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Abstract

Theoretical calculations of core electron binding energies are required for the inter-

pretation of experimental X-ray photoelectron spectra, but achieving accurate results

for solids has proven difficult. In this work, we demonstrate that accurate absolute

core electron binding energies in both metallic and insulating solids can be obtained

from periodic all-electron ∆-Self-Consistent-Field (∆SCF) calculations. In particular,

we show that core electron binding energies referenced to the valence band maximum

can be obtained as total energy differences between two N − 1 electron systems: one

with a core hole, and one with an electron removed from the highest occupied valence

state. To achieve convergence with respect to the supercell size, the analogy between

localized core holes and charged defects is exploited. Excellent agreement between cal-

culated and experimental core electron binding energies is found for both metals and

insulators, with a mean absolute error of 0.24 eV for the systems considered.
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Core level X-ray Photoelectron Spectroscopy (XPS) is a widely used characterization

technique that allows insight into the chemical structure of molecules, solids and surfaces.

However, theoretical modelling of core electron binding energies is needed to overcome

widespread difficulties of interpreting measured XPS spectra in complex materials and this

challenge has attracted significant attention in recent years.1–21 For absolute core electron

binding energies of free molecules accurate and computationally efficient methods are now

available. For example, the ∆-Self-Consistent-Field (∆SCF) method based on density func-

tional theory (DFT) has been shown to yield highly accurate results when relativistic effects

are properly accounted for and a modern meta-generalized-gradient-approximation (meta-

GGA) functional is used.1–3 It has also been shown that many-body perturbation theory in

the form of full-frequency eigenvalue self-consistent GW calculations can yield accurate core

electron binding energies in free molecules.5,6 However, most experimental work is concerned

with solids, not gases.

Calculating core electron binding energies in solids has proven to be much more chal-

lenging. Even though the ∆SCF method has been known for several decades,22 periodic all-

electron ∆SCF calculations of core electron binding energies have still not been performed.

Approximate applications of the DFT-∆SCF method to periodic systems,7,8 and G0W0 cal-

culations of core electron binding energies in solids9,10 have been recently reported, but the

accuracy of the calculated core electron binding energies in these studies is much lower than

the accuracy that has been obtained in studies of free molecules. An alternative approach

is to model the solid as a free or embedded cluster.2,21,23,24 However, in such calculations,

the choice of cluster size, shape, and embedding or lack thereof is somewhat ambiguous, and

achieving and demonstrating convergence of the calculated absolute core electron binding

energies to the limit of infinite cluster size can be difficult. As a result, there is still a need

for the development of an accurate and efficient method for the prediction of core electron

binding energies in periodic systems.

In this Letter, the application of the all electron ∆SCF method to periodic solids is
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demonstrated: the choice of states whose total energies are evaluated in the ∆SCF calculation

is discussed, a method for the creation and localization of a core hole in periodic calculations

is presented, and the convergence of calculated core electron binding energies to the infinite

supercell limit is addressed. Finally, calculated 1s and 2p core electron binding energies in

metallic and insulating systems are compared to experimental results.

In ∆SCF calculations of free molecules, the core electron binding energy is calculated

as the total energy difference between the N electron ground state, and the N − 1 electron

final state, in which all remaining electrons are allowed to fully relax in the presence of a

core hole. The calculated binding energy is referenced to the vacuum level, which is suitable

for comparisons against gas phase photoemission measurements. However, in experimental

studies of solids, measured core electron binding energies are reported relative to the Fermi

level, not the vacuum level.

Two different conventions for referencing calculated core electron binding energies in

solids have been proposed in recent theoretical studies. In references7 and,8 where the

∆SCF method was used, theoretical binding energies were reported relative to the Fermi

level, whereas in recent GW calculations9,10 theoretical values were reported relative to

the energy of the highest occupied valence state. These two conventions are equivalent

for metals, but in the latter case, for gapped systems the point of reference is the valence

band maximum (VBM). The latter convention is clearly more appropriate. In calculations

of insulating solids without defects, the formal Fermi level is typically set to be right in

the middle of the band gap. In real materials, however, the position of the Fermi level is

determined by defects or impurities in the sample, and it can lie anywhere from the VBM

to the conduction band minimum (CBM). Hence, the assumption that the Fermi level lies

in the middle of the band gap can lead to very large errors (up to a few eV) in calculated

binding energies. If the VBM is used as the point of reference instead, comparisons between

theory and experiment are valid regardless of the position of the Fermi level relative to the

band edges in the experimental sample.
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In principle, the binding energy of a core electron referenced to the energy of the highest

occupied state could be obtained from the difference of the results of two ∆SCF calcula-

tions: one for the removal of a core electron, and one for the removal of a valence electron.

Subtracting these two removal energies yields

EB = (EN,gs − EN−1,ch)− (EN,gs − EN−1,gs) = EN−1,gs − EN−1,ch, (1)

where EN,gs, EN−1,gs, and EN−1,ch denote the total energies of the ground state of the

N electron system, the ground state of the N − 1 electron system, and the core hole state,

respectively, and EB is the calculated core electron binding energy. A key observation is

that the energy of the N -electron ground state cancels out in this expression and the core

electron binding energy is obtained as the total energy difference between two N−1 electron

states: the core hole state and the lowest energy state of the N −1 electron system. All core

electron binding energies reported in this work are calculated using Eq. (1).

All DFT calculations have been performed using the all-electron electronic structure pro-

gram FHI-aims,25–27 in which Kohn-Sham eigenstates are expanded in terms of atom-centred

basis functions defined on a numerical grid. We have used the SCAN exchange-correlation

functional28 implemented via dfauto,29 and scalar relativistic effects have been accounted

for using the scaled Zeroth Order Regular Approximation (scaled ZORA).30–32 The SCAN

functional was chosen as we have previously found it to yield accurate absolute core electron

binding energies in free molecules.2 It is desirable to treat both molecular and extended, as

well as metallic and insulating systems at the same level of theory, as many experimental

samples contain mixtures of the above, e.g. molecules on metal surfaces. All total energies

have been evaluated at the relaxed geometry of the system in the electronic ground state.

The serial LAPACK eigensolver as implemented in the ELSI (Electronic Structure Infras-

tructure) interface was used for solving the generalized eigenvalue problem.33,34 The direct

inversion of the iterative subspace (DIIS) method was used for updating the Kohn-Sham

orbitals between successive SCF iterations, with a mixing parameter of 0.2 for insulating

5



systems and 0.05 for metallic systems.35,36 Using these settings, calculations with a core hole

in a 2p orbital sometimes failed to converge: in those cases, a simple linear mixer with a

mixing parameter of 0.15 was used instead. The Kerker preconditioner37 which is enabled by

default in FHI-aims was explicitly turned off in all calculations. Full details of the basis sets

and the k-point sampling used in each individual calculation are given in the Supplementary

Information.

In order to calculate EN−1,ch, it is necessary to allow all remaining core and valence

electrons to fully relax in the presence of a spin-polarized, localized core hole. The issue of

localizing the core hole requires special attention. The canonical Kohn-Sham orbitals of the

core electrons that result from a ground state DFT calculation will be linear combinations of

core states localized at all symmetry-equivalent atoms. However, in order to obtain binding

energies that agree with experimental measurements, in the calculation of the final state

with a core hole, the empty core orbital must be localized at one atomic site by explicitly

breaking the symmetry. This issue has been discussed in the context of polyatomic molecules

in references.21,38–41 We have previously proposed a procedure for creating a localized core

hole in polyatomic molecules.2,11 In this study, a slightly modified version of this procedure is

used. First, in order to localize one of the core states at a particular atomic site, a fictitious

extra nuclear charge of 0.1 e is added to the target atom, and the self-consistent field is

allowed to converge in the presence of this fictitious charge. Net neutrality is enforced by

adding a compensating uniform background charge. Next, the occupancy of the localized

core state is set to zero in one of the spin channels, the fictitious extra nuclear charge is

removed, and using the previously obtained Kohn-Sham eigenstates as initial guesses, the

self-consistent field is converged again. Again, a compensating uniform background charge

is introduced to keep the system neutral. Between SCF iterations, the Maximum Overlap

Method (MOM) is used to keep track of the localized core state, in case the energy ordering

of the core orbitals changes.40,42 We emphasize that there are no fictitious charges in the final

calculation, and the only constraint that is applied is the non-Aufbau-principle occupation of
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the Kohn-Sham eigenstates. We have found this procedure for creating a localized core hole

to be highly robust for all materials and core levels that we have considered. The successful

localization of a core hole can be verified by visual examination of the wavefunction of the

localized core orbital, or alternatively from a Mulliken analysis. As an illustrative example,

the localization of the Mg 1s core hole in a 2 × 2 × 1 supercell of magnesium metal is

demonstrated in the Supplementary Information.

The spin-unrestricted Kohn-Sham (uKS) formalism is used when calculating EN−1,ch. In

principle, this can cause issues with spin-contamination - uKS wavefunctions are in general

not eigenfunctions of the total spin operator. In this work, calculations of the final states

with a core hole were initialized with one more spin-up electron than spin-down electron

(Nup − Ndown = 1.0), and the total spin was not constrained during the subsequent SCF

iterations. We observed that in the converged calculations the total spin moment remained

at its initial value, except for some metallic systems where the final value of Nup − Ndown

was between 1.0 and 1.1. Mulliken spin analysis indicated that the unpaired electron density

was typically almost entirely localized on the atom with a core hole. This is also discussed

in the Supplementary Information for the case of a Mg 1s core hole in a 2× 2× 1 supercell

of magnesium metal. A more advanced treatment of spin would be required for modelling

core level spectra of systems with unpaired electrons in the ground state, where complex

multiplet structures are often observed. This issue has been recently examined based on the

examples of FeO and Fe2O3 in [43].

Evaluating the total energy of the ground state of the N − 1 electron system, EN−1,gs,

is comparatively straightforward: one electron is removed from the top of the valence band,

a uniform compensating background charge is added, and the SCF is converged via stan-

dard methods without any constraints. One possible ambiguity arises with regards to the

appropriate choice of the spin state for the N − 1 electron system. When a single electron

is removed from a closed-shell system by photoemission, an open-shell system in a doublet

spin state is necessarily produced. However, if a fixed spin moment is enforced in a peri-
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odic calculation of a solid, the simulated system will have one extra spin-polarized electron

per supercell, while the real system only has a single spin-polarized electron in a macro-

scopic sample region. From a series of numerical tests (see Supplementary Information), we

have found that the energy difference between the lowest energy spin-unpolarized state of

the N − 1 electron system and the lowest energy state of the N − 1 electron system with

one spin-polarized hole per supercell vanishes as increasingly large supercells are considered.

Therefore, the choice of the spin state of the N−1 electron system does not affect the extrap-

olated core electron binding energies reported on this study, and for the sake of simplicity,

spin-unpolarized calculations of the N − 1 electron system have been performed in all cases.

A limitation of the present approach is that it is only applicable to closed shell systems – in

calculations of materials with unpaired electrons in the ground state, using the correct spin

state when determining EN−1,gs will be important.

Core electron binding energies in periodic solids calculated using Eq. (1) are affected by

spurious interactions between periodic copies of the core hole and the uniform background

charge. The effect of these interactions can be eliminated by performing calculations of

increasingly large supercells, and extrapolating the results to the infinite supercell limit.

The nature of the extrapolation depends on whether a core electron is removed from a

metal or an insulator. In metals, interactions between periodic images of the core hole are

effectively screened by the conduction electrons. Therefore, converged core electron binding

energies are obtained when sufficiently large supercells are used. As a representative example

of a metallic system, the dependence of the calculated Mg 1s binding energy in Mg metal

on the size of the supercell is shown in Figure 1. Figure 1 shows that in bulk Mg, the core

electron binding energy is already converged to within 0.1 eV of the infinite supercell limit

for a 3×3×2 supercell.

In insulators, the screened Coulomb potential of the core hole is long ranged and decays

as 1/r in three-dimensional materials, where r is the distance from the core hole. This results

in a very slow convergence of the calculated core electron binding energies with respect to
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Figure 1: Dependence of the calculated Mg 1s core electron binding energy in Mg metal on
the size of the supercell used in the calculation.

the supercell size. However, we have found that graphs of the calculated binding energies

versus the inverse cube root of the number of atoms in the supercell (which is proportional

to the inverse distance between two periodic copies of the core hole) yield straight lines

(when the results for the smallest supercells are excluded). The extrapolated value of the

core electron binding energy for an infinitely large supercell is then obtained as the y-axis

intercept of these lines. In practice, this is achieved by using a least-squares fitting procedure.

As a representative example of an insulating system, the dependence of the calculated C 1s

binding energy in β-SiC on the size of the supercell is shown in Figure 2.

Figure 2: Dependence of the calculated C 1s core electron binding energy in β-SiC on the
size of the supercell used in the calculation.
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To speed up convergence of core electron binding energies in insulating systems, we

make use of finite-size corrections developed in the context of charge defect calculations. In

particular, we examine the performance of the correction scheme due to Makov and Payne.44

In the Makov-Payne scheme, the finite size correction for the total energy is given

Ecorr =
q2α

2εL
− 2πqQ

3εΩ
, (2)

where q is the defect charge state, α is the Madelung constant, ε is the dielectric constant

of the material, L is the lattice constant of the lattice formed by the supercells, Q is the

quadrupole moment of the charge density induced by the defect, and Ω is the volume of the

supercell. The first term is the energy of a periodically repeated point charge in a uniform

neutralizing background, scaled by the bulk dielectric constant. The second term depends

on the quadrupole moment of the defect charge distribution. In this work, the “defect” is a

localized core hole, and its charge distribution can be accurately described by a point charge.

In this case, the second term vanishes (Q = 0). The value of q2α/2L can be determined

numerically for each supercell (a sample FHI-aims input file is provided in the Supplemen-

tary Information). Then, Ecorr is obtained by dividing this value by the experimental bulk

dielectric constant. Published high-frequency dielectric constants (see Supplementary Infor-

mation) have been used, as the nuclei can be assumed to remain stationary on the time scale

of core level photoemission.

The performance of the Makov-Payne correction for C 1s binding energies in β-SiC is

illustrated in Figure 2. The corrected core electron binding energies are found to show a

much weaker dependence on the size of the supercell, and the extrapolated value for an

infinite supercell obtained from the corrected binding energies is very similar (difference <

0.05 eV) to the extrapolated value of the uncorrected binding energies.

A modified version of the Makov-Payne correction scheme has been proposed, where an

“optimal” value of the bulk dielectric constant, εopt, is chosen such that the size-dependence

of the calculated results is minimized.45,46 For the C 1s core level in β-SiC, we have found
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that the plot of the calculated binding energy versus the inverse of the cube root of the

number of atoms per supercell becomes flat for εopt = 5.33. The value of the calculated

core electron binding energy obtained from the modified Makov-Payne scheme is again very

similar to the extrapolated values from the other two methods. More advanced finite size

correction schemes47–51 have been developed for calculations of charged defects, where the

defect charge is often spread over a larger area and the Makov-Payne correction becomes

inadequate. However, such advanced techniques are not required for the present study

because of the strong localization of the core hole.

Similar size-convergence plots for all of the other calculated binding energies reported in

this work are provided in the Supplementary Information. For all metallic systems, we have

found rapid size convergence of the calculated binding energies. For gapped systems, the

three different extrapolation methods described above always give very similar results. A

special case is graphite, which is a semimetal. We find that this system exhibits a similar size-

convergence as the insulating systems. In the rest of this manuscript, only the extrapolated

values of calculated core electron binding energies are discussed.

A comparison between the theoretical core electron binding energies from our ∆SCF

calculations and experimentally reported values is presented in Table 1. We emphasize that

for all of the gapped systems included in Table 1 both the theoretical and experimental values

are referenced to the VBM, not the Fermi level. Experimental binding energies referenced

to the VBM were obtained from studies where both the core level and valence band spectra

had been recorded. In most cases, excellent agreement between the theoretical and the

experimental results is found. The mean absolute error (MAE) for the 15 core electron

binding energies considered in this study is 0.24 eV. The MAE for the 11 1s binding energies

is 0.29 eV, and for the four 2p binding energies is 0.11 eV. On average, very small errors

are obtained for metallic systems (MAE = 0.08 eV), whereas slightly larger errors (MAE =

0.38 eV) are found for insulators. It is worth stressing that a significant part of the MAE for

insulators comes from just one material, namely BeO. In BeO, our calculations overestimate
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both the Be 1s and O 1s core electron binding energies by approximately 1 eV. Since both

core electron binding energies are overestimated by a similar amount, we speculate that the

error may be related to the calculation of the ground state of the N − 1 electron system,

which is a shared point of reference. In particular, we hypothesize that DFT with the SCAN

functional may fail to accurately predict the position of the VBM in BeO due to the known

limitations of semilocal exchange-correlation functionals in describing very ionic materials

with large band gaps. Recently, a large quasiparticle correction to the position of the VBM

in BeO relative to DFT was reported in.52 Considerably smaller errors are observed for all

other insulators with smaller band gaps, and all metallic systems.

Table 1: A comparison of calculated and experimental core electron binding
energies in solids.

Solid
Core Theor. Expt.

Ref.
Error

level EB (eV) EB (eV) (eV)
Li Li 1s 54.88 54.85 53–56 0.03
Be Be 1s 111.88 111.85 57 0.03

Na
Na 1s 1071.56 1071.75 56,58,59 −0.19
Na 2p 30.65 30.51 0.14

Mg
Mg 1s 1303.25 1303.24 57,60–64 0.01
Mg 2p 49.69 49.79 −0.10

Graphite C 1s 284.44 284.41 65–69 0.03

BeO
Be 1s 110.79 110.00 0.79
O 1s 528.86 527.70 68,70 1.16

hex-BN
B 1s 188.42 188.35 68,71 0.07
N 1s 396.39 396.00 0.39

Diamond C 1s 284.43 284.04 72–75 0.39

β-SiC
Si 2p 99.24 99.20 76–78 0.04
C 1s 281.48 281.55 −0.07

Si Si 2p 99.17 99.03 79,80 0.14
Mean Absolute Error = 0.24 eV

It is interesting to compare the DFT-∆SCF method for predicting core electron binding

energies in solids to the GW method, that was used in references9 and.10 The GW approach

has been highly successful at predicting the binding energies of valence electrons, and it is

known to solve the famous band gap problem in DFT. The use of the GW method for the

calculation of core electron binding energies was investigated in detail in references5 and,6

12



and it was shown that G0W0 calculations with a PBEh45 starting point or eigenvalue-self-

consistent GW calculations can yield accurate absolute core electron binding energies in

molecular systems. However, these studies also found that a full-frequency treatment of the

self-energy is essential to obtain meaningful results, that G0W0 calculations of core elec-

tron binding energies show a very strong dependence on the mean-field starting point, and

that an extrapolation to complete basis set limit is needed to obtain converged results. In

comparison to the GW approach, the principal advantage of the DFT-∆SCF method is its

significantly lower computational cost which enables the study of core electron binding ener-

gies in complex materials, such as surfaces with adsorbates, clusters or materials containing

defects. However, we also note that the mean absolute error found in this work (0.24 eV)

is significantly lower than the mean absolute errors reported in previous GW calculations of

absolute core electron binding energies in solids (0.53 eV and 0.57 eV eV in references9 and10

respectively). The main motivation to go beyond the DFT-∆SCF approach arises when in-

formation about the full spectral function, including satellite peaks is required. Formally, the

total energy differences from ∆SCF calculations correspond to quasiparticle energies from

many body perturbation theory.

The results presented in this study highlight the versatility of the DFT-∆SCF approach

for predicting accurate absolute core electron binding energies in materials. In particular,

they demonstrate that the same computational framework that was previously found to

yield accurate absolute core electron binding energies in molecular systems also produces

good results for both metallic and insulating solids. As many experimental XPS studies are

performed on solids, this work establishes periodic ∆SCF calculations as a powerful technique

for guiding the interpretation of experimental core-electron photoemission spectra.
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