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We investigate the spatio-temporal structure of
the most likely configurations realizing extremely
high vorticity or strain in the stochastically forced
three-dimensional incompressible Navier–Stokes
equations. Most likely configurations are computed
by numerically finding the highest probability
velocity field realizing an extreme constraint as
solution of a large optimization problem. High-
vorticity configurations are identified as pinched
vortex filaments with swirl, while high-strain
configurations correspond to counter-rotating
vortex rings. We additionally observe that the
most likely configurations for vorticity and strain
spontaneously break their rotational symmetry for
extremely high observable values. Instanton calculus
and large deviation theory allow us to show that these
maximum likelihood realizations determine the tail
probabilities of the observed quantities. In particular,
we are able to demonstrate that artificially enforcing
rotational symmetry for large strain configurations
leads to a severe underestimate of their probability, as
it is dominated in likelihood by an exponentially more
likely symmetry-broken vortex-sheet configuration.
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This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics
(part 2)’.

1. Introduction and motivation
Turbulence is characterized by its tendency to intermittently dissipate energy in very localized
and intense events. These extreme events dominate the statistics of quantities such as high order
structure functions, and are ultimately responsible for the anomalous scaling of fully developed
turbulent flows. It is generally believed that short bursts of intense vortex stretching are the
mechanism for the formation of these events.

Taking this as starting point, in this paper, we address the question: what structures are
naturally generated in the three-dimensional incompressible Navier–Stokes equations (NSE) to
realize events of extreme vortex stretching, strain production and energy dissipation? For this,
we are concentrating on small-scale structures that lead to extreme values of the fluid vorticity or
its strain. Concretely, we set out to compute the most likely configuration (for a given large-scale
stochastic forcing) that realizes a large vorticity or strain value at a single point within the domain,
at an instantaneous moment in time, and how the velocity field configuration around this point
facilitates the extreme burst.

This question has been discussed in the literature, starting with Novikov et al. [1,2], and more
recent works that explored extreme vorticity and strain events in very large turbulent simulations
[3,4]. These attempts, which solely rely on brute-force direct numerical simulations (DNS), have
the intrinsic complication that any extreme realization of an observable will necessarily be very
rare, and thus hard to observe. Therefore, exploring extreme events not only requires high
numerical resolution but further extremely large datasets, most of which are wasted because they
do not exhibit the desired event. On this basis, we instead employ specific rare event techniques
[5], in particular stochastic field theory and instanton calculus [6], or equivalently, sample path
large deviation theory [7]. The two are intimately connected [6,8], and have proven successful
in related fields, such as extreme shocks in Burgers turbulence [9–11], extreme surface heights in
the Kardar–Parisi–Zhang (KPZ) equation [12], in ocean waves and tsunamis [13,14], or extreme
mechanical forces in grid-generated turbulence [15]. The key idea is to replace the inefficient naive
sampling approach by a deterministic optimization problem that yields the maximum-likelihood
trajectory of the system that leads to a prescribed rare outcome. The advantage of this method
is the fact that it yields the best estimate of the typical extreme event in the limit of it becoming
increasingly rare, which is the limit we are most interested in, and at the same time also the regime
that is hardest to reach via DNS.

As we will discuss later, instanton techniques not only allow for the computation of the
limiting most likely path to obtain an extreme event, but further yield estimates for the
exponential tail scaling of the observable’s probability density function (PDF). A concrete
prediction of our results is the fact that intuitive rotationally symmetric realizations of extreme
vorticity outcomes (namely, vortex tubes/filaments) or extreme strain outcomes (namely,
colliding or contracting vortex rings) are not necessarily the most likely way to reach extreme
values, even if the observable exhibits rotational symmetry. In fact, we present that the rotationally
symmetric events become subdominant, particularly for large positive strain values, and are
dominated in probability by asymmetric field configurations. In other words, the stochastic
instanton undergoes spontaneous symmetry breaking, and the corresponding action exhibits a
dynamical phase transition similar to what is observed, e.g. in the KPZ equation [16].

This paper is organized as follows: we discuss the instanton approach, as applied to the NSE,
in §2 by first introducing the instanton formalism in §2a in general and subsequently applying it
to the NSE in §2b, where we also explain our conditioning on vorticity and strain. The numerical
implementation of the corresponding optimization problem is discussed in §2c. In §3a, we show
the most likely configuration for extreme vorticity events as obtained by the numerical solution
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of the instanton problem. Analogous results for extreme strain events are presented in §3b.
We will discuss the implication of these results on the likelihood and PDF tail scaling in §3c
and then conclude with §4. The electronic supplementary material includes additional, detailed
information on the numerical optimization methods that have been used to generate the results
of this paper.

2. Instantons for the three-dimensional NSE
The three-dimensional incompressible NSE on a domain Ω ⊂R3, given by

∂tu + (u · ∇)u = −∇P + ν�u + η,

∇ · u = 0

and u(·, −T) = u0,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

describe the spatio-temporal evolution of a velocity field u :Ω × [−T, 0] �→R3, where P(x, t) is
the pressure field, η(x, t) is the stochastic forcing term, ν > 0 is the kinematic viscosity and u0 is a
deterministic initial condition. We restrict ourselves to a periodic domainΩ = [0, l]3, and consider
a white-in-time, spatially stationary and solenoidal Gaussian forcing acting only on large scales
as specified by the spatial covariance χ :Ω →R3×3〈

η(x, t)η�(x′, t′)
〉
= χ (x − x′)δ(t − t′). (2.2)

Additionally requiring the forcing to be statistically isotropic reduces the possible forms of
χ to [17]

χ (x) = f (‖x‖)Id + 1
2
‖x‖f ′(‖x‖)

[
Id − xx�

‖x‖2

]
, (2.3)

where Id ∈R3×3 denotes the identity matrix on R3, and f : [0, ∞) →R is an arbitrary function,
which we choose as

f (r) = χ0 exp

{
− r2

2λ2

}
(2.4)

for simplicity, with a correlation length λ of the order of the domain size l.
Extreme events in the NSE have been explored extensively in the literature. Particularly worth

mentioning in connection with the instanton calculus is the work of Novikov et al. [1,2]. They
considered the conditionally averaged vorticity field, i.e. the average realization of the vorticity
field conditioned on a specific outcome of vorticity ω(x, t = 0) at a given point x. These fields,
parametrized by ω, were obtained by performing many DNS, and averaging conditioned on the
intended outcome. This procedure is closely related to the filtering approach [18] discussed in §3a
and demonstrates the relevance of instanton solutions in real flows.

The structure of instanton solutions is of particular importance. As an example serves the
observation that the rotational symmetric vorticity instanton in the two-dimensional NSE has no
relevance at all [19]. Only taking into account symmetry-breaking angle-dependent contributions
results in an effective action suitable for the instanton calculus.

In the case of the KPZ equation, symmetry breaking (or dynamical phase transition) has been
demonstrated as the mechanism to generate the relevant instanton for obtaining the correct tail
asymptotics [16]. Here, we make similar observations: symmetry breaking is essential to compute
the relevant instanton with a pancake- or sheet-like structure (figures 1 and 2). Whether these
structures are related to the recently discovered confined vortex surfaces [20] and the tangential
discontinuity of vortex sheets [21] poses a challenging question.

(a) Stochastic action and minimizers
In this section, we briefly and formally introduce the instanton formalism for stochastic partial
differential equations (SPDEs) and comment on the applicability of the method in the context of
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Figure 1. (a–c) Results of the full three-dimensional and axisymmetric instanton computations for the vorticity observable
ωz(0, 0). The plot in the top row shows the action SI(a) at all critical points of the action that were found in our numerical
experiments for different values of the final-time constraintωz(0, 0)= a. The bottom row shows isosurfaces of the vorticity
of the final-time configuration of the obtained instanton fields for different observable values as indicated in the top
plot. Qualitatively, the field configurations that we observe are vortex tubes in all cases. However, the three-dimensional
computations show that a second branch that breaks full rotational symmetry and reduces to reflection symmetry dominates
the fully symmetric branch in probability and splits off at ac ≈ 85. (Online version in colour.)

Navier–Stokes turbulence to compute maximum-likelihood space–time realizations of extreme
events. For a generic SPDE for u :Ω × [−T, 0] →R3

∂tu(x, t) + N(u(·, t))(x) = √
εη(x, t)

and u(·, −T) = u0,

}
(2.5)

with a Gaussian forcing correlated according to (2.2) and noise strength ε > 0, expectations of a
functional F with respect to the process u can formally be computed as a path integral

〈F[u]〉 =
∫

Dη F[u[η]] e−(1/2ε)
∫0

−T(η,χ−1∗η)L2(Ω ,R3) dt

=
∫

u(·,−T)=u0

Du F[u]J[u] e−(1/ε)S[u], (2.6)

where ∗ denotes spatial convolution and χ−1 is the convolutional inverse of the forcing correlation
function χ . The Jacobian J[u] is given by J[u] = exp{ 1

2
∫0

−T tr ∇N(u) dt} and S is the classical
Onsager–Machlup [22] or Freidlin–Wentzell [7] action functional

S[u] =
∫ 0

−T
L(u, ∂tu) dt = 1

2

∫ 0

−T
(∂tu + N(u),χ−1 ∗ [∂tu + N(u)])L2(Ω ,R3) dt, (2.7)
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of the process u. In the case of a degenerate forcing, as in our specific application, we set
S[u] = +∞ if the trajectory does not lie in the image of the spatial convolution with χ . Suppose
now that we are interested in evaluating the probability of measuring particular values of an
observable O of the final time configuration u(·, t = 0) in a subset A ⊂R. Then, in the small noise
limit ε→ 0, the conditional path density and the probability will be dominated by the least
unlikely path, in the sense that

P(O[u(·, 0)] ∈ A) = 〈
1{O[u(·,0)]∈A}

〉 ε→0� exp
{

− 1
ε

inf
ũ(·,−T)=u0
O[ũ(·,0)]∈A

S[ũ]
}

, (2.8)

where 1{·} denotes the indicator function and ‘�’ stands for log-asymptotic equivalence (i.e. the
logarithms of both sides are equal up to first order [23]). This follows formally by applying
Laplace’s method to the path integral (2.6), or more rigorously by Freidlin–Wentzell theory [7].
We denote by uI the field configuration for which the functional S attains its global minimum for
the given boundary conditions, i.e. uI solves the following minimization problem:⎧⎪⎪⎨

⎪⎪⎩
minu S[u],

subject to u(·, −T) = u0,

O[u(·, 0)] ∈ A.

(2.9)

We call uI the instanton and SI = S[uI] the instanton action, and can thus gain access to limiting
estimates of probabilities or PDFs in the small noise limit ε→ 0 by solving the deterministic
optimization problem of finding uI via (2.9). For the estimation of PDFs ρO(a), the target set
is A = [a, a + da] and hence the optimal field configuration is sought by minimizing the action
functional S[u] subject to the constraint O[u(·, 0)] = a, which is equivalent to maximizing its
probability in path space. Introducing p = χ−1 ∗ [∂tu + N(u)], we can reformulate (2.9) as a the
minimization problem with respect to p given by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minp S[p] = minp
1
2

∫0
−T(p,χ ∗ p)L2(Ω ,R3) dt,

subject to ∂tu + N(u) = χ ∗ p,

u(·, −T) = u0,

O[u(·, 0)] = a,

(2.10)

with u = u[p] being a function of the control p that is given by solving the PDE ∂tu + N(u) = χ ∗ p,
u(·, −T) = u0, forward in time.

We denote by pI the optimal control and by uI = u[pI] the associated optimal state. Then, the
necessary optimality conditions for (2.10) (derived by using a formal Lagrange approach and
eliminating the adjoint state variable afterwards, compare §3a in the electronic supplementary
material) yield the instanton equations

∂tuI + N(uI) = χ ∗ pI,

∂tpI − (∇N(uI))�pI = 0,

uI(·, −T) = u0, O[uI(·, 0)] = a

and pI(·, 0) = − δO
δu

�∣∣∣∣∣
uI(0)

FI.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.11)

Here, FI is a Lagrange multiplier to enforce the final time constraint.
Note that we started our considerations by expressing the probability of an event via a path

integral. The final object we obtain though, namely the instanton, is interesting in its own right
in that it is exactly the most likely realization of the outcome we set out to observe, regardless
of whether it indeed represents the typical realization of that outcome. The crucial subtlety here
is that for a common event there are usually a multitude of possible histories for its creation,
while an extreme outlier event is usually driven by a very specific and reproducible chain of
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events. The average field configuration realizing a moderate vorticity, say, will in general be very
different from its most likely configuration, and in fact is rather meaningless, as it averages over
many different and unrelated physical mechanisms. For extreme events, on the other hand, the
two notions coincide, and the most likely conditioned configuration precisely corresponds to the
conditioned field average.

The connection to Freidlin–Wentzell theory [7] and large deviation theory rare events
algorithms [8] allows us to make this notion rather precise: the large deviation limit in the set-
up that was outlined above is correct in the small noise limit. Through a suitable rescaling of (2.1),
this limit is, in the first instance, equivalent to the low Reynolds number limit for the NSE: non-
dimensionalizing all variables via x̃ = x/x0, t̃ = t/t0, ũ = ut0/x0, P̃ = Pt2

0/x
2
0 and η̃= ηt1/2

0 /χ
1/2
0 and

choosing t0 = x2
0/ν yields

∂tu + (u · ∇)u = −∇P +�u + √
εη,

∇ · u = 0

and u(·, −T) = u0,

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

in the new variables. Here, ε= χ0x4
0ν

−3 = Re3 if x0 is taken to be the characteristic length scale of
the forcing and the characteristic velocity u0 for the Reynolds number Re = u0x0/ν is chosen as
u0 = (χ0x0)1/3. This shows that as Re → 0, the instanton prediction for quantities such as ρO(a)
will become asymptotically exact for the full range of the PDF. In contrast to this set-up, we
are interested in flows at a given and possibly large Reynolds number. This can be achieved
by realizing that the small noise (small Re) limit can be exchanged for an extreme event limit
(see remark 1 in [24]): if the length and time scales are chosen such that ε= χ0/(νa2

0), and we
focus on an event with |O[u(·, 0)]| = a0 � √

χ0/ν (for an observable with dimension velocity over
length), for a given Reynolds number, the instanton estimate for the typical event itself and
its probability will be accurate for sufficiently large a0 or sufficiently extreme events. For high
Re, these observables must take very extreme values for the scaling limit to apply, making it
very hard to observe in DNS. As a consequence and as we will confirm numerically in §3, the
instanton scaling is readily reached for small Reynolds numbers, while it is entirely out of reach
of direct sampling for high Re, because we are probing the tail scaling for extremely unlikely
events. This associates instantons with structures deep within the dissipation range. We remark
that the formation of these nearly singular dissipative structures (see §3a,b) might be the cause of
the dissipation anomaly [25].

(b) Instanton equations for Navier–Stokes with axisymmetric observables
For the NSE (2.12), the instanton equations (2.11) can be written as

∂tuI + P[(uI · ∇)uI] −�uI = χ ∗ pI,

∂tpI + P[(uI · ∇)pI + (∇pI)�uI] +�pI = 0,

uI(·, −T) = u0, O[uI(·, 0)] = a

and pI(·, 0) = −P

⎡
⎣ δO
δu

�∣∣∣∣∣
uI(0)

FI

⎤
⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

in coordinate-free form with ∇ · uI = ∇ · pI = 0. Here, the Leray projection P= Id − ∇�−1∇· onto
the divergence-free part of a vector field [26] has been introduced in order to eliminate the
pressure from the equations of motion and conveniently handle the incompressibility constraint
within the general framework that has been presented in the previous section. A detailed
derivation of (2.13) is carried out in §4a of the electronic supplementary material.

We note that it is very challenging to make mathematically rigorous statements about the
(unique) solvability of the corresponding minimization problem (2.10) for the NSE, as well as
about the question of local versus global solutions. We do not attempt to do this here. Instead, for
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assessing the validity of our results, we rely on the following observations: (i) for the simplified
case of the heat equation, the equation for p in (2.13) is independent of u and the instanton
equations can be solved directly without an iterative procedure and thus that problem has a
unique global minimizer; (ii) for the NSE, we can get a good indication whether a numerically
found solution to the minimization problem is indeed globally optimal by comparing with the
PDF as obtained via DNS; (iii) for the NSE, we numerically validated our claim concerning
the global optimality by restarting our optimization algorithms at various points. Within this
reasoning, we will assume in the numerical results that we have found globally optimal solutions.

We are interested in extreme events for two distinct one-dimensional observables: the vorticity
O1[u(·, 0)] = (∇ × u)z(0, 0) =ωz(0, 0), and the strain O2[u(·, 0)] = ∂zuz(0, 0). These observables
correspond to the transversal and longitudinal components, respectively, of the velocity gradient
tensor. Due to statistical isotropy and spatial stationarity, we are free to choose the respective z
components as observables, as well as the origin x = 0 as the arbitrary point where the observables
are evaluated.

Both observables naturally define a distinguished axis, around which the problem is
rotationally symmetric. In particular, not only are the NSE rotationally symmetric but also their
corresponding action including the conditioning on the observable is invariant under rotation around
this axis. It is therefore intuitive to search for a rotationally symmetric minimizer, and this is
indeed also the nature of the structures that immediately come to mind for vorticity and strain:
strong vorticity will be observed at the core of a particularly strong vortex filament, while large
strain occurs at points such as the centre of the collision of two vortex rings. Of course, it is not
necessarily true that a rotationally symmetric optimization problem has a rotationally symmetric
minimizer.

Because of this fact, we set out to search for multiple, possibly distinct minimizers of the
action: one for which we artificially enforce rotational symmetry, and potentially others for which
no symmetry is enforced. The former case reduces the problem to (2 + 1) dimensions in (r, z, t)
for cylindrical coordinates (r, θ , z) in space. In this coordinate system, and using the vorticity-
streamfunction formulation for axisymmetric flows [27], the axisymmetric instanton equations
are

Dtuθ + 1
r

uruθ − Luθ = [χ ∗ p]θ ,

Dtωθ − 1
r

urωθ − 1
r
∂z(u2

θ ) − Lωθ = [(∇ × χ ) ∗ p]θ ,

Dtpθ + 1
r

(2uθpr − urpθ ) + Lpθ = 0

and Dtσθ − 1
r
∂z(uθpθ ) + ∂zuθ ∂rpθ − ∂ruθ ∂zpθ

+ 2(ωθ + 2∂ruz)∂rpr + 2
r
∂ruzpr +

(
2∂zuz + ur

r

)
(2∂zpr − σθ ) + Lσθ = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

where Dt = ∂t + ur∂r + uz∂z is the axisymmetric convective derivative, L = (1/r)∂r(r∂r) − (1/r2) +
∂zz is an elliptic operator stemming from the vector Laplacian in cylindrical coordinates, and
σ = ∇ × p is the vorticity of the adjoint field. In this formulation, the r and z components of the
fields are reconstructed by solving Lψ = −ωθ for the streamfunction ψ and computing ur = −∂zψ

and uz = (1/r)∂r(rψ).
The derivation of (2.14), as well as the spatio-temporal boundary conditions of the

axisymmetric instanton fields, can be found in §5a of the electronic supplementary material.

(c) Numerical procedure
We consider the problem of minimizing the action functional S[u] given by (2.7) subject to a final
time constraint O[u(·, 0)] = a ∈R. Here, we briefly outline the numerical procedure that we use to
compute axisymmetric and fully three-dimensional solutions.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 J

un
e 

20
22

 



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210051

...............................................................

We interpret the minimization problem within the framework of PDE-constrained optimal
control (e.g. [28,29]): we introduce the control variable p as discussed above and consider the
optimization problem (2.10). This is an optimal control problem with distributed control as the
control p enters the PDE on the right-hand side as a source term. The velocity field u = u[p]
corresponds to the state variable. By treating u as a function of p, we can follow the so-called
reduced approach in optimal control theory and view the optimal control problem as a problem of
the argument p only. We can recast (2.10) into a sequence of unconstrained optimization problems
using the augmented Lagrangian method [30]: For a sequence of positive penalty parameters
(μ(m)) with μ(m) → ∞, we minimize

LA[p,F ,μ] = S[p] + F (O[u[p](·, 0)] − a) + μ

2
(O[u[p](·, 0)] − a)2, (2.15)

while updating the Lagrange multiplier F via F (m+1) =F (m) + μ(m)(O[u[p(m)](·, 0)] − a).
In other words, for each penalty parameter μ(m), we need to solve a minimization problem,

which in turn requires an iterative scheme. The computational costs can be reduced by using
warm starts. This procedure allows us to compute instantons for a specified observable value a.
This is in contrast to the optimization approach by Chernykh & Stepanov [10] and others. There,
the instanton equations, compare (2.11) for a generic SPDE, are solved by an iterative procedure
during which the Lagrange multiplier F is kept fixed and the value of a is allowed to change.
This again produces a solution to the instanton equations, including a matching pair (FI, a), but
the value of a is not known a priori. This practical approach is convenient and computationally
cheaper if there is a bijective map between F and a and one is interested in solving the instanton
equations over a wide range of values of a. Our approach is more general and to be preferred if
(i) there are multiple local minimizers, and the map F �→ a becomes multi-valued and (ii) there
are observable regions where the action fails to be convex and the F -a-duality breaks down [31].

To minimize (2.15) for a given value μ(m), we employ gradient-based methods. As an
improvement over a simple gradient descent (which, preconditioned with χ−1, reduces to an
iterative, fixed point-like solution of the instanton equations), we use the L-BFGS algorithm (e.g.
[32]). This significantly speeds up the computation for the fully three-dimensional instantons.
The L-BFGS scheme is a limited-memory variant of one of the most popular quasi-Newton
schemes, the BFGS scheme, named after Broyden, Fletcher, Goldfarb and Shanno. Quasi-Newton
schemes only require gradient information (in contrast to the second-order derivative information
needed for Newton) and typically show super-linear convergence (whereas the gradient scheme
only converges linearly with rates that are often very close to 1 for ill-conditioned problems).
Appropriate step sizes for the optimization algorithm are determined by an Armijo line search
using backtracking [32]. This very popular condition guarantees sufficient decrease that is
proportional to the step length. For the evaluation of the gradient, we use an adjoint approach: the
gradient is given as δLA/δp = χ ∗ (p − z), where the adjoint state z solves the backward equation
∂tz − (∇N(u[p]))�z = 0 with final condition z(·, 0) = −(δO/δu|u[p](·,0))�(F + μ(O[u[p](·, 0)] − a)).
Thus, each gradient evaluation requires to solve a PDE forward in time to determine u[p] and then
backwards to compute z. All of this is described in detail in §3 in the electronic supplementary
material.

We use two different flow solvers within the described optimization framework: a (2 + 1)-
dimensional axisymmetric code as well as a (3 + 1)-dimensional code for the full problem.
The (2 + 1)-dimensional code is necessary to compute solutions of the minimization problem
under the additional constraint of preserving axisymmetry. For the (3 + 1)-dimensional code, the
rotationally symmetric instanton eventually ceases to be a local minimizer of the action as there
are unstable directions that break symmetry. Symmetrization stabilizes the configurations and
allows us to get access to the associated action. In other words, after symmetry breaking, the
axisymmetric configuration ceases to be a minimizer of the full optimization problem, but remains
a (local) minimizer of the axisymmetric optimization problem. The axisymmetric code is based on
[33]: we use a Leapfrog scheme in time and symmetric second-order finite differences on a regular
r-z-grid in space, with a resolution of nt = 1024 and nr = nz = 256. The diffusion term is discretized
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semi-implicitly to avoid a severe CFL constraint. Consequently, in each time step, we need to solve
a Helmholtz-like equation to update the fields, for which we use a multi-grid algorithm (e.g. [34]).
The polar convolutions with χ are evaluated by means of fast Hankel transforms [35,36].

The full (3 + 1)-dimensional flow solver uses a pseudo-spectral method in space and the Heun
scheme in time, with an integrating factor for the diffusion term. Thus, we again avoid a strict CFL
constraint. We run a resolution of nt = 512 and nx = ny = nz = 128. For speed up, we implemented
this on a GPU using the CUDA API. To fit a full (3 + 1)-dimensional optimization problem on a
single GPU, memory reduction techniques as described in [37] were necessary.

3. Results
In the following, we show the outcome of our numerical computations, beginning with the
instanton configurations before and after symmetry breaking for both vorticity and strain.
We then discuss implications on the tail scaling of the PDFs, in particular for large positive
strain.

(a) Extreme vorticity events
Selecting ωz(0, 0) = a as our observable, we use the above formalism to numerically solve the
optimization problem (2.9). The result is the most likely configuration to realize an extreme
vorticity outcome at final time. Note that this computation is independent of the choice of the
Reynolds number. The Reynolds number, or equivalently ε, only determines whether a chosen
observable a is rare, and thus whether the instanton formalism has any relevance for events
of this size. As shown in figure 1, the most likely configuration to realize an extreme vorticity
corresponds to a vortex filament with an added swirl component. We first show, in the top row of
figure 1, how the full three-dimensional and the axisymmetric code find the same minimizer for
low values of a, but find different minimizers for high values. Configuration (a), at a = 75.0, is still
in the regime where the global minimizer is rotationally symmetric. At configuration (b), for a =
125.0, the symmetry-broken branch has already appeared, but is still very close to the symmetric
one. Configuration (c), at a = 197.6, is in a regime where the symmetry-broken minimizer clearly
dominates the symmetric minimizer. The asymmetric minimizing configurations correspond to
vortex tubes with a symmetry-breaking helical vortex structure around it that displays only
reflection symmetry instead of full axial symmetry. Due to the symmetry of the minimization
problem under reflection with respect to the z = 0 plane, the behaviour is identical for negative a,
with a mere sign-flip in ω (not shown).

Note that around the point of symmetry breaking, the full three-dimensional code picks up
both the symmetric and asymmetric minimizers until the symmetric configuration eventually
becomes unstable, as indicated by the two blue dashed lines in the inset of figure 1 (top), where the
upper line corresponds to the rotationally symmetric local minimizer of the full three-dimensional
code. There is a small difference between the rotationally symmetric minimizer of the full three-
dimensional code, and the same minimizer for the axisymmetric code, which is the result of
numerical differences in the integration schemes and coordinate systems.

We can compare the instanton configuration against structures observed in DNS, conditioned
on observing an extreme vorticity event [1]. The result of this ‘filtering’ procedure [18] is shown
in figure 3 (left three columns) for the axisymmetric configuration only. Concretely, this compares
an instanton for ωz = a = 60.0, which would be located left of configuration (a) in figure 1, in
cylindrical coordinates, against the conditional average of DNS data at ε= 250, conditioned
on ωz = 60.0. To compute this average, we integrate 104 independent realizations of the three-
dimensional NSE (2.12) on Ω = [0, 2π ]3 for a total time of T = 1 used in all computations
throughout this paper (which is much larger than the large eddy turnover time TLET ≈ 0.1 for
this ε). Exploiting the statistical isotropy and homogeneity of the system in order to increase the
sample size, we analyse the final field configuration for events with |‖ω(x)‖ − a|/a< 0.01, and then
rotate and translate the coordinate system so that the event is located at x = (0, 0, 0) and points in
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S I(
a)

×104

90,281,472,663,855,046,237,428,619,8

82,574,466,458,350,342,234,226,218,1

45,140,736,331,927,523,118,714,39,9

48,343,638,934,229,424,720,015,310,6

30,327,324,421,418,415,512,59,66,6

16,414,813,211,610,08,46,85,23,6

Figure 2. Results of the axisymmetric and full three-dimensional instanton computations for the strain observable ∂zuz(0, 0).
As in figure 1, the top plot shows the action at all critical points that were found numerically for different observable values,
and the two bottom rows show isosurfaces of the vorticity of the final-time configuration of the indicated instanton fields. Note
that, contrary to the vorticity instanton, we find a qualitative difference between the rotationally symmetric strain instanton
consisting of two counter-rotating vortex rings (a and d) and a dominant, symmetry-breaking instanton branch that consists of
thin vortex sheets (c, e and f ). Furthermore, for large positive strain,wefind a third, subdominant branchwith a quadrupole-like
symmetry (b). (Online version in colour.)

z-direction. We average 8.4 × 103 such events, including averaging in θ for each individual event,
to obtain the results of figure 3 (top row). The conditional average obtained in this way agrees
excellently with the instanton event for the same vorticity, demonstrating that for this Re the most
likely and the average configuration realizing ωz = 60.0 are identical, and we are indeed in the
large deviation limit.
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Figure 3. Comparison of the final-time field configuration of axisymmetric vorticity and strain instantons (bottom row) to
conditional averages of DNS data for the same prescribed observable values at the origin as the instanton fields (top row).
The left three columns show all components of the vorticity in cylindrical coordinates for an event with a prescribed value of
ωz(x = 0, t = 0)= 60.0 at the origin. The right-most column only shows the θ component of the vorticity of an event with
∂zuz(x = 0, t = 0)= −25.0 since theωr andωz components are negligibly small. The conditional averages of the DNS data
include an angle averaging procedure inθ , and eventswith suitable observable values at x �= 0were shifted onto the origin. For
the displayed vorticity event, approximately 8.4 × 103 single events as obtained from DNS of (2.12) with a forcing strength of
ε= 250were averaged, whereas the strain event is an average of approximately 5.1 × 103 events in the same dataset. (Online
version in colour.)

(b) Extreme strain events
Performing the same procedure for the strain observable, ∂zuz(0, 0) = a, we obtain a richer set
of outcomes. For the strain, positive and negative observables have different phenomenologies
caused by the advection term (e.g. [38]), but both eventually undergo symmetry breaking. As
visible in figure 2 (top), the earliest and most dramatic symmetry breaking is observed for
the positive tail of the strain, where an asymmetric branch splits off already at ac ≈ 14. Here,
the symmetric configuration (a), consisting of two counter-rotating, contracting vortex rings,
transitions for higher a into an asymmetric sheet-/pancake-like structure (c). We additionally
observe a further subdominant symmetry-breaking branch of quadrupole-like configurations (b).
It is of course difficult to exclude the existence of further subdominant local minimizers, but our
numerical experiments where we started the optimization algorithm either at a random initial
condition for the control or at perturbed solutions of previous problems did not show indications
of further branches in the considered observable range.

The negative tail has qualitatively similar behaviour at different values a: the symmetric
configuration (d), corresponding to two colliding vortex rings with opposite orientation, breaks
away at ac ≈ −38 into more complicated and asymmetric vortex sheet configurations (e) and (f ).

The vortex ring structures that we encountered are ‘trivial’ solutions of the instanton equations
(2.14) in cylindrical coordinates in the sense that they satisfy ωr =ωz ≡ 0, which does not yield the
global minimum of the full action at large observable values. Interestingly, field configurations of
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Figure 4. Comparison of the instanton prediction∝ exp{−ε−1SI(a)} for the strain PDFρ∂zuz to DNS data at different forcing
strengths ε or Taylor–Reynolds numbers Reλ. The dots show the DNS histogram, with a 95% Wilson score interval [42,43]
shaded in grey. The solid lines show the PDF prediction as obtained from the axisymmetric instanton configurations, whereas
the dashed lines show the PDF prediction based on the lowest symmetry-broken branch of the instanton action. Note that we
are free to shift all individual branches arbitrarily and independently in the vertical direction in the semi-logarithmic PDF plot
sincewe are only interested in asymptotic scaling estimates. Observe in particular that the axisymmetric strain instanton clearly
underestimates the right tail even at the small Reynolds numbers considered here. (Online version in colour.)

this type have previously been found as maximizers of the enstrophy growth rate in [39]. On the
other hand, sheet-like structures, as in the symmetry-breaking case, have been observed as the
most intense dissipative structures already in [40] and in recent spectral simulations using 81923

grid points [41].
We further compare the rotationally symmetric strain instanton to the conditional average

from DNS in figure 3 (right-most column). Here, with the dataset and procedure as for the
vorticity, we only compare the ωθ -component in cylindrical coordinates, with excellent agreement
between the minimizer and the observed conditionally average event realizing the strain value
of a = ∂zuz(0, 0) = −25.0. For the vortex ring configuration, all other components are negligibly
small (≈ 10−4 for the three-dimensional instanton code due to numerical noise, ≈ 10−1 due to
statistical noise in the DNS average). We do not compare the symmetry-broken instantons with
conditional averages, since this would require a much larger dataset, where each event, instead
of being averaged over θ , is additionally aligned in angular direction, using e.g. the eigenvectors
of the velocity gradient tensor.

(c) Extreme event probabilities
The derivation of the instanton formalism in §2, and in particular equation (2.8), make obvious
that the instanton not only represents the most likely extreme event but further allows us to
estimate its probability, which scales exponentially with the instanton action. In this section, we
compare this prediction for the exponential scaling of the tail with PDFs obtained from DNS, and
in particular demonstrate how the symmetry-broken instanton predicts the correct tail scaling for
the PDFs, while the axisymmetric instantons dramatically underestimate the likelihood of large
strain events. We concentrate on the positive tail of the strain observable in particular, since there
the symmetry is broken the earliest and the difference in slope is the clearest.

Figure 4 shows this comparison for three different values ε ∈ {1, 250, 1000}, corresponding to
three different Taylor–Reynolds numbers Reλ = √

15 Re ∈ {0.5, 6.4, 10.8} (where Re was determined
from the root mean square velocity and integral scale of the data). Note that even the highest Re
is still comparably low. This is because, as argued in §2a, for higher Re the instanton is so far in
the tail that it cannot be detected in DNS.
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For each ε, we performed 104 pseudo-spectral simulations of the three-dimensional NSE
(2.12) at a spatial resolution of 1283 starting from u0 = 0 at T = −1 until t = 0. The final time
configurations were subsampled according to the estimated approximate correlation length
λ∂zuz = 0.8 of the observable, and the shaded area indicates a 95% Wilson score interval [42,43]
for the PDF estimate based on the DNS data. For the lowest Re, the data are almost Gaussian,
and the instanton and PDF agree everywhere. No symmetry breaking is observed. For the two
higher Re, instead, the instanton approach only captures the tail scaling correctly, since common
strain events are not dominated by the instanton in this case. In the tails, though, the axisymmetric
instanton clearly underestimates the probability, while the symmetry-broken instanton is in good
agreement. This is particularly clear in the right tail of the right-most panel of figure 4, where
the axisymmetric instanton depicted by the red line is far too steep to agree anywhere with the
observed tail scaling. This trend continues in fully developed turbulence at higher Re: the analysis
of larger DNS, e.g. in [4], shows that the strain PDF tails can in fact be described by stretched
exponentials ∝ exp{−c±|a|ϑ±} with exponents ϑ± < 1, whereas we find that the exponents in both
tails derived from the vortex-ring instanton increase monotonically with |a| and saturate above
ϑ+ = 2.5 in the right tail and above ϑ− = 2 in the left tail. By contrast, while the SI(a)-curve that
we obtained for the symmetry-broken instantons is still convex in the observable range that we
were able to consider at the given resolution, the exponents ϑ± are monotonically decreasing in
|a| for this branch and decay below 1.5 for both positive and negative strain.

For the vorticity observable of the same DNS dataset at ε ∈ {1, 250, 1000}, we observe the same
qualitative results (not shown): at the lowest Re, the instanton again perfectly describes the PDF,
whereas the range of validity of the estimate transitions into the tails at higher Re. Here, however,
because the symmetry breaking occurs at relatively higher a and leads to a less dramatic difference
in scaling, it is hard to draw as clear a conclusion as in the strain case.

4. Conclusion
In this paper, we set out to numerically compute maximum-likelihood realizations of extreme
vorticity and strain events in the stochastic incompressible three-dimensional NSE. As an
alternative and complement to direct sampling approaches, we rephrased the problem into
a deterministic variational framework using sample path large deviation theory, which is
particularly suited for rare and extreme events. This led us to consider a (3 + 1)-dimensional
optimization problem with final-time constraints to enforce large observable values, which
we were able to solve using tools from PDE-constrained optimization. For both observables
considered here, we observe symmetry breaking of the minimizers: the vortex filaments that
lead to large values of the vorticity reduce from axial to reflection symmetry, and the vortex
rings that realize large strain transition to a pancake-like vortex sheet structure. For positive
strain in particular, we demonstrated that the symmetry-broken minimizer clearly dominates the
symmetric one and can in fact be confirmed to yield the correct scaling of DNS PDFs at suitable
Re, in contrast to the axisymmetric one.

The possibility to access the most extreme events in Navier–Stokes turbulence without
sampling is attractive. Despite the fact that the optimization problem (2.9) to be solved is massive,
with fields of size 512 × 1283, and a single iteration of the minimization algorithm corresponding
to a forward integration of the NSE, and an equally sized backward propagation, we show that
this effort pays off for extreme outlier events: obtaining these same configurations traditionally
necessitates either millions of samples of the stochastic NSE (for lower Re), or the regime is
completely inaccessible as the events are entirely too rare and extreme to be observed (for higher
Re). While one could try to formulate reduced problems in effective coordinates, for example as
in [44], our approach yields the most likely configuration without any a priori assumptions about
its form or physical mechanisms.

In this paper, we only considered the exponential contribution of the minimizer for the PDF.
Improved estimates are possible in principle when taking into account the fluctuations around
the instantons, as discussed e.g. in [24]. The computational cost of computing this fluctuation

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

21
 J

un
e 

20
22

 



14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210051

...............................................................

determinant is vastly bigger than the already large problem sizes encountered in the optimization
problem in this work. For this approach, it is further necessary to integrate out the zero mode
associated with the symmetry breaking of the instanton. This correction to the PDF was ignored
in this paper.

It would be interesting to determine whether the viscid instanton we discussed here has
relevance to inertial range properties of turbulent flow. One possible connection is given by the
scaling of velocity gradient moments, which, even in the low Reynolds numbers regime, link
dissipative statistics to inertial range properties via so-called fusion rules [45–47]. This possible
route towards understanding intermittency is the focus of our future work.
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