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Abstract

This thesis proposes a reduced-form model of herding for a large population

of boundedly rational agents receiving logistic preference shocks. Agents are called

at random times to revise a binary choice — smoke or not, vote for or against a party,

buy or sell an asset — as they try to align to other agents choices and the policy set

by an external planner. I show that the resulting Markov stationary distribution

places most probability on configurations of agents choices that maximize the sum of

individual utilities, similar to Kandori et al. (2008). Reducing the dimensionality of

the economy — by aggregating configurations based on the average value of agents

choice — shows that, in fact, since less likely configuration are more frequent, agents

spend a long time away from the most likely ones. In particular, when agents are

rational and care about coordination, two long-lived equilibria emerge. I study

the problem of a planner who has an exogenous preference for one choice and sets

a policy to minimize discounted expected costs. An algorithm by Ross (1983) is

applied to compute the optimal policy under di↵erent assumption to show that the

optimal policy is, in general, non-monotonic and at times discontinuous, with a

region where the planner “gives up” and sets a policy close to zero. It is shown that

the planner maximum policy is always exerted when at least half of the population

is opposed to the planner preferred choice. Further, I give bounds on the marginal

costs of policy that determines whether long-lived equilibria are still present under

the optimal policy.

v



Chapter 1

Introduction

This thesis deals with the dynamic behavior of a large population of agents attempt-

ing to coordinate on two alternative choices — buy or sell, smoke or don’t, vote for

one party or another, adhering or not to a convention or social norm — displaying

a multiplicity of equilibria. An external agent, a government or a planner, enacts

a policy — by raising a tax, changing the current interest rate or by running an

advertisment campaign — to influence the population toward one of the available

equilibria.

Coordination games of this sort underlie many situation of economic interest

such as: herding in financial markets (Devenow and Welch, 1996), growth or poverty

traps (Krugman, 1998), elections (Feddersen and Pesendorfer, 1997), opinion for-

mation and social norms (Young, 1993) , investment hold-up and capital gathering

(Akerlof et al., 2018, 2019) , expectation formations (Golub and Morris, 2017). At

the core is the fact that people would benefit from being able to coordinate on an

outcome but lack a mechanism to coordinate or are exposed to unmediated exter-

nalieties, often leading to multiple equilibria. As consequence, game theory work

has focused either on providing equilibrium refinements, progressive tightening of

equilibria requirement toward more sensible ones, and equilibrium selection, the de-

scription of how one equilibrium is selected either dynamically, through repetition

or learning, or in the limit of some relevant parameter. During the ninties and

early two-thousands, the latter topic has been explored by evolutionary modeling.

Borrowing tools from system biology and statistical physics game theorists have

proposed di↵erent notions of evolutionary equilibrium as an attempt to explain how

one equilibrium is selected among many.

The present work, whilst sharing many features of the evolutionary game

theory literature, tackles multiple equilibria from a di↵erent point of view, namely

1
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how transition across equilibria happen and how to optimally drive agents across

them. Out of the three typical assumptions of evolutionary game theory, two are

maintained here in the same spirit: first, inertia — agents in our model don’t react

instantaneously to their environment, but rather with a delay. This lag is motivated

by the fact that agents live in a complicated world and have a limited amount of

attention to give to a certain choice, in turn facing opportunity cost whenever they

have to research and decide which strategy or choice to make. The usual device (

see for example Blume (1993)) — an i.i.d. exponential clock with mean equal to

the advantage of revising the choice — determines when agents get to act . The

time passing between two revisions will depend on how convenient it is to switch:

when the gain from switching is negliglible agents will be less likely to activate and

re-evaluate their current choice; conversely, the higher the gain from switching the

sooner agent will act.

The second assumption is myopia — agents do not forecast the behavior of

other agents in the future nor how they might react to their choices. When agents

make a choice they only consider the current choice of others and the planner policy

at any given time. This is motivated by cognitive constraints that agents have once

they have decided to review their choice, hence agents do not take into account the

long term implication of their choices nor they attempt at forecasting1 the long term

behavior of others and how other will react to their choices and so on. In practice,

this means that agents only maximise their current utility.

The third typical assumption mutations — agents put non zero probability

on every possible strategy — is introduced here with a twist: agents receive a random

shock to their utility every time they are called to make choice. Continual arrival

of individual idiosyncratic shocks induces a Markovian dynamic allowing the study

of the population behavior as a stochastic process. Shocks such as this have been

motivated in a variety of way. One way is to think that agents make mistakes, leading

them to act against the deterministic component of their utility. Another way is to

think that the population changes over time: whenever a new choice is made one

player leaves and is replaced by a new one with di↵erent preferences. Otherwise,

agents could be seen as experimenting, again agents with limited cognitive ability

proxy for more complicated strategy by randomly acting in a di↵erent way that

would otherwise be predicted by their utility. One more interpretation, is that

shocks are unobservable factors that enter the utility function2. Finally, agents

preference might fluctuate and be changing exogenously over time. The latter will

1See conclusion for a discussion of the e↵ect of iterated expectations
2See later for a more detailed explanation in the Random Utility Model section of the prelimi-

naries.
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be the preferred explanation of shocks.

These three hypothesis come together to describe dynamic, boundedly ratio-

nal agents. Bounded rationality is crucial, both because of its intuitive and practical

appeal. Intuitively, because we rarely see agents acting in the fully rational way of

classical economics modeling. Practically, because without some sort of delay and

some exogenous motivation to change strategy we would be bound to a static world

where players immediatly reach the equilibrium, leaving us with the issue of how an

equilibrium is selected. The way in which we model the population allows all equi-

libria to be considered and to study the dynamic of how transition happens across

them. Notice, that while agents do not forecast the future and therefore do not

immediatly reach equilibrium, their average behavior will be coherent with utility

maximization since shocks are i.i.d. with zero mean. Further, in the limit of small

shocks the fully rational behavior can be recovered.

The last element needed to describe agents behavior is their utility function,

which encapsulates two elements: a desire to conform to the average choice of all

other agents and to align with the planner policy. The latter has an easy interpre-

tation: the planner can impose a monetary tax or non-monetary cost — such as

graphic pictures on cigarette packs — to deter people from making a certain choice

and at the same time incentivize agents to make the opposite decision. The former

is another application of bounded rationality and can be motivated in a few ways.

One can see the desire to align with the average population choice as an exogenously

given preference for imitation. It should be noted though, that preference for imita-

tion might arise from rational concerns. For example, concern for relative position

with concave utility (Clark and Oswald, 1998) can lead to imitation. Some herding

mechanism, see (Devenow and Welch, 1996) for a review, also result in imitation of

other choice and discard of private information. Lastly, agents might simply benefit

directly from “jumping on the bandwagon”, for example when agents choose be-

tween two party and having voted for the final winner might result in a reward. We

shall abstract from the fine details and assume agents have a preference for aligning

with the average position in the population, thinking of this model as reduced-form

model of herding.

Chapter 3 describes the microfoundations and global behavior of the pop-

ulation under some fixed policy from the planner. The mathematical formalism

used is that of discrete time, discrete state space, Markov chains. The object of

interest are the transition probabilities dictated by agents utilities and the long run

behavior of the population described by the stationary distribution of the chain. A

dimensionality reduction technique, lumping, is used to naturally connect the popu-
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lation behavior with the behavior of the average. The first result is to show that the

configurations that have higher probability are those that maximise the utilitarian

welfare, that is, the sum of all utilities. It is not surprising that this is the case,

Kandori et al. (2008) have shown the same result in a slightly di↵erent setup. But

we also show, through lumping, that their prediction about the most likely states

being the one where the population spends the most time is not always true, due to

the fact that less likely configuration might outnumber more likely ones. Secondly, it

is shown that subsets of population choice act as basins of attraction, which we term

long lived equilibria. Once the population is within this set they spend a dispropo-

rionate amount of time within it, which is exponential in the size of the population.

The mathematical setup follows closely Bovier and den Hollander (2015), with the

crucial di↵erence of how transition probabilities are derived from the behavior of

the single agents which is a boundedly rational version of the model presented in

Durlauf (1996).

The following chapters deal with the optimization problem faced by the plan-

ner. The planner has an exogenous preference for one of the two choices that agents

can make and faces quadratic costs proportional to the distance of the average popu-

lation choice from its preference. The planner can choose a continuous policy which

a↵ects all agents rewarding agents that align with it and punishing those that are

not. The intensity of the policy is the choice variable for the planner and symmet-

rically determines how much player are rewarded or punished. For every unit of

policy the planner pays an associated quadratic cost. Over an infinite time hori-

zon the planner would like to pick the policy that minimize its expected discounted

costs. The tool used are those of stochastic dynamic programming, presenting two

applications of the Policy Improvement Algorithm discussed in Ross (1983), allow-

ing for the numerical computation of the optimal policy. One can motivate this

type of planner as a benevolent planner that wishes to cull smoking behavior in the

population. Due to the peer pressure that smokers exercise on each other, when a

majority of people smoke it might be very hard to convince them to do otherwise.

Yet again, the planner might be an incumbent in an election and wishes to retain

the curren majority of people voting for him. The optimal policy presented here

suit both type of situations: changing the status quo or maintaining it.

The planner problem is solved under two di↵erent assumptions. In Chap-

ter 4 it is assumed that the planner can only observe the average position of the

agents every so often. This exogenously given lag reflects the fact that sampling the

population might be costly. Under this assumption the planner observes the pop-

ulation behaving according to the stationary distribution. A change in the policy
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alters the stationary distribution shifting probability toward the planner preferred

state. I show that the unique optimal policy value can be seen as an average of the

costs faced by the planner weighted by the likelihood of the population reaching any

given configuration. Further, I show that the first order condition for the planner

problem relates the optimal policy to the skewness and variance of the stationary

distribution, which are a↵ected by the parameters that govern agents behavior. I

numerically show that the optimal policy may or may not be monotonic in the vari-

ance of shocks depending on how much value is placed by agents on coordination.

The other important question answered is whether long lived equilibria survive af-

ter the optimal policy is introduced. The answer depends on the marginal costs of

applying the policy: high marginal costs entail that the attracting regions survive,

whereas for su�ciently low cost the largest possible amount of policy is optimal and

this is enough to make long lived equilibria vanish. Bounds are provided for both

cases.

In Chapter 5 it is assumed that the planner can monitor the population aver-

age position at every time step. As a result, optimal policy is now state dependent:

for every possible configuration of choices in the population the planner has an op-

timal response. I provide a proposition relating the optimal policy to its first order

condition which depends on the transition probabilities. In general, the optimal

policy is not monotonic. The planner wishes to raise the intensity of the policy

as the number of people aligning with its goal decreases, but only up to a certain

point. Past it, the planner de-escalates the amount of policy. This happens because

the more agents expouse the opposite position the stronger their critical mass pulls

the population into one of the long lived equilibria. Past some critical threshold

the gain from additional unit of policy is smaller then the cost of implementing it.

Further, the reduction need not to be “smooth”, in some cases the planner wishes to

suddenly and drastically reduce its policy, e↵ectively “giving up” once the majority

becomes too large.

There are roughly three possible regimes for the optimal policy. In population

with low desire to coordinate and large preference shocks the policy will be mono-

tonic, weaker when people align with the planner and stronger when people aren’t.

This is intuitively explained by the fact that under no policy the stationary distri-

bution for the population presents a unique long-lived equilibria and stronger policy

shifts this basin closer to the planner preferred state. In populations where the coor-

dination motive is strong and shocks are large, the policy becomes non-monotonic,

first rising and then falling in absolute value as the population average position

moves away from the planner target. When shocks become small — meaning that
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agents pick more often the rational choice and therefore become more “sticky” when

they are already aligned with the majority — the policy is non-monotonic and may

exhibit a “give up” zone for the planner where the policy suddenly drops close to

zero. How quick this jump is depend on the population size: for larger popula-

tion the jump will be small followed by a steep decrease of the policy; for smaller

population the jump will be larger. Finally, which of these three regimes manifest

depends on the size of marginal costs: low marginal cost cause policy to be larger

and progressively more monotonic, whereas large costs lead to smaller and markedly

non-monotonic ones. The main result I prove, for a su�ciently large population, is

that the largest amount of policy is provided when more than half of the agents have

taken position opposing the planner. Again, whether long-lived equilibria survives

the optimal policy is explored numerically and an analytical formula for the new

stationary distribution under the state dependent optimal policy is provided.

1.1 Summary of main results

Here I summarize the main contribution of the thesis. In Chapter 3 I provide the

first description of a system of boundedly rational agents making dichotomic choices

and receiving logistic preference shocks as they play an infinite horizon coordination

game. An overseeing agent — the planner — can influence the coordination by

introducing a policy. This model expands on many previous work in evolutionary

game theory, introducing a new way of interpreting the presence of multiple equi-

libria as attracting region of the state space of a Markov chain. These attracting

regions can be thought as “equilibria” in the sense that the system spends a long

time in them. In the chapter I characterize the long-run behavior of all agents as

the stationary distribution of the chain placing most probability on those configu-

rations — the vector of all agents choices — that maximise total utility. I also show

how the dimensionality of such a game can be reduced through lumping techniques.

Proposition 1 and 2 give the analytical formula for the stationary distribution of

the population configuration and the lumped stationary distribution of the average

choice in the population. Proposition 3 defines for what value of a fixed policy the

lumped stationary distribution is bi-modal. The region depends on population pa-

rameters describing the strength of the coordination motive and the variability of

the shock. Propositon 4 shows that the minima of the potential function identify

the region of long-lived equilibria and Proposition 5 describes the time needed to

escape and enter into the attracting region of a long-lived equilibria .

I then proceed to build and solve the problem of an external planner who
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whishes to drive the population towards one of its preferred equilibria using the

formalism of stochastic optimization. The resulting policy is characterized both

analytically and numerically to show the presence of distinct monotonic and non-

monotonic regimes that depend on both the marginal costs of the planner and on the

two parameters that describe agents behavior: strength of the coordination motives

and variability of the preference shocks. I provide a proof using coupling techniques

to show that the value function is increasing over the state space.

In Chapter 4 the planner problem is setup as a stochastic optimization prob-

lem under the assumption that the planner only observe agents with a lag, meaning

that the behavior of the population is dictated by the lumped stationary distribu-

tion. The object of interest is the value function of the planner, associating every

element of the lumped state space with the minimized discounted expected costs.

Under the maintained assumption Proposition 6 shows that the value function is

convex in the policy. The trick is to use the representation the value function as

an average over all states weighted by the stationary distribution, which takes the

form of a geometric series. Since there’s a one to one relationship between the value

function and the optimal policy, we can relate the minima of the former to the op-

timal values. Proposition 7 gives the first order condition that the optimal policy

must satisfy and shows that it depends on the skewness and variance of the lumped

stationary distribution. It is also shown numerically that the optimal policy as a

function of the variability of agents preference shocks has a monotonic and non-

monotonic regime that depend on the strength of the coordination motive. Lastly,

Proposition 8 answer the question of whether long-lived equilibria survive with the

application of the optimal policy, by giving upper and lower bounds on the policy

marginal costs that guarantee survival or deletion.

In Chapter 5 the planner problem is solved under the assumption that the

average choice of all agents can be observed at any time. The value function is no

longer convex in the policy, although it remains to be shown whether this can be

shown analytically, and the optimal policy now becomes state dependent. Propo-

sition 9 gives the first order condition relating the optimal policy to the transition

probabilities of the lumped chain and the variation in the value function. Optimal

policy is in general non-monotonic over the lumped state space and Proposition 11

gives bounds on costs guaranteeing either regime. A key mathematical result that

is needed is that the value function is increasing over the state space. Proposition

12 proves that this is the case, providing a proof by coupling that also gives useful

upper and lower bounds on the variation of the value function. Lastly, Proposition

13 shows that, for su�ciently large population, the peak of the optimal policy hap-
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pens after at least half of the agents take the opposite position the planner prefers.

This is shown numerically to be always the case, even for small populations.

1.2 Literature Review

The work in this thesis stems from the meeting point of three di↵erent literatures:

the economic theories on imitation and herding, the evolutionary game theory lit-

erature and the application of statistical mechanics to socio-economic phenomenon.

Here I try to review the most important paper in these three literatures, highlight-

ing similitudes and di↵erences with my work. The mathematical tools that bring

all of these together are given by the Markov chain literature and in particular its

application to interacting particle systems, which are described in Section 2.2.

1.2.1 Interactions, relative standing and herding

Economics and sociology have often dealt with the topic of how agents’ action a↵ect

each other. One might say that this is in fact the main focus of both disciplines.

Here we focus on a specific strand of literature, which attempts to mathematically

derive the aggregate behavior of the population starting from the rule governing the

individual agents.

The first example of such models is due to Schelling’s study of segregation.

Schelling notes that segregation may be due to social structures : organizational

practices, specialized communications or, more generally, correlation with a non-

random variable. Sometimes, though, segregation might arise from the interplay of

individual choices.

Schelling (1971) studies segregation by presenting a simulation of agents from

distinct population attempting to relocate themselves spatially based on a prefer-

ence for their surroundings. An analytical model of the same phenomenon with

discretised space3 is also discussed. The general message is that, even in the pres-

ence of simple rules, the interplay of individual choices produces a vast array of

phenomena such as separation, patterning, density, vacancy and the appearance of

drastic “tipping points”. Further, the paper argues that there is no simple corre-

spondence from individual incentives to aggregate behavior. Conversely, inference

of individual motives cannot be drawn from the aggregate patterns.

Schelling (1973) deals with the study of binary choices with externalities.

The example used is that of the adoption of helmets by hockey players at a time

3This is e↵ectively a conserved order parameter two-dimensional Ising model on the square
lattice, a model which originates in the field of statistical mechanics.
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when hockey rules did not mandate the use of one. The convention of not using

helmets, Schelling convincigly argues, is uphold by the e↵ect of peer pressure: since

no player is using them — despite it being clearly very beneficial — no one is willing

to deviate from the accepted standard, perhaps for fear of ridicule or of gaining a

disadvantage. Again, the message of the paper is that from di↵erent hypothesis

on the fine details of how the interaction among agents happen, a large variety of

situations might emerge.

What schelling describes in his 1973 paper is what economics literature will

call — especially in the context of financial markets — herding : a situation where

agents behave in a certain way — sometimes against their own interest — due to

other agents already taking the same action.

A good review of the rational herding literature — models in which agents

optimal choice is to herd — is Devenow and Welch (1996), that gives the following

definition:

“In its most general form, herding could be defined as behavior patterns

that are correlated across individuals. But, if many investors are pur-

chasing ‘hot’ stocks, it could just be due to correlated information arrival

in independently acting investors. The notion of ‘herding’ we consider

instead is one which can lead to systematic erroneous (i.e., sub-optimal

relative to the best aggregate choice) decision-making by entire popula-

tions. In this sense, herding is closely linked to such distinct phenomena

as imperfect expectations, fickle changes without much new information,

bubbles, fads, frenzies, and sun-spot equilibria.”

Models in the rational herding literature are usually based on either payo↵

externalities; principal-agent models showing that managers might have an incentive

to ‘hide in the herd’; or, informational cascades model where action from prior agents

leads others to ignore private information and imitate others.

Yet another important mechanism that leads to correlated behavior is the

role of relative position, explored by Cole et al. (1992). In their model ‘status’

is treated as a ranking device that determines how people fare in the non-market

sector of the economy. They show that the existence of a non-market sector might

endogenously generate a concern for relative position in income distribution, leading

to higher income implying higher status.

On more general line, the work of Clark and Oswald (1998) assumes that

relative standing is a concern and shows that when agents have concave utility this

is su�cient to ingenerate herding, with people acting against their own best interest
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in an attempt to “keep up with the Joneses”. The logic driving this result is that,

as other agents alter their status, marginal utility of status also changes.

The last paper that deserves to be mentioned is a recent work by Golub

and Morris (2017). In their paper they examine the development of higher-order

expectations for agents placed on a general network. Agents are in fact attempting

to coordinate on beliefs as they receive a random signal on the state of the world,

using a utility function that shares the same type of quadratic loss in the distance

from the position of nearby agents as the one used in this thesis. Their main result

is to show — using Markov methods — how even a small amount of optimism about

other agents’ expectations leads to a ‘contagion of optimism’. Conversely, the lack

of optimism leads to a ‘tyranny of the least-informed’ as agents end up coordinating

on the prior expectations of the agent with worst private information.

1.2.2 Evolutionary Game Theory

An evolutionary model formalizes the process of learning a Nash equilibrium by a

large population of myopic and unsophisticated agents. The central notion justifying

the term “evolutionary” is the concept of an Evolutionary Stable Strategy (ESS)

first introduced by Smith and Price (1973). The idea is that a stable pattern in

a population is evolutionary stable if it cannot be invaded by a “mutant” pattern.

Any ESS is a Nash equilibrium, but the converse is not necessarily true. Despite

representing a useful restriction of a Nash equilibrium, ESS might fail to exists. An

overview of the early research surrounding this concept can be found in Mailath and

J. (1992). Fundenberg and Maskin (1990) shows that evolutionary stability imply

a notion of e�ciency as long as players make su�ciently small mistakes: this new

notion is known as “Stochastically Stable Strategy”. The work on conventions4 by

Young (1993) shows that the for a particular class of 2x2 games the equilibrium that

are stochastically stable are equivalent to the risk-dominant equilibrium.

The work in Kandori et al. (1993) introduces the notion of repeated shocks

at the population level leading to what they term “long-run equilibria”. In 2x2

symmetric games with two symmetric Nash equilibria these match the same con-

cept of risk-dominant equilibrium of Harsanyi and Selten (1988) and in particular,

with equal level of security, the Pareto dominant Nash equilibrium is selected. The

evolutionary process presented in their previous work is extended in Kandori and

Rob (1995) to show that long-run equilibria can be computed algorithmically for

n⇥ n games and that this is unique even when multiple static equilibria exist.

4An overall review of the work on social norm and conventions is Burke et al. (2011).
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The work of Ellison (1993, 2000) is instead focused on the amount of time

that these models take to attain equilibrium through experimentation and mistakes,

showing that when interactions happen at long-range the time to attain the unique

long-run equilibrium might be long and dictated by the history and the initial con-

ditions. When interactions are short-range instead equilibrium is attained much

faster and the history of the players adjustment is less relevant5.

Friedman (1998) discusses possible applications of evolutionary game theo-

retic model and argument how the usual restriction on agents rationality might be

less strong than usually thought.

Kandori et al. (2008) studies a decentralized trading process where agents are

a↵ected by persistent random shocks due to agents’ random utility maximization.

In this model agents group meet randomly and exchange indivisible durable goods

among each other. Once they meet a new allocation of the goods of the group is

picked at random and agents accept it if the new allocation provides a higher utility

to all of them. The main result in this paper is show that the stationary distribution

for myopic agents receiving logistic shocks has an exponential form proportional to

the sum of agents utilities6. Compared to this work this thesis features shocks

that are identically distributed, rather than have a possibly di↵erent variability for

each agent and abstracts from matching probabilities. The paper is extended here

by the introduction of an external planner incentive. Another di↵erence, is that

the work by Kandori, Serrano and Volij fails to notice that while most probability

is placed on highest utilitarian welfare configuration, these are only a few out of

the many possible configurations and these configurations might be outnumbered

by others with lower welfare: reducing the dimensionality of the system through

lumping allows us to figure out which of these two e↵ects — higher utility or higher

frequency of a configuration — wins.

1.2.3 Statistical Mechanics applications

Economics has a long tradition of retooling physical models and techniques. Statis-

tical Mechanics is the field that deals with the behavior of large ensamble of particles

whose dynamics is treated as stochastic. Stochasticity is seen there as a simplifica-

tion of underlying deterministic dynamics that might be too complex to keep track

5This is well known in the statistical mechanics literature, and is referred to as the fact that so
called mean-field models, where all particles interact with all others, present metastability, which
disappears once interaction become short range (Bouchaud, 2013).

6This extends Volij et al. (2004) by showing that the concept of minimum envy allocation can
be replaced by the general principle that evolutionary dynamics with logit noise maximise the
aggregate utility level.
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o↵. One of the biggest hurdle in transposing its formalization is that the behavior

of physical systems obeys aggregate laws that can be derived experimentally and

imposed as constraints on the aggregate behavior of single particles. This is rarely

the case in economics, hence research in this direction has been devoted to motivat-

ing stochasticity at the individual level. Yet another challenge is posed by the fact

that, since the exposition of the so called Lucas (1976) critique, economists strove

to include expectations of agents as part of the construction of sensible microfoun-

dations. But physical particles are usually treated as reacting only to their current

environment and not forecasting the future. This is where the statistical mechanics

applications merged with evolutionary game theory assumptions that agent might

react myopically to their environment and rational behavior might emerge at the

aggregate level as a consequence of the underlying incentives.

In particular, the economics literature I will discuss here has borrowed heavily

from the formalism of the Ising model for ferromagnetism – describing how magnetic

dipole moments on a lattice align to each other to generate a magnetic field – and

its mean field counterpart the Curie-Weiss model, which are some of the first model

used to describe and study phase transition in physical matter. A full review of the

Curie-Weiss model can be found in Kochmański et al. (2013), while an introduction

to the Ising model is in Baxter (2016).

The main paper that applies the logic of statistical mechanics to game theory

is the seminal work of Blume (1993), The Statistical Mechanics of Strategic Inter-

action. Here, player interact with each other on a lattice, meaning that each player

only plays a game with a finite set of neighbours, but every two players indirectly

interact with all others through chain of direct interactions. The paper describes

how such construction works under di↵erent stochastic strategy revision processes.

It also details the stationary distribution and limiting behavior of the underlying

Markov chain, in particular for coordination games. The two revision processes

considered are perturbed best response and log-linear model. The former consists of

agents that place some positive probability on each outcome when selecting a strat-

egy; the latter is a variation of that specifying the functional form of the log-odds

of choice revision. Log-linear model have the exact same implication as the logistic

shocks agents receive in this thesis: probability of revising a choice is proportional to

the di↵erence in utilities between the outcomes. Blume also introduces the device,

common in Interacting Particle Systems literature (see Liggett (1985)) that defines

the activation times of agents: to each player is attached an i.i.d. Poisson “alarm

clock” which rings at random times. When it does, the agent is activated and reacts

to its neighbours current configuration, giving rise to Markovian dynamics. The
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main results in Blume’s paper show that the log-linear rule gives rise to station-

ary distributions that have Gibbs form as well as showing that in the limit of small

shocks a unique equilibrium is selected and it coincides with the Nash risk-dominant

equilibrium when one exists.

Durlauf (1996) work — titled Statistical Mechanics Approaches to Socio-

Economic Behavior — provides a framework for models of interaction borrowing

the formalism of statistical mechanics. Agents maximise a random utility function

by making dichotomic choices. The utility function contains a private deterministic

component and a social component that includes expectations of all other agents

behavior. The social components takes the form of a squared loss function with

respect to other agents choices, which can be reduced to the expected average of

the population when interactions are global. When the private component takes a

linear form it is shown that any linear component that doesn’t depend on the agent

choice is irrelevant. The main result shows that in the limit of infinite agents with

rational expectations, the equilibrium distribution of the model is given by a Gibbs

distribution. This result hinges on a fundamental theorem in statistical mechanics

Spitzer (1971); Averintsev (1970) showing that these type of stochastic interactions

model will in general show the Gibbs distribution. The paper shows that there might

be a multiplicity of equilibria of these type of models depending on the product of

the parameters for the coordination motive and variability of shocks. This result

is extended in Proposition 3 in the current thesis. The paper provides a number

of generalizations and applications of the model showing that it can be adapted to

encompass endogenous preferences, represent growth and economic development as

well as representing games with strategic complementarities. The model used in this

thesis is based on the model presented in this paper. The main di↵erence is that the

assumption of rational expectation is completely abandoned and the fully forward

looking agents are replaced with myopic ones. This has the consequence that the

model is a fully dynamic one instead of an equilibrium one and can be studied for

a finite number of agents.

Brock and Durlauf (2001) extends the previous paper by introducing a social

planner who attempts to maximise the sum of the deterministic utilities of the

population and who is himself subject to random shocks which represent the noise

the planner faces when computing the tradeo↵s between individual utilities. Under

the planner all agents internalize the e↵ect of their choice on others. As a result,

there’s a unique average choice being selected. Secondly, it is shown that the choice

selected without the planner is almost always socially ine�cient, even when it has

the same sign as the planner choice.
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An application of statistical mechanics, from physicists rather than economists,

is the field of econophysics. A review of much work is available in Castellano et al.

(2009) which discusses statistical physics application to opinion, cultural and lan-

guage dynamics as well as models of flocking and crowd behavior, hierarchy for-

mation and spreading of social phenomena. The work of Bouchaud (2013) is of

particular interests since it applies the stochastic Ising model to the study of mar-

ket bubbles.

1.2.4 Quantal Response Equilibrium

A related notion is that of Quantal Response Equilibrium for boundedly rational

agents. Players are assumed make mistakes as they play and the probability dis-

tribution of plays is then the QRE. This represents a radical shift from the notion

of equilibria as points in the strategy space to equilibrium as probability distribu-

tions over all possible strategies. It is first introduced by McKelvey and Palfrey

(1995) who proposes as an example the Logit Quantal Response Equilibrium, which

is closely mirrored by the stationary distribution presented in this chapter. A re-

cent application can be found in Kawagoe et al. (2018), which discusses QRE for

Volunteer’s dilemma and step public good provisions with binary decision.



Chapter 2

Preliminaries

2.1 Random Utility Models

Random Utility Models have a long history in the fields of economics and psychol-

ogy, describing agents decision-making in the presence of uncertainty . They have

numerous applications — product di↵erentiation, labor economics, game theory,

econometrics — and are the building block for describing agents behaviour in this

thesis. This section provides a brief overview of random utility models. An in depth

exploration of the history and techincal aspects of these models, as well as their

application, is provided in Anderson et al. (1992).

For n alternative choices, an agent behaves according to a RUM when it’s

utility can be decomposed as

Ui = ui + ✏i, i = 1, · · · , n.

Here ui is the deterministic component of utility when choice i is picked. To each

choice is associated an i.i.d. random variable, or a shock, ✏i with joint cumulative

density F (✏1, · · · , ✏n) defined over Rn. The uncertainty, in the economics theory, is

attributed to modeller lack of informations. That is to say, the point of view of the

economist is that of an econometrician1. Manski (1977) lists four possible sources of

uncertainty: non-observable characteristics, non-observable variations in individual

utilities, measurement errors and functional missspecification. Psychology makes use

of random utility models too, but interprets uncertainty as fluctuations of personal

preferences. Regardless of the epistemologically di↵erent approaches, both have to

1Indeed, a lot of related work on interaction models focuses on conditions required to conduct
inference. For an early perspective see McFadden (1981, 1984). More recent discussion can be
found in Blume et al. (2015); Brock and Durlauf (2001).

15
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the same technical implications.

The probability an agent picks the i-th choice can then be derived2 following

the principle of maximization of individual utilities: an agent will select i over j if,

given the realization of the shocks, Ui > Uj , hence

Pi = P
⇣
Ui = max

j=1,··· ,n
Uj

⌘

which rewrites as

Pi = P(✏1 � ✏i  ui � u1, · · · , ✏n � ✏i  ui � un).

For any possible realization x of ✏i the i-th alternative will be chosen with probability

density
Q

i 6=j
F (ui � uj + x). Integrating over all possible values of x

Pi =

Z

R
f(x)

Y

i 6=j

F (ui � uj + x)dx. (2.1)

where f(x) is the density function of shocks. We are going to assume a specific form

for errors, by specifiying that the ✏i follow a double exponential distribution (DED).

Definition 1 (Double Exponential Distribution) A random variable X sup-

ported over R follows a double exponential distribution (or a Gumbel distribution

or a type I Generalized Extreme Value distrbution) with scale parameter � if its

cumulative density function is given by

F (x) = P(✏i  x) = e�e
�( x���)

,

where � ⇡ 0.5772 is the Euler-Mascheroni constant, and we write X ⇠ DED(�).

The main reason for using double exponential random variables is a practical

one, as these distribution of error yields model where the selection probabilities have

a (multinomial) logistic distribution 3 with a convenient closed form.

Definition 2 (Multinomial Logistic Distribution) A discrete random variable

Y supported over I = {1, . . . , n} follows a multinomial logistic distribution with

2More details on the derivation can be found in McFadden (1981, 1984). For a practical appli-
cation see McFadden (1974) where RUM models are employed in the context of tra�c prediction.

3Alternatively, models with normally distribute shocks could be employed. The jury is still out
on which of the two type of error gives a better description of human behavior, see Kandori et al.
(2008) for further discussion.



Draft of 1:17 pm, Wednesday, April 15, 2020 17

parameters ⇣ 2 R,��1 > 0 if the probability mass function of Y over I is

P(Y = i) =
e�ui�⇣

P
j
e�uj�⇣

for some collection of positive weights u1, . . . , un and we denote Y ⇠ MLD(⇣,��1).

The connection between double exponential distribution of errors and multi-

nomial logistic distribution is 4 given in the following theorem.

Theorem 1 (Holman and Marley) Consider a random utility model where er-

rors ✏i are DED(�), then choices for a given agent follow a multinomial logistic

distribution with ⇣ = 0 and ��1 = � and weights corresponding to the deterministic

component of the utility.

Proof :

The PDF of a double exponential is given by

f(x) =
1

�
e�(

x
���)e�e

�( x���)
.

From the definition of a double exponential,

F (ui + x� uj) = exp


� exp�

✓
ui + x� uj

�
� �

◆�
, (2.2)

for i, j 2 I and i 6= j. For readability use the change of variable % = exp�
⇣
ui+x�uj

�
� �

⌘

and yj = exp uj

�
and rewrite Eq. (2.1) as

Pi =

Z 1

0
exp(�%)

Y

i 6=j


exp

✓
�%

yj
yi

◆�
d%

=

Z 1

0
exp

2

4�%
nX

j=1

yj
yi

3

5 d%

(2.3)

The integration yields

Pi = � yiP
n

j=1 yj
exp

2

4�%
nX

j=1

yj
yi

3

5
1

0

=
yiP
n

j=1 yj
.

which shows that the probability of choice of a single agent is logistic according to

Definition 2 since yi = e
uj
� with ⇣ = 0. ⇤ As a corollary, we immediatly get the

4Attributed to Holman and Marley in Luce and Suppes (1965).
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known fact that the di↵erence between two DED(�) r.v. is logistic.

Corollary 1 (Di↵erence of double exponential r.v.) If X,Y ⇠ DED(�), then

X � Y is logistically distributed with variance 1
�
= � and zero mean.

Proof : Consider the random utility model with n = 2. The probability

of making choice 1 over choice 2 is

P1 = P(✏1 � ✏2  u2 � u1)

According to Theorem 1,

P1 = P(✏1 � ✏2  u2 � u1) =
e�u1

e�u1 + e�u2
=
h
1 + e�(u2�u1)

i�1
.

Let ✏1 = X and ✏2 = Y and u1 � u2 = �u,

P(X � Y  �u) =
h
1 + e���u

i�1
,

the CDF of the logistic distribution, with � the inverse variance and zero mean. ⇤

2.2 Markov Chains

This section recaps basic definitions on Markov chains and references some im-

portant tools used in the thesis. The notation employed is the standard one for

Interacting Particle System followed in Liggett (1985).

2.2.1 Discrete Time Chains

A Markov chain in discrete time is a collection of random variable {xt}t�0, taking

values x,y, z 2 ⇤ which is assumed finite. Elements of ⇤ are generically referred to

as states. When they are vectors representing the state of a collection of particles

or, in our case, the collection of choices of agents they are called configurations. In

the following brackets denote probability measures. Bold letters denote states or

configurations. Subscripts are used to denote intial conditions which are probability

distribution over elements of the state space. When the subscript is a configuration

it is assumed that the initial condition is given by the delta measure which assigns

probability one to that configuration. This same notation is used for expectations.

For example, P⌫ [xt = x] is the probability of observing the chain xt taking value

x 2 ⇤, given that the chain was started at t = 0 at some state whose probability is

specified by the distribution ⌫. Similarly, Ey[xt] is the expected value of the chain
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at time t when the chain started in position y with probability one. The basic

definitions about Markov chains presented here follows Norris (1998).

Let ⌫ be a probability distribution over ⇤ and let P be a |⇤|⇥ |⇤| stochastic
matrix, that is, a matrix such that,

Pxy � 0 and
X

y2⇤
Pxy = 1.

Definition 3 (Markov Chain) The collection of ⇤ valued random variables {xt}t�0

is Markov-(⌫, P ) if its law P⌫ , for all y, z 2 ⇤ and all events Ht�1 = \t�1
`=0{x` = y`}

such that P⌫ [Ht�1 \ {xt = z}] 6= 0, satisfies

i. P⌫ [x0 = y] = ⌫[y]

ii. P⌫ [xt+1 = z|Ht�1 \ {xt = y}] = Pyz

So, a collection of random variables is a Markov chain with initial distribution

⌫ and transition matrix P when the probability of it’s first realisation is governed

by the initial distribution and the probability of the next realisation of the chain

conditional on it’s past only depends on the last realisation and is equal to P . The

following alternative definition is called theMarkov property ormemoryless property,

and brings home the crucial characteristic of Markov chains: the next realisation of

the chain only depends on the current realisation.

Theorem 2 (Markov Property) The collection of random variables {xt}0tT

is Markov-(⌫, P ) if and only if for all t � 0 and y1, . . . ,yt 2 ⇤

P[x0 = y0, . . . ,xt = yt] = ⌫[y0]Py0y1
. . . Pytyt�1

. (2.4)

Proof : Suppose {xt}t�0 is Markov-(⌫, P ), then

P[x0 = y0, . . . ,xt = yt] = P[x0 = y0]P[xt = yt|x0 = y0, . . . ,xt�1 = yt�1]

= P[x0 = y0]P[x1 = y1|x0 = y0] . . .P[xt = yt|x0 = y0 . . .xt�1 = yt�1]

= ⌫(y0)Py1y0
Py2y1

. . . Pytyt�1

If eq. (2.4) holds, then

X

yT

P[x0 = y0, . . . ,xT = yT ] = P[x0 = y0, . . . ,xT�1 = yT�1],
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and by induction this is true for any t. In particular, for t = 0

P[x0 = y0] = Ṽ
¯
h,m+1[y0],

which is i from Definition 3. From this follows that

P[xt+1 = yt+1|x0 = y0, . . . , xt = yt] =
P[x0 = y0, . . . ,xt+1 = yt+1]

P[x0 = y0, . . . ,xt = yt]
= Pytyt+1

which is ii. ⇤

Definition 4 (Expectations) Given a function f taking values in ⇤, one step

conditional expectations are defined as

Ex[f(x1)] =
X

y2⇤
Px[x1 = y]f(y) =

X

y2⇤
Pxyf(y) = Pf(x)

and t step expectations are then given by

Ex[f(xt)] = P tf(x)

Once a chain is started at 0, the probability of any state being reached at

some later time t is given by its distribution.

Definition 5 (Distributions) The distribution of the chain at time t started from

⌫ is defined recursively as

⌫t[x] := P⌫ [xt = x] = ⌫t�1Px =
X

y2⇤
⌫t�1[y]Pyx,

or equivalently in vector notation

⌫t = ⌫t�1P,

meaning that

⌫t = ⌫0P
t.

How does the chain behave after a long time? Or, in other words, what does

the distribution ⌫t looks like in the limit t ! 1? When this limit exist it is referred

to as the stationary distribution, describing the long run behavior of the chain.
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Definition 6 (Stationary Distribution) A probability distribution ⇡ on ⇤ is called

stationary if for all x 2 ⇤

⇡[x] =
X

y2⇤
⇡[y]Pyx,

or equivalently in vector notation

⇡ = ⇡P.

If ⇡ is stationary and ⌫0 = ⇡ then ⌫t = ⇡.

A particular class of chain are those chains for which any state can always

be reached starting from any other state.

Definition 7 (Irreducibile chain) A Markov chain is said to be irreducibile if for

any pair of states x,y 2 ⇤ there exists a t � 0 such that

P[xt+1 = y|xt = x] = P t

xy > 0.

Irreducibile chains over finite state space always possess a unique stationary

distribution. In order to prove this we need to first define harmonic functions.

Locally harmonic functions are such that their value at a point is equal to the average

around that point and play an important role in the study of Markov chains.

Definition 8 (Harmonic functions) A function h : ⇤ ! R is harmonic at x 2 ⇤

if

h(x) =
X

y2⇤
Pxyh(y).

If h is harmonic at all elements of ⇤ = {. . .x,y, z, . . .} then it is harmonic on ⇤,

meaning that Ph = h, where hT = (. . . , h(x), h(y), h(z), . . .) is a column vector.

Lemma 1 If a chain is irreducibile and h is harmonic on ⇤, then h is a constant

function.

Proof : Since ⇤ is finite, there exists an x 2 ⇤ such that x = argmaxy2⇤ h(y).
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Pick a z 2 ⇤ such that Pxz > 0 and assume h(x) > h(z). By harmonicity at x,

h(x) =
X

y2⇤
Pxyh(y)

= Pxzh(z) +
X

y 6=z

Pxyh(y)

 Pxzh(z) +
X

y 6=z

Pxyh(x)

< Pxzh(x) +
X

y 6=z

Pxyh(x)

=

0

@
X

y2⇤
Pxy

1

Ah(x)

= h(x)

The strict inequality rests on the fact that Pxz > 0 and the assumption that h(x) >

h(z) and leads to the contradiction that h(x) > h(x). Hence, it must be the case

that h(x) = h(z). Since the chain is irreducibile, then there is a path from x to y,

let it be x,v, . . . ,w,y where each step has non-zero probability. So, for example

Pxv > 0 and therefore h(x) = h(v). Iterating this logic on the whole path makes as

conclude that

h(x) = h(v) = · · · = h(y).

So h(x) = h(y) for all y 2 ⇤ and h is therefore constant. ⇤

Theorem 3 (Uniqueness of stationary distribution) If a chain is irreducibile

and has a stationary distribution ⇡, the stationary distribution is unique.

Proof : By Lemma 1, the only solution to Ph = h are of the form hT =

c(1 · · · 1)T . Thus, (P � I)h = 0 implies that the dimension of the null space of P � I

is 1. By the rank-nullity theorem, (P � I) = |⇤| � 1. Taking the transpose of this

is (P � I) = (P � I)T = (P T � I) = |⇤|� 1 and again by the rank-nullity theorem,

the null space of P T � I is one. This means that the set of vectors v 2 R|⇤| that

solve (P T � I)v = 0 has also dimension one. All solutions have the form Pv = �⇡

for some scalar . But for v to be a distribution, � = 1, so that v = ⇡. ⇤
Another crucial property of a Markov chain is reversibility with respect to

some distribution, which is particularly helpful in identifying stationary distribu-

tions.

Definition 9 (Reversibility) A Markov chain is said to be reversibile with respect
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to some measure µ if

µ[x]Pxy = µ[y]Pyx.

Indeed, if a chain is irreducibile the reversible measure is the unique station-

ary distribution of the chain since summing over y on both sides

µ[x] =
X

y

µ[y]Pyx (2.5)

returns the definition of stationarity.

2.2.2 Expected Hitting Times

Given a Markov chain {xt}t�0 with transition matrix P , the first hitting time of a

subset A of ⌦ is the random variable TA : ⌦ ! N given by

TA = inf{t � 0 : xt 2 A}

with the convention that the infimum of the empty set is given by 1. The mean

hitting time for {xt}t�0 to reach A when the process starts in x (or the initial

distribution is �x) is given by

⌧xA = Ex[TA] =
X

t2N
tPx[TA = t] +1Px[TA = 1]

The following theorem, due to Bovier and den Hollander (2015), relates the expected

hitting time of Markov chain over the line to its stationary distribution

Theorem 4 (Bovier) Consider a Markov chain mt over the line segment � with

nearest neighbor transitions and with stationary measure µ. The expected hitting

time for the chain started at a to reach b is given by

Ea[⌧b] =
X

m,m
02�

mm
0

bma

µ[m]

µ[m0]

1

Pmm�1
(2.6)

2.2.3 Lumping

The state space of a Markov chain can be reduced5 by partitioning its state space

and accordingly its transition probabilities. This is very useful both to gain intuition

and for computational speed up.

5See Kemeny and Snell (1960) for a detailed discussion of lumping.
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Definition 10 (Lumped) Consider a discrete-time Markov chain {xt}t�0 with

transition matrix P and state space ⇤. Given a partition � = {�1, . . . ,�k} of the

state space we define the lumped process {mt}t�0 with state space � and transition

matrix R�j�` =
P

x2�j

P
y2�`

Pxy.

Unfortunately, the process obtained in this way need not be itself Markov.

The following theorem gives necessary and su�cient condition for lumpability.

Theorem 5 (Lumpable Markov Chain) Consider a lumped process {mt} with

transition matrix R over a partition � of the original state space. The lumped chain

is Markov if and only if for any �j ,�i it holds that

X

z2�j

Pxz =
X

z2�j

Pyz, for all x,y 2 �i. (2.7)

What this means, is that the probability of reaching an element �j of the

partitioned space should be constant whenever starting from elements of the original

space that belong to the same partition element �i.

2.2.4 Metastability

Definition 11 (Metastability) A family of Markov chain indexed by N is called

metastable if there exists a collection of disjoint sets Bi ⇢ ⌦, such that

supm 62[iBi
Em[⌧[iBi ]

infi infm2Bi Em[⌧[jBj\Bi
]
= o(1), N ! 1. (2.8)

Meaning that the longest time to enter any metastable set is much smaller

than the time to leave the least stable one and increasingly so as N ! 1.

2.2.5 Laplace-Varadhan Lemma

The Laplace-Varadhan lemma is a result that comes into play in many forms in

large deviation theory. The gist is that it allows computation of limit integrals of

the form
R
eNf(x)dx, by ignoring suitably small terms and focusing instead on the

point where most of the mass of the integral is centered. This type of calculations are

also referred as saddle point techniques. When x is a random variable the integral

is an expectation of a particular function, making it particularly useful in the field

of probability. Here we give a statement of the lemma which will later be used

to approximate expected hitting times of a Markov chain. The following has been

given to me in the current form by Dr. Massimo Iberti, for more detail see Lemma

6.2 in Bovier and den Hollander (2015).
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Lemma 2 (Laplace-Varadhan Lemma) As N goes to infinity

1

N
ln

NX

i=0

eNf(i/N)
ai/Nb ! max

x2[a,b]
f(x).

hence, for a finite N,

1

N
ln

NX

i=0

eNf(i/N)
ai/Nb = max

x2[a,b]
f(x) +O(lnN/N).

Proof:

1

N
ln

NX

i=0

eNf(i/N)
ai/Nb � max

i:ai/Nb

f(i/N) ! max
x2[a,b]

f(x).

1

N
ln

NX

i=0

eNf(i/N)
ai/Nb 

1

N
ln

���{i : a  i/N  b}
��� max
i:ai/Nb

ef(i/N)

�

 lnN |b� a|
N

+ max
i:ai/Nb

f(i/N) ! max
x2[a,b]

f(x).

2.2.6 Coupling

Coupling is a technique employed in probabilistic proofs. It consists of constructing

a joint distribution between two stochastic processes whose marginal distributions

are that of the original processes. The following is a definition for any random vari-

able which extends trivially to stochastic processes. A coupling of two probability

distribution µ and ⌫, consists of random variables (X,Y ) over a single probability

space with a joint probability measure ⇡ such that the marginal distribution of X

is µ and the marginal distribution of Y is ⌫.

Definition 12 (Coupling) Given two probability distributions µ, ⌫ over the same

probability space P(⌦), a coupling consists of a joint probability distribution ⇡ 2
P(⌦⇥ ⌦), such that

⇡[{(x, y) 2 ⌦⇥ ⌦ : x 2 A}] = µ[A] and

⇡[{(x, y) 2 ⌦⇥ ⌦ : y 2 B}] = ⌫[B],
(2.9)

where A and B are measurable subsets of ⌦.

Notice that the choice of the joint distribution is not uniquely specified by
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the marginals. The trick to construct a useful coupling is therefore to pick a joint

distribution with nice properties. For us, the property we are interested in will be

stochastic monotonicity.

Definition 13 (Stochastic Monotonicity) A partial order over P(⌦) is given by

µ  ⌫ if Eµ[f ]  E⌫ [f ] (2.10)

for all increasing and continuous functions f over ⌦.

The following theorem is the workhorse of coupling.

Theorem 6 (Strassen) Suppose µ, ⌫ 2 P(⌦), then µ  ⌫ if and only if there exists

a successful coupling ⇡ 2 P(⌦⇥ ⌦), that is, a coupling such that, for all Borel sets

in ⌦,

a) ⇡{(x, y) : x 2 A} = µ[A]

b) ⇡{(x, y) : y 2 A} = ⌫[A]

c) ⇡[{(x, y) : x  y}] = 1

Proof : Omitted because of no direct relevance for this thesis. The interest

reader can find it as proof of Theorem 2.4 in Liggett (1985), page 24. ⇤
Strassen’s theorem is useful because it allows us to verify that two measures,

and therefore two expectations by Def. 13, are stochastically monotone.

2.3 Stochastic Optimization

This section introduces the notation and the fundamental concepts of Stochastic

Dynamic Programming, the main reference is Introduction to Dynamic Stochastic

Programming, Ross (1983).

2.3.1 Finite Stage Problems

Imagine that some decision maker observes a Markov chain for n steps. At each

time step, after the chain has realized, the decision maker can select an action h,

after which a cost C(i, h) accrues depending only on the current state of the chain

and action chosen. A new state is then realized with probability Pij(h). Goal of the

decision maker is then to select the action which minimizes the expected total costs



Draft of 1:17 pm, Wednesday, April 15, 2020 27

accrued over the n stages. Define Vn(i) to be the minimum expected cost for a n

stage problem when the Markov chain starts in state i, clearly

V1(i) = min
h

C(i, h)

so that the one stage optimal policy is to pick h̄ = argminC(i, h) when state i is

observed. Whene there are n stages, after the n � th stage has realized, the next

state j is realized with probability Pij(h) and so we obtain the following recursive

definition known as the optimality equation:

Vn(i) = min
h

2

4C(i, h) +
X

j

Pij(h)Vn�1(j)

3

5 .

This functional equation can be solved recursively for the n stage optimal policy, al-

beit it becomes computationally expensive quickly. But it can also be used to obtain

structural information on the behavior of the optimal policy, and most importantly,

it is the foundation upon which discounted dynamic programming can be built.

2.3.2 Discounted Dynamic Programming

Denote Xt a Markov chain taking value in some countable state space � indexed by

non negative integers. After each realization of the chain an action must be chosen,

let H denote the finite set of all possible actions. When the process is in state i and

action h is chosen, then:

• A cost C(i, h) is paid,

• The Markov chain next state is realized with probability Pij(h) .

Note that the second assumption is equivalent to assuming that

P[Xt+1 = j | X0, h0, . . . , Xt = i, ht = h] = Pij(h) (2.11)

so that both the cost and the transition probabilities are function only of the previous

state and the action chosen. It is also assumed that the costs are bounded by some

constant K. A rule to choose actions is called a policy on which no restriction is

imposed a priori. Any rule that allows to chose an action, even when dependent

on the history of the process or when it selects an action randomly with a certain

probability, is a valid policy.
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Definition 14 (Stationary policy) A policy is called stationary if it is non-random

and the action it chooses only depends on the state of the process at times t.

A stationary policy is therefore a function f : � ! H mapping states into

actions. When a stationary policy is applied to choose the action then the chain

Xt is again Markov with transition probabilities Pij(f(i)), motivating the name of

Markov decision process. We shall restrict our attention to the class of stationary

policies. Define the expected total discounted cost under policy ⇡ as

V⇡(i) := E

2

4
X

t�0

�tC(Xt, ht)|X0 = i

3

5 (2.12)

which is well defined because costs are bounded and 0 < � < 1.

2.3.3 Optimality equation

The value function is defined as the function that associates to each state the minimal

expected total discounted cost :

Vi = inf
⇡

V⇡(i). (2.13)

The following theorem yields a functional equation which the value function must

satisfy.

Theorem 7 (Optimality Equation)

Vi = min
h

2

4C(i, h) + �
X

j

Pij(h)Vj

3

5 . (2.14)

Proof : Consider an arbitrary policy ⇡, and assume that it chooses action

h with some probability ph. Then,

V⇡(i) =
X

h

ph

2

4C(i, h) +
X

j

Pij(h)V
1
⇡ (j)

3

5 ,

with V 1
⇡ (j) representing expected discounted costs from t = 1 onward, when policy

⇡ is used and j is the current state of the process. But then this is the same as if
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the process had started in j, but all costs are discounted by �, meaning that

V 1
⇡ (j) = E

2

4
X

t�1

�tC(Xt, ht)|X0 = i

3

5

= �E

2

4
X

t�0

�tC(Xt, ht)|X0 = i

3

5

= �V⇡(j) � �Vj , ,

hence

V⇡(i) �
X

h

ph

2

4C(i, h) + �
X

j

Pij(h)Vj

3

5

�
X

h

phmin
h

2

4C(i, h) + �
X

j

Pij(h)Vj

3

5

= min
h

2

4C(i, h) + �
X

j

Pij(h)Vj

3

5 .

But ⇡ is arbitrary, therefore,

Vi � min
h

2

4C(i, h) + �
X

j

Pij(h)Vj

3

5 . (2.15)

Having given a lower bound, we can now show that the upper bound is the same by

picking h0 so that

C(i, h0) + �
X

j

Pij(h)Vj = min
h

2

4C(i, h) + �
X

j

Pij(h)Vj

3

5

and let ⇡ be a policy that picks h0 in t = 0 and after that picks a policy ⇡̃ such that

V⇡̃  Vj + ✏. It follows that

V⇡(i) = C(i, h0) + �
X

j

Pij(h0)V⇡̃(j)

 C(i, h0) + �
X

j

Pij(h0)Vj + �✏,
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but given that Vj  V⇡, we get

Vj  C(i, h0) + �
X

j

Pij(h0)Vj + �✏. (2.16)

The results follow from (2.15) and (2.16) since ✏ is arbitrary ⇤.

The next theorem shows that the policy satisfying the optimality equation is optimal.

Theorem 8 Let f be a stationary policy such that

C(i, f(i)) + �
X

j

Pij(f(i))Vj = min
h

2

4C(i, h) + �
X

j

Pij(h)Vj

3

5 (2.17)

then

Vf (i) = Vi for all i, (2.18)

therefore f is optimal.

Proof : Using (2.14) we have

Vi = min

2

4C(i, h) + �
X

j

Pij(h)Vj

3

5 = C(i, f(i)) + �
X

j

Pij(f(i))Vj (2.19)

which is equivalent to the two-stage version of the problem where we use policy

f in the first stage and obtain a terminal reward Vj for some j. But then, the

terminal reward is the same as using the policy for one more stage and gaining

another terminal reward. Repeating this argument we can write

Vi = E[n-stage cost using f |X0 = i] + �tE[VXt |X0 = i].

As t ! 1 using 0 < � < 1 and the fact that Vi <
K

1��
we get the statement ⇤.

Clearly we would like the solution of the optimality equation to be unique. This is

the statement of the following theorem.

Theorem 9 V is the unique bounded solution of the optimality equation (2.14).

Proof : suppose that u(i) is a bounded function that satisfies the optimal-

ity equation

u(i) = min

2

4C(i, h) + �
X

j

Pij(h)u(j)

3

5
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Let h̄ be such that u(i) =
h
C(i, h̄) + �

P
j
Pij(h̄)u(j)

i
then since Vi satisfies the

optimality equation

u(i)� V (i) = C(i, h̄) + �
X

j

Pij(h̄)u(j)�min
h

[C(i, h) + �
X

j

Pij(h)Vj ]

� �
X

j

Pij(h̄)[u(j)� Vj ]

� �
X

j

Pij(h̄)|u(j)� Vj |

� �
X

j

Pij(h̄) inf
j

|u(j)� Vj |

= � inf
j

|u(j)� Vj |.

Inverting u(i) and V (i)

V (i)� u(i)  � inf
j

|Vj � u(j)|

which means that

|V (i)� u(i)|  � inf
j

|Vj � u(j)|

and since this holds for all i it holds for the infimum

inf
i

|V (i)� u(i)|  � inf
j

|Vj � u(j)|

and therefore, given that � < 1,

inf
i

|V (i)� u(i)| = 0. ⇤

2.3.4 Successive approximation

From theorem 2.14 we know that if V where known then we could find the optimal

policy as the action, for each state, that minimizes

C(i, h) + �
X

j

Pij(h)Vj

The function V can be obtained as a limit of the n stage problem, as illustrated by

the following theorem.
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Theorem 10 Define the value of a one stage problem started in state i as

V1(i) = min

2

4C(i, h) + �
X

j

Pij(h)V0(j)

3

5 . (2.20)

where V0 is an arbitrary bounded function. Let, for n > 1

Vn(i) = min

2

4C(i, h) + �
X

j

Pij(h)Vn�1(j)

3

5 , (2.21)

denote the value of a n stage problem, then

1. If V0 ⌘ 0 then |V0 � Vn|  �n+1 K

1��
.

2. For any bounded V0, Vn ! V uniformly.

Proof : To being note that given any policy

|E [Costs from time (n+ 1) onward|X0 = i] |

=

�����E
" 1X

t=n+1

�tC(Xt, ht)|X0 = i

# �����

 �n+1K

1� �

Suppose that V0 ⌘ 0, then Vn is the minimal expected cost for an n stage problem

with terminal cost V0. Then, for some optimal policy h̄

V (i) = E
h̄
[Costs in the first n-stages] + E

h̄
[Costs in subsequent stages]

� Vn(i)�
�n+1K

1� �
.

To go the other direction note that V must be smaller than the expected costs of

the policy that uses the n-stage optimal policy for n stages and any arbitrary policy

for the rest of the time. Hence,

V (i)  Vn(i) + E[Costs in subsequent stages]

 Vn(i) +
�n+1K

1� �
,

which proves the first statement. To prove the second, we let V 0
n denote Vn when
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V0 ⌘ 0. Let h0 denote the action such that

V1(i) = min
h

E

2

4C(i, h) + �
X

j

Pij(h)V0(j)

3

5 = E

2

4C(i, h0) + �
X

j

Pij(h0)V0(j)

3

5 .

From the defintion of V 0
n

V 0
1 (i) = min

h

E [C(i, h) + 0]

which imply

|V1(i)� V 0
1 | �

������
E

2

4C(i, h0) + �
X

j

Pij(h0)V0(j)

3

5� E[C(i, h0)]

������
� � inf

j

|V0(j)|.

Iterating this reasoning we obtain

|Vn(i)� V 0
n (i)| � inf

j

�n|V0(j)|.

⇤

2.3.5 Policy Improvement Algorithm

Once V is determined the optimal policy chooses h to minimize C(i, h)+�
P

j
Pij(h)Vj .

Consider some stationary policy g for which we have computed the expected costs

Vg. Now consider a policy f that minimizes C(i, h) + �
P

j
Pij(h)Vf (j). How good

is f compared to g? It turns out that f is at least as good as g and if it is not

strictly better for at least one initial state, then g and f are both optimal, yielding

a strategy to obtain g and V computationally.

Theorem 11 Let g be a stationary policy with expected costs Vg and let f be a

policy such that

C(i, f(i)) + �
X

j

Pij(f(i))Vg(j) = min
h

2

4C(i, h) + �
X

j

Pij(h)Vg(j)

3

5 , (2.22)

then

Vf (i)  Vg(i), for all i,

and if Vf (i) = Vg(i) for all i, then Vg = Vf = V .
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Proof : Since

min
h

2

4C(i, h) + �
X

j

Pij(h)Vg(j)

3

5  C(i, g(i)) + �
X

j

Pij(g(i))Vg(j) = Vg(i)

then equation (2.22) implies

C(i, f(i)) + �
X

j

Pij(f(i))Vg(j)  Vg(i), for all i. (2.23)

This inequality states that using f for one stage and g afterward is better than using

g in all stages. But this argument is valid for all stages, proving that Vf (i)  Vg(i).

If we suppose that Vf (i) = Vg(i) for all i

C(i, f(i)) + �
X

j

Pij(f(i))Vg(j) = Vf (i),

then substituting Vg with Vf in (2.22) we get

Vf (j) = min
h

2

4C(i, h) + �
X

j

Pij(h)Vf (j)

3

5 , (2.24)

meaning that Vf satisfies the optimality equation and by uniqueness (Thm. 9), we

conclude Vf = V . ⇤
In practice, the policy improvement algorithm gives us a computational tool to

obtain the optimal policy. We summarize it using vector notation. First, fix an

✏ > 0 which will serve as a stopping criteria. Pick any arbitrary policy ⇡, and

compute

V⇡ = C⇡ + �P⇡V⇡,

that is, solve the linear system V⇡ = (I � �P⇡)�1C⇡. Using the newly computed

values of V⇡ propose a new policy that satisfies

! = argmin
h

Ch + �PhV⇡.

Set ⇡ = ! and repeat until |V! � V⇡|  ✏, at which point ! is the optimal policy.



Chapter 3

Setup

In our model a large population of agents holds one of two possible positions or

beliefs. The vector of agents positions at time t is referred to as a configuration. At

every time step one random agent revises its choice following their utility function

which depends on the current configuration, the policy choice of an external planner

and some idiosyncratic preference shock.

Agents continuously receive shocks and since their choice only depend on

the current configuration the model can be cast as Markov chain over the set of all

possible configurations which constitues the state space of the chain. The “solution”

is then given by the probability of observing a configuration in the long term given

by the stationary distribution of the chain. The chain will be shown to exhibit long

lived equilibria, region of the state space where the chain spends a disproportionately

large amount of time, known as metastable sets in the Markov chain literature.

Previous work sharing similar setup focused on which of the many possible

configurations would be most likely: in (Durlauf, 1996; Blume, 1993; Kandori et al.,

2008) agents play a one shot coordination game and the model is solved in the limit

of an infinite population, possibily with a multiplicity of equilibria. In a di↵erent

setup, but similar spirit, (Young, 1993) agents’ play a coordination game with limited

memory and making random mistakes eventually converging on a multiplicity of

equilbria. The problem of equilibrium selection is tackled by showing that in the

limit of small mistakes the stochastically dominating equilibrium is selected. Instead

of asking which equilibrium survives, this thesis is concerned with the questions:

how do agents transition from one equilibrium to the other? How long does it take?

How is this a↵ected by the policy chosen by an external planner?.

This chapter is devoted to setting up the model in terms of a Markov chain

and study its long term behavior, borrowing heavily from the field of Statistical

35
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Mechanics and Interacting Particle Systems. The most important reference is the

summary of the Curie-Weiss model in Chapter 13 of Bovier and den Hollander

(2015), which is used as a template for all calculations in this chapter, albeit details

between the model di↵er requiring new proofs for several statements.

In this chapter it is assumed that the planner policy is fixed. The following

chapters are dedicated to the planner problem asking what the optimal policy should

be. Proofs of all propositions are in section 3.6.

A note on time

From now on we work in the framework of discrete time Markov chain. This greatly

simplifies all computation, but it discards information on how long agents take to

activate and revise their choice. This can be easily recovered later on since, due to

the Markov property, it can be shown that waiting time and specific realisations of

a Markov chain are independent. In other word, it is always possible to simulate

a continuous time Markov chain by first drawing a realisation from its discrete

analogue and after that simulate the expected waiting times spent in each state1.

3.1 Timing and utility

There are N agents and each one can take up one of two positions xi 2 {�1, 1}. A
configuration, a vector of all agents choices, is denoted x 2 {�1, 1}N and xt when

necessary to specify a timestep t 2 N+. When agents are called to revise their choice

they do so according to the utility function:

Ui(x) = hxi �
�

4N

X

j 6=i

(xi � xj)
2 + ✏xi , (3.1)

where h 2 [�1, 1] is the policy chosen by some external planner and taken as given

by agents. The summation expresses the fact that agents like to coordinate with

other agents, how much so depends2 on the strength of the coordination motive

� 2 [0, 1]. This means that the agents, ignoring for the moment the idiosyncratic

preference shock, increase their utility by choosing the sign of xi that either aligns

with the average choice of other agents or with the planner policy, whichever is

higher. Preference shocks ✏xi , one for each possible choice, follow a generalised

1See Kobayashi et al. (2011), Theorem 16.2, page 461.
2An alternative interpretation is that this parameter represents how often, on average, agents

interact with each other or how often agents investigate the average population choice before making
a decision.
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double exponential distribution with zero mean and scale parameter 1/� given in

Definition 1. Hence, agents follow a random utility model with two possible choices.

At each time step t one agent is selected uniformly at random, preference

shocks are drawn and the agent myopically maximizes their utility by choosing

xi 2 {�1, 1}, taking as given the policy choice h in period t from the planner and

the choices of all other agents.

For a given configuration x we denote xi the configuration where the i� th

agent has changed their choice xi = �xi
i
, then the probability of switching choice is

given, according to the corollary of Theorem 1, by

Pxxi = P
⇥
Ui(x

i) > Ui(x)
⇤

= P

2

4✏xi � ✏
xi
i
< h(xii � xi) +

�

N

0

@xii
X

j 6=i

xij � xi
X

j 6=i

xj

1

A

3

5

=

(
1 + e��[U i(xi)�U i(x)]

)�1

(3.2)

where Ūi = hxi � �

2N

P
j 6=i

(xi � xj)2 is the non-stochastic component of the utility

function. Equation (3.2) states that the probability of an agent changing their

current choice is proportional to the di↵erence in utilities multiplied by � , the

inverse of the variance of the preference shocks. This allows us to interpret � as

rationality parameter. Large � means shocks are tiny and agents will be most likely

to revise their choice if it is rational to do so, i.e. if the di↵erence in utility is

positive. Conversely, for a small �, shocks3 will be large and agents tend to commit

a mistake more often. In the limit of � ! 1 we recover rational agents, while for

� ! 0 the choice becomes completely random. We will assume in the following that

� > 1, guaranteeing a modicum of rationality.

Given the update dynamics described above xt is a Markov chain over the

set of possible configurations ⇤N = {�1, 1}N with transition matrix P . For any two

configuration x,y 2 ⇤N the elements of P are

Pxy =

8
>>><

>>>:

0, ||x� y|| > 2

1
N
Pxxi , ||x� y|| = 2

1� 1
N

P
i
Pxxi , ||x� y|| = 0

. (3.3)

3Interpretation of these types of shock is discussed extensively in (Anderson et al., 1992; Blume
et al., 2015).
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3.2 Stationary Distribution

The formulation of our model ensures that agents, starting from any single con-

figuration, will revise their choices moving toward their preferred choice, possibly

with some mistakes along the way. As more agents end up in the same position the

weight of the population average in the utility function increases.

What will the agents’ position be in the long run? The stationary distribution

of the Markov chain establishes this. For a fixed policy h, configurations with higher

social utiliy — the sum of all agents utility — will be realised with higher probability.

Proposition 1 (Stationary Distribution) The discrete time Markov chain {xt}n�0

with one step transition probabilities given by (3.3) has a unique stationary distri-

bution, which is proportional to the sum of utilities and has the form

µ[x] =
e�

P
` Ū`(x)

P
y2⇤N

e�
P

` Ū`(y)
.

Looking at the utility in the exponent Ūi = hxi � �

2N

P
j 6=i

(xi � xj)2 it is

easy to see that configurations with a high degree of coordination will be more likely.

And out of all highly coordinated configurations those that align with the external

planner policy h will be favored. This is the same result by Kandori et al. (2008),

who also claims that the chain spends most time in these states. This is in fact not

the case: while these are the configurations with highest probability, they are only

two out of 2N total possible configuration, and as the next section shows, sometimes

the sheer number of lower probability configurations means that these will be more

likely to appear.

3.3 Lumping

Lumping consists of reducing the dimensionality of the system by aggregating con-

figurations that share some relevant characteristic, also called an order parameter,

which in our case is the mean value of agents choice. The following map associates

each possible configuration to its mean:

mt := m(xt) =

P
N

i=1 xit
N

.
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�m

r+m

rm

r�m

-1 i 1

Figure 3.1: Transition rates over the lumped state space �N . These represents the prob-
ability that, if the average agents choice is m at time t, it will either increase r+m, decrease
r�m or remain the same rm, in t+ 1.

Every time one agent revises their choice from xi to �xi, the mean changes by 2
N
,

so mt takes values in the lumped state space

m 2 �N = {�1,�1 + 2N�1, . . . , 1� 2N�1, 1},

For a given configuration x the share of agents whose choice is currently �1 is

(1 �m(x))/2. Since all N agents are identical the probability of anyone switching

to 1 is given by (3.3). Lumping by summing N times gives the probability that the

chain increases:

r+m := r(m,m+
2

N
) =

(1�m)

2

h
1 + e�2�(h+�m+ �

N )
i�1

(3.4)

and similarly decreases

r�m := r(m,m� 2

N
) =

(1 +m)

2

h
1 + e2�(h+�m� �

N )
i�1

. (3.5)

Given that an agent might not revise his choice there is some residual probability

that the mean won’t increase, given by

rm = 1� r�m � r+m.

The new probabilities depend on m alone, therefore Theorem 5 guarantees that

{mt}t�0 is still Markov with transition matrix

R =

2

664

. . .
. . .

. . .

. . . 0 r�m rm r+m 0 . . .
. . .

. . .
. . .

3

775 .

The stationary distribution is now higly illustrative of the behavior of the chain.

Proposition 2 (Lumped Stationary Distribution) The lumped chain {mt}t�0
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with one step transition probability R has a unique stationary distribution

⇡[m] =
e��N(�hm� �

2m
2)

Z

✓
N

N(1�m)
2

◆
2�N

�
. (3.6)

It is easier now to interpret the long term behavior of the chain. Highly

coordinated configurations, ones where |m| is larger, will have higher weight in the

exponent compared to less coordinated ones, but this probability is weighted by the

number of configurations that share the same amount of coordination. Simple com-

binatorics tells us that highly coordinate configurations represent a tiny proportion

out of the 2N available configurations 4. To understand whether the combinatorial

term or the term in the exponent prevail we can write the proportional component

of the measure as

fN (m) = �hm� �

2
m2 � 1

N�
ln

✓
N

N(1�m)
2

◆
2�N

�
,

which in the limit5 of a large population N converges to the potential function:

f(m) = �hm� �

2
m2 +

1

�
[(1 +m) ln(1 +m) + (1�m) ln(1�m)], (3.7)

The potential function in (3.7) can be interpreted6 as one over the probability of

observing an average position m in the long run. Depending on the relative size

of � and �, when there’s no policy, the potential has one of the three shape plot-

ted in Figure 3.2. Using the negative sign convention7, the measures places more

probability on the point where the potential is lower, hence the potential’s minima

represents the most likely states, as well as those where the chain will spend most

of its time.

It is useful to understand how the potential function depends on � and �,

leaving the policy h = 0 for now. When the coordination motive � is low, Figure

3.4b, the function has a unique minima: since agents have little interest in coor-

dinating the most likely value of m will be close to zero, that is about half of the

population will hold one position. With strong coordination motive, but low ra-

4The combinatorial term in the measure precisely counts the number of configurations. The
tension between probability accruing to a configurations due to the underlying dynamics that
determine agent flips and the number of configuration is what is usually referred as the energy-
entropy balance in the statistical mechanics literature.

5Note that in the limit the combinatorial term is an even function.
6We are employing the negative convention, so the potential function represents one over the

probability.
7This is a common convention in statistical mechanics, due to the fact that the energy is a

negative quantity that is miminized.



Draft of 1:17 pm, Wednesday, April 15, 2020 41

m
-1 m� m⇤ m+ 1

(a) Low � and large �

m
-1 1

(b) Low �

m
-1 1

(c) Large �

Figure 3.2: The potential function f representing one over the probability of observing a
configuration with average m 2 �N . Planner policy is set to h = 0. (a) Low rationality
parameter and strong coordination motives leads to two minima, which imply the existence
of two attracting region, with high but not full coordination. (b) Very low coordination,
� ⇡ 0 entails a unique minima at m = 0 where half the agents are adopting one position. (c)
When agents are strongly rational the states of full coordination become strongly preferred,
assuming some minimal amount of coordination �.

tionality �, Figure 3.4a, then the potential function will have a double well shape.

If both parameter are strong than the potential will have two non di↵erentiable

minima located at the edge of the state space, Figure 3.2c, and the states with full

coordination will be the most likely ones.

The policy also matters in determining the number of minima of f(m). If

h is su�ciently small the overall behavior of the function is unchanged, but the

function is skewed in the direction of the sign of the policy. When h becomes large

enough then the function will display a single minima.

m

h = 0
h = 0.07

-1 m� m⇤ m+ 1

Figure 3.3: Potential figures for two di↵erent values of the policy h = 0 and h = 0.07. The
e↵ect of the policy is to skew the distribution of agents average choice. In particular, when
two wells are present, one will become less deep as h increases, eventually disappearing.

The range of h of where there are a multiplicity of equilibria is given in the
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(a) h = 0.002

2 3 4 5
0

0.2

0.4

0.6

0.8

1

Single Minimum

Two Minima

�

�

(b) h = 0.2

Figure 3.4: Relation between coordination motive � and rationality parameter � in deter-
mining the presence of one or more minima in the potential function (implying one or more
long-lived equilibria). A higher policy h reduces the frequency of multiple minima in the
state space by shifting the edge between the two regions, according to Proposition 3.

following proposition and pictured in Figure 3.4.

Proposition 3 (Multiple minima) For � > 1 when h is within the set

H(�, �) = ⌥
✓
�

r
1� 1

�
� 1

�
atanh

r
1� 1

�

◆
⇢ [�1, 1]

the potential function f displays multiple minima.

3.4 Long Lived Equilibria

The stationary distribution describes the long term behavior of all agents: given

any initial configuration, after a long enough time, the probability of observing a

certain average position in the population is given by (3.6). So far we have described

the stationary, or long term behavior, of our ensemble of agents and we know that

depending on how often they receive preference shocks, the strength of the external

policy and how much importance they place on other choices the distribution might

be unimodal or bi-modal. Intuitively, when the distribution places a large amount

of probability on two configurations it must be the case that the chains also spends

more time there. Once the chain is equilibrated and reaches either minima, it is

said to have achieved a long lived equilibrium. How long does the chain spend in

such a position? How long it takes for the chain to abandon the current one and

settle into a new one? Using the potential function we can answer these questions.
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In general: the expected time to move between two points where the potential

is decreasing is polynomial, scaling approximately with the number of agents N .

Instead, the expected time to move upward the potential, is exponentially large in

the population size.

Let us recall the definition of metastabililty from Section 2.2.4.

Definition 11 (Metastability) A family of Markov chain indexed by N is called

metastable if there exists a collection of disjoint sets Bi ⇢ ⌦, such that

supm 62[iBi
Em[⌧[iBi ]

infi infm2Bi Em[⌧[jBj\Bi
]
= o(1), N ! 1. (2.8)

What this means, is that a region of the state space is called metastable

when the average time the chain takes to leave the region is much larger than the

time it takes to enter it from outside. The o(1) is interpreted to mean that the ratio

between the entry time and the exit time from the region will go to zero as N ! 1.

There are many collection of sets that satisfy the definition of metastability.

We define long-lived equilibria to be the smallest subsets of the metastable sets when

the population size diverges.

Definition 15 (Long-lived equilibria) A long-lived equilibrium is a the smallest

possible collection of sets that exhibits metastability in the limit of large N .

The next proposition connects minima of the potential function to the metastable

sets, showing that the two notions are interchangeable.

Proposition 4 (Minima of the potential identify the long lived equilibria)

consider the Markov chain {mt}t�0 over �N with transition matrix r and potential

function

f(m) = �hm� �

2
m2 +

1

�
[(1 +m) ln(1 +m) + (1�m) ln(1�m)].

If M ⇢ �N is a collection of metastable sets for the chain and m⇤ is a point in �N

closest point to m̂ 2 argminm2�N
f(m), then m⇤ 2 M.

This immediatly implies that the minima of the potential function8 constitute

the long lived equilibria. As a direct consequence of the proof for Proposition 4 we

obtain a statement which gives us the order of the expected duration of a long lived

equilibria, as well as the time to enter into one.

8Or the element of �N which are close to it.
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Proposition 5 (Duration of long lived equilibria) When the chain exhibits more

than one long lived equilibria:

(i) The average time to leave one equilibria is exponential in N .

(ii) The average time to enter one equilibria is polynomial in N .
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3.5 Drift

One last useful tool to analyse the system is the the average displacement of mt

after one time step given that the chain started at m

- 3
4

- 1
2

- 1
4

0
1

4

1

2

3

4
1
m

-0.015

-0.010

-0.005

0.005

0.010

0.015
� (mt+1 -mt |mt =m)

-1.

-0.6

-0.2

0.2

0.6

1.

0.

(a) Average displacement
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3

4
1
m
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0.00015

0.00020

0.00025

0.00030

� (mt+1 -mt |mt =m)

-1.

-0.2

0.6

0.

(b) Variance of displacement

Figure 3.5: (a) Shows the drift dm, i.e. the average displacement of mt when the chain
starts in state m . Zeros of the drift coincide with minima of the potential function, see
for example Fig.3.3. (b) Variance of the displacement of mt when the chain starts at m.
Colored lines indicate di↵erent values of the policy h.

E[mt+1 �mt] =

✓
m+

2

N

◆
r+m +mrm +

✓
m� 2

N

◆
r�m �m =

=
2

N

✓
r+m � r�m

◆

We denote this quantity as:

dm :=
2

N

✓
r+m � r�m

◆
(3.8)

and call it the average drift. Clearly, the drift depends on h, hence we should

sometimes write dhm when a specific value of policy is being applied. In particular,

when the null policy h = 0 is applied, we will write d0m.

The drift relates the rates to the stationary measure by behaving as a discrete

derivative of the potential function f . This is easy to see, since the zeros of the drift

identify the stationary point on f . Set the drift to zero

dm :=
2

N

✓
r+m � r�m

◆
= 0
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which can be rewritten as

ln
1 +m

1�m
= ��(h+

�

2
m).

This equation is the same as one obtains by taking the derivative of the potential

and setting it to zero, and can be reworked to the more familiar (Durlauf, 1996)

form

m = tanh
h
�
⇣
h+

�

2

⌘
m
i
.

3.6 Proofs

Proposition 1 (Stationary Distribution) The discrete time Markov chain {xt}n�0

with one step transition probabilities given by (3.3) has a unique stationary distri-

bution, which is proportional to the sum of utilities and has the form

µ[x] =
e�

P
` Ū`(x)

P
y2⇤N

e�
P

` Ū`(y)
.

Proof : If a chain is reversible with respect to a measure then it is also

stationary. The reversibility equation (2.5) is trivially satisfied whenever x = y and

whenever |x�y| > 2, therefore from the reversibility equation we only need to check

Pyx

Pxy
=

µ(x)

µ(y)
,

for y = xi, indeed using the fact that yj = xj for all j 6= i and yi = �xi

Pyx

Pxy
=

e�Vi(x)

e�Vi(y)
= e2�(hxi+

�
N xi

P
j 6=i xj)
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µ(x)

µ(y)
= exp�

8
<

:
X

`

h(x` � y`)�
�

2N

X

`

X

j 6=i


(x` � xj)

2 � (y` � yj)
2

�9=

;

= exp�

8
<

:2hxi �
�

2N

X

`

X

j 6=i


(x` � xj)

2 � (y` � yj)
2

�9=

;

= exp�

8
<

:2hxi �
�

2N

X

j 6=i

(xi � xj)
2 � (yi � yj)

2

�
�
X

6̀=i

X

j 6=i


(x` � xj)

2 � (y` � yj)
2

�9=

;

= exp�

8
<

:2hxi �
�

2N

X

j 6=i


(xi � xj)

2 � (yi � yj)
2

�9=

;

= exp 2�

8
<

:hxi +
�

N
xi
X

j 6=i

xj

9
=

;

⇤.

Proposition 2 (Lumped Stationary Distribution) The lumped chain {mt}t�0

with one step transition probability R has a unique stationary distribution

⇡[m] =
e��N(�hm� �

2m
2)

Z

✓
N

N(1�m)
2

◆
2�N

�
. (3.6)

Proof : We construct the stationary distribution of the chain by solving

the reversibility equation recursively. It is convenient to index values of m as

mi = �1 +
2

N
i, i 2 0, . . . , N

The reversibility equation can be written as

⇡[mi] =
Rmi�1,mi

Rmi,mi�1

⇡[mi�1] =
r+mi�1

r�mi

⇡[mi�1]

substituting recursively we get

⇡[mi] =
iY

`=1

r+m`�1

r�m`

⇡[m0].

This gives an expression for the measure ⇡[mi] in terms of some reference9 ⇡[m0].

9Any other index could be used, the zeroth one is picked for convenience.
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Using the normalization
P

i
⇡̄[mi] = 1 we obtain

⇡[m0] =

2

4
NX

j=0

iY

`=1

r+m`�1

r�m`

3

5
�1

The transition probabilities can be written as

r±m =
(1⌥m)

2

e±�(hm+�m±�/N)

cosh(�(hm + �m± �/N))

so that

iY

`=1

r+m`�1

r�m`

=
iY

`=1

✓
1�m`�1

1 +m`

◆
e��(h+�m`�1+�/N)

e�(h+�m`��/N)

cosh(�(h+ �m` � �/N))

cosh(�(h+ �m`�1 + �/N))

= e�
Pi

`=1(2h+�m`+�m`�1)
iY

`=1

✓
1�m`�1

1 +m`

◆
cosh(�(h+ �m` � �/N))

cosh(�(h+ �m` � �/N))

= e�
Pi

`=1 2[(h+�m`)� 2�
N ]

iY

`=1

I` = e��[2(hi+�(�i+ i(i+1)
N ))� 2�

N i]
iY

`=1

I`

= e�[2(hi+�(�i+ i2

N ))]
iY

`=1

I` = e��N [(hmi+
�
2m

2
i ]+�N(�h+ �

2 )
iY

`=1

I`

= e�N(hmi+
�
2m

2
i )

iY

`=1

I`

where the last two equalities follow from adding and subtracting appropriate quan-

tities and by the fact that we can discard all elements that do not depend on i since

they can be collected in the denominator. The combinatorial term in (3.6) weights

the measure by the number of possible way in which state m can be achieved. First

note that the combinatorial terms, using the definition of mi, rewrites as

✓
N

N
�1�m`

2

�
◆

=

✓
N

N � i

◆
=

N !

(N � i)!(N �N + i)!
=

N !

i!(N � i)!
=

✓
N

i

◆
,

which is equal to
Q

i

l=1 I`, indeed

iY

l=1

I` =
iY

`=1

✓
1�m`�1

1 +m`

◆
=

iY

`=1

✓
N � `+ 1

`

◆✓
(N � i)!

(N � i)!

◆
=

✓
N

i

◆
⇤.
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Proposition 3 (Multiple minima) For � > 1 when h is within the set

H(�, �) = ⌥
✓
�

r
1� 1

�
� 1

�
atanh

r
1� 1

�

◆
⇢ [�1, 1]

the potential function f displays multiple minima.

Proof : The range is obtained by imposing that h is such that the potential

function f in the limit of large N exhibits two wells. Letting the first derivative of

f with respect to m be zero

m = tanh[�(�m+ h)] (3.9)

f has multiple minima when this equation has multiple solutions. Changes in h

makes two stationary points close together, until eventually they merge into one

before disappearing. This happens when (3.9) is satisfied and the slope of its right

hand matches the slope of the left hand side, that is when

@

@m
tanh[�(�m+ h)] = 1. (3.10)

The solution of the system of equations

8
<

:
m = tanh[�(�m+ h)]

1 = �
⇥
1� tanh2[�(�m+ h)]

⇤ ,

yields the interval above. ⇤

Proposition 4 (Minima of the potential identify the long lived equilibria)

consider the Markov chain {mt}t�0 over �N with transition matrix r and potential

function

f(m) = �hm� �

2
m2 +

1

�
[(1 +m) ln(1 +m) + (1�m) ln(1�m)].

If M ⇢ �N is a collection of metastable sets for the chain and m⇤ is a point in �N

closest point to m̂ 2 argminm2�N
f(m), then m⇤ 2 M.

Proof : Given some collection of metastable set B, we want to prove that

whenever we start the chain from as close as possible to the minima of f(m) the

average time to leave B is diverging faster than the time it will take to enter B from

outside, so that the ratio in the definition of metastability (2.8) goes to zero in the

limit of large N .
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m+m� m̂a ā b b̄

Figure 3.6: Metastable sets B1 and B2

Assume that h 2 H(�, �), according to proposition 3 the potential function

has two minima: m+ and m�. Also assume that there’s a metastable collection

B ⇢ �N formed by two metastable interval around the minima: A = [a, a] and

B = [b, b]. For simplicity we can let h = 0 without loss of generality.

First, let’s show that the denominator in the definition of metastability (2.8)

is diverging exponentially in N . Recalling the formula to compute expected hitting

time and without loss of generality, consider the average time to leave the metastable

set B starting from m+

Em+ [⌧b] =
X

m,m
02�

mm
0

b<mm+

µ[m0]

µ[m]

1

r�m
, b < m+. (3.11)

The ratio of measures in (3.11) takes the form

µ[m0]

µ[m]
= e�N [fN (m)�fN (m0)].

The exponential term is maximal at m = b and m0 = m+. Collecting the maximum,

equation (3.11) becomes

= e�N [fN (b)�fN (m+)] 1

r�
b

[1 + o(1)]

⇥
X

|m�b|<✏

|m0�m+|<✏

e�N [fN (m)�fN (b)]��N [fN (m0)�fN (m+)] (3.12)

where we use the fact that r�m doesn’t depend on N , is strictly positive and bounded

below one. It can be shown10 that fN ! f , approximating fN with f the error once

10Using Stirling’s formula.
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raised to the exponent is given by

efN (m)�f(m) = [1 + o(1)]

r
⇡N(1�m2)

2

and therefore

= e�N [f(b)�f(m+)] 1

r�
b

[1 + o(1)]

s
(1�m2

+)

(1� b2)

⇥
X

|m�b|<✏

|m0�m+|<✏

e�N [f(m)�f(b)]��N [f(m0)�f(m+)]
(3.13)

Taylor expanding the terms at the exponent:

f(m)� f(b) = f 0(b)(m� b) +
1

2
f 00(b)(m� b)2 +O((m� b)3)

f(m0)� f(m+) = f 0(m+)(m
0 �m+) +

1

2
f 00(m+)(m

0 �m+)
2 +O((m0 �m+)

3)

using the fact that f 0(m+) = 0 the summation now becomes:

= e�N [f(b)�f(m+)] 1

r�
b

[1 + o(1)]

s
(1�m2

+)

(1� b2)

⇥
X

|m�b|<✏

|m0�m+|<✏

e�N [f 0(b)(m�b)+ 1
2f

00(b)(m�b)2� 1
2f

00(m+)(m�m+)2].

Using the following substitution of variable

u =
p
N(m� z̃), u0 =

p
N(m�m+)

we can turn the summations into integrals, given our sampling in each integral isp
N/2

N

4

Z Z
e
p
NAu+Bu

2�Cu
02
dudu0.

Both A and B are negative, while C is stricly positive. The integral therefore con-

verges to some finite quantity, showing that the expected time to leave a metastable

set is

Em+ [⌧b] = O(e�NN). (3.14)

It remains to show that the numerator of definition (2.8), the expected time

of entering the metastable set, is always polynomial in N in the presence of multiple
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minima. Take some z /2 B as the starting point and without loss of generality

compute the time to enter B1 as

Ez[⌧a] =
X

m,m
02�

mm
0

amz

e�N [fN (m)�fN (m0)] 1

r�m

this term is maximal whenm = m0 = z, that is the largest element in the summation

above is equal to 1. A similar computation as the one for the denominator shows

that the summation converges to a finite value with an N prefactor, showing that

Ez[⌧a] ⇡ O(N).

⇤

Proposition 5 (Duration of long lived equilibria) When the chain exhibits more

than one long lived equilibria:

(i) The average time to leave one equilibria is exponential in N .

(ii) The average time to enter one equilibria is polynomial in N .

Proof : Follows directly from the proof of the previous proposition ⇤.



Chapter 4

Planner Problem with Lagged

Sampling

In this chapter the policy h can be set by an external planner having a preference

⌘ 2 {�1, 1} for one of the two positions. The planner pays a cost proportional to

the squared1 distance of the average agent position from its preference, as well as a

squared cost for the policy it decides to set. The per-period cost function, assuming

in t the lumped chain is at mt = m, is given by:

C(m,h) =
c

2
h2 + (m� ⌘)2.

The planner then wishes to minimize the average discounted cost over the infinite

horizon which constitutes the lifetime of the chain. In terms of stochastic optimiza-

tion the problem can be expressed with the value function2 which associates the

average cost under the optimal policy given each possible initial condition3

Vm : = inf
h̄

Eh̄

" 1X

t=0

�tC(mt, ht)

�����m0 = m

#
=

= inf
h̄

Eh̄

m

" 1X

t=0

�tC(mt, ht)

#
,

(4.1)

1Squared costs are used for convenience as they yield a function which is di↵erentiable and
convex, the latter being the typical requirement associated to a cost function.

2Despite the name the value function is used to denote both reward maximization and cost
minimization problem.

3Or in other terms, it expresses the optimal average cost, Vm for a planner that has to pick a
new policy when the current state of the process is m.
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where � 2 (0, 1) is the discount factor, and the notation Em[·] = E[·|m0 = m] denotes

the expectation of the chain mt with initial condition m0 = m.

In this chapter it is assumed that between each time step the process has

equilibrated, implying that the probability of a specific realization of mt is given by

the stationary distribution ⇡[m]. Equivalently, we are saying that the planner can

only “sample” the population average and review its policy4 with a considerable

delay. The consequence of this assumption, which will be relaxed in Chapter 5, is

that the optimal policy is a single value h̄m = h̄ independent of the location of the

process.

4.1 Optimality equation

It is easy to see that the per-period cost function is bounded, since |m|  1 and

h 2 [�1, 1] by assumption. Therefore, from Chapter 2.3, the optimal policy is unique

and the value function is equivalent to the optimality equation:

Vm = min
h2[�1,1]

8
<

:C(m,h) + �
X

n2�N

⇡n(h)Vn

9
=

; . (4.2)

Under the optimal policy h̄ the value function can be written in matrix notation

V = C + �⇧V

where ⇧ is the matrix with the stationary distribution on the diagonal

⇧ =

2

664

. . .

⇡m
. . .

3

775 ,

and zero everywhere else. This can be solved algebraically to obtain

V = (I � �⇧)�1C

so the component-wise solution of the value function is given by

Vm =
h̄2 + (m� ⌘)2

1� �⇡m
. (4.3)

4Any cost sustained inbetween sampling periods is a fixed cost that cannot be reduced and
therefore does not a↵ect the minimization.
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Hence, the value of the problem at m is the discounted cost of being at m, includ-

ing the cost of the optimal policy to be supplied, weighted by the probability of

ending there. The weighted average interpretation becomes clear by rewriting the

denominator of Eq. (4.3) as a geometric sum

Vm =
1X

t=0

(�⇡m)t[h̄2 + (m� ⌘)2]

which is also useful to establish the following proposition.

Proposition 6 (Value function is convex in the policy) The value function Vm

is convex with respect to the policy h̄.

Proof : Rewrite equation (4.3) as

Vm(h) =
1X

k=0

(�⇡)k[h2 + (m� ⌘)2]

where we omit dependencies of ⇡ := ⇡m(h) for readability, then

@2Vm(h)

@2h
=

1X

k=0

n
k(h2 + (m� ⌘)2)

h
(k � 1)(�⇡)k�2(�⇡0)2 + (�⇡)k�1�⇡00

i

+ 4hk(�⇡)k�1�⇡0 + (�⇡)k
o
� 0.

This inequality holds since the leading term is positive and diverges as k2. ⇤
This property of the curvature of the value function critically depends on the

fact that the optimal policy is a constant value for all m, which in turns depend

on the maintained assumption that the chain has reached equilibration before the

planner can sample a new realization.

4.2 Characterizing the optimal policy

Convexity of the value function guarantees that the solution of the first order con-

dition is a unique minimum, hence the optimal policy can be obtained by finding a

first order condition for V .

Proposition 7 (First order condition) The optimal policy is given by

h̄ = min[max[h̃,�1], 1]
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where h̃ is the solution of the implicit equation

h = ���N

c

n
Skh[mt]� 2⌘Vh[mt]

�1/2
o
Vh[mt]

3/2, (4.4)

which is the first order condition for the value function.

Proof : For a generic time index t, under our maintained assumption mt

is distributed according to the stationary measure

⇡mt(h) =
e��Nf(mt,h)

Z

where @

@h
f = mt and Z is the appropriate normalization factor. If h were left free

in variation, then Vmt(h) would be a convex function of h according to Proposition

6 hence setting its derivative with respect to h to 0 identifies the unique minima.

@

@h
Ṽm = 2h+ �

X

mt2�N

"
�N

e��Nf(mt)

Z

 
mt �

X

`

`t
e��Nf(`t)

Z

!#
Vmt

= 2h+ ��N
X

mt2�N

⇡mt(mt � E[mt])Vmt

= 2h+ ��NCov[mt, Vmt ]

= 2h+ ��NCov[mt, h̄+ (mt � ⌘)2 + E[V ]]

= 2h+ ��NCov[mt, (mt � ⌘)2].

The last equality is obtained because the optimal policy h̄ within Vmt is independent

of the realization of mt. Expanding the covariance term and collecting V[mt]
3
2 yields

the first order condition. ⇤
Hence, the first order condition, and therefore the optimal policy depend on

the skewness of the distribution ⇡ as well as on its variance. Both these moments

depend on h itself, and due to their exponential form there can be no explicit solution

to this equation. Further the presence of the population size N means that whenever

the population is large, given that the moments are finite for finite parameters, the

optimal policy will be picked at the extreme of the admissible range as long as cost

are constant in either � or N . In turn, these means that for su�ciently low cost the

policy will always be strong enough to remove one of the two attracting points and

as a result only the equilibrium closer to the target of the planner survives.

When the marginal costs of a unit of policy are proportional to the population

size then the optimal policy might not be strong enough and multiple equilibria

might survive. Figure 4.1 shows the policy when c = N : for low values of the
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Figure 4.1: Optimal policy h̄ when policy marginal costs are proportional to the population
size c = N at di↵erent level of rationality � and for two di↵erent values of the coordination
motive �. Higher policy values are optimal for more rational agents when there is little
coordinations among agents (� = 0.5). With strong coordination (� = 1) the planner
benefits from peer pressure e↵ects when agents are not too rational and commit mistakes
often.

coordination the optimal policy is monotonic in �, which makes intuitive sense since

for low enough values of � there’s a unique long lived equilibrium (see Fig. 3.4b).

Instead, when coordination is su�ciently strong the policy becomes non monotonic

in �. Past a certain value agents tend to stick more to their current position and

additional unit of policy becomes less e↵ective in shifting agents position.

Proposition 8 (Multiple long lived equilibria under the optimal policy) For

a su�ciently large population N and under the optimal policy there exists constants

⌫ > ⇣ such

• if c � ��e⌫�NO(N3) there is a multiplicity of long lived equilibria.

• if c  ��e⇣�NO(N2) there is a unique long lived equilibrium and the optimal

policy is always either �1 or 1.

Proof : We would like to obtain the exact behaviour of the right hand

side of the first order condition (4.4) as a function of �, which would provide a

full analytical description of the optimal policy. The FOC solution, and hence the

optimal policy behavior, is plotted numerically in Fig. (4.2b) and (4.2a). Since

these cannot be obtained explicitly, we resort to compute upper and lower bound

for moments of M := mt for a generic t.
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Figure 4.2: Plot of the right hand side of the first order condition, given by (4.4), that the
optimal policy must satisfy. Solutions of ��Cov[M,M2]�2⌘V[M ] therefore give the behavior
of the optimal policy and are plotted below for marginal costs equal to the population size
c = N and di↵erent values of the coordination motive � and rationality parameter �.

The upper bound for the k � th order moment can be written as

E[Mk] =
X

m

mk
e��Nf(m)

Z�

 N max
m

mk
e��Nf(m)

Z�

= N⌦k

e�Nf̄k

Z�

and lower bound

E[Mk] =
X

m

mk
e��Nf(m)

Z�

� N min
m

mke��Nf(m) = N!k

e�N¯
fk

Z�

.

Express the right hand side of (4.4) in terms of the covariance and replace ⌘ = �1

Cov[M, (M � ⌘)2] = Cov[M,M2]� 2⌘V[M ]

= E[M3]� E[M ]E[M2] + 2(E[M2]� E[M ]2)

 1

Z�

h
N⌦3e

�Nf̄3 � (N!1e
�N

¯
f1)(N!2e

�N

¯
f2)

+ 2(N⌦2e
�Nf̄2 � (N!1e

�N

¯
f1)2

i

=
N

Z�

h
⌦3e

�Nf̄3 �N!1!2e
�N

¯
f1+

¯
f2 + 2(⌦2e

�Nf̄2 �N!2
1e

2�N
¯
f1)

i

 max
x2

¯
f1,

¯
f2,f̄2,f̄3

N

Z�

h
⌦3e

�Nx �N!1!2e
2�Nx + 2(⌦2e

�Nx �N!2
1e

2�Nx)
i

= N
e⌫�N

Z�

⇥
⌦3 �N!1!2 + 2(⌦2 �N!2

1)
⇤

= N2 e
⌫�N

Z�

"
⌦̃

N
� !̃

#
=

e⌫�N

Z�

O(N2)
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Figure 4.3: Space of the rationality paramater � and coordination motive � where long
lived equilibria persist under the optimal policy h̄. This has been numerically obtained for
a population of size N = 80 with marginal policy costs c = N and discount factor � = 0.9.

This slack upper bound guarantees that we can control the terms in bracket in

equation (4.4) to ensure that the the optimal policy is small enough so that h̄ 2
M(�,�) which ensures the presence of a multiplicity of long lived equilibria. In a

similar way we can obtain the lower bound:

Cov[M, (M � ⌘)2] = Cov[M,M2]� 2⌘V[M ]

= E[M3]� E[M ]E[M2] + 2(E[M2]� E[M ]2)

� 1

Z�

h
N!3e

�N

¯
f3 � (N⌦1e

�Nf̄1)(N⌦2e
�Nf̄2) + 2(N!2e

�N

¯
f2 � (N⌦1e

�Nf̄1)2
i

=
N

Z�

h
!3e

�N

¯
f3 �N⌦1⌦2e

�Nf̄1+f̄2 + 2(!2e
�N

¯
f2 �N⌦2

1e
2�Nf̄1)

i

� min
x2f̄1,f̄2,

¯
f2,

¯
f3

N

Z�

h
!3e

�Nx �N⌦1⌦2e
2�Nx + 2(!2e

�Nx �N⌦2
1e

2�Nx)
i

= N
e⇣�N

Z�

⇥
!3 �N⌦1⌦2 + 2(!2 �N⌦2

1)
⇤

= N2 e
⇣�N

Z�


!̃

N
� ⌦̃

�
=

e⇣�N

Z�

O(N2).

⇤
The upper bound guarantees that the solution of the first order condition

is small enough, since costs are higher, for h̄ to be in the set M(�,�). Hence,
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when costs c are at or above this bounds then the optimal policy is always to small

to remove the less preferred long lived equilibria. We know that the presence of

adverse long lived equilibria, once the agents choice is within the basin of attraction

described by the valley of the potential function f (see Proposition 4), might be

extremely costly as the time for the other basin to be reached is exponential in

the number of agents. This suggests that in real world situations where herding

is prominent the relevant policy advice would be to invest in lowering the cost.

Reaching below the lower bound above would guarantee that the optimal policy is

always maximal and therefore no long lived equilibria survives, though the bounds

presented here are very slack. Indeed, it is su�cient for the costs to be proportional

to the population size, to obtain that a large portion of the � ⇥ � parameter space

only present a single equilibria under the optimal policy.



Chapter 5

Planner Problem with Frequent

Sampling

Up until now the policy was allowed to change only after a fixed lag ensuring that the

underlying Markov chain describing the agents behavior had reached its stationary

distribution. In this chapter the policy is allowed to change at each time step t. A

planner is in charge of setting its value every time step after having observed the

current value of the processmt. After the planner sets the new policy ht+1 2 [�1, 1] a

new valuemt+1 is realized. The most important consequences of the new assumption

is that the optimal policy will now be a function of the state.

The value function is now an average of the value of near-neighbours states

on the lattice �N weighted by the transition probability R of the lumped process

and is no longer convex in the policy parameter. In general, properties of the value

function become much harder to compute analitically.

In this chapter, I compute the first order condition under the new assumption

and prove by coupling that the value function is increasing over the lumped lattice.

These are then used to show that the optimal policy is non-monotonic over �N and

in particular that the highest optimal policy value is always applied after more than

half of the population shares the position opposite to planner target state. Lastly,

the question of when long lived equilibria survive the application of the optimal

policy is numerically answered. The per-period cost function remains the same as

in the previous chapter: the sum of the squared distance of the current state from

the planner’s target state ⌘ plus a marginal cost c/2 for every unit of squared policy.

Hence the per-period cost function:

C(m,h) =
c

2
h2 + (m� ⌘)2.
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The planner then wishes to minimizes the average discounted cost over the infinite

horizon which constitutes the lifetime of the chain. The problem can be expressed

as a value function which associates the average cost under the optimal policy given

each possible initial condition of the process:

Vm : = inf
h

Eh

" 1X

t=0

�tC(mt, ht)

�����m0 = m

#
=

= inf
h

Eh

m

" 1X

t=0

�tC(mt, ht)

#
,

(5.1)

where we use the notation Em[·] = E[·|m0 = m] to denote the expectation over the

chain mt with initial condition m0 = m. In principle the infimum of (5.1) is taken

over all possible collection of infinite sequences of control, each sequence being the

sequence of controls applied on one of the (uncountably many) path the chainmt can

take. In practice the optimal policy at time t will depend exclusively on the state of

the chain at that point, therefore we will be looking for a function h̄ : �m ! [�1, 1]

from the state space to the space of possible controls. Applying this policy induces

the stochastic sequence of controls h̄t = h̄(mt), yielding the Markov chain with

transition probabilities R(h̄(m)) which solves the planner problem.

5.1 Computing the Optimal Policy

The minimal payo↵ is equivalent, by Theorem 2.14, to the optimality equation

Vm = min
h

8
<

:C(m,h) + �
X

n2�N

Rmn(h)Vn

9
=

; .

Using the definition of the rates of the lumped process in Eq.(3.4), this can be

written as

Vm = min
h

�
C(m,h) + �[r+mVm+2/N + r�mVm�2/N + (1� r+m � r�m)Vm]

 

= min
h

�
C(m,h) + �[r+m�Vm+1 + r�m�Vm + Vm

 
,

(5.2)

where �Vm+1 = Vm+2/N � Vm and �Vm = Vm � Vm�2/N and the rates r+m, r�m are

the probabilities of the average choice in the population moving up or down, both

functions of h defined in Eq.(3.4) and (3.5).

Taking the partial derivative with respect to h of the r.h.s. of Eq. (5.2) we

obtain the first order condition that characterizes the optimal policy. Notice that
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the recursive definition of Vm does not depend on h.

Proposition 9 (First order condition) The optimal policy is given by

h̄ = min[max[h̃,�1], 1]

where h̃ must satisfy

h = ��

c

⇥
@hr

+
m�Vm+1 � @hr

�
m�Vm

⇤
, (5.3)

the first order condition for the value function.

The solution of the first order equation need not be unique, indeed the value

function might display multiple minima

-1.0 -0.8 -0.6 -0.4 -0.2 0.2
h

1

2

3

4

5

6

f(h)

-h
�
c
� �(rm)

+

�h �Vm� - �(rm)-

�h �Vm�

Figure 5.1: Plot of the first order condition showing that the solution to Eq. (5.3) need
not be unique.

We obtain the value function numerically employing the policy improvement

algorithm described in Section 2.3.5.

We start by writing out the optimality equation (5.1) replacing the minimum

with an arbitrary policy
¯
⇡, hence in matrix notation, we have the system

V
¯
⇡ = C

¯
⇡ + �R

¯
⇡V

¯
⇡

which can always be solved by matrix inversion since the transition matrix R is

stochastic and the discount factor � is strictly smaller than one

V
¯
⇡ = (I � �R

¯
⇡)

�1C
¯
⇡.
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After computing V
¯
⇡ we propose a new policy

¯
! picked so that

¯
! = argmin

¯
h

V
¯
h = argmin

¯
h

C
¯
h + �R

¯
hV

¯
⇡.

Finally, we set
¯
⇡ =

¯
! and repeat until a desired level of tolerance is achieved. Once

V
¯
! = V

¯
⇡ then by Theorem 11,

¯
! is the optimal policy.

5.2 Characterization of the optimal policy

There is a one to one relation between the optimal policy and the value function,

but unfortunately the value function does not possess a closed form representation

under our maintaned assumption. Despite this, it is possible to obtain a few insights

from the first order condition. Many result rests on the fact that value function is

increasing over �N . This is proved later on in Proposition 12. First, the optimal

policy is never zero: no matter what the state, the planner can always make its

expected cost a little better by supplying some policy.

Proposition 10 (Optimal policy is strictly negative) For ⌘ = �1(⌘ = 1) the

optimal policy h̄(m) is strictly negative (positive) for all m.

Proof: If Vm is stricly positive and increasing in m, it follows that any h satis-

fying (5.3) has to be strictly smaller than zero, given that @hr+m > 0 and @hr�m < 0 ⇤ .

In the following we always assume that the planner target is ⌘ = �1. The

optimal policy has several phases which depending on the values of the rationality

parameter and the strenght of the coordination motive, which relate to the shape

of the stationary distribution when no policy is supplied and in particular whether

there are multiple long lived equilibria.

5.2.1 Monotonic case

When the coordination motiv � is low the long period behavior of the chain is driven

by the single well potential shown in Fig. 5.2. In this case the policy is monotone

and linear and consequently the change in the drift compared with the drift under

the null policy, hm = 0 for all m, is just a vertical shift. Since the potential is single

welled in this regime the chain spends most of its time near zero and the time to

reach the target ⌘ is exponential in N . The last plot in Fig. 5.2 shows that this is

still the case under the optimal policy, with only little improvement in the expected

time required to reach the target when the chain is already close to it.
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(a) Stationary distribution under null policy
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(b) Optimal policy and drift
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(c) Expected time to reach the planner’s target ⌘ = �1

Figure 5.2: Several quantities are plotted here for a population of size N = 80. (a) The
potential function of the lumped stationary distribution µ under the null-policy h = 0 with
low rationality � = 2 and weak coordination motiv � = 0.2. The distribution is unimodal,
meaning that there is a single attracting region for the average population choice mt. (b)
In this regime the optimal policy h̄ (red) is monotonic, the larger it is in absolute value,
the more policy the planner chooses when the process is at position m. The drift under
h̄ (orange) is only shifted versus the drift under the null-policy (blue). (c) The expected
hitting time Em[⌧⌘] under the null (blue) and optimal (orange) policy are shown. The e↵ect
of the optimal policy is to reduce the expected time to hit the planner target ⌘ = �1 past
some critical threshold close to m = 0.
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(a) Stationary distribution under null policy
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(b) Optimal policy and drift
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(c) Expected time to reach the target ⌘

Figure 5.3: Several quantities are plotted here for a population of size N = 80. (a) The
potential function of the lumped stationary distribution µ under the null-policy h = 0 with
low rationality � = 2 and strong coordination motiv � = 0.8. The distribution is bimodal,
meaning that there are two regions to which the average population choice mt is attracted
to. (b) In this regime the optimal policy h̄ (red) is no longer monotonic: gains from of
policy increases with the distance from the planner target ⌘ = �1 for a while, but after
a certain threshold the pull of the majority on the average choice is so strong, that the
return on additional units of policy decreases. The drift experienced by the process under h̄
(orange) is shifted versus the drift under the null-policy (blue), so that the region where the
process moves on average toward the planner’s target is increased. (c) The expected hitting
time Em[⌧⌘] under the null (blue) and optimal (orange) policies are shown. The e↵ect of the
optimal policy is to reduce the expected time to hit the planner target ⌘ = �1 past some
critical threshold close to m = 0.
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5.2.2 Non-monotonic cases

Once the coordination motive parameter is su�ciently large the process has a double

well potential and multiple equilibria. The optimal policy is no longer monotone,

peaking after m = 0, the point where fifty percent of the population has adopted a

position opposite to the planner’s target. For the parameter of Fig. 5.3, h̄ is su�-

ciently strong to make the drift change sign only once, meaning that the stationary

distribution has a single welled potential with a unique equilibrium.

With large coordination and low propensity of mistakes (low �) the non

monotonicity becomes abrupt. The behavior of the chain under the null policy,

as shown in Fig. 5.4, is that there are two wells whose bottom is located at the

edges of the lattice, meaning that the attracting points are the two position �1 and

1. Attraction from these two is so strong that, once the chain is close to �⌘, the

optimal policy drops suddenly close to zero. The intuition is that the gains from an

additional unit of optimal policy are very tiny compared to its cost. This reflects

itself in the fact that the value function is no longer convex in the policy parameter,

presenting multiple minima that satisfy Eq. (5.3). In the large � regime the global

and local minima swap places for some m, see Figure 5.5.

-1.0 -0.5 0.5 1.0 h

31.0

31.2

31.4

31.6

31.8

Vm

m=0.86

m=0.88

Figure 5.5: Two slices of the value function Vm along the h dimension in the large � and
� regime. The value of h that minimizes the function – marked by a red dot – jumps with
m.

The marginal cost of policy c has an important impact on the value function.

Indeed, marginal costs make the di↵erence between the value function presenting a

single or a multiplicity of minima along in the choice of policy. We can see this by

graphing the following approximation of the second partial derivative of Vm in h:

@2
hVm = c+ �(@2

hr
+
m�Vm0 � @2

hr
�
m�Vm) ⇡ c+ �(@2

hr
+
m � @2

hr
�
m). (5.4)

For small values of c there are regions both of convexity and concavity the red
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(a) Stationary distribution under null policy
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(b) Optimal policy and drift
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(c) Expected time to reach the target ⌘

Figure 5.4: Several quantities are plotted here for a population of size N = 80. (a) The
potential function of the lumped stationary distribution µ under the null-policy h = 0 with
large rationality parameter � = 5 and strong coordination motiv � = 1. The distribution
is bimodal, meaning that there are two regions to which the average population choice mt

is attracted to. (b) In this regime the optimal policy h̄ (red) is no longer monotonic and
display a sharp jump past a threshold: pull from the majority on the average choice becomes
so strong, that when majority is reached, the gains from policy become extremely small.
The drift under h̄ (orange) displays a sharp jump as well. (c) The expected hitting time
Em[⌧⌘] under the null (blue) and optimal (orange) policies are shown. The e↵ect of the
optimal policy is to reduce the expected time to hit the planner target ⌘ = �1 past some
critical threshold close to m = 0. The policy jump translates to the expected times as well.
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and blue region in Figure 5.6a respectively, of the value function. When c becomes

extremely large instead the function is always concave in h.

(a) c = 1 (b) c = 100

Figure 5.6: Approximated graph of @2
hVm

These two extremes examples for the marginal cost have a corresponding

consequence for the policy: extremely low cost determine a monotonic policy, Figure

5.7, as predicted by Proposition 11 which provides bounds that relate the marginal

costs and the agents parameters.

Proposition 11 (Monotonicity of h̄) Consider the upper bound on �Vm  ⌫�,m0

given in Lemma 6 for some m0 > 0. The optimal policy is not monotone for c >
��

�
⌫�,m0. Conversely, if c < 2��2

N
(1� T 2

+)T+�+
m the policy is monotonic.

Proof: Consider the first order condition in Eq. (5.3), expressing the deriva-

tives of the probability this becomes

� ch⇤ =
��

2

⇥
(1� T 2

+)�
+
m�Vm0 + (1� T 2

�)�
�
m�Vm

⇤
(5.5)

where m0 = m+ 2/N and we use the shorthands

T± = tanh
h
�
⇣
h+ �m± �

N

⌘i
, �± = (1⌥m).

Non-monotonicity : Figure 5.1 gives the graphical rapresentation of 5.5 and shows

that there might be multiple interesection. To prove that the optimal policy is not

monotonic, first we show that for some strictly positive value of m the peak of the

right hand side of (5.5) lies below the line with slope �c, implying that there exists

a unique intersection to the right of the maximum. By lemma 5 the maximum of

the r.h.s. is in the interval h⇤ 2 {��m� �

N
,��m+ �

N
}, hence we need to show that
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for for some m > 0

�ch⇤ >
��

2

⇥
(1� T 2

+)�
+
m�Vm0 + (1� T 2

�)�
�
m�Vm

⇤
.

Picking h⇤ = ��m + �

N
which makes the inequality as hard as possible to satisfy

T 2
+ ⇡ O

�
1
N

�
and T 2

� = 0

��

2

✓
1�O

✓
1

N

◆◆
�+
m�Vm0 + ��

m�Vm

�
<
��

2
[�Vm0 +�Vm]

<
��

N
⌫�,m0 < c

⇣
�m� �

N

⌘ (5.6)

reasoning: for low enough c unique intersection to the left. As c raises to the point

where the ineq above hold either the solution remains on the left intersection, in

which case it passed the max and went past it, the policy is not monotonic; or the

solution jumped to the rightmost intersection, hence the policy is not monotonic.

Monotonicity : Monotonicity is guaranteed if we ensure that the slope of the l.h.s.

is always below the slope of the r.h.s. (i.e. take the second derivative of the foc and

discard pieces). Taking the derivative of the r.h.s. in h, we need to ensure that the

slope is lower then the slope after h⇤, that is that �c is larger

�c > ���2
⇥
(1� T 2

+)T+�
+
m�Vm0 + (1� T 2

�)T��
�
m�Vm

⇤
.

Using the lower bounds on �Vm given in Eq. 5.9

c < 2
��2

N

⇥
(1� T 2

+)T+�
+
m

⇤

<
��2

N

⇥
(1� T 2

+)T+�
+
m + (1� T 2

�)T��
�
m

⇤

< ��2
⇥
(1� T 2

+)T+�
+
m�Vm0 + (1� T 2

�)T��
�
m�Vm

⇤

⇤.

5.2.3 Optimal policy location

From the various plot of the optimal policy it emerges that, when the policy is not

monotone, there exists a critical point after which the attraction from the position

adversed by the planner becomes so strong that that it’s not convenient anymore

to invest in policy, that is, returns from additional units of policy start to decline.

In this section we show that this critical point always lies to the right of zero.

This means, that when the planner is targeting ⌘ = �1, happens before half of the
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(a) Stationary distribution under null policy
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(b) Optimal policy and drift
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(c) Expected time to reach the target ⌘

Figure 5.7: Several quantities are plotted here for a population of size N = 80 with
low marginal costs of policy c = 0.1. (a) The potential function of the lumped stationary
distribution µ under the null-policy h = 0 with large rationality parameter � = 5 and strong
coordination motiv � = 1. The distribution is bimodal, meaning that there are two regions
to which the average population choice is attracted to. (b) In this regime the optimal policy
h̄ (red) is still monotonic and at times maxed to �1. Low marginal costs of policy imply
that returns on policy are always large. The drift under h̄ (orange) is always negative, hence
the process on average always drifts toward the planner’s target. Drift being zero under h̄
only at �1 suggests the second attracting region disappears under the optimal policy. (c)
The expected hitting time Em[⌧⌘] under the null (blue) and optimal (orange) policies are
shown. The e↵ect of the optimal policy is to reduce the expected time to hit the planner
target ⌘ = �1 over the whole state space.
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(a) Stationary distribution under null policy
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(b) Optimal policy and drift
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(c) Expected time to reach the target ⌘

Figure 5.8: Several quantities are plotted here for a population of size N = 80 with
high marginal costs of policy c = 100. (a) The potential function of the lumped stationary
distribution µ under the null-policy h = 0 with large rationality parameter � = 5 and strong
coordination motiv � = 1. The distribution is bimodal, meaning that there are two regions
to which the average population choice is attracted to. (b) In this regime the optimal policy
h̄ (red) is significant only in the most critical region right after a majority for the planner
choice is lost. After this, the pull from the opposing majority quickly becomes too strong
and the policy is quickly tapered down. The drift under h̄ (orange) is just slightly shifted
compared with the null policy. (c) The expected hitting time Em[⌧⌘] under the null (blue)
and optimal (orange) policies are shown and are not majorily changed by the optimal policy.
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population has changed favorably its position. Hence, the planner would want to

intervene, and it’s actually better o↵, when a small majority of the population does

not share the planner position.

First we need to show that the value function is increasing over the state

space of the chain. This is a desirable (and intuitively reasonable) property of the

value function but is usually proved either relying on stochastic dominance or on

monotonicity of the optimal policy. Neither of these assumption is true in this

context and coupling techniques are needed.
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Figure 5.9: Numerical plot of Vm and �Vm under the null and optimal policy with pa-
rameters N = 80,� = 5, � = 1, � = 0.9 and c = 1.

The challenge of the proof lies in the need to compute expectations of the

chain under the optimal policy h̄. By constructing a appropriate joint distribution

of two copies of the chain, i.e. a coupling, we can derive monotonic relationship

between the lumped measures which then extend to the expectations by Strassen’s

theorem (see thm.6).

Proposition 12 (Vm is increasing) Vm > Vn for all m > n 2 �N .

Proof :

Coupling of the original process

Consider two instances of the non lumped chain xt and yt, defined in section 3.1,

with initial conditions x � y where the inequality is pointwise. Both chain live in

the same probability space (⇤N ,�(⇤N ),P).
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i-th

xt 1 11 1�1

yt 1 1�1 1�1

Figure 5.10

A coupling is a joint distribution between the two chain such that the marginal

distribution with respect to each one is the marginal distribution of the two original

chains. Define ⌧ to be the first time the two chains are equal

⌧ = inf
t
{t � 1 : xt = yt},

and denote xi the configuration which is identical to x but has the sign of the i-th

element changed. The probability of agent i revising1 his current choice is

Pxxi =
h
1 + e�2�(�xih�ximx+

�
N )
i�1

=
1

2

n
1� tanh

h
�
⇣
xih+ xi�mx � �

N

⌘io
.

The coupling is defined as follow: start two copies of the chain (xt,yt) at the intial

condition x � y. If t � ⌧ they move together according to the transition probability

matrix P ; for any t < ⌧ select a random coordinate i, then sort a uniform random

variable Z ⇠ U [0, 1]. Conditional on the initial state of the joint chain (xi, yi) and

the realization of Z update the state of both chains according to the diagram in Fig.

5.11.

Z ⇠ U [0, 1]S 1 1

0 1PxxiPyyi

(x,y) ! (xi,yi) (x,y) ! (xi,y) Flip neither

Z ⇠ U [0, 1]S11

0 1Pxxi Pyyi

(x,y) ! (xi,yi) (x,y) ! (x,yi) Flip neither

Z ⇠ U [0, 1]S1 1

0 11� PxxiPyyi

(x,y) ! (x,yi) Flip neither (x,y) ! (xi,y)

Figure 5.11: Schematic of the coupling, according to the region where the uniform random
draw Z falls the i� th component of xt or yt changes sign. Note that until the two chains
are identical the coupling ensures that xt � yt.

The joint distribution of the coupling C, assigning probability of moving from

1Using mx =
P

i xi.
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a pair of configurations (x,y) to some other pair (v, z) is given by:

Cxy(v, z) =
1

N

8
>>><

>>>:

0 if ||x� v|| > 2 or ||y � z|| > 2
P

i
Sxy(v, z) if (x,y) = (v, z)

Sxy(v, z) othw.

where the terms Sxy(v, z) are reported in Table 5.1. This construction means that

the joint distribution ensures that the monotonicity of the chains is preserved until

the chains meet at some random time ⌧ .

S11(·)
y yi

x 1� Pyyi Pyyi � Pxxi

xi 0 Pxxi

S 1 1(·)
y yi

x 1� Pxxi 0
xi Pxxi � Pyyi Pyyi

S1 1(·)
y yi

x 1� Pyyi � Pxxi Pyyi

xi Pxxi 0

Table 5.1: Joint distrubtion under the coupling conditional on having picked the i-th

Now we show that the joint distribution is well defined. Starting from a pair

of configurations such that (xi, yi) = (1, 1) then

0  Pyyi � Pxxi = tanh
h
�
⇣
�yih� yi�my +

�

N

⌘i
� tanh

h
�
⇣
�xih� xi�mx +

�

N

⌘i

= tanh
h
�
⇣
�h� �my +

�

N

⌘i
� tanh

h
�
⇣
�h� �mx +

�

N

⌘i

which follows from mx � my and similarily for (xi, yi) = (�1,�1). When configu-

rations are such that (xi, yi) = (1,�1)

0  1� Pyyi � Pxxi

0 � tanh
h
�
⇣
h+ �my +

�

N

⌘i
+ tanh

h
�
⇣
�h� �mx +

�

N

⌘i

tanh
h
�
⇣
�h� �mx +

�

N

⌘i
 tanh

h
�
⇣
�h� �my � �

N

⌘i

�h� �mx +
�

N
 �h� �my � �

N
2

N
 mx �my

which always holds since x � y.
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For this joint distribution to be a coupling the marginal distribution of the

chain must return the distribution of the original chains xt and yt. This is imme-

diatly obvious by marginalization of Table 5.1. Further, the coupling is successful,

that is, the probability that the chains meet eventually is one. This is trivial thanks

to the fact that both chains are irreducibile.

Having shown that a successful coupling exists, by Strassen’s theorem (see

Theorem 6) this means that their probability measures conditioned on the starting

configuration are increasing in the initial configuration Px � Py and so are their

conditional expectations.

Coupling of the lumped process

Under the monotonic map m(x) =
P

i
xi/N the chain mt = m(xt) and nt = m(yt)

are also coupled, their joint distribution is given in Table 5.2

mx \ my + � ·
+ ' Pyyi 0 ' (Pxxi � Pyyi)
� 0 '+Pxxi '±Pxxi

· '±Pyyi '+(Pyyi � Pxxi) '+(1� Pyyi) + ' (1� Pxxi) + '±(1� Pyyi � Pxxi)

Table 5.2: Joint distrubtion under the coupling conditional on having picked the i-th.
Where ' denotes the number of sites of a configuration with a certain starting condition :
' = |{i : (xi, yi) = (�1,�1)}|, '+ = |{i : (xi, yi) = (1, 1)}|, '± = |{i : (xi, yi) = (1,�1)}|

.

Consider two chain mt, nt with the initial conditions m > n which are gen-

erated by the underlying coupled chains xt,yt. Recall the definition of the value

function (5.1) as expected discounted costs

Vm : = inf
h

Eh

" 1X

t=0

�tC(mt, ht)

�����m0 = m

#
=

= inf
h

Eh

m

" 1X

t=0

�tC(mt, ht)

#
,

we will make use of the coupling expectations, which are monotone by Strassen’s

theorem, to show that if m > n, then Vm > Vn.

So far, in order for the coupling to work, we assumed that at each time the

policy parameter was constant ht = h. This can be relaxed as long as both chains

have the same h when updated. We are going to pick ht = h̄(mt�1) for both chains,

that is we couple both chain using the probability that depends on the optimal
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policy for the chain started with a higher initial condition. The sequence ht is well

defined by to the initial condition and by the fact that the optimal policy is also

stationary2. Denote the coupling expectation Eh
C :

Vm = inf
h

Eh
C
X

t�0

�t
h
h2t + (mt � ⌘)2

i

= inf
h

Eh
m

X

t�0

�t
h
h2t + (mt � ⌘)2

i

= Eh̄
m

X

t�0

�t
h
h̄2(mt) + (mt � ⌘)2

i
.

(5.7)

Here h is just compact notation to denote any sequence of controls {ht}t�0. The

infimum is taken over all possible sequences and under the coupling expectation is

the same as the one under the marginal expectation. Now consider the value eVn of

the chain starting at n and using the sequence ht = h̄(mt�1). Since this sequence

is optimal for the chain started in m it is suboptimal when the chain starts in n

instead, therefore:

eVn = Eh̄

S
X

t�0

�t
h
h̄(mt)

2 + (nt � ⌘)2
i

=
X

t�0

�t
n
Eh̄

m[h̄(mt)
2] + Eh̄

n[(nt � ⌘)2]
o

� Vn

(5.8)

bounding Vn from below. The second line follows from marginalization and the last

line follows because Vn is an infimum over all possible control sequences.

Vm � Vn � Vm � eVn

=
X

t�0

�t
n
Eh̄

m[((mt � ⌘)2]� Eh̄

n[(nt � ⌘)2]
o

= (m� ⌘)2 � (n� ⌘)2 +
X

t>0

�t
n
Eh̄

m[(mt � ⌘)2]� Eh̄

n[(nt � ⌘)2]
o

> (m� ⌘)2 � (n� ⌘)2 > 0

(5.9)

The first inequality follows from (5.8). The first equality follows from the fact that

the coupling expectation over h̄(mt) reduces to the marginal expectation of mt and

the policy terms cancel out, since they are the same. The last step follows from the

fact that Em � Ez by Strassen’s theorem and the existence of a succesful coupling

2That is, it is constant in time and only depends on the current state of the chain
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and the monotonicity of (m� ⌘)2 for ⌘ = �1. ⇤
We are now ready to prove that the maximum amount of policy is applied

before half of the population shares the preferred position of the planner.

Proposition 13 (Maximum pressure is applied past m = 0) Consider the in-

finite horizon planner problem, with parameters � > 1 and 0 < � < 1. If � >
�

�(2�O(1/N)) , then argminm h̄m > 0.

Proof : Consider the implicit function describing the first order condition

of the planner problem in a neighborhood of the optimal value h̄:

F (h,m) = ch+ �
⇥
@hr

+
m�Vm+1 � @hr

�
m�Vm

⇤
= 0.

For a su�ciently large population N we can consider the derivative in m, then by

the implicit function theorem, the change in the optimal policy when m changes are

given by

@h̄

@m

���
m=0

= ���

2

(1� T 2
�) (1 + 2��T�)�Vm � (1� T 2

+) (1 + 2��T+)�Vm+1 +O
�
1
N

�

2c+ ��2
�
(1� T 2

�)T��Vm � (1� T 2
+)T+�Vm+1

�

(5.10)

Recall, that for target ⌘ = �1 the planner always chooses a negative policy (see

Proposition 10). We would like to show that at m = 0 the derivative is negative,

hence the policy has to increase for higher m in absolute value, implying that the

maximum is located to its right.

Denominator

Since h̄ < 0 then 0 < T� < 1. It follows that the denominator is always positive

if T+ < 0 which is the case under the condition of lemma 4, since �h̄ > �

N
. Even

when conditions do not hold, bounds on �V· ⇡ O(1/N), so for any c there’s an N

large enough so that the denominator is strictly positive. In particular,

N >

r
��2

2c
K

where K is some positive constant.

Numerator

The O(1/N) term is

@hr
+
m(�Vm00 ��Vm0)� @hr

�
m(�Vm0 ��Vm)
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the order following from upper and lower bounds on �Vm.

The numerator is positive if

(1� T 2
+) (1 + 2��T+)

(1� T 2
�) (1 + 2��T�)

<
�Vm

�Vm+1
(5.11)

Indeed, for a su�ciently large � the following holds

(1� T 2
+)

(1� T 2
�)

(1 + 2��T+)

(1 + 2��T�)
< (1 +O(��))O

✓
1

2��

◆
<

�Vm

�Vm+1
(5.12)

Given T+ < 0 since h̄ < � �

N
, then

1 + 2��T+

1 + 2��T�
<

1

1 + 2��T�

<
1

2��T�
⇡ O

✓
1

2��

◆ (5.13)

Using the bounds on �Vm the right side is a constant which is independent

of N , meaning that for a large enough � and consequently N the IFT derivative is

strictly positive, so that the absolute value of the policy at zero is increasing in m.

It can be that, for a particular N there is no zero, in which case is enough to add one

to N . Note that m is, for a finite N , discrete and so is the optimal policy. Since we

are assuming a large N , we also assume the implicit function theorem derivative is a

good approximation of the variation in the optimal policy when parameters changes

⇤.

5.2.4 Stationary distribution under the optimal policy

Lastly, we provide a calculation based on reversibility for the stationary distribution

under a state-dependent policy. This result is unfortunately not as elegant as the

stationary distribution presented in Eq. (2).

Proposition 14 (Stationary distribution under optimal policy) The station-

ary distribution under the optimal policy is given by

µ̄[mi] =
efi

NP
j=0

efi
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with

fi = gi +
iX

`=1

2�(h̄m` + �m`) + I`` + C``

for i 6= 0 and f0 = 0. Here:

gi = �(h̄mi + �mi + h̄m0 + �m0) + Ii1 + Ci1

Cjk = ln cosh[�(h̄mj + �mj � �/N)]� ln cosh[�(h̄mk + �mk + �/N)

Ijk = ln(1�mj)� ln(1 +mk)

Proof:

Under any stationary policy the chain posess a unique stationary distribution

µ̄[mi] and it is reversible respect to it, so for any mi

µ̄[mi] =
Rmi�1,mi

Rmi,mi�1

µ̄[mi�1] =
r+mi�1

r�mi

µ̄[mi�1]

substituting recursively we get

µ̄[mi] =
iY

`=1

r+m`�1

r�m`

µ̄[m0]

and using the normalization
P

i
µ̄[mi] = 1 we obtain

µ̄[m0] =
NX

j=0

iY

`=1

r+m`�1

r�m`

The transition probabilities can be written as

r±m =
(1⌥m)

2

e±�(h̄m+�m±�/N)

cosh(�(h̄m + �m± �/N))

which yield the specific form of f` ⇤.

5.3 Lemmas

This section gives a few lemma that have been omitted from the main discussion

for readability. The most notable ones are Lemma 6 and Lemma 7 which provide

upper bounds on the variation of the value function �Vm and lower bounds on the

optimal policy h̄. I have derived this lemmas myself, though I imagine these to be

either known or immediate consequences of theorem presented here.
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Lemma 3 (Myopic planner value function)

Vm > V 0
m

and

�Vm > �V 0
m

Proof: The first claim follows from the definition of the terminal payo↵

V 0
m = (m � ⌘)2 and the definition of the payo↵ of the infinite horizon planner by

inspection.

For the second claim recall the coupling inequality which bounds �Vm from

below:

�Vm > Vm � eVn

= (m� ⌘)2 � (n� ⌘)2 + ES [. . .]

> �V 0
m = (m� ⌘)2 � (n� ⌘)2

= (m� n)(m+ n� 2⌘) >
2

N

(5.14)

The strictness of both inequality follows from the same consideration. The

value of the chains at t=0 at di↵erent initial conditions under the coupling di↵er by

at least �(m� ⌘). The expectation term is strictly positive by the monotonicity of

the measures and by the fact that the probability of the chains couple successfuly

is positive for t > 1, formally P (mt = zt) > 0 for t > 1 ⇤.

Lemma 4 (Myopic planner policy is always smaller than inifinite horizon planner)

|h̄1m| < |h̄1m |

Proof:

We want to show that

�h̄1m = argmin[h2 + �
X

k

PmkV
0
k ] < argmin[h2 + �

X

k

PmkVk] = �h̄1m

From the first order condition (5.3) we get

@hr
+
m�V 0

l � @hr
�
m�V 0

m < @hr
+
m�Vl � @hr

�
m�Vm (5.15)
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which rewrites to
@hr+m
@hr

�
m

<
�Vl ��V 0

l

�Vm ��V 0
m

(5.16)

the left hand side is negative by inspection and the right hand side is strictly positive

by lemma 3.

Lemma 5 (Argmax for conical combination of unimodal functions) Consider

a unimodal function f(x) : R ! R with x̂ = argmax f(x). Now consider the conical

combination of shifted functions with A,B, ✏ > 0

F✏(x) = Af(x+ ✏) +Bf(x� ✏).

Then

argmaxF✏(x) 2 X̂ = [x̂� ✏, x̂+ ✏].

Proof: Proof is by contradiction. Assume the above is false, then there is an

x̃ 62 X̂ : F✏(x̃)� F✏(X̂) > 0.

Consider x̃ = x̂+ ✏+ � for � > 0 then

F✏(x̃)� F✏(x) = A[f(x̂+ 2✏+ �)� f(x+ ✏)] +B[f(x̂+ �)� f(x� ✏)]

picking x = x̂+ ✏ by unimodality and x̂ being the maximizer of f we get

F✏(x̃)� F✏(x) = A[f(x̂+ 2✏+ �)� f(x̂+ 2✏)] +B[f(x̂+ �)� f(x̂)] < 0

a contradiction. Similarly for the case x̃ < x̂� ✏ ⇤.

Lemma 6 (Upper bound for �Vm)

�Vm <
2

N
⌫�,m

Proof:

For m > n using the reversed coupling inequality
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�Vm  eVm � Vn

= E
¯̄
h

S
X

t�0

�t
h
h̄(nt)

2 + (mt � ⌘)2
i
� E

¯̄
h

S
X

t�0

�t
h
h̄(nt)

2 + (nt � ⌘)2
i

=
X

t�0

�tE
¯̄
h

S

h
(mt � ⌘)2 � (nt � ⌘)2

i

=
X

t�0

�tE
¯̄
h

S

h
(mt � nt) (mt + nt � 2⌘)

i

<
X

t�0

�t
✓

m� n+
4

N
t

◆
4

�
= 4

X

t�0

�t
✓

2

N
+

4

N
t

◆�

=
8

N

X

t�0

�t [(1 + 2t)] =
8

N


m+ n+ 2

1� �
+

2�

1� �2

�

(5.17)

Lemma 7 (Lower bound on h̄) For � > �

�(2+O(1/N)) then h̄ < � �

N

Proof: First, write out explicitely the first order condition for the optimal

policy

� h =
��

4

⇥
�+
m(1� T 2

+)�Vm0 + ��
m(1� T 2

�)�Vm

⇤
(5.3)

where we shorten the hyperbolic tangent with T± = tanh(�(±h± �m+ �/N)) and

the fraction of agents with a given choice as �±
m = (1 ⌥m)/2. For any m the �V·

are strictly positive by Proposition 12 and so are �±
· . Since 1� T 2

· are a unimodal

functions then by Lemma 5 the maximum of the r.h.s. of (5.3) happens somewhere

in the interval h⇤ 2 (��m+ �/N,��m� �/N). This is, in an absolute value sense,

the highest that h̄ can get. Hence, we show that at m = 0, this maximum is not

attained if the discount factor is large enough. In particular, at m = 0 the inequality

�h⇤ <
��

4

�
1� T 2

+)�
+
m�Vm0 + (1� T 2

�)�
�
m�Vm

⇤
,

holds. Hence, the optimal policy is smaller than h⇤.

To show this write out the optimality equation for the short term planner

at m = 0 and evaluated at h⇤ = ��m � �/N noting that T+ = 0 and T� =

tanh(2�/N) ⇡ O(2�/N). Under our maintained assumption ⌘ = �1
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�/N <
��

4

⇥
�V 0

m0 + (1�O(2�))�V 0
m

⇤

=
��

4


4

N
(m0 + 1)� 1

N2
+ (1�O(2�))

✓
4

N
(m+ 1)� 1

N2

◆�

=
��

4


8

N
+

6

N2
�O(2�)

4

N
+O(2�)

1

N2

�

= ��


2

N
+O

✓
1

N2

◆�

(5.18)

Picking the appropriate � this inequality holds, furthermore having picked

the worst case h⇤ implies that the intersection is unique for the myopic planner. In

turn, by lemma 4 the claim follows ⇤.



Chapter 6

Discussion

This thesis presented a reduced-form model of herding where boundedly rational —

that is myopic, inhert and error-prone — agents making binary choices attempt to

dynamically coordinate with each other and with the policy of an external planner

who has an exogenous preference for one of the two choices.

One of the major question in game theory is how equilibrium selection hap-

pens. This work tackles the topic of equilibrium selection from a di↵erent viewpoint,

asking instead: how do transition across equilibria happen? And what is the optimal

policy to drive such transition?

The crucial challenge is to endow agents with a credible boundedly rational

dynamic. The assumptions usually made in evolutionary game theory allow us

to work with simple stochastic agents whose probability of taking a given action

depends on how convenient it is. In turn, when the model is in continuous time

— and any discrete Markov chain can be easily brought to continuous time — the

waiting time before an agent is called to act will be such that the more convenient it

is to change one’s choice the sooner agents will be called to act. Here I have chosen

the so called “Metropolis” dynamics: agents are randomly selected one by one and

revise their choice. This seems the most natural choice, but other are possible,

in fact almost any selection probability can be chosen1 and still obtain the same

stationary distributions derived here. At least in this simple model this only alters

the time before the Markov chain attains its equilibrium distribution, but not the

shape of the distribution itself. But as argued below in the discussion about the

model with more than two choices, this might not always be the case.

The cost to pay is that rational expectations have to be left behind. I believe

it not to be too steep a price. First, because rational expectations are, in some sense,

1For a discussion about this see Newman and Barkema (1999).

85
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responsible for the presence of multiple equilibria. Secondly, because evolutionary

game theory has shown it is possible to trade “rationality of the species for the

rationality of the individual” and obtain similar results, at least to some degree.

Thirdly, because I think that adding rational expectation in this model would not

really change the results , but only alter convergence times of the underlying Markov

chain as discussed below. This might even be considered a gain, if one thinks

of rational expectations as too simplistic a modeling device, that only allow for

equilibrium analysis and not for the study of dynamics.

The other conceptual advancement with respect to similar models in the field

is to employ Markov chain not just as a tool to describe equilibria outcome, but to

describe the dynamics itself. It is reasonable to ask: why not use the language of

dynamic systems instead? The reason is that Markov chains, and more generally,

stochastic dynamics, are in fact easier to deal with, especially if one wants to be able

to carefully pick agents microfoundations. When the models enjoy the high degree

of symmetry prescribed by Theorem 5 lumping allows for further simplification to

describe aggregate behavior. Lumping reveals also how careful one must be in

drawing conclusions based on the stationary distribution: Kandori et al. (2008)

claim that the equilibrium distribution spends most time on the highest probable

states, but they are not accounting for the fact that highly probable states might be

less frequent. According to them our model should spend most of its time in one

of the two highly coordinated states, but the presence of long-lived equilibria away

from such configurations contradicts them. This is because the random selection

mechanism acts opposite agents’ utility , to which physicist refer as the fight between

energy and entropy. Indeed, for high enough rationality parameter the stationary

distribution peaks over the more coordinated states.

Lastly, I have shown how to analyze the optimal policy when a planner tries

to steer the population behavior by applying a tax that enters directly into the

utility function.

When the planner is able to observe the population only with a significant

lag, as in Chapter 4, it is as if he only interacted with the stationary distribution

of the Markov chains. In turn, there’s a unique optimal policy value which. The

first order condition shows that this condition crucially depends on the population

size N , with larger population eliciting a stronger response from the planner. When

the rationality parameter � is larger the planner policy will also be larger. Indeed,

these two parameters act on the long run behavior of agents in a similar way, by

increasing the pull of attracting regions, either because of stronger peer pressure or

because of lower propensity of agents to revise their choice. Intuitively, the planner
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policy depends on the skewness and variance of the stationary distribution: larger

variance benefits the planner as it gives the population a higher chance to cross

from one long-lived equilibria to another. The e↵ect of skewness depends instead on

whether the skewness favors the planner, making one of the two attracting regions

bigger or smaller. All of these are elements that are completely exogenous to the

planner. But one that is assumed to be, but need not to, is policy marginal costs.

Under the assumption in this chapter, marginal costs inversely a↵ect the amount of

policy. Indeed, when the costs are low enough, I have shown that the optimal policy

is guaranteed to “delete” the unfavorable long-lived equilibria. This suggests that

in real-world situation, when strong herding forces are present, a lot of intervention

might be necessary to steer a population toward a desired outcome, and the real

bottleneck that prevents it is the marginal costs. This crucially depend on the fact

that times spent in the long-lived equilibria are significantly “long”, as they are

always of order eN . Until the long-live equilibria are present small adjustments

to how strongly attracting these regions are only yield small benefits. The last

observation that is in order about 4 is that it shows that not all crowds are the

same: depending on the strenght of the coordination motiv �, population sharing

the same amount of rationality might require radically di↵erent intervention, since

the optimal policy is not always monotone in �.

If the planner is able to monitor closely all decisions by agents, he can influ-

ence agents transition probability directly. As a result, the optimal policy is now

state dependent and changes according to the average choice at any given time.

Apart from the case where coordination is low, the policy is never monotonic in

the state. The point where the highest amount of policy is applied is shown to be

somewhere when more than half of the population is against the planner. After that

point the optimal policy either tapers o↵, or suddenly jumps to a lower level. This

suggests that there is some critical window for the planner to intervene: once the

population as reached a certain threshold, which corresponds to entering a strongly

attracting region, there is little gain to intervention. Depending on the parameter

this e↵ect can be so strong to lead to a “give up” region where the planner policy

is extremely low. Again, marginal costs represent a crucial parameter and are able

to enforce monotonicity of the optimal policy.

It should be noted that throught the thesis the concept of “time spent” is

left purposely vague and up to interpretation. The choice by the agents could take

up extremely short time span, a few instants, the time to make up one own mind; a

slighlty longer one, such as the distance between one cigarette and the next; or the

time at which buy and sell decisions are made in the stock market.
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In the remainder of this chapter I speculate on a few possible extensions to

the model presented here and on how results presented could change.

6.1 Finite size scaling

Throughout this thesis population size was some fixed, albeit possibly large, number

N . What happens in the limit of N ! 1? One consequence is that all probability

of the stationary measure will concentrate on the state with largest probability. If

there are multiple states sharing the same probability, probability will be equally

split between those. This suggests that the presence of even the slightest asymmetry

leads to the disappearence of long-lived equilibria: regardless of how much people

care about coordination, the pull due to peer pressure becomes infinite as N grows

large. In turn, the dynamic behavior of the system might change drastically and so

will the policy.

20 40 60 80 100 i

-0.8

-0.6

-0.4

-0.2

h

N=60

N=80

N=100

Figure 6.1: Optimal policy h̄ under the assumptions of Ch. 5 for di↵erent values of the
population size, showing the sudden “jump” policy undergoes and how it changes as N
grows larger. Numerical exploration indicates that the jump is always present for finite
N , albeit becoming smaller in absolute value. Horizontal axis counts the number of agents
choosing xi = 1.

Figure 6.1 shows the finite size scaling of the optimal policy shown in Chapter

5. The optimal policy is shown in the regime where the rationality parameter � and

the strenght of the coordination motiv � are high enough to make the optimal

policy “jump” suddenly to a lower level past a certain threshold. It is clear that the

optimal policy will in general be lower, since the presence of more agents reduces

the marginal gains for the planner. It remains to be shwon whether the “jump”

completely disappears in the limit N ! 1.
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6.2 Multiple choices

It is relatively easy to extend the model to allow for multiple choices. Agents called

to action would then receive a proposal to switch from their current choice to a

di↵erent one picked at random. With q possible choices, the predominant choice in

the population can than be represented by a vector in the complex plane:

m =
qX

p=1

e2⇡i
p
q np,

this funtion weights each of q directions in the complex plane by np, the fraction of

agents currently choosing the p� th choice.

The mathematics of such a system become much more involved. In particu-

lar, the lumped version of the system looses the Markov property. There are reasons

to believe the same type of long lived equilibria would appear in this case and that

the policy would show a similar behavior. Indeed, Slowik (2012) shows the potential

of such a system with q = 3, which is reproduced with some editing in Figure 6.2.

Figure 6.2: Plot of the potential as a function of the average choice m =
Pq

p=1 e
2⇡i p

q np

mapped to the complex plane, when agents can choose between q = 3 di↵erent choices. The
three deepest potential well are located along the vectors that represent the population being
fully coorinated on one of the choices. The central one represent a long-lived disordered state
with no clear majority, due to the particular probability rates chosen. Figure is edited from
Slowik (2012) Ph.D. thesis on the Potts model.

The figure highlights the presence of four potential wells, three are the at-

tractors due to di↵erent choice, but one more emerges. The reason for this is that

the model behind the figure is generated with metropolis rates: agents are selected

at random and proposed a random choice out of the q available to them. The central

potential well is therefore present in a situation of high-disorder when there isn’t

any strong majority, in which case agents might be switching randomly for quite a

while, befor finally transitioning to a coordinated state. A more natural option that

might solve this is to use “heat bath” dynamics, which o↵ers agents to switch their
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current choice with the one they are more likely2 to switch to.

6.3 Absorbing endstates

One could imagine that once the totality of the population agreed on one choice the

game terminates. For example, reaching �1 could be seen as triggering a revolution

and 1 as deciding in favor of mantaining the status quo, at which point the coor-

dination game would end. This could be imposed on the optimization problem in

Chapter 4 by introducing absorbing boundaries over the lumped state space.
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Figure 6.3: A plot of the optimal policy under the assumption of frequent sampling from
the planner exposed in Chapter 5. The rationality parameter � is equal to 1.3 and the
coordination motive � is high at 1. The two plots are interleaved, showing they are the
same regardless of whether the boundaries are absorbing (blue) or not (orange).

Numerical exploration suggests that absorbing boundaries do not alter the

optimal policy. This is somewhat surprising, given that the first order condition in

Eq. (5.3) sees a direct changes in the last two states and an indirect one through

changes of the value function terms appearing in it.This suggests that the model

might be employed to investigate optimal policies even for transitory phenomena.

One possible explanation is that the boundaries are very rarely visited, and therefore

they have a very minimal impact on the life and overall behavior of the chain. Hence,

what really matters from the point of view of the planner is always the short to

medium-term behavior of the chain.
2Contrast this with Metropolis dynamics which o↵er agents to switch to a random choice
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6.4 Agents with higher order expectations

One criticism that might be levied against the model is that agents are myopic

and don’t give any amount of consideration to how their choices influence their

neighbors future play. It is not obvious to say what changes might occur. On the one

hand, a similar model with belief is presented in Durlauf (1996), shows that in the

limit of large population and under rational expectations, the equilibrium average

choice would corrispond to the bottoms of the wells of the potential function which

describes our stationary distributions. On the other, forming beliefs, for example as

described in Golub and Morris (2017), would alter convergence rates of the Markov

chain toward its distribution. The discussion in the section above shows that the

relevant part of the chain’s life might be in fact the short and medium term3.

3Otherwise we would expect that absorbing states that are eventually reached to influence the
value function and return a di↵erent policy. The fact that the discount factor � is always equal to
0.9 and “high” in our calculation reinforces this consideration.
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