
Learned ApproximateQuery Processing:
Make it Light, Accurate and Fast

Qingzhi Ma, Ali M. Shanghooshabad, Mehrdad Almasi, Meghdad Kurmanji, Peter Triantafillou
Department of Computer Science,

University of Warwick,
UK

{q.ma.2,ali.mohammadi-shanghooshabad,mehrdad.almasi,meghdad.kurmanji,p.triantafillou}@warwick.ac.uk

ABSTRACT
The advent of learning algorithms has revealed many opportunities
for improving Data Systems’ functionality and performance. Ap-
proximate Query Processing (AQP) is one such area where machine
learning (ML) models have been used to improve query execution
efficiency and accuracy, outperforming the traditional sampling-
based approaches. Based on our group’s experience in the ML-
for-DBs area, [3–7, 29, 37–39], we contribute a novel AQP engine,
coined DBEst++, which extends our previous effort (DBEst, [29])
and sets the state of the art in terms of accuracy and query execu-
tion efficiency. The DBEst++ salient design objective is to derive
lightweight ML models for the task, allowing a plethora of ML
models to coexist, covering a very large fraction of the expected
analytical query workload without requiring very large memory
footprints. The DBEst++ salient architectural feature rests on a
novel blending of word embedding models with neural networks
tasked with regression-based predictions for density estimation
and aggregation-attribute values. We present design features and
motivations/rationale behind DBEst++ and discuss how all the ML
models are brought together. We also present how DBEst++ can
deal with challenging scenarios, including how to deal with high-
cardinality categorical attributes and how to ensure high accuracy
under data updates. We provide a detailed experimental evalua-
tion using the TPC-DS and Flights datasets against state of the art
learned and sampling-based AQP engines, showcasing DBEst++’s
gains in terms of accuracy, response-times, and memory space
overheads.

ACM Reference Format:
Qingzhi Ma, Ali M. Shanghooshabad, Mehrdad Almasi, Meghdad Kurmanji,
Peter Triantafillou. 2020. Learned Approximate Query Processing: Make it
Light, Accurate and Fast. In Proceedings of CIDR ’21: 11th Annual Conference
on Innovative Data Systems Research (CIDR ’21). ACM, New York, NY, USA,
11 pages.

1 INTRODUCTION
Augmenting the functionalities of database systems with ML mod-
els is receiving great attention nowadays. Such ML models take
various forms, including classical regression and density estimators
(like XLeratorDB [12] for Microsoft SQL Server, MADLib [20] over

This article is published under a Creative Commons Attribution Li-
cense(http://creativecommons.org/licenses/by/3.0/), which permits distribution and
reproduction in any medium as well as allowing derivative works, provided that you
attribute the original work to the author(s) and CIDR 2021. 11th Annual Conference
on Innovative Data Systems Research (CIDR ’21). January 10-13, 2021, Chaminade,
USA.
CIDR ’21, January 10–13, 2021, Chaminade, USA
©

PostgreSQL), or deep neural networks (like [21, 33], and for tasks
such as deriving learned cost models [23, 40]), workload forecast-
ing [28], database tuning [25, 44, 46], cardinality and selectivity
estimation [18, 21, 45] and learned indexing [26] etc).

Approximate query processing has traditionally relied on sam-
pling approaches. These are largely classified as online [22] (i.e., the
sample is generated after the query arrives) or offline (i.e., samples
are generated in advance, either for popular queries [2] or for all
possible queries for the schema [34]). As very large sample sizes are
typically required to achieve high accuracy - a fact that necessarily
implies poor response times, the community started looking into al-
ternative approaches. More recently, machine learning models were
adapted for processing various aggregate queries instead of using
(samples of) data. The first efforts by our group focused on using
regression-based techniques to predict and/or explain approximate
query answers [4–7, 30, 37, 39]. Learned AQP engines also emerged
that would holistically process aggregate queries, promising to
improve both accuracy and efficiency. The first such effort to our
knowledge was DBEst [29], followed by DeepDB [21], and [43], etc.
Learned AQP engines, like DBEst and DeepDB, adopt a data-driven
perspective. Specifically, uniform samples are firstly generated, and
models are trained based on samples. Subsequently only the models
are used for query processing, For instance, DeepDB trains Rela-
tional Sum Product Networks (RSPNs) over the tables’ columns,
whereas DBEst trains Kernel Density Estimators (KDEs) and Regres-
sion Models (RMs) over column sets. Despite these developments
and the improvements they introduced in terms of accuracy and
efficiency, much more is left to be done, with respect to efficiency
and accuracy and, more importantly, in terms of related memory
overheads.

The remainder of this paper is organized as follows. Section 2
presents the rationale, motivations, and overall vision and contri-
butions of DBEst++. Section 3 overviews the DBEst++internals. It
explains its core ML models, how models are trained, and how mod-
els are used for inference. Section 4 demonstrates the performance
of DBEst++for the TPC-DS and the Flights datasets and compares it
against DeepDB and VerdictDB. Section 5 overviews related work,
Section 6 introduces future work and Section 7 concludes.

2 DESIGN CHOICES, RATIONALE AND
MOTIVATIONS

Given the good success thus far, and the large promises of ML for
improving data systems internals, many a researcher are expected
to continue to contributemore andmoreMLmodels for various data
processing tasks.Unfortunately in our view, this is done without much
consideration to the aggregate requirements these models will place

CIDR ’21, January 10–13, 2021, Chaminade, USA Qingzhi Ma, Ali M. Shanghooshabad, Mehrdad Almasi, Meghdad Kurmanji, Peter Triantafillou

holistically to the system which, after all, will be called to integrate
all of these intelligent functionalities. Primarily we are concerned
here with space/memory requirements of said ML models – hence,
our emphasis on light models.

Following this rationale, a salient design feature of the proposed
light engine, which goes against the grain in the current school of
thought, is that it avoids the development of universalmodels: These
models aim to be able to answer all queries involving any possible
combination of attributes of a given schema. While the benefits
of these approaches are highly touted, such universal models are
typically very large and coarse-grained. As such, they waste all
of the memory required to store a universal model to support all
possible queries when typically only a very small subset (among
all possible) queries will be executed (i.e., the queries involving
popular combinations of columns).

Viewed from a different angle, as we move away from data
accesses to model accesses, we view the ML models we propose as
the counterpart to indexes (and other access structures) and data
used traditionally for answering a query at hand. Except that the
models should be dramatically smaller so that a large number of
them would already be in memory and, if not, the time cost for
their IO and (de)serialization would be also very small.

In the overall vision, the AQP engine would employ a query-to-
models index, in order to map an incoming query to the model(s)
it needs. Said models, as argued above, would likely be in mem-
ory already or would be fetched and deserialized from nonvolatile
memory very fast.

Complementarily, a key issue is what are the appropriate models
to leverage in order to develop these light AQP engines? Although
this is an open problem, we will present our approach based on
specific ML models, utilizing word embeddings and mixture density
networks (MDNs) which, when appropriately combined, provide
excellent space-accuracy-time performance.

Therefore, our key concern and contribution with this paper is
the development of a learned AQP engine that:

• pushes the lower bounds of required space for its ML models
(offering orders of magnitude space savings), while

• offering top-notch query execution times (especially being
embarrassingly parallelizable, reducing query times at will
with additional investment), and

• offering the highest accuracy (circa 2X better than state of
the art learned approaches for more demanding datasets),
and

• ensures its high accuracy, even in the presence of data up-
dates, and

• can deal effectivelywith high-cardinality categorical attributes,
which introduce challenging space/time vs accuracy dilem-
mas.

Extensive experimentation with real and benchmark datasets will
showcase the gains introduced by DBEst++ and analyze key sensi-
tivities.

3 SYSTEM OVERVIEW
3.1 DBEst++ Query Processing Foundations
This paper shares the similar mathematical foundations as DBEst
[29]. As an example, given regression model 𝑦 = 𝑅(𝑥) and density

estimator 𝐷 (𝑥), DBEst++uses the following formula to produce
approximate answers to SUM queries.

𝑆𝑈𝑀 (𝑦) = 𝑁 ·
∫ 𝑢𝑏

𝑙𝑏

𝐷 (𝑥)𝑅(𝑥)𝑑𝑥 (1)

where 𝑁 is the scaling factor, and 𝑙𝑏, 𝑢𝑏 are the lower bound and
upper bound of the range selector. The formula for COUNT and AVG
are addressed in DBEst [29]. They are omitted for space reasons.

Unlike DBEst which used KDEs and a Regressor (XGBoost),
DBEst++ employs MDNs for both the density estimation and the
regression tasks. Using these neural networks in DBEst++avoids
the need for having different models (say for different group and
categorical values in the WHERE clause) with a single neural net-
work handling all. Furthermore, MDNs help with updatability and
also improve accuracy, especially when combined with embedding
models.

Due to the simplicity of MDN models, DBEst++could easily be
extended to also support other aggregates more efficiently. Take
VARIANCE queries as an example. As mentioned, the output of MDN
models is a mixture of Gaussians. Specifically, 𝑝 (𝑥) =

∑𝑚
𝑖=1𝑤𝑖 ·

N (`𝑖 , 𝜎𝑖). And VARIANCE is obtained by [13].

𝑉𝑎𝑟 (𝑥) = 𝐸 [(𝑥 − `)2]

=

𝑚∑
𝑖=1

𝑤𝑖 (𝜎2𝑖 + `2𝑖 − `2)
(2)

where ` = 𝐸 [𝑥] = ∑𝑚
𝑖=1𝑤𝑖`𝑖 .

3.2 System Architecture

D
B

 S
er

ve
r

DB
Es
t+
+

SQL Parser

Model Manager

Sampler

Model Trainer

Query

Results

M
od

el

Co
nt

ai
ne

r

Stats Metadata

Word Embedding

MDN – Regressor

MDN – Density Estimator

Figure 1: DBEst++ System Architecture

Figure 1 shows the system architecture of DBEst++. DBEst++
consists of several components: (i) The Parser parses incoming SQL
queries, and checks whether the query is a SELECT query or a MODEL
CREATION query; (ii) The Model Container maintains in-memory
metadata and the models (i.e., MDNs and embeddings). MDN mod-
els are used to provide accurate predictions for probability densities
of variables (attributes) and for values of dependent variables given
independent variable values (such as those set by relational selec-
tion operators and/or group ids in GROUP BYs); (iii) The Model
Manager selects the appropriate models from the Model Container
to use per query and also selects representative data points from the

Learned ApproximateQuery Processing:
Make it Light, Accurate and Fast CIDR ’21, January 10–13, 2021, Chaminade, USA

Input Hidden Layers
Mixture

Coefficients

ℎ!,!

ℎ!,#

ℎ!,$

ℎ!,%

…

𝜔
𝜔!
𝜔"

𝜔#

…

𝜇
𝜇!
𝜇"

𝜇#

…

𝜎
𝜎!
𝜎"

𝜎#

…

ℎ&,!

ℎ&,#

ℎ&,$

ℎ&,'

…
point

Mixture
Distribution

weight

mean

var
ian
ce

Figure 2: Structure of Mixture Density Networks

range of variable values specified in selection range predicates with
which to call for MDN predictions. These representative values
are used to (approximately) evaluate the integrals needed for the
approximation (as shown above) and aggregates the predictions
to provide the final approximate query answer; (iv) The Sampler
interfaces with the DB in order to create samples of tables, based
on which ML models will be build; (v) The Model Trainer module
trains embedding and MDN models upon the drawn samples.

Model Creation Query. Suppose the user asks to create a model
to answer SQL queries of the following format:

SELECT g , AF (y) FROM t b l
WHERE x BETWEEN low AND high
[AND c i t y =" London " AND . . .]
GROUP BY g

(where aggregate function AF is typically COUNT, SUM or AVG.) The
Sampler will by default use reservoir sampling to make random
samples for table tbl. Afterwards, the Model Trainer will train one
MDN model for density estimation of the independent variables
(i.e., x given g, 𝑃 (𝑥 |𝑔)) and one MDN model for regression, yielding
essentially 𝑃 (𝑦 |𝑔, 𝑥).

SELECT Query. For a SELECT query, the Integral Module will
select representative points between 𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ for 𝑥 , ask the
corresponding MDN models to make predictions for these repre-
sentative points, and aggregate to provide the final approximate
results, as explained later.

3.3 Mixture Density Networks
There are two types of MDN models employed by DBEst++. The
MDN-regressor is used for regression tasks and the MDN-density is
used for density estimation. The structures of the networks are the
same for MDN-regressor and MDN-density. However, the inputs
to the two network types are slightly different.

MDNs are simple and straightforward - one of the main reasons
we selected them. Combining a deep neural network and a mixture
of distributions creates a MDN model. Many modern neural net-
works could be easily extended to support MDNs, including LSTMs,
CovNets, etc. We chose to use MDNs as they are widely applied to
solve real-world problems [16, 17] with high success. For instance,
Apple uses MDNs for speech recognition [41].

Figure 2 shows the structure of typical mixture density networks.
The cost function is the average negative log-likelihood (NLL), and

gradient descent is used to minimize the cost function. Assuming
the input features are x, and labels are 𝑦, NLL takes the format of

argmin
\

𝑙 (Θ) = − 1
|D|

∑
(x,𝑦) ∈D

log𝑝 (𝑦 |x) (3)

As said, the input features and labels are different for the regres-
sion and density estimation tasks. Consider a simple query of the
following format

SELECT g , AF (y) FROM t b l
WHERE x BETWEEN low AND high
GROUP BY g

For the density estimation tasks, the input features are the word
embedding format of the 𝑔 values, coined𝑊𝐸 (𝑔) (which will be
introduced in Section 3.4), and the corresponding labels are x. The
MDN density estimator aims to predict the distribution of x for all
groups. For regression tasks, the input features are [𝑊𝐸 (𝑔), x], and
the corresponding labels are 𝑦. The task of MDN regression is to
predict the average value of 𝑦 for a given group 𝑔 and x. Figure 3
summarizes the input features and labels for training MDNs. In
general, the output of MDNmodels is a mixture of Gaussians which
can model the distribution of values of the dependent variable(s)
(e.g., 𝑦) given the values of independent variables (e.g. 𝑥 and 𝑔). The
central hyper-parameter in MDNs is the number of Gaussians used.
And grid search is used to find the optimal number of Gaussians
for each query template.

Features Labels

𝑊𝐸(𝑔)

𝑊𝐸(𝑔1)

𝑊𝐸(𝑔2)

…

𝑊𝐸(𝑔𝑛)

𝒙

𝑥1

𝑥2

…

𝑥𝑛

(a) MDN density estimator

Features Labels

𝐖𝐄(𝐠) x

𝑊𝐸(𝑔1) 𝑥1

𝑊𝐸(𝑔2) 𝑥2

… …

𝑊𝐸(𝑔𝑛) 𝑥𝑛

𝒚

y1

y2

…

y𝑛

(b) MDN regression

Figure 3: Input features and labels for training MDNs

3.4 Word Embeddings
In ML, dealing with categorical (nominal) variables is always chal-
lenging. Some of the ML algorithms can easily deal with categorical
variables such as Decision Tree algorithms [36] and Association
Rule Mining methods [1], but many modern ML methods based on
NNs can only operate on numerical/continuous data. This means
those variables must be converted to such a form. One-hot, binary,
dummy variable or integer(ordinal) encoding methods are usually
used for this aim. These methods map categorical values into arrays
of 0 and 1s, and since the output is numerical, they can be used
in all ML methods. Nonetheless, none of the mentioned encoding
approaches can assign a meaning into output values. For example,
a binary encoding for "red" and "blue" cannot give us informa-
tion about how similar these colors are. To capture the meaningful
encoding for categorical values, mostly, embedding approaches
are used. Once a meaningful vector representation for each single

CIDR ’21, January 10–13, 2021, Chaminade, USA Qingzhi Ma, Ali M. Shanghooshabad, Mehrdad Almasi, Meghdad Kurmanji, Peter Triantafillou

categorical value was learned, it could significantly improve the
accuracy of the models.

There are many embedding approaches like [9], [27] and [14],
but Skip_Gram [31] have been highly successful because of the deep
linguistic theory behind it. In this paper also, the Skip_Gram model
is used to transform group-attribute values and other categorical
attributes into a real valued vector representation. As categorical
attributes have no meaningful distance between successive values
(ie city="Toronto" vs city="New York"), learning a relationship be-
tween a categorical independent variable and a dependent one is
very difficult. Using word embedding introduces such a meaningful
distance between different independent categorical-attribute val-
ues (e.g., 𝑔, 𝑥) so that learning 𝑃 (𝑦 |𝑔, 𝑥) becomes easier and more
accurate.

For instance, Figure 4(a) shows the salary information of employ-
ees in different cities. Toronto and New York share more common
salaries (40-45k in this example) than Toronto and a small town.
Therefore the embedding vectors for Toronto and New York will
be similar, whereas for Toronto and small towns their distance in
the embedded space will be much larger.

Salary City

40k-45k Toronto

35-40k Toronto
40-45k New York

… …

20k-25k Small Town

Salary City

Salary 40k-45k City Toronto

Salary 35-40k City Toronto
Salary 40-45k City New York

… …

Salary 20k-25k City Small Town

(a) Raw Data (b) Processed Data

Figure 4: Data Pre-processing for Word Embeddings.

To use word embedding approaches in our solution, we need to
prepare the training data in the same way NLP methods work. For
our task, instead of dealing with sentences in a document, we have
rows in a table. When preparing the training data, instead of creat-
ing a dataset of pairs of words that come together in the sentences,
we create the dataset with the pairs of categorical-attribute values
that come together in a row of the table. For example, for a row
like ("London","red","Laptop"), to learn the embedding for the first
attribute (City names), we create two training data pairs like ("Lon-
don","red") and ("London","Laptop"). These pairs are given to the
Skip Gram model which tries to find similar vector representations
for cities that have common pairs. To create the training pairs, we
only use the attributes that are involved in the query. If the involved
attributes are not categorical, we discretize them first. Furthermore,
it is possible that a distinct value exists in two different attributes,
so to avoid pushing wrong information to the Skip Gram model, we
add a prefix for each distinct value in the attributes. For example,
if the name of the attribute is "City" and the value is "London", we
instead use ”𝐶𝑖𝑡𝑦_𝐿𝑜𝑛𝑑𝑜𝑛”.

The key hyper-parameter for word embeddings is the size of the
embedding vector. Grid search is used to find the optimal vector
size with respect to accuracy.

3.5 Updatability
DBEst++ supports data updates - here we discuss insertions of new
data that was not seen when building the model. This is challenging
because in the end DBEst++ must maintain all info it has gleaned

from ‘old’ data, while also learning to incorporate the new data in
its knowledge.

We sketch and compare two naive approaches: (a) Only fre-
quency tables (FTs) are updated; (b) both frequency tables and the
MDN models are updated. The general scheme of the experiment
is described as follows: Firstly, a base model is trained, as discussed
in the previous sections. Subsequently (batches of) new data items
arrive. When new batches of data arrive, we aim to handle these
updates with minor changes to the model.

In the first method, we only update the frequency tables and
predictions are made based on the previously learned MDNs. In the
second approach, we also update the MDNs by re-using the weights
from a previous state (e.g., the old original model) and retrain the
model using the new batch of data. Our first approach basically
evaluates the generalization of the MDN model to unseen data.
After updating the FTs, the model relies on the generalization of
MDNs to produce approximate answers for queries now involving
unseen data. Although this method is fast and easy to implement,
it disregards the major part of information that are introduced in
the new data.

The second approach, on the other hand, avoids missing any
new knowledge by retraining the MDN model on the new data
batches. This is achieved as follows. The weights of the old MDN
are retained and copied into a new MDN structure. Then the new
data items in the batch are feed-forwarded to the new MDN, which
adjusts its weights accordingly using back propagation.

However, this approach may suffer from the problem of "cata-
strophic forgetting". In other words, while we fine-tune the MDN
network on the new data, the new MDN fits the new distribution
and forgets the knowledge that has been acquired previously. Most
previous works [15, 24, 35] that address this problem require major
efforts that sometimes also include the deformation of the architec-
ture.

For our task we have achieved highly promising results with a
rather simple idea: while updating the MDN model on new data
batches, the learning rate used for learning from each new batch is
kept smaller. The insight behind this idea is that the smaller learning
rate, create finer changes in the model’s weights. Therefore, the
model does not drastically forget the previous knowledge. At the
same time, it learns from the new batches of data. The detailed
results are provided in Section 4.

4 PERFORMANCE EVALUATION
All code, datasets, and query workloads used in the following exper-
iments can be found at: https://github.com/qingzma/DBEst_MDN.

4.1 Experimental Setup
We have evaluated DBEst++ using column sets from queries in
TPC-DS dataset [32]. We use scaling factors 10, 100 and 1000 to pro-
duce three versions of the dataset, with sizes of 10GB, 100GB and
1TB, respectively. Firstly, comparisons are made between DBEst++
and universal approaches: Namely, a learned approach, DeepDB,
and a sampling-based one, VerdictDB. We compare space over-
heads, accuracy (relative error), and query response times. As the
DeepDB code did not support TPC-DS, we had several interactions
with the DeepDB authors and used their suggestions to properly

Learned ApproximateQuery Processing:
Make it Light, Accurate and Fast CIDR ’21, January 10–13, 2021, Chaminade, USA

tune DeepDB for this setting. To evaluate how well the DBEst++
models work as lightweight models, we also compare against a
“compact” version of DeepDB, whereby it is trained only over the
same columns as DBEst++. We further demonstrate the embarrass-
ingly parallelizable nature of DBEst++, using parallel inference. We
also evaluate DBEst++ with a real-world dataset, the Flights dataset,
1, which was also used in the DeepDB paper. IDEBench [11] is used
to scale up this dataset to contain 1 billion tuples.

In addition, we report on our experiments and results regarding
the following key issues with respect to DBEst++ (and, actually,
any machine-learning-based method for AQP): Namely, (i) the per-
formance/sensitivity of the models with respect high-cardinality
categorical attributes, (ii) the impact to accuracy that the embed-
ding model within DBEst++ have on accuracy, (iii) the accuracy
performance of the approach that DBEst++ adopts for updatability,
and (iv) the performance of the parallel version ofDBEst++ on query
response times.

Hyper-parameter tuning for the DBEst++ models was as follows.
For the MDNs, we used values between 5 and 20 for the number
of Gaussians. For embedddings we used Word2Vec (from the gen-
sim package 2) to train Skip_Gram models with vector size values
varying between 15 and 35.

4.2 TPC-DS Dataset
For fairness, DBEst++ and DeepDB use the same samples (from the
original dataset) to build their models. Then, 30 queries are ran-
domly generated, covering COUNT, SUM and AVG in equal portions
and containing GROUP BY and different selections operators.

COUNT SUM AVG OVERALL
0.0%

0.5%

1.0%

1.5%

2.0%

R
el

at
iv

e
E

rr
or

 (
%

)

1.49% 1.48%

0.33%

1.09%

2.13%

2.00%

0.12%

1.42%

2.00% 2.03% 2.03% 2.02%

DBEst++
DeepDB
VerdictDB

Figure 5: Relative Error for SUM / COUNT / AVERAGE
Queries over the TPC-DS Dataset (SF=10)

4.2.1 Universal Models. Figure 5 summarizes the average relative
errors of DBEst++, universal DeepDB and VerdictDB for COUNT,
SUM and AVG queries. The relative error of VerdictDB is around 2%
for all aggregate queries, and is the highest among all. DeepDB
has similar accuracy as VerdictDB for COUNT and SUM queries. For
AVG queries, DeepDB achieves the least error (0.12%). The relative
error of DBEst++ is much smaller than that obtained by DeepDB
or VerdictDB for COUNT and SUM queries. And the overall relative
error by DBEst++is only 1.09%!

The same experiment is repeated for TPC-DSwith scaling factors
(SFs) equal to 100 and 1000. Relative errors for COUNT and SUM are
1https://www.kaggle.com/usdot/flight-delays
2https://radimrehurek.com/gensim/models/word2vec.html

shown in Figures 6 and 7. Again, DBEst++ achieves smaller errors
across all SFs.

10 100 1000
TPC-DS Scaling Factor

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

R
el

at
iv

e
E

rr
or

 (
%

)

1.49%

1.08%
1.18%

2.13%

1.68%

1.26%

2.03%

2.59%

2.00%

DBEst++
DeepDB
VerdictDB

Figure 6: Scalability for COUNT Queries Varying SF

10 100 1000
TPC-DS Scaling Factor

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

R
el

at
iv

e
E

rr
or

 (
%

)

1.48%

1.11% 1.12%

2.00%

1.78%

1.25%

2.16%

2.59%

2.03%

DBEst++
DeepDB
VerdictDB

Figure 7: Scalability for SUM Queries Varying SF

Figure 8 shows the corresponding query response times. Ver-
dictDB requires 1 order of magnitude longer time than model-based
AQP engines. This shows the strength of models for fast query
processing. Query response times of DBEst++ are slightly lower
than those for DeepDB. Both DBEst++ and DeepDB require less
than ca. 400ms (even for SF=1000) to respond to all queries. DBEst++
outperforms DeepDB by a factor of ca. 25% to 40%.

As DBEst++ is put forth also as a "light" learned-AQP approach,
we now turn our attention to required memory space for the var-
ious approaches. So, space-wise, as shown in Figure 9, DBEst++
achieves ca. 3 orders of magnitude savings compared to DeepDB or
VerdictDB! Interestingly, universal DeepDB requires even higher
space overheads than VerdictDB.

4.2.2 Compact Models. Figure 10 corresponds to Figure 5, showing
the relative errors for COUNT, SUM and AVG queries over the TPC-
DS dataset with SF=10. Figure 11 corresponds to Figures 6 and 7,
demonstrating the overall accuracy of DBEst++ and DeepDB for
the TPC-DS dataset, and as the dataset scales up. Clearly, DBEst++
achieves higher overall accuracy than DeepDB. It is interesting
to note that when switching from universal DeepDB to compact

https://www.kaggle.com/usdot/flight-delays
https://radimrehurek.com/gensim/models/word2vec.html

CIDR ’21, January 10–13, 2021, Chaminade, USA Qingzhi Ma, Ali M. Shanghooshabad, Mehrdad Almasi, Meghdad Kurmanji, Peter Triantafillou

10 100 1000
TPC-DS Scaling Factor

0

500

1000

1500

2000

2500

3000

3500

4000

R
es

po
ns

e
T

im
e

(m
s)

46.5
145.6

320.8

67.7
261.3

409.3400.7

997.3

4112.5

DBEst++
DeepDB
VerdictDB

Figure 8: Comparison of Query Response Times for Queries
over the TPC-DS Dataset

10 100 1000
TPC-DS Scaling Factor

102

103

104

105

S
pa

ce
 O

ve
rh

ea
ds

 (
K

B
)

83

139

309

163122

454012
584020

40100

171400

540900

DBEst++
DeepDB
VerdictDB

Figure 9: Comparison of Space Overhead for Queries over
the TPC-DS Dataset

DeepDB, we see a reduction in relative error. Take TPC-DS with
SF=10 as an example: the relative error for COUNT obtained by uni-
versal DeepDB is 2.13% (see Figure 6). The corresponding relative
error obtained by compact DeepDB is 1.84% (see Figure 10). This
shows that building a universal model for all types of queries may
lead to higher errors.

Figure 12 compares the space overheads between DBEst++ and
compact DeepDB. As compact DeepDB is trained over relevant
columns only, the size of RSPNs reduces significantly (compared
against that of universal DeepDB). Despite this reduction, DBEst++
still outperforms with respect to space overheads by about 1 order
of magnitude. This testifies that the DBEst++ approach which inte-
grates embeddings plus the two MDNs truly delivers in all fronts.

4.3 Flights Dataset
We now further evaluate the performance of the above approaches
using the Flights dataset, which was also used in the DeepDB paper.
9 queries covering COUNT, SUM and AVG are taken from the DeepDB
paper and are used here. Samples of size 1m and 5m are used to
train models for DBEst++ and universal DeepDB.

COUNT SUM AVG OVERALL
0.0%

0.2%

0.5%

0.8%

1.0%

1.2%

1.5%

1.8%

R
el

at
iv

e
E

rr
or

 (
%

)

1.49% 1.48%

0.33%

1.09%

1.84% 1.84%

0.21%

1.30%

DBEst++
DeepDB

Figure 10: Accuracy comparison for Compact Models for
Queries over the TPC-DS Dataset (SF=10)

10 100 1000
TPC-DS Scaling Factor

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

R
el

at
iv

e
E

rr
or

 (
%

)

1.10% 1.08%

0.89%

1.30% 1.30%
1.35%

DBEst++
DeepDB

Figure 11: Comparison of Overall Relative Error for Queries
over the TPC-DS Dataset

10 100 1000
TPC-DS Scaling Factor

0

500

1000

1500

S
pa

ce
 O

ve
rh

ea
ds

 (
K

B
)

83 139

309

1301
1412

1508

DBEst++
DeepDB

Figure 12: Space Overheads for Queries over the TPC-DS
Dataset.

Figure 13 shows the relative errors for the Flights dataset. This
dataset is much simpler and easier to achieve great performance
than TPC-DS. We include it here only in order to have a com-
mon test dataset to compare against DeepDB. Both DBEst++ and
DeepDB enjoy extremely high accuracy. For instance, if the 5m sam-
ple is used, the overall relative error is below 0.5% for DBEst++ and
DeepDB. As the sample size increases from 1 million to 5 million,
we see a reduction in relative errors for DBEst++ and DeepDB.

Learned ApproximateQuery Processing:
Make it Light, Accurate and Fast CIDR ’21, January 10–13, 2021, Chaminade, USA

1m 5m
Sample Size

0.0%

0.2%

0.5%

0.8%

R
el

at
iv

e
E

rr
or

 (
%

)

0.88%

0.46%

0.76%

0.37%

DBEst++
DeepDB

Figure 13: AccuracyComparison forQueries over the Flights
Dataset

1m 5m
Sample Size

0

1000

2000

3000

4000

S
pa

ce
 O

ve
rh

ea
ds

 (
K

B
)

170 35

3502

4314

DBEst++
DeepDB

Figure 14: Space Overheads for Queries over the Flights
Dataset

Figure 14 compares the space overheads between DBEst++ and
DeepDB. Again, we see a big difference in space overheads be-
tween DBEst++ and DeepDB. For instance, if the 5m sample is used,
DBEst++ requires 35 kilobytes, while DeepDB needs 4.3 megabytes.
This represents more than 2 orders of magnitude savings in memory
footprint.

4.4 Impact of Word Embedding
Section 3.4 introduced word embeddings within DBEst++ for cate-
gorical attributes, and explained the rationale and intuition under-
pinning its utilization and expected improvements over other the
traditional techniques, such as one-hot encoding and binary encod-
ing for inputing data to neural networks. We expected that word
embeddings would group together "similar" items in the embedded
space. Similarity here refers to the values of attributes among dif-
ferent rows. (Therefore, the model’s accuracy is improved.) Using
only a one-hot or binary encoding would fail to capture such latent
relationships between items as they would be transformed into an
orthogonal representation in another dimension.

We conduct the same experiments as in Section 4.2. Instead of
using word embeddings, one-hot encoding or binary encoding is
used to input categorical attributes into the MDNs. This would
reveal the gains due to embeddings.

Figures 15 and 16 summarize the relative error of DBEst++ for
queries over the TPC-DS dataset using one-hot and binary encod-
ing, and word embedding. Take COUNT queries as an example, as
shown in Figure 15. For scaling factor equal to 10, the relative er-
ror is 3.26% (3.73%) if binary (one-hot) encoding is used. We see a
significant decrease in relative error if word embedding is used –
the corresponding relative error is only 1.49%. The same conclu-
sion holds for the TPC-DS dataset with various scaling factors and
SUM, AVG queries. Also, it is worthwhile to note that we do not
have statistics of one-hot encoding for scaling factor=1000. One-hot

10 100 1000
TPC-DS Scaling Factor

0.0%

1.0%

2.0%

3.0%

4.0%

R
el

at
iv

e
E

rr
or

 (
%

)

1.49%

1.08% 1.18%

3.26%

2.82%

4.61%

3.73%
3.89%

Word Embedding
Binary
One-hot

Figure 15: Comparison of Relative Error BetweenWord Em-
bedding, One-hot and Binary Encoding for COUNTQueries.

10 100 1000
TPC-DS Scaling Factor

0.0%

1.0%

2.0%

3.0%

4.0%
R

el
at

iv
e

E
rr

or
 (

%
)

1.48%

1.11% 1.12%

3.66%

3.15%

4.72%
4.53%

2.90%

Word Embedding
Binary
One-hot

Figure 16: Comparison of Relative Error BetweenWord Em-
bedding, One-hot and Binary Encoding for SUM Queries.

encoding requires much larger memory and is not ideal for large
groups.

4.5 Sensitivity to Attribute Cardinality
It is known that sample-based AQP solutions (like VerdictDB) are
challenged for GROUP BY queries with a large number of groups.
There must be enough representative points per group to guarantee
high accuracy. As a consequence, the sample size must be greatly
increased to achieve good accuracy. Expert readers will also know
that even ML-based approaches struggle with high-cardinality cat-
egorical attributes. Here, we compare the performance of DBEst++,
DeepDB and VerdictDB for 30 GROUP BY queries with the following
query template:

SELECT s s _ s t o r e _ s k , s s _ qu an t i t y , AF (s s _ s a l e s _ p r i c e)
FROM s t o r e _ s a l e s
WHERE s s _ s o l d _ d a t e _ s k BETWEEN low AND high
GROUP BY s s _ s t o r e _ s k , s s _ q u a n t i t y

CIDR ’21, January 10–13, 2021, Chaminade, USA Qingzhi Ma, Ali M. Shanghooshabad, Mehrdad Almasi, Meghdad Kurmanji, Peter Triantafillou

where the aggregate function (AF) is COUNT, SUM or AVG, and the
range predicate is randomly generated within the space domain.
Here, the TPC_DS dataset is scaled up with SF=1000, resulting in
2.8 billion tuples and the grouping attribute has more than 50,000
distinct values (groups). The sample size ranges from 2.5m to 30m.

2.5m 5m 10m 20m 30m
Sample Size

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

R
el

at
iv

e
E

rr
or

 o
f C

O
U

N
T

 Q
ue

rie
s(

%
)

11.90%

8.02%

6.14%

4.52%
3.84%

5.47% 5.36% 5.25% 5.27% 5.23%

27.23%

19.61%

14.24%

10.38%

8.70%

5.19% 5.17% 5.12%

DBEst++
DeepDB
VerdictDB
DBEst++ with FT

Figure 17: Comparison of Sensitivity on Large Groups for
COUNT Queries.

2.5m 5m 10m 20m 30m
Sample Size

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

R
el

at
iv

e
E

rr
or

 o
f S

U
M

 Q
ue

rie
s

(%
)

12.67%

8.02%
6.25%

4.60% 4.02%
5.64% 5.37% 5.30% 5.33% 5.27%

35.76%

25.27%

17.91%

12.59%

10.29%

5.58% 5.44% 5.37%

DBEst++
DeepDB
VerdictDB
DBEst++ with FT

Figure 18: Comparison of Sensitivity on Large Groups for
SUM Queries.

Figures 17 and 18 show the effect of sample size on relative error
for DBEst++, DeepDB and VerdictDB. Take COUNT queries as an
example, as shown in Figure 17. With a sample of size 2.5m, Ver-
dictDB’s relative error (27.23%) is unacceptably high. The relative
error for DBEst++ and DeepDB is 11.90% and 5.47%, respectively.
This substantiates the intuition that the sample-based AQP engine
VerdictDB performs worse for large groups. However, note that
also the accuracy of DBEst++ is poor. On the other hand, the error
of DeepDB is better for small sample sizes. However, note that this
error, albeit better for small sample sizes, it is still very high (ap-
proximately 5%). And, unfortunately, it is stable even for increasing
sample sizes. As the sample size increases, the error of DBEst++ and
VerdictDB decreases.

As the sample size increases to more than 20m, DBEst++ over-
takes DeepDB and becomes the most accurate AQP solution for
large groups. The same conclusion holds for SUM queries.

By default, DBEst++ uses the frequency table (FT) obtained from
the samples to scale up the predictions (see eq. (1)). When sample
sizes are smaller, as shown in Figures 17 and 18, DBEst++ has a
higher error, largely caused by the inaccuracy of estimating the
frequency table from the samples. So we set out to see the effect of
this scaling up error, computing the exact frequency table statistics
- which only requires one COUNT/Group BY query beforehand
to compute. Use the exact frequency table to scale up the results
reported by the DBEst++ AQP engine, (marked as DBEst++ with FT)
are shown in Figures 17 and 18. Clearly, even for the small sample
of size 2.5m, DBEst++with FT achieves smaller relative error (5.19%)
than DeepDB(5.47%), or that of DBEst++ with estimated frequency
tables (11.90%) for COUNT queries. This is even better than DeepDB
trained over a 30m sample. As the sample size increases, the relative
error of DBEst++ with FT decreases slightly.

Overall, sample-based AQP solutions like VerdictDB do not deal
with large groups accurately. DeepDB achieves much better accu-
racy than VerdictDB. However, increasing the sample size does
not decrease the overall error. DBEst++, as a model-based AQP ap-
proach, provides the most accurate answer with its error improved
with larger samples. And also provide the smallest error even with
small samples with exact frequency statistics.

4.6 Updatability
In this subsection, we conduct experiments to study how well
DBEst++ performs when unseen-previously data is inserted into
the database. We use a 100-million-row store_sales table from the
TPC-DS dataset. The setup we use is similar to that used by DeepDB,
which showed how well it handles such updates (only for COUNT
queries).

Our experiments are conducted as follows: We split the 100-
million-row table into two partitions, P1 and P2: P1 has 90% of
the table (90m rows) as the original data from which the DBEst++
model will be created. P2 has 10% of the original table (10m rows).
P2 will be used as a pool from which to derive the new previously-
unseen data items to be inserted into the DB. As before, the DBEst++
models will be trained on a small sample (5m rows) of the original
data (90m rows). And updates/insertions will be ‘streaming’into
the system in batches. We generate 19 such batches. Each batch
contains 50k rows sampled (without-replacement) from partition
P2. We track the accuracy of DBEst++ estimations after each batch.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Batch Number

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Re
la

tiv
e

Er
ro

SUM
COUNT
AVG

Figure 19: Relative Error When FTs Are Updated Only.

Learned ApproximateQuery Processing:
Make it Light, Accurate and Fast CIDR ’21, January 10–13, 2021, Chaminade, USA

Figure 19 illustrates the mean relative error if only the FTs are
updated. At batch 0, we create the DBEst++model from a 5m sample
from P1. At batch 1, a new 50k batch arrives (a 50k sample without
replacement from P2). At this point we update the frequency tables
of DBEst++ and then re-calculate the error of the same queries.
This repeats for every new batch until batch 19. For COUNT queries,
the curve is a constant. This implies that the MDN density es-
timator generalizes nicely and can predict cardinalities without
performance degradation. Also, despite the unpredictable behavior
on new batches, for many batches (1, 3, 5, 6, 7, . . .) the model can
make accurate predictions for SUM and AVG queries with small
performance degradation. With the first experiment, the only thing
that we capture from new data is the change of cardinality. Due to
the generalization of the model, DBEst++ enjoys good accuracy.

In the second experiment, we update the frequency tables and the
MDN models. Figure 20 shows the errors for this case. At batch 0 we
train DBEst++. At batch 1, a new batch of data arrives and we update
FTs and also update the MDN models. Updating the MDN models
in this case means that we maintain the weights of the previously-
built models at batch 0 (copying them to a new MDN network) and
feed-forward each of the new items in the 50k batch, which updates
the overall MDN weights to account for the new items. This repeats
for every new batch of data until batch 19. As shown in the figure,
the relative error gradually converges to another state (after 12
updates). This phenomenon is due to a well known in incremental
learning, known as "catastrophic forgetting".

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Batch Number

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e

Er
ro

SUM
COUNT
AVG

Figure 20: Relative ErrorWhen FTs andMDNs Are Updated.

To rectify this increased error we turn to using a smaller learn-
ing rate when we feed-forward the new items through the MDNs.
Figure 21 shows the results for this approach. Specifically, here
we set 𝐿𝑅_𝑛𝑒𝑤 to 𝐿𝑅_𝑏𝑎𝑠𝑒/100 where 𝐿𝑅_𝑏𝑎𝑠𝑒 is the learning rate
we used to train the original model. (We chose to decrease it by
a factor of 100 as each batch size is 1/100 of the sample size with
which we trained the original models.) This figure illustrates the
ability of DBEst++ to deal with such data updates. It even shows
that accuracy improves with time. This can be intuitively explained
as the model sees increasingly more of the data after each batch.

In the following table, Table 1 we depict the time costs associated
with updating the DBEst++ models for the above experiments. As
we can see, DBEst++ can maintain high accuracy even when faced
with fairly large batches of new data insertions, while the overhead
to maintain such high accuracy is very small.

Table 1: Training time for updating the models to account
for a new batch of 50k unseen tuples

Method 1 Method 2 Method 2: Smaller lr
Training time (s) 2 44 46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Batch Number

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Re
la

tiv
e

Er
ro

SUM
COUNT
AVG

Figure 21: Fine-tuningModelsWith a Smaller Learning Rate

4.7 Parallel Inference
As mentioned, DBEst++ is embarrassingly parallelizable. This is
achieved by dividing the search space (e.g., the number of values of
a categorical/group attribute) into the number of available threads.
Currently, DeepDB does not support parallel inferencing and it is
not clear how to do this. We run 10 GROUP BY queries with more
than 50,000 groups, each from the TPC-DS data.

0 2 4 6 8 10 12 14 16 18
Number of Processes

5

10

T
im

e
C

os
t (

s) DBEst++
DeepDB

Figure 22: QueryResponseTimeReductionwithVaryingDe-
grees of Parallelism

Figure 22 shows that query response time decreases linearly as
the degree of parallelism increases. For instance, it takes 13.38s
for DBEst++ to process such a query. If 20 cores are used, query
response time drops to 0.78s.

5 RELATEDWORK
Many research projects are ongoing to enhance the functionalities
of, or replace, RDBMSs by ML models. ML models are widely used
for approximate query processing [21, 29, 42], workload forecasting
[28], and database tuning [44, 46]. SageDB [25] aims to replace all
components in RDBMSs by ML models. Models could also be used
for exact query processing. For instance, the learned index [26]
predicts approximate locations for tuples, and adjacent pages are
also fetched during query processing.

With respect to AQP, there existmanywell-established approaches,
including online aggregation [19], data sketches [10] and sample-
based approaches [2, 34].The state-of-the-art AQP was up to very

CIDR ’21, January 10–13, 2021, Chaminade, USA Qingzhi Ma, Ali M. Shanghooshabad, Mehrdad Almasi, Meghdad Kurmanji, Peter Triantafillou

fairly recently dominated by sampling-based approaches. STRAT
[8] creates stratified samples to answer GROUP BY and HAVING
queries. BlinkDB [2] maintains uniform and stratified samples, and
a sample of specific size is automatically selected for fast query
processing with bounded errors. To create samples, STRAT consid-
ers combinations of all column pairs, BlinkDB makes samples over
popular column sets, while VerdictDB [34] relies on the user to pro-
vide such information. To guarantee high accuracy, large samples
are usually generated and maintained. This potentially increases
the space overheads, and the corresponding query response time is
still high.

More recently learned approaches for AQP emerged. Such efforts
include DBEst [29], DeepDB [21], deep generative models [43], etc.
and can achieve lower query response times and higher accuracy.
With respect to space overheads, models tend to be smaller than
samples. However, it is not always the case. For instance, DBEst
maintains a density estimator and a regressor for each group of a
grouping attribute. If the number of groups is very large, the size
of models can explode, limiting its appeal for many queries.

6 FUTUREWORK
Our current plans for future work include the following. First, sup-
port for updating ML models for AQP need further investigation.
Currently, only insertion operations has been supported and tested.
Support deletion operations (in addition to insertions) and with-
out forgetting the past DB state creates interesting and difficult
challenges, as neural networks have not been designed for such
contexts.

Additionally, it is worth pursuing more elaborate approaches for
avoiding catastrophic forgetting, while enabling learning from new
data. This is expected to be a formidable undertaking when new
data comes from significantly different underlying distributions.
Methods for concept drift detection may come in handy for this
task. Similarly for methods for fusing old and new models.

An interesting challenge comes from investigate what error guar-
antees can be provided for learned AQP engines. As DBEst++ rests
on regression as its underpinning driver, prediction intervals as
they have been employed within various regression models may
prove beneficial.

Finally, our experience is that many learned approaches strug-
gle with large-cardinality categorical attributes. The latter tend to
adversely impact the sizes of models and/or their accuracy and
training times. Hence, more research is warranted to address these
challenges.

7 CONCLUSION
In this paper, we have argued for light learned AQP engines and
introduced the DBEst++ AQP engine. At its essence, DBEst++ is
underpinned by a regression-inspired approach to estimating an-
swers to analytical queries, continuing in this respect the insights
of the original DBEst engine [29]. The new engine, DBEst++ puts
forth a novel learned AQP architecture comprised of models for
(i) word embedding, (ii) density estimation using MDNs, and (iii)
regression-based prediction for aggregation function/variable val-
ues using again MDNs. Experimental results show that DBEst++
achieves higher accuracy and shorter response time performance

than the current state of the art sampling-based and learned ap-
proaches. At the same time it comes with dramatically reduced
memory footprints. Our results also show that DBEst++ maintains
high accuracy even under settings where the underlying datasets
are changing with time. Likewise, DBEst++ shows the best perfor-
mance for challenging cases, such as high-cardinality categorical
attributes. We hope this contribution will spark a discussion in our
community and a trend towards light AQP learned DB functionality
and their integration into DB engines.

REFERENCES
[1] Jean-Marc Adamo. 2001. Data mining for association rules and sequential patterns:

sequential and parallel algorithms. Springer Science & Business Media.
[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,

and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems. 29–42.

[3] Christos Anagnostopoulos and Peter Triantafillou. 2014. Scaling out Big Data
Missing Value Imputations: Pythia vs. Godzilla. , 651–660 pages.

[4] Christos Anagnostopoulos and Peter Triantafillou. 2015. Learning Set Cardinality
in Distance Nearest Neighbours. In Proceedings of the 2015 IEEE International
Conference on Data Mining (ICDM) (ICDM ’15). 691–696.

[5] Christos Anagnostopoulos and Peter Triantafillou. 2015. Learning to Accurately
COUNT with Query-Driven Predictive Analytics.

[6] C. Anagnostopoulos and P. Triantafillou. 2017. Efficient Scalable Accurate Regres-
sion Queries in In-DBMS Analytics. In 2017 IEEE 33rd International Conference
on Data Engineering (ICDE). 559–570.

[7] Christos Anagnostopoulos and Peter Triantafillou. 2017. Query-Driven Learning
for Predictive Analytics of Data Subspace Cardinality. ACM Trans. Knowl. Discov.
Data 11, 4 (2017), 47:1–47:46.

[8] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. 2007. Optimized stratified
sampling for approximate query processing. ACM Transactions on Database
Systems (TODS) 32, 2 (2007), 9–es.

[9] Ronan Collobert. 2014. Word embeddings through hellinger pca. In in Proceedings
of the 14th Conference of the European Chapter of the Association for Computational
Linguistics. Citeseer.

[10] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[11] Philipp Eichmann, Emanuel Zgraggen, Carsten Binnig, and Tim Kraska. 2020.
Idebench: A benchmark for interactive data exploration. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. 1555–1569.

[12] Charles Flock and Joe Stampf. 2009. XLeratorDB. https://westclintech.com/
[13] Sylvia Frühwirth-Schnatter. 2006. Finite mixture and Markov switching models.

Springer Science & Business Media.
[14] Amir Globerson, Gal Chechik, Fernando Pereira, and Naftali Tishby. 2007. Eu-

clidean embedding of co-occurrence data. Journal of Machine Learning Research
8, Oct (2007), 2265–2295.

[15] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio.
2013. An empirical investigation of catastrophic forgetting in gradient-based
neural networks. arXiv preprint arXiv:1312.6211 (2013).

[16] Alex Graves. 2013. Generating sequences with recurrent neural networks. arXiv
preprint arXiv:1308.0850 (2013).

[17] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-
nieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, et al. 2016. Hybrid computing using a neural
network with dynamic external memory. Nature 538, 7626 (2016), 471–476.

[18] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1035–1050.

[19] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. 1997. Online aggregation.
In Proceedings of the 1997 ACM SIGMOD international conference on Management
of data. 171–182.

[20] Joseph M Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, et al. 2012. The MADlib analytics library: or MAD skills, the SQL.
Proceedings of the VLDB Endowment 5, 12 (2012), 1700–1711.

[21] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: learn from data, not from queries!
Proceedings of the VLDB Endowment 13, 7 (2020), 992–1005.

[22] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily Approximat-
ing Complex AdHoc Queries in BigData Clusters. In Proceedings of the 2016

https://westclintech.com/

Learned ApproximateQuery Processing:
Make it Light, Accurate and Fast CIDR ’21, January 10–13, 2021, Chaminade, USA

International Conference on Management of Data. 631–646.
[23] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and

Alfons Kemper. 2018. Learned cardinalities: Estimating correlated joins with
deep learning. arXiv preprint arXiv:1809.00677 (2018).

[24] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences 114, 13 (2017), 3521–
3526.

[25] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019.
Sagedb: A learned database system. (2019).

[26] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data. 489–504.

[27] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems. 2177–2185.

[28] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo,
and Geoffrey J Gordon. 2018. Query-based workload forecasting for self-driving
database management systems. In Proceedings of the 2018 International Conference
on Management of Data. 631–645.

[29] Qingzhi Ma and Peter Triantafillou. 2019. Dbest: Revisiting approximate query
processing engines with machine learning models. In Proceedings of the 2019
International Conference on Management of Data. 1553–1570.

[30] Qingzhi Ma and Peter Triantafillou. 2020. Query-Centric Regression for In-DBMS
Analytics.. In DOLAP. 16–25.

[31] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[32] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The Making of TPC-DS..
In VLDB, Vol. 6. 1049–1058.

[33] Aniruddh Nath and Pedro M Domingos. 2015. Learning relational sum-product
networks. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

[34] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018. Ver-
dictdb: Universalizing approximate query processing. In Proceedings of the 2018
International Conference on Management of Data. 1461–1476.

[35] Anthony Robins. 1995. Catastrophic forgetting, rehearsal and pseudorehearsal.
Connection Science 7, 2 (1995), 123–146.

[36] Lior Rokach and Oded Z Maimon. 2008. Data mining with decision trees: theory
and applications. Vol. 69. World scientific.

[37] Fotis Savva, Christos Anagnostopoulos, and Peter Triantafillou. 2019. Explaining
Aggregates for Exploratory Analytics. , 478–487 pages.

[38] F. Savva, C. Anagnostopoulos, and P. Triantafillou. 2020. SuRF: Identification of
Interesting Data Regions with Surrogate Models. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1321–1332.

[39] Fotis Savva, Christos Anagnostopoulos, Peter Triantafillou, and Kostas Kolomvat-
sos. 2020. Large-scale Data Exploration using Explanatory Regression Functions.
ACM Transactions on Knowledge Discovery from Data (08 2020).

[40] Ji Sun and Guoliang Li. 2019. An end-to-end learning-based cost estimator. arXiv
preprint arXiv:1906.02560 (2019).

[41] Siri Team. 2017. Deep learning for Siri’s voice: on-device deep mixture density
networks for hybrid unit selection synthesis. Apple Machine Learning J 1, 4
(2017).

[42] Arvind Thiagarajan and Samuel Madden. 2008. Querying continuous functions
in a database system. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. 791–804.

[43] Saravanan Thirumuruganathan, Shohedul Hasan, Nick Koudas, and Gautam Das.
2020. Approximate query processing for data exploration using deep generative
models. In 2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 1309–1320.

[44] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017.
Automatic database management system tuning through large-scale machine
learning. In Proceedings of the 2017 ACM International Conference on Management
of Data. 1009–1024.

[45] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a learning optimizer for shared clouds.
Proceedings of the VLDB Endowment 12, 3 (2018), 210–222.

[46] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, et al. 2019. An end-to-end automatic
cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 International Conference on Management of Data. 415–432.

	Abstract
	1 Introduction
	2 Design Choices, Rationale and Motivations
	3 System Overview
	3.1 DBEst++ Query Processing Foundations
	3.2 System Architecture
	3.3 Mixture Density Networks
	3.4 Word Embeddings
	3.5 Updatability

	4 PERFORMANCE EVALUATION
	4.1 Experimental Setup
	4.2 TPC-DS Dataset
	4.3 Flights Dataset
	4.4 Impact of Word Embedding
	4.5 Sensitivity to Attribute Cardinality
	4.6 Updatability
	4.7 Parallel Inference

	5 Related Work
	6 Future Work
	7 Conclusion
	References

