16 0
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Barrow-in-Furness 2008 1 5 60875318.16 0
Barrow-in-Furness 2008 2 6 60875318.16 0
Barrow-in-Furness 2008 3 7 60875318.16 0
Barrow-in-Furness 2008 4 8 60875318.16 0
Barrow-in-Furness 2009 1 9 60875318.16 0
Barrow-in-Furness 2009 2 10 60875318.16 59.03
Barrow-in-Furness 2009 3 11 60875259.13 0
Barrow-in-Furness 2009 4 12 60875259.13 1123.29
Barrow-in-Furness 2010 1 13 60874135.83 0
Barrow-in-Furness 2010 2 14 60874135.83 0
Barrow-in-Furness 2010 3 15 60874135.83 106.72
Barrow-in-Furness 2010 4 16 60874029.11 16662.44
Barrow-in-Furness 2011 1 17 60857366.67 0
Barrow-in-Furness 2011 2 18 60857366.67 0
Barrow-in-Furness 2011 3 19 60857366.67 0
Barrow-in-Furness 2011 4 20 60857366.67 568.26
Barrow-in-Furness 2012 1 21 60856798.41 0
Barrow-in-Furness 2012 2 22 60856798.41 0
Barrow-in-Furness 2012 3 23 60856798.41 0.08
Barrow-in-Furness 2012 4 24 60856798.33 0
Barrow-in-Furness 2013 1 25 60856798.33 0
Barrow-in-Furness 2013 2 26 60856798.33 5957.44
Barrow-in-Furness 2013 3 27 60850840.89 0
Barrow-in-Furness 2013 4 28 60850840.89 25257.59
Barrow-in-Furness 2014 1 29 60825583.31 114430.97
Barrow-in-Furness 2014 2 30 60711152.33 1144.08
Barrow-in-Furness 2014 3 31 60710008.26 842.82
Barrow-in-Furness 2014 4 32 60709165.43 1780.69
Barrow-in-Furness 2015 1 33 60707384.74 0
Barrow-in-Furness 2015 2 34 60707384.74 1773.94
Barrow-in-Furness 2015 3 35 60705610.8 11993.18
Barrow-in-Furness 2015 4 36 60693617.62 85714.71
Barrow-in-Furness 2016 1 37 60607902.91 0
Barrow-in-Furness 2016 2 38 60607902.91 0
Barrow-in-Furness 2016 3 39 60607902.91 0
Barrow-in-Furness 2016 4 40 60607902.91 0
Barrow-in-Furness 2017 1 41 60607902.91 709.42
Barrow-in-Furness 2017 2 42 60607193.49 677.29
Barrow-in-Furness 2017 3 43 60606516.2 45647.34
Barrow-in-Furness 2017 4 44 60560868.86 2303.96
Barrow-in-Furness 2018 1 45 60558564.9 0
Barrow-in-Furness 2018 2 46 60558564.9 305.05
Barrow-in-Furness 2018 3 47 60558259.85 0
Barrow-in-Furness 2018 4 48 60558259.85 10265.9
Birmingham 2007 1 1 90232756.08 941.35
Birmingham 2007 2 2 90231814.73 210719.83
Birmingham 2007 3 3 90021094.9 14805.08
Birmingham 2007 4 4 90006289.81 10981.04
Birmingham 2008 1 5 89995308.77 837.83
Birmingham 2008 2 6 89994470.95 1837.71
Birmingham 2008 3 7 89992633.23 9275.98
Birmingham 2008 4 8 89983357.25 7090.46
Birmingham 2009 1 9 89976266.79 6906.41
Birmingham 2009 2 10 89969360.39 0
Birmingham 2009 3 11 89969360.39 9997.37
Birmingham 2009 4 12 89959363.02 41019.42
Birmingham 2010 1 13 89918343.59 18424.5
Birmingham 2010 2 14 89899919.1 379.08
Birmingham 2010 3 15 89899540.02 13415.13
Birmingham 2010 4 16 89886124.89 747.86
Birmingham 2011 1 17 89885377.02 8170.38
Birmingham 2011 2 18 89877206.64 15846.82
Birmingham 2011 3 19 89861359.82 5921.37
Birmingham 2011 4 20 89855438.45 18068.76
Birmingham 2012 1 21 89837369.69 38879.38
Birmingham 2012 2 22 89798490.32 2264.99
Birmingham 2012 3 23 89796225.32 1600.31
Birmingham 2012 4 24 89794625.02 3486.07
Birmingham 2013 1 25 89791138.94 5528.65
Birmingham 2013 2 26 89785610.29 26853.18
Birmingham 2013 3 27 89758757.11 12734.9
Birmingham 2013 4 28 89746022.21 116778.66
Birmingham 2014 1 29 89629243.56 17486.69
Birmingham 2014 2 30 89611756.87 1518.34
Birmingham 2014 3 31 89610238.53 41771.04
Birmingham 2014 4 32 89568467.49 43418.87
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Birmingham 2015 1 33 89525048.62 15930.1
Birmingham 2015 2 34 89509118.52 63994.74
Birmingham 2015 3 35 89445123.77 45080.54
Birmingham 2015 4 36 89400043.23 9503.65
Birmingham 2016 1 37 89390539.58 4539.38
Birmingham 2016 2 38 89386000.2 7761.79
Birmingham 2016 3 39 89378238.41 40275.79
Birmingham 2016 4 40 89337962.63 62288.99
Birmingham 2017 1 41 89275673.64 41918.13
Birmingham 2017 2 42 89233755.51 6765.27
Birmingham 2017 3 43 89226990.24 56090.84
Birmingham 2017 4 44 89170899.4 2211.2
Birmingham 2018 1 45 89168688.2 12928.14
Birmingham 2018 2 46 89155760.06 80743.78
Birmingham 2018 3 47 89075016.28 5846.46
Birmingham 2018 4 48 89069169.82 27405.26
Blaby 2007 1 1 103596834.4 7714.02
Blaby 2007 2 2 103589120.4 30.73
Blaby 2007 3 3 103589089.7 0
Blaby 2007 4 4 103589089.7 0
Blaby 2008 1 5 103589089.7 155.43
Blaby 2008 2 6 103588934.2 3999.17
Blaby 2008 3 7 103584935.1 1346.17
Blaby 2008 4 8 103583588.9 1468.86
Blaby 2009 1 9 103582120 29847.2
Blaby 2009 2 10 103552272.8 1318.46
Blaby 2009 3 11 103550954.4 0
Blaby 2009 4 12 103550954.4 0
Blaby 2010 1 13 103550954.4 5745.28
Blaby 2010 2 14 103545209.1 1923.13
Blaby 2010 3 15 103543286 65791.2
Blaby 2010 4 16 103477494.8 687.79
Blaby 2011 1 17 103476807 32621.93
Blaby 2011 2 18 103444185 64675.57
Blaby 2011 3 19 103379509.5 299.25
Blaby 2011 4 20 103379210.2 0.01
Blaby 2012 1 21 103379210.2 0
Blaby 2012 2 22 103379210.2 7030.1
Blaby 2012 3 23 103372180.1 89210.17
Blaby 2012 4 24 103282969.9 3348.26
Blaby 2013 1 25 103279621.7 2861.94
Blaby 2013 2 26 103276759.7 7297.59
Blaby 2013 3 27 103269462.1 3779.27
Blaby 2013 4 28 103265682.9 102659.27
Blaby 2014 1 29 103163023.6 365306.95
Blaby 2014 2 30 102797716.7 26499.02
Blaby 2014 3 31 102771217.6 9750.44
Blaby 2014 4 32 102761467.2 123660.9
Blaby 2015 1 33 102637806.3 269601.32
Blaby 2015 2 34 102368205 6040.52
Blaby 2015 3 35 102362164.5 40038.69
Blaby 2015 4 36 102322125.8 147058.58
Blaby 2016 1 37 102175067.2 71584.96
Blaby 2016 2 38 102103482.2 62728.84
Blaby 2016 3 39 102040753.4 1463.83
Blaby 2016 4 40 102039289.6 107558.75
Blaby 2017 1 41 101931730.8 351403.43
Blaby 2017 2 42 101580327.4 140597.23
Blaby 2017 3 43 101439730.2 30706.68
Blaby 2017 4 44 101409023.5 75437.69
Blaby 2018 1 45 101333585.8 4141.23
Blaby 2018 2 46 101329444.5 5104.51
Blaby 2018 3 47 101324340 82087
Blaby 2018 4 48 101242253 125225.36
Boston 2007 1 1 317654473.2 15966.92
Boston 2007 2 2 317638506.3 25020.47
Boston 2007 3 3 317613485.8 20029.91
Boston 2007 4 4 317593455.9 11860.03
Boston 2008 1 5 317581595.9 20114.33
Boston 2008 2 6 317561481.5 1.87
Boston 2008 3 7 317561479.7 2571.48
Boston 2008 4 8 317558908.2 622.95
Boston 2009 1 9 317558285.3 3512.69
Boston 2009 2 10 317554772.6 0
Boston 2009 3 11 317554772.6 608.15
Boston 2009 4 12 317554164.4 2660.53
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Boston 2010 1 13 317551503.9 7291.79
Boston 2010 2 14 317544212.1 0
Boston 2010 3 15 317544212.1 0
Boston 2010 4 16 317544212.1 0
Boston 2011 1 17 317544212.1 21678.38
Boston 2011 2 18 317522533.7 0
Boston 2011 3 19 317522533.7 12984.96
Boston 2011 4 20 317509548.8 0
Boston 2012 1 21 317509548.8 2201.74
Boston 2012 2 22 317507347 0
Boston 2012 3 23 317507347 3075.78
Boston 2012 4 24 317504271.2 29768.31
Boston 2013 1 25 317474502.9 530.38
Boston 2013 2 26 317473972.6 0
Boston 2013 3 27 317473972.6 2801.83
Boston 2013 4 28 317471170.7 26648.28
Boston 2014 1 29 317444522.4 6835.39
Boston 2014 2 30 317437687 740.95
Boston 2014 3 31 317436946.1 4055.82
Boston 2014 4 32 317432890.3 20428.07
Boston 2015 1 33 317412462.2 664.29
Boston 2015 2 34 317411797.9 13194.09
Boston 2015 3 35 317398603.8 2203.74
Boston 2015 4 36 317396400.1 58845.97
Boston 2016 1 37 317337554.1 42578.08
Boston 2016 2 38 317294976 10373.57
Boston 2016 3 39 317284602.5 32041.56
Boston 2016 4 40 317252560.9 14468.86
Boston 2017 1 41 317238092.1 4942.08
Boston 2017 2 42 317233150 130615.25
Boston 2017 3 43 317102534.7 54070.42
Boston 2017 4 44 317048464.3 70416.25
Boston 2018 1 45 316978048.1 8252.77
Boston 2018 2 46 316969795.3 7689.64
Boston 2018 3 47 316962105.7 23675.54
Boston 2018 4 48 316938430.1 87613
Brentwood 2007 1 1 129795916.5 0
Brentwood 2007 2 2 129795916.5 842.8761868
Brentwood 2007 3 3 129795073.6 0
Brentwood 2007 4 4 129795073.6 2141.339395
Brentwood 2008 1 5 129792932.3 78.51162567
Brentwood 2008 2 6 129792853.8 0
Brentwood 2008 3 7 129792853.8 2413.139908
Brentwood 2008 4 8 129790440.6 0.037154729
Brentwood 2009 1 9 129790440.6 0
Brentwood 2009 2 10 129790440.6 0
Brentwood 2009 3 11 129790440.6 2868.335866
Brentwood 2009 4 12 129787572.3 0
Brentwood 2010 1 13 129787572.3 0.185136696
Brentwood 2010 2 14 129787572.1 0.000632187
Brentwood 2010 3 15 129787572.1 0
Brentwood 2010 4 16 129787572.1 0
Brentwood 2011 1 17 129787572.1 0
Brentwood 2011 2 18 129787572.1 0
Brentwood 2011 3 19 129787572.1 1459.6071
Brentwood 2011 4 20 129786112.5 686.5342408
Brentwood 2012 1 21 129785425.9 301.8124126
Brentwood 2012 2 22 129785124.1 0
Brentwood 2012 3 23 129785124.1 2567.741224
Brentwood 2012 4 24 129782556.4 0
Brentwood 2013 1 25 129782556.4 8421.081733
Brentwood 2013 2 26 129774135.3 0
Brentwood 2013 3 27 129774135.3 0
Brentwood 2013 4 28 129774135.3 239.7763101
Brentwood 2014 1 29 129773895.5 6643.862664
Brentwood 2014 2 30 129767251.7 3094.575978
Brentwood 2014 3 31 129764157.1 0
Brentwood 2014 4 32 129764157.1 5211.0845
Brentwood 2015 1 33 129758946 4443.999076
Brentwood 2015 2 34 129754502 1310.547726
Brentwood 2015 3 35 129753191.5 25786.40814
Brentwood 2015 4 36 129727405 0
Brentwood 2016 1 37 129727405 1153.505028
Brentwood 2016 2 38 129726251.5 880.6111525
Brentwood 2016 3 39 129725370.9 8.04490376
Brentwood 2016 4 40 129725362.9 6759.858084
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Brentwood 2017 1 41 129718603 1753.9485
Brentwood 2017 2 42 129716849.1 120.9222208
Brentwood 2017 3 43 129716728.2 21890.23879
Brentwood 2017 4 44 129694837.9 3860.597334
Brentwood 2018 1 45 129690977.3 6405.745891
Brentwood 2018 2 46 129684571.6 0
Brentwood 2018 3 47 129684571.6 15087.20724
Brentwood 2018 4 48 129669484.4 1980.952122
Bristol, City of 2007 1 1 39619535.85 2089.21311
Bristol, City of 2007 2 2 39617446.64 56909.50143
Bristol, City of 2007 3 3 39560537.14 49750.00054
Bristol, City of 2007 4 4 39510787.13 2724.472663
Bristol, City of 2008 1 5 39508062.66 4433.773602
Bristol, City of 2008 2 6 39503628.89 21465.33501
Bristol, City of 2008 3 7 39482163.55 223.3338264
Bristol, City of 2008 4 8 39481940.22 131564.8489
Bristol, City of 2009 1 9 39350375.37 65622.49828
Bristol, City of 2009 2 10 39284752.87 528.9332689
Bristol, City of 2009 3 11 39284223.94 18938.67195
Bristol, City of 2009 4 12 39265285.27 7524.164497
Bristol, City of 2010 1 13 39257761.1 30471.51792
Bristol, City of 2010 2 14 39227289.58 64053.31117
Bristol, City of 2010 3 15 39163236.27 5290.416392
Bristol, City of 2010 4 16 39157945.86 10101.91182
Bristol, City of 2011 1 17 39147843.95 1555.211691
Bristol, City of 2011 2 18 39146288.73 734.81637
Bristol, City of 2011 3 19 39145553.92 1741.420642
Bristol, City of 2011 4 20 39143812.5 0.005125501
Bristol, City of 2012 1 21 39143812.49 81.59094386
Bristol, City of 2012 2 22 39143730.9 9909.498919
Bristol, City of 2012 3 23 39133821.4 7774.479299
Bristol, City of 2012 4 24 39126046.92 24757.88488
Bristol, City of 2013 1 25 39101289.04 3993.512267
Bristol, City of 2013 2 26 39097295.53 81.43940791
Bristol, City of 2013 3 27 39097214.09 1151.719346
Bristol, City of 2013 4 28 39096062.37 16684.47609
Bristol, City of 2014 1 29 39079377.89 8984.256361
Bristol, City of 2014 2 30 39070393.63 292.1532467
Bristol, City of 2014 3 31 39070101.48 563.493227
Bristol, City of 2014 4 32 39069537.99 2792.203374
Bristol, City of 2015 1 33 39066745.78 1824.069577
Bristol, City of 2015 2 34 39064921.71 17468.65703
Bristol, City of 2015 3 35 39047453.06 194.701214
Bristol, City of 2015 4 36 39047258.36 42889.63514
Bristol, City of 2016 1 37 39004368.72 43.26300434
Bristol, City of 2016 2 38 39004325.46 15846.61779
Bristol, City of 2016 3 39 38988478.84 913.1429522
Bristol, City of 2016 4 40 38987565.7 49374.35505
Bristol, City of 2017 1 41 38938191.34 2444.096716
Bristol, City of 2017 2 42 38935747.25 20765.10201
Bristol, City of 2017 3 43 38914982.14 30755.64012
Bristol, City of 2017 4 44 38884226.5 909.4353262
Bristol, City of 2018 1 45 38883317.07 4527.761281
Bristol, City of 2018 2 46 38878789.31 36569.02695
Bristol, City of 2018 3 47 38842220.28 2020.419287
Bristol, City of 2018 4 48 38840199.86 17908.53332
Chiltern 2007 1 1 162336868 5450.2727
Chiltern 2007 2 2 162331417.7 0
Chiltern 2007 3 3 162331417.7 60.21669482
Chiltern 2007 4 4 162331357.5 0
Chiltern 2008 1 5 162331357.5 644.1488226
Chiltern 2008 2 6 162330713.4 0
Chiltern 2008 3 7 162330713.4 0
Chiltern 2008 4 8 162330713.4 0
Chiltern 2009 1 9 162330713.4 0
Chiltern 2009 2 10 162330713.4 366.33395
Chiltern 2009 3 11 162330347 736.6276
Chiltern 2009 4 12 162329610.4 19538.05906
Chiltern 2010 1 13 162310072.3 0
Chiltern 2010 2 14 162310072.3 4930.64035
Chiltern 2010 3 15 162305141.7 0.004961634
Chiltern 2010 4 16 162305141.7 534.29745
Chiltern 2011 1 17 162304607.4 0
Chiltern 2011 2 18 162304607.4 27678.41825
Chiltern 2011 3 19 162276929 0
Chiltern 2011 4 20 162276929 0.001710165
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Chiltern 2012 1 21 162276929 0.889335045
Chiltern 2012 2 22 162276928.1 0.000289544
Chiltern 2012 3 23 162276928.1 0.000143213
Chiltern 2012 4 24 162276928.1 0.037337803
Chiltern 2013 1 25 162276928.1 0.001201082
Chiltern 2013 2 26 162276928.1 3.736223099
Chiltern 2013 3 27 162276924.3 0
Chiltern 2013 4 28 162276924.3 1580.475643
Chiltern 2014 1 29 162275343.8 0
Chiltern 2014 2 30 162275343.8 0
Chiltern 2014 3 31 162275343.8 37912.54052
Chiltern 2014 4 32 162237431.3 1337.003927
Chiltern 2015 1 33 162236094.3 57235.02432
Chiltern 2015 2 34 162178859.3 4.185027802
Chiltern 2015 3 35 162178855.1 0
Chiltern 2015 4 36 162178855.1 735.6027483
Chiltern 2016 1 37 162178119.5 8744.440632
Chiltern 2016 2 38 162169375 17127.43855
Chiltern 2016 3 39 162152247.6 12.17747789
Chiltern 2016 4 40 162152235.4 0.0029043
Chiltern 2017 1 41 162152235.4 1718.521848
Chiltern 2017 2 42 162150516.9 37172.03593
Chiltern 2017 3 43 162113344.9 784.1414221
Chiltern 2017 4 44 162112560.7 1807.440854
Chiltern 2018 1 45 162110753.3 2562.101404
Chiltern 2018 2 46 162108191.2 8048.999043
Chiltern 2018 3 47 162100142.2 1063.388206
Chiltern 2018 4 48 162099078.8 101.9111689
Cornwall 2007 1 1 2772543593 14897.69663
Cornwall 2007 2 2 2772528695 47355.73109
Cornwall 2007 3 3 2772481340 59471.47774
Cornwall 2007 4 4 2772421868 144909.8486
Cornwall 2008 1 5 2772276958 55142.79672
Cornwall 2008 2 6 2772221815 55375.31886
Cornwall 2008 3 7 2772166440 119540.7523
Cornwall 2008 4 8 2772046899 37998.2168
Cornwall 2009 1 9 2772008901 62823.93244
Cornwall 2009 2 10 2771946077 37454.571
Cornwall 2009 3 11 2771908623 91897.97732
Cornwall 2009 4 12 2771816725 29774.69585
Cornwall 2010 1 13 2771786950 70011.5204
Cornwall 2010 2 14 2771716938 147741.8291
Cornwall 2010 3 15 2771569197 89463.45341
Cornwall 2010 4 16 2771479733 100116.7255
Cornwall 2011 1 17 2771379616 58393.67438
Cornwall 2011 2 18 2771321223 71675.33408
Cornwall 2011 3 19 2771249547 73317.88943
Cornwall 2011 4 20 2771176230 69912.60462
Cornwall 2012 1 21 2771106317 56424.54858
Cornwall 2012 2 22 2771049892 44128.20235
Cornwall 2012 3 23 2771005764 91551.11265
Cornwall 2012 4 24 2770914213 31897.11993
Cornwall 2013 1 25 2770882316 44505.47687
Cornwall 2013 2 26 2770837810 190928.6434
Cornwall 2013 3 27 2770646882 94981.43451
Cornwall 2013 4 28 2770551900 99013.8548
Cornwall 2014 1 29 2770452887 138435.4281
Cornwall 2014 2 30 2770314451 209389.2927
Cornwall 2014 3 31 2770105062 93754.45913
Cornwall 2014 4 32 2770011307 227092.5046
Cornwall 2015 1 33 2769784215 101277.6402
Cornwall 2015 2 34 2769682937 95177.21654
Cornwall 2015 3 35 2769587760 333671.6763
Cornwall 2015 4 36 2769254088 178564.2037
Cornwall 2016 1 37 2769075524 72139.45692
Cornwall 2016 2 38 2769003385 44379.23822
Cornwall 2016 3 39 2768959005 178252.4241
Cornwall 2016 4 40 2768780753 140650.2809
Cornwall 2017 1 41 2768640103 48015.03027
Cornwall 2017 2 42 2768592088 72743.71131
Cornwall 2017 3 43 2768519344 536506.3135
Cornwall 2017 4 44 2767982838 50064.30884
Cornwall 2018 1 45 2767932773 24367.21571
Cornwall 2018 2 46 2767908406 22732.79723
Cornwall 2018 3 47 2767885673 107779.3544
Cornwall 2018 4 48 2767777894 20504.88864
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County Durham 2007 1 1 2077147559 44668.27
County Durham 2007 2 2 2077102891 69528.65
County Durham 2007 3 3 2077033362 109939.01
County Durham 2007 4 4 2076923423 49632.55
County Durham 2008 1 5 2076873791 172343.26
County Durham 2008 2 6 2076701447 106347.15
County Durham 2008 3 7 2076595100 59989.4
County Durham 2008 4 8 2076535111 18788.18
County Durham 2009 1 9 2076516323 72284.48
County Durham 2009 2 10 2076444038 13853.58
County Durham 2009 3 11 2076430184 151993.92
County Durham 2009 4 12 2076278191 161045.12
County Durham 2010 1 13 2076117145 12648.64
County Durham 2010 2 14 2076104497 18183.61
County Durham 2010 3 15 2076086313 1857.25
County Durham 2010 4 16 2076084456 32992.98
County Durham 2011 1 17 2076051463 38715.62
County Durham 2011 2 18 2076012747 5579.98
County Durham 2011 3 19 2076007167 42004.28
County Durham 2011 4 20 2075965163 112220.43
County Durham 2012 1 21 2075852943 41003.25
County Durham 2012 2 22 2075811939 62289.1
County Durham 2012 3 23 2075749650 71406.98
County Durham 2012 4 24 2075678243 66691.11
County Durham 2013 1 25 2075611552 57183.01
County Durham 2013 2 26 2075554369 92824.73
County Durham 2013 3 27 2075461544 153955.59
County Durham 2013 4 28 2075307589 111399.61
County Durham 2014 1 29 2075196189 63809.1
County Durham 2014 2 30 2075132380 125631.97
County Durham 2014 3 31 2075006748 445960.15
County Durham 2014 4 32 2074560788 161054.32
County Durham 2015 1 33 2074399734 57950.25
County Durham 2015 2 34 2074341783 12826.81
County Durham 2015 3 35 2074328957 233074.17
County Durham 2015 4 36 2074095882 136744.49
County Durham 2016 1 37 2073959138 73000.97
County Durham 2016 2 38 2073886137 48540.34
County Durham 2016 3 39 2073837597 236796.42
County Durham 2016 4 40 2073600800 284184.19
County Durham 2017 1 41 2073316616 92596.51
County Durham 2017 2 42 2073224020 49701.43
County Durham 2017 3 43 2073174318 47489.51
County Durham 2017 4 44 2073126829 101242.3
County Durham 2018 1 45 2073025586 119151.68
County Durham 2018 2 46 2072906435 117964.17
County Durham 2018 3 47 2072788470 79818.95
County Durham 2018 4 48 2072708652 844206.19
Coventry 2007 1 1 43159162.54 38340.18
Coventry 2007 2 2 43120822.36 0
Coventry 2007 3 3 43120822.36 10788.75
Coventry 2007 4 4 43110033.61 52098.35
Coventry 2008 1 5 43057935.26 4044.89
Coventry 2008 2 6 43053890.38 15214.89
Coventry 2008 3 7 43038675.49 167.37
Coventry 2008 4 8 43038508.12 249.85
Coventry 2009 1 9 43038258.27 237.75
Coventry 2009 2 10 43038020.52 43.08
Coventry 2009 3 11 43037977.43 77766.21
Coventry 2009 4 12 42960211.23 16590.64
Coventry 2010 1 13 42943620.59 0
Coventry 2010 2 14 42943620.59 24323.56
Coventry 2010 3 15 42919297.03 44538.49
Coventry 2010 4 16 42874758.54 4012.54
Coventry 2011 1 17 42870746 0
Coventry 2011 2 18 42870746 16.58
Coventry 2011 3 19 42870729.41 13786.82
Coventry 2011 4 20 42856942.59 203.52
Coventry 2012 1 21 42856739.07 11264.83
Coventry 2012 2 22 42845474.23 6271.93
Coventry 2012 3 23 42839202.3 703.54
Coventry 2012 4 24 42838498.77 7565.4
Coventry 2013 1 25 42830933.37 28.32
Coventry 2013 2 26 42830905.05 41000.17
Coventry 2013 3 27 42789904.88 6376.48
Coventry 2013 4 28 42783528.4 1818.11
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Coventry 2014 1 29 42781710.29 119.14
Coventry 2014 2 30 42781591.15 52792.29
Coventry 2014 3 31 42728798.86 3245.98
Coventry 2014 4 32 42725552.88 0
Coventry 2015 1 33 42725552.88 0.251324146
Coventry 2015 2 34 42725552.63 18514.39058
Coventry 2015 3 35 42725552.38 0.001138967
Coventry 2015 4 36 42707037.99 47690.95047
Coventry 2016 1 37 42707037.99 30466.69998
Coventry 2016 2 38 42659347.03 273055.0792
Coventry 2016 3 39 42628880.33 184.928777
Coventry 2016 4 40 42355825.26 8113.151973
Coventry 2017 1 41 42355640.33 84387.79178
Coventry 2017 2 42 42347527.17 12750.43647
Coventry 2017 3 43 42263139.38 30788.61687
Coventry 2017 4 44 42250388.95 0
Coventry 2018 1 45 42219600.33 841.9106605
Coventry 2018 2 46 42218758.42 64492.39239
Coventry 2018 3 47 42154266.03 33608.36484
Coventry 2018 4 48 42120657.66 94143.04222
Doncaster 2007 1 1 482133077.1 111073.6479
Doncaster 2007 2 2 482022003.5 506.568545
Doncaster 2007 3 3 482021496.9 4502.384773
Doncaster 2007 4 4 482016994.5 134022.1701
Doncaster 2008 1 5 481882972.3 3504.496969
Doncaster 2008 2 6 481879467.8 76.33051838
Doncaster 2008 3 7 481879391.5 10690.22582
Doncaster 2008 4 8 481868701.3 30554.15851
Doncaster 2009 1 9 481838147.1 39964.09827
Doncaster 2009 2 10 481798183 10414.43358
Doncaster 2009 3 11 481787768.6 12200.96142
Doncaster 2009 4 12 481775567.6 4211.7286
Doncaster 2010 1 13 481771355.9 18638.59711
Doncaster 2010 2 14 481752717.3 2052.314547
Doncaster 2010 3 15 481750665 44786.95177
Doncaster 2010 4 16 481705878 2899.063033
Doncaster 2011 1 17 481702979 78291.22525
Doncaster 2011 2 18 481624687.7 2096.133497
Doncaster 2011 3 19 481622591.6 937.4144591
Doncaster 2011 4 20 481621654.2 0.567567758
Doncaster 2012 1 21 481621653.6 38.32020013
Doncaster 2012 2 22 481621615.3 692.1694352
Doncaster 2012 3 23 481620923.1 8811.542596
Doncaster 2012 4 24 481612111.6 6073.799508
Doncaster 2013 1 25 481606037.8 50441.58868
Doncaster 2013 2 26 481555596.2 19973.12617
Doncaster 2013 3 27 481535623.1 8819.780039
Doncaster 2013 4 28 481526803.3 217846.6679
Doncaster 2014 1 29 481308956.6 168300.7073
Doncaster 2014 2 30 481140655.9 93045.88992
Doncaster 2014 3 31 481047610 279036.7559
Doncaster 2014 4 32 480768573.3 23307.13288
Doncaster 2015 1 33 480745266.2 71855.39255
Doncaster 2015 2 34 480673410.8 1196016.98
Doncaster 2015 3 35 479477393.8 217152.7805
Doncaster 2015 4 36 479260241 150905.6742
Doncaster 2016 1 37 479109335.3 112926.4684
Doncaster 2016 2 38 478996408.9 106567.6867
Doncaster 2016 3 39 478889841.2 146687.4027
Doncaster 2016 4 40 478743153.8 299820.5969
Doncaster 2017 1 41 478443333.2 430961.62
Doncaster 2017 2 42 478012371.5 31171.08086
Doncaster 2017 3 43 477981200.5 497894.7411
Doncaster 2017 4 44 477483305.7 115076.4484
Doncaster 2018 1 45 477368229.3 96056.47527
Doncaster 2018 2 46 477272172.8 38385.66504
Doncaster 2018 3 47 477233787.1 580691.208
Doncaster 2018 4 48 476653095.9 6360.136999
East Staffordshire 2007 1 1 475142109.3 7834.995259
East Staffordshire 2007 2 2 475134274.3 42524.86951
East Staffordshire 2007 3 3 475091749.4 346.7815392
East Staffordshire 2007 4 4 475091402.7 84.65168623
East Staffordshire 2008 1 5 475091318 3026.504879
East Staffordshire 2008 2 6 475088291.5 14972.28778
East Staffordshire 2008 3 7 475073319.2 39924.80034
East Staffordshire 2008 4 8 475033394.4 0
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East Staffordshire 2009 1 9 475033394.4 21281.34528
East Staffordshire 2009 2 10 475012113.1 0
East Staffordshire 2009 3 11 475012113.1 0
East Staffordshire 2009 4 12 475012113.1 798.9012
East Staffordshire 2010 1 13 475011314.2 6321.625411
East Staffordshire 2010 2 14 475004992.5 0
East Staffordshire 2010 3 15 475004992.5 19403.89375
East Staffordshire 2010 4 16 474985588.6 0
East Staffordshire 2011 1 17 474985588.6 11113.25578
East Staffordshire 2011 2 18 474974475.4 0
East Staffordshire 2011 3 19 474974475.4 2455.010192
East Staffordshire 2011 4 20 474972020.4 3088.314814
East Staffordshire 2012 1 21 474968932.1 2726.718802
East Staffordshire 2012 2 22 474966205.3 8339.890555
East Staffordshire 2012 3 23 474957865.5 8.28E-05
East Staffordshire 2012 4 24 474957865.5 45.46701661
East Staffordshire 2013 1 25 474957820 1277.783822
East Staffordshire 2013 2 26 474956542.2 156.1733544
East Staffordshire 2013 3 27 474956386 51821.79454
East Staffordshire 2013 4 28 474904564.2 6677.478693
East Staffordshire 2014 1 29 474897886.8 29578.81081
East Staffordshire 2014 2 30 474868307.9 0
East Staffordshire 2014 3 31 474868307.9 84311.85798
East Staffordshire 2014 4 32 474783996.1 2473.663901
East Staffordshire 2015 1 33 474781522.4 40969.99795
East Staffordshire 2015 2 34 474740552.4 10077.91324
East Staffordshire 2015 3 35 474730474.5 7809.10423
East Staffordshire 2015 4 36 474722665.4 13017.49524
East Staffordshire 2016 1 37 474709647.9 151699.5361
East Staffordshire 2016 2 38 474557948.4 159920.8122
East Staffordshire 2016 3 39 474398027.6 36284.43902
East Staffordshire 2016 4 40 474361743.1 12469.03132
East Staffordshire 2017 1 41 474349274.1 79917.10094
East Staffordshire 2017 2 42 474269357 145799.1654
East Staffordshire 2017 3 43 474123557.8 464176.941
East Staffordshire 2017 4 44 473659380.9 1343.796433
East Staffordshire 2018 1 45 473658037.1 254451.5554
East Staffordshire 2018 2 46 473403585.5 8435.007032
East Staffordshire 2018 3 47 473395150.5 126837.4125
East Staffordshire 2018 4 48 473268313.1 112738.114
Eden 2007 1 1 2090480154 2896.27
Eden 2007 2 2 2090477258 3121.52
Eden 2007 3 3 2090474136 4560
Eden 2007 4 4 2090469576 8725.6
Eden 2008 1 5 2090460851 14749.83
Eden 2008 2 6 2090446101 13662.2
Eden 2008 3 7 2090432439 0
Eden 2008 4 8 2090432439 15131.12
Eden 2009 1 9 2090417307 2337.91
Eden 2009 2 10 2090414970 1802.45
Eden 2009 3 11 2090413167 17107.12
Eden 2009 4 12 2090396060 13684.1
Eden 2010 1 13 2090382376 3790.89
Eden 2010 2 14 2090378585 0
Eden 2010 3 15 2090378585 0
Eden 2010 4 16 2090378585 0
Eden 2011 1 17 2090378585 0
Eden 2011 2 18 2090378585 6093.28
Eden 2011 3 19 2090372492 0
Eden 2011 4 20 2090372492 2573.37
Eden 2012 1 21 2090369918 0
Eden 2012 2 22 2090369918 20392.91
Eden 2012 3 23 2090349525 26678.89
Eden 2012 4 24 2090322847 0
Eden 2013 1 25 2090322847 2487.28
Eden 2013 2 26 2090320359 0
Eden 2013 3 27 2090320359 0
Eden 2013 4 28 2090320359 4796.99
Eden 2014 1 29 2090315562 10592.18
Eden 2014 2 30 2090304970 1523.16
Eden 2014 3 31 2090303447 2451.92
Eden 2014 4 32 2090300995 657.74
Eden 2015 1 33 2090300337 8379.28
Eden 2015 2 34 2090291958 43380.5
Eden 2015 3 35 2090248577 5258.36
Eden 2015 4 36 2090243319 5495.06
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Eden 2016 1 37 2090237824 27302.61
Eden 2016 2 38 2090210521 35036.48
Eden 2016 3 39 2090175485 3085.32
Eden 2016 4 40 2090172400 5081.51
Eden 2017 1 41 2090167318 75616.42
Eden 2017 2 42 2090091702 11747.29
Eden 2017 3 43 2090079954 0
Eden 2017 4 44 2090079954 149736.96
Eden 2018 1 45 2089930217 139196.49
Eden 2018 2 46 2089791021 23.54
Eden 2018 3 47 2089790997 18212.92
Eden 2018 4 48 2089772785 547.91
Forest of Dean 2007 1 1 482607191 7327.006013
Forest of Dean 2007 2 2 482599864 4903.206555
Forest of Dean 2007 3 3 482594960.8 24210.21055
Forest of Dean 2007 4 4 482570750.6 9662.489382
Forest of Dean 2008 1 5 482561088.1 6131.140095
Forest of Dean 2008 2 6 482554957 10018.37261
Forest of Dean 2008 3 7 482544938.6 1041.923614
Forest of Dean 2008 4 8 482543896.7 0
Forest of Dean 2009 1 9 482543896.7 59.1976127
Forest of Dean 2009 2 10 482543837.5 4720.980533
Forest of Dean 2009 3 11 482539116.5 339.67185
Forest of Dean 2009 4 12 482538776.8 5454.709735
Forest of Dean 2010 1 13 482533322.1 1400.2539
Forest of Dean 2010 2 14 482531921.8 53060.80683
Forest of Dean 2010 3 15 482478861 0
Forest of Dean 2010 4 16 482478861 53760.7609
Forest of Dean 2011 1 17 482425100.3 501.3697544
Forest of Dean 2011 2 18 482424598.9 563.307734
Forest of Dean 2011 3 19 482424035.6 0.0029
Forest of Dean 2011 4 20 482424035.6 2788.490805
Forest of Dean 2012 1 21 482421247.1 95641.06829
Forest of Dean 2012 2 22 482325606 1489.089753
Forest of Dean 2012 3 23 482324116.9 16146.36369
Forest of Dean 2012 4 24 482307970.6 4688.340851
Forest of Dean 2013 1 25 482303282.2 537.649264
Forest of Dean 2013 2 26 482302744.6 5604.911268
Forest of Dean 2013 3 27 482297139.7 142.8707655
Forest of Dean 2013 4 28 482296996.8 20243.14347
Forest of Dean 2014 1 29 482276753.7 15523.18015
Forest of Dean 2014 2 30 482261230.5 21798.92163
Forest of Dean 2014 3 31 482239431.6 27807.62817
Forest of Dean 2014 4 32 482211623.9 34660.73302
Forest of Dean 2015 1 33 482176963.2 13855.1715
Forest of Dean 2015 2 34 482163108 5385.618657
Forest of Dean 2015 3 35 482157722.4 23184.98812
Forest of Dean 2015 4 36 482134537.4 19947.18351
Forest of Dean 2016 1 37 482114590.2 43248.07334
Forest of Dean 2016 2 38 482071342.2 8824.11166
Forest of Dean 2016 3 39 482062518.1 2523.167921
Forest of Dean 2016 4 40 482059994.9 72060.59627
Forest of Dean 2017 1 41 481987934.3 3677.720549
Forest of Dean 2017 2 42 481984256.6 109636.9554
Forest of Dean 2017 3 43 481874619.6 99996.88909
Forest of Dean 2017 4 44 481774622.7 2811.373772
Forest of Dean 2018 1 45 481771811.4 0
Forest of Dean 2018 2 46 481771811.4 0
Forest of Dean 2018 3 47 481771811.4 0
Forest of Dean 2018 4 48 481771811.4 170876.2782
Gedling 2007 1 1 91758914.66 0
Gedling 2007 2 2 91758914.66 18644.11259
Gedling 2007 3 3 91740270.55 15481.42648
Gedling 2007 4 4 91724789.12 23553.78315
Gedling 2008 1 5 91701235.34 39217.18705
Gedling 2008 2 6 91662018.15 56.25628988
Gedling 2008 3 7 91661961.89 2.015711173
Gedling 2008 4 8 91661959.88 1.622599617
Gedling 2009 1 9 91661958.26 11131.22841
Gedling 2009 2 10 91650827.03 0
Gedling 2009 3 11 91650827.03 163.5378365
Gedling 2009 4 12 91650663.49 2438.703839
Gedling 2010 1 13 91648224.79 19953.96151
Gedling 2010 2 14 91628270.82 1482.214925
Gedling 2010 3 15 91626788.61 1949.478052
Gedling 2010 4 16 91624839.13 42.58291855
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Gedling 2011 1 17 91624796.55 2065.333047
Gedling 2011 2 18 91622731.22 0
Gedling 2011 3 19 91622731.22 58719.57902
Gedling 2011 4 20 91564011.64 40081.62505
Gedling 2012 1 21 91523930.01 2770.472802
Gedling 2012 2 22 91521159.54 44789.85746
Gedling 2012 3 23 91476369.68 64.20596101
Gedling 2012 4 24 91476305.48 2146.245537
Gedling 2013 1 25 91474159.23 5915.406831
Gedling 2013 2 26 91468243.82 18.30329384
Gedling 2013 3 27 91468225.52 56057.93808
Gedling 2013 4 28 91412167.58 108117.8814
Gedling 2014 1 29 91304049.7 1653.672522
Gedling 2014 2 30 91302396.03 6426.579232
Gedling 2014 3 31 91295969.45 922.4596739
Gedling 2014 4 32 91295046.99 228.6707566
Gedling 2015 1 33 91294818.32 0
Gedling 2015 2 34 91294818.32 0
Gedling 2015 3 35 91294818.32 0
Gedling 2015 4 36 91294818.32 28464.19892
Gedling 2016 1 37 91266354.12 0.0004
Gedling 2016 2 38 91266354.12 3191.675744
Gedling 2016 3 39 91263162.44 116417.2071
Gedling 2016 4 40 91146745.24 486.2668611
Gedling 2017 1 41 91146258.97 2699.82265
Gedling 2017 2 42 91143559.15 0
Gedling 2017 3 43 91143559.15 0
Gedling 2017 4 44 91143559.15 61809.97091
Gedling 2018 1 45 91081749.18 138378.2996
Gedling 2018 2 46 90943370.88 0
Gedling 2018 3 47 90943370.88 1520.92441
Gedling 2018 4 48 90941849.95 12467.32602
Harlow 2007 1 1 16214182.25 33043.6035
Harlow 2007 2 2 16181138.65 0
Harlow 2007 3 3 16181138.65 14289.94092
Harlow 2007 4 4 16166848.71 0
Harlow 2008 1 5 16166848.71 28.73981398
Harlow 2008 2 6 16166819.97 11929.10619
Harlow 2008 3 7 16154890.86 1297.948742
Harlow 2008 4 8 16153592.91 5278.86031
Harlow 2009 1 9 16148314.05 3182.68433
Harlow 2009 2 10 16145131.37 0
Harlow 2009 3 11 16145131.37 0
Harlow 2009 4 12 16145131.37 10610.78479
Harlow 2010 1 13 16134520.58 0
Harlow 2010 2 14 16134520.58 0
Harlow 2010 3 15 16134520.58 0
Harlow 2010 4 16 16134520.58 0
Harlow 2011 1 17 16134520.58 308.6316
Harlow 2011 2 18 16134211.95 0
Harlow 2011 3 19 16134211.95 0
Harlow 2011 4 20 16134211.95 0
Harlow 2012 1 21 16134211.95 0
Harlow 2012 2 22 16134211.95 587.8638456
Harlow 2012 3 23 16133624.09 0
Harlow 2012 4 24 16133624.09 0
Harlow 2013 1 25 16133624.09 0
Harlow 2013 2 26 16133624.09 7.59728829
Harlow 2013 3 27 16133616.49 248.6513181
Harlow 2013 4 28 16133367.84 0
Harlow 2014 1 29 16133367.84 0
Harlow 2014 2 30 16133367.84 17444.11641
Harlow 2014 3 31 16115923.72 247273.4389
Harlow 2014 4 32 15868650.28 2559.467672
Harlow 2015 1 33 15866090.81 0
Harlow 2015 2 34 15866090.81 0
Harlow 2015 3 35 15866090.81 10.64329513
Harlow 2015 4 36 15866080.17 0
Harlow 2016 1 37 15866080.17 17989.61455
Harlow 2016 2 38 15848090.56 9.82E-05
Harlow 2016 3 39 15848090.56 0
Harlow 2016 4 40 15848090.56 2212.729765
Harlow 2017 1 41 15845877.83 64763.85981
Harlow 2017 2 42 15781113.97 0
Harlow 2017 3 43 15781113.97 4574.743633
Harlow 2017 4 44 15776539.22 6228.270893
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Harlow 2018 1 45 15770310.95 100.3730524
Harlow 2018 2 46 15770210.58 208999.6654
Harlow 2018 3 47 15561210.91 13506.07296
Harlow 2018 4 48 15547704.84 360.181611
Hart 2007 1 1 181128632.1 0
Hart 2007 2 2 181128632.1 2499.55
Hart 2007 3 3 181126132.6 1841.25
Hart 2007 4 4 181124291.3 3.07
Hart 2008 1 5 181124288.2 5283.26
Hart 2008 2 6 181119005 0
Hart 2008 3 7 181119005 688.1
Hart 2008 4 8 181118316.9 0
Hart 2009 1 9 181118316.9 3347.75
Hart 2009 2 10 181114969.1 0
Hart 2009 3 11 181114969.1 0
Hart 2009 4 12 181114969.1 0
Hart 2010 1 13 181114969.1 0
Hart 2010 2 14 181114969.1 0
Hart 2010 3 15 181114969.1 32124.41
Hart 2010 4 16 181082844.7 372.33
Hart 2011 1 17 181082472.4 79661.84
Hart 2011 2 18 181002810.6 15029.82
Hart 2011 3 19 180987780.7 86599.74
Hart 2011 4 20 180901181 288.11
Hart 2012 1 21 180900892.9 405.46
Hart 2012 2 22 180900487.4 1351.26
Hart 2012 3 23 180899136.2 3520.06
Hart 2012 4 24 180895616.1 5156.99
Hart 2013 1 25 180890459.1 4.39
Hart 2013 2 26 180890454.7 4067.92
Hart 2013 3 27 180886386.8 8678.01
Hart 2013 4 28 180877708.8 22015.07
Hart 2014 1 29 180855693.7 11667.29
Hart 2014 2 30 180844026.4 86700.67
Hart 2014 3 31 180757325.8 27181.88
Hart 2014 4 32 180730143.9 64049.76
Hart 2015 1 33 180666094.1 4652.28
Hart 2015 2 34 180661441.8 32710.44
Hart 2015 3 35 180628731.4 72785.18
Hart 2015 4 36 180555946.2 0
Hart 2016 1 37 180555946.2 71989.87
Hart 2016 2 38 180483956.4 17719.89
Hart 2016 3 39 180466236.5 15978.88
Hart 2016 4 40 180450257.6 1208.67
Hart 2017 1 41 180449048.9 93410.06
Hart 2017 2 42 180355638.8 229.73
Hart 2017 3 43 180355409.1 3.81
Hart 2017 4 44 180355405.3 829.95
Hart 2018 1 45 180354575.4 6022.5
Hart 2018 2 46 180348552.9 2068.95
Hart 2018 3 47 180346483.9 27304.23
Hart 2018 4 48 180319179.7 107651.86
Hastings 2007 1 1 14151481 0
Hastings 2007 2 2 14151481 10782.33247
Hastings 2007 3 3 14140698.67 0
Hastings 2007 4 4 14140698.67 3606.987092
Hastings 2008 1 5 14137091.68 620.5978456
Hastings 2008 2 6 14136471.08 10853.44619
Hastings 2008 3 7 14125617.64 100.5584971
Hastings 2008 4 8 14125517.08 3341.087706
Hastings 2009 1 9 14122175.99 795.306696
Hastings 2009 2 10 14121380.68 11105.7485
Hastings 2009 3 11 14110274.93 0
Hastings 2009 4 12 14110274.93 0.413149752
Hastings 2010 1 13 14110274.52 13786.72473
Hastings 2010 2 14 14096487.8 10543.85704
Hastings 2010 3 15 14085943.94 0
Hastings 2010 4 16 14085943.94 1957.082619
Hastings 2011 1 17 14083986.86 0
Hastings 2011 2 18 14083986.86 0.0818
Hastings 2011 3 19 14083986.78 171.85084
Hastings 2011 4 20 14083814.92 545.892871
Hastings 2012 1 21 14083269.03 0
Hastings 2012 2 22 14083269.03 0
Hastings 2012 3 23 14083269.03 9692.151639
Hastings 2012 4 24 14073576.88 2545.000421
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Hastings 2013 1 25 14071031.88 412.2520593
Hastings 2013 2 26 14070619.63 5555.958439
Hastings 2013 3 27 14065063.67 1682.0324
Hastings 2013 4 28 14063381.64 29823.19049
Hastings 2014 1 29 14033558.45 13.23736825
Hastings 2014 2 30 14033545.21 0
Hastings 2014 3 31 14033545.21 1125.024882
Hastings 2014 4 32 14032420.18 39777.74479
Hastings 2015 1 33 13992642.44 7060.598657
Hastings 2015 2 34 13985581.84 808.6625222
Hastings 2015 3 35 13984773.18 122.8380388
Hastings 2015 4 36 13984650.34 43560.14951
Hastings 2016 1 37 13941090.19 74.59164744
Hastings 2016 2 38 13941015.6 2420.515236
Hastings 2016 3 39 13938595.08 5.389885839
Hastings 2016 4 40 13938589.69 7478.715571
Hastings 2017 1 41 13931110.98 4504.201224
Hastings 2017 2 42 13926606.78 0
Hastings 2017 3 43 13926606.78 676.0747408
Hastings 2017 4 44 13925930.7 0
Hastings 2018 1 45 13925930.7 4136.87349
Hastings 2018 2 46 13921793.83 4317.756448
Hastings 2018 3 47 13917476.07 237.7065337
Hastings 2018 4 48 13917238.37 0.495900669
Herefordshire, County of 2007 1 1 2076186089 12960.41481
Herefordshire, County of 2007 2 2 2076173129 38161.79625
Herefordshire, County of 2007 3 3 2076134967 29603.42828
Herefordshire, County of 2007 4 4 2076105363 57389.89916
Herefordshire, County of 2008 1 5 2076047973 51186.59886
Herefordshire, County of 2008 2 6 2075996787 18175.43513
Herefordshire, County of 2008 3 7 2075978611 19386.88275
Herefordshire, County of 2008 4 8 2075959225 45387.99632
Herefordshire, County of 2009 1 9 2075913837 7019.099738
Herefordshire, County of 2009 2 10 2075906817 4840.613366
Herefordshire, County of 2009 3 11 2075901977 2039.808507
Herefordshire, County of 2009 4 12 2075899937 28310.87389
Herefordshire, County of 2010 1 13 2075871626 8486.59304
Herefordshire, County of 2010 2 14 2075863140 12802.8855
Herefordshire, County of 2010 3 15 2075850337 25006.97817
Herefordshire, County of 2010 4 16 2075825330 53106.84019
Herefordshire, County of 2011 1 17 2075772223 75484.04594
Herefordshire, County of 2011 2 18 2075696739 10066.39611
Herefordshire, County of 2011 3 19 2075686672 1890.4285
Herefordshire, County of 2011 4 20 2075684782 46825.45748
Herefordshire, County of 2012 1 21 2075637957 52177.92929
Herefordshire, County of 2012 2 22 2075585779 15926.4415
Herefordshire, County of 2012 3 23 2075569852 875.7419876
Herefordshire, County of 2012 4 24 2075568976 5428.31864
Herefordshire, County of 2013 1 25 2075563548 9831.501249
Herefordshire, County of 2013 2 26 2075553717 151.115072
Herefordshire, County of 2013 3 27 2075553565 0
Herefordshire, County of 2013 4 28 2075553565 9145.247774
Herefordshire, County of 2014 1 29 2075544420 53691.29961
Herefordshire, County of 2014 2 30 2075490729 30414.92218
Herefordshire, County of 2014 3 31 2075460314 37114.58684
Herefordshire, County of 2014 4 32 2075423199 1377.712574
Herefordshire, County of 2015 1 33 2075421822 9035.680642
Herefordshire, County of 2015 2 34 2075412786 40703.63329
Herefordshire, County of 2015 3 35 2075372082 4599.938878
Herefordshire, County of 2015 4 36 2075367482 17750.17334
Herefordshire, County of 2016 1 37 2075349732 28982.70272
Herefordshire, County of 2016 2 38 2075320750 21637.11243
Herefordshire, County of 2016 3 39 2075299112 72134.28095
Herefordshire, County of 2016 4 40 2075226978 28873.49815
Herefordshire, County of 2017 1 41 2075198105 134770.3812
Herefordshire, County of 2017 2 42 2075063334 33428.25978
Herefordshire, County of 2017 3 43 2075029906 302679.0429
Herefordshire, County of 2017 4 44 2074727227 53880.35663
Herefordshire, County of 2018 1 45 2074673347 70730.0801
Herefordshire, County of 2018 2 46 2074602617 20411.84255
Herefordshire, County of 2018 3 47 2074582205 66854.83863
Herefordshire, County of 2018 4 48 2074515350 181659.9614
Kingston upon Hull, City of 2007 1 1 24251344.71 13.59285104
Kingston upon Hull, City of 2007 2 2 24251331.12 33207.57299
Kingston upon Hull, City of 2007 3 3 24218123.54 307.2751088
Kingston upon Hull, City of 2007 4 4 24217816.27 13110.95481
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Kingston upon Hull, City of 2008 1 5 24204705.31 21412.05344
Kingston upon Hull, City of 2008 2 6 24183293.26 1855.924298
Kingston upon Hull, City of 2008 3 7 24181437.34 31346.82103
Kingston upon Hull, City of 2008 4 8 24150090.52 131.894616
Kingston upon Hull, City of 2009 1 9 24149958.62 23421.88948
Kingston upon Hull, City of 2009 2 10 24126536.73 0
Kingston upon Hull, City of 2009 3 11 24126536.73 29.82911333
Kingston upon Hull, City of 2009 4 12 24126506.9 1826.21235
Kingston upon Hull, City of 2010 1 13 24124680.69 28362.84067
Kingston upon Hull, City of 2010 2 14 24096317.85 0
Kingston upon Hull, City of 2010 3 15 24096317.85 0
Kingston upon Hull, City of 2010 4 16 24096317.85 10051.6211
Kingston upon Hull, City of 2011 1 17 24086266.23 44328.36327
Kingston upon Hull, City of 2011 2 18 24041937.86 12192.93082
Kingston upon Hull, City of 2011 3 19 24029744.93 94505.29298
Kingston upon Hull, City of 2011 4 20 23935239.64 77246.5866
Kingston upon Hull, City of 2012 1 21 23857993.05 83901.48363
Kingston upon Hull, City of 2012 2 22 23774091.57 26120.7474
Kingston upon Hull, City of 2012 3 23 23747970.82 44504.11201
Kingston upon Hull, City of 2012 4 24 23703466.71 1.859442569
Kingston upon Hull, City of 2013 1 25 23703464.85 12400.9092
Kingston upon Hull, City of 2013 2 26 23691063.94 11533.82237
Kingston upon Hull, City of 2013 3 27 23679530.12 41471.78911
Kingston upon Hull, City of 2013 4 28 23638058.33 3671.013822
Kingston upon Hull, City of 2014 1 29 23634387.32 7608.355342
Kingston upon Hull, City of 2014 2 30 23626778.96 7024.429864
Kingston upon Hull, City of 2014 3 31 23619754.53 25668.00848
Kingston upon Hull, City of 2014 4 32 23594086.52 86733.50759
Kingston upon Hull, City of 2015 1 33 23507353.02 814.4651131
Kingston upon Hull, City of 2015 2 34 23506538.55 12001.03722
Kingston upon Hull, City of 2015 3 35 23494537.51 112292.0944
Kingston upon Hull, City of 2015 4 36 23382245.42 13310.77616
Kingston upon Hull, City of 2016 1 37 23368934.64 2141.28341
Kingston upon Hull, City of 2016 2 38 23366793.36 0
Kingston upon Hull, City of 2016 3 39 23366793.36 5641.285557
Kingston upon Hull, City of 2016 4 40 23361152.07 88317.90719

Table B.1: Babergh - Kingston upon Hull Q4 2016

Kingston upon Hull, City of 2017 1 41 23272834.17 93647.87634
Kingston upon Hull, City of 2017 2 42 23179186.29 17690.16059
Kingston upon Hull, City of 2017 3 43 23161496.13 5535.957024
Kingston upon Hull, City of 2017 4 44 23155960.17 2409.037989
Kingston upon Hull, City of 2018 1 45 23153551.14 7960.398722
Kingston upon Hull, City of 2018 2 46 23145590.74 90677.85943
Kingston upon Hull, City of 2018 3 47 23054912.88 35061.63688
Kingston upon Hull, City of 2018 4 48 23019851.24 12642.41002
Leeds 2007 1 1 389703729 376745.865
Leeds 2007 2 2 389326983.1 8795.335823
Leeds 2007 3 3 389318187.8 19001.62568
Leeds 2007 4 4 389299186.2 55774.44058
Leeds 2008 1 5 389243411.7 533529.3136
Leeds 2008 2 6 388709882.4 39294.30072
Leeds 2008 3 7 388670588.1 8181.184914
Leeds 2008 4 8 388662406.9 19536.05141
Leeds 2009 1 9 388642870.9 53176.37063
Leeds 2009 2 10 388589694.5 2608.01015
Leeds 2009 3 11 388587086.5 3104.872183
Leeds 2009 4 12 388583981.6 32716.14342
Leeds 2010 1 13 388551265.5 29092.93622
Leeds 2010 2 14 388522172.6 57298.31878
Leeds 2010 3 15 388464874.2 16936.02462
Leeds 2010 4 16 388447938.2 5764.681349
Leeds 2011 1 17 388442173.5 6126.911071
Leeds 2011 2 18 388436046.6 14625.03868
Leeds 2011 3 19 388421421.6 6227.516057
Leeds 2011 4 20 388415194.1 23815.86972
Leeds 2012 1 21 388391378.2 18019.29343
Leeds 2012 2 22 388373358.9 30521.61416
Leeds 2012 3 23 388342837.3 8753.711413
Leeds 2012 4 24 388334083.6 111326.3459
Leeds 2013 1 25 388222757.2 20976.39498
Leeds 2013 2 26 388201780.8 44448.42034
Leeds 2013 3 27 388157332.4 23218.82801
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Leeds 2013 4 28 388134113.6 147468.2957
Leeds 2014 1 29 387986645.3 9198.585084
Leeds 2014 2 30 387977446.7 87894.88603
Leeds 2014 3 31 387889551.8 63444.46637
Leeds 2014 4 32 387826107.4 80170.82945
Leeds 2015 1 33 387745936.5 85410.25434
Leeds 2015 2 34 387660526.3 207714.4393
Leeds 2015 3 35 387452811.8 101046.2359
Leeds 2015 4 36 387351765.6 71124.07184
Leeds 2016 1 37 387280641.5 85660.95986
Leeds 2016 2 38 387194980.6 38278.64622
Leeds 2016 3 39 387156701.9 175152.8141
Leeds 2016 4 40 386981549.1 404981.4751
Leeds 2017 1 41 386576567.6 36206.96407
Leeds 2017 2 42 386540360.7 229235.1043
Leeds 2017 3 43 386311125.6 528642.0877
Leeds 2017 4 44 385782483.5 26880.75691
Leeds 2018 1 45 385755602.7 84378.25699
Leeds 2018 2 46 385671224.5 101977.6893
Leeds 2018 3 47 385569246.8 141582.6536
Leeds 2018 4 48 385427664.1 656079.8592
North Tyneside 2007 1 1 45035882.81 3061.69
North Tyneside 2007 2 2 45032821.12 5306.23
North Tyneside 2007 3 3 45027514.89 41780.16
North Tyneside 2007 4 4 44985734.72 12359.5
North Tyneside 2008 1 5 44973375.22 101002.86
North Tyneside 2008 2 6 44872372.36 43446.47
North Tyneside 2008 3 7 44828925.89 27402.57
North Tyneside 2008 4 8 44801523.32 73407.07
North Tyneside 2009 1 9 44728116.25 0
North Tyneside 2009 2 10 44728116.25 1713.19
North Tyneside 2009 3 11 44726403.06 0
North Tyneside 2009 4 12 44726403.06 22760.91
North Tyneside 2010 1 13 44703642.15 0
North Tyneside 2010 2 14 44703642.15 16865.86
North Tyneside 2010 3 15 44686776.29 5298.4
North Tyneside 2010 4 16 44681477.89 632.84
North Tyneside 2011 1 17 44680845.05 21011.98
North Tyneside 2011 2 18 44659833.07 2.17
North Tyneside 2011 3 19 44659830.9 71.68
North Tyneside 2011 4 20 44659759.22 4318.75
North Tyneside 2012 1 21 44655440.47 14586.12
North Tyneside 2012 2 22 44640854.36 0
North Tyneside 2012 3 23 44640854.36 0
North Tyneside 2012 4 24 44640854.36 524.73
North Tyneside 2013 1 25 44640329.63 96603.53
North Tyneside 2013 2 26 44543726.1 35198.06
North Tyneside 2013 3 27 44508528.05 223.04
North Tyneside 2013 4 28 44508305.01 87795.63
North Tyneside 2014 1 29 44420509.38 0
North Tyneside 2014 2 30 44420509.38 2166.89
North Tyneside 2014 3 31 44418342.48 113406.25
North Tyneside 2014 4 32 44304936.24 5386.65
North Tyneside 2015 1 33 44299549.59 16903.28
North Tyneside 2015 2 34 44282646.31 21943.39
North Tyneside 2015 3 35 44260702.92 901.06
North Tyneside 2015 4 36 44259801.86 79341.79
North Tyneside 2016 1 37 44180460.07 3215.31
North Tyneside 2016 2 38 44177244.76 167304.06
North Tyneside 2016 3 39 44009940.7 362368.58
North Tyneside 2016 4 40 43647572.12 162816.49
North Tyneside 2017 1 41 43484755.63 8697
North Tyneside 2017 2 42 43476058.63 10647.19
North Tyneside 2017 3 43 43465411.44 1865.15
North Tyneside 2017 4 44 43463546.29 233217.21
North Tyneside 2018 1 45 43230329.08 28052.44
North Tyneside 2018 2 46 43202276.64 2558.01
North Tyneside 2018 3 47 43199718.63 100290.16
North Tyneside 2018 4 48 43099428.47 103964.87
North Warwickshire 2007 1 1 250496275.5 16.89335709
North Warwickshire 2007 2 2 250496258.6 0
North Warwickshire 2007 3 3 250496258.6 0
North Warwickshire 2007 4 4 250496258.6 0
North Warwickshire 2008 1 5 250496258.6 3610.15739
North Warwickshire 2008 2 6 250492648.5 0
North Warwickshire 2008 3 7 250492648.5 40899.75382
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North Warwickshire 2008 4 8 250451748.7 4613.51755
North Warwickshire 2009 1 9 250447135.2 3159.806653
North Warwickshire 2009 2 10 250443975.4 0
North Warwickshire 2009 3 11 250443975.4 0
North Warwickshire 2009 4 12 250443975.4 0
North Warwickshire 2010 1 13 250443975.4 145.5941463
North Warwickshire 2010 2 14 250443829.8 0
North Warwickshire 2010 3 15 250443829.8 134.1296685
North Warwickshire 2010 4 16 250443695.7 0
North Warwickshire 2011 1 17 250443695.7 7.965360696
North Warwickshire 2011 2 18 250443687.7 0
North Warwickshire 2011 3 19 250443687.7 2809.802284
North Warwickshire 2011 4 20 250440877.9 0
North Warwickshire 2012 1 21 250440877.9 424295.4866
North Warwickshire 2012 2 22 250016582.4 0
North Warwickshire 2012 3 23 250016582.4 0
North Warwickshire 2012 4 24 250016582.4 0
North Warwickshire 2013 1 25 250016582.4 0
North Warwickshire 2013 2 26 250016582.4 297.9539563
North Warwickshire 2013 3 27 250016284.4 4610.204157
North Warwickshire 2013 4 28 250011674.2 5518.782708
North Warwickshire 2014 1 29 250006155.5 25091.31168
North Warwickshire 2014 2 30 249981064.1 18077.22375
North Warwickshire 2014 3 31 249962986.9 23589.08642
North Warwickshire 2014 4 32 249939397.8 1932.742216
North Warwickshire 2015 1 33 249937465.1 4036.619905
North Warwickshire 2015 2 34 249933428.5 5224.610828
North Warwickshire 2015 3 35 249928203.9 851.0547778
North Warwickshire 2015 4 36 249927352.8 6899.102961
North Warwickshire 2016 1 37 249920453.7 132140.4164
North Warwickshire 2016 2 38 249788313.3 9286.677939
North Warwickshire 2016 3 39 249779026.6 111387.5539
North Warwickshire 2016 4 40 249667639.1 29496.82807
North Warwickshire 2017 1 41 249638142.2 16623.3124
North Warwickshire 2017 2 42 249621518.9 11930.36935
North Warwickshire 2017 3 43 249609588.5 97549.10598
North Warwickshire 2017 4 44 249512039.4 7220.076985
North Warwickshire 2018 1 45 249504819.4 20913.37658
North Warwickshire 2018 2 46 249483906 3.69E-09
North Warwickshire 2018 3 47 249483906 0.005304053
North Warwickshire 2018 4 48 249483906 9640.421797
Norwich 2007 1 1 13867451.82 0
Norwich 2007 2 2 13867451.82 1297.85491
Norwich 2007 3 3 13866153.97 0
Norwich 2007 4 4 13866153.97 219.0473186
Norwich 2008 1 5 13865934.92 9606.217894
Norwich 2008 2 6 13856328.7 4761.192394
Norwich 2008 3 7 13851567.51 3567.022229
Norwich 2008 4 8 13848000.49 4951.172483
Norwich 2009 1 9 13843049.31 2182.44385
Norwich 2009 2 10 13840866.87 1220.233106
Norwich 2009 3 11 13839646.64 0
Norwich 2009 4 12 13839646.64 0
Norwich 2010 1 13 13839646.64 1481.898267
Norwich 2010 2 14 13838164.74 228.9547596
Norwich 2010 3 15 13837935.78 1848.786168
Norwich 2010 4 16 13836087 0
Norwich 2011 1 17 13836087 6.6518
Norwich 2011 2 18 13836080.34 9479.127892
Norwich 2011 3 19 13826601.22 0
Norwich 2011 4 20 13826601.22 0
Norwich 2012 1 21 13826601.22 0
Norwich 2012 2 22 13826601.22 201.933435
Norwich 2012 3 23 13826399.28 70.841108
Norwich 2012 4 24 13826328.44 62.492272
Norwich 2013 1 25 13826265.95 403.6002255
Norwich 2013 2 26 13825862.35 3306.860839
Norwich 2013 3 27 13822555.49 6833.336611
Norwich 2013 4 28 13815722.15 0
Norwich 2014 1 29 13815722.15 2.330519454
Norwich 2014 2 30 13815719.82 0
Norwich 2014 3 31 13815719.82 6.736985
Norwich 2014 4 32 13815713.08 35639.42583
Norwich 2015 1 33 13780073.66 3049.54386
Norwich 2015 2 34 13777024.12 17257.1413
Norwich 2015 3 35 13759766.97 49320.43297
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Norwich 2015 4 36 13710446.54 6564.731688
Norwich 2016 1 37 13703881.81 22175.20578
Norwich 2016 2 38 13681706.6 471.0478267
Norwich 2016 3 39 13681235.56 8631.009675
Norwich 2016 4 40 13672604.55 77634.4455
Norwich 2017 1 41 13594970.1 5905.994529
Norwich 2017 2 42 13589064.11 664.6411676
Norwich 2017 3 43 13588399.46 0
Norwich 2017 4 44 13588399.46 81.08230756
Norwich 2018 1 45 13588318.38 0
Norwich 2018 2 46 13588318.38 27372.20405
Norwich 2018 3 47 13560946.18 280.1394296
Norwich 2018 4 48 13560666.04 6809.493893
Oldham 2007 1 1 90741897.73 0
Oldham 2007 2 2 90741897.73 0
Oldham 2007 3 3 90741897.73 652.3242071
Oldham 2007 4 4 90741245.41 3892.245105
Oldham 2008 1 5 90737353.16 8313.172128
Oldham 2008 2 6 90729039.99 4198.059611
Oldham 2008 3 7 90724841.93 21703.92646
Oldham 2008 4 8 90703138 15990.19428
Oldham 2009 1 9 90687147.81 3302.363897
Oldham 2009 2 10 90683845.44 0
Oldham 2009 3 11 90683845.44 1.448033324
Oldham 2009 4 12 90683844 4362.085023
Oldham 2010 1 13 90679481.91 31.94796381
Oldham 2010 2 14 90679449.96 252.1078162
Oldham 2010 3 15 90679197.86 0
Oldham 2010 4 16 90679197.86 0
Oldham 2011 1 17 90679197.86 1625.031444
Oldham 2011 2 18 90677572.82 0
Oldham 2011 3 19 90677572.82 0
Oldham 2011 4 20 90677572.82 2238.961817
Oldham 2012 1 21 90675333.86 0
Oldham 2012 2 22 90675333.86 1950.367095
Oldham 2012 3 23 90673383.5 3724.064265
Oldham 2012 4 24 90669659.43 0
Oldham 2013 1 25 90669659.43 397.8940207
Oldham 2013 2 26 90669261.54 0
Oldham 2013 3 27 90669261.54 115.2945541
Oldham 2013 4 28 90669146.24 922.3304753
Oldham 2014 1 29 90668223.91 15.22772096
Oldham 2014 2 30 90668208.68 5169.863563
Oldham 2014 3 31 90663038.82 3884.383882
Oldham 2014 4 32 90659154.44 7540.626214
Oldham 2015 1 33 90651613.81 251.4082772
Oldham 2015 2 34 90651362.4 4111.280097
Oldham 2015 3 35 90647251.12 3795.46061
Oldham 2015 4 36 90643455.66 0
Oldham 2016 1 37 90643455.66 1402.160859
Oldham 2016 2 38 90642053.5 15088.82723
Oldham 2016 3 39 90626964.67 18012.07764
Oldham 2016 4 40 90608952.6 2889.047318
Oldham 2017 1 41 90606063.55 12996.47935
Oldham 2017 2 42 90593067.07 5772.827452
Oldham 2017 3 43 90587294.24 926.5907459
Oldham 2017 4 44 90586367.65 403.7606959
Oldham 2018 1 45 90585963.89 3025.428771
Oldham 2018 2 46 90582938.46 38248.95092
Oldham 2018 3 47 90544689.51 627.8469994
Oldham 2018 4 48 90544061.66 23174.03266
Pendle 2007 1 1 148508150.4 22306.29759
Pendle 2007 2 2 148485844.1 146.5130071
Pendle 2007 3 3 148485697.6 0
Pendle 2007 4 4 148485697.6 0
Pendle 2008 1 5 148485697.6 3237.90033
Pendle 2008 2 6 148482459.7 2509.87694
Pendle 2008 3 7 148479949.8 48757.09896
Pendle 2008 4 8 148431192.7 7809.638308
Pendle 2009 1 9 148423383.1 11979.37113
Pendle 2009 2 10 148411403.7 0
Pendle 2009 3 11 148411403.7 26927.94372
Pendle 2009 4 12 148384475.8 32190.72675
Pendle 2010 1 13 148352285 2008.044538
Pendle 2010 2 14 148350277 166.1806
Pendle 2010 3 15 148350110.8 73.69455574
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Pendle 2010 4 16 148350037.1 42972.86272
Pendle 2011 1 17 148307064.3 12274.47373
Pendle 2011 2 18 148294789.8 0
Pendle 2011 3 19 148294789.8 0
Pendle 2011 4 20 148294789.8 0
Pendle 2012 1 21 148294789.8 0
Pendle 2012 2 22 148294789.8 0.0000586
Pendle 2012 3 23 148294789.8 1717.600994
Pendle 2012 4 24 148293072.2 0
Pendle 2013 1 25 148293072.2 0
Pendle 2013 2 26 148293072.2 0
Pendle 2013 3 27 148293072.2 0
Pendle 2013 4 28 148293072.2 9.16024081
Pendle 2014 1 29 148293063 0.011968233
Pendle 2014 2 30 148293063 1177.154136
Pendle 2014 3 31 148291885.9 791.791091
Pendle 2014 4 32 148291094.1 1780.109793
Pendle 2015 1 33 148289314 75.98334485
Pendle 2015 2 34 148289238 1284.308762
Pendle 2015 3 35 148287953.7 7047.308634
Pendle 2015 4 36 148280906.4 2686.84891
Pendle 2016 1 37 148278219.5 1932.592633
Pendle 2016 2 38 148276286.9 0.004449066
Pendle 2016 3 39 148276286.9 0
Pendle 2016 4 40 148276286.9 10879.94707
Pendle 2017 1 41 148265407 0
Pendle 2017 2 42 148265407 0
Pendle 2017 3 43 148265407 3211.480112
Pendle 2017 4 44 148262195.5 10911.78257
Pendle 2018 1 45 148251283.7 0
Pendle 2018 2 46 148251283.7 8599.386774
Pendle 2018 3 47 148242684.3 15197.57682
Pendle 2018 4 48 148227486.7 5475.789117
Plymouth 2007 1 1 35156315.24 2777.333584
Plymouth 2007 2 2 35153537.91 6.199687451
Plymouth 2007 3 3 35153531.71 2036.143401
Plymouth 2007 4 4 35151495.56 627.0685643
Plymouth 2008 1 5 35150868.49 8903.729129
Plymouth 2008 2 6 35141964.77 682.4285751
Plymouth 2008 3 7 35141282.34 7162.4059
Plymouth 2008 4 8 35134119.93 22995.0243
Plymouth 2009 1 9 35111124.91 1693.376079
Plymouth 2009 2 10 35109431.53 3033.763404
Plymouth 2009 3 11 35106397.77 31481.02725
Plymouth 2009 4 12 35074916.74 5416.034995
Plymouth 2010 1 13 35069500.71 11041.86608
Plymouth 2010 2 14 35058458.84 19167.83443
Plymouth 2010 3 15 35039291 21783.26833
Plymouth 2010 4 16 35017507.74 3438.395302
Plymouth 2011 1 17 35014069.34 1314.01315
Plymouth 2011 2 18 35012755.33 3475.224079
Plymouth 2011 3 19 35009280.1 23040.75124
Plymouth 2011 4 20 34986239.35 6588.043638
Plymouth 2012 1 21 34979651.31 0
Plymouth 2012 2 22 34979651.31 12031.92717
Plymouth 2012 3 23 34967619.38 16614.62499
Plymouth 2012 4 24 34951004.76 13278.05959
Plymouth 2013 1 25 34937726.7 3.386438971
Plymouth 2013 2 26 34937723.31 1202.162828
Plymouth 2013 3 27 34936521.15 16623.63755
Plymouth 2013 4 28 34919897.51 12160.86265
Plymouth 2014 1 29 34907736.65 17622.99947
Plymouth 2014 2 30 34890113.65 7120.971374
Plymouth 2014 3 31 34882992.68 23477.97725
Plymouth 2014 4 32 34859514.7 11605.56501
Plymouth 2015 1 33 34847909.13 97.06908538
Plymouth 2015 2 34 34847812.07 8342.541944
Plymouth 2015 3 35 34839469.52 56082.40492
Plymouth 2015 4 36 34783387.12 34944.68889
Plymouth 2016 1 37 34748442.43 1811.657838
Plymouth 2016 2 38 34746630.77 24590.09673
Plymouth 2016 3 39 34722040.68 40937.31263
Plymouth 2016 4 40 34681103.36 3898.496373
Plymouth 2017 1 41 34677204.87 1551.440578
Plymouth 2017 2 42 34675653.43 62197.18605
Plymouth 2017 3 43 34613456.24 19330.14837
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Plymouth 2017 4 44 34594126.09 316429.6371
Plymouth 2018 1 45 34277696.45 34846.60885
Plymouth 2018 2 46 34242849.85 46410.61921
Plymouth 2018 3 47 34196439.23 35067.12916
Plymouth 2018 4 48 34161372.1 46537.53905
Portsmouth 2007 1 1 13458887.74 0
Portsmouth 2007 2 2 13458887.74 554.19875
Portsmouth 2007 3 3 13458333.54 836.02135
Portsmouth 2007 4 4 13457497.52 0
Portsmouth 2008 1 5 13457497.52 0
Portsmouth 2008 2 6 13457497.52 0
Portsmouth 2008 3 7 13457497.52 0.314688293
Portsmouth 2008 4 8 13457497.21 14.74451845
Portsmouth 2009 1 9 13457482.46 0
Portsmouth 2009 2 10 13457482.46 0.00062517
Portsmouth 2009 3 11 13457482.46 0
Portsmouth 2009 4 12 13457482.46 767.4582068
Portsmouth 2010 1 13 13456715 0
Portsmouth 2010 2 14 13456715 0
Portsmouth 2010 3 15 13456715 0
Portsmouth 2010 4 16 13456715 0
Portsmouth 2011 1 17 13456715 0
Portsmouth 2011 2 18 13456715 9243.195381
Portsmouth 2011 3 19 13447471.81 557.8633992
Portsmouth 2011 4 20 13446913.94 0
Portsmouth 2012 1 21 13446913.94 0
Portsmouth 2012 2 22 13446913.94 3402.732248
Portsmouth 2012 3 23 13443511.21 12709.72239
Portsmouth 2012 4 24 13430801.49 195.92045
Portsmouth 2013 1 25 13430605.57 0
Portsmouth 2013 2 26 13430605.57 0
Portsmouth 2013 3 27 13430605.57 1096.307735
Portsmouth 2013 4 28 13429509.26 22697.03831
Portsmouth 2014 1 29 13406812.22 0.000538972
Portsmouth 2014 2 30 13406812.22 186.0201685
Portsmouth 2014 3 31 13406626.2 0
Portsmouth 2014 4 32 13406626.2 0
Portsmouth 2015 1 33 13406626.2 0
Portsmouth 2015 2 34 13406626.2 0
Portsmouth 2015 3 35 13406626.2 562.0448343
Portsmouth 2015 4 36 13406064.16 0
Portsmouth 2016 1 37 13406064.16 0
Portsmouth 2016 2 38 13406064.16 0.662358518
Portsmouth 2016 3 39 13406063.49 682.364958
Portsmouth 2016 4 40 13405381.13 3614.679993
Portsmouth 2017 1 41 13401766.45 0
Portsmouth 2017 2 42 13401766.45 0
Portsmouth 2017 3 43 13401766.45 3531.691167
Portsmouth 2017 4 44 13398234.76 369.7217695
Portsmouth 2018 1 45 13397865.04 0
Portsmouth 2018 2 46 13397865.04 0
Portsmouth 2018 3 47 13397865.04 0
Portsmouth 2018 4 48 13397865.04 0
Redcar and Cleveland 2007 1 1 207165207.1 8441.488317
Redcar and Cleveland 2007 2 2 207156765.6 26924.2232
Redcar and Cleveland 2007 3 3 207129841.4 13256.83145
Redcar and Cleveland 2007 4 4 207116584.6 29455.63601
Redcar and Cleveland 2008 1 5 207087128.9 15445.72732
Redcar and Cleveland 2008 2 6 207071683.2 1148.32335
Redcar and Cleveland 2008 3 7 207070534.9 6629.645646
Redcar and Cleveland 2008 4 8 207063905.2 15601.15321
Redcar and Cleveland 2009 1 9 207048304.1 14754.56713
Redcar and Cleveland 2009 2 10 207033549.5 670.3025209
Redcar and Cleveland 2009 3 11 207032879.2 6163.47755
Redcar and Cleveland 2009 4 12 207026715.7 777.7416856
Redcar and Cleveland 2010 1 13 207025938 21555.13157
Redcar and Cleveland 2010 2 14 207004382.9 15160.63892
Redcar and Cleveland 2010 3 15 206989222.2 16659.54783
Redcar and Cleveland 2010 4 16 206972562.7 7886.94608
Redcar and Cleveland 2011 1 17 206964675.7 18908.31657
Redcar and Cleveland 2011 2 18 206945767.4 5876.873996
Redcar and Cleveland 2011 3 19 206939890.5 2009.849856
Redcar and Cleveland 2011 4 20 206937880.7 40892.22815
Redcar and Cleveland 2012 1 21 206896988.5 786.9722695
Redcar and Cleveland 2012 2 22 206896201.5 56699.1287
Redcar and Cleveland 2012 3 23 206839502.4 464.8712892
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Redcar and Cleveland 2012 4 24 206839037.5 8328.300805
Redcar and Cleveland 2013 1 25 206830709.2 40966.65541
Redcar and Cleveland 2013 2 26 206789742.5 1928.314797
Redcar and Cleveland 2013 3 27 206787814.2 8974.517301
Redcar and Cleveland 2013 4 28 206778839.7 20271.09902
Redcar and Cleveland 2014 1 29 206758568.6 34224.11406
Redcar and Cleveland 2014 2 30 206724344.5 44244.58394
Redcar and Cleveland 2014 3 31 206680099.9 5699.768239
Redcar and Cleveland 2014 4 32 206674400.1 5.5049747
Redcar and Cleveland 2015 1 33 206674394.6 24296.1439
Redcar and Cleveland 2015 2 34 206650098.5 1218.281532
Redcar and Cleveland 2015 3 35 206648880.2 116017.6769
Redcar and Cleveland 2015 4 36 206532862.5 45873.8005
Redcar and Cleveland 2016 1 37 206486988.7 25593.4435
Redcar and Cleveland 2016 2 38 206461395.3 61531.51338
Redcar and Cleveland 2016 3 39 206399863.8 57294.29656
Redcar and Cleveland 2016 4 40 206342569.5 111550.4046
Redcar and Cleveland 2017 1 41 206231019.1 64922.10327
Redcar and Cleveland 2017 2 42 206166097 59028.36258
Redcar and Cleveland 2017 3 43 206107068.6 41774.37359
Redcar and Cleveland 2017 4 44 206065294.2 30252.45836
Redcar and Cleveland 2018 1 45 206035041.8 465.231524
Redcar and Cleveland 2018 2 46 206034576.5 16931.90351
Redcar and Cleveland 2018 3 47 206017644.6 9271.013616
Redcar and Cleveland 2018 4 48 206008373.6 67101.87139
Rossendale 2007 1 1 121292776 3893.122408
Rossendale 2007 2 2 121288882.9 883.1363712
Rossendale 2007 3 3 121287999.7 737.4406005
Rossendale 2007 4 4 121287262.3 21748.49987
Rossendale 2008 1 5 121265513.8 2966.389201
Rossendale 2008 2 6 121262547.4 6737.088059
Rossendale 2008 3 7 121255810.3 4894.738166
Rossendale 2008 4 8 121250915.6 81.81536912
Rossendale 2009 1 9 121250833.8 1984.267839
Rossendale 2009 2 10 121248849.5 0
Rossendale 2009 3 11 121248849.5 20421.24007
Rossendale 2009 4 12 121228428.3 4.90686344
Rossendale 2010 1 13 121228423.4 973.2556062
Rossendale 2010 2 14 121227450.1 11721.32066
Rossendale 2010 3 15 121215728.8 0
Rossendale 2010 4 16 121215728.8 0.010224932
Rossendale 2011 1 17 121215728.8 12593.44469
Rossendale 2011 2 18 121203135.3 2919.207475
Rossendale 2011 3 19 121200216.1 0
Rossendale 2011 4 20 121200216.1 0
Rossendale 2012 1 21 121200216.1 0
Rossendale 2012 2 22 121200216.1 0
Rossendale 2012 3 23 121200216.1 139.8127833
Rossendale 2012 4 24 121200076.3 8135.733048
Rossendale 2013 1 25 121191940.6 2272.215975
Rossendale 2013 2 26 121189668.4 15.67957498
Rossendale 2013 3 27 121189652.7 587.8849679
Rossendale 2013 4 28 121189064.8 102.5052206
Rossendale 2014 1 29 121188962.3 0.001325417
Rossendale 2014 2 30 121188962.3 14177.29474
Rossendale 2014 3 31 121174785 24926.78626
Rossendale 2014 4 32 121149858.2 4332.048864
Rossendale 2015 1 33 121145526.2 6781.27316
Rossendale 2015 2 34 121138744.9 5609.500598
Rossendale 2015 3 35 121133135.4 342.9067191
Rossendale 2015 4 36 121132792.5 305.3538547
Rossendale 2016 1 37 121132487.1 0
Rossendale 2016 2 38 121132487.1 0
Rossendale 2016 3 39 121132487.1 1394.580405
Rossendale 2016 4 40 121131092.5 0
Rossendale 2017 1 41 121131092.5 20014.2469
Rossendale 2017 2 42 121111078.3 0
Rossendale 2017 3 43 121111078.3 1040.837897
Rossendale 2017 4 44 121110037.5 411.5301219
Rossendale 2018 1 45 121109625.9 5.675264447
Rossendale 2018 2 46 121109620.3 2349.92878
Rossendale 2018 3 47 121107270.3 15536.12665
Rossendale 2018 4 48 121091734.2 3803.498715
Sandwell 2007 1 1 18166363.28 4.586500753
Sandwell 2007 2 2 18166358.69 18952.31769
Sandwell 2007 3 3 18147406.38 29048.77017
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Sandwell 2007 4 4 18118357.61 30.63152942
Sandwell 2008 1 5 18118326.97 2960.752341
Sandwell 2008 2 6 18115366.22 15.00868953
Sandwell 2008 3 7 18115351.21 0
Sandwell 2008 4 8 18115351.21 174.6719386
Sandwell 2009 1 9 18115176.54 0
Sandwell 2009 2 10 18115176.54 0
Sandwell 2009 3 11 18115176.54 0
Sandwell 2009 4 12 18115176.54 1252.447701
Sandwell 2010 1 13 18113924.09 0
Sandwell 2010 2 14 18113924.09 119.4960826
Sandwell 2010 3 15 18113804.6 0
Sandwell 2010 4 16 18113804.6 0
Sandwell 2011 1 17 18113804.6 44155.10266
Sandwell 2011 2 18 18069649.49 26483.63262
Sandwell 2011 3 19 18043165.86 113.9298114
Sandwell 2011 4 20 18043051.93 0
Sandwell 2012 1 21 18043051.93 3885.35375
Sandwell 2012 2 22 18039166.58 0
Sandwell 2012 3 23 18039166.58 886.5315618
Sandwell 2012 4 24 18038280.05 18.35713988
Sandwell 2013 1 25 18038261.69 1473.088323
Sandwell 2013 2 26 18036788.6 0
Sandwell 2013 3 27 18036788.6 0.072338182
Sandwell 2013 4 28 18036788.53 784.8998252
Sandwell 2014 1 29 18036003.63 0
Sandwell 2014 2 30 18036003.63 25979.71683
Sandwell 2014 3 31 18010023.91 407.316956
Sandwell 2014 4 32 18009616.6 2284.864587
Sandwell 2015 1 33 18007331.73 0
Sandwell 2015 2 34 18007331.73 734.5349
Sandwell 2015 3 35 18006597.2 0
Sandwell 2015 4 36 18006597.2 40632.14397
Sandwell 2016 1 37 17965965.05 308.8929085
Sandwell 2016 2 38 17965656.16 0
Sandwell 2016 3 39 17965656.16 2219.460955
Sandwell 2016 4 40 17963436.7 11716.64563
Sandwell 2017 1 41 17951720.05 3377.756168
Sandwell 2017 2 42 17948342.3 2045.315967
Sandwell 2017 3 43 17946296.98 2089.941641
Sandwell 2017 4 44 17944207.04 824.9689281
Sandwell 2018 1 45 17943382.07 5.19E-08
Sandwell 2018 2 46 17943382.07 22.62548698
Sandwell 2018 3 47 17943359.44 1.98E-09
Sandwell 2018 4 48 17943359.44 0
Selby 2007 1 1 557107863.5 152144.304
Selby 2007 2 2 556955719.2 5614.0185
Selby 2007 3 3 556950105.2 7089.357387
Selby 2007 4 4 556943015.8 34508.18114
Selby 2008 1 5 556908507.6 19365.11069
Selby 2008 2 6 556889142.5 735.8751225
Selby 2008 3 7 556888406.7 58620.02396
Selby 2008 4 8 556829786.6 138.421137
Selby 2009 1 9 556829648.2 0
Selby 2009 2 10 556829648.2 6.868224571
Selby 2009 3 11 556829641.3 6411.48718
Selby 2009 4 12 556823229.9 0
Selby 2010 1 13 556823229.9 54361.61895
Selby 2010 2 14 556768868.2 0
Selby 2010 3 15 556768868.2 23987.94934
Selby 2010 4 16 556744880.3 1006.051028
Selby 2011 1 17 556743874.2 808.0162143
Selby 2011 2 18 556743066.2 619.8936826
Selby 2011 3 19 556742446.3 25339.84326
Selby 2011 4 20 556717106.5 15028.39412
Selby 2012 1 21 556702078.1 466.4837941
Selby 2012 2 22 556701611.6 988.5961916
Selby 2012 3 23 556700623 5048.447974
Selby 2012 4 24 556695574.6 83813.94286
Selby 2013 1 25 556611760.6 0
Selby 2013 2 26 556611760.6 4542.513544
Selby 2013 3 27 556607218.1 3853.689164
Selby 2013 4 28 556603364.4 7261.367584
Selby 2014 1 29 556596103 44534.09439
Selby 2014 2 30 556551569 39379.15225
Selby 2014 3 31 556512189.8 38958.06642
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Selby 2014 4 32 556473231.7 21369.22679
Selby 2015 1 33 556451862.5 170501.1795
Selby 2015 2 34 556281361.3 35568.21035
Selby 2015 3 35 556245793.1 0.008488827
Selby 2015 4 36 556245793.1 13171.2484
Selby 2016 1 37 556232621.9 200458.893
Selby 2016 2 38 556032163 227667.0593
Selby 2016 3 39 555804495.9 3002.352663
Selby 2016 4 40 555801493.6 11119.24121
Selby 2017 1 41 555790374.3 236110.9091
Selby 2017 2 42 555554263.4 23433.16745
Selby 2017 3 43 555530830.2 218745.2525
Selby 2017 4 44 555312085 53203.37589
Selby 2018 1 45 555258881.6 114.557931
Selby 2018 2 46 555258767.1 687.0065573
Selby 2018 3 47 555258080 170856.3607
Selby 2018 4 48 555087223.7 22771.52506
South Bucks 2007 1 1 109057602.8 0
South Bucks 2007 2 2 109057602.8 0.04076619
South Bucks 2007 3 3 109057602.8 292.8007323
South Bucks 2007 4 4 109057310 757.6052568
South Bucks 2008 1 5 109056552.4 9496.628061
South Bucks 2008 2 6 109047055.7 7.116398111
South Bucks 2008 3 7 109047048.6 169.2354073
South Bucks 2008 4 8 109046879.4 12930.66065
South Bucks 2009 1 9 109033948.7 20788.69848
South Bucks 2009 2 10 109013160 10693.1197
South Bucks 2009 3 11 109002466.9 1629.854141
South Bucks 2009 4 12 109000837 0.000935024
South Bucks 2010 1 13 109000837 30017.7895
South Bucks 2010 2 14 108970819.3 1912.53665
South Bucks 2010 3 15 108968906.7 0
South Bucks 2010 4 16 108968906.7 35.31313248
South Bucks 2011 1 17 108968871.4 0
South Bucks 2011 2 18 108968871.4 3202.165329
South Bucks 2011 3 19 108965669.2 0.760184978
South Bucks 2011 4 20 108965668.5 0
South Bucks 2012 1 21 108965668.5 0
South Bucks 2012 2 22 108965668.5 1405.2936
South Bucks 2012 3 23 108964263.2 0
South Bucks 2012 4 24 108964263.2 0
South Bucks 2013 1 25 108964263.2 0
South Bucks 2013 2 26 108964263.2 0
South Bucks 2013 3 27 108964263.2 0.0001
South Bucks 2013 4 28 108964263.2 4640.46985
South Bucks 2014 1 29 108959622.7 825.9833772
South Bucks 2014 2 30 108958796.7 4010.809709
South Bucks 2014 3 31 108954785.9 7261.900804
South Bucks 2014 4 32 108947524 5738.863716
South Bucks 2015 1 33 108941785.2 4723.88903
South Bucks 2015 2 34 108937061.3 4366.705187
South Bucks 2015 3 35 108932694.6 535.1336665
South Bucks 2015 4 36 108932159.4 1063.26668
South Bucks 2016 1 37 108931096.2 0
South Bucks 2016 2 38 108931096.2 60526.58723
South Bucks 2016 3 39 108870569.6 2977.010621
South Bucks 2016 4 40 108867592.6 1940.021251
South Bucks 2017 1 41 108865652.5 0
South Bucks 2017 2 42 108865652.5 1258.803979
South Bucks 2017 3 43 108864393.7 89102.43099
South Bucks 2017 4 44 108775291.3 40.52575473
South Bucks 2018 1 45 108775250.8 8661.791804
South Bucks 2018 2 46 108766589 0
South Bucks 2018 3 47 108766589 0
South Bucks 2018 4 48 108766589 13503.78057
South Gloucestershire 2007 1 1 420702107.1 0
South Gloucestershire 2007 2 2 420702107.1 0
South Gloucestershire 2007 3 3 420702107.1 37532.02661
South Gloucestershire 2007 4 4 420664575.1 89903.65985
South Gloucestershire 2008 1 5 420574671.4 65017.98156
South Gloucestershire 2008 2 6 420509653.4 16605.8718
South Gloucestershire 2008 3 7 420493047.6 15313.09178
South Gloucestershire 2008 4 8 420477734.5 43813.08685
South Gloucestershire 2009 1 9 420433921.4 40656.98474
South Gloucestershire 2009 2 10 420393264.4 810.7494801
South Gloucestershire 2009 3 11 420392453.7 21449.90665
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South Gloucestershire 2009 4 12 420371003.7 32252.6047
South Gloucestershire 2010 1 13 420338751.1 207296.1864
South Gloucestershire 2010 2 14 420131455 4379.890948
South Gloucestershire 2010 3 15 420127075.1 6038.21055
South Gloucestershire 2010 4 16 420121036.9 29463.34683
South Gloucestershire 2011 1 17 420091573.5 34316.15305
South Gloucestershire 2011 2 18 420057257.4 81219.73441
South Gloucestershire 2011 3 19 419976037.6 1601.842144
South Gloucestershire 2011 4 20 419974435.8 405.9041425
South Gloucestershire 2012 1 21 419974029.9 8739.98264
South Gloucestershire 2012 2 22 419965289.9 46839.87413
South Gloucestershire 2012 3 23 419918450 3590.637131
South Gloucestershire 2012 4 24 419914859.4 92383.17681
South Gloucestershire 2013 1 25 419822476.2 27084.13811
South Gloucestershire 2013 2 26 419795392.1 113151.5654
South Gloucestershire 2013 3 27 419682240.5 11562.66115
South Gloucestershire 2013 4 28 419670677.8 65632.66274
South Gloucestershire 2014 1 29 419605045.2 5805.661313
South Gloucestershire 2014 2 30 419599239.5 7460.864868
South Gloucestershire 2014 3 31 419591778.6 315300.7167
South Gloucestershire 2014 4 32 419276477.9 56668.50593
South Gloucestershire 2015 1 33 419219809.4 255927.9984
South Gloucestershire 2015 2 34 418963881.4 79005.45813
South Gloucestershire 2015 3 35 418884876 10480.78429
South Gloucestershire 2015 4 36 418874395.2 98860.9838
South Gloucestershire 2016 1 37 418775534.2 51424.24473
South Gloucestershire 2016 2 38 418724110 126803.5
South Gloucestershire 2016 3 39 418597306.5 117315.2228
South Gloucestershire 2016 4 40 418479991.2 188031.1085
South Gloucestershire 2017 1 41 418291960.1 73531.543
South Gloucestershire 2017 2 42 418218428.6 95529.4556
South Gloucestershire 2017 3 43 418122899.1 79743.76604
South Gloucestershire 2017 4 44 418043155.4 99744.18606
South Gloucestershire 2018 1 45 417943411.2 36634.97954
South Gloucestershire 2018 2 46 417906776.2 358260.1423
South Gloucestershire 2018 3 47 417548516.1 10270.72583
South Gloucestershire 2018 4 48 417538245.3 384275.1911
South Kesteven 2007 1 1 827088819.6 31014.57363
South Kesteven 2007 2 2 827057805 9679.071844
South Kesteven 2007 3 3 827048126 25930.22857
South Kesteven 2007 4 4 827022195.7 8381.731088
South Kesteven 2008 1 5 827013814 20430.50132
South Kesteven 2008 2 6 826993383.5 1110.220082
South Kesteven 2008 3 7 826992273.3 1661.381756
South Kesteven 2008 4 8 826990611.9 627.1538953
South Kesteven 2009 1 9 826989984.7 52038.01163
South Kesteven 2009 2 10 826937946.7 0.004645517
South Kesteven 2009 3 11 826937946.7 153.6154972
South Kesteven 2009 4 12 826937793.1 4009.041329
South Kesteven 2010 1 13 826933784.1 16497.97676
South Kesteven 2010 2 14 826917286.1 1777.892
South Kesteven 2010 3 15 826915508.2 23852.71849
South Kesteven 2010 4 16 826891655.5 26214.16954
South Kesteven 2011 1 17 826865441.3 8540.543952
South Kesteven 2011 2 18 826856900.8 62702.87692
South Kesteven 2011 3 19 826794197.9 0
South Kesteven 2011 4 20 826794197.9 3401.523294
South Kesteven 2012 1 21 826790796.4 822.5867075
South Kesteven 2012 2 22 826789973.8 34909.11598
South Kesteven 2012 3 23 826755064.7 49508.48283
South Kesteven 2012 4 24 826705556.2 141.1009629
South Kesteven 2013 1 25 826705415.1 18356.37324
South Kesteven 2013 2 26 826687058.7 7325.213395
South Kesteven 2013 3 27 826679733.5 8304.87714
South Kesteven 2013 4 28 826671428.6 18812.21885
South Kesteven 2014 1 29 826652616.4 39897.05805
South Kesteven 2014 2 30 826612719.3 14781.69243
South Kesteven 2014 3 31 826597937.6 9398.850442
South Kesteven 2014 4 32 826588538.8 75296.5723
South Kesteven 2015 1 33 826513242.2 0.803110707
South Kesteven 2015 2 34 826513241.4 37905.55923
South Kesteven 2015 3 35 826475335.9 35065.66638
South Kesteven 2015 4 36 826440270.2 7832.312256
South Kesteven 2016 1 37 826432437.9 207834.6093
South Kesteven 2016 2 38 826224603.3 78297.54338
South Kesteven 2016 3 39 826146305.7 111253.2903
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South Kesteven 2016 4 40 826035052.4 46447.20734
South Kesteven 2017 1 41 825988605.2 1195.780359
South Kesteven 2017 2 42 825987409.5 21499.75346
South Kesteven 2017 3 43 825965909.7 164697.5889
South Kesteven 2017 4 44 825801212.1 0.002444865
South Kesteven 2018 1 45 825801212.1 2573.106081
South Kesteven 2018 2 46 825798639 17261.72389
South Kesteven 2018 3 47 825781377.3 49873.71663
South Kesteven 2018 4 48 825731503.6 44632.21757
South Northamptonshire 2007 1 1 594419160.8 3422.258566
South Northamptonshire 2007 2 2 594415738.5 35989.51592
South Northamptonshire 2007 3 3 594379749 5278.15128
South Northamptonshire 2007 4 4 594374470.9 4615.267224
South Northamptonshire 2008 1 5 594369855.6 18290.46955
South Northamptonshire 2008 2 6 594351565.1 0
South Northamptonshire 2008 3 7 594351565.1 7023.996146
South Northamptonshire 2008 4 8 594344541.1 16481.14747
South Northamptonshire 2009 1 9 594328060 0
South Northamptonshire 2009 2 10 594328060 12931.77729
South Northamptonshire 2009 3 11 594315128.2 982.37125
South Northamptonshire 2009 4 12 594314145.9 9815.050395
South Northamptonshire 2010 1 13 594304330.8 533.1354608
South Northamptonshire 2010 2 14 594303797.7 16565.27408
South Northamptonshire 2010 3 15 594287232.4 1709.245251
South Northamptonshire 2010 4 16 594285523.1 1307.182261
South Northamptonshire 2011 1 17 594284216 310.2365
South Northamptonshire 2011 2 18 594283905.7 25320.85237
South Northamptonshire 2011 3 19 594258584.9 18027.00152
South Northamptonshire 2011 4 20 594240557.9 7048.829993
South Northamptonshire 2012 1 21 594233509 13310.85782
South Northamptonshire 2012 2 22 594220198.2 142.101728
South Northamptonshire 2012 3 23 594220056.1 14547.53102
South Northamptonshire 2012 4 24 594205508.6 40764.32196
South Northamptonshire 2013 1 25 594164744.2 13839.32949
South Northamptonshire 2013 2 26 594150904.9 24782.99994
South Northamptonshire 2013 3 27 594126121.9 97777.92538
South Northamptonshire 2013 4 28 594028344 76911.50938
South Northamptonshire 2014 1 29 593951432.5 40660.15917
South Northamptonshire 2014 2 30 593910772.3 47037.91128
South Northamptonshire 2014 3 31 593863734.4 395270.2817
South Northamptonshire 2014 4 32 593468464.1 91726.71222
South Northamptonshire 2015 1 33 593376737.4 60357.4438
South Northamptonshire 2015 2 34 593316380 23785.39543
South Northamptonshire 2015 3 35 593292594.6 9116.09399
South Northamptonshire 2015 4 36 593283478.5 132954.7396
South Northamptonshire 2016 1 37 593150523.7 107392.1709
South Northamptonshire 2016 2 38 593043131.6 62974.30898
South Northamptonshire 2016 3 39 592980157.2 56579.5524
South Northamptonshire 2016 4 40 592923577.7 138563.0951
South Northamptonshire 2017 1 41 592785014.6 144334.9048
South Northamptonshire 2017 2 42 592640679.7 1700.63058
South Northamptonshire 2017 3 43 592638979.1 9858.185605
South Northamptonshire 2017 4 44 592629120.9 3766.090534
South Northamptonshire 2018 1 45 592625354.8 29520.6453
South Northamptonshire 2018 2 46 592595834.1 123077.4134
South Northamptonshire 2018 3 47 592472756.7 27738.69134
South Northamptonshire 2018 4 48 592445018 14416.28534
Taunton Deane 2007 1 1 414377559.4 16.64189892
Taunton Deane 2007 2 2 414377542.8 3602.059054
Taunton Deane 2007 3 3 414373940.7 1804.809857
Taunton Deane 2007 4 4 414372135.9 2014.255755
Taunton Deane 2008 1 5 414370121.6 4841.579001
Taunton Deane 2008 2 6 414365280.1 49167.11453
Taunton Deane 2008 3 7 414316112.9 4540.172106
Taunton Deane 2008 4 8 414311572.8 3539.098565
Taunton Deane 2009 1 9 414308033.7 7641.43726
Taunton Deane 2009 2 10 414300392.2 37210.80199
Taunton Deane 2009 3 11 414263181.4 142.3854
Taunton Deane 2009 4 12 414263039 39033.17386
Taunton Deane 2010 1 13 414224005.9 17116.04189
Taunton Deane 2010 2 14 414206889.8 334.1806962
Taunton Deane 2010 3 15 414206555.7 52652.4885
Taunton Deane 2010 4 16 414153903.2 16140.50742
Taunton Deane 2011 1 17 414137762.7 10295.76073
Taunton Deane 2011 2 18 414127466.9 3896.306123
Taunton Deane 2011 3 19 414123570.6 51723.81038
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Taunton Deane 2011 4 20 414071846.8 13164.47436
Taunton Deane 2012 1 21 414058682.3 12096.55331
Taunton Deane 2012 2 22 414046585.8 27434.82244
Taunton Deane 2012 3 23 414019150.9 70138.04726
Taunton Deane 2012 4 24 413949012.9 10194.32987
Taunton Deane 2013 1 25 413938818.6 2.271873645
Taunton Deane 2013 2 26 413938816.3 85102.09974
Taunton Deane 2013 3 27 413853714.2 75422.10953
Taunton Deane 2013 4 28 413778292.1 2297.615102
Taunton Deane 2014 1 29 413775994.5 16544.56131
Taunton Deane 2014 2 30 413759449.9 157023.7467
Taunton Deane 2014 3 31 413602426.1 163264.3682
Taunton Deane 2014 4 32 413439161.8 88137.09045
Taunton Deane 2015 1 33 413351024.7 208866.3688
Taunton Deane 2015 2 34 413142158.3 49008.10155
Taunton Deane 2015 3 35 413093150.2 17893.00111
Taunton Deane 2015 4 36 413075257.2 85701.16957
Taunton Deane 2016 1 37 412989556 16.61539589
Taunton Deane 2016 2 38 412989539.4 13720.65114
Taunton Deane 2016 3 39 412975818.8 16860.92911
Taunton Deane 2016 4 40 412958957.9 14668.05636
Taunton Deane 2017 1 41 412944289.8 143618.4305
Taunton Deane 2017 2 42 412800671.4 29648.4302
Taunton Deane 2017 3 43 412771022.9 19456.09009
Taunton Deane 2017 4 44 412751566.8 144476.4408
Taunton Deane 2018 1 45 412607090.4 86902.31988
Taunton Deane 2018 2 46 412520188.1 0
Taunton Deane 2018 3 47 412520188.1 10.05936157
Taunton Deane 2018 4 48 412520178 17786.04129
Tendring 2007 1 1 287250518.3 0
Tendring 2007 2 2 287250518.3 1207.619459
Tendring 2007 3 3 287249310.7 10522.19847
Tendring 2007 4 4 287238788.5 7123.615922
Tendring 2008 1 5 287231664.9 10557.38666
Tendring 2008 2 6 287221107.5 2773.569113
Tendring 2008 3 7 287218333.9 6989.576271
Tendring 2008 4 8 287211344.3 1859.94308
Tendring 2009 1 9 287209484.4 2227.216483
Tendring 2009 2 10 287207257.2 0
Tendring 2009 3 11 287207257.2 7454.577289
Tendring 2009 4 12 287199802.6 21775.81469
Tendring 2010 1 13 287178026.8 9157.747122
Tendring 2010 2 14 287168869 3098.217581
Tendring 2010 3 15 287165770.8 1594.850846
Tendring 2010 4 16 287164176 661.22815
Tendring 2011 1 17 287163514.7 0
Tendring 2011 2 18 287163514.7 112922.6933
Tendring 2011 3 19 287050592.1 0
Tendring 2011 4 20 287050592.1 0
Tendring 2012 1 21 287050592.1 138.076443
Tendring 2012 2 22 287050454 645.2153608
Tendring 2012 3 23 287049808.8 0.0000406
Tendring 2012 4 24 287049808.8 0
Tendring 2013 1 25 287049808.8 0
Tendring 2013 2 26 287049808.8 4226.707374
Tendring 2013 3 27 287045582.1 1227.223154
Tendring 2013 4 28 287044354.8 0
Tendring 2014 1 29 287044354.8 10093.39805
Tendring 2014 2 30 287034261.4 26.42781591
Tendring 2014 3 31 287034235 11643.39665
Tendring 2014 4 32 287022591.6 3434.062939
Tendring 2015 1 33 287019157.5 279.8947575
Tendring 2015 2 34 287018877.6 14933.41675
Tendring 2015 3 35 287003944.2 9395.20944
Tendring 2015 4 36 286994549 143289.1405
Tendring 2016 1 37 286851259.9 135777.3353
Tendring 2016 2 38 286715482.5 21969.16088
Tendring 2016 3 39 286693513.4 44908.85306
Tendring 2016 4 40 286648604.5 49855.38022
Tendring 2017 1 41 286598749.2 192841.2002
Tendring 2017 2 42 286405908 27104.198
Tendring 2017 3 43 286378803.8 60471.05493
Tendring 2017 4 44 286318332.7 66829.62204
Tendring 2018 1 45 286251503.1 75522.08571
Tendring 2018 2 46 286175981 316500.6853
Tendring 2018 3 47 285859480.3 85465.91614
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Tendring 2018 4 48 285774014.4 85745.60861
Tower Hamlets 2007 1 1 3665717.893 186.6137692
Tower Hamlets 2007 2 2 3665531.28 199.962248
Tower Hamlets 2007 3 3 3665331.32 116.310359
Tower Hamlets 2007 4 4 3665215.01 629.3696283
Tower Hamlets 2008 1 5 3664585.64 2471.997622
Tower Hamlets 2008 2 6 3662113.64 0
Tower Hamlets 2008 3 7 3662113.64 0
Tower Hamlets 2008 4 8 3662113.64 0
Tower Hamlets 2009 1 9 3662113.64 0
Tower Hamlets 2009 2 10 3662113.64 0
Tower Hamlets 2009 3 11 3662113.64 0
Tower Hamlets 2009 4 12 3662113.64 0.02571146
Tower Hamlets 2010 1 13 3662113.61 2389.7708
Tower Hamlets 2010 2 14 3659723.84 741.6263
Tower Hamlets 2010 3 15 3658982.22 8340.144095
Tower Hamlets 2010 4 16 3650642.07 0
Tower Hamlets 2011 1 17 3650642.07 17.64125
Tower Hamlets 2011 2 18 3650624.43 0
Tower Hamlets 2011 3 19 3650624.43 0
Tower Hamlets 2011 4 20 3650624.43 52667.68111
Tower Hamlets 2012 1 21 3597956.75 2164.7925
Tower Hamlets 2012 2 22 3595791.96 128.67125
Tower Hamlets 2012 3 23 3595663.29 12.64923147
Tower Hamlets 2012 4 24 3595650.64 0
Tower Hamlets 2013 1 25 3595650.64 0
Tower Hamlets 2013 2 26 3595650.64 0
Tower Hamlets 2013 3 27 3595650.64 0.010208
Tower Hamlets 2013 4 28 3595650.63 0
Tower Hamlets 2014 1 29 3595650.63 12.23173245
Tower Hamlets 2014 2 30 3595638.4 3215.173175
Tower Hamlets 2014 3 31 3592423.22 2129.044579
Tower Hamlets 2014 4 32 3590294.18 201.5175534
Tower Hamlets 2015 1 33 3590092.66 0
Tower Hamlets 2015 2 34 3590092.66 0
Tower Hamlets 2015 3 35 3590092.66 1402.09015
Tower Hamlets 2015 4 36 3588690.57 228.8422054
Tower Hamlets 2016 1 37 3588461.73 0
Tower Hamlets 2016 2 38 3588461.73 588.7508325
Tower Hamlets 2016 3 39 3587872.98 228.922996
Tower Hamlets 2016 4 40 3587644.05 0
Tower Hamlets 2017 1 41 3587644.05 0
Tower Hamlets 2017 2 42 3587644.05 0
Tower Hamlets 2017 3 43 3587644.05 0.000201883
Tower Hamlets 2017 4 44 3587644.05 0
Tower Hamlets 2018 1 45 3587644.05 0
Tower Hamlets 2018 2 46 3587644.05 12703.20549
Tower Hamlets 2018 3 47 3574940.85 0
Tower Hamlets 2018 4 48 3574940.85 0
Warrington 2007 1 1 123986787.6 0.011889609
Warrington 2007 2 2 123986787.6 381820.4788
Warrington 2007 3 3 123604967.1 24157.85197
Warrington 2007 4 4 123580809.3 0.001240514
Warrington 2008 1 5 123580809.3 52903.87934
Warrington 2008 2 6 123527905.4 10263.56133
Warrington 2008 3 7 123517641.8 12784.82618
Warrington 2008 4 8 123504857 60.81809253
Warrington 2009 1 9 123504796.2 0
Warrington 2009 2 10 123504796.2 0
Warrington 2009 3 11 123504796.2 119532.2443
Warrington 2009 4 12 123385263.9 0
Warrington 2010 1 13 123385263.9 0
Warrington 2010 2 14 123385263.9 92560.92645
Warrington 2010 3 15 123292703 0
Warrington 2010 4 16 123292703 27251.33261
Warrington 2011 1 17 123265451.7 23995.87081
Warrington 2011 2 18 123241455.8 6560.220321
Warrington 2011 3 19 123234895.6 249.1428549
Warrington 2011 4 20 123234646.4 45.87888422
Warrington 2012 1 21 123234600.6 12259.48935
Warrington 2012 2 22 123222341.1 6086.460486
Warrington 2012 3 23 123216254.6 32503.68219
Warrington 2012 4 24 123183750.9 11.96926792
Warrington 2013 1 25 123183739 623.6022911
Warrington 2013 2 26 123183115.4 787.8929717
Warrington 2013 3 27 123182327.5 4876.21716
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Warrington 2013 4 28 123177451.2 1066.193437
Warrington 2014 1 29 123176385.1 60166.7281
Warrington 2014 2 30 123116218.3 24024.10467
Warrington 2014 3 31 123092194.2 486743.8247
Warrington 2014 4 32 122605450.4 152422.9986
Warrington 2015 1 33 122453027.4 2774.153593
Warrington 2015 2 34 122450253.2 0.000494776
Warrington 2015 3 35 122450253.2 245.0288399
Warrington 2015 4 36 122450008.2 10793.09929
Warrington 2016 1 37 122439215.1 1004.24
Warrington 2016 2 38 122438210.9 100.2831998
Warrington 2016 3 39 122438110.6 14347.07228
Warrington 2016 4 40 122423763.5 68799.32675
Warrington 2017 1 41 122354964.2 54332.89913
Warrington 2017 2 42 122300631.3 0
Warrington 2017 3 43 122300631.3 907.9912078
Warrington 2017 4 44 122299723.3 376849.6688
Warrington 2018 1 45 121922873.6 1098.326763
Warrington 2018 2 46 121921775.3 65141.84072
Warrington 2018 3 47 121856633.5 0
Warrington 2018 4 48 121856633.5 14863.78662
Wyre 2007 1 1 246373267.2 12877.04161
Wyre 2007 2 2 246360390.2 0
Wyre 2007 3 3 246360390.2 0
Wyre 2007 4 4 246360390.2 0
Wyre 2008 1 5 246360390.2 4834.647277
Wyre 2008 2 6 246355555.5 1597.588512
Wyre 2008 3 7 246353957.9 1530.8929
Wyre 2008 4 8 246352427 2581.4957
Wyre 2009 1 9 246349845.5 1143.988644
Wyre 2009 2 10 246348701.6 8732.827212
Wyre 2009 3 11 246339968.7 2292.238481
Wyre 2009 4 12 246337676.5 881.7784663
Wyre 2010 1 13 246336794.7 1330.9426
Wyre 2010 2 14 246335463.8 100.66215
Wyre 2010 3 15 246335363.1 369.13555
Wyre 2010 4 16 246334994 858.9438
Wyre 2011 1 17 246334135 22247.63529
Wyre 2011 2 18 246311887.4 9311.384991
Wyre 2011 3 19 246302576 0.000805512
Wyre 2011 4 20 246302576 0
Wyre 2012 1 21 246302576 10208.9033
Wyre 2012 2 22 246292367.1 0.756252534
Wyre 2012 3 23 246292366.3 746.393
Wyre 2012 4 24 246291619.9 150.9058296
Wyre 2013 1 25 246291469 6343.978
Wyre 2013 2 26 246285125.1 4193.884538
Wyre 2013 3 27 246280931.2 8000.255461
Wyre 2013 4 28 246272930.9 1796.112111
Wyre 2014 1 29 246271134.8 8789.044147
Wyre 2014 2 30 246262345.8 4501.618429
Wyre 2014 3 31 246257844.1 3559.683513
Wyre 2014 4 32 246254284.5 27145.8165
Wyre 2015 1 33 246227138.6 0

Table B.2: Kingston upon Hull Q1 2017 - Wyre Q1 2015

Wyre 2015 2 34 246227138.6 38886.6031
Wyre 2015 3 35 246188252 61846.23811
Wyre 2015 4 36 246126405.8 311.0873649
Wyre 2016 1 37 246126094.7 9491.725206
Wyre 2016 2 38 246116603 4738.051992
Wyre 2016 3 39 246111864.9 18642.56695
Wyre 2016 4 40 246093222.4 45196.61021
Wyre 2017 1 41 246048025.8 0.001
Wyre 2017 2 42 246048025.8 40983.10333
Wyre 2017 3 43 246007042.7 8575.615687
Wyre 2017 4 44 245998467 4485.875786
Wyre 2018 1 45 245993981.2 54960.84287
Wyre 2018 2 46 245939020.3 283882.4173
Wyre 2018 3 47 245655137.9 115910.6617
Wyre 2018 4 48 245539227.2 17278.42306

Table B.3: Wyre Q2 2015 - End
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B.2 Construction Data

LA.ID Local.Authority tot.build quarter year lagged.quarter lagged year
E07000200 Babergh 80 -1 2006 1 1
E07000200 Babergh 50 0 2006 2 1
E07000200 Babergh 130 1 2007 3 1
E07000200 Babergh 100 2 2007 4 1
E07000200 Babergh 100 3 2007 5 2
E07000200 Babergh 100 4 2007 6 2
E07000200 Babergh 50 5 2008 7 2
E07000200 Babergh 70 6 2008 8 2
E07000200 Babergh 40 7 2008 9 3
E07000200 Babergh 30 8 2008 10 3
E07000200 Babergh 30 9 2009 11 3
E07000200 Babergh 30 10 2009 12 3
E07000200 Babergh 50 11 2009 13 4
E07000200 Babergh 50 12 2009 14 4
E07000200 Babergh 40 13 2010 15 4
E07000200 Babergh 80 14 2010 16 4
E07000200 Babergh 80 15 2010 17 5
E07000200 Babergh 20 16 2010 18 5
E07000200 Babergh 80 17 2011 19 5
E07000200 Babergh 100 18 2011 20 5
E07000200 Babergh 60 19 2011 21 6
E07000200 Babergh 30 20 2011 22 6
E07000200 Babergh 80 21 2012 23 6
E07000200 Babergh 30 22 2012 24 6
E07000200 Babergh 90 23 2012 25 7
E07000200 Babergh 60 24 2012 26 7
E07000200 Babergh 30 25 2013 27 7
E07000200 Babergh 60 26 2013 28 7
E07000200 Babergh 90 27 2013 29 8
E07000200 Babergh 30 28 2013 30 8
E07000200 Babergh 30 29 2014 31 8
E07000200 Babergh 40 30 2014 32 8
E07000200 Babergh 30 31 2014 33 9
E07000200 Babergh 30 32 2014 34 9
E07000200 Babergh 30 33 2015 35 9
E07000200 Babergh 20 34 2015 36 9
E07000200 Babergh 50 35 2015 37 10
E07000200 Babergh 40 36 2015 38 10
E07000200 Babergh 50 37 2016 39 10
E07000200 Babergh 40 38 2016 40 10
E07000200 Babergh 60 39 2016 41 11
E07000200 Babergh 110 40 2016 42 11
E07000200 Babergh 70 41 2017 43 11
E07000200 Babergh 60 42 2017 44 11
E07000200 Babergh 30 43 2017 45 12
E07000200 Babergh 30 44 2017 46 12
E07000200 Babergh 50 45 2018 47 12
E07000200 Babergh 130 46 2018 48 12
E07000200 Babergh 170 47 2018 49 13
E07000200 Babergh 90 48 2018 50 13
E07000027 Barrow-in-Furness 30 -1 2006 1 1
E07000027 Barrow-in-Furness 20 0 2006 2 1
E07000027 Barrow-in-Furness 30 1 2007 3 1
E07000027 Barrow-in-Furness 30 2 2007 4 1
E07000027 Barrow-in-Furness 20 3 2007 5 2
E07000027 Barrow-in-Furness 10 4 2007 6 2
E07000027 Barrow-in-Furness 10 5 2008 7 2
E07000027 Barrow-in-Furness 40 6 2008 8 2
E07000027 Barrow-in-Furness 20 7 2008 9 3
E07000027 Barrow-in-Furness 10 8 2008 10 3
E07000027 Barrow-in-Furness 20 9 2009 11 3
E07000027 Barrow-in-Furness 10 10 2009 12 3
E07000027 Barrow-in-Furness 10 11 2009 13 4
E07000027 Barrow-in-Furness 50 12 2009 14 4
E07000027 Barrow-in-Furness 10 13 2010 15 4
E07000027 Barrow-in-Furness 10 14 2010 16 4
E07000027 Barrow-in-Furness 10 15 2010 17 5
E07000027 Barrow-in-Furness 10 16 2010 18 5
E07000027 Barrow-in-Furness 0 17 2011 19 5
E07000027 Barrow-in-Furness 20 18 2011 20 5
E07000027 Barrow-in-Furness 10 19 2011 21 6
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E07000027 Barrow-in-Furness 10 20 2011 22 6
E07000027 Barrow-in-Furness 30 21 2012 23 6
E07000027 Barrow-in-Furness 10 22 2012 24 6
E07000027 Barrow-in-Furness 0 23 2012 25 7
E07000027 Barrow-in-Furness 0 24 2012 26 7
E07000027 Barrow-in-Furness 10 25 2013 27 7
E07000027 Barrow-in-Furness 10 26 2013 28 7
E07000027 Barrow-in-Furness 10 27 2013 29 8
E07000027 Barrow-in-Furness 10 28 2013 30 8
E07000027 Barrow-in-Furness 30 29 2014 31 8
E07000027 Barrow-in-Furness 10 30 2014 32 8
E07000027 Barrow-in-Furness 20 31 2014 33 9
E07000027 Barrow-in-Furness 10 32 2014 34 9
E07000027 Barrow-in-Furness 10 33 2015 35 9
E07000027 Barrow-in-Furness 20 34 2015 36 9
E07000027 Barrow-in-Furness 20 35 2015 37 10
E07000027 Barrow-in-Furness 10 36 2015 38 10
E07000027 Barrow-in-Furness 20 37 2016 39 10
E07000027 Barrow-in-Furness 10 38 2016 40 10
E07000027 Barrow-in-Furness 10 39 2016 41 11
E07000027 Barrow-in-Furness 10 40 2016 42 11
E07000027 Barrow-in-Furness 30 41 2017 43 11
E07000027 Barrow-in-Furness 20 42 2017 44 11
E07000027 Barrow-in-Furness 50 43 2017 45 12
E07000027 Barrow-in-Furness 20 44 2017 46 12
E07000027 Barrow-in-Furness 20 45 2018 47 12
E07000027 Barrow-in-Furness 40 46 2018 48 12
E07000027 Barrow-in-Furness 30 47 2018 49 13
E07000027 Barrow-in-Furness 20 48 2018 50 13
E08000025 Birmingham 460 -1 2006 1 1
E08000025 Birmingham 320 0 2006 2 1
E08000025 Birmingham 600 1 2007 3 1
E08000025 Birmingham 600 2 2007 4 1
E08000025 Birmingham 570 3 2007 5 2
E08000025 Birmingham 590 4 2007 6 2
E08000025 Birmingham 460 5 2008 7 2
E08000025 Birmingham 470 6 2008 8 2
E08000025 Birmingham 450 7 2008 9 3
E08000025 Birmingham 290 8 2008 10 3
E08000025 Birmingham 190 9 2009 11 3
E08000025 Birmingham 290 10 2009 12 3
E08000025 Birmingham 300 11 2009 13 4
E08000025 Birmingham 110 12 2009 14 4
E08000025 Birmingham 230 13 2010 15 4
E08000025 Birmingham 270 14 2010 16 4
E08000025 Birmingham 230 15 2010 17 5
E08000025 Birmingham 140 16 2010 18 5
E08000025 Birmingham 380 17 2011 19 5
E08000025 Birmingham 250 18 2011 20 5
E08000025 Birmingham 140 19 2011 21 6
E08000025 Birmingham 200 20 2011 22 6
E08000025 Birmingham 290 21 2012 23 6
E08000025 Birmingham 170 22 2012 24 6
E08000025 Birmingham 200 23 2012 25 7
E08000025 Birmingham 100 24 2012 26 7
E08000025 Birmingham 240 25 2013 27 7
E08000025 Birmingham 120 26 2013 28 7
E08000025 Birmingham 380 27 2013 29 8
E08000025 Birmingham 130 28 2013 30 8
E08000025 Birmingham 150 29 2014 31 8
E08000025 Birmingham 110 30 2014 32 8
E08000025 Birmingham 160 31 2014 33 9
E08000025 Birmingham 80 32 2014 34 9
E08000025 Birmingham 180 33 2015 35 9
E08000025 Birmingham 180 34 2015 36 9
E08000025 Birmingham 170 35 2015 37 10
E08000025 Birmingham 100 36 2015 38 10
E08000025 Birmingham 180 37 2016 39 10
E08000025 Birmingham 210 38 2016 40 10
E08000025 Birmingham 280 39 2016 41 11
E08000025 Birmingham 160 40 2016 42 11
E08000025 Birmingham 600 41 2017 43 11
E08000025 Birmingham 230 42 2017 44 11
E08000025 Birmingham 200 43 2017 45 12
E08000025 Birmingham 90 44 2017 46 12
E08000025 Birmingham 450 45 2018 47 12
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E08000025 Birmingham 390 46 2018 48 12
E08000025 Birmingham 430 47 2018 49 13
E08000025 Birmingham 480 48 2018 50 13
E07000129 Blaby 80 -1 2006 1 1
E07000129 Blaby 60 0 2006 2 1
E07000129 Blaby 120 1 2007 3 1
E07000129 Blaby 110 2 2007 4 1
E07000129 Blaby 50 3 2007 5 2
E07000129 Blaby 50 4 2007 6 2
E07000129 Blaby 20 5 2008 7 2
E07000129 Blaby 40 6 2008 8 2
E07000129 Blaby 20 7 2008 9 3
E07000129 Blaby 20 8 2008 10 3
E07000129 Blaby 10 9 2009 11 3
E07000129 Blaby 20 10 2009 12 3
E07000129 Blaby 10 11 2009 13 4
E07000129 Blaby 20 12 2009 14 4
E07000129 Blaby 60 13 2010 15 4
E07000129 Blaby 50 14 2010 16 4
E07000129 Blaby 50 15 2010 17 5
E07000129 Blaby 50 16 2010 18 5
E07000129 Blaby 70 17 2011 19 5
E07000129 Blaby 90 18 2011 20 5
E07000129 Blaby 70 19 2011 21 6
E07000129 Blaby 40 20 2011 22 6
E07000129 Blaby 70 21 2012 23 6
E07000129 Blaby 60 22 2012 24 6
E07000129 Blaby 80 23 2012 25 7
E07000129 Blaby 60 24 2012 26 7
E07000129 Blaby 60 25 2013 27 7
E07000129 Blaby 140 26 2013 28 7
E07000129 Blaby 100 27 2013 29 8
E07000129 Blaby 60 28 2013 30 8
E07000129 Blaby 110 29 2014 31 8
E07000129 Blaby 160 30 2014 32 8
E07000129 Blaby 110 31 2014 33 9
E07000129 Blaby 140 32 2014 34 9
E07000129 Blaby 140 33 2015 35 9
E07000129 Blaby 250 34 2015 36 9
E07000129 Blaby 160 35 2015 37 10
E07000129 Blaby 140 36 2015 38 10
E07000129 Blaby 140 37 2016 39 10
E07000129 Blaby 180 38 2016 40 10
E07000129 Blaby 150 39 2016 41 11
E07000129 Blaby 130 40 2016 42 11
E07000129 Blaby 130 41 2017 43 11
E07000129 Blaby 140 42 2017 44 11
E07000129 Blaby 110 43 2017 45 12
E07000129 Blaby 130 44 2017 46 12
E07000129 Blaby 60 45 2018 47 12
E07000129 Blaby 110 46 2018 48 12
E07000129 Blaby 120 47 2018 49 13
E07000129 Blaby 60 48 2018 50 13
E07000136 Boston 120 -1 2006 1 1
E07000136 Boston 70 0 2006 2 1
E07000136 Boston 110 1 2007 3 1
E07000136 Boston 100 2 2007 4 1
E07000136 Boston 110 3 2007 5 2
E07000136 Boston 100 4 2007 6 2
E07000136 Boston 40 5 2008 7 2
E07000136 Boston 40 6 2008 8 2
E07000136 Boston 50 7 2008 9 3
E07000136 Boston 30 8 2008 10 3
E07000136 Boston 10 9 2009 11 3
E07000136 Boston 10 10 2009 12 3
E07000136 Boston 70 11 2009 13 4
E07000136 Boston 20 12 2009 14 4
E07000136 Boston 20 13 2010 15 4
E07000136 Boston 130 14 2010 16 4
E07000136 Boston 40 15 2010 17 5
E07000136 Boston 10 16 2010 18 5
E07000136 Boston 80 17 2011 19 5
E07000136 Boston 30 18 2011 20 5
E07000136 Boston 30 19 2011 21 6
E07000136 Boston 20 20 2011 22 6
E07000136 Boston 50 21 2012 23 6
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E07000136 Boston 10 22 2012 24 6
E07000136 Boston 40 23 2012 25 7
E07000136 Boston 30 24 2012 26 7
E07000136 Boston 0 25 2013 27 7
E07000136 Boston 40 26 2013 28 7
E07000136 Boston 20 27 2013 29 8
E07000136 Boston 30 28 2013 30 8
E07000136 Boston 30 29 2014 31 8
E07000136 Boston 20 30 2014 32 8
E07000136 Boston 40 31 2014 33 9
E07000136 Boston 50 32 2014 34 9
E07000136 Boston 70 33 2015 35 9
E07000136 Boston 80 34 2015 36 9
E07000136 Boston 40 35 2015 37 10
E07000136 Boston 30 36 2015 38 10
E07000136 Boston 100 37 2016 39 10
E07000136 Boston 40 38 2016 40 10
E07000136 Boston 50 39 2016 41 11
E07000136 Boston 60 40 2016 42 11
E07000136 Boston 60 41 2017 43 11
E07000136 Boston 110 42 2017 44 11
E07000136 Boston 170 43 2017 45 12
E07000136 Boston 70 44 2017 46 12
E07000136 Boston 50 45 2018 47 12
E07000136 Boston 80 46 2018 48 12
E07000136 Boston 50 47 2018 49 13
E07000136 Boston 60 48 2018 50 13
E07000068 Brentwood 20 -1 2006 1 1
E07000068 Brentwood 40 0 2006 2 1
E07000067 Brentwood 80 1 2007 3 1
E07000068 Brentwood 110 2 2007 4 1
E07000068 Brentwood 110 3 2007 5 2
E07000068 Brentwood 50 4 2007 6 2
E07000068 Brentwood 60 5 2008 7 2
E07000068 Brentwood 50 6 2008 8 2
E07000068 Brentwood 10 7 2008 9 3
E07000068 Brentwood 80 8 2008 10 3
E07000068 Brentwood 10 9 2009 11 3
E07000068 Brentwood 20 10 2009 12 3
E07000068 Brentwood 40 11 2009 13 4
E07000068 Brentwood 10 12 2009 14 4
E07000068 Brentwood 40 13 2010 15 4
E07000068 Brentwood 20 14 2010 16 4
E07000068 Brentwood 20 15 2010 17 5
E07000068 Brentwood 10 16 2010 18 5
E07000068 Brentwood 30 17 2011 19 5
E07000068 Brentwood 90 18 2011 20 5
E07000068 Brentwood 80 19 2011 21 6
E07000068 Brentwood 30 20 2011 22 6
E07000068 Brentwood 10 21 2012 23 6
E07000068 Brentwood 0 22 2012 24 6
E07000068 Brentwood 10 23 2012 25 7
E07000068 Brentwood 0 24 2012 26 7
E07000068 Brentwood 10 25 2013 27 7
E07000068 Brentwood 0 26 2013 28 7
E07000068 Brentwood 60 27 2013 29 8
E07000068 Brentwood 10 28 2013 30 8
E07000068 Brentwood 10 29 2014 31 8
E07000068 Brentwood 30 30 2014 32 8
E07000068 Brentwood 10 31 2014 33 9
E07000068 Brentwood 10 32 2014 34 9
E07000068 Brentwood 30 33 2015 35 9
E07000068 Brentwood 30 34 2015 36 9
E07000068 Brentwood 30 35 2015 37 10
E07000068 Brentwood 40 36 2015 38 10
E07000068 Brentwood 10 37 2016 39 10
E07000068 Brentwood 40 38 2016 40 10
E07000068 Brentwood 70 39 2016 41 11
E07000068 Brentwood 10 40 2016 42 11
E07000068 Brentwood 20 41 2017 43 11
E07000068 Brentwood 120 42 2017 44 11
E07000068 Brentwood 230 43 2017 45 12
E07000068 Brentwood 0 44 2017 46 12
E07000068 Brentwood 20 45 2018 47 12
E07000068 Brentwood 60 46 2018 48 12
E07000068 Brentwood 10 47 2018 49 13
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E07000068 Brentwood 80 48 2018 50 13
E06000023 Bristol, City of 260 -1 2006 1 1
E06000023 Bristol, City of 290 0 2006 2 1
E06000023 Bristol, City of 220 1 2007 3 1
E06000023 Bristol, City of 340 2 2007 4 1
E06000023 Bristol, City of 400 3 2007 5 2
E06000023 Bristol, City of 380 4 2007 6 2
E06000023 Bristol, City of 370 5 2008 7 2
E06000023 Bristol, City of 280 6 2008 8 2
E06000023 Bristol, City of 200 7 2008 9 3
E06000023 Bristol, City of 260 8 2008 10 3
E06000023 Bristol, City of 200 9 2009 11 3
E06000023 Bristol, City of 200 10 2009 12 3
E06000023 Bristol, City of 190 11 2009 13 4
E06000023 Bristol, City of 210 12 2009 14 4
E06000023 Bristol, City of 170 13 2010 15 4
E06000023 Bristol, City of 260 14 2010 16 4
E06000023 Bristol, City of 270 15 2010 17 5
E06000023 Bristol, City of 140 16 2010 18 5
E06000023 Bristol, City of 270 17 2011 19 5
E06000023 Bristol, City of 190 18 2011 20 5
E06000023 Bristol, City of 260 19 2011 21 6
E06000023 Bristol, City of 130 20 2011 22 6
E06000023 Bristol, City of 300 21 2012 23 6
E06000023 Bristol, City of 240 22 2012 24 6
E06000023 Bristol, City of 190 23 2012 25 7
E06000023 Bristol, City of 120 24 2012 26 7
E06000023 Bristol, City of 350 25 2013 27 7
E06000023 Bristol, City of 160 26 2013 28 7
E06000023 Bristol, City of 210 27 2013 29 8
E06000023 Bristol, City of 220 28 2013 30 8
E06000023 Bristol, City of 170 29 2014 31 8
E06000023 Bristol, City of 270 30 2014 32 8
E06000023 Bristol, City of 350 31 2014 33 9
E06000023 Bristol, City of 140 32 2014 34 9
E06000023 Bristol, City of 250 33 2015 35 9
E06000023 Bristol, City of 220 34 2015 36 9
E06000023 Bristol, City of 130 35 2015 37 10
E06000023 Bristol, City of 110 36 2015 38 10
E06000023 Bristol, City of 150 37 2016 39 10
E06000023 Bristol, City of 210 38 2016 40 10
E06000023 Bristol, City of 170 39 2016 41 11
E06000023 Bristol, City of 160 40 2016 42 11
E06000023 Bristol, City of 180 41 2017 43 11
E06000023 Bristol, City of 140 42 2017 44 11
E06000023 Bristol, City of 250 43 2017 45 12
E06000023 Bristol, City of 190 44 2017 46 12
E06000023 Bristol, City of 140 45 2018 47 12
E06000023 Bristol, City of 170 46 2018 48 12
E06000023 Bristol, City of 280 47 2018 49 13
E06000023 Bristol, City of 170 48 2018 50 13
E07000005 Chiltern 40 -1 2006 1 1
E07000005 Chiltern 50 0 2006 2 1
E07000005 Chiltern 90 1 2007 3 1
E07000005 Chiltern 20 2 2007 4 1
E07000005 Chiltern 10 3 2007 5 2
E07000005 Chiltern 10 4 2007 6 2
E07000005 Chiltern 40 5 2008 7 2
E07000005 Chiltern 40 6 2008 8 2
E07000005 Chiltern 80 7 2008 9 3
E07000005 Chiltern 10 8 2008 10 3
E07000005 Chiltern 10 9 2009 11 3
E07000005 Chiltern 0 10 2009 12 3
E07000005 Chiltern 10 11 2009 13 4
E07000005 Chiltern 20 12 2009 14 4
E07000005 Chiltern 20 13 2010 15 4
E07000005 Chiltern 20 14 2010 16 4
E07000005 Chiltern 50 15 2010 17 5
E07000005 Chiltern 30 16 2010 18 5
E07000005 Chiltern 30 17 2011 19 5
E07000005 Chiltern 60 18 2011 20 5
E07000005 Chiltern 60 19 2011 21 6
E07000005 Chiltern 80 20 2011 22 6
E07000005 Chiltern 70 21 2012 23 6
E07000005 Chiltern 70 22 2012 24 6
E07000005 Chiltern 40 23 2012 25 7
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E07000005 Chiltern 10 24 2012 26 7
E07000005 Chiltern 60 25 2013 27 7
E07000005 Chiltern 40 26 2013 28 7
E07000005 Chiltern 20 27 2013 29 8
E07000005 Chiltern 20 28 2013 30 8
E07000005 Chiltern 30 29 2014 31 8
E07000005 Chiltern 20 30 2014 32 8
E07000005 Chiltern 50 31 2014 33 9
E07000005 Chiltern 50 32 2014 34 9
E07000005 Chiltern 30 33 2015 35 9
E07000005 Chiltern 40 34 2015 36 9
E07000005 Chiltern 30 35 2015 37 10
E07000005 Chiltern 20 36 2015 38 10
E07000005 Chiltern 0 37 2016 39 10
E07000005 Chiltern 50 38 2016 40 10
E07000005 Chiltern 30 39 2016 41 11
E07000005 Chiltern 90 40 2016 42 11
E07000005 Chiltern 10 41 2017 43 11
E07000005 Chiltern 50 42 2017 44 11
E07000005 Chiltern 90 43 2017 45 12
E07000005 Chiltern 30 44 2017 46 12
E07000005 Chiltern 60 45 2018 47 12
E07000005 Chiltern 80 46 2018 48 12
E07000005 Chiltern 30 47 2018 49 13
E07000005 Chiltern 30 48 2018 50 13
E06000050 Cornwall 186 -1 2006 1 1
E06000051 Cornwall 510 0 2006 2 1
E06000052 Cornwall 160 1 2007 3 1
E06000052 Cornwall 270 2 2007 4 1
E06000052 Cornwall 440 3 2007 5 2
E06000052 Cornwall 650 4 2007 6 2
E06000052 Cornwall 790 5 2008 7 2
E06000052 Cornwall 920 6 2008 8 2
E06000052 Cornwall 330 7 2008 9 3
E06000052 Cornwall 440 8 2008 10 3
E06000052 Cornwall 500 9 2009 11 3
E06000052 Cornwall 180 10 2009 12 3
E06000052 Cornwall 330 11 2009 13 4
E06000052 Cornwall 280 12 2009 14 4
E06000052 Cornwall 410 13 2010 15 4
E06000052 Cornwall 540 14 2010 16 4
E06000052 Cornwall 480 15 2010 17 5
E06000052 Cornwall 400 16 2010 18 5
E06000052 Cornwall 360 17 2011 19 5
E06000052 Cornwall 420 18 2011 20 5
E06000052 Cornwall 470 19 2011 21 6
E06000052 Cornwall 320 20 2011 22 6
E06000052 Cornwall 470 21 2012 23 6
E06000052 Cornwall 490 22 2012 24 6
E06000052 Cornwall 420 23 2012 25 7
E06000052 Cornwall 190 24 2012 26 7
E06000052 Cornwall 450 25 2013 27 7
E06000052 Cornwall 540 26 2013 28 7
E06000052 Cornwall 910 27 2013 29 8
E06000052 Cornwall 570 28 2013 30 8
E06000052 Cornwall 860 29 2014 31 8
E06000052 Cornwall 750 30 2014 32 8
E06000052 Cornwall 400 31 2014 33 9
E06000052 Cornwall 290 32 2014 34 9
E06000052 Cornwall 510 33 2015 35 9
E06000052 Cornwall 520 34 2015 36 9
E06000052 Cornwall 480 35 2015 37 10
E06000052 Cornwall 380 36 2015 38 10
E06000052 Cornwall 390 37 2016 39 10
E06000052 Cornwall 620 38 2016 40 10
E06000052 Cornwall 440 39 2016 41 11
E06000052 Cornwall 460 40 2016 42 11
E06000052 Cornwall 620 41 2017 43 11
E06000052 Cornwall 650 42 2017 44 11
E06000052 Cornwall 660 43 2017 45 12
E06000052 Cornwall 520 44 2017 46 12
E06000052 Cornwall 490 45 2018 47 12
E06000052 Cornwall 990 46 2018 48 12
E06000052 Cornwall 420 47 2018 49 13
E06000052 Cornwall 370 48 2018 50 13
E06000036 County Durham 610 -1 2006 1 1
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E06000037 County Durham 620 0 2006 2 1
E06000038 County Durham 660 1 2007 3 1
E06000039 County Durham 730 2 2007 4 1
E06000040 County Durham 680 3 2007 5 2
E06000041 County Durham 550 4 2007 6 2
E06000042 County Durham 590 5 2008 7 2
E06000043 County Durham 410 6 2008 8 2
E06000044 County Durham 180 7 2008 9 3
E06000045 County Durham 140 8 2008 10 3
E06000046 County Durham 240 9 2009 11 3
E06000047 County Durham 70 10 2009 12 3
E06000047 County Durham 140 11 2009 13 4
E06000047 County Durham 100 12 2009 14 4
E06000047 County Durham 240 13 2010 15 4
E06000047 County Durham 440 14 2010 16 4
E06000047 County Durham 280 15 2010 17 5
E06000047 County Durham 190 16 2010 18 5
E06000047 County Durham 190 17 2011 19 5
E06000047 County Durham 220 18 2011 20 5
E06000047 County Durham 180 19 2011 21 6
E06000047 County Durham 150 20 2011 22 6
E06000047 County Durham 300 21 2012 23 6
E06000047 County Durham 200 22 2012 24 6
E06000047 County Durham 260 23 2012 25 7
E06000047 County Durham 190 24 2012 26 7
E06000047 County Durham 240 25 2013 27 7
E06000047 County Durham 350 26 2013 28 7
E06000047 County Durham 370 27 2013 29 8
E06000047 County Durham 210 28 2013 30 8
E06000047 County Durham 360 29 2014 31 8
E06000047 County Durham 410 30 2014 32 8
E06000047 County Durham 280 31 2014 33 9
E06000047 County Durham 280 32 2014 34 9
E06000047 County Durham 260 33 2015 35 9
E06000047 County Durham 310 34 2015 36 9
E06000047 County Durham 360 35 2015 37 10
E06000047 County Durham 230 36 2015 38 10
E06000047 County Durham 300 37 2016 39 10
E06000047 County Durham 400 38 2016 40 10
E06000047 County Durham 520 39 2016 41 11
E06000047 County Durham 320 40 2016 42 11
E06000047 County Durham 420 41 2017 43 11
E06000047 County Durham 300 42 2017 44 11
E06000047 County Durham 390 43 2017 45 12
E06000047 County Durham 280 44 2017 46 12
E06000047 County Durham 350 45 2018 47 12
E06000047 County Durham 440 46 2018 48 12
E06000047 County Durham 480 47 2018 49 13
E06000047 County Durham 450 48 2018 50 13
E08000026 Coventry 350 -1 2006 1 1
E08000026 Coventry 180 0 2006 2 1
E08000026 Coventry 310 1 2007 3 1
E08000026 Coventry 280 2 2007 4 1
E08000026 Coventry 330 3 2007 5 2
E08000026 Coventry 150 4 2007 6 2
E08000026 Coventry 60 5 2008 7 2
E08000026 Coventry 40 6 2008 8 2
E08000026 Coventry 100 7 2008 9 3
E08000026 Coventry 30 8 2008 10 3
E08000026 Coventry 90 9 2009 11 3
E08000026 Coventry 50 10 2009 12 3
E08000026 Coventry 60 11 2009 13 4
E08000026 Coventry 80 12 2009 14 4
E08000026 Coventry 140 13 2010 15 4
E08000026 Coventry 170 14 2010 16 4
E08000026 Coventry 110 15 2010 17 5
E08000026 Coventry 150 16 2010 18 5
E08000026 Coventry 180 17 2011 19 5
E08000026 Coventry 300 18 2011 20 5
E08000026 Coventry 310 19 2011 21 6
E08000026 Coventry 150 20 2011 22 6
E08000026 Coventry 230 21 2012 23 6
E08000026 Coventry 90 22 2012 24 6
E08000026 Coventry 220 23 2012 25 7
E08000026 Coventry 150 24 2012 26 7
E08000026 Coventry 220 25 2013 27 7
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E08000026 Coventry 160 26 2013 28 7
E08000026 Coventry 190 27 2013 29 8
E08000026 Coventry 140 28 2013 30 8
E08000026 Coventry 150 29 2014 31 8
E08000026 Coventry 280 30 2014 32 8
E08000026 Coventry 230 31 2014 33 9
E08000026 Coventry 180 32 2014 34 9
E08000026 Coventry 190 33 2015 35 9
E08000026 Coventry 200 34 2015 36 9
E08000026 Coventry 200 35 2015 37 10
E08000026 Coventry 100 36 2015 38 10
E08000026 Coventry 140 37 2016 39 10
E08000026 Coventry 130 38 2016 40 10
E08000026 Coventry 220 39 2016 41 11
E08000026 Coventry 110 40 2016 42 11
E08000026 Coventry 190 41 2017 43 11
E08000026 Coventry 240 42 2017 44 11
E08000026 Coventry 160 43 2017 45 12
E08000026 Coventry 80 44 2017 46 12
E08000026 Coventry 110 45 2018 47 12
E08000026 Coventry 130 46 2018 48 12
E08000026 Coventry 70 47 2018 49 13
E08000026 Coventry 60 48 2018 50 13
E08000017 Doncaster 170 -1 2006 1 1
E08000017 Doncaster 160 0 2006 2 1
E08000017 Doncaster 190 1 2007 3 1
E08000017 Doncaster 190 2 2007 4 1
E08000017 Doncaster 230 3 2007 5 2
E08000017 Doncaster 110 4 2007 6 2
E08000017 Doncaster 120 5 2008 7 2
E08000017 Doncaster 110 6 2008 8 2
E08000017 Doncaster 60 7 2008 9 3
E08000017 Doncaster 30 8 2008 10 3
E08000017 Doncaster 50 9 2009 11 3
E08000017 Doncaster 30 10 2009 12 3
E08000017 Doncaster 60 11 2009 13 4
E08000017 Doncaster 60 12 2009 14 4
E08000017 Doncaster 60 13 2010 15 4
E08000017 Doncaster 140 14 2010 16 4
E08000017 Doncaster 160 15 2010 17 5
E08000017 Doncaster 90 16 2010 18 5
E08000017 Doncaster 40 17 2011 19 5
E08000017 Doncaster 80 18 2011 20 5
E08000017 Doncaster 50 19 2011 21 6
E08000017 Doncaster 100 20 2011 22 6
E08000017 Doncaster 90 21 2012 23 6
E08000017 Doncaster 90 22 2012 24 6
E08000017 Doncaster 100 23 2012 25 7
E08000017 Doncaster 140 24 2012 26 7
E08000017 Doncaster 60 25 2013 27 7
E08000017 Doncaster 140 26 2013 28 7
E08000017 Doncaster 130 27 2013 29 8
E08000017 Doncaster 170 28 2013 30 8
E08000017 Doncaster 230 29 2014 31 8
E08000017 Doncaster 240 30 2014 32 8
E08000017 Doncaster 300 31 2014 33 9
E08000017 Doncaster 190 32 2014 34 9
E08000017 Doncaster 240 33 2015 35 9
E08000017 Doncaster 230 34 2015 36 9
E08000017 Doncaster 190 35 2015 37 10
E08000017 Doncaster 150 36 2015 38 10
E08000017 Doncaster 150 37 2016 39 10
E08000017 Doncaster 260 38 2016 40 10
E08000017 Doncaster 300 39 2016 41 11
E08000017 Doncaster 280 40 2016 42 11
E08000017 Doncaster 340 41 2017 43 11
E08000017 Doncaster 290 42 2017 44 11
E08000017 Doncaster 300 43 2017 45 12
E08000017 Doncaster 250 44 2017 46 12
E08000017 Doncaster 190 45 2018 47 12
E08000017 Doncaster 240 46 2018 48 12
E08000017 Doncaster 360 47 2018 49 13
E08000017 Doncaster 280 48 2018 50 13
E07000193 East Staffordshire 110 -1 2006 1 1
E07000193 East Staffordshire 150 0 2006 2 1
E07000193 East Staffordshire 190 1 2007 3 1
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E07000193 East Staffordshire 130 2 2007 4 1
E07000193 East Staffordshire 200 3 2007 5 2
E07000193 East Staffordshire 40 4 2007 6 2
E07000193 East Staffordshire 90 5 2008 7 2
E07000193 East Staffordshire 40 6 2008 8 2
E07000193 East Staffordshire 50 7 2008 9 3
E07000193 East Staffordshire 20 8 2008 10 3
E07000193 East Staffordshire 30 9 2009 11 3
E07000193 East Staffordshire 50 10 2009 12 3
E07000193 East Staffordshire 70 11 2009 13 4
E07000193 East Staffordshire 60 12 2009 14 4
E07000193 East Staffordshire 30 13 2010 15 4
E07000193 East Staffordshire 40 14 2010 16 4
E07000193 East Staffordshire 50 15 2010 17 5
E07000193 East Staffordshire 20 16 2010 18 5
E07000193 East Staffordshire 50 17 2011 19 5
E07000193 East Staffordshire 30 18 2011 20 5
E07000193 East Staffordshire 40 19 2011 21 6
E07000193 East Staffordshire 30 20 2011 22 6
E07000193 East Staffordshire 70 21 2012 23 6
E07000193 East Staffordshire 40 22 2012 24 6
E07000193 East Staffordshire 50 23 2012 25 7
E07000193 East Staffordshire 40 24 2012 26 7
E07000193 East Staffordshire 30 25 2013 27 7
E07000193 East Staffordshire 70 26 2013 28 7
E07000193 East Staffordshire 70 27 2013 29 8
E07000193 East Staffordshire 50 28 2013 30 8
E07000193 East Staffordshire 50 29 2014 31 8
E07000193 East Staffordshire 70 30 2014 32 8
E07000193 East Staffordshire 70 31 2014 33 9
E07000193 East Staffordshire 100 32 2014 34 9
E07000193 East Staffordshire 140 33 2015 35 9
E07000193 East Staffordshire 110 34 2015 36 9
E07000193 East Staffordshire 110 35 2015 37 10
E07000193 East Staffordshire 200 36 2015 38 10
E07000193 East Staffordshire 90 37 2016 39 10
E07000193 East Staffordshire 130 38 2016 40 10
E07000193 East Staffordshire 70 39 2016 41 11
E07000193 East Staffordshire 100 40 2016 42 11
E07000193 East Staffordshire 210 41 2017 43 11
E07000193 East Staffordshire 170 42 2017 44 11
E07000193 East Staffordshire 140 43 2017 45 12
E07000193 East Staffordshire 120 44 2017 46 12
E07000193 East Staffordshire 120 45 2018 47 12
E07000193 East Staffordshire 200 46 2018 48 12
E07000193 East Staffordshire 130 47 2018 49 13
E07000193 East Staffordshire 60 48 2018 50 13
E07000030 Eden 40 -1 2006 1 1
E07000030 Eden 40 0 2006 2 1
E07000030 Eden 30 1 2007 3 1
E07000030 Eden 30 2 2007 4 1
E07000030 Eden 20 3 2007 5 2
E07000030 Eden 10 4 2007 6 2
E07000030 Eden 20 5 2008 7 2
E07000030 Eden 10 6 2008 8 2
E07000030 Eden 40 7 2008 9 3
E07000030 Eden 10 8 2008 10 3
E07000030 Eden 10 9 2009 11 3
E07000030 Eden 30 10 2009 12 3
E07000030 Eden 20 11 2009 13 4
E07000030 Eden 10 12 2009 14 4
E07000030 Eden 20 13 2010 15 4
E07000030 Eden 20 14 2010 16 4
E07000030 Eden 20 15 2010 17 5
E07000030 Eden 20 16 2010 18 5
E07000030 Eden 40 17 2011 19 5
E07000030 Eden 10 18 2011 20 5
E07000030 Eden 40 19 2011 21 6
E07000030 Eden 20 20 2011 22 6
E07000030 Eden 30 21 2012 23 6
E07000030 Eden 20 22 2012 24 6
E07000030 Eden 30 23 2012 25 7
E07000030 Eden 50 24 2012 26 7
E07000030 Eden 50 25 2013 27 7
E07000030 Eden 30 26 2013 28 7
E07000030 Eden 50 27 2013 29 8
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E07000030 Eden 40 28 2013 30 8
E07000030 Eden 70 29 2014 31 8
E07000030 Eden 30 30 2014 32 8
E07000030 Eden 30 31 2014 33 9
E07000030 Eden 20 32 2014 34 9
E07000030 Eden 20 33 2015 35 9
E07000030 Eden 20 34 2015 36 9
E07000030 Eden 10 35 2015 37 10
E07000030 Eden 10 36 2015 38 10
E07000030 Eden 10 37 2016 39 10
E07000030 Eden 40 38 2016 40 10
E07000030 Eden 10 39 2016 41 11
E07000030 Eden 40 40 2016 42 11
E07000030 Eden 10 41 2017 43 11
E07000030 Eden 20 42 2017 44 11
E07000030 Eden 10 43 2017 45 12
E07000030 Eden 10 44 2017 46 12
E07000030 Eden 30 45 2018 47 12
E07000030 Eden 30 46 2018 48 12
E07000030 Eden 20 47 2018 49 13
E07000030 Eden 90 48 2018 50 13
E07000080 Forest of Dean 40 -1 2006 1 1
E07000080 Forest of Dean 50 0 2006 2 1
E07000080 Forest of Dean 80 1 2007 3 1
E07000080 Forest of Dean 70 2 2007 4 1
E07000080 Forest of Dean 100 3 2007 5 2
E07000080 Forest of Dean 20 4 2007 6 2
E07000080 Forest of Dean 40 5 2008 7 2
E07000080 Forest of Dean 60 6 2008 8 2
E07000080 Forest of Dean 10 7 2008 9 3
E07000080 Forest of Dean 30 8 2008 10 3
E07000080 Forest of Dean 20 9 2009 11 3
E07000080 Forest of Dean 30 10 2009 12 3
E07000080 Forest of Dean 50 11 2009 13 4
E07000080 Forest of Dean 20 12 2009 14 4
E07000080 Forest of Dean 90 13 2010 15 4
E07000080 Forest of Dean 150 14 2010 16 4
E07000080 Forest of Dean 40 15 2010 17 5
E07000080 Forest of Dean 30 16 2010 18 5
E07000080 Forest of Dean 20 17 2011 19 5
E07000080 Forest of Dean 310 18 2011 20 5
E07000080 Forest of Dean 60 19 2011 21 6
E07000080 Forest of Dean 30 20 2011 22 6
E07000080 Forest of Dean 20 21 2012 23 6
E07000080 Forest of Dean 80 22 2012 24 6
E07000080 Forest of Dean 50 23 2012 25 7
E07000080 Forest of Dean 30 24 2012 26 7
E07000080 Forest of Dean 70 25 2013 27 7
E07000080 Forest of Dean 120 26 2013 28 7
E07000080 Forest of Dean 80 27 2013 29 8
E07000080 Forest of Dean 60 28 2013 30 8
E07000080 Forest of Dean 110 29 2014 31 8
E07000080 Forest of Dean 60 30 2014 32 8
E07000080 Forest of Dean 70 31 2014 33 9
E07000080 Forest of Dean 50 32 2014 34 9
E07000080 Forest of Dean 30 33 2015 35 9
E07000080 Forest of Dean 40 34 2015 36 9
E07000080 Forest of Dean 40 35 2015 37 10
E07000080 Forest of Dean 40 36 2015 38 10
E07000080 Forest of Dean 60 37 2016 39 10
E07000080 Forest of Dean 80 38 2016 40 10
E07000080 Forest of Dean 60 39 2016 41 11
E07000080 Forest of Dean 50 40 2016 42 11
E07000080 Forest of Dean 60 41 2017 43 11
E07000080 Forest of Dean 50 42 2017 44 11
E07000080 Forest of Dean 50 43 2017 45 12
E07000080 Forest of Dean 90 44 2017 46 12
E07000080 Forest of Dean 60 45 2018 47 12
E07000080 Forest of Dean 40 46 2018 48 12
E07000080 Forest of Dean 80 47 2018 49 13
E07000080 Forest of Dean 80 48 2018 50 13
E07000173 Gedling 70 -1 2006 1 1
E07000173 Gedling 70 0 2006 2 1
E07000173 Gedling 110 1 2007 3 1
E07000173 Gedling 110 2 2007 4 1
E07000173 Gedling 100 3 2007 5 2
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E07000173 Gedling 100 4 2007 6 2
E07000173 Gedling 60 5 2008 7 2
E07000173 Gedling 100 6 2008 8 2
E07000173 Gedling 40 7 2008 9 3
E07000173 Gedling 40 8 2008 10 3
E07000173 Gedling 20 9 2009 11 3
E07000173 Gedling 50 10 2009 12 3
E07000173 Gedling 40 11 2009 13 4
E07000173 Gedling 50 12 2009 14 4
E07000173 Gedling 50 13 2010 15 4
E07000173 Gedling 60 14 2010 16 4
E07000173 Gedling 30 15 2010 17 5
E07000173 Gedling 20 16 2010 18 5
E07000173 Gedling 90 17 2011 19 5
E07000173 Gedling 90 18 2011 20 5
E07000173 Gedling 80 19 2011 21 6
E07000173 Gedling 50 20 2011 22 6
E07000173 Gedling 60 21 2012 23 6
E07000173 Gedling 50 22 2012 24 6
E07000173 Gedling 60 23 2012 25 7
E07000173 Gedling 60 24 2012 26 7
E07000173 Gedling 70 25 2013 27 7
E07000173 Gedling 100 26 2013 28 7
E07000173 Gedling 110 27 2013 29 8
E07000173 Gedling 60 28 2013 30 8
E07000173 Gedling 60 29 2014 31 8
E07000173 Gedling 40 30 2014 32 8
E07000173 Gedling 40 31 2014 33 9
E07000173 Gedling 20 32 2014 34 9
E07000173 Gedling 30 33 2015 35 9
E07000173 Gedling 30 34 2015 36 9
E07000173 Gedling 20 35 2015 37 10
E07000173 Gedling 50 36 2015 38 10
E07000173 Gedling 20 37 2016 39 10
E07000173 Gedling 80 38 2016 40 10
E07000173 Gedling 10 39 2016 41 11
E07000173 Gedling 60 40 2016 42 11
E07000173 Gedling 40 41 2017 43 11
E07000173 Gedling 30 42 2017 44 11
E07000173 Gedling 140 43 2017 45 12
E07000173 Gedling 60 44 2017 46 12
E07000173 Gedling 50 45 2018 47 12
E07000173 Gedling 60 46 2018 48 12
E07000173 Gedling 90 47 2018 49 13
E07000173 Gedling 40 48 2018 50 13
E07000073 Harlow 10 -1 2006 1 1
E07000073 Harlow 10 0 2006 2 1
E07000073 Harlow 80 1 2007 3 1
E07000073 Harlow 40 2 2007 4 1
E07000073 Harlow 130 3 2007 5 2
E07000073 Harlow 90 4 2007 6 2
E07000073 Harlow 20 5 2008 7 2
E07000073 Harlow 50 6 2008 8 2
E07000073 Harlow 10 7 2008 9 3
E07000073 Harlow 0 8 2008 10 3
E07000073 Harlow 20 9 2009 11 3
E07000073 Harlow 10 10 2009 12 3
E07000073 Harlow 60 11 2009 13 4
E07000073 Harlow 50 12 2009 14 4
E07000073 Harlow 30 13 2010 15 4
E07000073 Harlow 50 14 2010 16 4
E07000073 Harlow 20 15 2010 17 5
E07000073 Harlow 20 16 2010 18 5
E07000073 Harlow 10 17 2011 19 5
E07000073 Harlow 90 18 2011 20 5
E07000073 Harlow 20 19 2011 21 6
E07000073 Harlow 30 20 2011 22 6
E07000073 Harlow 60 21 2012 23 6
E07000073 Harlow 0 22 2012 24 6
E07000073 Harlow 10 23 2012 25 7
E07000073 Harlow 20 24 2012 26 7
E07000073 Harlow 60 25 2013 27 7
E07000073 Harlow 70 26 2013 28 7
E07000073 Harlow 20 27 2013 29 8
E07000073 Harlow 80 28 2013 30 8
E07000073 Harlow 80 29 2014 31 8
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E07000073 Harlow 20 30 2014 32 8
E07000073 Harlow 40 31 2014 33 9
E07000073 Harlow 30 32 2014 34 9
E07000073 Harlow 60 33 2015 35 9
E07000073 Harlow 60 34 2015 36 9
E07000073 Harlow 40 35 2015 37 10
E07000073 Harlow 20 36 2015 38 10
E07000073 Harlow 10 37 2016 39 10
E07000073 Harlow 20 38 2016 40 10
E07000073 Harlow 30 39 2016 41 11
E07000073 Harlow 50 40 2016 42 11
E07000073 Harlow 240 41 2017 43 11
E07000073 Harlow 30 42 2017 44 11
E07000073 Harlow 30 43 2017 45 12
E07000073 Harlow 40 44 2017 46 12
E07000073 Harlow 60 45 2018 47 12
E07000073 Harlow 130 46 2018 48 12
E07000073 Harlow 230 47 2018 49 13
E07000073 Harlow 140 48 2018 50 13
E07000089 Hart 60 -1 2006 1 1
E07000089 Hart 60 0 2006 2 1
E07000089 Hart 100 1 2007 3 1
E07000089 Hart 30 2 2007 4 1
E07000089 Hart 10 3 2007 5 2
E07000089 Hart 10 4 2007 6 2
E07000089 Hart 10 5 2008 7 2
E07000089 Hart 0 6 2008 8 2
E07000089 Hart 0 7 2008 9 3
E07000089 Hart 0 8 2008 10 3
E07000089 Hart 10 9 2009 11 3
E07000089 Hart 0 10 2009 12 3
E07000089 Hart 10 11 2009 13 4
E07000089 Hart 70 12 2009 14 4
E07000089 Hart 20 13 2010 15 4
E07000089 Hart 10 14 2010 16 4
E07000089 Hart 60 15 2010 17 5
E07000089 Hart 30 16 2010 18 5
E07000089 Hart 80 17 2011 19 5
E07000089 Hart 60 18 2011 20 5
E07000089 Hart 40 19 2011 21 6
E07000089 Hart 60 20 2011 22 6
E07000089 Hart 20 21 2012 23 6
E07000089 Hart 110 22 2012 24 6
E07000089 Hart 90 23 2012 25 7
E07000089 Hart 20 24 2012 26 7
E07000089 Hart 70 25 2013 27 7
E07000089 Hart 30 26 2013 28 7
E07000089 Hart 80 27 2013 29 8
E07000089 Hart 70 28 2013 30 8
E07000089 Hart 150 29 2014 31 8
E07000089 Hart 150 30 2014 32 8
E07000089 Hart 120 31 2014 33 9
E07000089 Hart 90 32 2014 34 9
E07000089 Hart 170 33 2015 35 9
E07000089 Hart 50 34 2015 36 9
E07000089 Hart 70 35 2015 37 10
E07000089 Hart 70 36 2015 38 10
E07000089 Hart 90 37 2016 39 10
E07000089 Hart 140 38 2016 40 10
E07000089 Hart 100 39 2016 41 11
E07000089 Hart 190 40 2016 42 11
E07000089 Hart 150 41 2017 43 11
E07000089 Hart 50 42 2017 44 11
E07000089 Hart 30 43 2017 45 12
E07000089 Hart 80 44 2017 46 12
E07000089 Hart 30 45 2018 47 12
E07000089 Hart 60 46 2018 48 12
E07000089 Hart 50 47 2018 49 13
E07000089 Hart 80 48 2018 50 13
E07000062 Hastings 40 -1 2006 1 1
E07000062 Hastings 60 0 2006 2 1
E07000062 Hastings 50 1 2007 3 1
E07000062 Hastings 20 2 2007 4 1
E07000062 Hastings 40 3 2007 5 2
E07000062 Hastings 30 4 2007 6 2
E07000062 Hastings 10 5 2008 7 2
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E07000062 Hastings 20 6 2008 8 2
E07000062 Hastings 10 7 2008 9 3
E07000062 Hastings 10 8 2008 10 3
E07000062 Hastings 0 9 2009 11 3
E07000062 Hastings 0 10 2009 12 3
E07000062 Hastings 0 11 2009 13 4
E07000062 Hastings 40 12 2009 14 4
E07000062 Hastings 0 13 2010 15 4
E07000062 Hastings 10 14 2010 16 4
E07000062 Hastings 0 15 2010 17 5
E07000062 Hastings 30 16 2010 18 5
E07000062 Hastings 20 17 2011 19 5
E07000062 Hastings 30 18 2011 20 5
E07000062 Hastings 50 19 2011 21 6
E07000062 Hastings 20 20 2011 22 6
E07000062 Hastings 20 21 2012 23 6
E07000062 Hastings 30 22 2012 24 6
E07000062 Hastings 30 23 2012 25 7
E07000062 Hastings 20 24 2012 26 7
E07000062 Hastings 30 25 2013 27 7
E07000062 Hastings 30 26 2013 28 7
E07000062 Hastings 40 27 2013 29 8
E07000062 Hastings 10 28 2013 30 8
E07000062 Hastings 10 29 2014 31 8
E07000062 Hastings 30 30 2014 32 8
E07000062 Hastings 20 31 2014 33 9
E07000062 Hastings 20 32 2014 34 9
E07000062 Hastings 10 33 2015 35 9
E07000062 Hastings 20 34 2015 36 9
E07000062 Hastings 30 35 2015 37 10
E07000062 Hastings 20 36 2015 38 10
E07000062 Hastings 40 37 2016 39 10
E07000062 Hastings 40 38 2016 40 10
E07000062 Hastings 20 39 2016 41 11
E07000062 Hastings 20 40 2016 42 11
E07000062 Hastings 30 41 2017 43 11
E07000062 Hastings 40 42 2017 44 11
E07000062 Hastings 0 43 2017 45 12
E07000062 Hastings 40 44 2017 46 12
E07000062 Hastings 0 45 2018 47 12
E07000062 Hastings 20 46 2018 48 12
E07000062 Hastings 30 47 2018 49 13
E07000062 Hastings 0 48 2018 50 13
E06000019 Herefordshire, County of 140 -1 2006 1 1
E06000019 Herefordshire, County of 90 0 2006 2 1
E06000019 Herefordshire, County of 170 1 2007 3 1
E06000019 Herefordshire, County of 120 2 2007 4 1
E06000019 Herefordshire, County of 110 3 2007 5 2
E06000019 Herefordshire, County of 100 4 2007 6 2
E06000019 Herefordshire, County of 130 5 2008 7 2
E06000019 Herefordshire, County of 130 6 2008 8 2
E06000019 Herefordshire, County of 80 7 2008 9 3
E06000019 Herefordshire, County of 40 8 2008 10 3
E06000019 Herefordshire, County of 90 9 2009 11 3
E06000019 Herefordshire, County of 110 10 2009 12 3
E06000019 Herefordshire, County of 40 11 2009 13 4
E06000019 Herefordshire, County of 30 12 2009 14 4
E06000019 Herefordshire, County of 50 13 2010 15 4
E06000019 Herefordshire, County of 110 14 2010 16 4
E06000019 Herefordshire, County of 50 15 2010 17 5
E06000019 Herefordshire, County of 80 16 2010 18 5
E06000019 Herefordshire, County of 60 17 2011 19 5
E06000019 Herefordshire, County of 80 18 2011 20 5
E06000019 Herefordshire, County of 70 19 2011 21 6
E06000019 Herefordshire, County of 50 20 2011 22 6
E06000019 Herefordshire, County of 60 21 2012 23 6
E06000019 Herefordshire, County of 50 22 2012 24 6
E06000019 Herefordshire, County of 50 23 2012 25 7
E06000019 Herefordshire, County of 60 24 2012 26 7
E06000019 Herefordshire, County of 40 25 2013 27 7
E06000019 Herefordshire, County of 90 26 2013 28 7
E06000019 Herefordshire, County of 50 27 2013 29 8
E06000019 Herefordshire, County of 40 28 2013 30 8
E06000019 Herefordshire, County of 130 29 2014 31 8
E06000019 Herefordshire, County of 370 30 2014 32 8
E06000019 Herefordshire, County of 70 31 2014 33 9
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E06000019 Herefordshire, County of 60 32 2014 34 9
E06000019 Herefordshire, County of 130 33 2015 35 9
E06000019 Herefordshire, County of 110 34 2015 36 9
E06000019 Herefordshire, County of 100 35 2015 37 10
E06000019 Herefordshire, County of 50 36 2015 38 10
E06000019 Herefordshire, County of 90 37 2016 39 10
E06000019 Herefordshire, County of 80 38 2016 40 10
E06000019 Herefordshire, County of 160 39 2016 41 11
E06000019 Herefordshire, County of 80 40 2016 42 11
E06000019 Herefordshire, County of 110 41 2017 43 11
E06000019 Herefordshire, County of 180 42 2017 44 11
E06000019 Herefordshire, County of 180 43 2017 45 12
E06000019 Herefordshire, County of 180 44 2017 46 12
E06000019 Herefordshire, County of 190 45 2018 47 12
E06000019 Herefordshire, County of 180 46 2018 48 12
E06000019 Herefordshire, County of 240 47 2018 49 13
E06000019 Herefordshire, County of 100 48 2018 50 13

Table B.4: Babergh - Herefordshire, County of

E06000019 Herefordshire, County of 100 48 2018 50 13
E06000010 Kingston upon Hull, City of 200 -1 2006 1 1
E06000010 Kingston upon Hull, City of 210 0 2006 2 1
E06000010 Kingston upon Hull, City of 250 1 2007 3 1
E06000010 Kingston upon Hull, City of 250 2 2007 4 1
E06000010 Kingston upon Hull, City of 150 3 2007 5 2
E06000010 Kingston upon Hull, City of 250 4 2007 6 2
E06000010 Kingston upon Hull, City of 210 5 2008 7 2
E06000010 Kingston upon Hull, City of 190 6 2008 8 2
E06000010 Kingston upon Hull, City of 160 7 2008 9 3
E06000010 Kingston upon Hull, City of 10 8 2008 10 3
E06000010 Kingston upon Hull, City of 150 9 2009 11 3
E06000010 Kingston upon Hull, City of 10 10 2009 12 3
E06000010 Kingston upon Hull, City of 50 11 2009 13 4
E06000010 Kingston upon Hull, City of 10 12 2009 14 4
E06000010 Kingston upon Hull, City of 90 13 2010 15 4
E06000010 Kingston upon Hull, City of 270 14 2010 16 4
E06000010 Kingston upon Hull, City of 280 15 2010 17 5
E06000010 Kingston upon Hull, City of 120 16 2010 18 5
E06000010 Kingston upon Hull, City of 70 17 2011 19 5
E06000010 Kingston upon Hull, City of 60 18 2011 20 5
E06000010 Kingston upon Hull, City of 140 19 2011 21 6
E06000010 Kingston upon Hull, City of 80 20 2011 22 6
E06000010 Kingston upon Hull, City of 140 21 2012 23 6
E06000010 Kingston upon Hull, City of 190 22 2012 24 6
E06000010 Kingston upon Hull, City of 100 23 2012 25 7
E06000010 Kingston upon Hull, City of 70 24 2012 26 7
E06000010 Kingston upon Hull, City of 90 25 2013 27 7
E06000010 Kingston upon Hull, City of 140 26 2013 28 7
E06000010 Kingston upon Hull, City of 260 27 2013 29 8
E06000010 Kingston upon Hull, City of 500 28 2013 30 8
E06000010 Kingston upon Hull, City of 170 29 2014 31 8
E06000010 Kingston upon Hull, City of 110 30 2014 32 8
E06000010 Kingston upon Hull, City of 50 31 2014 33 9
E06000010 Kingston upon Hull, City of 160 32 2014 34 9
E06000010 Kingston upon Hull, City of 190 33 2015 35 9
E06000010 Kingston upon Hull, City of 170 34 2015 36 9
E06000010 Kingston upon Hull, City of 80 35 2015 37 10
E06000010 Kingston upon Hull, City of 540 36 2015 38 10
E06000010 Kingston upon Hull, City of 80 37 2016 39 10
E06000010 Kingston upon Hull, City of 90 38 2016 40 10
E06000010 Kingston upon Hull, City of 80 39 2016 41 11
E06000010 Kingston upon Hull, City of 230 40 2016 42 11
E06000010 Kingston upon Hull, City of 160 41 2017 43 11
E06000010 Kingston upon Hull, City of 160 42 2017 44 11
E06000010 Kingston upon Hull, City of 230 43 2017 45 12
E06000010 Kingston upon Hull, City of 160 44 2017 46 12
E06000010 Kingston upon Hull, City of 110 45 2018 47 12
E06000010 Kingston upon Hull, City of 150 46 2018 48 12
E06000010 Kingston upon Hull, City of 240 47 2018 49 13
E06000010 Kingston upon Hull, City of 50 48 2018 50 13
E08000035 Leeds 1120 -1 2006 1 1
E08000035 Leeds 880 0 2006 2 1
E08000035 Leeds 1350 1 2007 3 1
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E08000035 Leeds 1020 2 2007 4 1
E08000035 Leeds 610 3 2007 5 2
E08000035 Leeds 540 4 2007 6 2
E08000035 Leeds 640 5 2008 7 2
E08000035 Leeds 380 6 2008 8 2
E08000035 Leeds 340 7 2008 9 3
E08000035 Leeds 140 8 2008 10 3
E08000035 Leeds 210 9 2009 11 3
E08000035 Leeds 190 10 2009 12 3
E08000035 Leeds 270 11 2009 13 4
E08000035 Leeds 240 12 2009 14 4
E08000035 Leeds 330 13 2010 15 4
E08000035 Leeds 390 14 2010 16 4
E08000035 Leeds 320 15 2010 17 5
E08000035 Leeds 250 16 2010 18 5
E08000035 Leeds 410 17 2011 19 5
E08000035 Leeds 310 18 2011 20 5
E08000035 Leeds 290 19 2011 21 6
E08000035 Leeds 180 20 2011 22 6
E08000035 Leeds 280 21 2012 23 6
E08000035 Leeds 390 22 2012 24 6
E08000035 Leeds 350 23 2012 25 7
E08000035 Leeds 290 24 2012 26 7
E08000035 Leeds 350 25 2013 27 7
E08000035 Leeds 320 26 2013 28 7
E08000035 Leeds 360 27 2013 29 8
E08000035 Leeds 320 28 2013 30 8
E08000035 Leeds 1120 29 2014 31 8
E08000035 Leeds 390 30 2014 32 8
E08000035 Leeds 420 31 2014 33 9
E08000035 Leeds 560 32 2014 34 9
E08000035 Leeds 400 33 2015 35 9
E08000035 Leeds 390 34 2015 36 9
E08000035 Leeds 460 35 2015 37 10
E08000035 Leeds 300 36 2015 38 10
E08000035 Leeds 320 37 2016 39 10
E08000035 Leeds 480 38 2016 40 10
E08000035 Leeds 600 39 2016 41 11
E08000035 Leeds 300 40 2016 42 11
E08000035 Leeds 1170 41 2017 43 11
E08000035 Leeds 870 42 2017 44 11
E08000035 Leeds 330 43 2017 45 12
E08000035 Leeds 400 44 2017 46 12
E08000035 Leeds 380 45 2018 47 12
E08000035 Leeds 460 46 2018 48 12
E08000035 Leeds 540 47 2018 49 13
E08000035 Leeds 350 48 2018 50 13
E08000022 North Tyneside 100 -1 2006 1 1
E08000022 North Tyneside 80 0 2006 2 1
E08000022 North Tyneside 100 1 2007 3 1
E08000022 North Tyneside 100 2 2007 4 1
E08000022 North Tyneside 60 3 2007 5 2
E08000022 North Tyneside 80 4 2007 6 2
E08000022 North Tyneside 90 5 2008 7 2
E08000022 North Tyneside 30 6 2008 8 2
E08000022 North Tyneside 30 7 2008 9 3
E08000022 North Tyneside 10 8 2008 10 3
E08000022 North Tyneside 80 9 2009 11 3
E08000022 North Tyneside 30 10 2009 12 3
E08000022 North Tyneside 70 11 2009 13 4
E08000022 North Tyneside 50 12 2009 14 4
E08000022 North Tyneside 60 13 2010 15 4
E08000022 North Tyneside 80 14 2010 16 4
E08000022 North Tyneside 80 15 2010 17 5
E08000022 North Tyneside 40 16 2010 18 5
E08000022 North Tyneside 70 17 2011 19 5
E08000022 North Tyneside 90 18 2011 20 5
E08000022 North Tyneside 100 19 2011 21 6
E08000022 North Tyneside 140 20 2011 22 6
E08000022 North Tyneside 100 21 2012 23 6
E08000022 North Tyneside 110 22 2012 24 6
E08000022 North Tyneside 140 23 2012 25 7
E08000022 North Tyneside 40 24 2012 26 7
E08000022 North Tyneside 90 25 2013 27 7
E08000022 North Tyneside 70 26 2013 28 7
E08000022 North Tyneside 80 27 2013 29 8
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E08000022 North Tyneside 110 28 2013 30 8
E08000022 North Tyneside 130 29 2014 31 8
E08000022 North Tyneside 180 30 2014 32 8
E08000022 North Tyneside 120 31 2014 33 9
E08000022 North Tyneside 100 32 2014 34 9
E08000022 North Tyneside 90 33 2015 35 9
E08000022 North Tyneside 150 34 2015 36 9
E08000022 North Tyneside 70 35 2015 37 10
E08000022 North Tyneside 120 36 2015 38 10
E08000022 North Tyneside 120 37 2016 39 10
E08000022 North Tyneside 170 38 2016 40 10
E08000022 North Tyneside 240 39 2016 41 11
E08000022 North Tyneside 130 40 2016 42 11
E08000022 North Tyneside 190 41 2017 43 11
E08000022 North Tyneside 230 42 2017 44 11
E08000022 North Tyneside 260 43 2017 45 12
E08000022 North Tyneside 160 44 2017 46 12
E08000022 North Tyneside 70 45 2018 47 12
E08000022 North Tyneside 130 46 2018 48 12
E08000022 North Tyneside 150 47 2018 49 13
E08000022 North Tyneside 100 48 2018 50 13
E07000218 North Warwickshire 60 -1 2006 1 1
E07000218 North Warwickshire 10 0 2006 2 1
E07000218 North Warwickshire 20 1 2007 3 1
E07000218 North Warwickshire 20 2 2007 4 1
E07000218 North Warwickshire 40 3 2007 5 2
E07000218 North Warwickshire 70 4 2007 6 2
E07000218 North Warwickshire 10 5 2008 7 2
E07000218 North Warwickshire 20 6 2008 8 2
E07000218 North Warwickshire 0 7 2008 9 3
E07000218 North Warwickshire 40 8 2008 10 3
E07000218 North Warwickshire 0 9 2009 11 3
E07000218 North Warwickshire 20 10 2009 12 3
E07000218 North Warwickshire 10 11 2009 13 4
E07000218 North Warwickshire 10 12 2009 14 4
E07000218 North Warwickshire 40 13 2010 15 4
E07000218 North Warwickshire 30 14 2010 16 4
E07000218 North Warwickshire 20 15 2010 17 5
E07000218 North Warwickshire 10 16 2010 18 5
E07000218 North Warwickshire 10 17 2011 19 5
E07000218 North Warwickshire 20 18 2011 20 5
E07000218 North Warwickshire 0 19 2011 21 6
E07000218 North Warwickshire 0 20 2011 22 6
E07000218 North Warwickshire 10 21 2012 23 6
E07000218 North Warwickshire 10 22 2012 24 6
E07000218 North Warwickshire 10 23 2012 25 7
E07000218 North Warwickshire 0 24 2012 26 7
E07000218 North Warwickshire 10 25 2013 27 7
E07000218 North Warwickshire 20 26 2013 28 7
E07000218 North Warwickshire 10 27 2013 29 8
E07000218 North Warwickshire 40 28 2013 30 8
E07000218 North Warwickshire 50 29 2014 31 8
E07000218 North Warwickshire 150 30 2014 32 8
E07000218 North Warwickshire 60 31 2014 33 9
E07000218 North Warwickshire 30 32 2014 34 9
E07000218 North Warwickshire 40 33 2015 35 9
E07000218 North Warwickshire 30 34 2015 36 9
E07000218 North Warwickshire 30 35 2015 37 10
E07000218 North Warwickshire 30 36 2015 38 10
E07000218 North Warwickshire 60 37 2016 39 10
E07000218 North Warwickshire 10 38 2016 40 10
E07000218 North Warwickshire 40 39 2016 41 11
E07000218 North Warwickshire 10 40 2016 42 11
E07000218 North Warwickshire 30 41 2017 43 11
E07000218 North Warwickshire 30 42 2017 44 11
E07000218 North Warwickshire 10 43 2017 45 12
E07000218 North Warwickshire 0 44 2017 46 12
E07000218 North Warwickshire 10 45 2018 47 12
E07000218 North Warwickshire 30 46 2018 48 12
E07000218 North Warwickshire 40 47 2018 49 13
E07000218 North Warwickshire 40 48 2018 50 13
E07000148 Norwich 240 -1 2006 1 1
E07000148 Norwich 70 0 2006 2 1
E07000148 Norwich 120 1 2007 3 1
E07000148 Norwich 130 2 2007 4 1
E07000148 Norwich 50 3 2007 5 2
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E07000148 Norwich 380 4 2007 6 2
E07000148 Norwich 60 5 2008 7 2
E07000148 Norwich 80 6 2008 8 2
E07000148 Norwich 120 7 2008 9 3
E07000148 Norwich 10 8 2008 10 3
E07000148 Norwich 20 9 2009 11 3
E07000148 Norwich 30 10 2009 12 3
E07000148 Norwich 60 11 2009 13 4
E07000148 Norwich 120 12 2009 14 4
E07000148 Norwich 40 13 2010 15 4
E07000148 Norwich 30 14 2010 16 4
E07000148 Norwich 50 15 2010 17 5
E07000148 Norwich 50 16 2010 18 5
E07000148 Norwich 20 17 2011 19 5
E07000148 Norwich 90 18 2011 20 5
E07000148 Norwich 110 19 2011 21 6
E07000148 Norwich 60 20 2011 22 6
E07000148 Norwich 40 21 2012 23 6
E07000148 Norwich 50 22 2012 24 6
E07000148 Norwich 60 23 2012 25 7
E07000148 Norwich 10 24 2012 26 7
E07000148 Norwich 70 25 2013 27 7
E07000148 Norwich 20 26 2013 28 7
E07000148 Norwich 20 27 2013 29 8
E07000148 Norwich 40 28 2013 30 8
E07000148 Norwich 20 29 2014 31 8
E07000148 Norwich 160 30 2014 32 8
E07000148 Norwich 40 31 2014 33 9
E07000148 Norwich 30 32 2014 34 9
E07000148 Norwich 70 33 2015 35 9
E07000148 Norwich 10 34 2015 36 9
E07000148 Norwich 100 35 2015 37 10
E07000148 Norwich 20 36 2015 38 10
E07000148 Norwich 30 37 2016 39 10
E07000148 Norwich 20 38 2016 40 10
E07000148 Norwich 30 39 2016 41 11
E07000148 Norwich 20 40 2016 42 11
E07000148 Norwich 80 41 2017 43 11
E07000148 Norwich 70 42 2017 44 11
E07000148 Norwich 10 43 2017 45 12
E07000148 Norwich 10 44 2017 46 12
E07000148 Norwich 90 45 2018 47 12
E07000148 Norwich 10 46 2018 48 12
E07000148 Norwich 70 47 2018 49 13
E07000148 Norwich 10 48 2018 50 13
E08000004 Oldham 70 -1 2006 1 1
E08000004 Oldham 70 0 2006 2 1
E08000004 Oldham 100 1 2007 3 1
E08000004 Oldham 180 2 2007 4 1
E08000004 Oldham 100 3 2007 5 2
E08000004 Oldham 140 4 2007 6 2
E08000004 Oldham 120 5 2008 7 2
E08000004 Oldham 120 6 2008 8 2
E08000004 Oldham 30 7 2008 9 3
E08000004 Oldham 30 8 2008 10 3
E08000004 Oldham 30 9 2009 11 3
E08000004 Oldham 30 10 2009 12 3
E08000004 Oldham 40 11 2009 13 4
E08000004 Oldham 60 12 2009 14 4
E08000004 Oldham 30 13 2010 15 4
E08000004 Oldham 60 14 2010 16 4
E08000004 Oldham 40 15 2010 17 5
E08000004 Oldham 20 16 2010 18 5
E08000004 Oldham 10 17 2011 19 5
E08000004 Oldham 130 18 2011 20 5
E08000004 Oldham 80 19 2011 21 6
E08000004 Oldham 70 20 2011 22 6
E08000004 Oldham 40 21 2012 23 6
E08000004 Oldham 130 22 2012 24 6
E08000004 Oldham 70 23 2012 25 7
E08000004 Oldham 40 24 2012 26 7
E08000004 Oldham 100 25 2013 27 7
E08000004 Oldham 180 26 2013 28 7
E08000004 Oldham 160 27 2013 29 8
E08000004 Oldham 70 28 2013 30 8
E08000004 Oldham 70 29 2014 31 8
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E08000004 Oldham 70 30 2014 32 8
E08000004 Oldham 120 31 2014 33 9
E08000004 Oldham 50 32 2014 34 9
E08000004 Oldham 60 33 2015 35 9
E08000004 Oldham 100 34 2015 36 9
E08000004 Oldham 90 35 2015 37 10
E08000004 Oldham 100 36 2015 38 10
E08000004 Oldham 40 37 2016 39 10
E08000004 Oldham 40 38 2016 40 10
E08000004 Oldham 20 39 2016 41 11
E08000004 Oldham 40 40 2016 42 11
E08000004 Oldham 20 41 2017 43 11
E08000004 Oldham 120 42 2017 44 11
E08000004 Oldham 90 43 2017 45 12
E08000004 Oldham 70 44 2017 46 12
E08000004 Oldham 70 45 2018 47 12
E08000004 Oldham 120 46 2018 48 12
E08000004 Oldham 160 47 2018 49 13
E08000004 Oldham 140 48 2018 50 13
E07000122 Pendle 60 -1 2006 1 1
E07000122 Pendle 80 0 2006 2 1
E07000122 Pendle 30 1 2007 3 1
E07000122 Pendle 60 2 2007 4 1
E07000122 Pendle 60 3 2007 5 2
E07000122 Pendle 20 4 2007 6 2
E07000122 Pendle 20 5 2008 7 2
E07000122 Pendle 20 6 2008 8 2
E07000122 Pendle 0 7 2008 9 3
E07000122 Pendle 0 8 2008 10 3
E07000122 Pendle 10 9 2009 11 3
E07000122 Pendle 10 10 2009 12 3
E07000122 Pendle 0 11 2009 13 4
E07000122 Pendle 0 12 2009 14 4
E07000122 Pendle 10 13 2010 15 4
E07000122 Pendle 20 14 2010 16 4
E07000122 Pendle 0 15 2010 17 5
E07000122 Pendle 30 16 2010 18 5
E07000122 Pendle 10 17 2011 19 5
E07000122 Pendle 30 18 2011 20 5
E07000122 Pendle 40 19 2011 21 6
E07000122 Pendle 10 20 2011 22 6
E07000122 Pendle 20 21 2012 23 6
E07000122 Pendle 0 22 2012 24 6
E07000122 Pendle 30 23 2012 25 7
E07000122 Pendle 10 24 2012 26 7
E07000122 Pendle 0 25 2013 27 7
E07000122 Pendle 10 26 2013 28 7
E07000122 Pendle 10 27 2013 29 8
E07000122 Pendle 10 28 2013 30 8
E07000122 Pendle 30 29 2014 31 8
E07000122 Pendle 70 30 2014 32 8
E07000122 Pendle 10 31 2014 33 9
E07000122 Pendle 10 32 2014 34 9
E07000122 Pendle 30 33 2015 35 9
E07000122 Pendle 0 34 2015 36 9
E07000122 Pendle 30 35 2015 37 10
E07000122 Pendle 20 36 2015 38 10
E07000122 Pendle 30 37 2016 39 10
E07000122 Pendle 10 38 2016 40 10
E07000122 Pendle 30 39 2016 41 11
E07000122 Pendle 10 40 2016 42 11
E07000122 Pendle 70 41 2017 43 11
E07000122 Pendle 20 42 2017 44 11
E07000122 Pendle 20 43 2017 45 12
E07000122 Pendle 10 44 2017 46 12
E07000122 Pendle 20 45 2018 47 12
E07000122 Pendle 20 46 2018 48 12
E07000122 Pendle 30 47 2018 49 13
E07000122 Pendle 30 48 2018 50 13
E06000026 Plymouth 130 -1 2006 1 1
E06000026 Plymouth 40 0 2006 2 1
E06000026 Plymouth 130 1 2007 3 1
E06000026 Plymouth 60 2 2007 4 1
E06000026 Plymouth 170 3 2007 5 2
E06000026 Plymouth 70 4 2007 6 2
E06000026 Plymouth 130 5 2008 7 2
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E06000026 Plymouth 80 6 2008 8 2
E06000026 Plymouth 60 7 2008 9 3
E06000026 Plymouth 20 8 2008 10 3
E06000026 Plymouth 70 9 2009 11 3
E06000026 Plymouth 60 10 2009 12 3
E06000026 Plymouth 10 11 2009 13 4
E06000026 Plymouth 60 12 2009 14 4
E06000026 Plymouth 60 13 2010 15 4
E06000026 Plymouth 130 14 2010 16 4
E06000026 Plymouth 250 15 2010 17 5
E06000026 Plymouth 140 16 2010 18 5
E06000026 Plymouth 70 17 2011 19 5
E06000026 Plymouth 90 18 2011 20 5
E06000026 Plymouth 120 19 2011 21 6
E06000026 Plymouth 250 20 2011 22 6
E06000026 Plymouth 100 21 2012 23 6
E06000026 Plymouth 170 22 2012 24 6
E06000026 Plymouth 120 23 2012 25 7
E06000026 Plymouth 100 24 2012 26 7
E06000026 Plymouth 50 25 2013 27 7
E06000026 Plymouth 120 26 2013 28 7
E06000026 Plymouth 170 27 2013 29 8
E06000026 Plymouth 170 28 2013 30 8
E06000026 Plymouth 190 29 2014 31 8
E06000026 Plymouth 180 30 2014 32 8
E06000026 Plymouth 220 31 2014 33 9
E06000026 Plymouth 180 32 2014 34 9
E06000026 Plymouth 110 33 2015 35 9
E06000026 Plymouth 180 34 2015 36 9
E06000026 Plymouth 160 35 2015 37 10
E06000026 Plymouth 160 36 2015 38 10
E06000026 Plymouth 90 37 2016 39 10
E06000026 Plymouth 320 38 2016 40 10
E06000026 Plymouth 100 39 2016 41 11
E06000026 Plymouth 160 40 2016 42 11
E06000026 Plymouth 130 41 2017 43 11
E06000026 Plymouth 70 42 2017 44 11
E06000026 Plymouth 130 43 2017 45 12
E06000026 Plymouth 100 44 2017 46 12
E06000026 Plymouth 60 45 2018 47 12
E06000026 Plymouth 50 46 2018 48 12
E06000026 Plymouth 160 47 2018 49 13
E06000026 Plymouth 70 48 2018 50 13
E06000044 Portsmouth 80 -1 2006 1 1
E06000044 Portsmouth 50 0 2006 2 1
E06000044 Portsmouth 420 1 2007 3 1
E06000044 Portsmouth 150 2 2007 4 1
E06000044 Portsmouth 170 3 2007 5 2
E06000044 Portsmouth 250 4 2007 6 2
E06000044 Portsmouth 110 5 2008 7 2
E06000044 Portsmouth 200 6 2008 8 2
E06000044 Portsmouth 300 7 2008 9 3
E06000044 Portsmouth 60 8 2008 10 3
E06000044 Portsmouth 50 9 2009 11 3
E06000044 Portsmouth 60 10 2009 12 3
E06000044 Portsmouth 30 11 2009 13 4
E06000044 Portsmouth 40 12 2009 14 4
E06000044 Portsmouth 20 13 2010 15 4
E06000044 Portsmouth 160 14 2010 16 4
E06000044 Portsmouth 140 15 2010 17 5
E06000044 Portsmouth 20 16 2010 18 5
E06000044 Portsmouth 140 17 2011 19 5
E06000044 Portsmouth 230 18 2011 20 5
E06000044 Portsmouth 50 19 2011 21 6
E06000044 Portsmouth 100 20 2011 22 6
E06000044 Portsmouth 30 21 2012 23 6
E06000044 Portsmouth 40 22 2012 24 6
E06000044 Portsmouth 30 23 2012 25 7
E06000044 Portsmouth 60 24 2012 26 7
E06000044 Portsmouth 30 25 2013 27 7
E06000044 Portsmouth 30 26 2013 28 7
E06000044 Portsmouth 40 27 2013 29 8
E06000044 Portsmouth 90 28 2013 30 8
E06000044 Portsmouth 20 29 2014 31 8
E06000044 Portsmouth 130 30 2014 32 8
E06000044 Portsmouth 60 31 2014 33 9
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E06000044 Portsmouth 110 32 2014 34 9
E06000044 Portsmouth 90 33 2015 35 9
E06000044 Portsmouth 60 34 2015 36 9
E06000044 Portsmouth 60 35 2015 37 10
E06000044 Portsmouth 30 36 2015 38 10
E06000044 Portsmouth 110 37 2016 39 10
E06000044 Portsmouth 120 38 2016 40 10
E06000044 Portsmouth 40 39 2016 41 11
E06000044 Portsmouth 20 40 2016 42 11
E06000044 Portsmouth 20 41 2017 43 11
E06000044 Portsmouth 70 42 2017 44 11
E06000044 Portsmouth 60 43 2017 45 12
E06000044 Portsmouth 120 44 2017 46 12
E06000044 Portsmouth 80 45 2018 47 12
E06000044 Portsmouth 0 46 2018 48 12
E06000044 Portsmouth 0 47 2018 49 13
E06000044 Portsmouth 0 48 2018 50 13
E06000003 Redcar and Cleveland 80 -1 2006 1 1
E06000003 Redcar and Cleveland 80 0 2006 2 1
E06000003 Redcar and Cleveland 50 1 2007 3 1
E06000003 Redcar and Cleveland 110 2 2007 4 1
E06000003 Redcar and Cleveland 100 3 2007 5 2
E06000003 Redcar and Cleveland 30 4 2007 6 2
E06000003 Redcar and Cleveland 80 5 2008 7 2
E06000003 Redcar and Cleveland 210 6 2008 8 2
E06000003 Redcar and Cleveland 60 7 2008 9 3
E06000003 Redcar and Cleveland 20 8 2008 10 3
E06000003 Redcar and Cleveland 20 9 2009 11 3
E06000003 Redcar and Cleveland 10 10 2009 12 3
E06000003 Redcar and Cleveland 50 11 2009 13 4
E06000003 Redcar and Cleveland 40 12 2009 14 4
E06000003 Redcar and Cleveland 140 13 2010 15 4
E06000003 Redcar and Cleveland 80 14 2010 16 4
E06000003 Redcar and Cleveland 50 15 2010 17 5
E06000003 Redcar and Cleveland 30 16 2010 18 5
E06000003 Redcar and Cleveland 60 17 2011 19 5
E06000003 Redcar and Cleveland 70 18 2011 20 5
E06000003 Redcar and Cleveland 110 19 2011 21 6
E06000003 Redcar and Cleveland 50 20 2011 22 6
E06000003 Redcar and Cleveland 50 21 2012 23 6
E06000003 Redcar and Cleveland 50 22 2012 24 6
E06000003 Redcar and Cleveland 30 23 2012 25 7
E06000003 Redcar and Cleveland 50 24 2012 26 7
E06000003 Redcar and Cleveland 80 25 2013 27 7
E06000003 Redcar and Cleveland 140 26 2013 28 7
E06000003 Redcar and Cleveland 90 27 2013 29 8
E06000003 Redcar and Cleveland 100 28 2013 30 8
E06000003 Redcar and Cleveland 90 29 2014 31 8
E06000003 Redcar and Cleveland 110 30 2014 32 8
E06000003 Redcar and Cleveland 90 31 2014 33 9
E06000003 Redcar and Cleveland 40 32 2014 34 9
E06000003 Redcar and Cleveland 90 33 2015 35 9
E06000003 Redcar and Cleveland 110 34 2015 36 9
E06000003 Redcar and Cleveland 220 35 2015 37 10
E06000003 Redcar and Cleveland 70 36 2015 38 10
E06000003 Redcar and Cleveland 80 37 2016 39 10
E06000003 Redcar and Cleveland 140 38 2016 40 10
E06000003 Redcar and Cleveland 80 39 2016 41 11
E06000003 Redcar and Cleveland 110 40 2016 42 11
E06000003 Redcar and Cleveland 110 41 2017 43 11
E06000003 Redcar and Cleveland 100 42 2017 44 11
E06000003 Redcar and Cleveland 150 43 2017 45 12
E06000003 Redcar and Cleveland 100 44 2017 46 12
E06000003 Redcar and Cleveland 60 45 2018 47 12
E06000003 Redcar and Cleveland 160 46 2018 48 12
E06000003 Redcar and Cleveland 70 47 2018 49 13
E06000003 Redcar and Cleveland 80 48 2018 50 13
E07000125 Rossendale 120 -1 2006 1 1
E07000125 Rossendale 30 0 2006 2 1
E07000125 Rossendale 40 1 2007 3 1
E07000125 Rossendale 90 2 2007 4 1
E07000125 Rossendale 40 3 2007 5 2
E07000125 Rossendale 40 4 2007 6 2
E07000125 Rossendale 20 5 2008 7 2
E07000125 Rossendale 10 6 2008 8 2
E07000125 Rossendale 10 7 2008 9 3
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E07000125 Rossendale 50 8 2008 10 3
E07000125 Rossendale 10 9 2009 11 3
E07000125 Rossendale 10 10 2009 12 3
E07000125 Rossendale 0 11 2009 13 4
E07000125 Rossendale 0 12 2009 14 4
E07000125 Rossendale 0 13 2010 15 4
E07000125 Rossendale 40 14 2010 16 4
E07000125 Rossendale 10 15 2010 17 5
E07000125 Rossendale 10 16 2010 18 5
E07000125 Rossendale 30 17 2011 19 5
E07000125 Rossendale 10 18 2011 20 5
E07000125 Rossendale 20 19 2011 21 6
E07000125 Rossendale 0 20 2011 22 6
E07000125 Rossendale 10 21 2012 23 6
E07000125 Rossendale 10 22 2012 24 6
E07000125 Rossendale 10 23 2012 25 7
E07000125 Rossendale 80 24 2012 26 7
E07000125 Rossendale 70 25 2013 27 7
E07000125 Rossendale 70 26 2013 28 7
E07000125 Rossendale 30 27 2013 29 8
E07000125 Rossendale 20 28 2013 30 8
E07000125 Rossendale 50 29 2014 31 8
E07000125 Rossendale 100 30 2014 32 8
E07000125 Rossendale 60 31 2014 33 9
E07000125 Rossendale 40 32 2014 34 9
E07000125 Rossendale 20 33 2015 35 9
E07000125 Rossendale 50 34 2015 36 9
E07000125 Rossendale 30 35 2015 37 10
E07000125 Rossendale 50 36 2015 38 10
E07000125 Rossendale 40 37 2016 39 10
E07000125 Rossendale 40 38 2016 40 10
E07000125 Rossendale 40 39 2016 41 11
E07000125 Rossendale 30 40 2016 42 11
E07000125 Rossendale 30 41 2017 43 11
E07000125 Rossendale 10 42 2017 44 11
E07000125 Rossendale 10 43 2017 45 12
E07000125 Rossendale 10 44 2017 46 12
E07000125 Rossendale 10 45 2018 47 12
E07000125 Rossendale 30 46 2018 48 12
E07000125 Rossendale 20 47 2018 49 13
E07000125 Rossendale 20 48 2018 50 13
E08000028 Sandwell 430 -1 2006 1 1
E08000028 Sandwell 350 0 2006 2 1
E08000028 Sandwell 190 1 2007 3 1
E08000028 Sandwell 240 2 2007 4 1
E08000028 Sandwell 260 3 2007 5 2
E08000028 Sandwell 160 4 2007 6 2
E08000028 Sandwell 220 5 2008 7 2
E08000028 Sandwell 60 6 2008 8 2
E08000028 Sandwell 20 7 2008 9 3
E08000028 Sandwell 80 8 2008 10 3
E08000028 Sandwell 60 9 2009 11 3
E08000028 Sandwell 80 10 2009 12 3
E08000028 Sandwell 140 11 2009 13 4
E08000028 Sandwell 80 12 2009 14 4
E08000028 Sandwell 260 13 2010 15 4
E08000028 Sandwell 210 14 2010 16 4
E08000028 Sandwell 290 15 2010 17 5
E08000028 Sandwell 110 16 2010 18 5
E08000028 Sandwell 90 17 2011 19 5
E08000028 Sandwell 60 18 2011 20 5
E08000028 Sandwell 100 19 2011 21 6
E08000028 Sandwell 30 20 2011 22 6
E08000028 Sandwell 100 21 2012 23 6
E08000028 Sandwell 150 22 2012 24 6
E08000028 Sandwell 90 23 2012 25 7
E08000028 Sandwell 50 24 2012 26 7
E08000028 Sandwell 100 25 2013 27 7
E08000028 Sandwell 70 26 2013 28 7
E08000028 Sandwell 90 27 2013 29 8
E08000028 Sandwell 120 28 2013 30 8
E08000028 Sandwell 60 29 2014 31 8
E08000028 Sandwell 90 30 2014 32 8
E08000028 Sandwell 100 31 2014 33 9
E08000028 Sandwell 40 32 2014 34 9
E08000028 Sandwell 50 33 2015 35 9
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E08000028 Sandwell 50 34 2015 36 9
E08000028 Sandwell 50 35 2015 37 10
E08000028 Sandwell 80 36 2015 38 10
E08000028 Sandwell 150 37 2016 39 10
E08000028 Sandwell 60 38 2016 40 10
E08000028 Sandwell 150 39 2016 41 11
E08000028 Sandwell 100 40 2016 42 11
E08000028 Sandwell 260 41 2017 43 11
E08000028 Sandwell 180 42 2017 44 11
E08000028 Sandwell 140 43 2017 45 12
E08000028 Sandwell 110 44 2017 46 12
E08000028 Sandwell 90 45 2018 47 12
E08000028 Sandwell 170 46 2018 48 12
E08000028 Sandwell 70 47 2018 49 13
E08000028 Sandwell 60 48 2018 50 13
E07000169 Selby 190 -1 2006 1 1
E07000169 Selby 140 0 2006 2 1
E07000169 Selby 120 1 2007 3 1
E07000169 Selby 120 2 2007 4 1
E07000169 Selby 160 3 2007 5 2
E07000169 Selby 110 4 2007 6 2
E07000169 Selby 90 5 2008 7 2
E07000169 Selby 80 6 2008 8 2
E07000169 Selby 30 7 2008 9 3
E07000169 Selby 10 8 2008 10 3
E07000169 Selby 20 9 2009 11 3
E07000169 Selby 30 10 2009 12 3
E07000169 Selby 80 11 2009 13 4
E07000169 Selby 70 12 2009 14 4
E07000169 Selby 70 13 2010 15 4
E07000169 Selby 60 14 2010 16 4
E07000169 Selby 40 15 2010 17 5
E07000169 Selby 60 16 2010 18 5
E07000169 Selby 70 17 2011 19 5
E07000169 Selby 90 18 2011 20 5
E07000169 Selby 100 19 2011 21 6
E07000169 Selby 40 20 2011 22 6
E07000169 Selby 50 21 2012 23 6
E07000169 Selby 40 22 2012 24 6
E07000169 Selby 80 23 2012 25 7
E07000169 Selby 20 24 2012 26 7
E07000169 Selby 40 25 2013 27 7
E07000169 Selby 60 26 2013 28 7
E07000169 Selby 90 27 2013 29 8
E07000169 Selby 90 28 2013 30 8
E07000169 Selby 870 29 2014 31 8
E07000169 Selby 40 30 2014 32 8
E07000169 Selby 100 31 2014 33 9
E07000169 Selby 90 32 2014 34 9
E07000169 Selby 120 33 2015 35 9
E07000169 Selby 80 34 2015 36 9
E07000169 Selby 100 35 2015 37 10
E07000169 Selby 110 36 2015 38 10
E07000169 Selby 110 37 2016 39 10
E07000169 Selby 120 38 2016 40 10
E07000169 Selby 150 39 2016 41 11
E07000169 Selby 80 40 2016 42 11
E07000169 Selby 200 41 2017 43 11
E07000169 Selby 220 42 2017 44 11
E07000169 Selby 140 43 2017 45 12
E07000169 Selby 120 44 2017 46 12
E07000169 Selby 140 45 2018 47 12
E07000169 Selby 150 46 2018 48 12
E07000169 Selby 150 47 2018 49 13
E07000169 Selby 120 48 2018 50 13
E07000006 South Bucks 60 -1 2006 1 1
E07000006 South Bucks 20 0 2006 2 1
E07000006 South Bucks 110 1 2007 3 1
E07000006 South Bucks 90 2 2007 4 1
E07000006 South Bucks 110 3 2007 5 2
E07000006 South Bucks 130 4 2007 6 2
E07000006 South Bucks 130 5 2008 7 2
E07000006 South Bucks 20 6 2008 8 2
E07000006 South Bucks 30 7 2008 9 3
E07000006 South Bucks 20 8 2008 10 3
E07000006 South Bucks 0 9 2009 11 3
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E07000006 South Bucks 10 10 2009 12 3
E07000006 South Bucks 30 11 2009 13 4
E07000006 South Bucks 10 12 2009 14 4
E07000006 South Bucks 20 13 2010 15 4
E07000006 South Bucks 40 14 2010 16 4
E07000006 South Bucks 60 15 2010 17 5
E07000006 South Bucks 20 16 2010 18 5
E07000006 South Bucks 50 17 2011 19 5
E07000006 South Bucks 80 18 2011 20 5
E07000006 South Bucks 80 19 2011 21 6
E07000006 South Bucks 20 20 2011 22 6
E07000006 South Bucks 40 21 2012 23 6
E07000006 South Bucks 50 22 2012 24 6
E07000006 South Bucks 40 23 2012 25 7
E07000006 South Bucks 40 24 2012 26 7
E07000006 South Bucks 20 25 2013 27 7
E07000006 South Bucks 20 26 2013 28 7
E07000006 South Bucks 30 27 2013 29 8
E07000006 South Bucks 40 28 2013 30 8
E07000006 South Bucks 20 29 2014 31 8
E07000006 South Bucks 20 30 2014 32 8
E07000006 South Bucks 10 31 2014 33 9
E07000006 South Bucks 20 32 2014 34 9
E07000006 South Bucks 10 33 2015 35 9
E07000006 South Bucks 30 34 2015 36 9
E07000006 South Bucks 60 35 2015 37 10
E07000006 South Bucks 50 36 2015 38 10
E07000006 South Bucks 50 37 2016 39 10
E07000006 South Bucks 20 38 2016 40 10
E07000006 South Bucks 20 39 2016 41 11
E07000006 South Bucks 70 40 2016 42 11
E07000006 South Bucks 20 41 2017 43 11
E07000006 South Bucks 30 42 2017 44 11
E07000006 South Bucks 50 43 2017 45 12
E07000006 South Bucks 40 44 2017 46 12
E07000006 South Bucks 20 45 2018 47 12
E07000006 South Bucks 10 46 2018 48 12
E07000006 South Bucks 20 47 2018 49 13
E07000006 South Bucks 30 48 2018 50 13
E06000025 South Gloucestershire 210 -1 2006 1 1
E06000025 South Gloucestershire 160 0 2006 2 1
E06000025 South Gloucestershire 290 1 2007 3 1
E06000025 South Gloucestershire 230 2 2007 4 1
E06000025 South Gloucestershire 160 3 2007 5 2
E06000025 South Gloucestershire 210 4 2007 6 2
E06000025 South Gloucestershire 210 5 2008 7 2
E06000025 South Gloucestershire 200 6 2008 8 2
E06000025 South Gloucestershire 80 7 2008 9 3
E06000025 South Gloucestershire 150 8 2008 10 3
E06000025 South Gloucestershire 180 9 2009 11 3
E06000025 South Gloucestershire 130 10 2009 12 3
E06000025 South Gloucestershire 230 11 2009 13 4
E06000025 South Gloucestershire 180 12 2009 14 4
E06000025 South Gloucestershire 310 13 2010 15 4
E06000025 South Gloucestershire 290 14 2010 16 4
E06000025 South Gloucestershire 130 15 2010 17 5
E06000025 South Gloucestershire 190 16 2010 18 5
E06000025 South Gloucestershire 280 17 2011 19 5
E06000025 South Gloucestershire 160 18 2011 20 5
E06000025 South Gloucestershire 160 19 2011 21 6
E06000025 South Gloucestershire 170 20 2011 22 6
E06000025 South Gloucestershire 230 21 2012 23 6
E06000025 South Gloucestershire 310 22 2012 24 6
E06000025 South Gloucestershire 260 23 2012 25 7
E06000025 South Gloucestershire 260 24 2012 26 7
E06000025 South Gloucestershire 310 25 2013 27 7
E06000025 South Gloucestershire 400 26 2013 28 7
E06000025 South Gloucestershire 260 27 2013 29 8
E06000025 South Gloucestershire 210 28 2013 30 8
E06000025 South Gloucestershire 320 29 2014 31 8
E06000025 South Gloucestershire 490 30 2014 32 8
E06000025 South Gloucestershire 280 31 2014 33 9
E06000025 South Gloucestershire 240 32 2014 34 9
E06000025 South Gloucestershire 390 33 2015 35 9
E06000025 South Gloucestershire 270 34 2015 36 9
E06000025 South Gloucestershire 420 35 2015 37 10
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E06000025 South Gloucestershire 350 36 2015 38 10
E06000025 South Gloucestershire 410 37 2016 39 10
E06000025 South Gloucestershire 560 38 2016 40 10
E06000025 South Gloucestershire 660 39 2016 41 11
E06000025 South Gloucestershire 670 40 2016 42 11
E06000025 South Gloucestershire 360 41 2017 43 11
E06000025 South Gloucestershire 340 42 2017 44 11
E06000025 South Gloucestershire 260 43 2017 45 12
E06000025 South Gloucestershire 310 44 2017 46 12
E06000025 South Gloucestershire 340 45 2018 47 12
E06000025 South Gloucestershire 410 46 2018 48 12
E06000025 South Gloucestershire 530 47 2018 49 13
E06000025 South Gloucestershire 330 48 2018 50 13
E07000141 South Kesteven 210 -1 2006 1 1
E07000141 South Kesteven 150 0 2006 2 1
E07000141 South Kesteven 220 1 2007 3 1
E07000141 South Kesteven 190 2 2007 4 1
E07000141 South Kesteven 180 3 2007 5 2
E07000141 South Kesteven 160 4 2007 6 2
E07000141 South Kesteven 180 5 2008 7 2
E07000141 South Kesteven 90 6 2008 8 2
E07000141 South Kesteven 70 7 2008 9 3
E07000141 South Kesteven 40 8 2008 10 3
E07000141 South Kesteven 80 9 2009 11 3
E07000141 South Kesteven 120 10 2009 12 3
E07000141 South Kesteven 120 11 2009 13 4
E07000141 South Kesteven 100 12 2009 14 4
E07000141 South Kesteven 140 13 2010 15 4
E07000141 South Kesteven 140 14 2010 16 4
E07000141 South Kesteven 130 15 2010 17 5
E07000141 South Kesteven 90 16 2010 18 5
E07000141 South Kesteven 110 17 2011 19 5
E07000141 South Kesteven 180 18 2011 20 5
E07000141 South Kesteven 110 19 2011 21 6
E07000141 South Kesteven 150 20 2011 22 6
E07000141 South Kesteven 80 21 2012 23 6
E07000141 South Kesteven 110 22 2012 24 6
E07000141 South Kesteven 70 23 2012 25 7
E07000141 South Kesteven 70 24 2012 26 7
E07000141 South Kesteven 150 25 2013 27 7
E07000141 South Kesteven 130 26 2013 28 7
E07000141 South Kesteven 180 27 2013 29 8
E07000141 South Kesteven 120 28 2013 30 8
E07000141 South Kesteven 160 29 2014 31 8
E07000141 South Kesteven 160 30 2014 32 8
E07000141 South Kesteven 130 31 2014 33 9
E07000141 South Kesteven 70 32 2014 34 9
E07000141 South Kesteven 90 33 2015 35 9
E07000141 South Kesteven 110 34 2015 36 9
E07000141 South Kesteven 110 35 2015 37 10
E07000141 South Kesteven 80 36 2015 38 10
E07000141 South Kesteven 90 37 2016 39 10
E07000141 South Kesteven 120 38 2016 40 10
E07000141 South Kesteven 100 39 2016 41 11
E07000141 South Kesteven 190 40 2016 42 11
E07000141 South Kesteven 100 41 2017 43 11
E07000141 South Kesteven 110 42 2017 44 11
E07000141 South Kesteven 110 43 2017 45 12
E07000141 South Kesteven 140 44 2017 46 12
E07000141 South Kesteven 100 45 2018 47 12
E07000141 South Kesteven 150 46 2018 48 12
E07000141 South Kesteven 120 47 2018 49 13
E07000141 South Kesteven 130 48 2018 50 13
E07000155 South Northamptonshire 60 -1 2006 1 1
E07000155 South Northamptonshire 20 0 2006 2 1
E07000155 South Northamptonshire 70 1 2007 3 1
E07000155 South Northamptonshire 60 2 2007 4 1
E07000155 South Northamptonshire 80 3 2007 5 2
E07000155 South Northamptonshire 40 4 2007 6 2
E07000155 South Northamptonshire 40 5 2008 7 2
E07000155 South Northamptonshire 50 6 2008 8 2
E07000155 South Northamptonshire 30 7 2008 9 3
E07000155 South Northamptonshire 30 8 2008 10 3
E07000155 South Northamptonshire 20 9 2009 11 3
E07000155 South Northamptonshire 10 10 2009 12 3
E07000155 South Northamptonshire 10 11 2009 13 4
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E07000155 South Northamptonshire 40 12 2009 14 4
E07000155 South Northamptonshire 70 13 2010 15 4
E07000155 South Northamptonshire 50 14 2010 16 4
E07000155 South Northamptonshire 60 15 2010 17 5
E07000155 South Northamptonshire 70 16 2010 18 5
E07000155 South Northamptonshire 100 17 2011 19 5
E07000155 South Northamptonshire 80 18 2011 20 5
E07000155 South Northamptonshire 30 19 2011 21 6
E07000155 South Northamptonshire 30 20 2011 22 6
E07000155 South Northamptonshire 60 21 2012 23 6
E07000155 South Northamptonshire 40 22 2012 24 6
E07000155 South Northamptonshire 80 23 2012 25 7
E07000155 South Northamptonshire 70 24 2012 26 7
E07000155 South Northamptonshire 50 25 2013 27 7
E07000155 South Northamptonshire 70 26 2013 28 7
E07000155 South Northamptonshire 100 27 2013 29 8
E07000155 South Northamptonshire 80 28 2013 30 8
E07000155 South Northamptonshire 60 29 2014 31 8
E07000155 South Northamptonshire 80 30 2014 32 8
E07000155 South Northamptonshire 130 31 2014 33 9
E07000155 South Northamptonshire 100 32 2014 34 9
E07000155 South Northamptonshire 140 33 2015 35 9
E07000155 South Northamptonshire 160 34 2015 36 9
E07000155 South Northamptonshire 130 35 2015 37 10
E07000155 South Northamptonshire 130 36 2015 38 10
E07000155 South Northamptonshire 170 37 2016 39 10
E07000155 South Northamptonshire 180 38 2016 40 10
E07000155 South Northamptonshire 190 39 2016 41 11
E07000155 South Northamptonshire 190 40 2016 42 11
E07000155 South Northamptonshire 200 41 2017 43 11
E07000155 South Northamptonshire 230 42 2017 44 11
E07000155 South Northamptonshire 180 43 2017 45 12
E07000155 South Northamptonshire 230 44 2017 46 12
E07000155 South Northamptonshire 170 45 2018 47 12
E07000155 South Northamptonshire 190 46 2018 48 12
E07000155 South Northamptonshire 210 47 2018 49 13
E07000155 South Northamptonshire 100 48 2018 50 13
E07000190 Taunton Deane 50 -1 2006 1 1
E07000190 Taunton Deane 40 0 2006 2 1
E07000190 Taunton Deane 90 1 2007 3 1
E07000190 Taunton Deane 80 2 2007 4 1
E07000190 Taunton Deane 130 3 2007 5 2
E07000190 Taunton Deane 90 4 2007 6 2
E07000190 Taunton Deane 180 5 2008 7 2
E07000190 Taunton Deane 90 6 2008 8 2
E07000190 Taunton Deane 90 7 2008 9 3
E07000190 Taunton Deane 40 8 2008 10 3
E07000190 Taunton Deane 100 9 2009 11 3
E07000190 Taunton Deane 90 10 2009 12 3
E07000190 Taunton Deane 90 11 2009 13 4
E07000190 Taunton Deane 100 12 2009 14 4
E07000190 Taunton Deane 100 13 2010 15 4
E07000190 Taunton Deane 160 14 2010 16 4
E07000190 Taunton Deane 120 15 2010 17 5
E07000190 Taunton Deane 40 16 2010 18 5
E07000190 Taunton Deane 90 17 2011 19 5
E07000190 Taunton Deane 60 18 2011 20 5
E07000190 Taunton Deane 100 19 2011 21 6
E07000190 Taunton Deane 140 20 2011 22 6
E07000190 Taunton Deane 100 21 2012 23 6
E07000190 Taunton Deane 120 22 2012 24 6
E07000190 Taunton Deane 140 23 2012 25 7
E07000190 Taunton Deane 90 24 2012 26 7
E07000190 Taunton Deane 170 25 2013 27 7
E07000190 Taunton Deane 150 26 2013 28 7
E07000190 Taunton Deane 110 27 2013 29 8
E07000190 Taunton Deane 130 28 2013 30 8
E07000190 Taunton Deane 110 29 2014 31 8
E07000190 Taunton Deane 170 30 2014 32 8
E07000190 Taunton Deane 250 31 2014 33 9
E07000190 Taunton Deane 140 32 2014 34 9
E07000190 Taunton Deane 220 33 2015 35 9
E07000190 Taunton Deane 210 34 2015 36 9
E07000190 Taunton Deane 210 35 2015 37 10
E07000190 Taunton Deane 140 36 2015 38 10
E07000190 Taunton Deane 200 37 2016 39 10
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E07000190 Taunton Deane 190 38 2016 40 10
E07000190 Taunton Deane 190 39 2016 41 11
E07000190 Taunton Deane 170 40 2016 42 11
E07000190 Taunton Deane 110 41 2017 43 11
E07000190 Taunton Deane 150 42 2017 44 11
E07000190 Taunton Deane 100 43 2017 45 12
E07000190 Taunton Deane 90 44 2017 46 12
E07000190 Taunton Deane 90 45 2018 47 12
E07000190 Taunton Deane 80 46 2018 48 12
E07000190 Taunton Deane 80 47 2018 49 13
E07000190 Taunton Deane 90 48 2018 50 13
E07000076 Tendring 70 -1 2006 1 1
E07000076 Tendring 40 0 2006 2 1
E07000076 Tendring 40 1 2007 3 1
E07000076 Tendring 130 2 2007 4 1
E07000076 Tendring 80 3 2007 5 2
E07000076 Tendring 40 4 2007 6 2
E07000076 Tendring 50 5 2008 7 2
E07000076 Tendring 130 6 2008 8 2
E07000076 Tendring 70 7 2008 9 3
E07000076 Tendring 40 8 2008 10 3
E07000076 Tendring 60 9 2009 11 3
E07000076 Tendring 50 10 2009 12 3
E07000076 Tendring 40 11 2009 13 4
E07000076 Tendring 20 12 2009 14 4
E07000076 Tendring 40 13 2010 15 4
E07000076 Tendring 30 14 2010 16 4
E07000076 Tendring 50 15 2010 17 5
E07000076 Tendring 50 16 2010 18 5
E07000076 Tendring 70 17 2011 19 5
E07000076 Tendring 80 18 2011 20 5
E07000076 Tendring 80 19 2011 21 6
E07000076 Tendring 40 20 2011 22 6
E07000076 Tendring 30 21 2012 23 6
E07000076 Tendring 20 22 2012 24 6
E07000076 Tendring 10 23 2012 25 7
E07000076 Tendring 80 24 2012 26 7
E07000076 Tendring 60 25 2013 27 7
E07000076 Tendring 90 26 2013 28 7
E07000076 Tendring 50 27 2013 29 8
E07000076 Tendring 20 28 2013 30 8
E07000076 Tendring 60 29 2014 31 8
E07000076 Tendring 70 30 2014 32 8
E07000076 Tendring 40 31 2014 33 9
E07000076 Tendring 30 32 2014 34 9
E07000076 Tendring 140 33 2015 35 9
E07000076 Tendring 60 34 2015 36 9
E07000076 Tendring 90 35 2015 37 10
E07000076 Tendring 70 36 2015 38 10
E07000076 Tendring 170 37 2016 39 10
E07000076 Tendring 90 38 2016 40 10
E07000076 Tendring 100 39 2016 41 11
E07000076 Tendring 80 40 2016 42 11
E07000076 Tendring 100 41 2017 43 11
E07000076 Tendring 110 42 2017 44 11
E07000076 Tendring 140 43 2017 45 12
E07000076 Tendring 120 44 2017 46 12
E07000076 Tendring 160 45 2018 47 12
E07000076 Tendring 180 46 2018 48 12
E07000076 Tendring 260 47 2018 49 13
E07000076 Tendring 150 48 2018 50 13
E09000030 Tower Hamlets 100 -1 2006 1 1
E09000030 Tower Hamlets 320 0 2006 2 1
E09000030 Tower Hamlets 260 1 2007 3 1
E09000030 Tower Hamlets 240 2 2007 4 1
E09000030 Tower Hamlets 560 3 2007 5 2
E09000030 Tower Hamlets 770 4 2007 6 2
E09000030 Tower Hamlets 390 5 2008 7 2
E09000030 Tower Hamlets 570 6 2008 8 2
E09000030 Tower Hamlets 210 7 2008 9 3
E09000030 Tower Hamlets 250 8 2008 10 3
E09000030 Tower Hamlets 260 9 2009 11 3
E09000030 Tower Hamlets 210 10 2009 12 3
E09000030 Tower Hamlets 770 11 2009 13 4
E09000030 Tower Hamlets 560 12 2009 14 4
E09000030 Tower Hamlets 250 13 2010 15 4
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E09000030 Tower Hamlets 770 14 2010 16 4
E09000030 Tower Hamlets 620 15 2010 17 5
E09000030 Tower Hamlets 40 16 2010 18 5
E09000030 Tower Hamlets 620 17 2011 19 5
E09000030 Tower Hamlets 570 18 2011 20 5
E09000030 Tower Hamlets 390 19 2011 21 6
E09000030 Tower Hamlets 1680 20 2011 22 6
E09000030 Tower Hamlets 960 21 2012 23 6
E09000030 Tower Hamlets 480 22 2012 24 6
E09000030 Tower Hamlets 410 23 2012 25 7
E09000030 Tower Hamlets 70 24 2012 26 7
E09000030 Tower Hamlets 280 25 2013 27 7
E09000030 Tower Hamlets 390 26 2013 28 7
E09000030 Tower Hamlets 460 27 2013 29 8
E09000030 Tower Hamlets 380 28 2013 30 8
E09000030 Tower Hamlets 60 29 2014 31 8
E09000030 Tower Hamlets 210 30 2014 32 8
E09000030 Tower Hamlets 360 31 2014 33 9
E09000030 Tower Hamlets 420 32 2014 34 9
E09000030 Tower Hamlets 960 33 2015 35 9
E09000030 Tower Hamlets 540 34 2015 36 9
E09000030 Tower Hamlets 440 35 2015 37 10
E09000030 Tower Hamlets 300 36 2015 38 10
E09000030 Tower Hamlets 210 37 2016 39 10
E09000030 Tower Hamlets 250 38 2016 40 10
E09000030 Tower Hamlets 210 39 2016 41 11
E09000030 Tower Hamlets 1280 40 2016 42 11
E09000030 Tower Hamlets 120 41 2017 43 11
E09000030 Tower Hamlets 210 42 2017 44 11
E09000030 Tower Hamlets 190 43 2017 45 12
E09000030 Tower Hamlets 350 44 2017 46 12
E09000030 Tower Hamlets 1080 45 2018 47 12
E09000030 Tower Hamlets 170 46 2018 48 12
E09000030 Tower Hamlets 930 47 2018 49 13
E09000030 Tower Hamlets 380 48 2018 50 13

Table B.5: Herefordshire, County of - Tower Hamlets

E09000030 Tower Hamlets 60 29 2014 31 8
E09000030 Tower Hamlets 210 30 2014 32 8
E09000030 Tower Hamlets 360 31 2014 33 9
E09000030 Tower Hamlets 420 32 2014 34 9
E09000030 Tower Hamlets 960 33 2015 35 9
E09000030 Tower Hamlets 540 34 2015 36 9
E09000030 Tower Hamlets 440 35 2015 37 10
E09000030 Tower Hamlets 300 36 2015 38 10
E09000030 Tower Hamlets 210 37 2016 39 10
E09000030 Tower Hamlets 250 38 2016 40 10
E09000030 Tower Hamlets 210 39 2016 41 11
E09000030 Tower Hamlets 1280 40 2016 42 11
E09000030 Tower Hamlets 120 41 2017 43 11
E09000030 Tower Hamlets 210 42 2017 44 11
E09000030 Tower Hamlets 190 43 2017 45 12
E09000030 Tower Hamlets 350 44 2017 46 12
E09000030 Tower Hamlets 1080 45 2018 47 12
E09000030 Tower Hamlets 170 46 2018 48 12
E09000030 Tower Hamlets 930 47 2018 49 13
E09000030 Tower Hamlets 380 48 2018 50 13
E06000007 Warrington 200 -1 2006 1 1
E06000007 Warrington 190 0 2006 2 1
E06000007 Warrington 530 1 2007 3 1
E06000007 Warrington 330 2 2007 4 1
E06000007 Warrington 210 3 2007 5 2
E06000007 Warrington 170 4 2007 6 2
E06000007 Warrington 130 5 2008 7 2
E06000007 Warrington 120 6 2008 8 2
E06000007 Warrington 50 7 2008 9 3
E06000007 Warrington 50 8 2008 10 3
E06000007 Warrington 40 9 2009 11 3
E06000007 Warrington 100 10 2009 12 3
E06000007 Warrington 120 11 2009 13 4
E06000007 Warrington 90 12 2009 14 4
E06000007 Warrington 170 13 2010 15 4
E06000007 Warrington 190 14 2010 16 4
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E06000007 Warrington 100 15 2010 17 5
E06000007 Warrington 90 16 2010 18 5
E06000007 Warrington 130 17 2011 19 5
E06000007 Warrington 230 18 2011 20 5
E06000007 Warrington 170 19 2011 21 6
E06000007 Warrington 150 20 2011 22 6
E06000007 Warrington 100 21 2012 23 6
E06000007 Warrington 190 22 2012 24 6
E06000007 Warrington 90 23 2012 25 7
E06000007 Warrington 120 24 2012 26 7
E06000007 Warrington 80 25 2013 27 7
E06000007 Warrington 170 26 2013 28 7
E06000007 Warrington 290 27 2013 29 8
E06000007 Warrington 110 28 2013 30 8
E06000007 Warrington 110 29 2014 31 8
E06000007 Warrington 170 30 2014 32 8
E06000007 Warrington 270 31 2014 33 9
E06000007 Warrington 100 32 2014 34 9
E06000007 Warrington 70 33 2015 35 9
E06000007 Warrington 130 34 2015 36 9
E06000007 Warrington 160 35 2015 37 10
E06000007 Warrington 190 36 2015 38 10
E06000007 Warrington 100 37 2016 39 10
E06000007 Warrington 100 38 2016 40 10
E06000007 Warrington 60 39 2016 41 11
E06000007 Warrington 50 40 2016 42 11
E06000007 Warrington 60 41 2017 43 11
E06000007 Warrington 70 42 2017 44 11
E06000007 Warrington 60 43 2017 45 12
E06000007 Warrington 80 44 2017 46 12
E06000007 Warrington 70 45 2018 47 12
E06000007 Warrington 90 46 2018 48 12
E06000007 Warrington 160 47 2018 49 13
E06000007 Warrington 80 48 2018 50 13
E07000128 Wyre 80 -1 2006 1 1
E07000128 Wyre 40 0 2006 2 1
E07000128 Wyre 70 1 2007 3 1
E07000128 Wyre 50 2 2007 4 1
E07000128 Wyre 70 3 2007 5 2
E07000128 Wyre 40 4 2007 6 2
E07000128 Wyre 60 5 2008 7 2
E07000128 Wyre 40 6 2008 8 2
E07000128 Wyre 40 7 2008 9 3
E07000128 Wyre 40 8 2008 10 3
E07000128 Wyre 10 9 2009 11 3
E07000128 Wyre 20 10 2009 12 3
E07000128 Wyre 30 11 2009 13 4
E07000128 Wyre 20 12 2009 14 4
E07000128 Wyre 40 13 2010 15 4
E07000128 Wyre 0 14 2010 16 4
E07000128 Wyre 30 15 2010 17 5
E07000128 Wyre 80 16 2010 18 5
E07000128 Wyre 40 17 2011 19 5
E07000128 Wyre 40 18 2011 20 5
E07000128 Wyre 70 19 2011 21 6
E07000128 Wyre 30 20 2011 22 6
E07000128 Wyre 30 21 2012 23 6
E07000128 Wyre 10 22 2012 24 6
E07000128 Wyre 40 23 2012 25 7
E07000128 Wyre 20 24 2012 26 7
E07000128 Wyre 20 25 2013 27 7
E07000128 Wyre 50 26 2013 28 7
E07000128 Wyre 80 27 2013 29 8
E07000128 Wyre 20 28 2013 30 8
E07000128 Wyre 110 29 2014 31 8
E07000128 Wyre 40 30 2014 32 8
E07000128 Wyre 70 31 2014 33 9
E07000128 Wyre 30 32 2014 34 9
E07000128 Wyre 40 33 2015 35 9
E07000128 Wyre 90 34 2015 36 9
E07000128 Wyre 90 35 2015 37 10
E07000128 Wyre 60 36 2015 38 10
E07000128 Wyre 110 37 2016 39 10
E07000128 Wyre 140 38 2016 40 10
E07000128 Wyre 130 39 2016 41 11
E07000128 Wyre 90 40 2016 42 11
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E07000128 Wyre 110 41 2017 43 11
E07000128 Wyre 40 42 2017 44 11
E07000128 Wyre 80 43 2017 45 12
E07000128 Wyre 100 44 2017 46 12
E07000128 Wyre 60 45 2018 47 12
E07000128 Wyre 70 46 2018 48 12
E07000128 Wyre 120 47 2018 49 13
E07000128 Wyre 60 48 2018 50 13

Table B.6: Tower Hamlets - Wyre

B.3 Segmentation

Year Time
‘Green Space Land

Cover Change’
(m2 /Ha)

Intervention
Code

Lagged
Intervention

Code
Trend

Q1 2007 1 0.537 0 0 0
Q2 2007 2 0.628 0 0 0
Q3 2007 3 0.350 0 0 0
Q4 2007 4 0.480 0 0 0
Q1 2008 5 0.770 0 0 0
Q2 2008 6 0.274 0 0 0
Q3 2008 7 0.363 0 0 0
Q4 2008 8 0.318 0 0 0
Q1 2009 9 0.341 0 0 0
Q2 2009 10 0.109 0 0 0
Q3 2009 11 0.374 0 0 0
Q4 2009 12 0.351 0 0 0
Q1 2010 13 0.382 0 0 0
Q2 2010 14 0.342 0 0 0
Q3 2010 15 0.314 0 0 0
Q4 2010 16 0.267 0 0 0
Q1 2011 17 0.409 0 0 0
Q2 2011 18 0.359 0 0 0
Q3 2011 19 0.308 0 0 0
Q4 2011 20 0.364 0 0 0
Q1 2012 21 0.532 1 0 1
Q2 2012 22 0.280 1 0 2
Q3 2012 23 0.417 1 0 3
Q4 2012 24 0.328 1 0 4
Q1 2013 25 0.265 1 0 5
Q2 2013 26 0.432 1 0 6
Q3 2013 27 0.430 1 0 7
Q4 2013 28 0.819 1 0 8
Q1 2014 29 0.779 1 1 9
Q2 2014 30 0.695 1 1 10
Q3 2014 31 1.801 1 1 11
Q4 2014 32 0.910 1 1 12
Q1 2015 33 0.880 1 1 13
Q2 2015 34 1.271 1 1 14
Q3 2015 35 0.948 1 1 15
Q4 2015 36 1.040 1 1 16
Q1 2016 37 1.020 1 1 17
Q2 2016 38 1.020 1 1 18
Q3 2016 39 1.210 1 1 19
Q4 2016 40 1.516 1 1 20
Q1 2017 41 1.541 1 1 21
Q2 2017 42 0.842 1 1 22
Q3 2017 43 2.106 1 1 23
Q4 2017 44 1.223 1 1 24
Q1 2018 45 0.835 1 1 25
Q2 2018 46 1.252 1 1 26
Q3 2018 47 1.173 1 1 27
Q4 2018 48 2.084 1 1 28
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APPENDIXC

C.1 Segmented Regression Code

model pq <− g l s ( l o g ( r a t i o ) ˜ t ime + l e v e l + l e v e l l a g +
t r e n d , method = ”ML” ,
c o r r e l a t i o n = corARMA( p = 1 , q = 1 , form = ˜ t ime ) ,

d a t a = g s l o s s r a t i o )
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C.2 Dynamic Linear Model Code

l i b r a r y ( t i d y r )
l i b r a r y ( g d a t a )
l i b r a r y ( p l y r )
l i b r a r y ( p l o t . m a t r i x )
l i b r a r y ( g r i d E x t r a )
l i b r a r y ( dlm )
l i b r a r y ( nlme )

a1 <− s u b s e t ( g s l o s s r a t i o , t ime <= 20)
a1 <− t s ( a 1 $ r a t i o , s t a r t = 2007 , f r e q u e n c y = 4)

# Model f i t t o pre−p o l i c y p e r i o d #

# C r e a t i n g model t o t e s t f o r r e l e v a n t p a r a m e t e r s
mod . b u i l d <− f u n c t i o n ( p a r ) {

dlmModPoly ( 1 , dV = exp ( p a r [ 1 ] ) , dW = exp ( p a r [ 2 ] ) )
}

# R e t u r n s most l i k e l y e s t i m a t e o f r e l e v a n t v a l u e s f o r p a r a m e t e r s
mle <− dlmMLE( a1 , r e p ( 0 , 2 ) , mod . b u i l d ) ;
# nileMLE$conv
i f ( mle$conve rgence ==0) p r i n t ( ” conve rged ” )
e l s e p r i n t ( ” d i d n o t c o n v e r g e ” )

model1 <− mod . b u i l d ( mle$par )
# Opt imal p a r a m e t e r s f o r model a r e i d e n t i f i e d as below
v = V( model1 )
w = W( model1 )
m o d1 F i l t <− d l m F i l t e r ( a1 , model1 )
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