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Abstract

Managing flow of a product smoothly within a retail supply chain is a challenging

task due to various complexities arising at different levels in which a retailer needs

to simultaneously make several (operational and/or strategic) decisions. The differ-

ent decisions such as inventory, production, ordering and pricing of the product are

inter-related and collectively impact on the performance of the firm interacting with

different parties in the supply chain. The inter-connectivity of multiple decisions (so-

called joint decision-making process) increases the complexity for management of the

retail supply chain. Moreover, stochastic and dynamic nature of the retail supply

chain as well as its underlying network and product characteristics add further com-

plexities into the joint decision-making process. It is crucial to adopt coordinated

and combined decision-making approaches to manage retail supply chains. In this

thesis, we develop joint decision-making policies to enhance the operations manage-

ment of retail supply chains under uncertainty. In particular, we are concerned with

three different joint decision-making problems: i) production and pricing of a multi-

generation product line, ii) ordering and markdown policies for a perishable product,

and iii) ordering and inventory allocation strategies for a dual-channel supply chain.

In the first problem, the firm releases a new version of a product periodically while

its older versions continue to sell in the market whereas the retailer deals with a

perishable product of fixed and short age in the second problem. While perishability

of the product is analysed in view of demand variation in the first two problems, we

consider a non-perishable product for the final problem about the dual-channel sup-

ply chain under both demand and supply uncertainties. In the dual-channel supply

chain network, the firm procures the product from a regular and/or emergency sup-

plier and distributes it through multiple channels. Stochastic dynamic programming

is used to model the underlying decision-making problems of the retailer that aims

to maximize the expected profit over a planning horizon. The stochastic dynamic

models suffer from the curse of dimensionality because of the increasing sizes of state

and action spaces. Thus, solving these problems is computationally intractable by

using traditional solution approaches. We propose alternative novel approaches to

solve these complex problems efficiently. Computational experiments are designed to

illustrate performance of the joint decision-making models and the proposed solution

approaches. In addition, we derive managerial insights to show the significance of

dynamic joint decision-making process. The numerical results indicate that jointly

taking different operational decisions outperform single decisions made in isolation.

Moreover, they highlight further benefits of joint decision-making in efficiently tack-

ling uncertainties and improving the overall performance of retail supply chains.
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Chapter 1

Introduction

This chapter briefly introduces the background retail supply chain management as

well as its challenges and complexities. We also discuss the relevance of dynamic and

joint decision-making in dealing with challenges of retail supply chains. Then, the

objectives of the thesis is presented and the three research topics are described along

with their contributions. Since Stochastic Dynamic Programming is widely used to

address the dynamic and joint decisions, a short review of the methodology and its

solutions approaches is also provided. Finally, the structure of the thesis is presented.

1.1 Retail Supply Chain Management

Retail supply chain management is a widely studied area which continues to receive

significant attention in academia and practice. It involves planning of retail operations

with the aim of ensuring a smooth flow of a product along the supply chain. However,

there are many challenges in establishing the steady flow of product in the supply

chain. The retail sector is a fast-moving industry due to continuous and accelerating

advances in technology and innovation. Development in technology further enhances

the prominence of e-commerce. E-Commerce has been successfully paving numerous

avenues to serve customers (Gaffney 2017). At present e-commerce allows customers

to purchase products or services from any vendor without any restrictions. The needs

of customers are changing faster than ever (Pearson 2012, McKinsey 2019). In 2014,

iPhone 6 sold better than Apple’s expectations while in the following year the demand

for the next generation iPhone 6S fell short of Apple’s forecasts. They also had to slash

production by 20 million units of their flagship product iPhone X in 2018 due to the

decrease in global demand levels. (Kubota et al. 2019). In a rapidly changing market,
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the prediction of customer choices and demand is a challenging task which affects the

entire supply chain. When Apple struggled with its demand forecast, a major concern

was raised by its suppliers who either had an excess of unsold inventories or had to

ramp up their productions to meet the uncertainty in demand (Kubota et al. 2019).

To improve response to demand uncertainty, businesses have been known to innovate

with their sourcing strategies.

The supplier networks of many retail firms have increasingly become global (Mac-

Carthy et al. 2016). Many retailers reach out to suppliers across the globe especially

to the ones in Asia because of low production and labour cost. Even though the

global suppliers assist in cutting costs, they make the supply chain more susceptible

to disruption such as natural disasters, pandemics, accidents, volatile financial and

political climate. In the first quarter of 2020 when the Covid pandemic hit China, a

large part of it was under a lockdown. The lockdown was the strictest in the regions

which are manufacturing hubs of raw materials of auto parts, hi-tech components

and steel. As a result, there was a delay in production from China which severely

impacted operations of firms across the globe, forcing some of them to even shut down

their productions (Yu 2020). The pandemic may be a one-off event but disruptions

in a supply chain network are certainly not rare. In 2000, a small fire in a Phillips

plant of cellphone chips at New Mexico heavily disrupted the supply chain of Eric-

sson in Sweden. Even though Philips barely faced a loss of less than 0.6 percent of

their annual sales that year, Ericsson faced the real brunt as it reported a significant

annual loss of nearly $2.3 billion due to this fire accident. Thus, Ericsson’s fallout

along with other problems unfortunately led them to retreat from the phone handset

market (Sheffi 2007). Hence, a retail supply chain operates in a highly dynamic and

uncertain environment.

The dynamic and uncertain retail supply chain is also inherently complex as it

has multiple aspects to be taken care of (Pearson 2012). Two important aspects of

the retail supply chain are its product characteristics and its underlying network.

Product characteristics like age and lifetime of the product highly influence the man-

agement of supply chain operations. A product which has a fixed life in terms of its

age or selling season is referred as perishable. Retail supply chains consist of many

products that are perishable, like food, electronics and fashion products. Electronic

and fashion products are also referred perishable as they have a fixed shelf-life. As

reported by the Food Market Institute, 50.67% of the total supermarket sales in the

US accounted for perishable items (FMI 2019). Meanwhile, the sales of the electron-

ics and fashion industry regularly experience a significant increase as well (Bowers

2019). However, most of the research in supply chain management doesn’t give con-
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siderable importance to the perishable nature of many products. Both academics,

e.g, (Blackburn & Scudder 2009) and practitioners (Webber B 2011) argue that con-

ventional supply chain strategies developed for manufacturing industries sometimes

fail when the product has fixed life-time. Even though the major reason behind this

failure is age dependency of the product, there are other factors as well. In most

perishable industries such as supermarkets, fashion and electronics, inventories are

replenishable and both old and new inventories co-exist. Particularly in the electron-

ics sector, the new generation of the product is released periodically while the old

generation is still on sale, like mobile phones and computers (Levin et al. 2010, Li

et al. 2010). Similarly, the shelves in supermarkets display both fresh and marked

down food products. When new and old inventories are present together, it is difficult

to predict customer preferences. While offering multiple variants of a product helps

retailers to target different segments of customers, it may lead to internal competition

between products and cannibalise the sales of old products by the new ones or vice

versa. Supermarket and fashion retailers often struggle to decide when and how to

conduct a discount or markdown sales as increase in discounts may hamper the sales

of the new (or fresh) products. The demand of perishable products is unknown and

management of perishables must be done in view of the demand uncertainty.

Traditionally, the underlying network of a supply chain consists of flow of prod-

ucts from wholesalers to retailers and finally to customers. Most retailers have moved

from the traditional to non-traditional settings, like omni-channel (MacCarthy et al.

2019) and dual-channel retailing. Omni-channel retailing considers distribution of

the product through multiple retail channels to ensure a seamless customer experi-

ence (Roberts 2019). Meanwhile, dual-retailing focuses on two distribution channels

with the aim of blurring lines between wholesaler and retailer. In the supermarkets

and electronic goods sector, prominent names such as Costco, Apple, Samsung, Wall-

mart’s Sam’s Club, Price Club have shifted from the traditional wholesaler-retailer

setting to dual-retailing set-ups (Morris 2004). In these non-traditional supply chains

(so called ‘wholesaler’s clubs’ by (FMI 2019)), the retailers such as Costco, Sam’s

Club, PriceClub and BJ’s have physical stores where they serve the customers di-

rectly through their unique wholesale store system and also deal with clients from

different sectors like restaurant chains, vendors, caterers, day care centres and small

grocery stores (Morris 2004). As another example, Apple successfully plays the dual-

role of wholesaler and retailer because they sell their products in Apple stores and

also distribute them to third party retailers like Amazon and Walmart. Since the

dual-channel network is widely distributed, its operations are severely impacted by

disruption at any point of the network. A disruption at the demand or supply side can

adversely affect the overall operations. Thus, it is essential to simultaneously consider
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uncertainty from the demand and supply side of the network while managing it.

Retailers must dynamically evolve operations to combat the uncertainties and

efficiently manage their supply chain (Demirel et al. 2019). There is a need for retail

firm to make strategic and operational decisions in view of the dynamic and uncertain

environment. The firm is required manage the multiple and different aspects of supply

chain comprising of sourcing and distribution of the product. In order to efficiently

distribute and source the product under uncertainty, the key decisions are related to

inventory, production, ordering and pricing of the product. These decisions are inter-

linked with each other. If the firm experiences high demand for their product, they

may tackle it by ramping up their production or ordering. On the other hand, when

there is low demand, the firm must have the flexibility to reduce production levels

and/or discount its prices to avoid losses due excess of unsold inventories. Both the

decisions related to ordering and pricing are aimed at tackling demand uncertainty

to improve the firm’s overall performance. When these decisions are simultaneously

taken, there is a higher chance of dealing with the uncertainties in comparison to

a scenario where each decision is independently taken. Several practitioners also

advocate the need for taking inter-related decisions (Pearson 2012, McKinsey 2019).

The academic literature on retail supply chains also highlights the significance of

joint decision-making to efficiently manage inter-linked operations such as inventory

management, production, ordering and pricing of a product (Simatupang & Srid-

haran 2002, Barratt 2004, Min et al. 2005). There are several streams of literature

dedicated to joint decision-making problems in retail supply chains such as, combined

inventory-pricing decisions (see Elmaghraby & Keskinocak (2003), Yano & Gilbert

(2005) and Chen & Simchi-Levi (2012)), fulfillment-distributions decisions (see Agatz

et al. (2008) and Zhang et al. (2010)) and marketing-production decisions (see Eliash-

berg & Steinberg (1993) and Upasani & Uzsoy (2008)). However, the focus of most

of the joint decision-making literature lies in analysing the inter-connectivity of these

decisions via analytical, computational and statistical studies. On the other hand,

there are very few joint decision-making studies which aim to capture the complex-

ities arising intrinsically within different retail set-ups of perishable products and

dual-retailing networks. Although there are some studies on joint decision-making

related to inventory and pricing management of perishable products (Li et al. 2009,

Chen & Sapra 2013, Chen et al. 2014), most of them don’t consider existence of new

and old variants of the perishable products. In comparison to these studies, we cap-

ture the gap of considering a retailer who simultaneously sells new and old variants

of the perishable products. In addition, we also incorporate differentiation in selling

prices of new and old inventories in our research. This way our models are able to
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encapsulate several relevant features like internal competition and demand cannibal-

isation between new and old inventories. Most studies on dual-channel distribution

network are focused on investigating coordination among multiple channels (Janaki-

raman et al. 2015, Wang et al. 2017, Hu, Li, Byon & Lawrence 2015, Zhu et al. 2020).

Very limited studies related to dual-channel networks discuss its management in view

of demand and supply uncertainties. Meanwhile, research on management of retail

firms facing supply uncertainty rarely focus on the structure of their distribution

network. Thus, we are concerned with finding joint decision-making strategies for a

dual-channel network under both demand and supply uncertainties. In this thesis,

we investigate dynamic joint decision-making policies for retail supply chains in view

of its inherent features like perishability and dual-channel distribution network.

1.2 Objectives and Contributions of Thesis

In this thesis, we address important issues related to product characteristics and the

underlying distribution network while designing dynamic joint decision-making for

retail supply chains. In order to incorporate product characteristics like perishability

in the joint decision-making process, we introduce novel models and solution tech-

niques that capture features related to customer choices and demand uncertainty. In

addition, we develop a joint decision-making model for the dual-channel distribution

network while considering the important features like demand-supply uncertainties

and dual-sourcing. Efficient solution methodologies are also proposed to solve the

joint decision-making problem of dual-channel network. We now provide a summary

of the three research problems and highlight the corresponding contributions.

Production and Pricing of Multi-Generation Product Line

Due to rapid advances in technology and design, some retail firms periodically re-

lease new generations of electronic products such as mobile phones and computers. In

order to increase product variability, firms may wish to develop a multiple-generation

product line rather than replace the older versions with new ones. However, when

multiple generations are available in the market, different generations compete with

each other as well as other products in the market. Firms need to take joint deci-

sions for inventory management and dynamic pricing of multiple generations to tackle

impact of uncertain demand and market competition. In this research problem, we

present a dynamic joint production-pricing decision model to obtain efficient strate-

gies for a firm selling multiple generations of a product. The contributions of this

research are highlighted below,
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• The existing literature on multi-product pricing and production problems gen-

erally focuses on only two products and assumes a constant product value over

time. However, during a new product release, the old generation becomes less

attractive due to the new generation’s technological improvements or additional

features. In contrast to the existing literature, we account for the internal com-

petition among multiple generations by considering dynamic changes in product

value.

• The joint production-pricing decision making problem of a firm selling multiple

generations of a product under demand uncertainty is formulated as a stochas-

tic dynamic programming model. The consideration of multiple generations in

the joint production and pricing model flares up the state space. Moreover, the

customer choice probabilities depending on pricing decisions lead to a nonlinear

(high degree polynomials) optimisation problem to be solved at each state of

the system. Therefore, the underlying dynamic programming model is computa-

tionally intractable to solve by a traditional (backward) dynamic programming

technique. In order to tackle curse of dimensionality on the state space, we

propose an approximation method and a heuristic approach.

• The first solution approach considers a forward dynamic programming algorithm

for approximately solving the joint production-pricing problem. The second ap-

proach applies for a two-stage heuristic algorithm where the pricing decisions

(determined in the first stage of the algorithm) are integrated into the optimi-

sation model at the second stage to determine the optimal production level for

each product. In order to improve further computational performance of the

solution approaches, we investigate different pricing rules determined from the

abridged model and a list of prices derived by theoretical bounds.

• We design numerical experiments to illustrate performance of solution approaches

and derive some managerial insights. Our numerical analysis indicates that joint

production-pricing strategy performs significantly better than the fixed policies

since it considers recent changes while matching demand with production. We

also observe that the customer choices play an important role on the perfor-

mance of the joint decision making process.

Ordering and Markdown Policies for Perishable Product

Perishable products are present in abundance in food industries. The firms of-

ten promote the freshness level of perishable products to gain strong position in the

market. However, they also face the challenge of the increasing amount of wastage

of perishable products due to demand uncertainty. A common strategy to reduce
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wastage is to lower the selling price of inventories close to expiry. In this research

problem, we develop markdown and ordering strategies to sell a perishable prod-

uct under uncertainty in its demand. The joint markdown and ordering strategies

hold managerial significance and are also computationally efficient. We highlight the

contributions of this research as follows;

• The demand cannibalization between fresh and markdown inventories is eval-

uated by the dynamic changes in customer choices. The customer choices are

then integrated in a demand model depending the pricing and ordering decisions.

The joint ordering-pricing decision-making problem for a general lifetime per-

ishable product is formulated as a stochastic dynamic programming model. The

challenge with a perishable inventory management problem is the dimensional

expansion of the state space, as a result of continuous tracking of the product

age. Due to the complexity of this problem, the existing research largely focuses

on inventory systems with a two-period lifetime product. In contrast to the ex-

isting literature, we consider a general lifetime perishable product and we tackle

the curse of dimensionality on the state space by proposing an exact solution

methodology yielding optimal solutions.

• The exact solution methodology is constructed on the basis of the theoreti-

cal properties of the dynamic programming model. We prove that the value

function of the dynamic programming model is k-concave in inventory levels.

We then employ the properties of k-concavity to design an algorithm providing

the optimal ordering and pricing policy. Numerical experiments are conducted

to illustrate the performance of the solution algorithm and to gain managerial

insights on the ordering and pricing strategies

• In the numerical study, the joint ordering-markdown policies are compared with

various fixed markdown policies followed by practitioners.Our results highlight

benefit of following joint decision-making policies over fixed markdown policies.

The flexibility in conducting a markdown sale is also investigated in our ex-

periments wherein we compare different flexible strategies motivated from prac-

tice. Our finding emphasise the importance of focusing on the age of markdown

product more than its price. Moreover, the joint ordering-markdown policies

are examined in different customer segments.

Ordering and Delivery Strategies for Dual-Channel Network

In a dual-channel network a firm distributes its products through different channels

mainly comprising of its own stores as well as third-party retailers. Since the network
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of dual-channel firm is extensively and widely spread across different channels, a

disruption at any point of the network impacts the overall operations of the firm.

Thus, during the management of the dual-channel firm, it is essential to consider

disruption at both demand and supply side of the network. To mitigate the disruption

from demand or supply side, the firm diversifies its sourcing strategy by ordering from

a set of emergency suppliers. In this research, we investigate the joint ordering and

delivery strategies of the dual-channel firm under disruption. The contribution of the

research are provided as below,

• Existing studies mainly consider either demand, supply uncertainties or both

independently in the dual-channel supply chain. However, we find joint or-

dering and delivery policies to simultaneously tackle both demand and supply

uncertainties in contrast to the existing literature. The joint decision-making

problem of the dual-channel network under demand and supply uncertainties is

formulated as a stochastic dynamic programming problem.

• The consideration of dual-retail channels and multiple decisions flares up the

state and action space. Thus, the underlying dynamic programming model is

computationally difficult to solve by the standard solution methodology. We

proposed two decomposition methods which are tailorly designed for the given

dual-channel network. In the first approach, we decompose the model by each

channel. To protect the inter-connectivity between multiple channels, we in-

troduce an opportunity cost parameter by considering each channel’s effect on

the network. The second approach of decomposition is adopted from the prac-

tice (RGIS 2013, ASP 2019, Oracle 2019). Due to advances of technology in

inventory-tracking, the firm is able to receive information about inventory levels

at its owned stores as well as third party retailers. This information assists the

firm in improving their decision-making. By using the information, the original

model is reformulated such that the firm can track inventories at all channels as

well as its central echelon. This model is then decomposed by each inventory-

tracking point and solved via two-stage decision making process to obtain order-

ing and delivery decisions. We conduct a computational study to illustrate the

performance of the various solutions methodologies with the standard backward

dynamic programming.

• Our approach is compared with a threshold-based policy designed through prac-

titioner and academic reports. An extensive numerical study is also conducted

to highlight different features of the joint ordering-delivery model and derive

managerial insights. Our results emphasise the importance of collectively con-

sidering both demand and supply uncertainties. Moreover, the benefit of joint
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ordering and delivery policies are also analysed with varying levels of ordering

and penalty costs. Our findings suggest that joint decision-making policy not

only does well in terms of profit but it also ensures minimum loss in demand.

1.3 Review of Joint Decision-Making Approaches

To efficiently manage the flow of a product in a retail supply chain, firms must jointly

consider its operational decisions. Since the different types of decisions are inter-

linked, the need for a joint decision-making approach is advocated. Moreover, there

is a higher chance of tackling with uncertainties when the decisions are taken si-

multaneously in comparison to be taken independently. However, the inter-linkage

between decisions and the uncertain environment significantly enhances the complex-

ity of modelling and solving the problem. Researchers have tried several ways to

model and solve the joint decision-making problems. Some studies use statistical

methods such as regressions, multivariate statistical analysis and structural equation

modelling, to compare joint versus single decision-making approaches. Chaudhuri

et al. (2018) and Danese et al. (2013) consider different data sets and use regression

methods to analyse the benefit of integrating decision-making process internally in

supply chains. Chaudhuri et al. (2018) examine the benefit vs risks of integrating the

decision-making process in various ways. Meanwhile, Danese et al. (2013) test the

impact of supply chain integration on firm’s responsiveness levels. Munir et al. (2020)

use covariance-based structural equation modelling to examine the impact of internal

integration to manage risk, handle unexpected disruptions and improve performance

of the supply chain. Apart from statistical analysis, some studies specifically design

behavioural experiments to evaluate the benefit of joint decision-making. Ramachan-

dran et al. (2018) showcase the improvement in overall performance of firms when

decisions related to the pricing and quantity of their products are taken in a com-

bined manner. They also discuss how joint decision-making framework captures the

inter-dependences between decisions and reduces the uncertainty. A similar study for

a two-stage supply chain comprising of a supplier and a retailer is conducted by Davis

& Hyndman (2019).

The above-mentioned studies examine primary or secondary data sets to estab-

lish the merit and demerits of joint decision-making. However, there are several

research areas where data is either not available or is not viable for collection. Lack

of data is successfully replaced by simulating specialised environments. Some papers

design simulation-based studies to test the efficiency of combined decision-making.
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Moreover, simulation is also used to model real-life operational systems. Datta &

Christopher (2011) use an agent-based simulation approach to test different levels of

integration in decision-making to tackle uncertainties in the supply chain. Meanwhile,

Van Der Vorst et al. (2009) design a specific simulation set-up for food supply chains

proposing integration towards logistics, sustainability and food quality. Taghikhah

et al. (2021) adopt a system dynamics approach to operationalize agro-food supply

chain and simulate adaptive behaviour of farmers, food processors, retailers, and cus-

tomers. They jointly consider operational factors (e.g., price, quantity, and lead time)

and behavioural factors (attitude, perceived control, habits) of the supply chain.

The methodology and research mentioned so far focuses on testing and analysing

the impact of different types of integration in decision-making. However, we are

concerned with developing (or designing) joint decision-making policies applicable in

realistic scenarios (or practice). There are various decision-making models with sin-

gle or multiple objectives satisfying certain restrictions. Optimisation comprises of

finding the best decision by evaluating all possibilities. However, to efficiently apply

optimisation, the decision-making problem must be mathematically represented as

accurately as possible. When a problem is being modelled mathematically, there are

several problem characteristics to be considered, like deterministic or uncertain, static

or dynamic nature of the problem. If the optimal decisions are obtained in view of

known parameters, it is called deterministic whereas in stochastic optimisation, the

parameters are uncertain and must be integrated in the mathematical model. There

are various techniques to solve optimisation problems, like linear programming, in-

teger programming and non-linear programming. The reader is referred to Winston

(2002) and Williams (2013) for a detailed review of deterministic and static optimi-

sation methods.

Decision-making under uncertainty involves finding best decisions in the face of

unknown parameters whose ramifications will only be known at a later stage. Tech-

niques, like stochastic, two-stage and robust optimisation, incorporate uncertainty in

decision-making process. In order to incorporate uncertainties in a decision-making

problem, one might think of replacing the uncertain parameters with average values or

point-wise estimates. By using average values, the decision-making problem can then

be formulated with deterministic methods. However, Ben-Tal & Nemirovski (2000)

show that the solutions obtained with average values not only perform poorly in an un-

certain environment but they can become infeasible as well. Thus, for decision-making

problems in an uncertain environment, it is essential to incorporate the uncertainties

with maximum mathematical accuracy through sophisticated stochastic optimisation

methods. Shen et al. (2003), Wang (2006), Hong et al. (2015) and Liu & Li (2021) use
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stochastic optimisation methods to solve joint decision-making problems in different

retail set-ups. The decision-making in retail set-ups considered in this thesis have

to be taken sequentially in regular intervals of time. Moreover, there are different

kinds of uncertainties present in the three research problems of the thesis. If the firm

takes certain decision, they wouldn’t know its outcome or the state of the system

in the future. Thus, the firm must formulate the problem using stochastic dynamic

programming in view of its dynamic and uncertain nature.

Game theory is another approach that is widely used to investigate the coordi-

nation among different players of supply chain (see Moharana et al. (2012), Yang

et al. (2015), Hu et al. (2018) and Zhu et al. (2020)). However, retail set-ups of

this research are considered from the point of view of the firm. We assume there

is limited and fixed interaction among multiple decision-makers. This assumption is

based on information on contractual agreements among different players. The details

of the agreement between the multiple parties of the supply chain are either estab-

lished or private in nature. When the participation among multiple players have

fixed contracts, it leaves little or no scope for negotiations. Thus, game theory is not

suitable to model the decision-making problem among players where there the terms

of interactions are already well-established. On the other hand, if there is scope of

negotiation, then game theory can be a useful modelling approach. However, in the

three retail set-ups considered, there is either limited information on the contractual

negotiation or the firms have defined fixed contracts.

Stochastic dynamic programming is extensively used to model decision-making

problems of supply chain management. In this thesis, SDP is used to model all three

joint decision-making problems. This method will be further reviewed in the next

section.

1.3.1 Stochastic Dynamic Programming

Stochastic dynamic programming, abbreviated as SDP, is a combination of stochas-

tic and dynamic programming. Thus, SDP is applied to model and solve complex

problems comprising of sequential decision-making under uncertainty. SDP is also

known as Markov Decision Process (Bellman 1958, Denardo 2012). It involves a a

discrete-time stochastic control process where the outcomes of decisions may or may

not be known. In general, probability distributions are used to represent uncertain

parameters in the dynamic programming equations. The aim of SDP is to find an

optimal policy in the presence of uncertainty. We next present a general formulation

of SDP model for single and joint decision-making processes.
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Single Decision-Making Model: Let us assume that the planning horizon of the

decision-making process comprises of T + 1 discrete time periods. We also define a

set of all possible states of the system, denoted as S. A state of the system at the

start of every decision-making period is represented as st, where st ∈ S. Given the

state st of the system at time t, a decision, denoted as xt, must be taken in view of

the uncertainty ãt. At time t, the decision xt belongs to a feasibility set represented

as Xt. The immediate reward in terms of cost or profit obtained by taking decision

xt in the state of st under uncertainty ãt is expressed as Rt(xt, st, ãt). As we move

forward in time, the state of the system must be updated. The state of the system is

updated to a constant value of st+1 after taking decision xt if there is no uncertainty

involved. However, due to the presence of uncertainty ãt at time t, it is unsure what

would be the ending state. Thus, at time t a probability value is assigned to each

possible state the system can be in the next decision-making period t+ 1. The state

transition probability for every state j is evaluated as a conditional probability of

P (st+1 = j|xt, st, ãt) due to the underlying conditions of the current state st, decision

xt and uncertainty ãt. The objective the dynamic problem is to find the optimal value

of decision xt such that the overall reward over the planning horizon is maximised.

The value function at any time t is expressed as the sum of reward function and the

expected future benefit,

Vt(st) = max
xt∈Xt

E[Rt(xt, st, ãt) +
∑
j∈S

P (st+1 = j|xt, st, ãt)Vt+1(j)] (1.1)

Joint Decision-Making Model: The single decision-making model (1.1) presented

above comprises of a single decision xt. In this thesis, as we consider joint decision-

making process, we next present its general formulation. Along with decision xt, we

introduce an additional decision, denoted as yt. Let the feasible set for joint decisions

xt and yt be represented as Yt. In addition, the state of joint decision-making problems

usually consists of multiple components. Thus, we consider a multi-dimensional state

space represented by a vector st ∈ S. The updated formulation for the joint decision-

making problem is provided as below,

Vt(st) = max
xt,yt∈Yt

E[Rt(xt, yt, st, ãt) +
∑
j∈S

P (st+1 = j|xt, yt, st, ãt)Vt+1(j)] (1.2)

While including multiple decisions, their inter-connectivity will also be reflected in

the decision-making model. This can enhance the efficiency of the overall system in

comparison to single decision-making processes. However, the consideration of joint

decision-making will also expand the size and dimension of the state and action space.

Thus, we now discuss efficient solution approaches for joint decision-making processes.
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1.3.2 Solution Approaches

In this section, we present the solution methods for dynamic joint decision-making

models. Since it is difficult to obtain closed form solutions of the dynamic models,

we discuss different approximate techniques as well.

Backward Recursion Method: It involves a process of solving the decision-making

problem backwards in time. The idea is to start from the end point of the problem,

find the best sequence of decisions while travelling back to the starting point. While

starting the recursion at the final point, all possible outcomes (or states) are evaluated

in face of any decision (or action) taken in that time. The same process will be followed

in all times till the starting point. Thus, at each decision-making stage, all possible

points of the state and action space are evaluated to yield optimal results. The initial

state and boundary condition must be clearly specified to obtain an optimal solution

using backward recursion

In the joint decision-making problems, there is a significant increase in the dimen-

sion of state as well as the action space due to the presence of multiple decisions.

Moreover, large size of practical retail problems further enhances the size of state and

action space. When the state and action space is high-dimensional and large, it is

computationally intractable to evaluate every point in it. It is very challenging to

use backward recursion to find optimal solutions. This is also referred as the curse of

dimensionality (Bellman 1966).

Approximate Solution Approaches: To deal with the curse of dimensionality,

several approximate solution methods have been proposed in the literature like, lin-

ear programming approximation, forward dynamic programming and decomposition

methods. In LP approximation, the SDP is reformulated as a LP model where the

value functions at all possible states are considered decisions variables. Due to the

large size of state space, the LP model also becomes computationally challenging to

solve. There is research on finding efficient approximations to resolve the issue of large

size LP models (Trick & Zin 1993, Schuurmans & Patrascu 2002). Apart from LP

approximation, forward dynamic programming & decomposition methods are used to

approximate solutions of SDP models. We will now provide a brief overview of them.

Forward Dynamic Programming (FDP): It is a simulation based algorithmic

framework and solves the underlying dynamic programming problem by stepping for-

ward in time as opposed to the backward recursion. In addition, FDP also differs

from BDP by not evaluting every point in the state and action and being compu-

tationally efficient. In addition, FDP moves forward by selecting a sample path for
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the uncertain parameters. Sample paths are generated Monte Carlo simulation for a

number of simulation iterations. In each iteration at the different states of the random

path, the value function is updated using regression models. We present a general

form of the FDP approach for joint-decision model (1.2). Let V̂t(st) and V̄t(st) denote

the optimized and approximated value functions for state st at time t. The iterative

updating of the value function is displayed as below,

V̂t(st) = max
xt,yt∈Xt

E[Rt(xt, yt, st, ãt) +
∑
j∈S

P (st+1 = j|xt, yt, st, ãt)V̄t+1(j)] (1.3)

Powell & Topaloglu (2003) and Powell (2007) provide detailed information on FDP.

Decomposition Method: In the decomposition approach, the SDP model is dis-

integrated with the aim of reducing the dimension of the state and/or action space

in smaller-sized model. The decomposed models with the contracted state and/or

action space are then solved independently by standard backward recursion. The in-

formation from the decomposed model are integrated in a final step when the model

is solved forward in time to avoid visiting all possible values of state and action space.

We present a general form decomposition approach for joint decision model (1.2). Let

the number of decomposition for the model (1.2) be denoted by n. In addition, the

compressed state space of the decomposed model is denoted as s
′
t at any time t. The

decomposed model i is provided below, where i = 1, · · · , n,

vit(s
′

t) = max
xt,yt∈Xt

E[Rt(xt, s
′

t, ãt) +
∑
j∈S

P (s
′

t+1 = j|xt, s
′

t, ãt)vi,t+1(j)] (1.4)

where boundary condition is vi,T+1(s
′
T+1) = 0. The information from the decomposed

models is tied up together in an approximate value function denoted as V̂t(.) and

expressed as follows,

V̂t(st) = max
xt,yt∈Xt

E[Rt(xt, yt, st, ãt) +
∑
j∈S

P (st+1 = j|xt, yt, st, ãt)
∑
i∈D

vi,t+1(j)] (1.5)

The above model is solved in a forward manner and the value of future expected profit

is obtained using model (1.5). The decomposition approach avoids searching all the

state and action space by solving forward in time while using the information from

the decomposed model. For further information, the interested reader is referred to

Archibald et al. (1999) and Kunnumkal & Topaloglu (2010). This approach is used in

revenue management problems of airline and hotel management (Erdelyi & Topaloglu

2010, Aydin & Birbil 2018).

In this thesis, we consider backward recursion method as a benchmark policy to
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compare it with the proposed solution approaches in Chapters 3 and 4. In particu-

lar, we employ the technique of FDP and decompositions to solve high-dimensional

stochastic dynamic models.

1.4 The Structure of Thesis

The thesis comprises of five chapters. Chapter 1 provides a brief introduction and

overview of the thesis. It also covers a review of stochastic dynamic programming

models and its solution approaches. The dynamic joint decision-making problems

under uncertainty of three retail set-ups are discussed in the next three chapters.

In the three chapters, we first introduce the motivation and significance of studying

the research problem. The most relevant research is also highlighted in literature

reviews for each of the research problem. Then, the joint decision-making model, its

features and efficient solution approaches are provided in detail. We also discuss the

results of numerical experiments highlighting the features of the model and solution

approaches. In particular, Chapter 2 focuses on developing production and pricing

strategies for a multi-generation product line while Chapter 3 investigates ordering

and markdown strategies to tackle demand uncertainty for a deteriorating perishable

product. Then, Chapter 4 proposes ordering and delivery policies for a dual-channel

network under disruption. Finally, Chapter 5 concludes the thesis by summarizing

the research, its key findings and the direction of future research.
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Chapter 2

Production and Pricing of

Multi-Generation Product Line

Due to rapid advances in technology and design, some retail firms periodically release

new generations of electronic products such as mobile phones and computers. In

order to increase product variety, a retailer may wish to develop a multiple-generation

product line rather than replace the older versions with new ones. However, when

multiple generations are available in the market, different generations compete with

each other as well as other products in the market. Firms need to take joint decisions

for inventory management and dynamic pricing of multiple generations to tackle the

impact of uncertain demand and market competition. In this research question, we

present a dynamic joint production-pricing decision model to obtain efficient strategies

for a firm selling multiple generations of a product.

This chapter describes a multi-generation product line along with its challenges

(Bhatia et al. 2020). Then, we highlight the need for joint decision-making to tackle

the challenges. A detailed literature review of inventory and pricing management

relevant to this research problem is provided. The stochastic dynamic programming

formulation along with the customer choice model of joint production-pricing problem

is then presented. The two proposed solution methodologies are explained in detail

and their respective pseudo-codes are also provided. The computational experiments

testing the performance of solution methodologies as well as the joint production-

pricing policies are presented. Finally, the concluding remarks are provided.
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2.1 Multi-Generation Product Line

In the technology industry of consumer electronics, firms gain competitive advantage

by periodically releasing a new-generation product every 12-15 months while keeping

multiple generations in the market (Weyhrich 2018). Having a multi-generation prod-

uct line is more profitable for a firm than selling a single model due to the increase

in product variability (Kilicay-Ergin et al. 2015). Many leading firms have developed

multi-generation product lines to target different customer segments. For instance,

Apple has simultaneously offered four generations of iPhone (namely iPhone 8, XR,

XS and 11) since 2017. Similarly, Samsung has had five generations of Galaxy S

(Apple 2020, Samsung 2020).

Despite the profitability of a multi-generation product line, it creates various chal-

lenges at strategic and operational levels. In comparison to the older generation

products, the new-generation is always assumed to have innovative and improved fea-

tures, which have never been exposed to the market yet. Therefore, there is a high

uncertainty in customers’ initial response towards a new product. Apart from the

innovative features, price as another important factor affects customers’ behaviour to

distinguish among multiple generations. It is expected that price of the older genera-

tions drops with the introduction of a new product. Although a new release attracts

customers, the older generation products’ sales might still increase due to price drop.

For instance, when iPhone 7’s release date was announced, Apple cut the price of

iPhone 6 by $100 and iPhone 6 attained the largest market share in the US (Smith

2016, Munbodh 2016). The surge in sales of old generations is another strong motiva-

tion behind the firm maintaining a multi-generation product line. On the other hand,

customers’ reaction to the older generations, particularly in the presence of new re-

lease is unpredictable, as well. In fact, customers may attempt to “get more for less”

by delaying purchase in hope of price reductions of the older generations followed by

a new release (Levin et al. 2010). Customer anticipation related to the prices and in-

novative features of different generations may lead to internal competition across the

multi-generation product line and internal competition cannibalises sales of existing

products by the newest generation or vice versa. Thus, internal competition between

the old- and new-generation products often creates conflicting benefits for the firm

(Ferguson & Koenigsberg 2007, Li et al. 2010).

A forward-looking approach has been often used in practice to predict future busi-

ness conditions and determine optimal strategies balancing supply and demand un-

certainties (Li et al. 2010). This approach involves critical decision-making problems

such as production planning and pricing that affect the success of a multi-generation
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product line. During a new release, a firm needs to determine the prices for both new

and old-generations, as well as the production and inventory plan for all generations.

The new-generation is usually priced higher than the previous generations based on

the additional features and upgrades. On the other hand, the price reduction decision

for old generations may be affected by unsold inventory of the current product line.

Apart from pricing decisions, the unsold inventory levels also impact firms’ produc-

tion plan for multiple generations. Thus, production and pricing strategies cannot

be developed in isolation. Joint decision-making models are necessary to successfully

manage multi-generation product lines. Although many academics (Davis 1993, Chen

& Simchi-Levi 2004, Talluri & Ryzin 2004, Karaesmen et al. 2011) and practitioners

(Webber et al. 2011) advocate the importance of joint pricing-inventory techniques

as essential tools to mitigate demand uncertainty for fixed-age products, this research

area has not yet received enough attention. Unpredictable customers’ response during

a new product release does not only cause demand uncertainty for all generations,

but also creates internal competition among available generations in the market.

In this chapter, we are concerned with dynamic joint production-pricing strategies

for a multi-generation product line by considering demand uncertainty and internal

competition. Our contribution in this research is two-fold:

• We formulate the joint production-pricing decision making problem of a firm sell-

ing multiple generations of a product under demand uncertainty as a stochastic

dynamic programming model. The existing literature on multi-product pricing

and production problems, as we review in the next section, generally focuses

on only two products and assumes a constant product value over time. How-

ever, during a new product release, the old generation becomes less attractive

due to the new generation’s technological improvements or additional features.

In contrast to the existing literature, we account for the internal competition

among multiple generations by evaluating the dynamic changes in customer

choice model. The consideration of multiple generations in the joint-production

and pricing model largely expands the state space. Moreover, the customer

choice probabilities depending on pricing decisions lead to a nonlinear (high de-

gree polynomials) optimisation problem to be solved at each state of the system.

Therefore, the underlying dynamic programming model is computationally in-

tractable to solve by a traditional (backward) dynamic programming technique.

This requires efficient approximation method.

• In order to tackle curse of dimensionality on the state space, we propose an

approximation method and a heuristic approach. The first approach consid-

ers a forward dynamic programming algorithm for approximately solving the
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joint production-pricing problem. At each iteration of the algorithm, for a given

customer arrival path, the decision-making model is solved to determine joint

production-pricing strategy. The second approach applies a two-stage heuristic

algorithm that adopts the idea of partial planning introduced by Chan et al.

(2006). The pricing decisions (determined in the first stage of the algorithm)

are integrated into the optimisation model at the second stage to determine the

optimal production level for each product. In order to improve further compu-

tational performance of the solution approaches, we investigate different pricing

rules determined from the abridged model and a list of prices derived by the-

oretical bounds. We design numerical experiments to illustrate performance

of solution approaches and derive some managerial insights. In our numerical

experiments, we analyse the benefits of selling multiple generations of a prod-

uct on firm profit. We also quantify the benefits of dynamic joint production-

pricing decisions as opposed to using fixed policies based on either production or

pricing. Our analysis indicates that joint production-pricing strategy performs

significantly better than fixed policies since it considers recent changes while

matching demand with production. We also observe that the customer choices

play an important role on the performance of the joint decision making process.

The remaining part of the chapter is organized as follows. Section 2.2 focuses on

the literature review by providing details of existing studies relevant to our research.

The stochastic dynamic programming formulation of the joint inventory-pricing prob-

lem is presented in Section 2.3. The solution methodology and computational results

are explained in Sections 2.4 and 2.5, respectively. The concluding remarks are pro-

vided in Section 2.6.

2.2 Review on Inventory and Pricing Management

The research on dynamic inventory and pricing management problems has attracted

significant attention over the years. The recent surveys for these problems are pro-

vided by Chen & Simchi-Levi (2012) and Janssen et al. (2016). In this study, we

consider a firm producing a multi-generation product such as mobile phones and lap-

tops. Although electronic products do not have a short shelf lifetime like perishable

products have, older versions of a multi-generation product are generally discontinued

from the market after some time due to technological developments. In this respect,

a multi-generation product can be considered as a perishable product. Therefore,

we focus our review on joint inventory-pricing management research for both non-
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perishable and perishable products.

Within the joint inventory-pricing management research on non-perishable prod-

ucts, initial studies consider sale of only one product and assume that the seller has

convex production and holding costs, and unlimited production capacity (Thowsen

1975, Federgruen & Heching 1999). By using the properties of the model, they show

that the base-stock policy (place an order when the inventory level drops below the

base-stock level) is optimal for such problems and the optimal price is a decreasing

function of the starting inventory. Similarly, Chen & Simchi-Levi (2004) extend the

work of Federgruen & Heching (1999) by considering the fixed setup cost for ordering.

The optimal policies of joint ordering and pricing problem for a multi-period problem

are derived by assuming an additive demand model. Chao et al. (2012) focus on

the model proposed by Chen & Simchi-Levi (2004) and investigate the pricing and

inventory control policies under the limited production capacity. Chan et al. (2006)

propose partial-planning strategies for pricing and inventory replenishment problem

by considering capacity constraints. Under a partial planning strategy, the seller sep-

arates the pricing and production decisions and decides either pricing or production

schedule at the beginning of the planning horizon. The remaining decision (pricing

or production schedule) is made by considering demand uncertainty. They proposed

several heuristics based on the proposed dynamic programming model to solve these

partial-planning problems.

A few researchers have addressed the joint inventory and pricing management

problem for multiple non-perishable products. Gilbert (2000) develops a solution

method for the joint decision-making model with deterministic demand. The proposed

demand model does not consider the cross-price effect between the non-perishable

products. Zhu & Thonemann (2009) extend this case and focus on a two-product

model in which demand for each non-perishable product depends linearly on the

prices of both products. They show that the optimal inventory policy is similar to

the base-stock policy for the one-product problem. Song & Xue (2007) consider a

more general demand setting for substitutable multiple products. They formulate

the problem as a dynamic program and develop a solution algorithm by exploiting

the special problem structure. Yan et al. (2017) study joint production and pricing

policies for a firm selling new and remanufactured products by considering possible

product returns. They assume that the firm either adopts make-to-order or make-to-

stock strategy for the new product and under this set-up, they show that the base-

stock type production policy is optimal for the make-to-stock strategy for additive

demand model. Elmaghraby & Keskinocak (2003) and Chen & Simchi-Levi (2012)

provide a review for joint inventory-pricing management of non-perishable product.

20



Products with short and fixed lifetimes are known as perishable products, such

as vegetables, dairy products and medicines. Perishability is also observed in many

high-tech products such as laptops, mobile phones, digital cameras due to the rapid

obsolescence in a fast moving market (Ferguson & Koenigsberg 2007). Within the

research on joint inventory-pricing management for perishable products, there are

various studies exclusively developed for food or healthcare products (Li et al. 2009,

Chen & Sapra 2013, Chen et al. 2014, Chintapalli 2015, Herbon 2017). We only discuss

the studies which are relevant to management of a multiple generation product line.

Ferguson & Koenigsberg (2007) consider a firm selling a food product with exactly

two-period life cycle. In the first time period, procurement and pricing decisions of

a fresh product is made in the presence of demand uncertainty. At the beginning

of second time period, the decisions are concerned with how much leftover inventory

from first period (old inventory) to carry over, how much fresh products to procure

(new inventory), and what prices to charge for new and old inventories. They assume

demand to be known in the second time period. They use a customer utility model

to obtain demand functions of new and old products based on price and features

of the product using a subgame perfect equilibrium in the second time period. A

perfect equilibrium is achievable in a deterministic setting. Sainathan (2013) extends

the joint inventory-pricing decision model introduced by Ferguson & Koenigsberg

(2007)’s to the case of a firm experiencing uncertain demand. He uses a linear utility

customer choice model to derive optimal pricing and replenishment policies for a

product with two-period shelf life. He assumes that old and new perishable products

compete with each other in the market under demand uncertainty that is incorporated

through the process of dynamic demand substitution; i.e. demand for an old food

item is replaced by a new one. Chintapalli (2015) works on the joint inventory-pricing

decision model for a firm experiencing substitutable demand for a n-period shelf-life

food product. However, demand for multiple generation products, like electronics,

is not substitutable since price difference among its various versions is higher than

the old and new food items due to improved features. In other words, the demand

for a customer for a certain generation cannot be substituted by its successive or

predecessive generation.

In some high-tech industries, the firm’s aim to release a new product is to eventu-

ally replace the older versions. The transition from the current product to a new one

does not occur instantaneously but rather involves a period of time, referred as the

product transition or product rollover (Li et al. 2010). A firm can either completely

replace the old generation by the new one or continue to sell multiple generations

until the sales of the old generations diminishes. These strategies are known as the

single and the dual product rollover, respectively (Corey Billington & Tang 1998, Fer-
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yal Erhun & Hopman 2007). Several studies compare the benefits of both strategies

by considering the internal competition between two generations (Lim & Tang 2006,

Arslan et al. 2009, Zhou et al. 2015). Liang et al. (2014) extend the earlier work on

rollover strategies by analysing the interaction between rollover strategy and strategic

waiting behaviour. They formulate a two-period problem in which a firm releases a

new generation of the product in each period. By analysing the customers’ optimal

purchase decisions, they conclude that optimal rollover strategy significantly depends

on the new product’s innovation and the number of strategic customers in the mar-

ket. In a related work, Liu et al. (2018) compare product rollover strategies when

customers are allowed to trade-in the older version of the product with the new one.

They propose a two-period dynamic game model and analyse the value of trade-in

policy for rollover strategies. Li et al. (2010) focus on an inventory management prob-

lem with no replenishment during the product transition from an old generation to a

new one. They develop a dynamic model to find inventory levels for two generations

of products where the release date of the new generation is assumed to be unknown.

Li & Graves (2012) present a dynamic pricing model for the product transition stage

in which two generations are sold simultaneously with no product replenishment. All

of the above models address the transition between exactly two generations of a prod-

uct line. However, in various cases like mobile phones, computers and e-tablets, the

motive of a new release is not to replace the older versions, rather develop a product

line of multiple generations. In fact, in some cases, a new release boosts the sales of its

predecessors, due to their reduced prices (Munbodh 2016). Moreover, simultaneously

selling multiple generations is reported to be profitable for the firm (Kilicay-Ergin

et al. 2015). Akçay et al. (2010) consider the case of a firm simultaneously selling

multiple perishable products over a finite time. They derive optimal pricing policies

by introducing a linear random utility framework to model consumer choices in a

differentiated assortment of products. Thus, their focus is a pricing problem where

no replenishment opportunities are present during the planning horizon.

Table 2.1: Classification of relevant research papers

Research papers Product Age of Internal New Decisions
type product competition release Replenishment Pricing

Ferguson & Koenigsberg (2007) Food 2 X X X
Li et al. (2010) Electronic 2 X X
Akçay et al. (2010) Electronic n X X
Li & Graves (2012) Electronic 2 X X X
Sainathan (2013) Food 2 X X X
Liang et al. (2014) Electronic 2 X
Chintapalli (2015) Food n X X
Liu et al. (2018) Electronic 2 X
Our research Electronic n X X X X
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In this chapter, we develop a joint inventory-pricing model for a firm selling multi-

ple generations simultaneously in the market using stochastic dynamic program. We

primarily investigate the release of newer generations in the presence of older ones.

The most relevant studies using stochastic dynamic programming to formulate the

underlying pricing or/and inventory management problems for food and electronic

products are summarized in Table 2.1. In particular, research for electronic prod-

ucts focuses on how the product can be rolled over from its old version to the new

one. In this thesis, we are concerned with transition between exactly two generations.

We develop joint inventory-pricing policies for a multi-generation product line. This

model differs from the joint production and pricing models introduced by Ferguson

& Koenigsberg (2007) and Sainathan (2013) in terms of problem set-up and demand

function. At every decision stage, orders for all generations in market are placed,

in contrast to Ferguson & Koenigsberg (2007) and Sainathan (2013). Moreover, we

develop a customer choice model based on the models proposed by Caplin & Nalebuff

(1991) and Petrin & Train (2003) to account for both uncertain demand and internal

competition among multiple generations.

The curse of dimensionality is often experienced while obtaining the solution for

the dynamic joint decision-making problem of multiple products. Therefore, most of

the literature discussed above limits the joint production-pricing model to a simplified

two product case. The intertwined structure of the multiple inventory levels with their

production and pricing decisions results in a complex and non-decomposable decision

problem, which is computationally intractable by the classical dynamic programming

solution method (backward dynamic programming). Thus, forward dynamic pro-

gramming (FDP) has emerged as a successful methodology to tackle the curse of

dimensionality by reducing the state space calculations. Although FDP has been

widely used in various areas, the literature on FDP for solving the joint inventory-

pricing problems is limited. For instance, Çimen & Kirkbride (2017) consider the

FDP approach for the flexible production-inventory problem for multiple products at

multiple locations. Coşgun et al. (2013) use FDP to solve the problem of markdown

optimization between substitutable products in retail chains.

In this research, the curse of dimensionality is encountered for solving the under-

lying dynamic programming model for management of a multiple generation product

line. Thus, we propose two approximation methods to solve the joint production-

pricing problem. The first approximation method is a two-stage heuristic based on

the idea of partial planning model introduced by Chan et al. (2006). In the first stage,

we solve an abridged adaption of the original problem as a dynamic programming

model to determine the pricing policy. In the second stage, this pricing information is
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then used to obtain the joint production pricing policies. Our second approximation

method is based on the forward dynamic programming approach to approximately

solve the joint production-pricing model. The numerical experiments (presented in

Section 2.5) show that the two-stage heuristic in conjunction with different pricing

rules produces policies with higher expected profits while FDP is accounted as more

efficient than other approaches.

2.3 The Dynamic Production-Pricing Model

Consider a firm (such as Apple and IBM) that designs and develops various genera-

tions of innovative products (such as electronics, mobile phones and computers). The

firm releases a new generation of the product whilst the older versions still continue

to sell in the market. The new generation of the product uses innovative technologies

and/or involves improved features in comparison to previous models. It is difficult to

predict customers’ reaction toward the latest technological developments of the new

generation of the product as well as the older generations in presence of a new release.

Thus, demand for all generations of the product is assumed to be uncertain. The firm

tackles demand uncertainty and internal competition among multi-generations of the

product by a forward-looking planning of joint decisions on production level and

their prices. We formulate the firm’s joint production-pricing problem using a finite

discrete-time stochastic dynamic programming model. In this section, we first present

the underlying production-pricing problem and then formulate the problem as a dy-

namic program under a customer choice model. Before that, we introduce notation

used for the problem formulation.

We interchangeably use models, versions and generations of the underlying (elec-

tronics) product in this chapter. The maximum function (a)+ = max{a, 0} takes

value of a if and only if a > 0; otherwise, it is zero. On the other hand, the minimum

function min{b, c} for b, c ≥ 0 takes value of b if b ≤ c; otherwise, it is equal to c.

Both “innovation level” and “quality of product” that basically represent “level of

desirability” for the product are interchangeably used in this chapter. As the inno-

vation level (quality) of a product increases, the level of desirability increases. Even

though the level of desirability αk,t for version k of a product is the same for different

classes of customers in terms of price and quality sensitive, their utilities at time t

will be different because of customers quality preferences.

Notation: We use tilde (∗̃) to denote randomness; e.g., ỹ denotes random variable

y. Boldface is used to denote vectors; for example, a ∈ Rn is a n-dimensional vector.
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In particular, we denote a vector of ones by 1 = [1, · · · , 1] in appropriate dimension

and “x ·y” displays a scalar product of vectors x and y. A description of the notation

used in the chapter is in the Table A1.

A1: Description of notation

Model parameters

T planning horizon discretised by time periods t = 0, 1, · · · , T
Gt set of generations available in the market at time t
m̄ maximum number of versions available in the market
αk,t level of desirability for version k ∈ Gt at time t
γk,t choice probability of version k ∈ Gt at time t
ct vector of unit ordering costs ck,t of generation k ∈ Gt at time t
ht unit inventory holding cost from time t− 1 to t
κ production capacity
δ discount factor

d̃t vector of uncertain demand d̃k,t for generation k ∈ Gt at time t
η step size

State variables and actions

xt vector of inventory levels xk,t for generation k ∈ Gt at time t
pt vector of prices pk,t for generation k ∈ Gt at time t
qt vector of production levels qk,t for generation k ∈ Gt at time t

Dynamic Programming Model: Assume that the firm releases different gen-

erations (indexed by r) of the product over a finite planning horizon. The planning

horizon is discretized into t = 0, 1, · · · , T time periods where the operational (such

as production and pricing) decisions and tactical decisions (such as release of new

generation) are made; in particular, t = 0 represents today. We assume that the

firm regularly launches new generations of the product and the lead time for pro-

curement is zero so that the products can be received instantaneously. In addition,

release time of new generation is predetermined in the model. Figure 2.1 displays a

graphical timeline of firm’s decision-making process. The release time of generation r

is denoted as tr such that 0 ≤ tr ≤ T . The firm may sell at most m̄ ≥ 2 generations

at each time period. We denote a set of different generations of the product available

in the market at time t by Gt.

Figure 2.1: Decision-making process in a multi-generation product line
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Let d̃t = {d̃r,t : r ∈ Gt} represent a vector of uncertain demand d̃r,t of generations

r ∈ Gt at time t. In addition, let ct = {cr,t : r ∈ Gt} show a vector of unit production

cost cr,t of all generations r ∈ Gt at time t. The carrying cost ht for holding one unit

of inventory from t− 1 to t remains the same for all generations.

We assume that the inventory level xr,t of generations r ∈ Gt (that are currently

selling in the market) is reviewed at the beginning of time period t before the pro-

duction process begins. We define vector xt = {xr,t : r ∈ Gt} of the inventory levels

of all generations available in the market as a state of the dynamic system at time

t. Given a state of the system, an action set consists of decisions made at each i)

release time as production and selling prices of the new generation as well as previ-

ously released generations of the product, and ii) intermediate time period between

two consecutive release times in terms of production of all generations available in

the market. Let pr,t and qr,t denote unit selling price and amount of products to be

produced for each generation r ∈ Gt at time t, respectively. Similarly, we introduce

vectors pt = {pr,t| pr,t ≥ 0, r ∈ Gt} and qt = {qr,t| qr,t ≥ 0, r ∈ Gt} corresponding to

market prices and amount of production of generations at time t, respectively.

The system dynamics lead to state transition of inventory levels from t to t + 1.

The following balance equations

xt+1 = max{xt + qt − d̃t, 0}, for t = 0, 1, · · · , T

imply that the inventory xt+1 to be carried over from t to t + 1 is determined by

the inventory level xt, amount of production qt and customers’ demand d̃t at time

t. Note that if xt + qt − d̃t > 0, then the firm incurs an inventory holding cost ht
per unit to carry unsold inventory to the next period. On the other hand, if demand

exceeds the current inventory level, i.e., d̃t − xt + qt > 0, then the firm is unable to

fulfill the customers’ demand. In this case, the unmet demand is assumed to be lost

(not backlogged).

Let κ represent the production capacity of the firm. We ensure that the total

number of products to be produced at time t do not exceed the available production

capacity: 1(qt) ≤ κ.

The firm aims to maximize the expected profit over the planning horizon while

maintaining a multiple-generation product line through a joint inventory-pricing de-

cision framework. The expected profit is computed as the expected revenue minus

the expected total cost of production and holding. Given the selling price of all gen-

erations, the revenue depends on future realisations of the customer demand. When
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the demand at time t is low (i.e., d̃t ≤ xt + qt), the revenue becomes pt · d̃t. In case

of high demand (i.e., d̃t > xt + qt), we compute the revenue as pt · (xt + qt). Thus,

we can state the revenue earned at time t as pt ·min{xt + qt, d̃t}. The total ordering

and holding costs are expressed as ct · qt and htxt+1, respectively. The single-period

profit πt(xt,qt,pt) at time t is obtained as

πt(xt,qt,pt) = pt ·min{d̃t,xt + qt} − htxt+1 − ct · qt.

We formulate the joint production-pricing decision making problem as a stochastic

dynamic optimisation model that requires different action sets at the release time of

a new generation. During the launch of a new generation, along with production de-

cisions, the firm needs to determine the price of the latest generation of the product,

based on enhanced features and/or innovations, while adjusting prices of older gen-

erations by evaluating the market value of innovative evolution of technologies and

predicting customers’ willingness to pay for the new and old innovative improvements.

Let us assume that a new generation r is to be released at time t (i.e., t = tr). The

firm needs to determine how many products to produce for each generation and what

market price to assign for all generations r ∈ Gt in the market. Let Vt(xt) denote the

value function at time t given a state xt of the system. The value function for the

dynamic joint production-pricing decision making problem can be written as follows;

Vt(xt) = max
pt,qt

E [πt(xt,qt,pt) + δVt+1(xt+1)]

s.t. xt+1 = (xt + qt − d̃t)
+

1 · (qt) ≤ κ, qt ≥ 0

pt ∈ Ft

(2.1)

where Ft is a set of feasible prices of all generations of the product. We will further

refine construction of this set in the next section by introducing the customer choice

model that takes into account internal competition of different generations of the

product and also the customer preferences in terms of quality and price of the prod-

ucts selling in the market. The expectation operator in the value function is always

taken over customer demand uncertainty. Note that in this formulation, the ending

inventory for the last time period is assumed to be held till the end of the planning

horizon and then it is discarded at zero cost. Finally, the boundary condition at the

end of planning horizon is VT+1(xT+1) = 0.

The firm can produce any version of the product at intermediate time periods

between consecutive release times. The problem formulation (2.1) then becomes the

following dynamic programming model where the production decisions are made at
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any intermediate time periods t′ for tr < t′ < tr+1 assuming that the unit prices of

different versions (Gtr) available in the market at time t′ remain the same from tr till

the next launch at tr+1.

Vt′(xt′|ptr) = max
qt′

E
[
ptr ·min{d̃t′ ,xt′ + qt′} − ht′xt′+1 + δVt′+1(xt′+1)

]
− ct′ · qt′

s.t. xt′+1 = (xt′ + qt′ − d̃t′)
+

1 · (qt′) ≤ κ, qt′ ≥ 0

(2.2)

Notice that when intermediate time periods between any two consecutive release times

are ignored, the problem complexity of the dynamic program in (2.1) can be slightly

reduced. Then the dynamic optimisation model (so-called an ‘abridged model’) pro-

vides an approximate solution to the initial joint production-pricing problem. The

abridged model will be used to develop a two-stage heuristic and it is discussed in

Section 2.4.2.

2.3.1 The Customer Choice Model

When the firm releases a new generation of the product, customers anticipate both

price at which the new version is released and also potential change in selling prices

of the older versions. As reported by Li et al. (2010), the customer’s anticipation for

prices of multiple versions may cannibalize sales of existing generations by the new

one and vice versa. The cannibalization of sales occurs because new and existing gen-

erations internally compete to be a preferable choice of customers. A customer choice

model examines various factors governing the customer’s decision to buy a specific

version of the product or leave without a purchase. In general, there are different

observable and unobservable factors that determine the customer’s choice of buying a

particular version (Train 2009). Price, innovation and technological levels of a gener-

ation, and the customer’s sensitivity toward technology can be listed as examples of

observable factors impacting their choices. On the other hand, unobservable factors

influencing the customer’s predilection toward buying a specific version are described

as idiosyncratic and mostly depend on individual’s preferences, like personal style

and acceptance of innovative technology. In this chapter, we consider only observable

factors such as price and quality of generations to analyze the customer’s choice. Next

a description of our customer choice model follows.

We assume that a customer is rational while making a decision and aims to max-

imize his/her own utility. Moreover, the latest generation of the product is assumed

to be more attractive than the previous models in terms of technological features of
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multiple versions. Let Uk,t denote the utility that a customer achieves from purchas-

ing generation k ∈ Gt at time t. Following Train (2009), Akçay et al. (2010) and

Sainathan (2013), the customer’s utility can be expressed by a linear function of the

innovation level αk,t and price pk,t of generation k at time t as follows;

Uk,t = θαk,t − pk,t, k ∈ Gt, t = 0, 1, · · · , T, (2.3)

where θ represents the customer’s quality sensitivity toward the technology. The

innovation level αk,t measures the attractiveness of a generation and is explicitly

associated with technological features of multiple versions available in the market.

Although the innovation level and the market price of each generation are the same

for all customers, the quality sensitivities of customers toward innovative technology

may vary. Note that one can also define the utility for an individual customer by using

specific sensitivity parameter associated with the individual customer; the reader is

referred to Akçay et al. (2010) and Sainathan (2013) for further information on the

customer specific choice models.

We assume that parameter θ (representing customer’s quality sensitivity) follows

a uniform distribution over an interval of [0, 1]. The customer prefers the latest

generation of the product possessing innovative technologies when θ = 1 that indicates

the highest quality sensitivity. On the other end, θ = 0 reflects the least quality

sensitivity where the customer prefers not to buy any version of the product. This

assumption was also considered in Train (2009), Akcay et al. (2010), and Sainathan

(2013). Let us now consider a set Gt = {k| k = 1, 2, · · · ,m} of m ≤ m̄ generations

available in the market at time t where k = 1 represents the earliest generation and

k = m is the latest generation of the product. Further assumptions regarding the

customer choice model are enlisted below.

A1: Since the recent generation of the product is always perceived to have a better

quality than the older models, the corresponding innovation level of the newest

generation is assumed to be higher than those of previous models. Thus, we

can construct the following relationship αm,t ≥ αm−1,t ≥, . . . ,≥ α1,t among

innovation levels of generations available in the market.

A2: The market prices pm,t, pm−1,t, · · · , p1,t of generations should also reflect quality

difference in terms of innovative technologies and/or improved features employed

in development of generations. In order to balance between prices and features

of generations, we impose the following conditions:

pm,t − pm−1,t
αm,t − αm−1,t

≥ pm−1,t − pm−2,t
αm−1,t − αm−2,t

≥, · · · ,≥ p2,t − p1,t
α2,t − α1,t

≥ p1,t
α1,t

. (2.4)
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This relationship is based on the quality-aligned prices condition provided by

Akçay et al. (2010). This condition basically states that a recently released

model of the product would be priced higher than the older models available in

the market due to improved or additional features. This relationship allows the

firm to charge a larger price for a higher quality model.

It is worthwhile to mention that a set of linear constraints in (2.4) must be included

into the joint production-pricing model (2.1) as they construct the feasibility set Ft
for the dynamic pricing problem.

Next, we will describe how to compute the customer choice probability in view

of different features of the multi-generation product. As mentioned above, while

purchasing a specific generation of the product, customers are assumed to compare

its attributes in terms of price and innovation level with its predecessors as well as

possible successive generations. Thus, due to internal competition among all versions

k ∈ Gt of the product available in the market, the choice probability γk,t of generation

k at time t depends on its own price and innovation level of successive generation

k + 1 as well as predecessor generation k − 1 for k = 2, 3, · · · ,m− 1. Since the latest

generation k = m has no successor at time t and the oldest generation k = 1 has no

predecessor, their choice probabilities need to be computed accordingly. The following

proposition states the choice probabilities for all generations of the product available

in the market.

Proposition 1 For the given set Gt of currently available generations k = 1, · · · ,m− 1,m

(in order from the earliest to the latest released versions) at time t, the customer’s

choice probabilities γk,t are determined as follows;

γk,t =


pk+1,t−pk,t
αk+1,t−αk,t

− pk,t
αk,t

, k = 1,
pk+1,t−pk,t
αk+1,t−αk,t

− pk,t−pk−1,t

αk,t−αk−1,t
, k = 2, · · · ,m− 1,

1− pk,t−pk−1,t

αk,t−αk−1,t
, k = m.

Proof: The proof is provided in Appendix A. �

As the latest generation possesses the highest innovative technology, which hasn’t

been exposed to the market before, the customer’s response toward the newest version

of the product is unpredictable. Moreover, the release of a new version reduces the

prices of the older versions and may increase the customer’s willingness to buy. Thus,

during a new release, the customer’s response toward the older generations is also

difficult to predict.
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In our model, customer demand for multiple generations is assumed to be uncer-

tain and the underlying random variable follows a probability distribution. At time

t, demand of generation k specifically depends on the customer choice probability

for generation k and also the number of customer arrivals. We also suppose that

customer arrival is uncertain and follows a discrete probability distribution. Let λj,t

denote the probability of j customer arrivals at time t such that
M∑
j=0

λj,t = 1 where

M represents the maximum number of customers expected to arrive at any time pe-

riod. The following proposition expresses the probability mass function of demand

for multiple versions.

Proposition 2 Let fk,t(.) denote a probability mass function for generation k ∈ Gt

at time t. Then the probability of having demand for j number of products from

generation k ∈ Gt at time t can be computed as follows:

fk,t(j) = Pr(d̃k,t = j) =
M∑
i=j

(
i

j

)
(γk,t)

j(1− γk,t)i−jλi,t, for j = 0, 1, · · · ,M.

Proof: The proof is provided in Appendix A. �

Note that Proposition 2 will be used to define the probability mass function of

having demand for certain number of products within the stochastic dynamic pro-

gramming model. Next, we will focus on approximation methods for solving the dy-

namic joint production-pricing model. In particular, we introduce a simulation based

stochastic dynamic programming method (namely forward dynamic programming)

and a two-stage heuristic method.

2.4 Approximation Methods

As in most real-life stochastic dynamic programming applications, finding an optimal

policy for the joint production-pricing problem of multi-generation products under

uncertainty is computationally expensive due to a large number of states. The tradi-

tional dynamic programming algorithm uses the backward recursion principle where

the optimal decisions and value functions are calculated iteratively starting from the

terminal time and stepping backwards in time. Although this procedure can produce

an exact analytical solution, it is affected by the curse of dimensionality since the

value function is computed at each state and all possible actions are evaluated and
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stored in look-up tables. Because, at each decision epoch, enumeration of the entire

state and its feasible action spaces becomes computationally expensive.

For the joint production-pricing model, the action and state spaces magnify with

increase in production capacity and the number of generations released in the market.

Even solving the abridged optimisation model (described as in form of a two-stage

heuristic in the next section) becomes computationally cumbersome for the realistic

size of problems when the backward dynamic programming method is applied. For

instance, for a firm selling at most m versions of the product at time t with fixed

production capacity of κ, the state space comprises of (κ+ 1)m number of states. At

any state, there exist in total (κ+ 1)m actions to take for the production quantity of

all available versions. Moreover, we need to solve a non-linear optimisation problem

for the optimal pricing decisions at any state of the system. Thus, the state and

action spaces exponentially grow as more generations are released over time and/or

the capacity is expanded. In order to tackle curse of dimensionality on the state

space, we propose iterative approximation algorithms based on a forward dynamic

programming and a two-stage heuristic.

2.4.1 Forward Dynamic Programming

Forward dynamic programming (FDP) is a simulation based algorithmic framework

that solves the underlying dynamic programming problem using a strategy that steps

forward through time starting from an initial state. As opposed to visiting the entire

state (and action) space, FDP selects a sample path and moves forward iteratively.

Each sample path is generated using a Monte Carlo simulation from the same initial

state. The value functions are evaluated for all states (a look-up table) or updated at

states on a random path (reached from the initial state) using aggregation of states

or regression models. In this sense, the FDP algorithm differs from the backward

dynamic programming algorithm that computes the value function at every state.

The interested reader is referred to Powell & Topaloglu (2003, 2006) and Powell

(2007) for further information. Next a brief description of the FDP algorithm for

solving the joint production-pricing problem follows.

The forward dynamic programming algorithm is especially designed to reduce

state space by adopting an approximation technique for the value function. The FDP

algorithm starts with initialisation of the value function. In our case, we set it to zero.

The performance of the FDP algorithm highly depends on how the value function is

initialized; hence, the decisions can be suboptimal. The best initialization of the value

function encourages FDP to explore different states. At the n-th iteration of the FDP
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Algorithm 1: Pseudo code of the FDP algorithm

1: Initialization: Initialize iteration number N and set step size η.

2: Set value function at x0
t as V̄ 0

t (x0
t ) = 0.

3: for n = 1, · · · , N do

4: Select an arrival path ωn.

5: for t = 0, 1, · · · , T do

6: - Set initial state (inventory for version 1) at t = 0 as xn0 = {xn1,0} = {0}.
7: - Obtain (pt,qt) by solving the following maximization problem; V̂ n

t (xnt ) =

max
pt,qt

{
pt min{xnt + qt, d̃t} − cqt − ht(xnt + qt − d̃t)

+ + V̄ n−1
t+1 ((xnt + qt − d̃t)

+)

}
8: - Update the value function at state xt as follows;

V̄ n
t (xt) :=

{
(1− η)V̄ n−1

t (xnt ) + ηV̂ n
t (xnt ) if xt = xnt

V̄ n−1
t (xt) if xt 6= xnt

- Compute new states based on random outcome of demand:
xnt+1 = (xnt + qt − d̃t)

+.

9: - Set t := t+ 1. If t < T + 1, then go to Step 6.

10: end for

11: Set n := n+ 1. If n < N , then go to Step 4.

12: end for

algorithm, as presented in its pseudo code in Algorithm 1, the value function V̄ n
t (xnt )

is updated for state xnt to approximate the real value function V̂t(xt). Let V̂ n
t (xnt )

and V̄ n
t (xnt ) denote the optimized and approximated value functions given state xnt

of iteration n, respectively. At each iteration of the FDP algorithm, we simulate a

path of customer arrivals for each time period. The customer requests are generated

by using the customer choice model presented in Section 2.3.1. For given customer

arrivals at iteration n, the joint production-pricing decisions at state xnt are obtained

by solving the following maximisation problem

V̂ n
t (xnt ) = max

pt,qt

{
pt min{xnt +qt, d̃t}−cqt−ht(xnt +qt−d̃t)

++V̄ n−1
t+1 ((xnt +qt−d̃t)

+)

}
,

where V̄ n−1
t+1 is an approximation of the value function at state xnt+1 = (xnt + qt− d̃t)

+

at time t + 1. For any feasible production level qt, this is a convex optimization

problem that determines optimal pricing decisions for pt. Using the production level
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(qt) and pricing (pt) decisions, we can then update the look-up table as follows;

V̄ n
t (xt) =

(1− η)V̄ n−1
t (xnt ) + ηV̂ n

t (xnt ), xt = xnt

V̄ n−1
t (xt), otherwise.

where η is a step size between 0 and 1. We then calculate the next state on the basis

of random demand outcomes. The algorithm terminates when it satisfies the stopping

criteria. The final value function is an approximate solution to the problem since the

FDP algorithm does not compute the value function at every state, but only those

reached from the initial state.

2.4.2 A Two-stage Heuristic

In addition to the FDP algorithm we adopt an alternative approach based on the

partial-planning strategy introduced by Chan et al. (2006). The pseudo code sum-

marising the main steps of this approach is presented in Algorithm 2. This heuristic

consists of two stages. In the first stage, we determine a range of prices of the released

products available in the market. Then, in the second stage, we obtain the optimal

production level of each product for any price point determined in the first stage of

the algorithm.

Stage 1: Derivation of Price Bounds: A range of prices of products available in

the market can be specified by the lower and upper bounds determined by different

ways. In particular, we consider pricing rules by solving the abridged model of the

joint production-pricing problem and a list of prices derived by theoretical bounds as

described below.

The Abridged Model: Since the joint dynamic production-pricing model is compu-

tationally intractable, one can consider the (reduced) abridged optimisation model

where decisions related to production and pricing of available products are made at

only release times. In other words, production does not take place between two subse-

quent release times. The elimination of the production decisions between release times

can be interpreted as the firm placing cumulative production decisions between two

release times in advance. The resulting (abridged) dynamic program can be solved

only for certain small-size problems by the standard technique of backward dynamic

programming. The average, minimum and maximum value of product prices derived

from the policy tables can then be used at the second stage of the heuristic approach

to define a range for prices of the products. The policy table refers to all actions

evaluated at given possible states at each time by backward recursion.
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Theoretical Bounds: From the policy table obtained by solving the abridged model,

we investigate patterns between the production and pricing decisions of multiple

versions. We observe the minimum value of the pricing decision for a specific version

is obtained when its inventories are at the maximum level. This observation is used to

theoretically derive the lower and upper bounds for the pricing decisions for multiple

versions. The following propositions state theoretical bounds in order to determine

the pricing decision of a generation. The bounds are obtained by solving a simple

variant of the decision-making problem and they are applied in the solution method

proposed as two-stage heuristic.

Proposition 3 Assume that the maximum of demand for any generation of the prod-

uct is M at the final time period. For xT + qT = M , the market price of generation

k ∈ GT at time T can be computed in terms of innovation level αk,T of generation

k ∈ GT and holding cost hT as p∗k,T =
αk,T−hT

2
.

Proof: The proof is provided in Appendix A. �

Proposition 4 The market prices of multiple generations k ∈ Gt at time t of the

product are bounded as follows;

a)
αk,t−ht

2
≤ pk,t ≤ αk,t for k = m, and

b)
αk,t−ht

2
≤ pk,t ≤ αk,tpk+1,t

αk+1,t
for k = 1, · · · ,m− 2,m− 1.

Proof: The proof is provided in Appendix A. �

Stage 2: Optimal Production Strategies: Given the pricing strategy (determined

by certain rules or bounds at the first stage of the algorithm), we need to compute the

optimal production strategy. Let p̂t = {p̂k,t, k ∈ Gt} represent the pre-determined

price of all generations selling in the market at time t. Given pre-determined price

p̂t, we can formulate the value function V̂t(xt | p̂t) at state xt as follows;

V̂t(xt | p̂t) = max
qt≥0

E
[
p̂t.min{d̃t,xt + qt} − htxt+1 + δVt+1(xt+1)

]
− ctqt

s.t. xt+1 = (xt + qt − d̃t)
+

1(qt) ≤ κ

(2.5)

Assuming that no new generation is to be launched at the end of planning horizon

t = T , the value function V̂T (xT | p̂T ) states the boundary condition determining the
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optimal order quantity qT at time period T as follows;

V̂T (xT | p̂T ) = max
qt≥0

E
[
p̂T .min{d̃T ,qT + xT} − hTxT+1

]
− cTqT

s.t. xT+1 = (xT + qT − d̃T )+

1(qT ) ≤ κ

(2.6)

where prices p̂T of all available versions at time T are set during the last release time.

Note that in this formulation, the ending inventory for the last time period is assumed

to be held till the end of the planning horizon and then it is discarded at zero cost.

Algorithm 2: Pseudo code of the two-stage algorithm

1: Stage 1: Obtain interval of prices [p̂Lk,t, p̂
U
k,t] for k ∈ Gt at t = 1, 2, · · · , T by either

solving the abridged model or applying Proposition 5.

2: Stage 2: Given a price range, determine the optimal production strategy

3: - Initialize step size φk,t for each version k ∈ Gt at time t = 1, · · · , T .

4: - Set initial inventory level at time t = 1 as x1 = {xk,1 = 0, k ∈ G1}
5: - Compute a feasible price set:

P =

{
p̂Lk,t + e.φk,t | γk,t ≥ 0, e = 0, 1, · · · , p̂

U
k,t−p̂

L
k,t

φk,t
, for k ∈ Gt, t = 1, · · · , T

}
6: for each price point i in set P do
7: Set boundary condition: V i

T+1(xT+1 | p̂T ) = 0 for all possible states xT+1 at
t = T + 1

8: for t = T, T − 1, · · · , 1 do
9: Solve the following maximisation model at each state xt

V i
t (xt | p̂t) = max

qt≥0

{
p̂t min(xt + qt, d̃t)− cqt − ht(xt + qt − d̃t)

+ +

δV i
t+1((xt + qt − d̃t)

+ | p̂t+1)

}
,

10: end for

11: return q̂t = arg max
i∈P

V i
1 (x1 | p̂t)

12: end for

The following proposition establishes convexity of the optimal production model

for given prices of products. Thus, the optimal order policy is obtained when the

prices are known.

Proposition 5 Given approximate prices p̂t of all generations in the market at time

t, the value function V̂t(xt | p̂t) of the dynamic production planning model is concave

in production decisions.
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Proof: The proof is provided in Appendix A. �

Notice that the original joint production-pricing problem is simplified to the dy-

namic production problem where the optimal ordering policy can be obtained by

solving the dynamic optimisation model as follows,

q∗t = arg max p̂tE
[
min{d̃t,xt + qt}

]
− htE [xt+1] + δE [Vt+1(xt+1)]− ctqt

where fixed prices p̂t of multiple generations are selected from a range of
[
p̂Lt , p̂Ut

]
that is obtained at the first stage of the two-stage algorithm.

2.5 Computational Experiments

In this section, we first describe the design and data structure used for numerical ex-

periments and then present the computational results of different approaches studied

for solving the joint production-pricing problem of multi-generation product line. A

brief description of these approaches (presented in Section 2.4) with different pricing

rules adopted follows;

• Forward Dynamic Programming (FDP) is a simulation based stochastic dynamic

programming method presented in Section 2.4.1. Different from the two-stage

heuristic, this method determines the pricing and production decisions together.

Three different versions of this approach are used to solve the joint production-

pricing model (2.1).

– FDP-1 solves the non-linear optimisation model (2.1) at each iteration in

Algorithm 1.

– FDP-2 uses price sets that are determined from the maximum and minimum

prices given by the abridged model to solve model (2.1).

– FDP-3 uses price sets determined from the theoretical price bounds of

Proposition 4.

• Two-stage heuristic (TSH) applies pricing decisions made (in stage 1) for multi-

ple generations of a product using the model (2.5)-(2.6) to determine the produc-

tion policy (in stage 2). Different pricing strategies to find production quantities

are abbreviated as follows;

– ABridged Model (ABM) assumes that there is no intermediate ordering

between release times of the generations. The resulting model is solved by
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dynamic programming and the average, minimum and maximum value of

the product prices are implemented at the second stage of the two-stage

heuristic.

– Bounds Algorithm 1 (BA-1) requires the maximum and minimum prices

obtained from the abridged model to form the price bounds. These price

bounds are then used in Algorithm 2 to search for the price sets for each

generation.

– Bounds Algorithm 2 (BA-2) employs the theoretical price bounds given by

Proposition 4 to search for the price sets in Algorithm 2.

These algorithms were implemented in MATLAB and all computational experi-

ments were run in a desktop computer with Intel Core i5-7500, 3.4GHz, 8GB RAM.

2.5.1 Design of Experiments and Data

We design a series of computational experiments in order to illustrate the perfor-

mance of different algorithms developed for solving the dynamic programming mod-

els. Specifically, the numerical experiments aim to answer the following managerial

questions:

• What is the impact of selling multiple generations of a product on firm profit?

• What is the added value of joint decision making while managing a multi-

generation product line?

• How do varying characteristics of customer segments affect the management of

multiple generations?

Our experimental design considers different parameter sets related to the number

of generations in the market, the innovation level and the innovation sensitivity. We

define three base cases with respect to the number of generations in the market, which

are given in Table 2.2. In these base cases, we set the production capacity to κ = 25,

the inventory holding cost to h = 0.001 (Callioni et al. 2005, McCue 2020), and the

discount factor to δ = 1. Additional test instances (adopted from Sainathan (2013)

and Akçay et al. (2010)) are generated by varying some parameters in the base case

while the holding cost remains same over the planning horizon (Callioni et al. 2005,

McCue 2020).
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Table 2.2: A list of parameters set in the base case

Generations Innovation Level Production Cost Planning Horizon
(n) (α1, ..., αn) (c1, ..., cn) (T )

2 (3.5, 4) (0.5 ,1) 4
3 (3.5, 4, 4.5) (0.5, 1, 1.5) 6
4 (3.5, 4, 4.5, 5) (0.5, 1, 1.5, 2) 8

We simulate the arrival of customer requests over a planning horizon with length

T . Given the optimal pricing strategy obtained by different solution methodologies

at each time period, we first make the production decision for each generation and

then, generate the customer requests. Customer arrivals follow a Poisson distribution

with mean arrival rate of 25. The arriving customer either chooses one of the offered

generations according to the choice probabilities described in Proposition 1 or leaves

with no purchase.

We assume that customers are classified into two segments, namely price and

innovation sensitive. Each customer is assigned a value of θ ∈ [0, 1], denoting the

customer’s sensitivity towards innovation. A customer having innovative sensitivity

of θ > 0.5 is classified as innovation sensitive. On the other hand, a price sensitive

customer would have innovative sensitivity of θ < 0.5. In order to have an equal

number of customers in each segment, we uniformly distribute the value of θ in the

initial experiments. In case of low inventory, customer’s demand will be lost. We

also perform experiments where we vary the proportion of customer segments. We

estimate the expected profits by simulating the arrivals of customer requests over

1000 sample paths. The simulations are designed to test the performance of different

approximate solution approaches.

2.5.2 Numerical Results and Analysis

In this section, we present results of the numerical experiments under three main

categories: performance of different approximate approaches, impact of number of

multi generations available in the market and effect of customer choices on the firm’s

profitability.

Performance Comparison of Different Approaches: We are first concerned

with evaluating the performance of the proposed approximation methods with respect

to varying production capacities. The performance of each algorithm is measured in

terms of total expected profit achieved at the end of planning horizon and the CPU
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time taken to solve each problem instance. We estimate the expected profits by

simulating the decisions made by different solution methods under multiple customer

arrival trajectories.

We consider three experiment setups where a firm is selling two, three and four

generations of a product, respectively. Since the production capacity has a signifi-

cant effect on the computation time of the methods, we vary it over {5, 10, 15, 25}
to evaluate the performances of each solution strategy. Table 2.3 summarises our

simulation results for two, three and four generation product lines. The first column

in Table 2.3 shows the production capacity used in these tests whereas the next six

columns present the expected profits and the related computation times obtained by

solving the corresponding dynamic optimisation models using the two-stage heuristic

and FDP strategies. In addition, the best performance of an approach (defined as the

highest expected profit achieved and the lowest CPU time taken to solve the under-

lying problem by a method) is presented in bold and a dash – highlights the specific

cases with ‘no solution obtained’ by ABM, BA-1, FDP-1 and FDP-2 approaches for

the production capacity higher than five within three and four-generation production

lines due to the computational difficulty as seen from Table 2.3. Both forward and

backward dynamic programming approaches require solving a nonlinear optimisation

problem (with high-degree polynomial objective function) at each state of every time

period. The non-linearity arises because of the definition of choice probabilities and

the demand function. Moreover, the degree of the polynomial function expands as

the capacity and number of generations increase. Therefore, it becomes computation-

ally intractable to solve ABM, BA-1, FDP-1 and FDP-2 approaches when capacity

is higher than five for three and four generation product line problems.

By comparing the expected profits in Table 2.3, we observe that BA-1 and BA-2

typically generate the highest profits followed by FDP-1, FDP-2, FDP-3 and ABM

without a specific ordering between the latter four solution methods. Expected profits

obtained by BA-1 and BA-2 are significantly close. The small performance gaps be-

tween BA-1 and BA-2 show that the theoretical price bounds perform well compared

to the price bounds obtained from ABM. The performance of the FDP-based methods

in terms of expected profits significantly depends on the production capacity. As the

production capacity increases, the FDP-based methods perform better since they can

explore more states.

The size of the state space expands exponentially with the number of generations.

With the same number of sample paths, FDP is able to explore more number of states

in two generation product line compared to the three and four generation lines. Since

the performance of FDP depends on the number of states it can explore, the FDP-

40



Table 2.3: Performance of different solution methods for multi-generation product lines

Production Performance Two-stage Heuristic Forward Dynamic Programming
Capacity Metrics ABM BA-1 BA-2 FDP-1 FDP-2 FDP-3

Two-generation Product Line

5 Exp. Profit 12.69 12.89 12.47 12.21 12.56 11.94
Time (s) 52.23 54.13 1.83 2739.21 74.23 38.35

10 Exp. Profit 23.96 24.42 24.47 23.75 23.67 23.83
Time (s) 1126.32 1130.41 9.12 6888.62 1150.30 41.98

15 Exp. Profit 35.08 37.13 36.62 36.89 35.16 35.52
Time (s) 17,800.88 1725.03 59.13 21425.36 17654.32 58.91

25 Exp. Profit 57.62 60.18 60.16 62.38 60.71 60.82
Time (s) 456,809.12 564,809.34 374.62 131,367.64 458,342.35 220.44

Three-generation Product Line

5 Exp. Profit 17.80 18.57 18.01 16.85 15.49 17.68
Time (s) 1506.32 1507.34 18.60 17652.34 1886.46 50.43

10 Exp. Profit – – 33.92 – – 31.43
Time (s) – – 49.86 – – 70.32

15 Exp. Profit – – 51.24 – – 48.79
Time (s) – – 102.92 – – 100.85

25 Exp. Profit – – 83.54 – – 79.85
Time (s) – – 741.21 – – 557.6

Four-generation Product Line

5 Exp. Profit – – 20.32 – – 18.07
Time (s) – – 33.47 – – 566.32

10 Exp. Profit – – 39.99 – – 38.00
Time (s) – – 224.04 – – 983.82

15 Exp. Profit – – 59.66 – – 56.04
Time (s) – – 1464.83 – – 1234.51

25 Exp. Profit – – 104.67 – – 97.5
Time (s) – – 75737.16 – – 6765.43

based methods perform better when there are small number of versions available.

In terms of computation times, we observe that the most computational effort is

invested in solving the abridged model (ABM). Since BA-1 and FDP-2 use the price

bounds obtained from the abridged model, their computation times become high. On

the other hand, BA-2 and FDP-3 apply for the theoretical price bounds, and therefore

they are computationally much faster. We should also emphasize that FDP-1 is

relatively slower since it doesn’t use price sets unlike FDP-2 and FDP-3 approaches.

Instead, at each iteration of FDP-1, the high-degree non-linear optimisation problem

(see Section 2.4.1) is solved at each decision stage. In general, the CPU times increase

as the problem size increases.

Impact of Multiple Generations on Profitability: We also design experiments

to analyse the impact of strategic decisions regarding to the management of multiple

generations on the company’s profitability. The main question to answer is under

what conditions offering multiple generations improves expected profit over a plan-
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ning horizon. We quantify the benefits of offering multiple generations as opposed to

selling only one generation in the market by comparing the expected profits obtained

by different product line strategies. We assume that a firm produces four generations

of a product over the planning horizon of eight time periods. At the release time

of a new generation, the firm decides how many generations to keep in the market

depending on the adopted product line strategy. In order to explore the impact of

different product line strategies on the expected profit over a fixed planning horizon,

we consider four settings: (a) one-generation product line where the firm sells only

the latest generation, (b) two-generation product line where the latest two genera-

tions are sold, (c) three-generation product line where the latest three generations are

available in the market, and (d) four-generation product line where all four genera-

tions are sold. We apply the FDP-3 strategy due to the computational efficiency of

the forward dynamic programming approach. In particular, we vary the production

cost and innovation level of the multi-generation product line to analyse the firm’s

production decisions and the related profitability. Table 2.4 presents our results. The

initial production cost and innovation levels of the oldest generation of the product

line are displayed in the first two columns of Table 2.4. When a new generation is

released, its innovation level and production cost are increased by 0.5 units each in

comparison with its previous generation. The expected profits are obtained by the

FDP-3 approach using different generations of production line strategies at the end

of the planning horizon.

Table 2.4: Expected profit obtained over a planning horizon

Initial Initial Product Lines
Cost Quality 1-generation 2-generation 3-generation 4-generation

0.5 3.5 88.07 91.25 95.87 97.50
0.5 4.5 131.16 131.88 135.86 141.74
1.5 3.5 29.54 31.09 32.46 41.55
1.5 4.5 61.46 65.35 67.50 79.34

Comparing the expected profits obtained from different product line strategies, we

observe that profitability of the firm increases as the number of generations offered in

the market increases. In particular, there is a significant gap between the expected

profits obtained by single-generation and four-generation strategies. This difference

can be attributed to the impact of capturing different customer segments with wider

choice of products. On the other hand, the difference between the expected profits

obtained by three-generation and four-generation product lines are very close when

the production cost and the innovation level are low for the oldest generation (the

first test instance). In our simulation experiments, we observe that while operating
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a four-generation product line, the firm generally decides to sell three generations

instead of four to yield the maximum profit. Due to low innovation level of the oldest

generation, customer preferences shift to the other versions. On the other hand, when

the innovation level for the oldest generation is high (at level of 4.5), selling it with the

other versions in the market is more profitable. The introduction and discontinuation

of multiple generations depend on their innovation levels. The firm is likely to sell

different versions when the innovation levels are high. In practice, technology firms

may upgrade the design and software features of the old products when they release

a new one. In fact, a similar strategy was implemented by Apple in 2016. During the

release of new mobile, iPhone 6, Apple also launched an upgraded version of iPhone

5S by increasing its capacity (Welch 2017).

Impact of Joint Production-Pricing Strategy: We are also concerned with

an effectiveness of dynamic joint production-pricing decision making in the multi-

generation product line problem. We therefore adopted planning strategies (so-called

“partial planning”) introduced in Chan et al. (2006) to compare with the proposed

dynamic strategies.

In a partial planning strategy, we fix one decision (production or pricing) at the

beginning of the planning horizon while the other decision is dynamically determined

by the optimisation model at each time period. In practice, we see that decisions re-

lated to pricing and production may be taken in advance due the various limitations

related to legal contracts experienced by firms (Rasmussen 2018). This kind of ad-

vance decisions is generally made on the basis of preset parameters (Chan et al. 2006)

without taking uncertainty into account. Therefore, we determine the partial plan-

ning strategies based on the deterministic formulation of the joint decision-making

model (1)-(2). In particular, we consider two partial planning strategies, abbreviated

as F-price and F-prod. In the F-price strategy, prices of all generations are fixed at

the beginning of the planning horizon. These prices are basically input to the FDP-3

algorithm to find the dynamic production policy. Similarly, in the F-prod strategy,

we fix the production decision and find the dynamic pricing policy by using FDP-

3. Note that the fixed pricing and production decisions in the F-price and F-prod

strategies, respectively, are obtained by the deterministic formulation of the joint

decision-making model. In this experiment, we consider a four-generation product

line and compare the performance of F-price and F-prod with the joint production-

pricing policy, abbreviated as JPP. We present our numerical results in Table 2.5.

The first two columns in Table 2.5 show the production cost and innovation level of

the oldest generation of the product line. The next three columns give the expected

profits obtained by JPP, F-price and F-prod, respectively. The last two columns dis-
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play the percentage gaps between JPP and the two partial planning strategies. Figure

2.2 illustrates the production and inventory levels at each time period by using the

second test instance given in Table 2.5.

Table 2.5: Performance comparison of joint production-pricing and partial strategies

Initial Initial Strategies % Gap with JPP
Cost Quality JPP F-price F-prod F-price F-prod

0.50 3.50 97.50 92.26 85.15 5.68 12.67
0.50 4.50 141.74 138.10 125.74 2.63 11.29
1.50 3.50 41.55 37.84 30.24 9.81 27.22
1.50 4.50 79.34 70.37 61.51 12.76 22.47

As seen from Table 2.5, JPP outperforms the partial planning strategies. While

the average performance gap between JPP and F-price is 7.72%, it is 18.41% for

F-prod. The performance gaps are more striking when the initial cost of the oldest

generation is high. The poor performance of partial planning strategies is due to

the fixed decision (production or pricing) made at the beginning of the planning

horizon. Comparing the top and middle panels of Figure 2.2, we note that the F-

price strategy cannot manage multi-generation product line effectively as opposed to

JPP. It generally offers two generations during the planning horizon. On the other

hand, from the top and bottom panels of Figure 2.2, we observe that JPP and F-

prod have a similar product line. In addition, the F-prod strategy behaves closely

to the JPP policy in terms of production and inventory levels. However, there is a

significant gap between the expected profits of F-prod and JPP in all test instances.

Due to the fixed production decision set at the beginning of the planning horizon, the

F-prod strategy cannot balance its inventory and production levels. As illustrated

in Figure (2.2), the inventory level for version 1 at time 3 is approximately same in

JPP and F-prod, respectively. However, the corresponding production decisions for

version 1 are different for these two strategies. The JPP policy dynamically reacts

to a high inventory level by producing fewer products. On the other hand, when we

fix the production levels, the firm is unable to dynamically respond to the changes in

inventory levels. Thus, the F-prod strategy suggests a higher production for version

1 in comparison to the JPP policy. The variation in inventory levels of multiple

versions is primarily caused by uncertain demand. Thus, dynamically deciding the

production levels for multiple versions is essential to mitigate demand uncertainty. In

summary, fixing one decision related to price or production not only decreases profits,

but also has several other drawbacks. When the prices are fixed at the beginning

of the planning horizon, the firm cannot react to the changes in customer demand

and may fail to utilise the benefit of internal competition among multiple versions.
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On the other hand, when production decision is fixed, the firm cannot manage the

demand uncertainty efficiently which may result in shortages or overstocking. Thus,

the internal competition among multiple versions and uncertainty in their demand

must be handled by a joint production-pricing strategies.

Impact of Customer Segments: We also investigate impact of customer prefer-

ences on the management of a multi-generation product line. In particular, we explore

how product sales alternate between different generations when the proportion of each

customer segment changes. Recall that the segment of a customer is determined with

respect to innovation sensitivity parameter (i.e., θ). While a customer having in-

novative sensitivity of θ > 0.5 is classified as innovation sensitive, a price sensitive

customer would have innovative sensitivity of θ < 0.5. We simulate customer requests

by changing the value of θ and evaluate the product sales by using the optimal pro-

duction plan obtained by the BA-2 strategy. Since the FDP-based strategies do not

take θ into account while determining the production and pricing policies, we use the

BA-2 strategy for this experiment. Figure 2.3 illustrates the average number of sales

(left panel) and the average production quantities (right panel) for three- (top panel)

and four- (bottom panel) generation product lines at the last two time periods with

respect to varying customer segments. In these figures, the horizontal axis displays

market classification in terms of various percentage customer segments as starting

from 90-10 up to 10-90. For instance, the case ‘70-30’ represents 70% of customers

in the market as being quality sensitive whereas the remaining 30% of customers is

price sensitive.

Overall, we observe that results obtained for three- and four-generation produc-

tion lines show similar performance patterns. By comparing the average number of

sales and production quantities in Figure 2.3, one can see that when the proportion

of price sensitive customers is high, demand for the oldest product remains high and

the production of all generations becomes profitable. On the other hand, when there

are more quality sensitive customers in the market, demand shifts towards the newer

generations. An interesting result at this point is that the average production quanti-

ties increases as the proportion of quality sensitive customers increases. Because the

production decisions at the last two time periods depend on the starting inventory,

and a change in the market segments results in different starting inventories. Thus,

our model is adaptive of the changing customer segments due to its dynamic nature.

It is important to point out that the average production for the oldest generations

decreases to zero when the market is dominated by mainly innovative sensitive cus-

tomers. This shows that the optimal product line strategy significantly depends on

the proportion of price and innovation sensitive customers in the market.
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Figure 2.2: Inventory and production levels obtained by joint production-pricing
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Figure 2.3: Average sales and production quantity in three-generation

2.6 Conclusions

In this chapter, we study the joint production-pricing decision-making process of a

firm selling a multi-generation product line under demand uncertainty. The existing

studies in literature focus on transition between exactly two generations rather than

developing a multi-generation product line. We account for the internal competition

between multiple generations by examining customer choices and derive a stochastic

dynamic model for joint production-pricing problem for multi-generation product line.

Finding the optimal production and pricing policies for this problem requires solving

a stochastic dynamic program with a high-dimensional state vector. By analysing the

structural properties of the problem, we present two approximations, based on FDP

and heuristic in conjunction with pricing strategies obtained by different solution

methods, for solving the dynamic joint production-pricing problem. A computational

study is conducted to investigate the performance of the approximation methods and

to derive managerial insights.
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We first evaluate how selling multi-generation product line affects the firm prof-

itability. Our numerical results show that the profitability of selling the oldest version

increases with its innovation level. Therefore, by improving the innovation levels of

the older generation during a new product release, the firm can increase the sales

of older generations. We then illustrate the benefit of joint decision-making process

in multi-generation product line. The joint decision-making policy proposed in this

research is compared with partial decision-making policies. Our results indicate that

the dynamic joint policy outperforms the fixed production and pricing policies since

it takes the recent changes into account to match with demand by production.

We also analyse the effect of customer segments on the management of multi-

generation product line. By varying the proportion of customer’s price and quality

sensitivity (toward the underlying technology) in the market, we investigate the pro-

duction decisions for multi-generation products. The results indicate that when the

proportion of innovation sensitive customers is high, the production and sale of older

generations drop due to the high demand towards the new generations. Similarly,

as the percentage of price sensitive customers increases, it becomes more profitable

to sell older generations with new release. This shows that the number of genera-

tions to be kept in the market should be determined by considering varying customer

segments.

The methodology introduced in this chapter can be further tested over large scale

problems. Moreover, discrete event and agent-based simulation methods could have

been explored. As future research, one may introduce release time as a decision

variable rather than assuming it to be predetermined.
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Chapter 3

Ordering and Markdown Policies

for Perishable Product

Many food products are perishable. The firms often promote the freshness level of

perishable products to gain strong position in the market. However, they also face the

challenge of the increasing amount of wastage of perishable products due to demand

uncertainty. A common strategy to reduce wastage is to lower the selling price of

inventories close to expiry. In this research topic, we develop efficient markdown and

ordering strategies to sell a perishable product under uncertainty in its demand.

This chapter discusses the challenges faced by supermarkets selling perishable

products. We then provide a review of relevant literature on inventory and price

management of perishable products. The joint ordering and markdown problem is

explained and then its stochastic dynamic programming formulation and customer

choice model are provided. The exact solution methodology based on concavity is

presented as well. We then focus on the computational study testing the solution

algorithm as well as analysing the joint ordering-markdown polices. The conclusion

remarks of this chapter are then finally described.

3.1 Dynamic Policies for Perishable Products

Perishable products that deteriorate quickly such as fruit, vegetable, dairy products,

and cut flowers constitute more than half of supermarket sales (FMI 2016). Several

studies report perishable products as a major attraction for customers in stores and

these products have become a main reason for consumers to choose one store over
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another (Krider & Weinberg 2000, Tsiros & Heilman 2005, Webber et al. 2011). Thus,

retailers extensively highlight freshness, quality and vast varieties of their perishable

products in their marketing campaigns (Bridge 2018).

Promoting perishables can help retailers to gain a strong position in the market,

but they face challenges as well. Displaying large varieties of fresh-looking perishable

products, such as food items, often leads to wastage and raises environmental con-

cerns. A recent study commissioned by the United Nations indicates that globally,

one-third of food produced for consumption is lost or wasted (Ndukwe 2018). Within

the major supermarkets in the UK, 44% of Tesco’s bread products are thrown away ev-

ery day due to expiration (BBC 2013). Inefficient inventory management of perishable

products negatively impacts companies economic prosperity. The biggest challenge in

the management of perishable products is matching perishable supply with uncertain

demand. A perishable product may remain unsold until its expiration primarily due

to uncertainty in its demand. To avoid wastage and reduce losses, retailers often price

down old products approaching the end of their lifetime (Gallego & Van Ryzin 1994,

Talluri & Ryzin 2004, Chen & Sapra 2013). Chowberry, an application in Nigeria,

provided a platform to the supermarket retailers to put the old food products on

reduced prices (Ndukwe 2018). They report an 80% reduction in wastage due to the

introduction of markdowns. Offering a markdown on old products can induce pur-

chases from consumers who cannot afford the full price of new products. However,

the price of new products as well as the discounted prices of old products should be

carefully determined. Setting a very low price for old products may lead to revenue

loss because consumers who can purchase new products may switch to older ones due

to the attractive price difference. On the other hand, pricing old products high may

decrease their demand and result in higher cost of wastage. To effectively manage

the mismatch between perishable supply and demand, it is important for retailers

to coordinate markdown pricing with replenishment decisions. Markdown pricing for

old products should be determined by considering the available inventory and the

remaining shelf lives of the products. Cognizant (2015) and Mckinsey (2014) specifi-

cally emphasise on the development of joint markdown and replenishment technology

to improve profits. Although the importance of joint ordering-pricing techniques is

extensively advocated to mitigate demand uncertainty for fixed-age products, this

research area has not yet received enough attention (Davis 1993, Chen & Simchi-Levi

2004, Talluri & Ryzin 2004, Karaesmen et al. 2011, Webber et al. 2011, Mckinsey

2014, Cognizant 2015).

In this chapter, we study the joint ordering-pricing decision making problem of a

firm selling a perishable product with a fixed lifetime using a periodic review model.
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In any period, the retailer decides how much fresh products to order and how to price

ageing inventories. Poor management of perishables may result in disposal of large

amount of outdated items. To reduce wastage, the retailer can conduct markdown

sales by pricing down old inventories. Demand in each period is uncertain with some

customers preferring to buy regular priced products and others preferring to buy

marked-down old products. Even though the markdown sales reduce the wastage

of the perishable products, it may cannibalize the demand for the products sold

at regular prices. Thus, we are concerned with dynamic ordering-pricing strategies

by considering demand uncertainty and internal competition between fresh and old

inventories.

The contribution of our research lies in obtaining combined ordering-markdown

pricing policies for a firm to tackle the challenges of wastage and demand canni-

balization. We formulate the joint ordering-pricing decision-making problem for a

general lifetime perishable product as a stochastic dynamic programming model. We

account for the demand cannibalization between fresh and markdown inventories by

evaluating the dynamic changes in customer choices. The challenge with a perishable

inventory management problem is the dimensional expansion of the state space, as

a result of continuous tracking of the product age. Due to the complexity of this

problem, existing research largely focuses on inventory systems with a two-period

lifetime product. In contrast to the existing literature, we consider a general lifetime

perishable product and we tackle the curse of dimensionality on the state space by

proposing a solution methodology based on the theoretical properties of the dynamic

programming model. We prove that the value function of the dynamic programming

model is k-concave in inventory levels. Thus, we employ the properties of k-concavity

to design an algorithm providing the optimal ordering and pricing policy. We con-

duct extensive numerical experiments to illustrate the performance of the solution

algorithm and to gain managerial insights on the ordering and pricing strategies. In

these experiments, we analyse the benefit of dynamic ordering and markdown strat-

egy as opposed to using fixed markdown policies which are common in practice. Our

analysis shows that dynamic ordering-markdown policy performs significantly better

than fixed markdown strategies since ordering and markdown decisions are made by

considering the changes in customer preferences and the available inventory levels for

ageing inventories.

The remaining part of the chapter is organized as follows. Section 3.2 focuses on

the literature review by providing details of existing studies relevant to our research.

The stochastic dynamic programming formulation of the joint ordering-pricing prob-

lem is presented in Section 3.3. The solution methodology and computational results
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are explained in Sections 3.4, 3.5 and 3.6, respectively. The concluding remarks are

provided in Section 3.7.

3.2 Review of Inventory Management of Perishable Products

Research on inventory management of perishable products has attracted significant

attention over the years. The recent reviews in this area are provided by Nahmias

(2011), Karaesmen et al. (2011), Bakker et al. (2012) and Janssen et al. (2016).

Our research is mostly related to the literature that considers joint inventory and

pricing management for perishable products deteriorating over time. In this area, the

main focus has been towards the periodic review models where the inventory has been

tracked at specific periods rather than keeping a continuous track. Continuous review

models for perishables are studied for random lifetime products. We refer to Goyal &

Giri (2001) and Bakker et al. (2012) for a comprehensive review of continuous review

models.

Ferguson & Koenigsberg (2007) analyse the inventory management and pricing

decisions for a firm selling a food product with exactly two-period life cycle. In

the first time period, the decision of procurement and pricing of fresh products is

made by considering demand uncertainty. At the start of the second time period,

the decisions are based on determining how much leftover inventory of old product to

carry over, how much fresh products to procure, and what prices to be charged for new

and old inventories. However, they assume that the demand in the second period is

deterministic. Li et al. (2009) study a similar problem of a two-period lifetime product

by considering demand uncertainty in both periods. They assume a single price for

old and new inventories. Thus, even though a track of differently aged inventories is

kept, there is no price differentiation between old and new inventories. They analyse

the structural properties of the optimal inventory replenishment and pricing policy.

Chen & Sapra (2013) extend the work of Li et al. (2009) by considering different

inventory consumption scenarios. They study inventory consumption in the order

of first-in-first-out and last-in-first-out and derive structural results on the optimal

policy. In a related work, Chen et al. (2014) investigate the effect of lead time in

product replenishment decision. Similar to previous studies, inventories of different

ages are priced equally. However, they allow to discard the excess inventory before it

is perished. Herbon (2017) considers the coexistence of old and new inventories with

different prices on the shelf and analyzes the value of selling different age products

under deterministic demand.

52



The literature discussed so far either assume a single price for old and new inven-

tories or consider price differentiation between a two-period lifetime product facing

deterministic demand. Price differentiation between old and new inventories for a

perishable product with multiple-period (n-period) lifetime is addressed by Li et al.

(2012). They assume that the retailer discards old inventory when a new order is

placed. In a given time period, the retailer makes replenishment and pricing deci-

sions, and decides whether to keep or discard the remaining inventory. Thus, old

and new inventories are not sold at the same time. The existence of old and new

inventories along-with price differentiation between them is considered by Sainathan

(2013), Hu, Shum & Yu (2015) and Li et al. (2016). Sainathan (2013) study a joint

pricing and inventory model of a perishable product with a two-period lifetime over

an infinite horizon. He assumes that old and new perishable products compete with

each other in the market under demand uncertainty that is incorporated through the

process of dynamic demand substitution. Demand substitution refers to dynamic pro-

cess of replacing the demand of old products with newer ones. Sainathan (2013) uses

a linear utility function to model demand substitution and to derive optimal pricing

and replenishment policies for the perishable product. Hu, Shum & Yu (2015) obtain

joint inventory and markdown strategies for a firm selling a perishable product to

strategic customers. However, their model is specifically developed for one-period

lifetime products, like bakery and other food items. Li et al. (2016) study the joint

replenishment and clearance sales decisions of a firm selling n-period lifetime product.

Both, Hu, Shum & Yu (2015) and Li et al. (2016) model replenishment and clearance

sales decisions for perishable products where the prices of old and new inventories

are known and fixed. Chua et al. (2017) examine both, inventory and pricing de-

cisions of a firm selling a two-period perishable product. They assume the pricing

decisions and demand for the perishable product to be independent of time. Time

dependence between the demand of n-period lifetime product is considered by Chao

et al. (2015). Their focus lies in building an approximation algorithm for perishable

inventory systems, rather than developing pricing strategies for different age of in-

ventories. Chintapalli (2015) works on the joint inventory-pricing decision model for

a retailer experiencing substitutable demand for a multi-period food product. He

assumes that consumers are free to choose between old and new products. Due to

the complexity of the problem, he focuses on a simplified inventory-pricing model

where marked-down prices for old food items are stationary over time. There are two

main differences between our research and the existing studies in this stream of liter-

ature. First, most of these studies develop joint pricing and inventory management

policies for a two-period lifetime product. Second, existing literature focusing on a

multi-period lifetime perishable product does not consider inventories of different age

in their pricing decision. In this study, we take into account both old and new inven-
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tories with different pricing decisions for a general lifetime product. Moreover, unlike

the existing literature, we model the process of markdown over time and analyse its

properties.

Our research is also closely related to the stream of literature on inventory man-

agement of different age products. Deniz et al. (2010) study the inventory issuing

and replenishment policies for a perishable product with two-period lifetime where

demand is differentiated with respect to the age of the product. They compare dif-

ferent inventory issuing policy pairs and provide analytical results. Li & Yu (2014)

investigate the structural properties of the optimal inventory policy for a firm selling

perishable products. Given the regular and clearance sale price, at each time period,

the firm decides how much new products to order, how much leftover inventory of old

product to carry over and how much to sell at a clearance sale price. They assume

that clearance products will be sold out due to high demand and hence, the firm de-

cides how many old products to put on clearance sale. Abouee-Mehrizi et al. (2019)

consider age dependent demand and study joint ordering, inventory allocation and

disposal decisions for a multi-period perishable inventory system. In a given time

period, available inventory is allocated to the different demand classes where each

class accepts products with remaining lifetime longer than a threshold. Inventory of

any age can be disposed at the end of each time period. They examine the relation

between ordering decision and the inventories of different age and characterize the

structure of the optimal ordering, allocation, and disposal policies. In a related work,

Chen & Sapra (2020) consider age-dependent demand and investigate the effect of fix

and flexible replenishment decisions on the structure of the optimal inventory man-

agement policy. Different from Abouee-Mehrizi et al. (2019), they do not allow the

coexistence of multi-age inventories. Old inventory is discarded when a new order is

placed. Chen & Sapra (2020) focus on replenishment decision and explore the value

of having flexibility in ordering.

Research related to finding markdown strategies in view of age and time depen-

dency has not been widely studied. Only Ferguson & Koenigsberg (2007) and Herbon

(2017) study existence of multiple age of inventories in a two period problem with

known demand. We summarise the most related research papers developing inventory

management and markdown pricing policies for perishable inventory systems using

stochastic dynamic programming in Table 3.1. Different from the existing literature,

we consider a general lifetime perishable product and allow coexistence of fresh and old

inventories in the system. We primarily investigate the combined ordering-markdown

policies to tackle the challenge of demand cannibalization between different age of

inventories. Considering the demand uncertainty, the joint ordering-pricing decision
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making problem is formulated as a stochastic dynamic programming model. We

propose a solution methodology based on the theoretical properties of the dynamic

program. We apply the properties of k-concavity to design an algorithm yielding the

same solution as the standard backward dynamic programming technique.

Table 3.1: Classification of relevant research papers

Research papers Age of Multi-age Uncertain Decisions Age & time
product Inventory demand Ordering Pricing varying price

Ferguson & Koenigsberg (2007) 2 X X X X
Li et al. (2009) 2 X X X X
Li et al. (2012) n X X X
Sainathan (2013) 2 X X X X
Li & Yu (2014) n X X X
Chen et al. (2014) n X X X X
Hu, Shum & Yu (2015) 1 X X
Chao et al. (2015) n X X X
Li et al. (2016) n X X X X
Chua et al. (2017) 2 X X X X
Herbon (2017) 2 X X X X
Our research n X X X X X

3.3 The Dynamic Ordering-Markdown Model

Consider a firm (such as Tesco or Walmart) that sells a perishable product such

as fruits, vegetables, meat, or cut flowers. The perishable product has an n-period

lifetime, after which it expires and has to be disposed off at a fixed penalty cost.

Demand for perishable product is assumed to be uncertain and unmet demand is

lost. The firm regularly reviews the available inventory and places an order for fresh

products. We assume that the fresh products are sold together with the older ones

on the same shelf. To avoid loss and wastage, the firm can conduct markdown sales

by pricing down old inventories. This price differentiation between different age of

inventories leads to an internal competition and markdown products may cannibalize

the demand for the products sold at regular prices. Thus, the firm must decide

when to put the products at markdown and the reduced price to offer by considering

uncertain demand. We assume that the firm tackles demand uncertainty and internal

competition by joint decision-making framework regarding ordering and markdown

sale. In this section, we first present the details of the underlying ordering-markdown

pricing problem and then formulate the problem as a stochastic dynamic program

under a customer choice model. Before that, we introduce the notation used in the

model formulation in Table A2.
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Table 3.2: Description of notation

Model parameters

T planning horizon discretised by time periods t = 0, 1, · · · , T
n fixed age of perishable product
κ production capacity
δ discount factor
c unit ordering cost
h unit inventory holding cost
γ unit penalty cost for discarded product
pr unit regular price

d̃t uncertain demand at time t

State variables

xt vector of regular inventory levels xi,t of age i at the beginning of time t
yt vector of markdown inventory levels yi,t of age i at the beginning of time t
It Inventory vector It = (xt,yt) consisting of regular and markdown inventory

Actions

pmt vector of markdown price pi,mt for inventory of age i at time t
wt vector of binary decision wi,t for inventory of age i at time t
qt order decision at time t

Assume the firm sells a perishable product over a finite planning horizon. The

planning horizon is discretized into T time periods, and t = 0, 1, · · · , T represents

specific decision epochs where the operational decisions (such as ordering and pricing)

are made. The perishable product has a fixed lifetime of n periods. The product

ordered at time period t expires at time period t + n and is disposed at a penalty

cost of γ per unit. We assume that the lead time for ordering is zero so that the fresh

products can be received instantaneously.

Figure 3.1: Decision-making process for a deteriorating perishable product

Figure 3.1 illustrates the decision-making process of a deteriorating perishable

products. Inventory levels of the perishable product are reviewed at the beginning

of each time period. The available inventories are either sold at a regular or marked

down price. The regular price, denoted by pr, is known to the firm and remains

same along the planning horizon. On the other hand, the firm decides the markdown

price pi,mt for inventory of age i at time t. We define wit to denote the binary
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variable for the markdown decision of inventory of age i at time t. If wit = 0, the

inventory of age i at time t is sold at the regular price pr. On the other hand, when

wit = 1, the inventory of age i at time t is marked down and the firm must decide

the markdown price pi,mt. We introduce vectors pmt = {pi,mt ∈ R+ : i = 0, 1, · · · , n}
and wt = {wit ∈ {0, 1} : i = 0, 1, · · · , n} corresponding to markdown pricing and

binary decisions at time period t, respectively. We assume the following regarding

markdown decisions,

A1: A product with higher age is closer to expiry and has lower quality than a

product with lower age. Thus, if the inventory of an age i is marked down, then

inventory of a higher age i + 1 should also be marked down. This condition is

represented by the equation, wi+1,t ≥ wit, where i = 0, 1, . . . , n and

t = 0, 1, . . . , T .

A2: In practice, if the price of perishable inventories (such as fruits and vegetables)

is marked down, it cannot be marked up in their remaining lifetime. This

condition is represented by the equation, pi,mt ≥ pi,mt+1 for i = 0, 1, . . . , n and

t = 0, 1, . . . , T − 1. Thus, information regarding the markdown pricing is also

stored in the state of the dynamic system.

We classify the initial inventory levels at any time into two categories, regular

and markdown, based on their selling prices. Let the amount of regular inventory

of age i at the beginning of time t be represented as xit. Similarly, the markdown

inventory of age i at the start of time t is denoted by yit. The state of the dynamic

system is defined by the vectors of regular and markdown inventories at time t and

these are represented as xt = {xit ∈ Z+ : i = 0, 1, · · · , n} and yt = {yit ∈ Z+ : i =

0, 1, · · · , n}, respectively. We define the inventory vector, It = (xt,yt) consisting of

both regular and markdown inventories as the state of the dynamic system. Given

the state of the system, the firm makes ordering and markdown decisions at each time

period. Let us suppose the firm places an order of qt units in batch (or bulk). Let κ

represent the ordering capacity for the firm. At each time period, the orders should

not exceed the capacity. This can be formulated by the constraint, qt ≤ κ for each

time t. The assumption of restricting ordering capacity is to maintain theoretical and

computational tractability of solutions of the dynamic model (Bertsekas 2018). We

use c and h to denote the unit ordering and holding cost for the perishable product,

respectively.

We suppose the random demand at time t to be dependent on the prices of the

available inventories. Let d̃t = dt(pr, p0mt, p1mt, · · · , pnmt, ε̃t) denote the random de-

mand at time t, where uncertain parameter ε̃t follows a known distribution. The

57



demand for products with a single price is assumed to be satisfied in a FIFO issu-

ing rule. This assumption is common in literature for perishable inventory systems

(Nahmias 2011). Moreover, in practice, supermarkets are reported to use the FIFO

strategy to sell older inventories first to avoid wastage (Arline 2020). In FIFO, prod-

ucts they purchase earlier will become the first to be sold.

We now describe the state transition equations for inventory levels at each time.

The starting regular and markdown inventories of age i at time t+ 1, represented by

xi,t+1 and yi,t+1, have evolved from the inventory levels xi−1,t and yi−1,t of age i − 1

at time t, respectively. Since the firm decides if a regular inventory is marked down

or not, the regular inventory of age i is represented by (1 − wit)xit. On the other

hand, the inventory of age i sold at the markdown price at time period t is denoted

by yit +witxit. Since inventories are issued in a FIFO order, demand is satisfied from

the inventory of age i when all inventories with surpassed ages are depleted. Thus,

the state transition for regular and markdown inventories of age i from time t to t+1

are described by the following equations, where i = 0, 1, . . . , n,

xi,t+1 = max
{

(1− wi−1,t)xi−1,t −max{d̃t −
n−1∑
j=i

(1− wjt)xjt, 0}, 0
}

yi,t+1 = max
{
yi−1,t + wi−1,txi−1,t −max{d̃t −

n−1∑
j=i

(yjt + wjtxjt), 0}, 0
} (3.1)

The firm aims to maximize the expected profit over the planning horizon through

a joint ordering-markdown decision framework. The expected profit is computed as

the expected revenue minus the expected total cost of ordering, holding and penalty

for wastage of expired products. Given the selling price for regular and markdown

inventories, the revenue depends on future realisations of uncertain demand. When

demand is lower than the inventory in-hand, represented as d̃t ≤
∑n

i=0(1−wit)xit, the

revenue from selling the product at regular price at time t becomes prd̃t. In case of high

demand (i.e., d̃t ≥
∑n

i=0(1−wit)xit), the revenue at time t becomes pr
∑n

i=0(1−wit)xit.
Thus, we can state the revenue earned at time period t by selling the product at regular

price as prmin{
∑n

i=0(1−wit)xit, d̃t}. Similarly, when the inventory of age i at time t

is marked down to price pi,mt, the firm earns revenue pi,mtmin{witxit+yit, d̃it}, where

d̃it = max{d̃t−
∑n

j=iwjtxjt + yjt, 0} represents the left-over demand of age i after the

inventories of surpassed ages are depleted. The total ordering and holding costs are

expressed as cqt and h
∑n

i=0(xi,t+1 + yi,t+1), respectively. Since the unsold inventory

of age n is wasted and discarded, γ(xn,t+1 + yn,t+1) represents the total penalty cost.

Let Vt(It|pm,t−1) denote the value function at time t given a state It of the system.
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The value function for the dynamic joint ordering-markdown pricing decision making

problem at time period t can be written as follows;

Vt(It|pm,t−1) = max
qt,pmt,wt

E[prmin{
n∑
i=0

(1− wit)xit, d̃t}+
n∑
i=0

pimtmin{witxit + yit, d̃it}

− cqt − h
n∑
i=0

(xi,t+1 + yi,t+1)− γ(xn,t+1 + yn,t+1) + δVt+1(It+1|pm,t)]

s.t. pimt ≤ pim,t−1, i = 0, 1, . . . , n,

wit ≤ wi+1,t, i = 0, 1, . . . , n,

wit ∈ {0, 1}, i = 0, 1, . . . , n,

0 ≤ qt ≤ κ.

(3.2)

Since no product will be sold after the planning horizon, the boundary condition at

the terminal time period is VT+1(IT+1|pm,T) =
∑n

i=0−(h+ γ)(xi,T+1 + yi,T+1).

3.3.1 The Customer Choice Model

Customers are known to eagerly anticipate markdown sales on perishable products at

supermarkets (e.g., Krider & Weinberg (2000), Tsiros & Heilman (2005) and Webber

et al. (2011)) . A markdown is designed to increase sales of a product that cannot be

sold in its current price. Offering a markdown on underselling products can attract

new customers who cannot afford the full price of the product. At the same time, the

markdown sale might lead to demand cannibalization by influencing the customers

who are willing to purchase the product at a regular price (Ferguson & Koenigsberg

2007, Li et al. 2012). A customer choice model examines various factors governing the

customer’s purchase decision. For our problem, a customer has three choices at any

time t: (i) buy the product at the regular price that is denoted by choice r, (ii) buy

the product at the markdown price that is denoted as choice m, and (iii) no purchase

which is denoted as choice o.

There are different observable and unobservable factors that affect the customer’s

choice of buying a product from the regular or markdown sale (Train 2009). Price,

quality and freshness level of the product, and the customer’s sensitivity towards

freshness can be seen as observable factors impacting their choices. On the other

hand, unobservable factors influencing predilection toward buying a specific version

are described as idiosyncratic and mostly depend on the individual’s preferences,

such as personal taste and budget. In this chapter, we consider both observable and
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unobservable factors to analyze the customer’s choice.

We assume that a customer is rational while making a decision and aims to max-

imize his/her own utility. For each customer, we define a random utility function

to measure the preference of the customer. Let Uk
st be the random utility obtained

by the kth customer from making choice s at time period t for s ∈ {r,m, o} and

t = 0, 1, ..., T . Following Train (2009) and Akçay et al. (2010), customer utility can

be formulated as a linear function of price pst and quality (or freshness) level αst for

choice s as Uk
st = θkαst− pst +µεks , where θk represents the kth customer’s sensitivity

towards the freshness level of the product. The random term εks captures idiosyncratic

preferences of customer k for choice s, with µ measuring the degree of such prefer-

ences. We assume that εks follows a Gumbell distribution. Then, the probability of

customer k selecting choice s at time t is expressed as,

γkt (s) =
e((θ

kαst−pst)/µ)

1 +
∑

s∈{r,m}

e((θ
kαst−pst)/µ)

.

Although the quality level and the market price of the product are the same for

all customers, the idiosyncratic preferences and the quality sensitivities toward the

products may vary for each customer and this affects the customer choice probabilities.

Next, we will focus on some important theoretical results that will be utilised to

develop a solution method for the dynamic joint ordering-markdown pricing model.

3.4 Theoretical Analysis

In this section, we present our theoretical results for the joint ordering and pricing

model. For analysis, we assume that the markdown price pm,t at any time t is known.

Then, the dynamic programming model (3.2) can be rewritten as follows,

Vt(It|pm,t) = max
qt,wt

E[gt(It, qt,wt) + Vt+1(It+1|pm,t+1)] (3.3)

gt(It, qt,wt) in equation (3.3) is the single period profit given as follows,

gt(It, qt,wt) = prmin{
n∑
i=0

(1− wit)xit, d̃t}+
n∑
i=0

pimtmin{witxit + yit, d̃it}

− h
n∑
i=0

(xi,t+1 + yi,t+1)− γ(xn,t+1 + yn,t+1)− cqt
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where d̃it = (d̃t−
∑n

j=i(wjtxjt+yjt), 0)+ represents the left-over demand of age i after

the inventories of surpassed ages are depleted to satisfy the demand in a FIFO order.

At any time period given that the age of the product is n periods, the feasible space

for binary decision vector wt has n + 1 possible values. For instance, the binary

decision vector wt for a product with 2 periods lifetime comprises of three possible

values as wt = (w0t, w1t) ∈ {(0, 0), (0, 1), (1, 1)}. We refer policy j as the jth value

of the feasible space, where j = 1, 2, · · · , n − 1. Let us define the feasibility set as

Wt = {wj
t|w

j
i−1,t ≥ wji,t, wi,t ∈ {0, 1}, i, j = 1, 2, · · · , n − 1} , where wj

t represents

the vector of binary decision values for policy j. The tabular representation of Wt is

given in Table 3.3.

Table 3.3: The tabular representation of feasible space of markdown decision vector

Policy wj0t wj1t · · · wjn−2,t wjn−1,t
1 0 0 · · · 0 0
2 0 0 · · · 0 1
3 0 0 · · · 1 1
. . · · · . . .

n− 2 0 1 · · · 1 1
n− 1 1 1 · · · 1 1

The markdown decision policies are divided in three categories based on their mark-

down strategy. At time t, policy j is referred as,

1. No markdown policy represented by j = 1, when all inventories are sold at

regular price

2. Partial markdown policy represented by j = 2, 3, · · · , n−2, when some invento-

ries are sold at regular price while the others are marked down. In other words,

at the j-th partial markdown policy, inventories with age less than n − j + 1

periods are sold at regular price and the rest are marked down. For instance,

when j = 2, inventories with age less or equal to n−1 periods are sold at regular

price and the inventory with age n is marked down.

3. Complete markdown policy represented by j = n − 1, when markdown is con-

ducted on all inventories

The dynamic programming model exhibits various theoretical properties related to

concavity and sub-modularity. In order to show and analyse these theoretical prop-

erties, we define πt(j, It, qt) = gt(It, qt,w
j
t) as the single period profit obtained by

following policy j for given inventory level It and order decision qt at time t. πt(.) is
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also referred as the policy function. Let πt(.) denote the policy function representing

the one-period profit the firm would earn when a markdown strategy is implemented.

The value function Vt(.) is k-concave in order decision qt and inventory level xi,t of

age i at time t. We establish the k-concavity of the value function blackthrough three

propositions. Proposition 1 shows the concavity of the policy function πt(j, It, qt) for

any markdown decision policy j where j = 1, · · · , n− 1. Following Proposition 1, we

show the k-concavity of the single-period profit gt(.) in Proposition 2. Finally, Propo-

sition 3 establishes the k-concavity of the dynamic programming value function Vt(.).

We will now introduce the definition of k-concavity and establish several properties

of the solution algorithm.

Definition (Chen & Simchi-Levi (2004)): A real-valued function f is called

k-concave for k ≥ 0 if for any x0 ≤ x1 and λ ∈ [0, 1],

f((1− λ)x0 + λx1) ≥ (1− λ)f(x0) + λf(x1)− λk. (3.4)

Note that inventory vector It = (xt,yt) has two components which are regular

and markdown inventory vectors. For ease of expression, the following propositions

establish the concavity result considering the regular inventory xt. Our results are

also valid and remain the same for the markdown inventory yt.

Proposition 1: For any time t = 0, 1, · · · , T , the policy function πt(j, It, qt) for

policy j is component-wise concave in order decision qt and inventory level xi,t of age

i, where j = 1, 2, · · · , n− 1.

Proof: The proof is provided in Appendix B. �

Proposition 2: The single-period profit gt(It, qt,wt) is k∗i,t-concave in inventory level

xi,t of age i for time t = 1, 2, · · · , T .

Proof: The proof is provided in Appendix B. �

Proposition 3: Consider the value function Vt(It|pm,t) at time t for inventory of

age i, (i) Vt(It|pm,t) is k̂i,t-concave in regular inventory level xi,t , (ii)Vt(It|pm,t) is

k̂i,t-concave in markdown inventory level

Proof: The proof is provided in Appendix B. �

Following Proposition 3, we conclude that the dynamic programming value function
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Vt(It|pm,t) is k-concave and this result will be used to develop an efficient solution

methodology, referred as the concavity algorithm, in the next section. The following

propositions establishes the sub-modularity of the policy function πt(j, It, qt) and the

value function Vt(It|pm,t) which will be used to reduce the size of the action space

for ordering and markdown decisions.

Proposition 4: At any time t, the policy function πt(j, It, qt) for policy j is sub-

modular in order decision qt and inventory level xi,t of age i, where j = 1, 2, · · · , n−1.

Proof: The proof is provided in Appendix B. �

Proposition 5: At any time t, the expression related to policy function πt(j, It, qt) +

E[Vt] for policy j is sub-modular in order decision qt and inventory level xi,t of age i

under the following condition of monotonicity,

Vt+1(I
0
t+1) ≤ Vt+1(I

1
t+1) ≤ · · · ≤ Vt+1(I

a
t+1),

where Iat = (x1t, x2t, · · · , xkt = a, · · · , xnt) and j = 1, 2, · · · , n− 1

Proof: The proof is provided in Appendix B. �

3.5 Solution Algorithm based on k-concavity

In this section, we utilise the theoretical properties obtained in section 3.4 to develop

a solution algorithm for the joint ordering-markdown model. Similar to backward

dynamic programming, the solution algorithm requires the model to be solved back-

ward in time to produce a policy table consisting of the optimal actions for the state

space. However, unlike the backward dynamic programming, the complete action

space is not searched in the solution algorithm. The search space is trimmed by

applying the theoretical properties of the model. The properties of k-concavity and

sub-modularity are used to reduce the size of the search space for both, order and

markdown decisions. The solution methodology is provided by Algorithm 3. We

describe the solution algorithm as follows,

• At each time period, the search space for the markdown policies is modified

based on the state of the dynamic system. The state of the dynamic system

at any time is the initial inventory level evaluated from the unsold inventory

of the previous selling period. If the unsold inventories are close to zero, the

63



Algorithm 3: Concavity algorithm (CA)

1: Initialization: Compute the state space St and action space for markdown
policies Pt

2: Set VT+1(IT ) = 0 and f it (It, qt,w
j
t ) = πit(j, It, qt) + E[Vt+1(It+1)] using Model (2)

3: Compute initial values f it (It, 0,w
j
t ) and f it (It, 1,w

j
t )

4: for t = T, T − 1 · · · , 1, i ∈ St, j ∈ Pt do
5: Assign values for inventory Iit ∈ St, markdown binary decisions wj

t and price

pjmt
6: if

∑n
i=1 xit > 0 then

7: for k = 1, 2, · · · , n do
8: Set Īt = (x1t, x2t, · · · , xkt − 1, · · · , xnt)
9: Compute optimal policy J∗k from the policy table Vt(Īt) for the state

space Īt

10: Find the next policy to apply as j̄ = max{J∗k , k = 1, 2, · · · , n} and set j → j̄

11: for q = 1 : κ do

12: Compute f it (It, q,w
j
t ), if f

i
t (It, q,w

j
t ) ≥ f it (It, q − 1,wj

t ),

13: then set q = q + 1, go to step 12,

14: else store optimal order quantity for policy j as Q∗j = q, set j = j + 1, go to

step 5

15: if t < T then
16: for k = 1, 2, · · · , n do
17: Set Iat = (x1t, x2t, · · · , xkt = a, · · · , xnt) for inventory value of age k

18: Monotonic condition defined as
Vt+1(I

0
t+1) ≤ Vt+1(I

1
t+1) ≤ · · · ≤ Vt+1(I

a
t+1)

19: If monotonic condition holds, then set
Īt = (x1t, x2t, · · · , xkt − 1, · · · , xnt)

20: Compute optimal order Q∗k from policy table Vt(Īt) for state space Īt

21: Find order upper bound as q̄ = max{Q∗k, k = 1, 2, · · · , n} set q → q̄ and go
to step 12

22: Update policy table for each state space i as

Vt(It|pm,t−1) = Max f it (It, qt,w
j
t ),∀ j ∈ Pt
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firm is unlikely to conduct a markdown sale. On the other hand, when the

initial inventories are in excess the firm might markdown their selling price to

sell them off. We discuss a small example to explain the use of the above-

mentioned property. Consider a product with 2 different ages of inventories,

1-period old inventory unsold from the previous time (which is the state of the

system), and the newly ordered product with an age of zero periods. At the

state of 20 units of 1-period old inventory at any time t (x1t = 20), suppose the

optimal decision is to order 10 units of new inventory (qt = 10) and to follow

a partial markdown policy where the 1-period old inventory and the new order

are respectively being sold at markdown and regular price (w0t = 0, w1t = 1).

Let’s consider the subsequent state of the dynamic system consisting of 21 units

of 1-period old inventory at time t (x1t = 21). At the state of x1t = 21, when

the firm orders 10 units similar to the previous state of x1t = 20, it will either

prefer to adopt a partial (w0t = 0, w1t = 1) or a complete markdown policy

(w0t = 1, w1t = 1). In other words, the firm will not prefer to follow a no-

markdown policy at the state of x1t = 21 if it didn’t prefer to conduct any

markdown at the state x1t = 21. Thus, the search space for markdown policies

at each state space depends on the decisions of its immediate previous state. At

any time for each state space, the search space of markdown policies is updated

in steps 6 to 10 of Algorithm 1.

• The k-concavity properties of the model are presented in propositions 1 and

2. The model is k-concave in its inventory levels since it independently exhibits

properties of a concave function with respect to a single markdown policy. Thus,

the concavity property is individually applied to find the optimal order decision

for each markdown policy. This is presented in steps 11 to 14 in the algorithm.

• The sub-modularity properties of the model are presented in propositions 4 and

5. A sub-modular function adheres to the law of diminishing returns. According

to the law of diminishing returns, when any variable factor is increased while

others remain constant, the output per unit of the variable factor will eventually

diminish. If the value function is sub-modular in inventory and order decision,

an increase in inventory level when the order remains constant would eventually

yield a lower value in profit. This is explained with the example mentioned

above. Consider a product with 2 different ages of inventories, 1-period old

inventory unsold from the previous time (which is the state of the system), and

the newly ordered product with an age of zero periods. At the state of 20 units

of 1-period old inventory at any time t (x1t = 20), suppose the optimal decision

is to order 10 units of new inventory (qt = 10) and to follow a partial markdown

policy where the 1-period old inventory and the new order are respectively being
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sold at markdown and regular price (w0t = 0, w1t=1). When the system has 21

units of 1-period old inventory at time t (x1t = 21) and if the firm follows a

partial markdown policy similar to the state of x1t = 20, it will not order more

than 10 units if the model is sub-modular in the order decision variable. In other

words, sub-modularity helps in achieving an upper bound on the order decision.

The upper bound is used along with the property of concavity to further tighten

the search space for the order decision. This mechanism of obtaining the upper

bound for order decision is provided in steps 15 to 21 of the solution algorithm.

3.6 Computational Results

We design a series of computational experiments to meet two research objectives,

i) illustrate the performance of the solution algorithm developed in section 3.5 to

solve the dynamic ordering-markdown model described in section 3.3, and ii) analyse

the benefit of developing a joint markdown-ordering strategy for the management of

perishable products. The numerical experiments evaluating the advantage of joint

markdown-ordering policy are specifically designed to find answers to the following

managerial questions,

• While conducting a markdown, is it profitable to have flexibility in selecting the

time or price of markdown sale?

• How frequently should the firm conduct a markdown sale? What conditions

motivate a higher vs lower reduction in the markdown sale?

• What is the impact of varying customer segments on joint markdown-replenishment

policies?

Our experimental design considers different parameter sets related to the prices

and customer segments. We adopt the base case from Li et al. (2012) and Li et al.

(2016) for our computational study. The ordering, holding and penalty cost in the

base case are assumed to be 1, 0.2 and 0.5, respectively. The ordering capacity for the

perishable product is assumed as κ = 20. The regular price for selling the perishable

product is set as 4. In addition, there can be markdown reductions of 10%, 30% or

50% on the regular selling price of the perishable products (Gaurdian 2015, Insights

2017, Wasteless 2018). Table 3.4 summarises the list of parameter set for the base

case.

66



Table 3.4: Selection of parameters for the base case

Parameters Values

Ordering cost c = 1
Holding cost h = 0.2
Penalty cost γ = 0.5
Regular price pr = 4

Markdown reductions 10%, 30%, 50%

The experimental design considers the sale of a 3-period lifetime product over a

finite time horizon of 18 periods. The customer arrivals and requests are simulated

over the planning horizon. The arrivals of customers follow a Poisson distribution with

mean arrival of 20 customers. The request of every customer arrival depends on the

customer’s sensitivity towards freshness. Thus, we assume each customer is assigned

a value of θ ∈ [0, 1], denoting the customer’s sensitivity towards freshness (or quality).

A customer with a higher θ value, closer to 1, is highly sensitive towards freshness

and hence, she is classified as quality sensitive. On the other hand, a customer with

a lower θ value is price sensitive. In order to have an equal number of customers in

each segment, we uniformly distribute the value of θ in the initial experiments. We

also perform experiments where we vary the proportion of customer segments. The

expected profits are estimated by simulating the arrivals of customer requests over

1000 sample paths.

Comparison of Solution Methodologies

In the first experiment, the solution methodology developed in section 3.5 is com-

pared with the standard backward dynamic programming (BDP). The solution al-

gorithm applies the rules derived from exploiting the property of k-concavity of the

dynamic model presented in section 3.4. We refer the proposed solution algorithm

as concavity algorithm, abbreviated as CA. The expected overall profit and policy

tables obtained for the dynamic programming model by using CA is same as the BDP

(as discussed in Proposition 3). The computational times of CA and BDP for dif-

ferent ordering capacities are presented in Table 3.5. We compare different ordering

capacities to illustrate the performance of the solution algorithm. There is a simul-

taneous increase in CPU times for both methods with increase in ordering capacity.

This happens because the state space and action space enhances with higher ordering

capacities. However, despite the increase in CPU times for both methods, CA’s com-

putational time is significantly lesser than BDP. Thus, it becomes computationally

impossible to analyze every point in the feasible action space due to the exponential

increase in state-space. On the other hand, while applying CA, there is a significant
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reduction in the calculations of the feasible action space for every state. The CA uti-

lizes the properties of k-concave functions to reduce the overall calculations resulting

in a considerable decline in the computational times. Thus, we apply CA for solving

the dynamic programming model in the rest of the numerical experiments.

Table 3.5: Comparison of BDP with rules algorithm

Capacity Expected CPU time (in seconds)
profit CA BDP

5 160.74 8.73 10.88
10 339.65 36.74 142.71
15 517.68 149.76 1192.27
20 695.69 514.36 6047.93
25 874.17 1381.58 32419.22
30 1052.94 3618.50 175323.98
35 1231.92 8880.80 341629.94

3.6.1 Comparison of Different Markdown Policies

In this experiment, we evaluate the benefit in flexibly conducting a markdown sale.

The flexibility in performing a markdown sale is examined by specifically analysing

the decisions related to time and the reduced price of the markdown sale. Therefore,

we compare the proposed dynamic policy with different kinds of markdown policies

followed by multiple practitioners. The different markdown policies analysed in this

section are described as follows,

1. No markdown strategy (NM): In this strategy, inventories with different

levels of freshness are priced the same. In other words, the firm doesn’t con-

duct any markdown sale and inventories of different freshness levels are priced

the same. There are several reasons for applying this policy in practice, i) it

is easy-to-implement since no changes in the price tags have to be made, ii)

some firms avoid markdowns as they believe conducting markdowns may harm

their reputation (Cognizant 2015, Gaurdian 2015). Thus, no markdown policy,

abbreviated as “NM”, is assumed as the base case in our analysis.

2. Fixed age policies: In this policy, we conduct a markdown sale by fixing

the time (or age) of the product to markdown. In other words, we assume the

inventory with an age of 2 periods and expiring in the next period to be marked

down. Various practitioners are reported to follow the rule of thumb of reducing

68



the price of the products expiring the next day (Mckinsey 2014, Insights 2017,

Wasteless 2018). For instance, Wasteless is reported to conduct a 30% reduction

on the price of products expiring in a day (Wasteless 2018). However, as reported

by Evans (2019), there also might be multiple price reductions on food products

expiring soon. Thus, while following fixed age policies, we assume the firm

can either fix the reduction percentage or dynamically decide the reduction

percentage. We accordingly consider two kinds of fixed age policies,

(a) If the firm fixes the markdown price to a possible reduction percentage, it

is referred as fixed age - fixed price policy, abbreviated as FF10%, FF30%

and FF50% for 10%, 30% and 50% percentages of markdowns, respectively.

(b) When the firm fixes the markdown age and dynamically decides the mark-

down price, it is referred to as fixed age - dynamic price policy, abbreviated

as FD.

3. Dynamic age policies: When the firm dynamically decides the age of con-

ducting the markdown sale, it is referenced as a dynamic age policy. Retailers in

practice are known to walk a thin line of discounting too early or too late. Var-

ious practitioners emphasize the importance of simultaneously finding the right

time and right price of markdown (Mckinsey 2014, Cognizant 2015, Insights

2017, Wasteless 2018). Thus, while dynamically finding the age of markdown,

the firm can either fix the reduction price and follow the dynamic age-fixed

price policy, abbreviated as DF10%, DF30% and DF50% for 10%, 30% and 50%

percentages of markdown, respectively, or dynamically and jointly find the age

of inventory level and reduction price for the markdown sale, which is referred

as the dynamic age - dynamic price policy, abbreviated as DD.

Since our base case is the no markdown policy, the benefit of applying any mark-

down policy is analyzed by computing the percentage difference between the expected

profit of NM and any other policy. In addition, we also analyze the firm’s decision

regarding replenishment. To understand the variation of expected profits and order

quantities with changing ordering cost and price, we perform more specific numerical

experiments. In particular, we consider 4 test instances by varying the ordering cost

and selling price. Table 3.6 and 3.7 summarizes the value of percentage difference

between expected profits and order quantity for fixed age policies and dynamic age

policies, respectively.

All the fixed age policies, including FF10%, FF30%, FF50%, and FD, yield lesser

profit than NM policy. In comparison to the NM policy, we observe the number of

customers willing to buy a product increases when the firm follows any fixed age

69



Table 3.6: Performance of fixed age policies

Cost Regular FF10% FF30% FF50% FD
price Profit Order Profit Order Profit Order Profit Order

1 4 -5.84 -4.77 -14.31 -6.17 -32.37 -16.24 -3.44 -2.58
1 5 -9.05 -7.24 -21.31 -9.66 -42.95 -18.17 -7.59 -2.67
2 4 -8.50 -10.54 -17.60 -10.95 -37.08 -25.38 -6.56 -8.75
2 5 -10.91 -10.21 -24.66 -15.79 -48.83 -28.53 -8.51 -7.58

Table 3.7: Performance of dynamic age policies

Cost Regular DF10% DF30% DF50% DD
price Profit Order Profit Order Profit Order Profit Order

1 4 25.97 52.74 15.82 18.23 14.03 13.13 33.43 57.19
1 5 0.90 47.89 8.11 48.96 6.55 6.61 14.79 59.98
2 4 -19.26 48.49 6.97 27.16 14.02 13.24 21.59 40.20
2 5 -37.66 49.92 -2.82 23.54 5.65 7.32 8.40 37.80

policy. However, despite the increase in customers willing to buy, Table 5 displays

a decrease in the order quantity in the fixed age policies than the NM policy. This

happens because, within a fixed age policy, the oldest product is always put on a

reduced price in every demand and arrival scenario. In the simulation experiments,

we observe a reduction in inventory levels of older products for the FF policies during

high arrival scenarios. In other words, during high arrival scenarios in the FF policies,

the firm’s ordering strategy is dynamically adjusted to reduce the number of products

to go to markdowns. The firm aims at reducing the number of markdown during a

higher arrival scenario because a fixed age policy sells products at a lower price when

it could have been sold at a higher price. Thus, the firm orders less in a fixed age

policy with the aim of selling a majority of products at the regular price to achieve

maximum profits.

Since the no markdown policy performs better than the fixed age policies, the profit

within the fixed age policies further decreases with an increase in the percentage of

markdown reduction. Thus, among the three fixed age-fixed price policies, FF10% is

the closest to the NM policy as FF10% is the smallest percentage of markdown reduc-

tion among the three possible reductions. FD is slightly better than FF10% because

the price is dynamically selected at each time. However, the improvement is incre-

mental since the flexibility of changing the markdown price is only restricted for the

inventory expiring in the next period. Next, we investigate the flexibility in selecting

the age of a markdown sale in the dynamic age policies, namely DF10%, DF30% and

DF50%.
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In Table 3.7, we observe DF10% to perform worse than NM for the third and

fourth test instance in Table 3.6. On the other hand, in the first two test instances

DF10% performs better than NM. In addition, DF30% and DF50% outperforms NM

in all test instances. In other words, at least one dynamic age and fixed price (DF)

policy outperforms the NM policy. The dynamic age policies perform better because

of the flexibility in selecting the age and time of markdown. The total number of

orders increases when a dynamic age policy is applied. This implies the firm satisfies

a higher number of customers by flexibly finding the age and time of markdowns.

However, we also observe that no single dynamic age and fixed age policy performs

the best. In other words, DF10% and DF30% perform the best when c = 1, pr = 4 and

c = 2, pr = 5, respectively. When c = 1, pr = 5, c = 2, pr = 4, the policy DF50% yield

the highest profit. When the cost increases the percentage difference between NM and

other policies decreases. In other words, it becomes more profitable to follow a NM

policy as the cost of ordering increases. Thus, we next investigate both, markdown

price and markdown age as decisions in the DD policy. We find the DD outperforms

all policies in each test instance. Thus, the flexibility in simultaneously deciding

the price, age and time of markdown yields the maximum profits. In summary, we

highlight the major findings of the experiment of this section,

• Under the FD policy, the age of conducting a markdown is fixed, however, there

is flexibility in deciding the markdown price. On the other hand, the markdown

price is fixed and there is flexibility in deciding the age and time of markdown

under the DF policy. We find that the DF policy performs better than the FD

policy under all test instances. This happens because the flexibility in deciding

the age and time of markdown holds more importance than the flexibility in

changing the markdown price.

• Even though there is flexibility in finding the age and time of markdown under

both kinds of policies, DD and DF , the flexibility in finding the markdown

price is only present in the DD policy. The DD performs better than all DF

policies specifically because of the flexibility in finding the markdown price.

However, it is interesting to observe even though there is flexibility in selecting

the markdown price in the policy FD, it performs poorer than NM policy as

well. Thus, the benefit of flexibly selecting the markdown price is enhanced when

there is flexibility in finding the time and age of markdown.
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3.6.2 Analysis of the DD Policy

According to Mckinsey (2014), Cognizant (2015) and Insights (2017), the markdown

strategy of a supermarket is known to influence its reputation among customers. In

this section, we investigate the time and frequency of conducting markdown sales. In

addition, we inspect the motivations behind 1) an early vs last-minute markdown sale,

and 2) a higher vs lower reduction in the markdown price. In other words, we identify

suitable conditions for supermarket managers to conduct an appropriate markdown

sale. This is achieved by examining several features of the DD policy. Within the

DD policy, the firm may decide to conduct a no markdown (NM), markdown all

inventories (abbreviated as CM), partially markdown inventories with age higher

than 1 period or 2 periods (referred as PM1 or PM2, respectively). The inventories,

order quantity and demand levels over the 18 time periods are provided in Figure

3.2. In addition, Figure 3.3 displays the frequency of the firm’s decision to conduct

any of the 4 markdown strategies (NM, CM, PM1, and PM2) given the inventory

levels in Figure 3.2 over 18 time periods under 100 simulation runs. For instance, at

time period 5, Figure 3.2 displays the inventory level of new orders, one-period old

inventory and two-periods old inventory. Similarly, the frequency of the 4 markdown

strategies (NM, CM, PM1, and PM2) are highlighted in Figure 3.3.

Figure 3.2: Average orders and inventory levels over time in the DD policy

In Figure 3.2, we observe the increase in order quantity simultaneously occurs

with a decrease in the level of inventory of age 1 period. There is a decreasing

relationship between order quantity and 1-period old inventory because when the

level of 1-period old inventory increases over time, the retailer balances by ordering

less. Next, we analyse the relationship between the order quantity and the 2-period

old inventory. We observe a simultaneous increase in levels of order quantity and
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Figure 3.3: Frequency of markdown strategies over time in the DD policy

inventory of age 2 period from time 5 to 6. On the other hand, even though the

2-period old inventory increases from time 7 to 8, the order quantity decreases. Thus,

even though there is a decreasing relationship between order quantity and 1-period

old inventory, no monotonic relationship exists between 2-period old inventory and

order quantity. This happens because both order quantity and 1-period old inventory

can be resold in the future time periods whereas the 2-period old inventory cannot

be resold as it is expiring in the same time period.

By comparing Figures 3.2 and 3.3, the overall markdowns, including PM1, PM2,

and CM, simultaneously increase or decrease in the same direction as the level of

inventory with the age of 2 periods. In other words, if the 2-period old inventory level

increases, the markdowns also increase since the firm must sell off the 2-periods old

inventory before expiry. Similarly, when the 2-period old inventory decreases, there is

a reduction in the number of markdowns as well. However, a monotonic relationship

doesn’t exist between the inventory of 1 period age and the overall markdowns. For

instance, the inventory of 1 period age and total markdowns (including PM1, PM2,

and CM) simultaneously increase from time 8 to 9. On the other hand, even though

the inventory level of 1 period age decrease from time 9 to 10, there is an increase

in the overall markdowns. This happens because, as established above, a decrease

in inventory of 1 period age is also accompanied by an increase in order quantity.

Due to the increase in order quantity, the firm must differentiate between prices of

relatively fresher order quantity and the older inventories. Thus, even though there is

a directly proportional relationship between the level of inventory of 2 periods age and

the overall markdowns, no direct relationship holds between 1-period old inventory

levels and the total number of markdowns. There is a decreasing relationship between
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1-period old inventory and frequency of partial markdown PM1. Moreover, there is

an increasing relationship between 2-period old inventory and frequency of partial

markdown PM2.

Figure 3.4 displays the value of the average regular and markdown demand over

the planning horizon. The markdown demand is observed to change more than the

regular demand. This happens because the regular price remains the same along the

planning horizon. On the other hand, the markdown price is a decision that depends

on the age and time of markdown. Figure 3.5 displays the frequency of different

percentages of markdown at the first and second reduction, respectively. The second

reduction refers to an additional markdown on the products already on markdown.

In Figure 3.3, at time 1, the regular demand is at its highest and the markdown

demand is zero. This happens because there is no markdown sale at the first time

period, as observed from Figure 3.4. However, from time 1 to time 3, there is a fall in

the level of regular demand and an increase in the markdown demand. The regular

demand decreases because of increase in number of markdowns causing a shift in the

customers from regularly priced products to the markdown inventories. During the

first markdown sale, the number of times the firm conducts a 10% markdown is higher

than a 30% markdown. Moreover, the level of 2-period old inventory in Figure 1 is

directly proportional to the frequency of a 30% reduction in Figure 4. The direct

relationship exists because the 2-period old inventory cannot be carried forward to

the next period and the firm tries to sell it off by conducting a markdown at a higher

reduction. On the other hand, there is no direct relationship between the price of the

second markdown sale and the inventory levels.

Figure 3.4: Average markdown and regular demand over time in the DD policy
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Figure 3.5: Frequency of different markdown reductions over time in the DD policy

3.6.3 Impact of Customer Preferences on Markdown Policies

In this experiment, we investigate the impact of customer preferences on markdown

strategies. Customers in supermarkets are reported to display different attitudes and

preferences towards markdown sales of perishable products (Mckinsey 2014, Waste-

less 2018). A customer survey conducted by Wasteless at a supermarket store in

Germany reports that 70% of customers wish to purchase products with short life-

times at a cheaper price and the rest of them are willing to pay the full price for a

product with a longer lifetime (Wasteless 2018). However, the percentage of customer

buying patterns are known to change based on the geographical locations of various

stores (Insights 2017). Due to differences in customer preferences, analysts in practice

place customers in different baskets (Cognizant 2015, Gaurdian 2015). Thus, in this

experiment, we vary the percentage of customers in the quality and price-sensitive

segments and test their impact on various markdown policies. In Figure 3.6, the

horizontal axis displays market classification in terms of various percentage customer

segments as starting from 10-90 up to 90-10. For instance, the case ‘70-30’ represents

70% of customers in the market as being quality sensitive whereas the remaining 30%

of customers are price sensitive.

Figure 3.6-a displays the percentage difference between the expected profits NM

and different control policies, namely DD, DF10%, DF30%, DF50% and FD. Moreover,

Figures 3.6-b, 5-c, 5-d display the value of total, markdown, and regular sales, re-

spectively, for the different control policies DD, DF10%, DF30%, DF50% and FD over

varying customer segments. Since all the fixed age-fixed price FF policies perform

worse than the NM, we don’t consider them in this analysis.
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Figure 3.6: Percentage difference in expected profits of NM with various control policies

When there is an equal number of price and quality sensitive customers at 50-

50, the percentage difference in the expected profits of all the dynamic age policies,

DF10%, DF30%, DF50% and DD policy, is positive as seen Figure 3.6-a. However, the

percentage difference between the expected profits of the FD policy and NM policy

is negative. This happens because a no markdown policy is better than the fixed age

markdown policy as described above. However, with an increase in price-sensitive

customers, the curve representing the FD policy in Figure 3.6-a gets positive. Thus,

in the presence of more price-sensitive customers, the FD policy performs better than

the no markdown policy. This happens because price-sensitive customers prefer the

lower prices being offered during regular markdowns under the FD policy. However,

within price-sensitive customer segments, the DD outperforms all the policies. In

other words, there is a significant gap between the percentage difference of expected

profits between the DD policy and FD policy when there are more price-sensitive

customers. However, he gap between profits of DD policy and FD policy decreases

when there is a higher number of quality sensitive customers. The percentage dif-
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ference for the FD policy gets more negative with an increase in the number of

quality sensitive customers. Thus, the FD policy performs poorly when there are

more quality-sensitive customers since quality-sensitive customers prefer fresh prod-

ucts and are willing to pay a higher price. If the firm follows FD policy in presence

of a greater number of quality-sensitive customers, it will not only cause a loss in

profits but a decrease in sales as well, as seen in Figure 3.6-b. This is also discussed

by (Cognizant 2015, Gaurdian 2015) where they highlight how the decrease in sales

due to excessive markdowns causes a reduction in the overall profits of the firm.

With an increase in quality sensitive customers, even though the percentage dif-

ference of FD policy gets negative, the percentage difference of all the dynamic age

policies remain positive. The curves representing the dynamic age policies converge

together near zero with an increase in quality sensitive customers. This implies a

reduction in the percentage difference between the dynamic age policies and the no

markdown policy since the number of markdowns would reduce in the presence of

higher quality sensitive customers. Thus, in the presence of higher quality sensitive

customers, the dynamic age policies imitate the NM policy.

Within the dynamic age policies, the DD policy performs the best because the

markdown price in the DD policy is dynamically selected in comparison to all the

DF policies. This can be further validated since the highest sales are yielded by

the DD policy. In the presence of price-sensitive customers, the gap between the

percentage difference in expected profits of DD and DF10%, DF30%, reduce, unlike

the FD policy. The expected profit of policy DF30% lies closest to DD when there

are 90% price-sensitive customers in the Figure 3.6-b. This happens because the

markdown sales of DF30% at 90-10 customer segments lie closest to the DD in Figure

3.6-c. Thus, in the presence of price-sensitive customers, the firm focuses more on

the age of markdown rather than markdown price.

Even though DD performs well across customer segments, it is an expensive policy

to implement in practice because of joint dynamic decision for both, time and price

of markdown. This experiment helps us obtain targeted and less expensive policies

for various customer segments. In the presence of a higher number of price-sensitive

customers, the firm must focus on finding the age and time of markdown rather than

the price. On the other hand, the firm must not invest in conducting markdowns

when there are more quality sensitive customers. Mckinsey (2014), Cognizant (2015),

Gaurdian (2015), Insights (2017) and Wasteless (2018) also suggest designing policies

based on customer buying behavior at granular levels of stores. They specifically

highlight the need to develop smart and efficient policies for stores based on the

customer demographics of each store.
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3.7 Conclusions

In this chapter, we develop a dynamic ordering and markdown model for a firm

selling a perishable product under demand uncertainty. There are limited studies on

simultaneously considering dependency of joint decision-making on time and age of

the perishable products. Unlike the existing studies, we consider existence of multiple

ages, dependency of decisions on time and age of the perishable product. We also

analyse the dynamic nature of customer choices to capture the demand cannabilizatin

between fresh and old inventories. The customer choice model is then integrated with

the joint decision-making model formulated as stochastic dynamic model. Due to the

tracking of multiple age of perishable products, the state space of the stochastic

dynamic model is high-dimensional. We propose an exact solution algorithm by

analysing structure properties like k-concacity and submodularity of the underlying

model. Our solution algorithm yields optimal joint ordering and markdown decisions

in a reasonable computation time .The benefit of efficient computation of our exact

solution algorithm is depicted computationally as well.

We also design numerical experiments to compare our dynamic polices with var-

ious fixed markdown policies adopted from practice. Our findings depict the joint

decision-making policies to perform superior than the fixed policies as they are more

flexible. The flexibility within the joint decision-making policy is also investigated.

We find the flexibility in deciding the age and time of markdown holds more impor-

tance than the flexibility in changing the markdown price. We also report various

direct and indirect relationships between inventories of different ages and ordering

strategies to showcase the dynamic nature of the management of perishable prod-

ucts. In practice, supermarkets operate in view of different kinds of price and/or

quality sensitive customer segments. Thus, we also analyse the impact of joint order-

ing and markdown policies in varying customer segments. In highly price sensitive

customer segments, fixed markdowns policies perform as good as dynamic polices

while no markdown policy performs better in quality sensitive segments. This exper-

iment suggested at obtaining targeted and tailor-made policies for various customers

segments which could be less expensive and beneficial to practitioners.

Even though the k-concavity algorithm significantly reduces computational time

for a fairly realistic problem size, extensive numerical studies can be conducted for

realistic set-ups as part of an industrial case study. As future research, one can

investigate how different inventory issuance orders impact markdown strategies and

customers in general.
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Chapter 4

Ordering and Delivery Strategies

for Dual-Channel Network

In a dual-channel network a firm distributes its products through different channels

mainly comprising of its own stores as well as third-party retailers. Since the network

of dual-channel firm is extensively and widely spread across different channels, a

disruption at any point of the network impacts the overall operations of the firm.

Thus, during the management of the dual-channel firm, it is essential to consider

disruption at both demand and supply side of the network. To mitigate the disruption

from demand or supply side, the firm diversifies its sourcing strategy by ordering from

a set of emergency suppliers. In this research, we investigate the joint ordering and

delivery strategies of the dual-channel firm under disruption.

This chapter discusses the dual-channel network by highlighting its challenges.

We then focus on the review of relevant literature on management of dual-channel

and dual-sourcing networks. Then the underlying supply chain network is described

and the joint decision-making problem is stated. Next, we present formulation of the

problem and its proposed solution methodologies. The computational results testing

the performance of the solution methodology and joint ordering-delivery policies are

then explained. Finally, a brief summary of the chapter is provided.

4.1 Dual-Channel Supply Network

A traditional wholesaler-retailer supply chain consists of the flow of products from

wholesalers to retailers and finally to customers. With globalization and rapid adop-
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tion of dual channels, businesses have shifted from the traditional wholesaler-retailer

setting to a non-traditional one. In non-traditional supply chains (so-called ‘whole-

salers clubs’ by FMI (2016)), retailers such as Costco, Sam’s Club, and BJ’s have

physical stores where they serve customers directly through their unique wholesale

store system and they also have clients from different sectors such as restaurant chains,

vendors, caterers and small grocery stores (Deloitte 2014). As another example, Ap-

ple and Samsung successfully play the dual role of wholesaler and retailer because

they sell their products in their own stores and also distribute them to third-party

retailers such as BestBuy, Amazon and Walmart. The literature on dual-channel sup-

ply chain highlights the economical reasons for serving different customer segments

with different channels and points out that multiple channels help retailers to increase

their market coverage (Anderson et al. 1997, Takahashi et al. 2011). Firms operating

in a dual-retailing (or dual-channel) set-up are the leading players in their respective

industries. Apple and Samsung have been securing the highest market share of the

mobile phone industry since 2012 (Lucic 2020). The dominance of dual-retailing firms

(such as Walmart, Sam’s Club, and Costco) is also visible in the supermarket indus-

try. The annual estimated value of the businesses of the wholesaler-retailer setting is

over $460 billion. The dual-retailing firms achieve high-cost savings because of a regu-

lar flow of bulk demand from third-party clients unlike the traditional single-retailing

set-up (ColumbiaReports 2020). Walmart and Sam’s Club has a market share as high

as 90% in some parts of the United States (FoodIndustry.com 2020).

Even though dual-retailing firms have established prominence in their respective

industries, they encounter many challenges. The operations along the supply chain

of the dual-retailing firm can be severely impacted due to disruptions such as disas-

ters, pandemics, labour strikes, machine breakdowns, and accidents (Tan et al. 2016,

Gong et al. 2014). For instance, due to the recent pandemic of coronavirus, Costco’s

inventory management operations have been heavily disrupted. Since the onset of

the pandemic in February 2020, Costco has witnessed a significant rise of 3% in its

monthly sales. However, the surge in sales has led to a challenge for the company’s

supply chain. Along-with the irregularities at the demand side, Costco has seen ma-

jor disruptions at their suppliers as well (Rogers 2020, Reuters 2020). In another

case, Apple encountered disruptions from both, demand and supply-side during the

release of the iPhone 6 in 2014. According to Kubota et al. (2019), Apple’s demand

forecast for iPhone 6 were immensely inaccurate as it sold much better than their

expectations. As a result, Apple had to ramp up its production to meet the unantic-

ipated increase in demand for iPhone 6. However, many of Apple’s regular suppliers

reportedly struggled to meet the inflated production numbers. Thus, Apple faced

uncertainty from both demand and supply side of the dual-retailing supply chain.
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One of the key challenges in dual-retailing supply chain is how to efficiently re-

spond to a variety of uncertain factors such as supply and demand uncertainties.

Firms tackle supplier uncertainty by diversifying their sourcing strategies. Apple is

known to source part of its components from multiple suppliers in China and Tai-

wan. The strategy of using multiple suppliers not only helps in mitigating supply

disruptions and delays, but also in promptly responding to the changes in demand

patterns (Gartner 2015). Empirical studies point out that a large number of firms

employ a back-up or emergency sourcing strategy to manage both demand and sup-

ply uncertainties (Gupta et al. 2014). It is critical for a firm to plan its multiple

sourcing (regular and emergency suppliers) considering demand and supply uncer-

tainties. Moreover, firms do not only rely on supply-side strategies when they face

uncertainties. For instance, Costco diversified its sourcing strategies by utilising emer-

gency suppliers to deal with the drastic increase in demand during the coronavirus

pandemic (Reuters 2020, Hart 2020). They also delayed fulfilment of some demand

to mitigate demand and supply uncertainties since all suppliers were under serious

shortage (Hurt 2020). A dual-retailing firm meets demand of two different classes of

customers; their own stores and third party retailers. Demand for one of the cus-

tomers can be delayed to be fulfilled at a later date when there is a supply shortage.

Therefore, the dual-retailing firm can tackle demand and supply uncertainties by em-

ploying two strategies; either by ordering from emergency suppliers, or by delaying

demand. Sourcing from regular and emergency suppliers helps the firm to meet the

demand on time. However, the ordering decision should be made considering demand

and supply uncertainties, otherwise multiple sourcing may lead to overstocking. On

the other hand, the decision for delaying the demand is dependent on multiple factors

such as relationship with the third party retailer versus the company’s own stores,

uncertain demand and supply.

In this research, we study the inventory management problem of a dual-retailing

firm experiencing uncertainties from both demand and supply sides. The firm can

source from both regular and emergency suppliers to meet the demand of its own

stores and third party retailers. In case of a supply chain disruption, regular supplier

is unreliable and may not deliver the original ordering amount. Emergency supplier,

on the other hand, is reliable but more expensive. We consider a single product setting

over a finite planning horizon. At each time period, the firm decides how much to

order from regular and emergency suppliers and how to distribute inventories to its

own stores and third party retailers. Our contribution in this research is two-fold,

• We formulate the decision making problem of the dual-retailing firm under de-

mand and supply uncertainties as a stochastic dynamic programming problem.
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Existing studies mainly consider either demand, supply uncertainties or both

independently in the dual-channel supply chain. On the other hand, we investi-

gate joint ordering and delivery policies to simultaneously tackle both demand

and supply uncertainties. The consideration of dual-retail channels and multiple

decisions massively expands the state and action spaces. Thus, the underlying

dynamic programming model is computationally difficult to solve by the stan-

dard solution methodology. We work on various efficient decomposition methods

to find joint ordering and delivery strategies for the dual-retailing firm.

• We propose two decomposition methods by utilising the structural properties

of the dual-retail channel network. In the first approach, we decompose the

network into independent single channel (as each store and the third party re-

tailers) which can be solved by focusing on one channel at a time. To protect

the inter-connectivity between multiple channels, we introduce an opportunity

cost parameter by considering each channel’s effect on the network. The second

decomposition method is developed considering the practical applications. Due

to the technological advances in inventory-tracking, firms are able to receive

information about the inventory levels at their own stores as well as third party

retailers. With this information, we reformulate our original dynamic program-

ming model so that the firm can track inventories at all channels as well as its

central echelon. This model is then decomposed by each inventory-tracking point

and solved via two-stage decision making process to obtain ordering and deliv-

ery decisions. We design numerical experiments to compare the performances

of our solution methodologies with the standard backward dynamic program-

ming technique. We also develop a heuristic policy based on practitioner and

academic reports to test the performance of our models. We also conduct ex-

tensive numerical experiments to highlight different features of our models and

derive managerial insights. Our numerical results indicate that the proposed

decomposition methods coordinate ordering and delivery decisions quite well.

The remaining part of the chapter is organized as follows. Section 4.2 focuses on

the literature review by providing details of existing studies relevant to our research.

In Section 4.3, we first describe the underlying supply chain network and then state

the joint decision making problem. The stochastic dynamic programming formulation

of the ordering and inventory allocation problem is presented in Section 4.4. The

proposed solution methodology and computational results are explained in Sections

4.5 and 4.6, respectively. Section 4.7 provides a brief summary of the chapter.
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4.2 Review of Dual-Retailing and Sourcing Management

Our study is mostly related to the literature on inventory management in dual-

retailing and dual-sourcing supply chains. Apart from the research in dual-channelling

systems, we also review the literature investigating a firm’s strategy of delay in de-

mand fulfilment.

Within the research on inventory management in dual-retailing, two different set-

ups are considered. In the first set-up, dual-retailing channel is comprised of a tra-

ditional (indirect) retail channel and a direct online channel. In this set-up, the

firm sells same products to similar customers through direct and indirect channels

and customers can choose the shopping channel that is better suited to their needs.

There is an extensive research on the inventory management of the direct-indirect

channels. Most of the studies focus on pricing decisions and channel coordination by

considering the competition between channels. We refer to Tsay & Agrawal (2004)

and Agatz et al. (2008) for a comprehensive review and an insightful discussion on

dual-channel coordination. Our study is related to the second set-up where the dual-

retailing channel is comprised of a firm acting as a wholesaler and a retailer to serve

business clients (third-party retailers) as well as its own customers. Schneider & Klab-

jan (2013) discuss the significance of the dual-channel supply chain of wholesale-retail

firms. Takahashi et al. (2011) investigate the production and delivery management of

the dual-channel supply chain. They develop an inventory control policy where the

decision of production and delivery is dependent on the inventory levels. Alawneh &

Zhang (2018) examine the inventory policy of a dual-channel supply chain by focus-

ing on warehouse layout design. Research by Takahashi et al. (2011) and Alawneh

& Zhang (2018) is centred around the management of operations related to inven-

tory storage and delivery at different warehouses or distribution centres. There is a

considerable literature on developing inventory management strategies such as base

stock policy (Chiang & Monahan 2005, Schneider & Klabjan 2013) and (Q, R) policy

(Khouja & Stylianou 2009) for a dual-channel supply chain. Li et al. (2015) study the

inventory management problem of a dual sales channel operated by one vendor as a

stochastic dynamic programming model considering the demand dependency between

two-channels. Even though Li et al. (2015) consider the sale of a product through

dual-channel retailing, they don’t consider flexibility in order-fulfillment. While un-

met demand in the first channel (physical store) is lost, it is backlogged in the second

channel (online store). On the other hand, Hu, Li, Byon & Lawrence (2015) in-

vestigate the inventory management problem of a dual-channel supply chain where

the firm may delay the demand fulfillment in one of the channels by classifying and

prioritising customers based on revenue and delay cost. None of the above studies
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on the inventory management of the dual-channel supply chain consider uncertainty

from the supply side. Zhu et al. (2020) study the management of a dual sales chan-

nel under demand and supply uncertainties. However, the focus of Zhu et al. (2020)

is different than our research as they investigate the competition and coordination

among the different sales channels rather than dynamically managing the inventory

over time.

A common strategy to tackle supply uncertainty is by diversifying the supplier

strategy. Inventory management using multiple suppliers has been widely studied

in the literature, mostly with periodic review models and deterministic supply where

each supplier has different lead time and ordering cost (Janakiraman et al. 2015, Wang

et al. 2017, Xin & Goldberg 2018, Sun & Van Mieghem 2019). Inventory management

of a dual-sourcing firm under demand and supply uncertainties is discussed by Ju

et al. (2015), Tan et al. (2016), Zhou & Yang (2016), Song et al. (2017) and Jakšič

& Fransoo (2018). These studies primarily aim at finding efficient ordering strategies

under consideration of different lead times from the dual suppliers. They mainly

analyse the effect of lead time differences on ordering decisions. Dual-retailing firms

(such as Apple, Costco) source from multiple suppliers to deliver products at the

shortest lead times which helps them to react in timely manner to the changes in

consumer demand (Gartner 2015). Apple is well-known to maintain most precise lead

times in the industry and Costco reports receiving orders from its suppliers every day

to deal with uncertainties from demand and supply side (Jones 2017, Reuters 2020,

Hurt 2020). Dual-retailing firms invest in a vast supplier network to minimize issues

related to lead times. Considering the practical applications, several studies assume

suppliers’ lead time to be zero or one and study ordering strategies under supply

uncertainty (Ahiska et al. 2013, Zhu 2015, Feng et al. 2019). Ahiska et al. (2013) study

a dual-source model with one reliable and one unreliable supplier. The unreliable

supplier can be in up and down states which is modelled as a two-state Markov

process. The retailer orders from the reliable supplier when the other one is down.

Zhu (2015) investigates optimal ordering strategies under several supply disruption

scenarios depending on which supplier is facing the disruption and whether the retailer

has any prior information regarding the disruption. Feng et al. (2019) study the

dynamic multi-sourcing problem assuming a zero lead time as well. They find an

efficient ordering strategy by considering dependence between the uncertainties at

multiple suppliers. However, they assume the consumer demand to be deterministic.

To the best of our knowledge, dual-retailing set-up has not been studied in the multi-

sourcing literature.

Apart from the literature on dual-sourcing and dual-retailing supply chains, we

84



also review the studies related to delay in order-fulfilment. Xu et al. (2009) consider

the possibility of delay in between customer order arrival and the product deployment

to meet the order. They investigate how retailers can utilise more of their resources

and gather information by delaying the fulfilment-decisions of customer orders. Lee

et al. (2003) present a model to find integrated inventory replenishment and dispatch

scheduling policy under deterministic time varying demand. They specifically inves-

tigate how often and in what quantities to replenish the stock at an upstream supply

chain member (e.g., a warehouse), and how often to release an outbound shipment

to a downstream supply-chain member (e.g., a distribution center). Further research

on management of stock-out with delaying order fulfilment decisions are provided

by Allon & Bassamboo (2011), Song & Zhao (2016) and Cui & Shin (2017). How-

ever, none of the studies related to order-fulfilment discussed so far consider different

demand channels. A few studies focus on flexible order-fulfilment among different

demand classes. Wang & Yan (2009) consider a firm dealing with order-fulfilment

of two different type of customers, namely patient and impatient customers. Orders

from patient customers can be delayed to a future time period, while orders from

impatient customers have to be satisfied from the on-hand inventory. Wang et al.

(2014), Huang et al. (2011) and Xie et al. (2016) consider a similar problem with

patient and impatient customers, and study inventory allocation decision between

customer classes. These studies generally assume that only the demand of patient

customers can be delayed and fulfilled at a later stage. However, a dual-retailing

firm may delay the orders for both channels, third party clients and their own stores.

Thus, the set-up of a dual-retailing supply chain differs from the structure of the

patient-impatient demand classes discussed above. Moreover, the literature on order

flexibility doesn’t consider supply uncertainty.

The distinguishing features of the most relevant studies are highlighted in Table

4.1. The literature on both dual-retailing and flexibility in order fulfilment assumes

deterministic supply. On the other hand, the research on multi-sourcing with supply

uncertainty mainly focuses on the effect of lead times on ordering decisions without

considering the dual-retailing set-up. To the best of our knowledge, only Zhu et al.

(2020) consider both demand and supply uncertainties in a dual-retailing supply chain

with a single supplier. They model the problem using a game theoretic approach.

Different from the existing literature, in our study, we consider a dual-retailing firm

tackling demand and supply uncertainties by ordering from emergency supplier as well

as delaying order-fulfilment. We model the dynamic inventory management problem

of the dual-retailing firm as a stochastic dynamic programming model.
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Table 4.1: Classification of relevant research papers

Research papers Dual- Multi- Flexibility in Uncertainty
retailer source order-fulfillment

Li et al. (2015) X Demand
Hu, Li, Byon & Lawrence (2015) X X Demand
Zhu et al. (2020) X Demand and supply
Jakšič & Fransoo (2018) X Demand and supply
Feng et al. (2019) X Demand
Xu et al. (2009) X Demand

Our research X X X Demand and supply

4.3 Joint Ordering-Delivery Decision-Making Problem

In this section, we first describe the dual-channel supply chain network and then intro-

duce a stochastic dynamic programming formulation of the underlying joint ordering-

delivery decision making problem for the retailer supply chain.

4.3.1 Dual-Channel Distribution Network

We consider a supply chain with a dual-channel distribution network consisting of

three echelons. In this network, a firm (like Costco and Walmart) at the central

echelon procures a specific nonperishable product from the supplier echelon under

disruption and delivers to the customer echelon. An illustration of the supply chain

setting along with the main parties involved in the network is illustrated in Figure 4.1.

We assume that the firm has already been in business with a single supplier or a set

of suppliers (also named as “regular suppliers”) in their network. The firm sells the

product through two different channels; namely, the firm owned shops and the other

retailers as third parties. The firm can fulfil the customer demand at their own shops

(taking place in the first channel) any time. In other words, the demand for their own

shops may be fulfilled at a late and not right away. The demand received from other

retailers (as the third party firms at business channel), comprising of bulk contract

orders, is managed through the second channel. The contract orders from the third

party retailers involve a fixed lead time; therefore, the firm does not need to meet their

demand instantly. However, the firm has to pay a penalty for not meeting the bulk

contract orders’ of the third party retailers on time or delay the order of their own

stores due to customer dissatisfaction. Since a regular supplier(s) under disruption

can only provide certain proportion of the orders, the firm may wish to satisfy the

remaining unmet demand from the other (so-called “emergency”) suppliers at higher

ordering cost. The firm faces a joint ordering-delivery decision making problem as

they need to determine how much of the product to order from the regular and/or

86



Figure 4.1: A dual-channel distribution network with the main parties

emergency suppliers under disruption and how to deliver the current inventory among

dual-distribution channels so that the customers demand is fulfilled with maximum

profit.

4.3.2 Notation and Problem Statement

A description of the notation used in this chapter is provided in Table A3. We use

tilde (∗̃) to denote randomness; e.g., ỹ denotes random variable y. Boldface is used

to denote vectors; for example, a ∈ Rn is a n-dimensional vector. The maximum

function (a)+ = max{a, 0} takes value of a if and only if a > 0; otherwise, it is zero.

We consider a simple supply chain network consisting of supplier and distribution

echelons and the firm is placed at the central echelon. All potential suppliers are

classified as regular and emergency suppliers denoted by s = 1, 2, respectively. In

the dual-channel distribution network, the third party retailers and the firm owned

stores are placed at different channels denoted by i = 1 and 2, respectively. Figure

4.2 depicts a graphical timeline of the firm’s decision-making process.

We consider a planning horizon that is discretized by T time periods represented
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A3: Description of notation

Model Parameters

T planning horizon discretised by T time periods (denoted by t = 1, · · · , T )
pit selling price for channel i
cst cost of ordering from supplier s
γit penalty cost for unsatisfied demands from channel i
h unit inventory holding cost from time t− 1 to t
βit opportunity cost for channel i at time t

Uncertainties

r̃1t(q1t) amount of products received from regular suppliers at time t

d̃it demand received from channel i at time t

State Variables

xft inventory level of the firm at the beginning of time t
xt total available inventory at the beginning of time t
wit pending orders of channel i at the beginning of time t

Actions

qst quantity ordered from supplier s
yit inventory allocated to channel i

by t = 1, · · · , T where the decisions are made. At the beginning of time period t,

the firm requests a certain quantity from multiple suppliers on the basis of current

inventory and demand requests collected from both channels. The inventory level is

reviewed at the end of time period t in view of the amount of product supplied by

regular and emergency suppliers to be delivered simultaneously. The total amount of

products to be ordered from the regular and emergency suppliers at time t is denoted

by a vector of order quantities qst for s = 1, 2, respectively.

There are two sources of uncertainties: i) customers demand and ii) amount of

products to be delivered by regular suppliers. Let d̃it be a random variable defining

total amount of customers demand received via channel i at time t. Since regular

suppliers cannot fulfil demand under disruption, the amount of products to be sup-

plied by regular suppliers is not certain. Thus, it is not avoidable to order as many

products as required from emergency suppliers. For that reason we assume that no

uncertainty exists in emergency suppliers. In our optimisation model, the uncertain

parameters are modelled by a random variable following a distribution.

The firm determines the order quantity q1t from the regular suppliers at time t

without knowing the amount to be delivered. It is assumed that the regular suppliers

usually deliver much less than the firm’s request under disruption. Therefore, we

consider the amount of product to be received from regular suppliers as another

uncertain parameter in our model. Let r̃1t(q1t) denote a random variable representing

the total amount of product to be delivered from the regular suppliers. Once supply

uncertainty due to disruption at regular suppliers is realised, the remaining unmet

demand can be satisfied from the emergency suppliers. Let q2t represent the total
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Figure 4.2: Decision-making process in the dual-channel distribution network

amount of product supplied from emergency suppliers. The lead time of delivery from

both kinds of supplier is assumed to be zero. We assume that the unit ordering cost

cs from the regular and emergency suppliers (for s = 1, 2) remains the same over

the planning period. In addition, the cost of ordering a unit of the product from the

emergency suppliers is assumed to be always higher than that of the regular suppliers;

that is c2 ≥ c1.

We assume that the inventory level xft of the firm (labelled as f) at the central

echelon is reviewed at the beginning of any time period t before the start of the

decision-making process. In addition to ordering from suppliers, the firm is also

concerned with how to satisfy the customer demand received via both channels. Let

yit denote the inventory allocated to channel i at time t. Let pit represent unit price

of products delivered to any customer via channel i at time t.

At each time period t, there are pending requests of customer demand from any

channel and the firm must decide how to deal with them. Let wit denote the total

units of pending demand from channel i. As mentioned before, the business channel

consists of the third party clients who demand a bulk amount of the product from

the firm. We assume the firm meets the demand of the business channel in a fixed

lead time of b periods since the business client’s demand is received in bulk amounts.

Although demand d̃1t received from the business clients at time t is uncertain at

t = 1, · · · , t − 1, the demand to be delivered at time t + b becomes known since it
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was requested at time t. If the demand of business channel i is not met in b periods,

it is lost and the firm incurs a penalty cost of γ1 for each unit of unmet demand,

d1,t+b − y1,t. If the firm is unable to meet the demand of their own stores after a

certain time periods, they must pay a penalty of γ2 for each unit of unmet demand.

We assume each γ2 < γ1 since the demand from business clients are assumed to be of

higher priority than the firm’s own stores.

4.4 Stochastic Dynamic Programming Models

We formulate the firm’s joint ordering-delivery decision-making problem using stochas-

tic dynamic programming. We assume that the firm reviews inventory level xft and

pending orders wit from channel i regularly at each time period t. Thus, the state

space comprises the inventory level and pending orders of the firm. The system

dynamics lead to state transition of inventory levels and pending demand from the

current time period t to the next one t+ 1.

The inventory balance equation states that the inventory level of the firm xf,t+1

at time t+ 1 is determined as the sum of inventory level xft to be carried over from t,

amount of products received from regular suppliers r̃1t(q1t) and emergency suppliers

q2t and minus total amount of deliveries
2∑
i=1

yit at time t. This can be formulated as

follows;

xf,t+1 = xf,t + 1 · r̃1t(q1t) + 1 · q2t −
2∑
i=1

1 · yit.

Similarly, pending orders wi,t+1 of channel i at time t + 1 are accumulated by the

pending orders wit, demand dit and inventory allocation yit at time t. The following

balance equation expresses the transition of pending orders of channel i from time t

to t+ 1 as

wi,t+1 = wit + dit − yit.

Given the state of system (xf,t,wt) at time t, the firm needs to determine a set of

ordering and delivery actions (qt,yt) simultaneously without violating the following

constraints.

Ordering Capacity: Let κ denote the ordering capacity of the firm. The condition

1 · (qt) ≤ κ ensures that the total number of products to be ordered at time t

does not exceed the available ordering capacity.
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Inventory Allocation: The total inventory (after receiving orders from the regular

and emergency suppliers) becomes xft + 1 · Es[r̃1t(q1t)] + 1 · q2t. The amount

of inventory to be allocated to both channels i = 1, 2 cannot exceed the total

available inventory at time t. Thus, this condition can be stated as the following

linear constraint

2∑
i=1

1 · yit ≤ xft + 1 · r̃1t(q1t) + 1 · q2t

Dual-Channel Delivery: The inventory allocation yit for channel i at time t must

be less than its current demand dit and pending orders wit. This condition can

be represented by a set of constraints y1t ≤ d1,t−1 + w1t,y2t ≤ d2t + w2t.

The set Ft at time t consists of feasible ordering and allocation decisions (qt,yt)

satisfying the ordering capacity, inventory allocation, dual-channel delivery constraints

as

Ft =

{
(qt,yt) |

2∑
i=1

1 · yit ≤ xft + r̃1t(q1t) + 1 · q2t,y1t ≤ d1,t−1 + w1t

y2t ≤ d2t + w2t, 1 · qt ≤ κ, qit,yit ≥ 0,∀i

}

The firm aims to maximize the expected profit over the planning horizon while

managing a dual-channel distribution network through the joint ordering-delivery

decision framework. The expected profit is computed as the expected revenue minus

the expected total cost of ordering, penalty payments and holding. The revenue

at time t is pt · yt. The ordering cost from the regular and emergency suppliers is

computed as c1(1 · r̃1t(q1t)) and c2(1 · q2t), respectively. Note that the expectation

Es[·] is taken over supply uncertainty (i.e., r̃1t(q1t) representing amount of product

received from the regular suppliers).

The penalty payment
2∑
i=1

γi(1 ·wi,t+1) is due to the delay in delivery or unmet de-

mand while the holding cost is hxf,t+1. The total cost at time t, denoted as πt(qt,yt),

becomes

πt(qt,yt) = c1(1 · r̃1t(q1t) + c2(1 · q2t) +
2∑
i=1

γi(1 ·wi,t+1) + hxf,t+1
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Let Vt(xft,wt | dt) denote the value function at state of inventory level xft and

pending orders of dual-channel wt given the customer demand realisation dt at time

t. The value function at time t for the joint ordering-delivery decision-making problem

SDP1 can be formulated as follows;

SDP1 :

Vt(xft,wt | dt) = max
qt,yt∈Ft

Es [pt · yt − πt(qt,yt) + Ed [Vt+1(xf,t+1,wt+1)]]

s.t. xf,t+1 = xft + 1 · r̃1t(q1t) + 1 · q2t −
2∑
i=1

1 · yit,

wi,t+1 = wi,t + di,t − yi,t, i = 1, 2.

(4.1)

The boundary condition at the end of planning horizon is formulated as

VT+1(xf,T+1,wT+1) = 0. As mentioned before, the demand in channels is realised

(denoted as dt) at the beginning of time period t. Therefore, the expectation Ed[·] at

time t is taken over future demand uncertainty to compute expected value function at

time t+1. On the other hand, the expectation operator Es [·] will be taken over supply

uncertainty (i.e., amount received from regular suppliers based on ordering decision

qt at time t) and it is not realised yet. Let ηjt denote the probability distribution

function for receiving j units of order at time t. Model (4.1) can be rewritten by the

expectation as follows;

Vt(xft,wt | dt) = max
qt,yt∈Ft

q1t∑
j=0

ηjt

[
pt · yt − πt(j,q1t,yt) + Ed[Vt+1(xft + 1 · r̃1t(q1t)

+ 1 · q2t −
2∑
i=1

1 · yit,wt+1)]

]

s.t. xf,t+1 = xft + 1 · r̃1t(q1t) + 1 · q2t −
2∑
i=1

1 · yit,

wi,t+1 = wi,t + di,t − yi,t, i = 1, 2.

In practice, supermarkets (like Tesco, Sainsbury, Aldi) continuously receive infor-

mation about inventory levels of their own stores (RGIS 2013, ASP 2019). In some

cases, third-party retailers also share stock information with their suppliers to im-

prove the efficiency of their supply-chain network (Oracle 2019). The stock informa-

tion helps them to improve an effective decision-making process related to allocation

of inventories via different channels. Using the underlying practical structure of the
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supply-chain network, we can modify the dynamic programming model SDP1 and

introduce an alternative formulation of the joint ordering-delivery decision-making

problem.

Suppose that we observe inventory level xit for channel i along with tracking

inventory of the firm xft at time t. Let xt = (xft,x1t,x2t) denote a vector of inventory

levels at multiple channels. Recall that, after reviewing the inventory at dual channels

and the central echelon at the beginning of time period t, the firm places orders from

regular and also emergency suppliers if needed. According to the final inventory level

determined by the realisation of supply uncertainty at the end of time period t, the

firm allocates yit units inventory to channel i. Given a state (xt,wt) at time t, we

can compute the cost function π
′
t(qt,yt) as follows;

π′t(qt,yt) = c1(1 · Es[r̃1t(q1t)]) + c2(1 · q2t) +
2∑
i=1

γi(1 ·wi,t+1) + h(1·xt)

The value function at time t is represented by V
′
t (xt,wt) and is expressed as follows;

SDP2 :

V
′

t (xt,wt|dt) = max
qt,yt∈Ft

Es

[
2∑
i=1

pit min{dit + wit,xit + yit} − π
′
(qt,yt) + Ed

[
V
′

t+1(xt+1,wt+1)
]]

s.t. xf,t+1 = xft + 1 · r̃1t(q1t) + 1 · q2t −
2∑
i=1

1 · yit,

xt+1 = (xt + yt −wt − dt)
+,

wt+1 = (wt + dt − xt − yt)
+

(4.2)

The boundary condition at the end of planning horizon is V
′
T+1(xT+1,wT+1) = 0.

The state-space for the dynamic joint ordering and inventory allocation models is

multi-dimensional as it comprises of the firm’s inventory level as well as the pending

demand of each channel. Moreover, the dimension of the state space exponentially

increases with the number of retail channels and ordering capacity. Due to the curse

of dimensionality, it is computationally intractable to solve both SDP1 and SDP2

models by the standard method of backward dynamic programming. Thus, we de-

velop two approximation algorithms using the decomposition method for solving the

stochastic dynamic programming models (4.1) and (4.2).
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4.5 Decomposition Based Approximation Algorithms

In this section, we present two decomposition-based approximate methods to solve the

dynamic joint ordering-delivery problem. The first approach involves decomposing

model SDP1 by retail dual channels while model SDP2 is decomposed echelon-wise

in the second approach.

4.5.1 Channel-based Decomposition Method for Solving SDP1

For the SDP1 model, the state and action spaces are multi-dimensional because of

presence of dual-channels and nature of the joint decision-making process. The size

and dimension of state and action spaces will be significantly reduced if the firm

serves only one channel. We decompose the SDP1 model channel-wise and con-

struct a sub-model corresponding to each channel with dramatically reduced state

and action spaces. Then, the decomposed model for each channel aims to determine

an ordering and delivery policy under the assumption that there is only one retail

channel in the network. Thus, the decomposed model independently finds joint de-

cisions to meet demand of only corresponding one channel while ignoring the other

channel. Even though the independent structure of decomposed models resolves the

high-dimensionality of SDP1, an inter-connectivity between channels may be lost.

We can integrate the decomposed model for each channel in such a way that the

inter-connectivity among channels is ensured. The inter-connectivity between the

decomposed model of each channel can be constructed by introducing a parameter

for measuring the opportunity cost of satisfying the other channel (Kunnumkal &

Topaloglu 2010).

Let βi,t for i = 1, 2 represent the opportunity cost of channel i at time t. As

introduced by Birbil et al. (2014) and Bertsimas & Popescu (2003), the value of op-

portunity cost can be obtained by the finite difference method where the deterministic

linear program of SDP1 is solved for given inventory level. Then, the same model

is solved for the given inventory level increased by one unit. The difference between

the profits obtained by these linear programs (given the inventory level and one-unit

increased inventory level) provides the value of opportunity cost at time t.

While solving the decomposed model of a channel, the opportunity cost parameter

represents the gain/loss the firm may experience if one unit of the remaining inventory

is delivered to the dual channels. The overall gain/oss by delivering remaining inven-

tories to dual channels is evaluated by multiplying opportunity cost βit of channel i
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by remaining inventory xf,t+1 at time t as βitxi,t+1. By adding the value of overall

gain/loss (by allocating inventories to the other channel) to the profit function of the

channel i, the value function of channel i becomes

vit(xft,wit|dit) = max
qt,yit∈Fd

it

Es[pit · yit − πdit(qt,yit) + βitxf,t+1 + Ed[vi,t+1(xf,t+1,wi,t+1)]]

s.t. xf,t+1 = xft + 1 · r̃1t(q1t) + 1 · q2t − 1 · yit,
wi,t+1 = wi,t + di,t − yi,t.

(4.3)

where boundary condition at the end of planning horizon is vi,T+1(xf,T+1,wT+1) = 0.

The cost function πdit(qt,yit) and the feasibility set Fdit for the decomposed model are

as follows;

πdit(qt,yit) = c1(1 · r̃1t(q1t) + c2(1 · q2t) + γi(1 ·wi,t+1) + hxf,t+1,

Fdit =

{
((qt,yt) | 1 · yit ≤ xft + r̃1t(q1t) + 1 · q2t, y1t ≤ d1,t−b + w1t,

y2t ≤ d2t + w2t,1 · qt ≤ κ, qit,yit ≥ 0, i = 1, 2.

}

The above decomposed model computes the joint ordering-delivery policy for each

channel. The information from every channel’s decomposed model is then combined

together by simultaneously considering the dual-channel network in the following

model to find its joint ordering and delivery policy;

max
qt,yt∈Ft

Es

[
pt · yt − πt(qt,yt) +

2∑
i=1

Ed [vi,t+1(xf,t+1,wi,t+1)]

]

s.t. xf,t+1 = xft + 1 · r̃1t(q1t) + 1 · q2t −
2∑
i=1

1 · yit,

wi,t+1 = wi,t + di,t − yi,t, i = 1, 2.

(4.4)

Notice that in (4.4), the future expected profit is obtained by solving model (4.3)

for each channel. In addition, (4.4) is solved in a forward manner as opposed to the

backward recursion of SDP1.

A pseudo-code of the decomposition method comprising of its main steps is pre-

sented in Algorithm 1. In the first step, the value of opportunity cost parameter βit
for channel i at time t is computed by the finite difference method. After obtaining

the opportunity cost parameter, the decomposed model is solved by the standard
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method of backward dynamic programming. Then the policy table is approximated

for all possible states by moving forward in time.

Algorithm 4: Channel-based decomposition algorithm for SDP1

1: Obtain opportunity cost βit using the finite difference method

2: Solve model (4.3) using BDP to obtain policy tables vit(xft,wit|dit) for all possible
demand scenarios (dit) at state (xft,wit) for channel i = 1, 2

3: for t = 1, · · · , T do
4: for all states (xft,wit) and demand scenarios (dit) do

5: Solve model (4.4) using vit(xft,wit|dit) obtained in Step 2

6: Store best decisions q∗t ,y
∗
t

4.5.2 Penalty-based Decomposition Method for Solving SDP2

In this approach, we carry out the decomposition to not only disintegrate channels,

but also the joint decision-making process. We assume that the ordering decisions

from regular and emergency suppliers are taken at the central echelon while the

delivery decisions are being taken along each channel of the network. The SDP2

model is decomposed by each echelon mainly comprising of the central echelon and

the two channels in the network (?Gallego & Özer 2003, Kunnumkal & Topaloglu

2011). The echelon-wise decomposition is possible for SDP2 because the inventory

level or a state of the system is tracked at each echelon in SDP2 as opposed to SDP1

where the inventory is only reviewed at the central echelon. For the echelon-wise

decomposition of SDP2, we relax the following linking constraint by associating a

Lagrange multiplier to

2∑
i=1

1 · yit ≤ xft + 1 · r̃1t(q1t) + 1 · q2t.

Notice that this linking constraint connects all channels with the central echelon by

ensuring that the total deliveries are less than the available inventories. Let λt define

the Lagrange multiplier associated with the linking constraint at time t. We can

determine this (i.e., dual variable) by solving the deterministic linear programming

formulation of SDP2 (Kunnumkal & Topaloglu 2011).

Let us first describe the decomposed model for each channel. In this model,

we can only find the delivery decisions for the given channel under the assumption

of unlimited supply from the central echelon. This assumption is made because of

relaxation of the linking constraint which ensures the deliveries to be less than the
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supply. In other words, deliveries for each channel can be more or less than amount

of supply. The decomposed model for each channel i for i = 1, 2, can be expressed as

vit(xit,wit|dit) = max
yit

Es[pit ·min{dit + wit,xit + yit} − (h− βit)(1·xit)

− γi(1 ·wi,t+1) + Ed[vi,t+1(xi,t+1,wi,t+1)]]

s.t. xi,t+1 = (xit + yit −wit − dit)
+,

wi,t+1 = (wit + dit − yit − xit)
+,

(4.5)

The boundary condition at the end of planning horizon is vi,T+1(xi,T+1,wi,T+1) = 0.

Similarly, the decomposed model for the central echelon is states as

vft(xft,wt|dt) = max
qt∈Ft

− c2(1 · q2t)− Es[c1(1 · r̃1t(q1t)) + ft(qt)

− λt(
2∑
i=1

(1 · y∗it)− xft − (1 · r̃1t(q1t))− (1 · q2t))]
(4.6)

where ft(qt) = Es[∆t(qt)] and ∆t(.) is defined as,

∆t(qt) = max
yt∈Ft

2∑
i=1

pit ·min{dit + wit,xit + yit} − h(1 · xi,t+1)

− γi(1 ·wi,t+1) + Ed[vi,t+1(xi,t+1,wi,t+1)]

s.t. xi,t+1 = (xit + yit −wit − dit)
+,

wi,t+1 = (wit + dit − yit − xit)
+,

2∑
i=1

(1 · yit) ≤ xft − (1 · r̃1t(q1t))− (1 · q2t)

yit ≥ 0, i = 1, 2.

(4.7)

∆t(.) denotes the penalty function as defined by Gallego & Özer (2003) and Kun-

numkal & Topaloglu (2011). The penalty function evaluates the benefit of deliver-

ing the currently available inventories to the individual channels by satisfying their

demand. Notice that the value function (4.6) without a penalty function makes

the ordering decisions from suppliers without any consideration of the demand of

dual-channels. However, these decisions related to ordering and deliveries are inter-

dependent and cannot be taken independently. Thus, we simultaneously solve models

in (4.6) and (4.7) via a two-stage decision-making process to find decisions related to

the ordering from two suppliers and delivery among the two channels. At the first

stage, the decisions related to ordering from two suppliers are obtained from (4.6).

For a given ordering decision from two suppliers, model (4.7) yields the delivery for
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dual-channels at the second stage. A pseudo-code of the solution method comprising

of detailed steps of the two-stage process is provided in Algorithm 2.

Algorithm 5: Penalty based decomposition algorithm for SDP2

1: Solve model (4.5) using BDP to obtain policy tables vit(xit,wit|dit) for all possible
demand realisation dit at state (xit,wit) for channel i = 1, 2

2: for t = 1, · · · , T do
3: for all states (xt,wt) and demand scenarios (dt) do

4: Solve model (4.7) using vit(xit,wit|dit) obtained in Step 1

5: Store best decisions y∗t and values for penalty function ∆t(.)

6: Obtain multipliers (λt) using the dual variables from the deterministic LP of SDP2

7: for t = 1 · · · , T do
8: for all states (xft,wt) and demand scenarios (dt) do

9: Use y∗t and ∆t(.) in Step 5 to solve model (4.6)

10: Store best decisions q∗t ,y
∗
t

In the first step of the algorithm, the decomposed model for each retailer (4.5) is

solved by the standard backward dynamic programming. Then the penalty function

for all possible values of the unknown ordering variable qt is evaluated in Steps 3-5.

Once the tableau for penalty function is obtained, in Steps 7-10 the policy table at

the central echelon is obtained by the two-stage decision-making model (4.6) in a

forward recursion manner.

4.6 Computational Experiments

In this section, we will first describe the design and data structure used in the numer-

ical experiments and then present the computational results of different approaches

proposed for solving the joint ordering-delivery problem using the dual-channel supply

chain network.

4.6.1 Design of Experiments and Data

We design numerical experiments to illustrate performance of the proposed decision-

making models and derive managerial insights. In particular, the numerical study

aims to answer the following questions:

• How can we solve the underlying complex decision-making problems efficiently
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and illustrate performance of the decomposition approaches?

• What is the importance of considering both demand and supply uncertainties

for a supply chain with dual-channel distribution network?

• What is the benefit of jointly deciding allocation and delivery strategies of the

dual-channel supply chain?

The stochastic dynamic programming problems presented as SDP1 and SDP2

are solved using the following approaches to obtain policy tables. The policy tables

obtained from different solution approaches are then used for in the same simulation

set-up to compare their performances. Next, a brief description of these approaches

is as follows.

Backward Dynamic Programming (abbreviated as BDP): This is a standard approach

to solve dynamic programming problems; therefore, it is used as a benchmark

approach to show effectiveness of the approximate policies. The BDP method

can solve both SDP1 and SDP2 models for only limited problem instances. It

is a computationally intractable method due to curse of dimensionality of the

underlying dynamic programming model as discussed earlier. Notice that the

same policy tables are obtained for both SDP1 and SDP2 models since they

have the same optimal policy. Moreover, SDP2 is an alternative formulation of

SDP1.

Channel-based Decomposition Method (abbreviated as CB): This method first de-

composes the underlying dynamic programming model SDP1 with respect to

each channel and then solves each of the smaller size models to determine the

inventory allocation to the single channel by ignoring other channels. The con-

nectivity among channels is ensured by parameter βit introduced for each channel

i at time t that basically measures the opportunity cost for allocating each unit

of inventory to alternative channels. We tested two different ways of setting up

this parameter within our decomposition method as suggested in Kunnumkal &

Topaloglu (2010). In the first way, we basically set βit at zero whereas in the

second way we implement a finite-difference method to determine the value of

opportunity cost parameters. The channel-based decomposition method with

two different ways of finding the opportunity costs are labelled as CB(β=0) and

CB(fin−dif), respectively.

Penalty-based Decomposition Method (abbreviated as PB): This method first de-

composes the underlying dynamic programming model SDP2 with respect each
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echelon. Instead of tracking inventory level of only central echelon (as in the

channel-based decomposition method), we consider inventory levels of all par-

ties in the customer echelon as well as the central echelon. For our numerical

experiments we consider two ways of setting value of βit as explained above. For

βit = 0, we purely capture features of the penalty decomposition method with-

out considering any opportunity cost parameters and this is labelled as PB(β=0).

In order to integrate the opportunity cost within the penalty-based decomposi-

tion method, we also consider the finite difference method for evaluating value

of βit. This is abbreviated as PB(fin−dif) in our numerical results.

Threshold Inventory Based Policy (abbreviated as TIP): We also introduce a heuristic

policy based on “inventory thresholds” (or “base stock levels”) of the system.

In this policy the firm makes ordering and inventory allocation decisions based

on the base stock level. A similar approach has been widely used for inventory

management of the single retailing supply chain networks (that differs from

our setting); for instance, see Chiang & Monahan (2005), Schneider & Klabjan

(2013), Wang et al. (2017) and Keck et al. (2019).

The algorithms were implemented in MATLAB and all computational experiments

were run in a desktop computer with Intel Core i5-7500, 3.4GHz, 8GB RAM. The

numerical results obtained by these methods are presented in terms of total expected

profit over the planning horizon and the CPU time (seconds) taken to solve the

underlying the stochastic dynamic programming models.

As the supply network, we consider the sale of a product through two channels

(namely one third party retailer and one firm owned store). The firm may procure

the product from both regular and emergency suppliers over a planning horizon of

T = 10 time periods. The regular supplier may not always provide exactly the amount

ordered because of supply uncertainty. In particular, we assume that the amount

of order recieved from the regular supplier follows a truncated form of the Poisson

distribution (David & Johnson 1952). Truncated Poisson distribution is appropriate

for our model because it eliminates the unwanted amount of product from the sample

space of the distribution.

In order to show impact of various parameter settings on the performance of

policies, we consider different cases for the ordering costs from suppliers and also for

penalty costs paid to the demand channels for unmet demand. For selecting values

of all other model parameters and creating test instances, we adopt the settings

from Jakšič & Fransoo (2018) and Feng et al. (2019). We also consider practitioner

reports, such as Blatcher (2018) and Alliance (2019) for parameter selection. We
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generate additional test instances by varying some of the base parameters presented

below;

• The inventory holding cost is selected as h = 0.01, discount factor is δ = 1.

• The ordering costs from regular and emergency suppliers are set as c1 = 0.5 and

c2 = 1.5, respectively.

• The capacity for ordering from different suppliers is set as κ = 5, 10, 15 and 20.

• The selling prices for both channels are chosen as p1 = 3 and p2 = 2, respectively.

• The penalty costs paid to channels are γ1 = 1 and γ2 = 2, respectively.

• The demand from each channel is uncertain and follows a poisson distribution

with an average rate of 5 units and the maximum possible demand is 10 units.

For simulation experiments, we generate 1000 realisations of uncertain parameters

related to demand requests from each channel and the amount of orders received

from the regular suppliers. The expected profits are calculated by simulating demand

requests and supply received over 1000 simulation paths.

4.6.2 Numerical Results and Analysis

In this section, we present the results of our numerical experiments under three main

headings to illustrate i) performance of different decomposition methods and the

benchmark policy, ii) impact of the joint allocation and delivery ordering strategies,

and iii) effect of simultaneously considering demand and supply uncertainties.

Performance Comparison of Proposed Methods: We are first concerned with

the performance comparison of various solution approaches by varying the ordering

capacity κ from 5 to 20 units. Table 4.2 presents the results of different methods

over varying production capacity in terms of total average expected profit (labelled

as “Exp-profit”) and the CPU time (in seconds) taken to solve each problem instance.

In this table, the best performance of an approach (defined as the highest expected

profit achieved and the lowest CPU time taken to solve the underlying problem)

is presented in bold and NA highlights “no solution available within days” by the

BDP method for the specific case of 20 ordering capacity from suppliers due to the

computational complexity.
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Table 4.2: Performance of the decomposition and backward dynamic programming ap-
proaches

Ordering Performance BDP Decomposition Methods
Capacity Metrics Method CB(fin−dif) CB(β=0) PB(β=0) PB(fin−dif)

5 Exp-profit 52.21 47.42 39.20 46.60 47.66
Solution time 593.54 92.50 112.34 32.12 34.32

10 Exp-profit 106.91 95.10 83.73 101.90 101.88
Solution time 84994.79 2801.68 2934.23 215.73 217.47

15 Exp-profit 185.94 180.33 137.78 181.79 182.18
Solution time (30 days) 46960.56 47112.43 1123.33 1131.72

20 Exp-profit NA 230.04 180.50 238.47 239.42
Solution time NA 243212.23 25198.92 3951.64 4980.56

As BDP yields the optimal policies, it provides the maximum expected profits.

Thus it is considered as the benchmark approach for the performance comparison of

the decomposition methods. On the other hand, it is not possible to solve the real

problem instances within a reasonable time limit due to computational complexities.

From the computational results in Table 4.2, we can make the following observations.

• The channel-based decomposition method CB(β=0) yields the lowest profit among

the four decomposition methods. Because no connectivity exists between the

decomposition models of individual channels since it assumes that β = 0. On

the other hand, by determining an appropriate value of the opportunity cost pa-

rameter (such as the finite difference method), the expected profit obtained by

the CB(fin−dif) method becomes higher than the one obtained by CB(β=0). This

shows the necessity of the link between the decomposed problems over different

channels.

• The penalty-based decomposition method for solving SDP2 provides the highest

expected profit comparing to the channel-based decomposition method for solv-

ing SDP1. Recall that when we decompose the model SDP2 by each echelon, we

are naturally able to track the inventory of each echelon. Moreover, the struc-

ture of penalty decomposition method comprises of a two-stage decision-making

process. At the first stage, we obtain the decisions related to ordering from two

suppliers. Once the supply uncertainty is realised, the firm allocates the avail-

able inventory among the distribution channels depending on different scenarios

of deliveries received from the regular suppliers at the second stage. Due to this

structure of the penalty decomposition method, PB(β=0) and PB(fin−dif) pro-

duces higher expected profit than CB(β=0) and CB(fin−dif) can achieve. Among

the penalty decomposition methods, PB(fin−dif) outperforms PB(β=0) in all cases
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except for capacity 10. This happens because the method PB(fin−dif) consists of

features of both penalty decomposition method as well as the opportunity cost

parameter.

• In terms of computational times, BDP expectedly takes the longest solution time

to obtain the optimal policy since the action space is evaluated at each point

of the state. On the other hand, the penalty-based decomposition methods

(PB(β=0) and PB(fin−dif)) require significantly less computational time compar-

ing to the channel-based decomposition method (CB(β=0) and CB(fin−dif)). Due

to dispersion of the inventory allocation decisions to multiple echelons in PB(β=0)

and PB(fin−dif), the decomposed model for each channel only comprises of the

(delivery) allocation decision. On the other hand, in CB(β=0) and CB(fin−dif),

the decisions related to both ordering and inventory allocation are considered in

the channel’s decomposed model. Thus, compression of the action space at the

channel’s decomposed model in PB(β=0) and PB(fin−dif) leads to a significant

reduction in its solution time.

We design numerical experiments to display the performance of the threshold in-

ventory based heuristic that has been widely used in practice. The pseudo code of

the threshold inventory based heuristic is presented in Algorithm 3. This algorithm

requires pre-setting of the two main parameters.

• Inventory threshold parameter (denoted by η) is used for supply ordering de-

cisions. If the current inventory level lies above η, then the firm only orders

from regular suppliers. Otherwise, the firm may order from both regular and

emergency suppliers.

• Order fulfilment parameter (denoted by α) is used to determine the amount of

orders to be delivered to each channel. In other words, at each time period, the

firm wishes to deliver α percentage of the customer demand to channel 1 (i.e.,

third party retailers) and the remaining inventory will be supplied to the second

channel (i.e., firm owned stores).

For the numerical experiments, we design two cases where the threshold parameter

is fixed at η = 0 and η > 0. Note that in the latter case, half of the average demand

is to be ordered from the regular and/or emergency suppliers. In both cases, we set

the order fulfilment parameter as α = 100% and 75%. The computation time for

obtaining the heuristic policy at each problem instance is less than 2 seconds. Table

4.3 shows the numerical results of the heuristic approach obtained by varying values
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of ordering capacity. We compare the performance of the heuristic policy with the

penalty based decomposition approach PB(fin−dif) as it provides the highest expected

profit among the other decomposition methods as reported in Table 4.2.

Table 4.3: Performance comparison of the decomposition and heuristic based policies

Ordering Decomposition TIP (η = 0) TIP (η > 0)
Capacity PB(fin−dif) α =100% α =75% α =100% α =75%

5 47.66 42.27 38.36 23.25 16.29
10 101.88 98.75 95.52 42.42 35.46
15 182.18 173.55 163.05 56.47 56.47
20 239.42 231.45 220.68 83.41 71.73

From Table 4.3, one can easily observe that the decomposition method PB-DM(fin−dif)

provides higher expected profit than the heuristic policy. Among different settings

of the heuristic policy, the expected profits yielding from the zero threshold level are

always higher than the non-zero threshold level. In the case of zero threshold level,

the firm obtains a higher profit by strictly ordering from the regular supplier. This

is consistent with the results obtained by PB-DM(fin−dif) that also only orders from

the regular supplier in these test instances.

Overall, we can conclude that the decomposition approach PB-DM(fin−dif) out-

performs to all proposed methods in this chapter. Thus, we will use only this method

in the remaining numerical experiments.

Impact of Demand-Supply Uncertainties: Most studies in the literature focus

on either tackling demand or supply uncertainty in a supply chain. However, several

practitioner reports about dual-channel firms (like Apple and Costco) emphasise the

importance of incorporating both demand and supply uncertainties into the firm’s

decision-making process and discuss potential impact of considering demand or sup-

ply side of uncertainty in isolation on the firm’s overall profitability; for instance, see

(Kubota et al. 2019, Gartner 2015, Reuters 2020, Hurt 2020). Moreover, it is not

realistic to consider one side of uncertainty and ignore the other one. For instance,

when the firm receives exactly whatever orders in the deterministic supply case, the

sourcing strategy will never diversify because the firm would never order from emer-

gency suppliers because of its high ordering cost. However, diversification in sourcing

strategies is essential for dual-channel supply chains to mitigate demand and supply

uncertainties.

In order to investigate impact of supply uncertainty on the ordering-inventory

allocation policies, we consider the same supply chain network used with the base case
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settings, but fix the customer demand from each channel at certain levels. This supply

chain with dual-channel distribution network involves only supply uncertainty and the

demand from each channel over time is fixed to a value of 3, 4, · · · , 8 units. In other

words, we generate the policy tables, abbreviated as FF-k, using a fixed demand of k

units while considering uncertainty from the supply side. As mentioned in previous

section, the decomposition method PB-DM(fin−dif) is preferred to generate the policy

tables in these experiments due to its computational efficiency. On the other hand,

the dynamic policy under both demand and supply uncertainties is abbreviated as the

“DP” policy. We also vary the cost of ordering from emergency suppliers and present

results of only two cases with 1.25 (labelled as ’high ordering cost’) and 0.75 (labelled

as ’low ordering cost’). Figure 4.3 presents the expected profit and average unmet

demand of channels obtained by DP and different FF-k for k = 3, · · · , 8 policies using

the high (in the left panel) and low (in the right panel) ordering costs.

Figure 4.3: Performance comparison of various policies

We observe that expected profit obtained by the DP policy (considering both

demand and supply uncertainties) is always higher than those achieved by the FF-k

policies with fixed demand levels for k = 3, · · · , 8. This shows that making joint

decisions related to ordering and inventory delivery in view of demand and supply

variations lead to increase in the expected profit. However, the firm loses out on

some profits if the ordering and inventory delivery strategies are decided under the

assumption of a fixed level of demand.

Among the FF-k policies, the expected profit increases with the fixed value of

demand until a certain level and then starts decreasing. In case of low ordering cost,

the profit is maximised at FF-6 whereas the maximum point is achieved at FF-7 for

the case of high ordering cost. In the FF-k strategies, profits are maximized at high

levels of demand because the firm satisfies more demand and garners a higher profit as

well. However, after a certain level of high demand the profits start declining as well.
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This happens because the firm ends up ordering more than needed at exceeding high

levels of demand. Even though the profits of the best FF-k policies are close to that

of DP, there is a significant gap between the level of their total unmet demand. In the

case of high ordering cost, the value of unmet demand of FF-7 is more than double of

DP. Various dual-channel firms in practice discuss the importance of losing as little

demand as possible. In fact, Apple and Costco are reported to give considerable

importance to minimise the loss in the demand to maintain their reputation (Gartner

2015, Reuters 2020, Hurt 2020). The dynamic model not only yields the highest

profits but also ensures the minimum level of unmet demand.

Performance of Joint Ordering-Delivery Policies: In order to investigate the

effectiveness of dynamic joint ordering-delivery strategies for the dual-channel supply

chain, we introduce several fixed inventory allocation strategies and compare their

performances with the DP policy. In the fixed delivery strategy, decisions regarding

the allocation of inventory among channels are made at the beginning of the planning

horizon while the ordering actions are dynamically taken.

Firms having a dual-channel supply chain often follow a fixed inventory delivery

in practice where some strict preferences could be given to one channel over another.

For instance, Apple is reported to cater to the demand of their own stores over third

party retailers (Danziger 2017). By considering a practical application, we design

numerical experiments where the percentage of inventory to be delivered among the

two channels is predetermined. For example, if the firm targets to allocate 70% of

inventories to channel 1, then the remaining 30% needs to be allocated to channel 2. In

order to determine the best inventory allocation strategy, we also vary the percentage

allocation rates for each channel and the corresponding fixed delivery policies are

accordingly named as FA-r where r = 70, 60, · · · , 40, 30 (%). These predetermined

delivery strategies are integrated with the decomposition method to create the policy

tables consisting of ordering strategies from regular and emergency suppliers. In

these experiments, we also consider different penalties (between 0 and 1) to be paid

to the firm owned stores for unmet demand to show its influence on the fixed delivery

strategies. In Figure 4.4, we present the results of two cases obtained by DP and fixed

delivery strategies with low (right panel) and high (left panel) penalty costs in terms

of expected profit and unmet demand. From these results we can make the following

observations.

• The expected profit achieved by the DP approach has always been higher than

the one produced by the fixed allocation strategies regardless the choice of

penalty costs. This is because at each time the deliveries are dynamically de-
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Figure 4.4: Performance comparison of dynamic versus fixed inventory allocation policies

cided in the DP model rather than being predetermined rates as in the case of

the fixed delivery strategy.

• FD-40 yields the maximum profits among the fixed delivery strategies because

of a fair proportion of distribution among the channels. In the case of high

penalty cost, there is a 9.35% gap between the profits from DP and the best

fixed allocation strategy of FD-40. We observe that there is a higher unmet

demand in the fixed delivery strategy in comparison with DP. Moreover, the

value of penalties paid for the unmet demand is also the highest in this case.

In the case of low penalty cost, the gap between the DP and the best fixed

delivery strategy of FD-40 reduces to 5.15%. To investigate the change in gap

with respect to the penalty values, we consider another case where penalty costs

for both channels are set to zero. The gap reduces to 2.4% in the case where

the penalty values are set to zero. However, despite the reduction in the gap

between profits, there is a significant difference between the unmet demands of

DP and FD-40 (regardless high and low penalty costs as well the case of zero

penalty cost).

• The percentage difference between the unmet demand of DP and fixed delivery

strategies of all instances is around 75%. This happens because in dynamic

programming approach, the allocation ratios will dynamically change based on

the level of state values and demand variation at each time period. On the other

hand, in the fixed delivery strategy, the allocation ratios remain constant over

the planning horizon.

Overall, we can conclude that dynamically deciding the inventory allocation ratios

is more effective in tackling uncertainties in the supply chain for the given data set-up.

Even though some retailers follow a fixed inventory allocation strategy in practice,
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they should consider adopting the dynamic allocation of inventories. The dynamic

allocation of inventories over time not only enhances profits, but reduces the levels of

unsatisfied demand as well.

Impact of Demand Uncertainty on Delivery Policies: Next, we are concerned

with impact of demand uncertainty on performance of dynamic and fixed inventory

allocation strategies. We consider two cases (abbreviated as “Cases I and II”). In Case

I, the policy tables are created using the decomposition method (introduced in Section

4.4) under the assumption of uncertain demand following a distribution. On the

other hand, in Case II the demand is assumed to be deterministic and fixed at certain

levels (as introduced in FD-k for k = 3, · · · , 8) while producing the policy tables.

As delivery strategies, we consider three different ways of allocating the available

inventory among channels and compare their performance with the dynamic inventory

allocation strategy (abbreviated as “Dyn-Del”). In the first strategy, we equally

allocate the deliveries among the two channels (labelled as “FD-50”) proportionally

to the expected demand. In other delivery strategies, strict preferences are given to

either channel 1 or channel 2 (labelled as “FD-Ch1” and “FD-Ch2”, respectively).

Table 4.4 presents results of this experiment in terms of expected revenue and cost

as well as the unmet demand of individual channels. Notice that the maximum

expected profits (calculated as expected revenue minus expected cost) obtained by

different delivery strategies are highlighted in bold.

Table 4.4: Performance comparison of the fixed delivery strategies with dynamic program-
ming approach under uncertain and deterministic demand cases

Delivery Performance Case I: Policy with Case II: Policy under Fixed Demand
Strategies Metrics Random Demand FD-3 FD-4 FD-5 FD-6 FD-7 FD-8

Dyn-Del Revenue 242.77 232.22 235.96 238.54 238.65 239.70 230.86
Cost 54.43 85.48 72.24 64.05 61.58 59.95 83.99

FD-50 Revenue 237.77 232.34 235.14 236.92 239.63 240.97 240.85
Cost 71.21 84.93 75.96 71.32 67.02 72.43 72.72

FD-Ch1 Revenue 145.35 145.71 145.47 145.11 144.21 143.31 141.57
Cost 150.17 151.71 151.89 151.37 151.71 153.47 157.53

FD-Ch2 Revenue 98.80 98.16 98.50 97.80 97.10 96.80 95.34
Cost 270.89 273.38 272.48 272.56 272.51 273.50 275.65

Unmet Demand of Channels

Dyn-Del Ch-1 0.04 20.63 13.78 8.7 5.65 5.07 0.94
Ch-2 8.38 27.6 21.67 17.06 16.34 16.15 45.35

FD-50 Ch-1 3.11 8.18 5.51 3.51 3.09 3.07 3.07
Ch-2 27.56 41.57 32.48 27.21 18.38 20.74 21.19

FD-Ch1 Ch-1 3.42 14.88 10.78 7.9 4.81 4.4 2.02
FD-Ch2 Ch-2 3.53 17.31 12.56 8.21 5.37 3.51 2.79

In Case I using uncertain demand in policy tables, the maximum expected profit

(as maximum revenue and minimum cost) is achieved by the dynamic delivery policy.
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Among the three fixed delivery strategies, FD-50 produces the highest expected profit.

This outcome is consistent with the results provided in the previous experiments. On

the other hand, the FD-Ch2 policy with a strict preference on channel 2 (as the

firm owned shops) in inventory allocation provides the lowest revenue and highest

cost. This happens because when the firm strictly prefers channel 2 over channel

1, they pay high penalty for not satisfying the demand for channel 1. Due to high

penalties for different channels, the expected cost exceeds the expected revenue while

following the strict delivery policies, FD-Ch1 and FD-Ch2. In other words, the firm

faces losses if a strict preference is given to a single channel. Despite facing losses

in the strict delivery policies, they produce low level of unmet demand comparing

to Dyn-Del for dual-channel supply chain. Even though FD-Ch2 yields the lowest

level of unmet demand for channel 2, minimum loss of demand in channel 1 occurs

in Dyn-Del rather than FD-Ch1. According to FD-Ch1, there is a strict preference

given to the demand of channel 1 but still, it is unable to meet the demand like the

Dyn-Del policy. This happens because in the Dyn-Del policy, along with the delivery

decisions, the firm collectively decides to order quantities as well. On the other hand,

in FD-Ch1, they decide the ordering decisions in view of satisfying only one channel.

The decision-making of FD-Ch1 is not driven by the gain the firm would receive by

dynamically deciding the preference between multiple channels of demand.

We also observe that in Case II (where dynamic and fixed delivery policies are

generated in view of constant levels of demands), the expected revenues produced

by all delivery policies increase with demand until a certain level and then start

decreasing. However, the expected cost doesn’t exhibit such a pattern. In other

words, the expected cost of Dyn-Del decreases till fixed demand level of 7 units, but

then increases at level of 8 units of demand. The same pattern is visible for all the

fixed delivery policies as well. We suspect that this happens because of the jump

in ordering costs as the firm orders more to meet the increased level of demand (8

units). Consequently, the unmet demand in channel 1 is low at high demand levels.

However, the demand of channel 2 is at the highest level at 8 units of demand for

both Dyn-Del and FD-50 because the penalty cost of unmet demand for channel 1 is

higher than that of channel 2.

4.7 Conclusions

In this chapter, we develop ordering and delivery policies for a dual-channel distri-

bution network. The existing studies in the literature of dual-retailing supply chain

consider the supply of product is assumed to be deterministic. We relax this as-
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sumption and consider the uncertainties from both demand and supply sides in the

dual-channel network. The joint decision-making model under uncertainties is for-

mulated as stochastic dynamic model with high-dimensional state space because of

the dual-channel distribution network. We reduce the high dimensionality of the

stochastic dynamic model by decomposing the dual-channel network in two ways.

The first approach involves decomposing the network by each retail channel where

we ensure the inter-connectivity between the channel through the use of opportunity

cost. The second approach is designed based on the idea of tracking inventory levels

across the distribution network. The mechanism of inventory-tracking is followed by

many practitioners. The model is reformulated in a way such that the inventories

can be tracked at all the network echelons. The inventory-tracking model is then

decomposed by each echelon.

Computational experiments illustrate the performance of decomposition approaches

in comparison with BDP. They highlight that both the approaches yield efficient ap-

proximate solutions in a reasonable computing time. The solutions approaches are

also compared with a inventory threshold heuristic policy adopted from practitioner

reports. Numerical experiments are also designed to highlight several features of the

joint decision-making model for the dual-channel network. Our results emphasise the

importance of collectively considering both demand and supply uncertainties. More-

over, the benefit of joint ordering and delivery policies are also analysed with varying

levels of ordering and penalty costs. Our finding suggest that joint decision-making

policy not only does well in terms of profit but it also ensure minimum loss in demand.

As future work, one can extend the proposed models to n supplier network. More-

over, n retail channels can be integrated into the model in this chapter. In this case,

novel approaches are required to solve these complex decision-making problems.
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Chapter 5

Summary of Finding and Future

Work

This chapter concludes the thesis by summarising the main findings of the research

problems. We also highlight several limitations encountered during the research.

Finally, some future research directions are also be provided as extension to this PhD

study.

5.1 Summary of Research and Findings

Decision-making problems of retail supply chains are complex due to the distinct

elements of its stochastic and dynamic nature. In addition, management of retail and

various other supply chains includes several inter-connected key decisions that are

related to pricing, production, ordering and inventory of products. Joint decision-

making is required to effectively manage these complex and inter-connected decisions

under uncertainty. In this thesis, we study three joint decision-making problems

of retail supply chains under uncertainty. The underlying problems are formulated

via stochastic dynamic programming. We develop efficient solution approaches by

analysing the features and properties of each research problem. We obtain joint

decision-making policies which enhances firm’s overall profits and leads to gain of

managerial insights. The respective findings of the research problems are provided

below.

In Chapter 2, we study the joint production-pricing problem of a firm selling a

multi-generation product line under demand uncertainty. The internal competition
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between multiple generations is accounted for by analysing customer choices. Joint

decision-making policies are then derived by approximately solving a stochastic dy-

namic programming model with a high-dimensional state and action space. The

structural properties of the model are analysed to propose two approximations, FDP

and a heuristic comprising of different pricing strategies. The performance of the

approximation methods are illustrated through a computational study. In addition,

comprehensive numerical experiments are conducted to investigate the significance

of joint decision-making problems to manage a multi-generation product line. The

joint decision-making strategy is compared with partial planning policies where either

production or pricing decision is fixed at the start of the planning horizon and the

other one is dynamically decided. Joint production-pricing policy outperforms fixed

production policy in terms of expected profit as it is a challenging to tackle demand

uncertainty when the production levels are fixed. On the other hand, the profits

from the fixed pricing policy lie very close to the joint production-pricing policy but

their ordering strategies completely differ. In the fixed pricing policy, the ordering

strategies obtained under a fixed set of prices cannot capture the internal competition

among multiple generations. We also analyse the effect of customer segments on the

management of multi-generation product line by varying the proportion of customers’

price and quality sensitivity (towards the underlying technology) in the market. The

results indicate that when the proportion of innovation sensitive customers is high,

the production and sale of older generations drop due to the high demand towards

the new generations. Similarly, it becomes more profitable to sell older generations

with new release as the percentage of price sensitive customers increases. Thus, this

shows that the variation in customer segments must be considered while determining

the number of generations to be kept in the market.

In Chapter 3, we design joint ordering and markdown policies for a firm selling

a perishable product under demand uncertainty. We analyse the dynamic nature of

customer choices to capture the demand cannibalization between fresh and old inven-

tories. The customer choice model is then integrated with the joint decision-making

model which is formulated as stochastic dynamic model. Due to the tracking of mul-

tiple age of perishable products, the state space of the stochastic dynamic model is

high-dimensional. We propose an exact solution algorithm by analysing the structural

properties like k-concavity and submodularity of the underlying model. Our solution

algorithm yields optimal joint ordering and markdown decisions in a reasonable com-

putation time. The benefit of efficient computation of our exact solution algorithm is

depicted computationally as well. We also design numerical experiments to compare

our dynamic polices with various fixed markdown policies adopted from practice. Our

findings depict the joint decision-making policies to perform superior than the fixed

112



policies as they are more flexible. The flexibility within the joint decision-making

policy is also investigated. We find that the flexibility in deciding the age and time

of markdown is more important than the flexibility in changing the markdown price.

We also investigate the relationship between markdown age and ordering strategies.

There are some direct and indirect patterns between inventories of different ages and

ordering strategies. These patterns showcase the importance of considering the dy-

namic nature of the management of perishable products. In practice, supermarkets

operate in view of different kinds of price and/or quality sensitive customer segments.

Thus, we also analyse the impact of joint ordering and markdown policies in varying

customer segments. In highly price sensitive customer segments, fixed markdowns

policies perform as good as dynamic polices while no markdown policy performs

better in quality sensitive segments. This experiment highlights the importance of

obtaining targeted and tailor-made policies for various customers segments which are

less expensive to implement and beneficial to practitioners.

Chapter 4 focuses on developing ordering and delivery policies for a dual-channel

distribution network. Uncertainties from both demand and supply side are taken in

consideration in the dual-channel network. We also employ diversification of sourcing

strategies to deal with demand-supply uncertainties. The joint decision-making model

under uncertainties is formulated as a stochastic dynamic programming model. The

resulting model has high-dimensional state space because of the dual-channel distribu-

tion network. We compress the high dimensionality of the stochastic dynamic model

by decomposing the dual-channel network in two ways. The first approach involves de-

composing the network by each retail channel where we ensure the inter-connectivity

between channels through the use of opportunity cost. The second approach is de-

signed based on the idea of tracking inventory levels across the distribution network.

The original model is reformulated in such a way that the inventories can be tracked

at all network echelons. The inventory-tracking model is then decomposed by each

echelon. Computational experiments illustrate the performance of the decomposition

approaches in comparison with BDP. They highlight that both approaches yield effi-

cient approximate solutions in a reasonable computing time. The solution approaches

are also compared with an inventory threshold heuristic policy adopted from practi-

tioner reports. Numerical experiments are also designed to highlight several features

of the joint decision-making model for the dual-channel network. Our results empha-

sise the importance of collectively considering both demand and supply uncertainties.

Moreover, the benefit of joint ordering and delivery policies are also analysed with

varying levels of ordering and penalty costs. Our findings suggest that joint decision-

making policy not only does well in terms of profit but also ensures minimum loss in

demand.
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In this thesis, we design dynamic and joint decision-making models to tackle un-

certainty in three different retail set-ups. In the current literature, benefit of joint

decision-making in supply chains is examined by various statistical and analytical

techniques. Unlike the existing literature, we apply stochastic dynamic program-

ming to model and solve the underlying dynamic and joint decision-making problems.

These models suffer from the curse of dimensionality due to exponentially expanding

state space. In addition, the inherent characteristics of the different retail set-ups,

like perishability and dual-channel network, add further complexities. Thus, standard

solution methodologies cannot be directly applied to solve SDP models. This thesis

contributes by modelling and solving joint decision-making problems in retail sup-

ply chain set-ups. Different solution methodologies are specifically adopted for each

retail-set up to effectively solve its stochastic dynamic models. Moreover, we explore

the structural and theoretical properties of each of the three joint decision-making

problems to build tailor-made solution approaches. The research findings lead to

some managerial insights by implementing joint decision-making policies in practice.

On the other hand, there are limitations in this thesis. Therefore, further research

directions are proposed.

5.2 Limitations and Future Research

In this section, we highlight the limitations of this thesis and discuss some potential

directions for future research;

• In this thesis, SDP is used to model joint decision-making problems arising

in electronic, perishable and dual-channel networks. Other methodologies, like

simulation optimisation, stochastic optimisation and game theory, could have

been explored. In addition, the model set-up considered in this research have

certain limitations. For instance in Chapter 2, the number of versions of multi-

generation product line is assumed to be known. However, one may consider a

decision variable to find the number of version of the multi-generation product

to offer at a time. The underlying network of Chapter 4 is limited to the case

of two kinds of retailers and suppliers. Although the model can be extended

to a general network of supply chain comprising of multiple retail and sourcing

channels.

• The customer choice models used in this thesis are adopted from the literature

specifically for retail supply chains of Chapters 2 and 3. Other types of discrete

choice models, like logit or probit, could have been considered to compute the
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customer choice probabilities. In addition, we should mention that the choice

probabilities in this research are computed using artificially generated data due

to lack of real data. The accuracy of the choice models could have been examined

using a real case study.

• Another limitation in the thesis is related to parameter selection in the compu-

tational experiments. Research papers in the literature and practitioner reports

are reviewed to determine the model parameters. However, one can also deter-

mine those parameters based on a real case study to evaluate the performance

of the joint decision-making models and its solution approaches. Currently,

sensitivity analysis is conducted to test the validity of the parameter selection.

• In terms of approximation methodologies, we applied forward dynamic program-

ming and decomposition-based solution approaches to solve the high-dimensional

stochastic dynamic models. However, other techniques like linear programming

approximations can also be explored. There are various other decompositions

like Bender’s decomposition or nested methods, that may improve quality of the

solutions.

• It will be worthwhile to collaborate with practitioners and investigate the impact

of joint decision-making strategies proposed in this thesis. All the three chapters

have the potential to be extended as case studies by incorporating practitioners’

views.

Finally, we remark about the direction of research in retail supply chain management.

More research is required to investigate impact of joint decision-making process under

multiple uncertainties using practical and realistic settings. This involves integrat-

ing challenging features of multiple uncertainties and dynamic nature of practical

retail setting into the decision-making models. Thus, efficient modelling and solution

approaches are needed.
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1 Appendix A

In this Appendix, the proofs of all propositions in Chapter 2 are provided.

Proof of Proposition 1

The proof follows from the quality aligned prices results presented by Akçay et al.

(2010). We assume that the following relation between prices and features of gener-

ations holds at each time period in the planning horizon.

pm,t − pm−1,t
αm,t − αm−1,t

≥ pm−1,t − pm−2,t
αm−1,t − αm−2,t

≥, · · · ,≥ p2,t − p1,t
α2,t − α1,t

≥ p1,t
α1,t

.

By using this relation, we can formulate the choice probabilities. Let us consider

the latest generation m ∈ Gt at time t. A customer will choose generation m, if

it provides the maximum utility, in other words, if θαmt − pmt ≥ θαjt − pjt, for

j = 1, . . . ,m − 1. Equivalently, generation m would be chosen if
pm,t−pj,t
αm,t−αj,t

≤ θ for

j = 1, . . . ,m−1 or max
j<m

{
pm,t−pj,t
αm,t−αj,t

}
≤ θ. Based on the quality aligned prices condition,

we have

max
j<k

{ pk,t − pj,t
αk,t − αj,t

}
=
pk,t − pk−1,t
αk,t − αk−1,t

and min
j>k

{ pj,t − pk,t
αj,t − αk,t

}
=
pk+1,t − pk−1,t
αk+1,t − αk,t

.

Thus, the choice probability for generation m can be given as

γm,t = Pr

(
pm,t − pm−1,t
αm,t − αm−1,t

< θ ≤ 1

)
= 1− pm,t − pm−1,t

αm,t − αm−1,t
.

We can extend this result and formulate the choice probability for any generation

k ∈ Gt. A customer will choose generation k, for 1 < k < m, if θαkt − pkt ≥
θαjt − pjt,∀j 6= k, j = 1, . . . ,m. In other words, generation k, for 1 < k < m,

would be chosen if max
j<k

{
pk,t−pj,t
αk,t−αj,t

}
≤ θ and min

j>k

{
pj,t−pk,t
αj,t−αk,t

}
≥ θ. Based on the quality

aligned prices condition, the choice probability for generation k can be given as

γk,t = Pr

(
max
j<k

{ pk,t − pj,t
αk,t − αj,t

}
≤ θ ≤ min

j>k

{ pj,t − pk,t
αj,t − αk,t

})
=
pk+1,t − pk,t
αk+1,t − αk,t

− pk,t − pk−1,t
αk,t − αk−1,t

.

By carrying out comparison of the current and previous versions available at time

t in the same manner, we find that if 0 ≤ θ ≤ pk,t
αk,t

for k = 1, then the customer
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prefers not to purchase. As a result the choice probabilities of multiple generations

are obtained as stated above. �

Proof of Proposition 2

In order to prove that fk,t(.) is the probability mass function for generation k ∈ Gt

at time t, we need to show that
M∑
j=0

fk,t(j) = 1 holds.

M∑
j=0

fk,t(j) =
M∑
j=0

M∑
i=j

(
i

j

)
(γk,t)

j(1− γk,t)i−jλi,t

We expand the first summation,

=
M∑
i=0

(1− γk,t)iλi,t +
M∑
i=1

(
i

1

)
(γk,t)(1− γk,t)i−1λi,t

+ · · ·+ (γk,t)
MλM,t

By rearranging it for λi,t and applying the binomial theorem, we obtain

= λ0,t + λ1,t

((
1

0

)
(γk,t)

0(1− γk,t)1 +

(
1

1

)
(γk,t)

1(1− γk,t)0
)

+ · · ·+

λM,t

((
M

0

)
(γk,t)

0(1− γk,t)M +

(
M

1

)
(γk,t)

1(1− γk,t)M−1

+ · · ·+
(
M

M

)
(γk,t)

M(1− γk,t)0
)

= λ0,t + λ1,t(γk,1 + 1− γk,1)1 + · · ·+ λM,t(γk,1 + 1− γk,1)M = 1

�

Proof of Proposition 3

Consider the dynamic joint production-pricing optimization model. Given the bound-

ary conditions at time T + 1, the value function at time T is as follows;

VT (xT ) = max
0≤qT≤κ, pT∈FT

E
[ ∑
k∈GT

pk,T .min{d̃k,T , qk,T + xk,T} − ckqk,T − hT (xk,T + qk,T − d̃k,T )+
]
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By using min{a, b} = b− (b− a)+ for a, b ∈ Z+, we can rewrite the value function as

VT (xT ) = max
0≤qT≤κ, pT∈FT

∑
k∈GT

pk,T (xk,T + qk,T )− ckqk,T − (hT + pk,T )E
[(

xk,T + qk,T − d̃k,T
)+ ]

(1)

Suppose that there are S number of different models available in the market (i.e.,

|GT | = S) and total number of products available for each generation k ∈ GT is

assumed to be xk,T + qk,T = M . In this case, we obtain

E
[(

xk,T + qk,T − d̃k,T
)+ ]

=

xk,T+qk,T∑
j=0

fk,T (j) (xk,T + qk,T − j) (2)

We know the expression
M∑
j=0

jfk,T (j) = γk,T

M∑
j=0

jλj holds true. This expression is

obtained by plugging the value of fk,T (.) from proposition 2 and mathematically

expanding the equation. The mathematical terms are rearranged to apply algebraic

tools and the binomial theorem which results in the simplified expression. By using
M∑
j=0

jfk,T (j) = γk,T

M∑
j=0

jλj, and re-injecting (2) into (1) as

VT (xT ) = max
0≤qT≤κ, pT∈FT

∑
k∈GT

pk,T (xk,T + qk,T )− ckqk,T

− (hT + pk,T )

(
xk,T + qk,T − γk,T

M∑
j=0

jλj

)
.

One can easily show that the hessian matrix H of the value function with respect

to pk,T for k ∈ GT = {1, · · · , s − 1, s} (in order from the older to recent generations

currently available at T ) is a symmetric diagonally dominant with real non-positive

diagonal entries, and also negative semi-definite matrix.

H =
M∑
j=0

jλj



−2α2

α1(α2−α1)
2

α2−α1
0 0 0 . . . 0 0

2
α2−α1

−2(α3−α1)
(α3−α2)(α2−α1)

2
α3−α2

0 0 . . . 0 0

0 2
α3−α2

−2(α4−α2)
(α4−α3)(α3−α2)

2
α4−α3

0 . . . 0 0
...

...
...

...
... . . .

...
...

0 0 . . . 0 0 . . . 2
αs−αs−1

−2
αs−αs−1


(3)
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Let µk and ξk for each version k ∈ GT denote the Lagrangian multipliers with respect

to linear constraints. Then the Lagrangian function can be written as

L(p, µ, ξ) =
∑
k∈GT

pk,T (xk,T + qk.T )− ckqk,T − (hT + pk,T )

(
xk,T + qk,T − γk,T

M∑
j=0

jλj,T

)

−
∑
k∈GT

ξkpk,T −
S−1∑
i=1

µi

(
pi
αi
− pi+1

αi+1

)

Next, we will show that the first order optimality conditions ∂L
∂pi,T

= 0 for i =

1, · · · , S − 1 and ∂L
∂pS,T

= 0, as well as complimentarity conditions are satisfied at

the optimal production strategy. In other words, we have for i = 1, · · · , S − 1

(
2pi−1,T

αi,T − αi−1,T
− 2(αi+1,T − αi−1,T )pi,T

(αi+1 − αi,T )(αi,T − αi−1,T )
+

2pi+1,T

αi+1,T − αi,T
− h

αi,T − αi−1,T

) M∑
k=0

kλk,T

+µi−1 − µi − ξi = 0,

and(
2pi−1,T

αi,T − αi−1,T
− 2pi,T
αi,T − αi−1,T

+ 1

) M∑
k=0

kλk,T + µi−1 − µi − ξi = 0, i = S,

µi

(
pi,T
αi,T
− pi+1,T

αi+1,T

)
= 0, ξipi,T = 0, µi ≥ 0, ξi ≥ 0, i = 1, · · · , S.

Since
pi,T
αi,T

<
pi+1,T

αi+1,T
and pi,T 6= 0, we find µi = ξi = 0 for i = 1, · · · , S. In this case, for

M∑
k=0

kλk,T 6= 0, the first order conditions for sufficiency of the optimality become

2p2,T
α2,T − α1,T

− 2α2,Tp2,T
α1,T (α2,T − α1,T )

− hT
α1,T

= 0

for i = 2, . . . , S − 1

2pi−1,T
αi,T − αi−1,T

− 2(αi+1,T − αi−1,T )pi,T
(αi+1,T − αi,T )(αi,T − αi−1,T )

+
2pi+1,T

αi+1,T − αi,T
− hT
αi,T − αi−1,T

= 0,

2pS−1,T
αS,T − αS−1,T

− 2pS,T
αS,T − αS−1,T

+ 1 = 0

(4)

This linear equation system for S unknowns provides the optimal price strategy as

p∗i,T =
αi,T−hT

2
for all generations i = 1, · · · , S. Note that if

pi,T
αi,T

=
pi+1,T

αi+1,T
, then
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λi,T > 0, ξi > 0 for i = 1, 2, · · · , S. The first order conditions for sufficiency of the

optimality leads to a system of 2S−1 linear equations with S variables. As the number

of linear equations are greater than number of variables, the solutions for this system

of linear equations will be inconsistent. �

Proof of Proposition 4

We prove this proposition in two parts by considering the lower and upper bounds of

prices.

a) We first prove by contradiction that the lower bound pLk,t of market price can be

obtained as pLk,t =
αk,t−ht

2
such that pLk,t ≤ pk,t for the oldest generation k ∈ Gt =

{1, 2, · · · ,m} (where generations are represented in order from the oldest to the

recent model) for any time period t. Assume the price of the oldest version

k = 1 at time t is pk,t =
αk,t−ht

2
− a, where a > 0 and a ∈ R. From Proposition

1, we can compute the total purchase probability over all available products at

time t as
m∑
k=1

γk,t = 1 − pk,t
αk,t

. We then obtain
m∑
k=1

γk,t = 1 − αk,t − ht − 2a

2αk,t
=

1

2
+

ht
2αk,t

+
a

αk,t
.

– Suppose that ht ≤ αk,t. In this case, we have ht
αk,t
≤ 1 that leads to ht

2αk,t
≤ 1

2

and also 1
2

+ ht
2αk,t

≤ 1. Similarly, we can write an equivalent form of the

inequality

1

2
+

ht
2αk,t

+
a

αk,t
≤ 1 +

a

αk,t
=⇒

m∑
k=1

γk,t ≤ 1 +
a

αk,t

For a > αk,t or a ≤ αk,t, the equation
m∑
k=1

γk,t ≤ 1 +
a

αk,t
is no longer a

binding restriction on choice probabilities to lie between 0 and 1 and we

may obtain
m∑
k=1

γk,t ≥ 1 for some parameter values which contradicts the

assumption. For example, let ht = αk,t − a (since ht ≤ αk,t ),
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1

2
+

ht
2αk,t

+
a

αk,t
=

1

2
+
αk,t − a

2αk,t
+

a

αk,t

= 1 +
a

2αk,t
≥ 1

=⇒
m∑
k=1

γk,t ≥ 1

– Suppose that ht ≥ αk,t. In this case, ht
αk,t
≥ 1 that leads to ht

2αk,t
≥ 1

2
and also

1
2

+ ht
2αk,t
≥ 1. Similarly, we can write an equivalent form of the inequality

1

2
+

ht
2αk,t

+
a

αk,t
≥ 1 +

a

αk,t
=⇒

m∑
k=1

γk,t ≥ 1 +
a

αk,t

For a > αk,t or a ≤ αk,t, we obtain
m∑
k=1

γk,t ≥ 1 that contradicts the

assumption.

Therefore, we conclude that pLk,t =
αk,t−ht

2
≤ pk,t for k ∈ Gt = {1, 2, · · · ,m}.

b) Next, we will show that pk,t ≤ pUk,t where pUk,t =
αk,tpk+1,t

αk+1,t
for generation k ∈ Gt

at ant time t.

Let’s consider the choice probability γk,t ≥ 0 for the oldest generation k. Then

we find

γk,t =
pk+1,t − pk,t
αk+1,t − αk,t

− pk,t
αk,t
≥ 0 =⇒ αk,tpk+1,t

αk+1,t

≥ pk,t

The choice probability for successive generation k + 1 is γk+1,t =
pk+2,t−pk+1,t

αk+2,t−αk+1,t
−

pk+1,t−pk,t
αk+1,t−αk,t

≥ 0.

pk+2,t − pk+1,t

αk+2,t − αk+1,t

− pk+1,t − pk,t
αk+1,t − αk,t

≥ 0

=⇒ pk+2,t − pk+1,t

αk+2,t − αk+1,t

≥ pk+1,t − pk,t
αk+1,t − αk,t

=⇒ pk+2,t − pk+1,t

αk+2,t − αk+1,t

≥ pk+1,t − pk,t
αk+1,t − αk,t

≥
pk+1,t − αk,tpk+1,t

αk+1,t

αk+1,t − αk,t

=⇒ pk+2,t − pk+1,t

αk+2,t − αk+1,t

≥
pk+1,t − αk,tpk+1,t

αk+1,t

αk+1,t − αk,t
=
pk+1,t

αk+1,t

=⇒ pk+2,t − pk+1,t

αk+2,t − αk+1,t

≥ pk+1,t

αk+1,t

=⇒ αk+1,tpk+2,t

αk+2,t

≥ pk+1,t
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By carrying out in the same manner, we obtain the lower and upper bounds for

market prices as stated in the proposition. �

Proof of Proposition 5

We prove the concavity of V̂t(xt|p̂t) by mathematical induction. At the boundary

condition t = T , we prove the concavity of the value function V̂T (xT |p̂T) in qT . The

value function V̂T (xT |p̂T) at the boundary condition is rewritten as,

V̂T (xT |p̂T) = max
0≤qT≤κ

∑
k∈GT

p̂kT (xkT + qkT )− ckqkT −BkT (xT ,qT ) (5)

where BkT (xT ,qT ) = (hT+p̂kT )

xkT+qkT∑
j=0

fkT (j)(xkT+qkT−j) is a differentiable function

with respect to qkT . In addition, B
′

k(xT ,qT ) and B
′′

k (xT ,qT ) ≥ 0 represent the first

and second-order derivatives, respectively, with respect to qkT . We establish the

concavity w.r.t qt by writing its Hessian matrix as follows,


−B′′1 (xT,qt) 0 0 0 . . . 0

0 −B′′2 (xT,qT) 0 0 . . . 0

0 0 0 0 . . . −B′′k (xT,qT)

 (6)

that is a symmetric diagonally dominant matrix with real non-positive diagonal

entries. As the Hessian matrix is negative semi-definite, it directly follows that

V̂T (xT |p̂T) is a concave function in qT . Let us assume V̂t+1(xt+1|p̂t+1) is concave

in production level qt+1. We rewrite V̂t(xt|p̂t) as follows,

V̂t(xt|p̂t) = max
0≤qt≤κ

∑
k∈Gt

p̂kt(xkt + qkt)− ckqkt −Bkt(xt,qt) + E[V̂t+1(xt+1|p̂t+1)]

(7)

We canestablish the concavity w.r.t qt by writing its Hessian matrix as follows by

introducing φ = E[V̂
′′
t+1(xt+1|p̂t+1)].

−B′′γt(xt,qt) + φ 0 0 0 . . . 0

0 −B′′γt+1(xt,qt) + φ 0 0 . . . 0

0 0 0 0 . . . −B′′t (xt,qt) + φ

 (8)
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By induction hypothesis, E[V̂
′′
t+1(xt+1|p̂t+1)] ≤ 0. The given Hessian matrix is a symmetric

diagonally dominant matrix with real non-positive diagonal entries. As the Hessian matrix

is negative semi-definite, it directly follows that V̂t(xt|p̂t) is a concave function in qt. �

2 Appendix B

In this Appendix, the proofs of all propositions in Chapter 3 are provided.

Proof of Proposition 1

This proof is presented by formulating the policy function πt(1, It, qt) for different policies.

No markdown policy: Inventories with different ages are priced the same in the no

markdown policy. We set wit = 0 for any age i since no inventory is put on a markdown

sale. Order quantity qt at time t has an age of 0 time periods and can be written as x0t = qt.

Policy function πt(1, It, qt) for the no markdown policy (j = 1) is described as,

πt(1, It, qt) = prmin{
n∑
k=0

xkt, d̃rt} − cqt − h
(
max{

n∑
k=0

xkt − d̃rt, 0}
)
− γ(max{xnt − d̃rt, 0})

(9)

We expand the min function using min{
∑n

k=0 xkt, d̃rt} =
∑n

k=0 xkt − max{
∑n

k=0 xkt −
d̃rt, 0},

= pr

n∑
k=0

xkt − cqt − (h+ pr)

(
max{

n∑
k=0

xkt − d̃rt, 0}
)
− γ(max{xnt − d̃rt, 0}) (10)

Let ft(.) be the discrete probability density function for demand d̃rt. We expand the max

functions as below,

= pr

n∑
k=0

xkt − cqt − (h+ pr)

β(0,n)∑
z=0

( n−1∑
k=0

xkt − z
)
ft(z)− γ

xnt∑
z=0

(xnt − z)ft(z) (11)

where β(0, n) =
∑n

k=0 xkt. Let us define φ1(x0t, · · · , xnt) =
∑β(0,n)

z=0

(∑n
k=0 xkt − z

)
ft(z)

and φ2(xnt) =
∑xnt

z=0(xnt − z)ft(z). Equation (11) can be rewritten as,

πt(1, It, qt) = pr

n∑
k=0

xkt − cqt − (h+ pr)φ1(x0t, · · · , xnt)− γφ2(xnt) (12)
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Differentiating equation (12) w.r.t qt (recall x0t = qt)

∂πt(1, It, qt)

∂qt
= pr − c− (h+ pr)

∂φ1(x0t, · · · , xnt)
∂qt

∂2πt(1, It, qt)

∂q2t
= −(h+ pr)

∂2φ1(x0t, · · · , xnt)
∂q2t

(13)

∂2πt(1,It,qt)
∂q2t

≤ 0 for all qt. Therefore, πt(1, It, qt) is concave in order quantity qt

Partial markdown policy: In this policy represented by j = 2, 3, · · · , n − 1, some in-

ventories are sold at regular price while the others are marked down. In other words, at

the j-th partial markdown policy, inventories with age less than n − j + 1 periods are

sold at regular price (wit = 0, ∀ i = 0, 1, · · · , n − j + 1) and the rest are marked down

(wit = 1, ∀ i = n − j + 2, n − j + 3, · · · , n). Policy function πt(j, It, qt) for the partial

markdown policy is described as,

πt(j, It, qt) = prmin{
n−j∑
k=0

xkt, d̃rt}+

n∑
k=n−j+1

pk,mtmin{xkt, d̃im,t} − cqt − h
(
max{

n−j∑
k=0

xkt − d̃rt, 0}
)

− h
(
max{

n∑
k=n−j+1

xkt − d̃k,mt, 0}
)
− γ(max{xnt − d̃rt, 0})

(14)

We expand the min function as above,

= pr

n−j∑
k=0

xkt +
n∑

k=n−j+1

pk,mtxkt − cqt − (h+ pr)

(
max{

n−j∑
k=0

xkt − d̃rt, 0}
)

− (h+ pk,mt)

(
max{

n∑
k=n−j+1

xkt − d̃k,mt, 0}
)
− γ(max{xnt − d̃rt, 0})

(15)

Let frt(.) and fk,mt(.) be the discrete probability density function for regular demand d̃rt

and markdown demand d̃k,mt for inventory with age k, respectively. We expand the max

function as below,

= pr

n−j∑
k=0

xkt + pm

n−1∑
k=n−j+1

xkt − cqt − (h+ pr)

β(0,n−j)∑
z=0

( n−j∑
k=0

xkt − z
)
frt(z)

−
n∑

k=n−j+1

(h+ pk,mt)

xkt∑
z=0

(
xkt − z

)
fk,mt(z)− γ

xnt∑
z=0

(xnt − z)fn,mt(z)

(16)

where β(0, n − j) =
∑n−j

k=0 xkt. Let φr(x0t, · · · , xn−j,t) =
∑β(0,n−j)

z=0

(∑n−j
k=0 xkt − z

)
frt(z)

and φmk(xkt) =
∑xkt

z=0

(
xkt − z

)
fk,mt(z) where k = n − j + 1, · · · , n . Equation (16) can
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be rewritten as,

πt(j, It, qt) = pr

n−j∑
k=0

xkt + pm

n−1∑
k=n−j+1

xkt − cqt − (h+ pr)φr(x0t, · · · , xn−j,t)

−
n−1∑
k=n−j

(h+ pk,mt)(φmk(xkt))− γφmn(xnt)

(17)

Differentiating equation (17) w.r.t qt (recall x0t = qt)

∂πt(j, It, qt)

∂qt
= pr − c− (h+ pr)

∂φ1(x0t, · · · , xn−j,t)
∂qt

∂2πt(j, It, qt)

∂q2t
= −(h+ pr)

∂2φ1(x0t, · · · , xn−j,t)
∂q2t

(18)

∂2πt(j,It,qt)
∂q2t

≤ 0 for all qt. Therefore, πt(j, It, qt) is concave in order quantity qt The complete

markdown proof is similar to the no markdown proof. �

Proof of Proposition 2

The state of the dynamic system at any time is the initial inventory level evaluated from

the unsold inventory of the previous selling period. If the unsold inventories are close to

zero, the firm is unlikely to conduct a markdown sale. On the other hand, when the initial

inventories are in excess the firm might markdown their selling price down to sell them off.

Let us suppose at inventory level x̄it of age i at time t, the firm’s optimal policy is to conduct

no markdown and sell all inventories at regular price. We assume that at an inventory level

xit ≤ x̄it it is not optimal for the firm to conduct any markdown sale. However, the firm

may conduct a markdown sale at an inventory level xit > x̄it. We define r1it as the maximum

inventory level of age i at which it is optimal for the firm to follow a no markdown policy.

In other words, r1it is referred as the transition level from a no markdown policy to different

markdown policies. The transition level rjit is the maximum inventory at which it is optimal

for the firm to follow policy j. We define a vector rit = {rjit|j = 1, 2, · · · , n} of transition

levels of inventory of age i at time t. The transition levels are used to characterize policy

switching in the single period expected profit g(It, qt,wt) w.r.t the inventory level for each

policy j,

gt(It, qt,wt) = πt(j, It, qt), r
j−1
it < xit ≤ rjit

where r0it = 0 for any age i at time t According to proposition 1, profit πt(j, It, qt) from

policy j is concave in inventory xit of age i. Thus, we define the maximum profit for each

policy j w.r.t inventory level of age i, where the value of inventory of any age k remains
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same, where k 6= i,

kjit = sup{πt(j, It, qt) | rj−1it < xit ≤ rjit}

Consider two values x
′
it and x

′′
it of inventory level of age i at time t in the following three

cases.

Case (i): x
′
it, x

′′
it ∈ [rj−1it , rjit] for any policy j. Since πt(j, It, qt) is concave in xit, the following

relation holds for any λ ∈ [0, 1]

gt((1− λ)I
′
t + λI

′′
t , qt,wt) ≥ (1− λ)gt(I

′
t, qt,wt) + λgt(I

′′
t , qt,wt)),

where I
′
t = (x0t, · · · , xi−1,t, x

′
it, xi+1,t, · · · , xn−1,t) and I

′′
t = (x0t, · · · , xi−1,t, x

′′
it, xi+1,t, · · · , xn−1,t)

Case (ii): x
′
it ∈ [rj−1it , rjit] and x

′′
it ∈ [rl−1it , rlit] for any two different policies j and l, respec-

tively. Since kjit and klit are the maximum points of the curve πt(j, It, qt) and πt(l, It, qt) in

the intervals [rj−1it , rjit] and (rl−1it , rlit], respectively. Let k̄it = max{kjit, klit} be the maximum

point of the two combined curves πt(j, It, qt) and πt(l, It, qt). Since

I
′
t = (x0t, · · · , xi−1,t, x

′
it, xi+1,t, · · · , xn−1,t) and I

′′
t = (x0t, · · · , xi−1,t, x

′′
it, xi+1,t, · · · , xn−1,t)

are located at two separate concave curves πt(j, It, qt) and πt(l, It, qt), respectively, their

combination gt((1− λ)I
′
t + λI

′′
t , qt,wt) may or not lie above the line (1− λ)gt(I

′
t, qt,wt) +

λgt(I
′′
t , qt,wt)). However, gt((1 − λ)I

′
t + λI

′′
t , qt,wt) + λk̄it will always lie above the line

(1− λ)gt(I
′
t, qt,wt) + λgt(I

′′
t , qt,wt). Thus, the following equation can be written as,

gt((1− λ)I
′
t + λI

′′
t , qt,wt) ≥ (1− λ)gt(I

′
t, qt,wt) + λgt(I

′′
t , qt,wt))− λk̄it,

In general, we define k∗it = max{kjit | ∀j} as the global maximum point of the curve gt(.).

For any x
′
it, x

′′
it and λ ∈ [0, 1] with x

′
it ≤ x

′′
it,

gt((1− λ)I
′
t + λI

′′
t , qt,wt) ≥ (1− λ)gt(I

′
t, qt,wt) + λgt(I

′′
t , qt,wt))− λk∗it

Thus, g(It, qt,wt) is k∗it-concave in inventory level xit of age i at time t. �

Proof of Proposition 3

The k-concavity of the value function over time is proven by following a similar structure

as Theorem 3(c) in Chen & Simchi-Levi (2004). Value function at any time t is written as,

Vt(It|pm,t) = gt(It, qt,wt) + Vt+1(It+1|pm,t+1) (19)

From the previous result, gt(It, qt,wt) is k∗it-concave in inventory level xit of age i at

time t. We will show that Vt(It|pm,t) is k̂it-concave in xit based on the assumption that

142



Vt+1(It+1|pm,t+1) is k̂i,t+1-concave in xit, where k̂it = k∗it + k̂i,t+1 for any age i and time

t. The expression k̂it = k∗it + k̂i,t+1 holds because of equation (19) and Lemma 2.1(b) from

Chen & Simchi-Levi (2004). For any x
′
it, x

′′
it and λ ∈ [0, 1] with x

′
it ≤ x

′′
it,

gt((1− λ)I
′
t + λI

′′
t , qt,wt) ≥ (1− λ)gt(I

′
t, qt,wt) + λgt(I

′′
t , qt,wt))− λk∗i,t (20)

where I
′
t = (x0t, · · · , xi−1,t, x

′
it, xi+1,t, · · · , xn−1,t) and I

′′
t = (x0t, · · · , xi−1,t, x

′′
it, xi+1,t, · · · , xn−1,t)

Based the assumption Vt+1(It+1|pm,t+1) is k̂it-concave in xit, we obtain for any x
′
it, x

′′
it and

λ ∈ [0, 1] with x
′
it ≤ x

′′
it,

Vt+1((1− λ)I
′
t+1 + λI

′′
t+1|pm,t+1) ≥ (1− λ)Vt+1(I

′
t+1|pm,t) + λVt+1(I

′′
t+1|pm,t+1)− λk̂i,t+1

(21)

From the definition of inventory transition equation for any age i,

xi+1,t+1 =
(
xit − (d̃t −

n∑
k=i

xit)
+)+

=
(
xit − z̃it)+

where z̃it = (d̃t−
∑n

k=i xit)
+ is a random variable representing left-over demand for inventory

of age i at time t. We define a vector Zt = {z̃it|i = 1, 2, · · · , n − 1}. Thus, we write

It+1 = (It − Zt)
+. Using lemma 9.3.2 in Simchi-Levi et al. (2005),

Vt+1((1− λ)I
′
t+1 + λI

′′
t+1|pm,t+1) ≥ (1− λ)Vt+1(I

′
t+1|pm,t+1) + λVt+1(I

′′
t+1|pm,t+1)− λk̂i,t+1

(22)

Adding (20) and (22), and taking its expectation we get because of (19) ,

Vt((1− λ)I
′
t + λI

′′
t |pm,t) ≥ (1− λ)Vt(I

′
t|pm,t) + λVt(I

′′
t |pm,t)− λk̂it

Thus, Vt(It|pm,t) is k̂it-concave in inventory level xit. �

Proof of Proposition 4

To prove sub-modularity, we show πt(j, It, x
′
0t) − πt(j, It, x0t) to be decreasing in xi,t for

x
′
0t > x0t (Simchi-Levi et al. 2005). πt(j, It, x0t) for policy j is written as

πt(j, It, x0t) = pr

n−j∑
k=0

xkt +

n−1∑
k=n−j+1

pk,mtxkt − cx0t − (h+ pr)

β(0,n−j)∑
z=0

( n−j∑
k=0

xkt − z
)
frt(z)

−
n−1∑

k=n−j+1

(h+ pk,mt)

xkt∑
z=0

(
xkt − z

)
fk,mt(z)− γ

xnt∑
z=0

(xnt − z)fn,mt(z)

(23)
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where β(0, n − j) =
∑n−j

k=0 xkt. Following the definition of sub-modularity, we define

πt(j, It, x
′
0t) for x

′
0t ≥ x0t,

πt(j, It, x0t) = pr

n−j∑
k=0

xkt + pm

n−1∑
k=n−j+1

xkt − cx0t − (h+ pr)

β(0,n−j)∑
z=0

( n−j∑
k=0

xkt − z
)
frt(z)

−
n−1∑

k=n−j+1

(h+ pk,mt)

xkt∑
z=0

(
xkt − z

)
fk,mt(z)− γ

xnt∑
z=0

(xnt − z)fn,mt(z)

(24)

πt(j, It, x
′
0t) = pr(x

′
0t +

n−j∑
k=1

xkt) +

n−1∑
k=n−j+1

pk,mtxkt − cx0t

− (h+ pr)

x
′
0t+β(1,n−j)∑

z=0

(
x
′
0t +

n−j∑
k=1

xkt − z
)
frt(z)

−
n−1∑

k=n−j+1

(h+ pk,mt)

xkt∑
z=0

(
xkt − z

)
fk,mt(z)− γ

xnt∑
z=0

(xnt − z)fn,mt(z)

(25)

Next, we find the value of πt(j, It, x
′
0t)− πt(j, It, x0t),

πt(j, It, x
′
0t)− πt(j, It, x0t) = (pr − c)(x

′
0t − x0t)− (h+ pr)

[ x′0t+β(1,n−j)∑
z=0

(
x
′
0t +

n−j∑
k=1

xkt − z
)
frt(z)

−
β(0,n−j)∑
z=0

( n−j∑
k=0

xkt − z
)
frt(z)

]
(26)

We rewrite the last two terms in the square brackets,

φ(xit) =

x
′
0t+β(1,n−j)∑

z=0

(
x
′
0t +

n−j∑
k=1

xkt − z
)
frt(z)−

β(0,n−j)∑
z=0

( n−j∑
k=0

xkt − z
)
frt(z)

= (x
′
0t − x0t)

β(0,n−1)−1∑
z=0

frt(z) +

x
′
0t+β(1,n−1)∑
z=β(0,n−1)

(
x
′
0t +

n−j∑
k=1

xkt − z
)
frt(z)

(27)

The first two terms will always be positive. Since φ(xit) ≥ 0, its first derivate, represented

as φ′(xit), will also be positive, φ′(xit) ≥ 0 in xit. Thus, we can say φ′(xit) is increasing xit.

The increasing property of φ(xit) directly implies πt(j, It, x
′
0t)−πt(j, It, x0t) to be decreasing

in xit. Thus, the policy function πt(j, It, qt) for policy j is sub-modular in order decision qt

and inventory level xit of any age i at time t. �
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Proof of Proposition 5

To prove sub-modularity, we show πt(j, It, x
′
0t)+E[Vt+1(It+1(x

′
0t))]−(πt(j, It, x0t)+E[Vt+1(It+1(x0t))])

to be decreasing in x0t for x
′
0t > x0t (Simchi-Levi et al. 2005), where

It+1(x
′
1,t+1) = (x

′
1,t+1, x2,t+1, · · · , xn,t+1) represents the 1-period old inventory at time t+1.

In other words, It+1(x
′
1,t+1) is equivalent to It+1((x

′
0t − (d̃t −

∑n
j=1 xjt)

+)+). It is sufficient

to prove that E[Vt+1(It+1(x
′
1,t+1))]−E[Vt+1(It+1(x1,t+1))] is decreasing in x0t for x

′
0t > x0t,

since πt(j, It, x0t) is proved to be sub-modular in proposition 4. The max function within

E[Vt+1(It+1(x1,t+1))] can be expanded as follows,

E[Vt+1(It+1(x1,t+1))] = β0tVt+1(It+1(x0t − 0)) + β1tVt+1(It+1(x0t − 1)) + · · ·+ βx0tVt+1(It+1(0)),

=

x0t∑
i=0

βitVt+1(It+1(x0t − i))

(28)

where βit refers to the probability value of demand of i units at time t for age of 0 units.

We evaluate the value of E[Vt+1(It+1(x
′
1,t+1))]− E[Vt+1(It+1(x1,t+1))] as follows,

E[Vt+1(It+1(x
′
1,t+1))]− E[Vt+1(It+1(x1,t+1))] =

x
′
0t∑

i=0

βitVt+1(It+1(x0t − i))−
x0t∑
i=0

βitVt+1(It+1(x0t − i))

(29)

Rearranging the above terms with the probability values,

E[Vt+1(It+1(x
′
1,t+1))]− E[Vt+1(It+1(x1,t+1))] = β0t

(
Vt+1(It+1(x

′
0t))− Vt+1(It+1(x0t))

)
+ β1t

(
Vt+1(It+1(x

′
1t − 1))− Vt+1(It+1(x1t − 1))

)
+ · · ·

· · ·+ βx1t
(
Vt+1(It+1(x

′
1t − x1t))− Vt+1(It+1(0))

)
+

x
′
1t∑

j=x1t

βjtVt+1(It+1(x
′
1t − j))

(30)

If the monotonic condition Vt+1(It+1(0)) ≥ Vt+1(It+1(1)) ≥ · · · ≥ Vt+1(It+1(x
′
0t)) holds then

E[Vt+1(It+1(x
′
0t))]−E[Vt+1(It+1(x0t))] is decreasing in x0t for x

′
0t > x0t. �
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3 Appendix C

The algorithm for threshold inventory-based heuristic policy proposed in Chapter 4 is pro-

vided below.

Algorithm 6: Threshold inventory based heuristic policy

1: Initialization: . Set xf1 = 0 (inventory), wi1 = 0, i = 1, 2 (pending orders), and
d11 = 0

2: for t = 1, · · · , T do
3: Pending orders wit for channel i are known

4: Demand d1t is known but demand d̃2t is unknown

5: if xft ≥ η then
6: if xft ≥ α(1 · d1t) + (1 ·w1t) + (1 ·w2t) then
7: Order from regular supplier:

q1t = (1−α)(1·d1t)+Ed[(1·d̃2t)]−(xt−α((1·d1t))−(1·w1t)−(1·w2t))

8: Order from emergency supplier: q2t = 0

9: if xft < α(1 · d1t) + (1 ·w1t) + (1 ·w2t) then
10: Order from emergency supplier:

q2t = α(1 · d1t) + (1 ·w1t) + (1 ·w2t)− xft
11: Order from regular supplier: q1t = (1− α)(1 · d1t) + Ed[(1 · d̃2t)]− q2t
12: OR

13: Order from regular supplier: q1t = α(1 · d1t) + (1 ·w1t) + (1 ·w1t)− xft
14: Order from emergency supplier: q2t = 0

15: if xft < η then
16: Order from emergency supplier: q2t = α(1 · d1t) + (1 ·w1t) + (1 ·w1t)− xft
17: Order from regular supplier: q1t = (1− α)(1 · d1t) + Ed[(1 · d̃2t)]− q2t
18: Allocate inventory for third-party retailer:

y1t = min{xft + Es[r̃(q1t)] + q2t, (1 ·w1t) + (1 · d1t)}
19: Allocate inventory for firm’s store:

y2t = min{xft + Es[r̃(q1t)] + q2t − y1t, (1 ·w2t) + Ed[(1 · d̃2t)]}
20: Evaluate the ending inventory: xf,t+1 = (xft + Es[r̃(q1t)] + q2t − y1t − y2t)+

21: Pending demand from third-party retailer,
(1 ·w1,t+1) = ((1 ·w1t) + (1 · d1t)− y1t)+

22: Pending demand from firm’s store,

(1 ·w2,t+1) = ((1 ·w2t) + Ed[(1 · d̃2t)]− y2t)+
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