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Transcription is a complex phenomenon that permits the
conversion of genetic information into phenotype by means of
an enzyme called RNA polymerase, which erratically moves
along and scans the DNA template. We perform Bayesian
inference over a paradigmatic mechanistic model of non-
equilibrium statistical physics, i.e. the asymmetric exclusion
processes in the hydrodynamic limit, assuming a Gaussian
process prior for the polymerase progression rate as a latent
variable. Our framework allows us to infer the speed of
polymerases during transcription given their spatial
distribution, while avoiding the explicit inversion of the
system’s dynamics. The results, which show processing rates
strongly varying with genomic position and minor role of
traffic-like congestion, may have strong implications for the
understanding of gene expression.
1. Introduction
DNA is a long polymeric molecule that encodes information as a
sequence of nucleotides (Nts). Turning this information into a
phenotype is a complex phenomenon hinged upon transcription,
the molecular process in which particular segments of DNA (i.e.
the genes) are scanned and their information is copied into mRNA
by the enzyme RNA polymerase II (PolII). The transcription itself
consists of several steps which can be differentially regulated to
alter the timing and the output of the mRNA production [1,2].

The transcription can also be seen as a non-equilibrium process,
where the PolIIs are being transported as particles on a one-
dimensional lattice, the lattice being the DNA template which the
PolIIs bind to. We can further consider this process having left
and right boundaries, representing the transcription start site
(TSS) and the transcription end site (TES), respectively (figure 1a).
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Figure 1. Biological processes and data. (a) Simplified diagram of mRNA synthesis. PolII molecules bind to the DNA upstream of TSS
and moves downstream towards the TES, where it is released along with the synthesized mRNA. In certain genomic regions
(indicated by a dangerous bend sign), PolIIs slow down. (b) ChIP-seq experiments yield the relative abundance of PolII at each
genomic position, here illustrated for H3-3B (top) and KR19 (bottom) genes; insets show the Spt5-bound PolII abundances for
the same genes. (c) In the presence of triptolide (Trp), transport is blocked upstream of TSS, while transcriptional engaged
PolII are allowed to complete elongation; this is reflected in the ChIP-seq profiles obtained 2, 5 and 10 min after treatment
(also in (b)).
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Within the gene body, the PolIIs erratically travel along the template and their abrupt slowing down in
certain genomic regions is known as pausing dynamics [3,4]. While the pausing is an essential part of the
transcriptional machinery and contributes to the regulation of genes’ expression levels, a comprehensive
quantitative understanding of its dynamics is still missing [5,6].

We present a modelling framework to help understand gene regulation and quantitatively study the
pausing dynamics given real-world data. In the literature, a number of different mechanistic models have
been introduced to elucidate transcription, starting from the simple telegraph model [7] to more
complicated multi-state models that account for many interactions [8–11], with each model reflecting
determinate aspects of the whole biological system complexity. Here, we are primarily interested in
the pausing and employ a generalization of a paradigmatic model of particle transport, the
asymmetric simple exclusion process (ASEP, [12–14]) in the hydrodynamic limit [15]. The ASEP is a
class of models of particles on a one-dimensional lattice, whose behaviour is chiefly determined by
the rates at which the particles hop on the lattice. More specifically we require the rate profile
function, which we refer to as ~p, to be spatially varying yet smooth as in [16,17], see also [18], thus
making it possible to model this function by a Gaussian process (GP) [19]. Noticing the analogy
between the PolII transport in the gene body and the particle hopping in the exclusion process,
learning ~p allows the study of the pausing dynamics in a gene. Importantly, we provide an inferential
scheme to learn this rate function by Bayesian inference given real molecular biology data, assuming a
prior on the profile function induced by a GP prior on a latent variable. In other words, integrating
the dynamics defined by the rate ~p generates transient time-course density profiles; we estimate ~p
given observed density profiles without explicitly inverting the system’s dynamics. Other models of
PolII dynamics also leverage GPs for inference from biological data, with GPs representing
transcriptional activity over time [20,21]. By contrast, the GP here describes a function of genomic
position, with its minima corresponding to pausing regions. Due to its generality, our framework can
be deployed to estimate the rate profiles of any one-dimensional transport problem.

The manuscript is organized as follows. Section 2.1 describes the biology of pausing and the
next-generation sequencing (NGS) data types which are available to study it. Sections 2.2 and 2.3,
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respectively, discuss the ASEP as a mathematical model for transcription with pausing and a Bayesian
inferential framework for model fitting. We present the results in §3 and conclude with a discussion in §4.
oyalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:221469
2. Model definition
2.1. Biological processes and data
RNApolymerases have a central role in the biologyof transcription.We distinguish different classes of RNA
polymerases, each having different structure and control mechanism. Bacteria and Archaea only have one
RNA polymerase type. Eukaryotes have multiple types, of which RNA PolII is known to catalyse synthesis
of protein-encoding RNA (messenger RNA or mRNA). In this paper, we describe mRNA transcription by
PolII, but the inferential framework we present is general and can be extended to other transport
phenomena. PolII binds to DNA upstream of the TSS, initiates the mRNA synthesis and then traverses
the DNA downstream (elongation) until it pauses at a certain gene location, ready to respond to a
developmental or environmental signal that instructs to resume the elongation. PolIIs are also found
proximal to TSS in a so-called ‘poised’ state, which has not initiated synthesis of the mRNA chain.
Poised and paused PolIIs can be differentiated as only paused PolIIs have a tail of nascent mRNA and
are bound to transcription factor Spt5 [22]. The process terminates when the PolII reaches the TES and
the transcribed mRNA is released. As a result of these steps, the output is modulated in both timing and
intensity. However, many details, such as the pausing, are not well understood [5]. The presence of
transcriptional pausing in eukaryotes is revealed by several assays based on NGS, which is widely used
in molecular biology to study molecules involved in genic processes. In the PolII ChIP-seq assay, PolII-
bound DNA is isolated by chromatin immunoprecipitation with a PolII antibody and is then subject to
high-throughput sequencing. This provides a genome-wide view of the PolII binding sites for all forms
of PolII, including both those poised or transcriptionally engaged and those which are bound to DNA
and static. In ChIP-seq experiments, DNA fragments extracted from cells and associated with a specific
protein (here polymerase) are amplified, sequenced and mapped to the reference genome, with
fragments generally in the 150–300Nt range [23] (while transcribing PolII covers less than 50 Nts of
DNA [24]). This means that the precise locations of the individual proteins are not known and the assay
only returns the overlap of reads from many different cells. For each genomic position, PolII ChIP-seq
returns a signal as a proxy of polymerase occupancy.

For this study, we binned ChIP-seq reads from genomic ranges of selected genes (from cultured human
cell lines,Material and methods) into 20Nt bins, thus yielding coarse-grained read profiles (which we refer to
as y) such as those illustrated in figure 1b. The number of these reads at a position x is proportional to the
occupation probability ϱ(x). The proportionality factor, which depends on the number of cells used in the
experiment and on further signal amplification intrinsic to the sequencing procedure, cannot be directly
accessed with precision and is only known with substantial uncertainty [25].

Other methods available to study the pausing include but are not limited to NET-seq, where nascent
mRNA chunks associated with immunoprecipitated PolII complexes are isolated and sequenced [26],
GRO-seq, where RNAs recently transcribed only by transcriptionally engaged PolIIs are sequenced
[27], and PRO-seq, which is similar to GRO-seq but reaches single-nucleotide resolution [28]. The
evidences of PolII transport are particularly clear in time-course experiments, where sequencing data
are collected over time following a perturbation. As an example, time-variant PRO-seq has been
suggested to estimate pausing times in key peak regions [29]. A classical way to perturb these
molecular dynamics is inhibiting the initiation by treating the cells with triptolide (Trp), which is a
highly specific drug that blocks initiation [22,30]. This permits the PolII already engaged in
transcription to progress further downstream the gene while new PolIIs are prevented from attaching,
thus freeing upstream genomic regions as the run-on time progresses (figure 1c). Our approach
consists of using the read profiles y as functions of x, collected at fixed run-on times t1, t2, t3 and t4
after treatment, to infer the dynamics. While Trp inhibits new initiation, poised PolII upstream of the
TSS can still pass through it, enter the gene template and perform elongation immediately after Trp
treatment [22,30]. To account for this, we also perform inference over Spt5 ChIP-seq data, where the
poised polymerases are masked while those bound are detected [22].

These types of experiments reveal the presence of a flux of PolIIs, which is the signature of the non-
equilibrium physics involved in the elongation process. The profile y� observed prior to the treatment
corresponds to a non-equilibrium stationary state (NESS). Disrupting initiation with Trp yields a
transient state, which evolves from y� until it settles down to a new NESS.
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2.2. Mathematical model
The transport of particles on a one-dimensional lattice is a well-studied problem in mathematics and
physics. Its basic features are captured by the ASEP [14], which defines the stochastic dynamics of
interacting particles on a discrete lattice, which we take here to be a one-dimensional chain with open
boundary conditions. Let the total number of lattice sites be N. The state of each site i, 1≤ i≤N,
is characterized by the occupation number ni such that ni = 0 if the site is empty and ni = 1 if it is
occupied by a particle. The evolution proceeds in continuous time. A particle on site i <N hops
rightward into the site i + 1 with rate pi, the transition being successful only if the site i + 1 is empty.
Similarly, a particle on site i > 1 hops leftward into i− 1 with rate qi, if the site i− 1 is empty. Further,
particles on the left (right) boundary site i = 1 (i =N) leave the lattice at rate q1 (pN), while particles are
injected in the same boundary site at rate p0 (qN+1) if the site is empty. The constraint that a jump can
occur only if the target is empty prevents the accumulation of more than one particle on a site and is
generically referred to as the exclusion rule. This rule allows particle collision, which causes
congestion when the particle density is sufficiently high and permits phase transitions between a low
density, high density and a maximum current phase, even if the systems is one-dimensional [31].
Interestingly, based on theoretical considerations, it has been suggested that traffic-like congestion of
PolIIs is important in transcription [32–34].

While the ASEP was originally proposed to model biopolymerization on nucleic acid templates
[12,13], this and related models have been more recently applied to diverse problems, including
protein translation [35–37], but also e.g. molecular motors [38] and pedestrian and vehicle traffic [39].
Applications to transcription incorporating disordered dynamics and obstacles (e.g. [40,41]) were also
proposed. ASEP’s theoretical appeal is due to its analytical results representative of a large class of
models [42,43] and a convenient mean-field treatment that yields the exact stationary solution [44].
In the context of transcription, particles entering site 1, moving along the chain and exiting from site
N correspond to initiation, elongation and termination, respectively. In our setting, the lowest values
of pi correspond to genomic locations were elongation slows down.

The dynamics of the expected occupation of a single site i in the bulk are governed by the lattice
continuity equation

d
dt

EðniðtÞÞ ¼ JleftðtÞ � JrightðtÞ, ð2:1Þ

0 < i <N, where E denotes expectation value and Jleft(t) and Jright(t) are the average flux of particles from
site i− 1 to site i and from site i to site i + 1, respectively. These are subject to the exclusion rule and
therefore obey

JleftðtÞ ¼ pi�1Eðni�1ðtÞð1� niðtÞÞÞ � qiEðniðtÞð1� ni�1ðtÞÞÞ
and JrightðtÞ ¼ piEðniðtÞð1� niþ1ðtÞÞÞ � qiþ1Eðniþ1ðtÞð1� niðtÞÞÞ:

ð2:2Þ

In order to exactly solve these dynamics, second-order moments such as EðniðtÞniþ1ðtÞÞ need to be
known. Under independence assumption, these moments are factorized, which in our case amounts
to replacing equations (2.1) and (2.2) with

d
dt

fiðtÞ ¼ pi�1fi�1ðtÞð1� fiðtÞÞ � pifiðtÞð1� fiþ1ðtÞÞ
þ qiþ1fiþ1ðtÞð1� fiðtÞÞ � qifiðtÞð1� fi�1ðtÞÞ, ð2:3Þ

where we used fiðtÞ :¼ EðniðtÞÞ to lighten the notation. In other words, equations (2.3) define the so-
called mean-field dynamics of the asymmetric exclusion process, which are known to approximate
well the true dynamics in many contexts, predict crucial features such as dynamical phase-transitions,
and ease mathematical treatment [31,44,45]. With open boundaries,

d
dt

f1ðtÞ ¼ p0ð1� f1ðtÞÞ � p1f1ðtÞð1� f2ðtÞÞ � q1f1ðtÞ þ q2f2ðtÞð1� f1ðtÞÞ, ð2:4Þ

and

d
dt

fNðtÞ ¼ pN�1fN�1ðtÞð1� fNðtÞÞ
� pNfNðtÞ þ qNþ1ð1� fNðtÞÞ � qNfNð1� fN�1Þ: ð2:5Þ
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To match the available data that is coarse grained (figure 1b), instead of considering particles
individually we rely on their hydrodynamics description, which is obtained as follows. We assume
Euler scaling with constant a and let a→ 0, N→∞, with L :=N a held finite. We define the functions
@ :R2 ! Rþ

0 , ~p :R ! Rþ
0 and ~q :R ! Rþ

0 such that they are analytic and bounded on ]0, L[ × ]0, ∞[,
]0, L[ and ]0, L[, respectively, and

fiðtÞ ¼ @ðði� 1Þa, tÞ,
api ¼ ~pðði� 1ÞaÞ

and aqi ¼ ~qðði� 1ÞaÞ:
ð2:6Þ

We further assume that the left and right jump rates satisfy ~qðxÞ ¼ b~pðxÞ, 8x [ ½0, L�, with 0≤ b < 1, where
b governs the relative strength of the non-equilibrium driving forces. The case b = 0 corresponds to a
totally asymmetric exclusion process (TASEP), while the limit case b = 1 corresponds to the symmetric
exclusion process. Intermediate values 0 < b < 1 correspond to settings where the particles can jump in
both directions, but are driven rightwards on average. A continuum-limit counterpart of equations
(2.2), as derived in [16,18], is

Jðx, tÞ ¼ ~pðxÞ@ x� a
2
, t

� �
1� @ xþ a

2
, t

� �� �
� ~qðxÞ@ xþ a

2
, t

� �
1� @ x� a

2
, t

� �� �
, ð2:7Þ

which, using first-order Taylor expansion, yields

Jðx, tÞ � ð~pðxÞ � ~qðxÞÞ@ðx, tÞð1� @ðx, tÞÞ � a
2
ð~pðxÞ þ ~qðxÞÞ @

@x
@ðx, tÞ: ð2:8Þ

To lighten the mathematical notation, we define the two quantities

lðxÞ :¼ ð~pðxÞ � ~qðxÞÞ ¼ ~pðxÞð1� bÞ

and nðxÞ :¼ a
2
ð~pðxÞ þ ~qðxÞÞ ¼ a

2
~pðxÞð1þ bÞ

ð2:9Þ

their ratio is constant in x, viz., ν(x)/λ(x) = a/2 (1 + b)/(1− b), which equals a/2 in the totally asymmetric
case.

Substituting (2.8)–(2.9) into the continuity equation

@

@t
@ðx, tÞ ¼ � @

@x
Jðx, tÞ, ð2:10Þ

which is the hydrodynamics limit of equation (2.1), gives the nonlinear partial differential equation

@

@t
@ðx, tÞ ¼ � @

@x

n
lðxÞ@ðx, tÞð1� @ðx, tÞÞ � nðxÞ @

@x
@ðx, tÞ

o
, ð2:11Þ

which can be linearized to

@

@t
uðx, tÞ ¼ ~pðxÞ

2
a2ð1þ bÞ @2

@2x
uðx, tÞ � ð1� bÞ2

1þ b
uðx, tÞ

( )
ð2:12Þ

by means of a generalization of the Cole–Hopf transform (electronic supplementary material, appendix A
and [18,46,47]).

In transcription, the particle flux is left to right. While PolIIs can backtrack few Nts under certain
circumstances [48–50], this phenomenon is overall minor and is not observable at our ChIP-seq
resolution. Therefore, we assume b = 0 and focus on the inference of the net forward rate profile ~pðxÞ.
For simplicity we also set a = 1, arguing that our considerations remain valid with such a choice. The
required boundary values ϱ(0, t), ϱ(L, t) and ϱ(x, 0), and the numerical scheme used to integrate
equation (2.12) are detailed in electronic supplementary material, appendices A and B.

Integrating equation (2.11) with boundary conditions analogous to equations (2.4) and (2.5) and
initial density ϱ(x, 0) > 0 yields a NESS for large t, characterized by a non-vanishing average flux and
a density profile ϱ�(x) which is invariant in time. Setting the latter as initial condition and further
integrating with no inward particle flux (p0 = qN = 0) produces a transient state that mimics the
evolution of the PolII profile after Trp treatment until the density profile vanishes. This is illustrated,
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for a choice of boundary values and jump rate profile, in figure 2, which also includes the result of the
inference process described in the next sections.
2.3. Bayesian framework
We fit the model to real-world data by means of a Bayesian approach leveraging its ability to explicitly
encode prior hypotheses about the quantities we wish to infer [51]. We are interested in the forward rate
profile ~p. As this is required to be analytic and non-negative, it is convenient to assume a GP [19]
functional prior on a latent variable f and induce a prior on ~p using a sigmoid link function of f,
such that ~p ¼ ~pmax=ð1þ expð�fÞÞ, which further imposes an upper bound ~pmax to ~p. The GP prior
here defines a distribution over real valued C1 functions in R, where any finite set of function
evaluations f (x) has multivariate normal distribution with mean m and covariance kernel
kðx, x0; s2

f , lÞ ¼ s2
f expð�ðx� x0Þ2=ð2 l2ÞÞ, x, x0 [ R. In practice, the GP is evaluated at the positions xi,

i ¼ 1, . . . , n, where it is equivalent by definition to f � N ðm, KÞ, a multivariate normal random
variable with mean m and covariance matrix K(σf, l ) induced by the kernel.

The observations are organized into a collection of values y ¼ fyijgi¼1,2,...,n,j¼1,2,...,t, where the
subscripts indicate that an observation is taken at position xi and time tj. As the values of xi do not
necessarily coincide with the bin centres of ChIP-seq data, we used simple linear interpolation to
estimate the data at intermediate coordinates. We assume that the observed values depend on a
multiplicative factor and also include an additive error term e � N ð0, seÞ. This can be written in
terms of the equation kyij ¼ @ðxi, tjÞ þ e, where κ is the inverse of the amplification factor. The
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likelihood Pðyjf, se, kÞ satisfies

logPðyjf, se, kÞ ¼ � 1
2s2

e

Xn
i¼1

Xt

j¼1

ð@ðxi, tj; fÞ � kyijÞ � n
2
logð2ps2

eÞ, ð2:13Þ

where we made explicit that ϱ depends on f. For the hierarchical parameters ðm, se, k, sf , lÞ ¼ : u we
assume a scaled sigmoid Gaussian prior probability Pðm, se, k, sf , lÞ such that

u ¼ umin þ ðumax � uminÞ
1þ expð�jÞ , j � N ðmj, 1sjÞ, ð2:14Þ

where umin :¼ ðmmin, semin, kmin, s fmin, lminÞ, umax :¼ ðmmax, semax, kmax, s fmax, lmaxÞ and ðmj, sjÞ are
referred to as hyperparameters. Prior distributions are chosen to pull Markov chain Monte Carlo
(MCMC) samples away from inappropriate results that are consistent with the likelihood but would
not be consistent with domain knowledge [51]. By using scaled sigmoid Gaussian prior probability
bounded by θmin and θmax, we only search for solutions constrained in an appropriate interval [52].
By virtue of the Bayes theorem the joint posterior probability for θ and f satisfies

Pðf, m, se, k, sf , ljyÞ/ Pðyjf, se, kÞPðfjm, sf , lÞPðmÞPðseÞPðkÞPðsf ÞPðlÞ, ð2:15Þ
which we draw random samples from by MCMC sampling, more specifically block Gibbs sampling with
elliptical slice sampling at each block [52,53] (electronic supplementary material, appendix C). Equation
(2.15) expresses the distribution of parameters given the observed data y and completes the definition of
the model. It is worth noting that evaluating the likelihood also requires computing ϱ by integrating
equation (2.11) with initial condition ϱ(x, 0) = κy�(x), 8x [ ½0, L�.
3. Results
We first consider simulated data from a given profile of length L = 100 obtained from GP drawn with
parameters ðl, sf , m, ~pmaxÞ ¼ ð7:32, 0:67, 0:29, 3Þ. We integrate the dynamics with NESS initial profile
(obtained by fixing the boundary conditions to ϱ(0, t) = ϱ(L, t) = 0.5, 8t) and no-influx boundary
conditions (figure 2a,b). The chosen rate profile shows a local minimum close to the left boundary,
which yields a minor local perturbation in the density, and a global minimum around x≈ 60, whose
effect propagates along the lattice and acts as a major bottleneck, which separates a low-density phase
downstream from a high-density phase upstream. These minima correspond to regions where
particles slow down or pause for an exponentially distributed amount of time. As the particles leave
the system through the right boundary and are not replenished by the influx through the left
boundary, the region upstream of the bottleneck is emptied by a reverse wavefront.

For the purpose of testingwhether we are able to recover the rate profile from time-course observations,
we extract density profiles y at times (t1, t2, t3) = (30, 60, 300) and set the hyperparameters θmin, θmax and
ðmj, sjÞ to (0, 0, 0.8, 0, 0), (2, 10, 1.2, 1, 10) and (0, 1), respectively. With these settings and data, we
generated 104 MCMC samples targeting the posterior (2.15), discarding the first 2 × 103 as burn-in,
demonstrating that the fitting procedure is able to capture the location of both the major and minor
minima of the generative model, as well as the overall elongation rate (figure 2b). It is worth noting that
the integrated density profile in figure 2c,d displays a very small effect of the first local minimum (minor
dip, captured only by time-course profiles at t1 and t2); this is reflected in relatively wide credible
intervals for the inferred rate profile (grey ribbon in figure 2b). On the other hand, the rate at the
bottleneck is inferred with very high confidence. The covariance hyperparameters l and σf control how
quickly the rate changes over x; these were slightly misestimated to 6.86 (95% CI 4.63–7.16) and 0.76
(95% CI 0.75–0.82), respectively, thus suggesting that increased wobbling in the rate profile is tolerated;
minor patterns in the rate profile are in fact smoothed out and are essentially not identifiable in the
density profiles obtained by integration (see electronic supplementary material, figure S3). The difficulty
of sampling covariance hyperparameters is also addressed, e.g. in [52]. The predicted transient density
profiles at t = 30, 60, 300 also are in very good agreement with the input data (figure 2d; in fact, all
sampled rate profiles yield similar time-course density profiles despite wide CIs in certain regions (see
also electronic supplementary material, figure S3).

Applying this method to real-world data requires setting the value of ~pmax to an upper limit of prior
expectations on the elongation rate. As this has been estimated at around 2 × 103 Nt min−1 in previous
studies [30], we set ~pmax ¼ 6� 103 Ntmin�1 as an arguably safe upper bound. Literature results can
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Figure 3. Inferred rate profiles from Spt5 ChIP-seq (a,b) and PolII ChIP-seq (c,d ) for genes H3-B3 (a,c) and KRT19 (b,d ) (black lines
are posterior medians, shaded areas are 99% credible intervals), with the latter gene showing a distinctive jagged profiles. Both
genes show the lowest rates in proximity of the transcription starting site (TSS). Red lines are unperturbed ChIP-seq signals in
arbitrary units (arb. units).
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be also used to set bounds on the prior for κ, which regularizes the estimation problem [19]. From
cultured human cell lines, the total number P of bound PolII molecules per cell is estimated to be
between Pmin = 11 × 105 and Pmax = 18 × 105 [54]. This is related to the total number Y of ChIP-seq
counts by P = κY. Based on these heuristic considerations, we set κmin = Pmin/Y and κmax = Pmax/Y. All
remaining hyperparameters were set identical to the previous simulation experiment.

The results from different genes show a variety of rate profiles which share similar patterns (figure 3).
The most important observation is that, in all genes considered, the rates vary strongly with the genomic
position, with local minima corresponding to regions where PolIIs slow down or pause. In order to look for
average patterns, it is desirable to aggregate data from all genes. As genes have different lengths (which in
our sample range from 16 680 to 59 880 Nts), we stretch all the rate profiles in the region from TSS + 1000 to
TES− 1000 Nts to the same support length and then average over the genes at each position. This yields the
summaries illustrated in figure 4, which we refer to as metagene rates and are akin to the so-called metagene
profiles [55]. Rates are typically lower near the TSS than in the gene body, where elongation approaches its
highest rate. The behaviour in proximity of the TES is less definite, with rates varying several fold among
the different genes. At the TSS the rate typically dips down consistently with the presence of strong and
widespread pausing in this region. Further downstream in the gene body the rate increases to its
highest average value. While the dip is evident in both Spt5 and PolII results, it is worth noting that
upstream of the TSS the average rate inferred from PolII data is higher than that from Spt5. We argue
that this difference is due to the fact the former also include poised PolIIs which are not strongly bound
to the template and can quickly move towards the TSS before being engaged in transcription. A by-
product of the fitting procedure is the estimate of the occupation density ϱ(x, t) = κy(x, t), as illustrated
in figure 2d for the simulation experiment and figure 5 and electronic supplementary material, figures
S4–S6 for selected genes. The predicted densities are typically very low (total predicted number of PolIIs
in a gene is of the order of 10−1), thus suggesting that crowding and congestion of PolIIs into a gene
might not be substantial even proximal to rate minima.
4. Discussion
We developed a general Bayesian framework to study the dynamics of a one-dimensional transport
model given time-resolved density profiles. The general problem addressed here is the identification
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of the PDE parameters that best describe data as a subset of the true PDE solution (see, e.g. [52,56–58] and
references therein). We focused on the hydrodynamic TASEP with smoothly varying jump rates (which
are the parameters to be inferred) as a paradigmatic and well-characterized model of transport. By means
of its application to ChIP-seq time-course data, we inferred the rate of PolII elongation as a function of the
genomic position in selected genes. This rate is not constant but varies within the gene body. It typically
dips down nearby the TSS, confirming widespread pausing in this region, while in the bulk the rate also
varies between genes. Low predicted densities suggest that the pausing did not cause congestion or
crowding. This is an important observation, as factor crowding has been experimentally observed and
associated with regulated gene expression in synthetic and mammalian cell systems [59–63]. Our
analysis supports the view that this phenomenon does not happen between PolIIs bound to the gene
but probably occurs in suspension in the nucleoplasm, as described e.g. in [61,63–67].

The inference here is complicated by the high dimensionality of the parameter space (which grows as
the genes’ length increases). We addressed this by assuming a GP latent prior for the jump-rate profile
and using elliptic slice sampling as an appropriate MCMC algorithm. The sampling requires multiple
evaluations of the likelihood of equation (2.13). This in turns requires numerically integrating equation
(2.11), which is also slower in longer genes (require larger integration grids, see electronic
supplementary material, appendix B).

This study of molecular dynamics is also subject to limitations. While ChIP-seq is a widely used
assay to quantify the abundances of DNA-bound PolII, studies suggest that it has limited resolution
(between 150 and 300 Nts) and might be subject to technical issues [23]. Most importantly ChIP-seq
profiles are obtained from the aggregation of sequencing reads from many cells, which hides
variation within the cell population. The transcription of mRNA is a very complex process and it
may be interesting to include features not encoded in the model used for this study. Other TASEP
variants, such as those incorporating non-Markovian jump dynamics [68,69] or Langmuir kinetics
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[70], are relevant for the modelling of PolII recycling and its early detachment from DNA [63,71]. An
assumption of the TASEP is that particles stay in a site for an exponentially distributed waiting time.
Variants of TASEP in which defects appear and disappear randomly on any site (and thus slow down
the movement of particles or even block it completely) have been introduced in physics literature and
can account for occasionally long pausing times [40,41] (see also [68,69]), with defect dynamics
representing the effects of pausing and elongation factors. Modelling advancements that combine
the site-specific pausing with long pausing times and extended particle size, supplemented by an
appropriate inference scheme such as the one presented here, would be an important additional
potential area for research and application. Potential extensions of our work also include estimation
of the parameters that encode the system’s size and asymmetry (a and b, respectively) and the
boundary values. Statistical mechanics literature is rich in quantitative studies of TASEPs with
particles that occupy more than one lattice site [72–74], some generalized to include site-dependent
elongation rates or localized defects [37,75–77]. These studies have been used to describe protein
translation and could be useful to predict PolII-size effects in gene expression, although, with genes
much longer than PolIIs, ChIP-seq limited resolution, and very low PolII coverage density, the
observable correction would arguably be minor. In fact, including more features plausibly requires
sequencing assays of higher resolution than ChIP-seq and comes at the cost of increased
computational burden and decreased tractability. Conversely, the chosen TASEP with smoothly
varying jump rates is simple and yet is able to reveal PolII elongation slowing down and speeding
up at certain genomic locations. Due to its generality, our approach also serves as a template for
future studies seeking to shed light on complex transport phenomena.
5. Material and methods
Spt5 and PolII ChIP-seq data mapped to the hg19 University of California at Santa Cruz human genome
were downloaded from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo), accession
number GSE117006. We filtered the list of genes from the reference genome to only contain those with
unique gene symbols on chromosomes 1–22 and X, thus excluding alternatively spliced genes. Hg19
gene coordinates were flanked 500 Nts upstream of the TSS in order to include poised PolII. The 20
non-overlapping genes with the highest coverage of Spt5 ChIP-seq reads were selected. All simulation
codes are written in c++ and Python (v. 3.7.1), with the PDE solver using Numba JIT compiler
(v. 0.41.0) [78] (https://github.com/mcavallaro/dTASEP-fit).

http://www.ncbi.nlm.nih.gov/geo
https://github.com/mcavallaro/dTASEP-fit
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