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Abstract

This thesis comprises three essays focusing on real crude oil price forecasting and

structural analysis. The first essay (Chapter 2) begins by broadly reproducing

Baumeister & Kilian’s (2015) main economic findings, where an equal-weight com-

bination of six econometric models outperforms a recursive mean squared predic-

tor error weight based combination in oil-price point forecasting. The six mod-

els are an unrestricted global oil market vector autoregression, a commodity-price

model, an oil-futures-spread model, a gasoline-spread model, a time-varying parame-

ter product-spread model, and a random-walk model. I use their preferred measures

of the real oil price and similar real-time variables. Remaining mindful of the im-

portance of Brent crude oil as a global price benchmark and the divergence in oil

price measures since 2010, I extend consideration to the North Sea-based measure

and update the evaluation sample to 2016:12, finding that the combined forecasts

for Brent crude oil are as accurate as the forecasts for other oil price measures. The

extended sample employing the oil price measures adopted by Baumeister & Kilian

(2015) yields similar results to those reported in their paper.

The second essay (Chapter 3) uses a Bayesian vector autoregression (BVAR)

utilising time-varying parameters and stochastic volatility modelling time variation

in forecasting real crude oil prices. An unrestricted global oil market vector au-

toregression and the equal-weight combination in Baumeister & Kilian (2015) are

benchmarks. I extend the evaluation for model comparison purposes from standard

statistical terms of point and density forecasts to an economic evaluation based

xii



on which specification would be more profitable in the crude oil futures market,

and the forecast likelihood of extreme high and low real crude oil prices. For the

same evaluation period as in Chapter 2, 1992:01–2016:12, the empirical results offer

strong support for models using stochastic volatility in real crude oil price density

forecasts relative to conventional VAR. Restricting time-varying parameters and al-

lowing stochastic volatility can increase the probability of positive excess returns

through utilising daily crude oil futures data, and can improve the calibration of

the extreme high and low real oil price events forecasting. In conclusion, adding

stochastic volatility and using the stochastic model specification search shrinkage

prior of Eisenstat et al. (2016) are both important in ensuring reliable forecasts.

Finally, in the third essay (Chapter 4) I develop a parallel Metropolis–

Hastings (MH) algorithm to identify and compute Bayesian structural vector au-

toregressions (SVARs), which I refer to C-BSVARs. The motivation for this is the

inefficiency of the traditional computation method for SVARs under certain types

of identification. C-BSVARs extend Baumeister & Hamilton’s (2015) method from

only using sign restrictions to a broader set of identification assumptions and im-

prove the computational efficiency relative to the traditional method for SVARs.

Two specifications from the world crude oil market modelling are used to illustrate

this. The first employs Kilian & Murphy’s (2014) set of identification restrictions,

while the second imposes an additional restriction on top of theirs — the uncertainty

of a lower-bound on ‘the short-run oil demand elasticity for use’. C-BSVARs dra-

matically improve the acceptance rate for models deemed as admissible relative to

the method used in Kilian & Murphy (2014), and it can narrow the critical intervals

of Kilian & Murphy’s (2014) impulse response functions. The additional restriction

in the second specification enables precise estimates of oil demand elasticities, which

is of importance for deciding the existence of crude oil price endogeneity and the

relative weights of oil demand and supply shocks for driving the fluctuation of crude

oil prices. To my knowledge, only the C-BSVARs approach in the existing SVARs

literature is able to impose the restriction of uncertainties for elasticities, thereby

providing a novel way of identifying key structural parameters that are non-linear.

xiii



Chapter 1

Introduction

Oil price shocks have long been viewed as one of the leading candidates for explain-

ing economic fluctuations in the U.S. and global economies, and therefore accurate

forecasting of real crude oil prices is of considerable importance. In this thesis I (1)

extend Baumeister & Kilian’s (2015) analysis of point forecasts of real oil prices to

post-oil-price slump data while incorporating the Brent measure, and then (2) turn

to density forecasts of crude oil prices with a new model space considering the time

variation of parameters. Further, I develop a new Bayesian algorithm which allows

for world oil market transmission analysis. This is motivated by the fact that the

traditional accept–reject method for structural vector autoregressions (SVARs) fre-

quently employed in the oil literature is a computationally inefficient method when

imposing restrictions, for example the dynamic sign restrictions approach employed

in Kilian & Murphy (2014).

Baumeister & Kilian (2015) combine the forecasts from six empirical mod-

els to predict real oil prices, and for their 1992:01–2012:09 evaluation period they

demonstrate that forecast combinations are substantially more accurate than no-

change forecasts at horizons up to 18 months. Following the introduction, Chapter

2 begins by broadly reproducing their main economic findings, using their preferred

measures of the real oil price and similar real-time variables. Given the importance

of Brent crude oil as a global price benchmark and the divergence in oil price mea-

sures since 2010, I extend consideration to the North Sea-based measure and update

the evaluation sample to 2016:12. I find that the combined forecasts for Brent crude

oil are as accurate as the forecasts for other oil price measures, while the extended

sample utilising the oil price measures adopted by Baumeister & Kilian (2015) yields

similar results to those reported in their paper.

1



Baumeister & Kilian’s (2015) combination method is effective for point fore-

casts of real crude oil prices, as confirmed in Chapter 2. However, density forecast-

ing is important, because in general a loss function needs more information than

typically given in the point forecast. Chapter 3 introduces a new model space: a

Bayesian vector autoregression (BVAR) considering time-varying parameters and

stochastic volatility, applied to unrestricted 4-variable world oil market VAR pro-

posed in Kilian & Murphy (2014). This is aimed at incorporating the time variation

of parameters thought to be a feature of the oil markets whilst at the same time

retaining the interactions allowed for through the use of the VAR. Specifically in

Chapter 3, I (1) minimise the one-step-ahead in-sample forecasts Kullback–Leibler’s

‘distance’ whilst incorporating the elimination of out-of-sample extreme forecasts,

which in turn enables the shrinkage of highly parameterised models’ out-of-sample

density forecasts, particularly at long-forecast horizons; and (2) extend the evalua-

tion for model comparison purposes from standard statistical metrics for point and

density forecasts to profit and event outcome based metrics which suggest specifica-

tions that would be more profitable in the crude oil futures market, and the accuracy

of forecasting the likelihood of extreme high and low real crude oil prices. Over the

1992:01–2016:12 period, the empirical results offer strong evidence in favour of mod-

els using stochastic volatility in real crude oil price density forecasts as opposed to

using a conventional VAR. Two specifications standout in terms of the density and

probability event forecast performance: a constant parameter VAR with stochas-

tic volatility, as well as, a specification with stochastic volatility and time-varying

parameters. For the second model a majority of the parameters were restricted to

be time-invariant via a stochastic model specification selection prior and a linear

opinion pool combination model for the 1- to 12-month VAR lag length choices.

In contrast to Chapters 2 and 3, Chapter 4 contributes to the SVARs liter-

ature with two specifications of the world crude oil market. The 4-variable world

oil market SVARs developed in Kilian & Murphy (2014) is widely utilised in the

real crude oil literature. The traditional accept-reject method for SVARs, employed

in Kilian & Murphy (2014), is a computationally inefficient method of imposing

identification. One consequence is that typically only a low number of admissible

draws are available, leading to imprecise inferences. For example, the sifting of 16

models in Kilian & Murphy (2014) required 5,000,000 posterior draws, only 150 of

which were deemed admissible. Recently, an alternative method of identifying sign

restrictions was proposed in Baumeister & Hamilton (2015), which does not run into

the computational problem, but it is limited to sign restrictions only. In practice,

however, a set of identification restrictions, including further qualitative restrictions

2



taking the analysis beyond the use of sign of contemporary correlation matrix, is

required for precise estimates.

Therefore, Chapter 4 develops a constrained estimation of Bayesian SVARs,

which I refer to as C-BSVARs. C-BSVARs use a parallel Metropolis–Hastings (MH)

algorithm to identify and compute Bayesian SVARs, which extends Baumeister &

Hamilton’s (2015) method from sign to a set of identification restrictions. In Chap-

ter 4 I illustrate that C-BSVARs enable a flexible identification scheme, and dra-

matically improve the computational efficiency relative to traditional accept-reject

SVARs using two specifications of the 4-variable world oil market SVAR proposed in

Kilian & Murphy (2014). The first specification employs Kilian & Murphy’s (2014)

exact identification, and finds results consistent with their economic findings. How-

ever, the density estimates of oil demand elasticities are too diffuse, and are sensitive

to the choice of seed for random numbers. From the evidence of the convergence

diagnostics, the sensitivity is highly probably caused by the non-unimodal posterior

distributions of the elasticities, which may lead a standard MH sampler to sample

draws within a local maximum (Waggoner et al., 2016). However, the magnitude

of oil demand elasticities is of considerable importance, since this determines the

existence of oil price endogeneity and the relative importance of oil demand and

supply shocks in terms of influencing oil market fluctuations. The second specifica-

tion, therefore, proposes an additional identification restriction — the uncertainty

of a lower-bound on the short-run oil demand elasticity for use, which is randomly

sampled from a truncated Student t distribution — whilst relating Kilian & Mur-

phy’s (2014) set of identification restrictions. Due to the inclusion of this additional

restriction, C-BSVARs not only narrow the distribution of impulse response func-

tions, but shift the estimates of oil demand elasticities towards zero, and has the

desirable features of being insensitive to the seeds. Note also that the second speci-

fication provides a novel way of identifying key structural parameters’ uncertainty,

which are non-linear.

Each chapter is self-contained, as described above, and thus each chapter

will provide an introduction including the specific motivation for each method, and

contain the necessary information for the reader to understand the intuition of the

methods proposed. Further technical details and additional empirical results are

illustrated in the appendices. Chapter 2 has been published as Garratt, A., Vahey,

S. P., & Zhang, Y. (2019). Real-time forecast combinations for the oil price. Journal

of Applied Econometrics, 34(3), 456–462. Chapters 3 and 4 will be subsequently

submitted to academic journals.
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Chapter 2

Point Forecasts of Real Crude

Oil Prices: Combinations for

Baumeister & Kilian’s (2015)

Model Space

Abstract

Baumeister & Kilian (2015) combine forecasts from six empirical models to predict

real oil prices. Over their 1992:01 to 2012:09 evaluation period, they demonstrate

that forecast combinations are substantially more accurate than no-change forecasts

at horizons up to 18 months. In this chapter, I begin by broadly reproducing their

main economic findings, employing their preferred measures of the real oil price

and similar real-time variables. Mindful of the importance of Brent crude oil as

a global price benchmark and the divergence in oil price measures since 2011, I

extend consideration to the North Sea based measure and update the evaluation

sample to 2016:12. I find that the combined forecasts for Brent match the precision

of Baumeister & Kilian’s own combination forecasts (for other their preferred oil

price measures). The extended sample using the oil price measures adopted by

Baumeister & Kilian (2015) yields similar results to those reported in their paper.

The real-time data set for this replication is available for download from the web of

National Institute of Economic and Social Research (NIESR).
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2.1 Introduction

There are three notable features of the oil market since 2011 the divergence between

Brent crude, the U.S. refiners’ acquisition cost (RAC) for crude oil imports, and the

West Texas Intermediate (WTI) measures of the oil price; the convergence of the

measures since 2014:08; and the rapid fall in these measures in the summer of 2014.

2010:01 2011:01 2012:01 2013:01 2014:01 2015:01 2016:01 2017:06
10

15

20

25

30

35

40

45

50

55

WTI

RAC

Brent

Figure 2.1: Monthly real crude oil prices (nominal prices divided by the
U.S. consumer price index (CPI))

These characteristics are illustrated in Figure 2.1, which displays the real oil

price since 2010. The divergence of crude oil price measures, with Brent oil prices

persistently higher than the RAC and WTI, is most pronounced after 2011:01 and

leading up to the oil price fall, after which the differential is reduced while nonethe-

less remaining a feature. Baumeister & Kilian (2015) argue that the WTI measure

has suffered from structural instability following the restrictions on U.S. crude oil

exports and transportation bottlenecks since 2011, highlighting the lack of arbitrage

between WTI and Brent. The reduced divergence after 2014:06 reflects partially the

repeal of the oil export ban at the end of 2015 and the boom in the U.S. tight oil

production, reducing the U.S. crude oil demand from imports and stimulating ex-

ports of refined products (Kilian, 2017).

Many candidate explanations for the sharp drop in the nominal (real) oil

price since 2014:07 across all three measures have been proposed in the literature.
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The increased supply of oil, with the growth in North American shale oil production

and the boom of U.S. crude oil exports since 2014, coupled with a reduced sensi-

tivity to geopolitical uncertainties in Russia, Iraq, Iran, Libya and the organization

of the petroleum exporting countries (OPEC) affecting the elasticity of supply; see

ECB (2014). Baumeister & Kilian (2016a,c) emphasise the importance of weak

demand for crude oil in particular for China and the European Union, together

with depressed expectations. Baumeister & Kilian’s (2015) combination provides a

replicable econometric methods for the real crude oil prices forecasts, given a high

weights on demand side, over the sample period 1992:01 to 2012:09.

This chapter repeats the analysis presented by Baumeister & Kilian (2015)

comparing the forecasting performance of six econometric models for the real oil

price, individually and in combination relative to a no-change benchmark model,

over an evaluation period from 1992:01 to 2016:12. Wang et al. (2017) also proposed

combinations, based on single predictor time-varying parameter models, utilising the

most variables in Baumeister & Kilian (2015), and illustrated the predictability of

WTI and RAC measures over an evaluation period from 1992:01 to 2015:12. Two

conspicuous features of their analysis are: (1) their forecasts results do not per-

form significantly different with Baumeister & Kilian (2015)’s combination, and,

(2) they just extended the data back to 1986:01, while Baumeister & Kilian (2015)

consider the most series back to 1973:01. Hence, a multivariate real-time database

vital for subsequent research on the oil market is constructed with this thesis. The

database collates real-time measurements by data vintage for variables similar to

those described by Baumeister & Kilian (2012), where 2017:06 represents the last

observation for all data series.1 The data provides qualitatively similar but not

identical results to those reported by Baumeister & Kilian (2015) over their sample.

Two extensions to the analysis are considered: first, the robustness of the

results are examined utilising the Brent, as opposed to the WTI and RAC oil price

measures; and second, the extension of the evaluation period to end in 2016:12. The

switch to the Brent measure results in similar predictability relative to measures

preferred in Baumeister & Kilian (2015). Predictability is generally not substan-

tially altered by consideration of the longer evaluation period.

The remainder of this chapter is structured as follows. The next section sum-

1National Institute of Economic and Social Research (NIESR) has offered to host the real-time
data set.
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marises the real-time oil market data set, followed by a description of Baumeister

& Kilian’s (2015) models and combinations. The subsequent section describes the

results, recursively extending to a longer evaluation period, before the final section

concludes the chapter.

2.2 A real-time data set for oil price forecasting

When constructing the real-time oil market data set, I broadly follow the nowcast

and backcast methods described in Baumeister & Kilian (2012, 2015), with the

main differences between my data set and Baumeister & Kilian’s (2012) being the

extended sample to 2017:06 and the inclusion of the Brent crude oil price. The

data emerging from this thesis provides economically similar although not identical

results to those reported by Baumeister & Kilian (2015) both over their sample and

my extended sample, with their preferred measure of oil prices.

In this chapter, I utilise 18 time-series data, split into series with and without

revisions and briefly summarised in Tables 2.1 and 2.2. These series are available

in real time and without any further revisions including crude oil futures prices, oil

price forecasts from the Short-Term Energy Outlook published by the U.S. Energy

Information Administration (EIA), gasoline price, heating oil price, and an index of

industrial raw materials. However, the rest of the series are revised after the first

release due to the publication delay between the date of the time series observation

and its release. Following the conventional terminology in the real-time macroeco-

nomic forecasting literature, I define “vintage of data” as the historical time series

observed by forecasters at a specific point in time (known as the “vintage date”);

for example, the 2017:06 vintage includes observations only available at the end of

June 2017. There are 307 vintages in total.

Table 2.1 summarises the series’ unit of measurement, frequency, maturities

(or forecast horizons), first observation τ , the last observation τ̄ , whether the se-

ries have missing values, and the source key in the resources under each column.

Meanwhile, the resources of each series are detailed in supporting notes below the

table. The inclusion of EIA forecasts’ data facilitates replication of the compari-

son between the quarterly forecasts from Baumeister & Kilian’s (2015) combination

and the EIA’s quarterly forecasts of RAC, as detailed in Section 2.4.6. Baumeis-

ter & Kilian (2015) specify EIA quarterly forecasts according to the timing of the

7
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Short-Term Energy Outlook issues, a monthly EIA publication. Timing convention

I employs the end-of-quarter issues of the publication (i.e., March, June, September

and December), while timing convention II utilises the first month of the following

quarter (i.e., April, July, October and January), which is consistent with the defini-

tion in Baumeister & Kilian (2015). This study uses 307 observations commencing

in 1991:12 and ending in 2017:06. Moreover, Wiki crude oil futures are employed

for backcasting the missing values of WTI and Brent futures, with details of the

backcast available in Appendix A.3.2.

Series with revisions are summarised in Table 2.2, which are stored in vin-

tages. Columns include unit of measurement, first observation τ , the last observation

τ̄ , the number of observations in a vintage, the publication delay (between the date

of the time series observation and its release, e.g. at time t+1, if I observe time t,

then the number of lags or of publication delays equals 1), the average number of

observations revised, and the source key in the resources. The revision process will

be introduced in Subsection 2.2.1, which is not identical with Baumeister & Kilian

(2012) and specified by an asterisk (∗), and resources of each series are listed in the

footnotes of the table.

The following subsections will summarise the revisions, and provide details

for the nowcasting method. The revision and nowcasts implemented in the real-

time data set influence the point forecast accuracy, which is illustrated in Section

2.4.5. Moreover, Appendix A fills the details of processes for constructing the U.S.

consumer price index for all urban consumers (CPI), and a world real economic

activity index based on the Bulk Dry Cargo Ocean shipping freight rates, which is

not identical but qualitatively indifferent with from the index proposed in Kilian

(2009). Additionally, the process of backcasts is in Appendix A.3.

2.2.1 Revisions

Each monthly issue of the Monthly Energy Review, published by the EIA, reports

the corresponding vintage of five oil market data series considered in this chapter

including RAC, the world crude oil production, the U.S. crude oil inventories, and

the U.S. and the organisation for economic co-operation and development (OECD)

petroleum inventories. The data differs from the preceding issue due to partially

historical revisions and newly released observations. In all cases, the EIA reports

monthly observations to a maximum of three years’ worth of deep history. Baumeis-
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ter & Kilian (2012, p. 327) report that they only used monthly revisions; however,

the EIA provides a more comprehensive history by recording the revised measure-

ments for the annual growth rates, with varying start dates. In contrast, I also utilise

the EIA’s annual revised historical data while assuming equal monthly revisions over

the year, which effectively smooths the unobserved “true” monthly revisions over

the twelve months.

Before illustrating the revisions, it is necessary to clarify the definition of the

in-report sample, and the ex-post revised data, which is specified in Baumeister &

Kilian (2012). Baumeister & Kilian (2015) utilised the same data set in Baumeister

& Kilian (2012), and the most recent data set available at time of the paper was

for 2013:03. Their ex-post observation defined as the 2013:03 vintage, discarding

the last six months data as these data are still preliminary. Consequently, their

in-report sample is vintages 1991:12–2012:09. In this chapter, I extend the sam-

ple to the 2017:06 vintage. Hence, the in-report sample in this exercise is vintages

1991:12–2016:12, and the post-report vintage is 2017:06. Considering this chapter is

a replication, I illustrate the descriptive statistics on data revisions for Baumeister

& Kilian’s (2015) and the extended sample in upper and lower panels of Table 2.3

respectively.

Consistent with Baumeister & Kilian (2012), I present in- and post-report

revisions. The in-report revision is calculated as the percentage change between the

most recent vintage available for a value in subsequent issues of the Monthly Energy

Review within the in-report sample, and the value released on the first vintage. For

example, considering a value is first released in the 1991:12 vintage. The in-report

revision for this value is the average of percentage changes between the value re-

ported in subsequent vintages from 1992:01 to 2016:12 and its first released level.

The number of first released values is identical with the number of vintages. More

specifically, the number of observations (or of the in-sample vintages) in Baumeister

& Kilian’s (2015) sample is 250, while in the extended sample is 301. Therefore,

the in-report average revisions (percentage changes) reported in the first column of

Table 2.3 is the average of in-report revisions for the corresponding samples.
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Table 2.3: Descriptive statistics on data revisions

Ave. Revisions (percentage change) Std. Dev. relative to ex-post data (levels) Subsequent revisions’ magnitude Ave.

number of

in-report

revisions

Variables In-report Post-report In-report Post-report 1st 2nd 3rd

In-report vintage: 1991:12–2012:09 (post-report vintage: 2013:03)

The U.S. Consumer Price In-

dex

−0.057% −0.015% 0.338% 0.191% −0.027 −0.029 0.005 3.98

The U.S. refiners’ acquisition

cost of crude oil imports

0.062% 0.034% 2.940% 1.254% 0.073 0.055 −0.213 3.86

World crude oil production 0.138% 0.160% 0.958% 1.422% 23.015 19.431 20.659 18.49

The U.S. crude oil inventories −0.231% −0.284% 1.953% 2.162% −1.559 −0.475 0.266 2.58

The U.S. petroleum inventories −0.020% −0.064% 4.406% 2.774% −1.686 4.819 1.057 2.80

OECD petroleum inventories −0.141% 0.375% 3.124% 3.892% −1.813 −1.976 −2.092 11.98

In-report vintage: 1991:12–2016:12 (post-report vintage: 2017:06)

The U.S. Consumer Price In-

dex

−0.051% −0.033% 0.260% 0.038% −0.047 −0.026 0.004 4.44

The U.S. refiners’ acquisition

cost of crude oil imports

0.032% −0.020% 2.495% 0.040% 0.024 0.006 −0.173 3.89

World crude oil production 0.150% 0.201% 1.214% 0.513% 29.355 26.399 27.383 24.08

The U.S. crude oil inventories −0.233% −0.701% 2.935% 2.075% −0.877 −0.878 −4.378 3.01

The U.S. petroleum inventories 0.004% −0.259% 4.539% 2.855% −0.826 4.603 −1.760 3.20

The OECD petroleum invento-

ries

−0.071% 0.384% 2.837% 3.223% −0.598 −0.733 −0.830 13.68

Note: The descriptions of each column is detailed in text. In- and post-report revisions’ average of percentage changes and its standard deviation relative to ex-post data

are lower than 5% and essentially zero for all variables considered in both Baumeister & Kilian’s (2015) and extended samples. Extending the sample of the real-time data

set, the average number of in-report revisions is increasing, indicating a raising frequency of revisions. The reasons of subsequent revisions are reported in corresponding

part of issues of Monthly Energy Review.

The post-report revisions are distinguished from the in-report revisions, and

measured as the average of percentage changes between a value reported in ex-post

vintage and the corresponding value reported in all in-sample vintages after its first

released vintage. More specifically, the post-report revision of the value first released

in the 1991:12 vintage is calculated as the average of percentage changes between

its value reported in ex-post vintage and in vintages from 1992:01 to 2016:12. The

post-report average revisions (percentage change) reported in the second column

of Table 2.3 is the average of post-report revisions for values first released in each

vintage within the in-report sample. Standard deviations of the in- and post-report

revisions relative to the standard deviation of the ex-post data are reported in the

third and fourth columns in Table 2.3. However, the in- and post-report revisions

are difference levels instead of percentage changes, which gives a direct comparison

with respect to ex-post observations. I also present the average of first, second and
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third revisions’ magnitude at the corresponding series’ unit of measurement listed

in Table 2.2. The last column provide the average number of in-report revisions.

Consistent with Baumeister & Kilian (2012) and as shown in Table 2.3, the main

conclusion is that although the revisions are tiny relative to its observations, but

this is unforeseeable. The influence of the revisions’ magnitude on foresting accu-

racy may be limited; however, the timing of the revisions influences the forecasting

accuracy. I will detail the forecasting sensitivity relative to the timing of revisions

in Section 2.4.5.

2.2.2 Nowcasts

Baumeister & Kilian (2012) propose a nowcasting method that is able to dramati-

cally improve the out-of-sample forecast accuracy. The nowcast of real-time RAC is

different with the other oil market variables, because RAC can be nowcasted with

the other crude oil price measure, like WTI. Hence, I will introduce method for RAC

and the other oil market data, respectively.

The real-time RAC becomes available with a lag of 3 months from 1991:12

to 2005:07, and with a lag of 2 months post-2005:07. Therefore, the most recent

observations of RAC is extrapolated at the rate of growth of the WTI price through:

1. Calculating the growth rate of WTI, denoted as rWTI
t at time t:

rWTI
t =

(WTIt −WTIt−1)

WTIt−1
,

where t = [τ̄−2, τ̄−1, τ̄ ] for vintages from 1991:12 to 2005:07, and t = [τ̄−1, τ̄ ]

for the remaining vintages, while τ̄ is the final month in each vintage; for

example, τ̄ is December, 1911 for the 1991:12 vintage.

2. Nowcasting the delayed values R̂ACt through

R̂ACt = (1 + rWTI
t )RACt−1,

where t = [τ̄ − 2, τ̄ − 1, τ̄ ] for vintages 1991:12 to 2005:07, and t = [τ̄ − 1, τ̄ ]

for the remainder.

Moreover, the oil market data published in the Monthly Energy Review (de-

nominated as Xt in vintage t) includes the world crude oil production, the U.S.
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crude oil inventories, the U.S. petroleum inventories, and the OECD petroleum in-

ventories. These data have different lag lengths between the date of the time series

observation and its release, as detailed in Table 2.2 and denoted as lag. To echo

Baumeister & Kilian (2012), I extrapolate them based on the average rate of change

in history up to that point in time through:

X̂t−j = Xt−lag +

∑n−lag
i=τ (Xi+1 −Xi)

t− τ − lag
∗ (lag − j),

where n = [227, . . . , 527] in vintages t=[1991:12, ..., 2016:12] respectively, and j

is from zero to the lag length lag − 1. τ is the timing of the first observation in

each vintage defined in Table 2.2, and Xt−lag is the final observation in each vintage.

Additionally, to ensure robustness and sensitivity checks, I alternatively use

a rolling window for the nowcasts in Section 2.4.5, applying τ = [t−13, t−25, t−61]

for the fixed window size of 12, 24, and 60 months in the equation above, respectively.

2.3 The model space and combinations

Baumeister & Kilian (2015) use forecast combination to mitigate issues of model

misspecification. They combine six specifications using an equal weight and in-

verse mean squared predictive error (MSPE) weights. The six specifications include,

an unrestricted global oil market vector autoregression (VAR), a commodity price

model, an oil price futures spread model, a gasoline spread model, a time varying

parameter (TVP) product spread, and a no-change benchmark model; see details

below or in Baumeister & Kilian (2015).

Baumeister & Kilian (2015) forecast the nominal crude oil price deflated by

the U.S. CPI. The forecasts of R̂oilt+h|t are based on information at time t for the

period t + h, where h is the forecast horizon. The forecast is a “point forecast”

combination from six different model specifications without any restriction:

R̂oilt+h|t =

6∑
k=1

wk,tR̂
k
t+h|t, (2.1)

where the weights, wk,t, are assigned to model k at time t. An equal weight, wk,t = 1
6 ,
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and MSPE based weights are used, where the latter are defined as:

wk,t =
m−1
k,t∑6

j=1m
−1
j,t

;

and, m−1
k,t is the inverse MSPE of model k calculated with respect to observed out-

comes available at time t. The use of inverse MSPE weights has a long history

(e.g. Diebold & Pauly, 1987; Stock & Watson, 2004). Inverse MSPE weights are

calculated at time t for forecasts at horizon h and are evaluated over a sample up to

t− (6+h), with equal weight utilised on the initial h+6 months, which is consistent

with Baumeister & Kilian (2015). The practice addresses the issue of robustness to

model misspecification and structural change, as per Baumeister & Kilian (2015),

through adopting a recursive approach and utilising rolling fixed window sizes of 36,

24 and 12 months.

Moreover, R̂kt+h|t is the forecasts from the kth specification, and the six models

are defined as:

1. An unrestricted global oil market VAR:

R̂1
t+h|t = exp(r̂VAR

t+h|t), (2.2)

where r̂V ARt+h|t is the forecast of log measures based on an unrestricted global oil

market VAR model, with the following four variables: the percent change in

the global crude oil production, a business cycle index of global real activity

(rea), the log of the RAC oil price deflated by the log of the U.S. CPI, and the

change in global crude oil inventories. The forecasts of the RAC measure are

predicted from the endogenous variable of the VAR, while forecasts of WTI

and Brent are calculated as the spread between the prices and RAC multiplied

by the forecast of RAC respectively.

2. A commodity price based model:

R̂2
t+h|t = Roilt (1 + πh,raw

t − Et(πht+h)), (2.3)

where πh,raw
t is the difference between the log price of non-oil industrial raw

materials at t and t − h, and Roilt is the real oil price measure at time t.

Baumeister & Kilian (2015) define Et(π
h
t+h), the expected U.S. inflation, as
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the average U.S. CPI inflation available at time t, where the averaging begins

in 1986:07, hence:

Et(π
h
t+h) = [1 +

1

τ − τ

τ∑
t=τ

(ln(CPIt+1)− ln(CPIt))]
h − 1, (2.4)

where t = [τ , ..., τ ], τ=1986:07 and τ is the month of the final observation in

a specific vintage.

3. An oil futures spread model:

R̂3
t+h|t = Roilt (1 + fht − st − Et(πht+h)), (2.5)

where st is the corresponding log of monthly WTI spot price, and Et(π
h
t+h) is

the inflation expectation introduced in Equation (2.4). fht is the log of oil price

futures with the maturity h observed at t. Forecasts of WTI and RAC are

based on WTI futures, but the forecast of the Brent measure is based on Brent

futures. The monthly oil futures prices for WTI with different maturities are

the average of daily futures closed prices collected from Bloomberg. Missing

values constrain the inclusion of forecasts based on oil futures in Baumeister &

Kilian’s (2015) forecast combinations at forecast horizons between 18 and 24

months. Plausible values for missed futures are backcasted according to Wiki

Futures, which is available at https://www.quandl.com/data/CHRIS-Wiki

-Continuous-Futures. (Details of the backcast are explained in Appendix

A.3.2.) Therefore, forecasts based on oil futures at horizons beyond 18 months

are included in this study.

4. A gasoline spread based model:

R̂4
t+h|t = Roilt exp{β̂[sgast − st]− Et(πht+h)}, (2.6)

where sgast is the log spot price of gasoline which is the production of crude

oil; Et(π
h
t+h) again is the inflation expectation formulated in Equation (2.4);

and, β̂ is estimated from the regression ∆st+h = β[sgast −st]+εt+h, employing

ordinary least squares. ∆st+h is the h-period ahead log-difference of spot WTI

prices(st+h − st).

5. A TVP product spread model:

R̂5
t+h|t = Roilt exp{δ̂1t[s

gas
t − st] + δ̂2t[s

heat
t − st]− Et(πht+h)}, (2.7)
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where the TVP δ̂1t and δ̂2t, are estimated from:

∆st+h = δ1t[s
gas
t − st] + δ2t[s

heat
t − st] + et+h.

The sgast and sheatt are the log spot prices of gasoline and heating oil, respec-

tively, and et+h ∼ NID(0, σ2), σ2 is the constant variance of the error term.

The TVP model of gasoline and heating oil spreads, motivated by Reeve &

Vigfusson (2011) and developed by Baumeister et al. (2013), employs inde-

pendent Normal-Wishart prior and the Gibbs sampling algorithm for the fore-

casts. The estimation uses a Bayesian approach involving the Gibbs sampler.

Moreover, Et(π
h
t+h) is the inflation expectation introduced in Equation (2.4).

6. No change or random walk model:

R̂6
t+h|t = Roilt . (2.8)

The no-change forecast is not only included in the combinations, but also acts

as the benchmark in Baumeister & Kilian (2015) and my exercise.

Each specification is estimated over different samples, where Baumeister &

Kilian (2015) include the maximum number of observations, as opposed to identi-

fying a common estimation period. For example, the estimation of the VAR model

in Equation (2.2) used data from 1973:01, when oil market dataset is first available.

However, the TVP product spread model is estimated using a sample beginning in

1986:07 from Equation (2.7), due to gasoline and heating oil data are first available

in July 1986.

2.4 Empirical results

Baumeister & Kilian (2015) evaluate the forecasts of WTI and RAC oil prices over

the 1992:01 to 2012:09 evaluation period using the data observed in 2013:03 as

the target variable. In following subsection, I will illustrate the narrow replication

based on the same period but using my real-time data generates similar findings to

Baumeister & Kilian (2015). Then, I extend the sample to 2016:12, followed by the

extension to the Brent measure.
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2.4.1 Narrow replication of the sample period 1992:01—2012:09

In a narrow replication, my data set generates quantitatively similar results to those

reported by Baumeister & Kilian (2015). The same as Baumeister & Kilian (2015),

recursive MSPE and success ratios are utilised for the evaluation of point and sign

forecast accuracy over the evaluation period 1992:01–2012:09. The recursive MSPE

ratio is defined as a ratio of the recursive MSPE of various combinations relative to

the MSPE of no-change forecast. Hence, if a combination’s MSPE ratio is below 1,

the forecast is more accurate than the benchmark. A rough guide of a Harvey et al.

(1997) small-sample adjustment of the Diebold & Mariano (1995) test is used for

statistically significant tests.

Success ratios describe the directional accuracy of the forecast accuracy. Un-

der the null hypothesis that there is no directional forecast accuracy, the model

would be no more successful at predicting the sign of change in crude oil prices

relative to tossing a fair coin. Then, a success ratio higher than 0.5 indicates that

the forecast combination would improve directional accuracy relative to the bench-

mark. The Pesaran & Timmermann (2009) test are utilised for the null hypothesis

of no directional accuracy. The results for equal, recursive MSPE and rolling MSPE

weights utilising window sizes of 36, 24, and 12 months are reported in the columns

of Tables 2.4 and 2.5.

As shown in the tables, WTI and RAC oil price measures with equal weights

have lower MSPE ratios and higher success ratios relative to inverse-MSPE-weights

forecasts at the majority of horizons. Recursive MSPE ratios show the predictive

power of point forecast of RAC, as shown in the upper panel of Table 2.4. For

example the equal weight dominates the benchmark at horizons within 18 months

excepting at horizon 6 months, significantly at 10% level based on a Harvey et al.

(1997) small-sample adjustment of the Diebold & Mariano (1995) test. The similar

results for the WTI oil price measure are shown in the upper panel of Table 2.5.

The highest recursive MSPE ratio reduction of real crude oil price forecasts is pro-

duced by the equally weighted forecasts of WTI at the 1-month horizon and is 9.7%

lower. Notably, success ratios at all horizons under equal weight are higher than 0.5,

indicating an improved sign forecasts relative to the benchmark. In the lower panel

of Table 2.4, I can reject the null at least at 10% level for all horizons excepting

at 6 and 9 months for RAC forecasts produced by equal weight combination based

on the Pesaran & Timmermann (2009) test. The highest success ratio is 66.0%,
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achieved by equal-weight forecasts of RAC at the 12-month horizon. Sign forecasts

of WTI are illustrated in the lower panel of Table 2.5, and shown the similar results

with the RAC oil price measure.

Table 2.4: Real-time forecast accuracy of baseline forecast combination based on
all six forecasting models for the real U.S. refiners’ acquisition cost for oil imports
(the evaluation period: 1992:01–2012:09)

Rolling weights based on windows of length

MH Equal weight Recursive weights 36 24 12

Recursive MSPE ratios

1 0.928∗∗(0.029) 0.933∗∗(0.040) 0.936∗∗(0.046) 0.929∗∗(0.034) 0.926∗∗(0.031)

3 0.921∗∗(0.008) 0.924∗∗(0.009) 0.925∗∗(0.010) 0.920∗∗(0.005) 0.926∗∗(0.005)

6 0.983(0.153) 0.988(0.219) 0.989(0.237) 0.991(0.274) 0.990(0.251)

9 0.976∗(0.087) 0.982(0.145) 0.980(0.125) 0.984(0.181) 0.985(0.215)

12 0.937∗∗(0.000) 0.943∗∗(0.001) 0.945∗∗(0.003) 0.944∗∗(0.002) 0.942∗∗(0.001)

15 0.930∗∗(0.000) 0.940∗∗(0.001) 0.952∗∗(0.015) 0.952∗∗(0.013) 0.972(0.102)

18 0.973∗(0.068) 0.994(0.364) 1.022(0.847) 1.029(0.903) 1.059(0.989)

21 1.006(0.649) 1.028(0.952) 1.053(0.994) 1.060(0.996) 1.106(1.000)

24 0.988(0.238) 0.997(0.436) 1.000(0.503) 1.004(0.580) 1.045(0.958)

Success ratios

1 0.558∗(0.064) 0.554∗(0.079) 0.558∗(0.062) 0.554∗(0.084) 0.554∗(0.086)

3 0.583∗∗(0.018) 0.587∗∗(0.012) 0.583∗∗(0.017) 0.587∗∗(0.013) 0.575∗∗(0.034)

6 0.545(0.190) 0.533(0.309) 0.525(0.425) 0.508(0.652) 0.529(0.350)

9 0.548(0.123) 0.556∗(0.063) 0.560∗(0.056) 0.548(0.112) 0.544(0.123)

12 0.660∗∗(0.000) 0.639∗∗(0.000) 0.630∗∗(0.000) 0.634∗∗(0.000) 0.660∗∗(0.000)

15 0.621∗∗(0.000) 0.596∗∗(0.001) 0.570∗∗(0.019) 0.562∗∗(0.030) 0.574∗∗(0.018)

18 0.578∗∗(0.001) 0.556∗∗(0.003) 0.517(0.135) 0.500(0.317) 0.509(0.226)

21 0.576∗∗(0.002) 0.511∗(0.062) 0.541∗∗(0.041) 0.528(0.155) 0.489(0.676)

24 0.544∗(0.083) 0.527∗(0.053) 0.544∗(0.095) 0.540(0.182) 0.535(0.232)

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As

a rough guide, p-values of a Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is reported

in brackets after recursive MSPE ratios. I also report p-values for the Pesaran & Timmermann (2009) test for the null

hypothesis of no directional accuracy in brackets after success ratios. ∗ denotes significance at the 10% level and ∗∗ at the

5% level.

Table 2.5: Real-time forecast accuracy of baseline forecast combination based on
all six forecasting models for the real WTI price (the evaluation period: 1992:01–
2012:09)

Rolling weights based on windows of length

MH Equal weight Recursive weights 36 24 12

Recursive MSPE ratios

1 0.903∗∗(0.007) 0.908∗∗(0.008) 0.909∗∗(0.009) 0.909∗∗(0.011) 0.906∗∗(0.011)

3 0.922∗∗(0.010) 0.926∗∗(0.011) 0.928∗∗(0.013) 0.928∗∗(0.011) 0.932∗∗(0.012)

6 0.986(0.220) 0.991(0.292) 0.992(0.310) 0.994(0.358) 0.998(0.457)

9 0.979(0.119) 0.984(0.190) 0.980(0.135) 0.984(0.194) 0.986(0.247)

12 0.945∗∗(0.002) 0.951∗∗(0.006) 0.949∗∗(0.006) 0.946∗∗(0.004) 0.940∗∗(0.002)

15 0.940∗∗(0.001) 0.953∗∗(0.009) 0.962∗(0.050) 0.962∗∗(0.046) 0.945∗∗(0.008)

18 0.972∗(0.063) 0.998(0.447) 1.025(0.880) 1.041(0.960) 1.071(0.991)

21 1.004(0.600) 1.034(0.972) 1.056(0.994) 1.066(0.994) 1.087(0.999)

24 0.980(0.150) 1.001(0.521) 1.002(0.545) 1.010(0.660) 1.057(0.976)

Success ratios

1 0.558∗(0.081) 0.550(0.150) 0.550(0.150) 0.554(0.131) 0.550(0.157)

3 0.543(0.220) 0.547(0.198) 0.555(0.124) 0.551(0.167) 0.534(0.348)

6 0.537(0.271) 0.520(0.470) 0.520(0.504) 0.508(0.635) 0.500(0.699)

9 0.556∗(0.067) 0.552∗(0.075) 0.556∗(0.061) 0.552∗(0.082) 0.531(0.211)

12 0.597∗∗(0.002) 0.580∗∗(0.007) 0.584∗∗(0.009) 0.597∗∗(0.002) 0.601∗∗(0.002)

15 0.579∗∗(0.009) 0.583∗∗(0.003) 0.562∗∗(0.035) 0.570∗∗(0.025) 0.570∗∗(0.016)

18 0.560∗∗(0.011) 0.552∗∗(0.005) 0.526(0.113) 0.509(0.274) 0.504(0.286)

21 0.585∗∗(0.001) 0.493(0.146) 0.520(0.120) 0.528(0.200) 0.528(0.225)

24 0.531(0.185) 0.482(0.406) 0.522(0.225) 0.509(0.513) 0.518(0.403)

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As

a rough guide, p-values of a Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is reported

in brackets after recursive MSPE ratios. I also report p-values for the Pesaran & Timmermann (2009) test for the null

hypothesis of no directional accuracy in brackets after success ratios. ∗ denotes significance at the 10% level and ∗∗ at the

5% level.

19



2.4.2 Extension: the sample period 1992:01–2016:12 for RAC and

WTI measures

The forecast accuracy of measures preferred by Baumeister & Kilian (2015) for the

extended 1992:01 to 2016:12 evaluation period is illustrated in Tables 2.6 and 2.7.

Generally, I find increased accuracy and significance level of real RAC and WTI

forecasts relative to Baumeister & Kilian (2015). Owing to the inclusion of fore-

casts based on oil futures prices, there are significant gains in both the RAC and

WTI real price forecast combinations relative to the no-change benchmark at hori-

zons longer than 18 months. In particular, success ratios at all horizons under the

equal weight are significantly higher than 0.5, based on the Pesaran & Timmermann

(2009) test for the two measures, excepting at horizon 9 months for the RAC mea-

sure. I confirm the predictability of Baumeister & Kilian (2015) combination over

the extended sample.

Table 2.6: Real-time forecast accuracy of baseline forecast combination based on all
six forecasting models extended sample 1992:01 to 2016:12 for the real U.S. refiners’
acquisition cost for oil imports

Rolling weights based on windows of length

MH Equal weight Recursive weights 36 24 12

Recursive MSPE ratios

1 0.931∗∗(0.016) 0.935∗∗(0.023) 0.939∗∗(0.030) 0.933∗∗(0.021) 0.929∗∗(0.017)

3 0.921∗∗(0.002) 0.924∗∗(0.002) 0.928∗∗(0.004) 0.921∗∗(0.001) 0.921∗∗(0.001)

6 0.975∗∗(0.041) 0.981∗(0.085) 0.982∗(0.080) 0.978∗∗(0.048) 0.969∗∗(0.022)

9 0.968∗∗(0.012) 0.976∗∗(0.046) 0.971∗∗(0.022) 0.970∗∗(0.024) 0.966∗∗(0.020)

12 0.935∗∗(0.000) 0.945∗∗(0.000) 0.941∗∗(0.000) 0.930∗∗(0.000) 0.922∗∗(0.000)

15 0.931∗∗(0.000) 0.944∗∗(0.000) 0.944∗∗(0.001) 0.935∗∗(0.000) 0.929∗∗(0.001)

18 0.943∗∗(0.000) 0.963∗∗(0.010) 0.975∗(0.082) 0.972∗(0.081) 0.954∗(0.054)

21 0.970∗∗(0.018) 0.997(0.413) 0.999(0.466) 1.001(0.529) 1.000(0.499)

24 0.965∗∗(0.013) 1.008(0.721) 0.987(0.202) 0.988(0.243) 1.005(0.573)

Success ratios

1 0.550∗(0.064) 0.547∗(0.078) 0.567∗∗(0.017) 0.560∗∗(0.031) 0.563∗∗(0.024)

3 0.604∗∗(0.001) 0.597∗∗(0.001) 0.604∗∗(0.001) 0.604∗∗(0.001) 0.601∗∗(0.001)

6 0.569∗∗(0.024) 0.556∗(0.071) 0.553∗(0.087) 0.542(0.151) 0.563∗∗(0.036)

9 0.541(0.102) 0.548∗(0.064) 0.572∗∗(0.009) 0.562∗∗(0.022) 0.562∗∗(0.020)

12 0.651∗∗(0.000) 0.623∗∗(0.000) 0.633∗∗(0.000) 0.637∗∗(0.000) 0.668∗∗(0.000)

15 0.601∗∗(0.000) 0.584∗∗(0.002) 0.566∗∗(0.016) 0.573∗∗(0.007) 0.573∗∗(0.007)

18 0.583∗∗(0.001) 0.562∗∗(0.009) 0.523(0.187) 0.505(0.396) 0.509(0.341)

21 0.586∗∗(0.001) 0.514(0.211) 0.550∗∗(0.037) 0.532(0.135) 0.489(0.681)

24 0.556∗∗(0.035) 0.516(0.254) 0.552∗∗(0.049) 0.542(0.105) 0.538(0.126)

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As

a rough guide, p-values of a Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is reported

in brackets after recursive MSPE ratios. I also report p-values for the Pesaran & Timmermann (2009) test for the null

hypothesis of no directional accuracy in brackets after success ratios. ∗ denotes significance at the 10% level and ∗∗ at the

5% level.
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Table 2.7: Real-time forecast accuracy of baseline forecast combination based on all
six forecasting models extended sample 1992:01 to 2016:12 for the real WTI price

Rolling weights based on windows of length

MH Equal weight Recursive weights 36 24 12

Recursive MSPE ratios

1 0.905∗∗(0.002) 0.908∗∗(0.002) 0.910∗∗(0.002) 0.910∗∗(0.003) 0.908∗∗(0.003)

3 0.920∗∗(0.002) 0.923∗∗(0.002) 0.926∗∗(0.003) 0.925∗∗(0.002) 0.926∗∗(0.002)

6 0.976∗(0.060) 0.982(0.108) 0.981∗(0.097) 0.981∗(0.092) 0.987(0.182)

9 0.969∗∗(0.019) 0.976∗(0.056) 0.971∗∗(0.026) 0.971∗∗(0.031) 0.975∗(0.068)

12 0.940∗∗(0.000) 0.948∗∗(0.000) 0.941∗∗(0.000) 0.930∗∗(0.000) 0.935∗∗(0.000)

15 0.936∗∗(0.000) 0.948∗∗(0.000) 0.944∗∗(0.001) 0.934∗∗(0.000) 0.919∗∗(0.000)

18 0.943∗∗(0.000) 0.963∗∗(0.012) 0.971∗(0.064) 0.972∗(0.096) 0.985(0.280)

21 0.969∗∗(0.020) 0.994(0.347) 0.992(0.338) 0.992(0.346) 0.992(0.372)

24 0.952∗∗(0.003) 0.991(0.284) 0.965∗∗(0.030) 0.962∗∗(0.028) 0.993(0.407)

Success ratios

1 0.567∗∗(0.024) 0.563∗∗(0.037) 0.547(0.116) 0.550∗(0.099) 0.560∗∗(0.049)

3 0.574∗∗(0.017) 0.574∗∗(0.018) 0.581∗∗(0.009) 0.577∗∗(0.014) 0.570∗∗(0.027)

6 0.556∗(0.067) 0.539(0.196) 0.542(0.174) 0.539(0.182) 0.522(0.375)

9 0.575∗∗(0.008) 0.572∗∗(0.011) 0.575∗∗(0.008) 0.565∗∗(0.022) 0.558∗∗(0.030)

12 0.616∗∗(0.000) 0.606∗∗(0.000) 0.606∗∗(0.000) 0.612∗∗(0.000) 0.595∗∗(0.001)

15 0.591∗∗(0.001) 0.594∗∗(0.001) 0.584∗∗(0.003) 0.598∗∗(0.001) 0.587∗∗(0.002)

18 0.562∗∗(0.009) 0.565∗∗(0.005) 0.555∗∗(0.023) 0.537∗(0.092) 0.534(0.105)

21 0.607∗∗(0.000) 0.521(0.106) 0.546∗∗(0.036) 0.561∗∗(0.021) 0.568∗∗(0.014)

24 0.545∗(0.075) 0.491(0.558) 0.538(0.107) 0.531(0.175) 0.534(0.143)

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As

a rough guide, p-values of a Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is reported

in brackets after recursive MSPE ratios. I also report p-values for the Pesaran & Timmermann (2009) test for the null

hypothesis of no directional accuracy in brackets after success ratios. ∗ denotes significance at the 10% level and ∗∗ at the

5% level.

2.4.3 Extension: the Brent measure

The Brent measure represents an increasingly important benchmark for the world

crude oil price (see, among others, Morana, 2001; Alberola et al., 2008; Baumeister

& Kilian, 2016c). Hence, this subsection extends the combination method pro-

posed in Baumeister & Kilian (2015) to include the Brent measure, based on the

1992:01–2016:12 evaluation period. It is not a surprise that the combination method

improves the forecasting performance for the Brent measure relative to no-change

forecasts using recursive MSPE and success ratios.

Echoing the WTI and RAC results on the shorter evaluation period reported

by Baumeister & Kilian (2015), I find evidence of significant predictability from

forecast combinations for the Brent measure. As shown in the second column of

Table 2.8, the MSPE and success ratios imply equal weights are more accurate than

the no-change forecast at all forecast horizons from 1 to 24 months. The Pesaran &

Timmermann (2009) test suggests a significant improvement of directional forecast

accuracy relative to no-change forecast at all horizons. The results using MSPE
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weights are similar to those for equal weights.

Table 2.8: Real-time forecast accuracy of baseline forecast combination based on all
six forecasting models extended sample 1992:01 to 2016:12 for the real Brent price

Rolling weights based on windows of length

MH Equal weight Recursive weights 36 24 12

Recursive MSPE ratios

1 0.925∗∗(0.001) 0.927∗∗(0.001) 0.929∗∗(0.001) 0.930∗∗(0.001) 0.934∗∗(0.003)

3 0.945∗∗(0.006) 0.948∗∗(0.006) 0.951∗∗(0.010) 0.954∗∗(0.013) 0.954∗∗(0.008)

6 0.991(0.231) 0.998(0.423) 1.000(0.495) 0.997(0.405) 0.993(0.276)

9 0.980∗(0.058) 0.989(0.181) 0.986(0.129) 0.979∗(0.056) 0.975∗∗(0.046)

12 0.948∗∗(0.000) 0.959∗∗(0.001) 0.954∗∗(0.001) 0.943∗∗(0.000) 0.926∗∗(0.000)

15 0.942∗∗(0.000) 0.957∗∗(0.001) 0.958∗∗(0.003) 0.955∗∗(0.002) 0.939∗∗(0.000)

18 0.957∗∗(0.001) 0.979∗(0.061) 0.990(0.243) 0.995(0.360) 0.987(0.274)

21 0.980∗(0.056) 1.008(0.741) 1.012(0.815) 1.013(0.814) 1.012(0.710)

24 0.972∗∗(0.027) 1.009(0.776) 0.999(0.460) 0.998(0.426) 1.031(0.931)

Success ratios

1 0.537(0.201) 0.537(0.211) 0.540(0.183) 0.547(0.125) 0.547(0.131)

3 0.581∗∗(0.011) 0.567∗∗(0.033) 0.560∗(0.056) 0.564∗∗(0.044) 0.567∗∗(0.034)

6 0.529(0.280) 0.502(0.634) 0.505(0.601) 0.522(0.344) 0.525(0.290)

9 0.562∗∗(0.026) 0.551∗(0.052) 0.568∗∗(0.017) 0.568∗∗(0.017) 0.568∗∗(0.010)

12 0.599∗∗(0.000) 0.595∗∗(0.001) 0.606∗∗(0.000) 0.599∗∗(0.000) 0.640∗∗(0.000)

15 0.612∗∗(0.000) 0.591∗∗(0.001) 0.570∗∗(0.009) 0.577∗∗(0.005) 0.633∗∗(0.000)

18 0.601∗∗(0.000) 0.558∗∗(0.009) 0.548∗∗(0.032) 0.548∗∗(0.030) 0.523(0.128)

21 0.568∗∗(0.005) 0.500(0.347) 0.543∗∗(0.041) 0.536∗(0.089) 0.521(0.218)

24 0.542∗(0.076) 0.498(0.459) 0.531(0.144) 0.509(0.374) 0.509(0.386)

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As

a rough guide, p-values of a Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is reported

in brackets after recursive MSPE ratios. I also report p-values for the Pesaran & Timmermann (2009) test for the null

hypothesis of no directional accuracy in brackets after success ratios. ∗ denotes significance at the 10% level and ∗∗ at the

5% level.

2.4.4 Extension: recursive forecast accuracy of equal weighted com-

binations

This subsection evaluates the recursive forecast accuracy of equal weighted com-

binations for the three measures over an extending window from 1992:01–2008:03

to 1992:01–2016:12. Generally, I found the equal-weight combination consistently

performs better than no-change forecasts for at all forecasting horizons.

In Figure 2.2, I plot the recursive MSPE and success ratios of the equal

weight combinations at selected horizons (1, 6, 12, 18 and 24 months), evaluated in

periods recursively extended from the period commencing with the financial crisis
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2008:03 to 2016:12. The recursive evaluation periods overlapping with Baumeister

& Kilian’s (2015) can be found in the left of the y axis in each sub plot. The Brent

measure is marked as solid line, while a straight horizontal dashed slim line indicates

the benchmarks (1 for recursive MSPE ratios and 0.5 for success ratios). It is clear

that both recursive MSPE and success ratios consistently indicate that equal weight

combinations dominate the benchmark before and after the plunge of crude oil prices

in 2014. With the increase of forecasting horizon length, the gain of combination

relative to the benchmark is raising. For example, downward and upward trend of

MSPE and success ratios after 2014:06 are far steeper at horizon 24 months than

at 6 months respectively. The equivalent plots for WTI and RAC measures (shown

in dotted and dashed lines) reveal the qualitatively similar predictability relative

to Brent, MSPE and success ratios of the Brent measure show a slightly lower

predictability than the other oil price measures at horizon 6 months though.
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Figure 2.2: Historical recursive forecast accuracy of Baumeister & Kil-
ian’s (2015) equal weighted averages at selected horizons (recursive
MSPE and success ratios)

The following subsection demonstrates the robustness and sensitivity analysis

of the monthly forecasts based on the equal weight as well as the quarterly forecasts

for the three measures.

2.4.5 Robustness and sensitivity

The revisions and the choice of nowcasting method would impact on the combina-

tions’ forecast accuracy. In this section I analyse the robustness and sensitivity of
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the equal-weight combination with analysis of each individual model.

(I) Alternative revision assumptions

In this section, I present the performance of equal-weight combinations under differ-

ent assumptions of revisions. The general observation in this subsection is that it is

possible to reduce the forecasts’ recursive MSPE ratios relative to the ratio of recur-

sive revisions utilised in Baumeister & Kilian (2015) by an average of approximately

1.2% controlling the same evaluation period 1992:01–2012:09, and an average of ap-

proximately 2.6% over the period 1992:01–2016:12. The following paragraphs will

illustrate different assumptions of revisions and corresponding point forecast results

evaluated by recursive MSPE and success ratios.

As shown in Subsection 2.2.1, the revision is statistically unforeseeable, and

distributed around zero. This is consistent with the description in Baumeister &

Kilian (2012). However, different series are not revised over the same duration. For

example, the OECD petroleum inventories may be continually revised for more than

50 months following the initial release, as some of the OECD countries correct or

first report their petroleum inventories; while for RAC, most revisions are concluded

within 5 months. Theoretically, not every revision is informative for out-of-sample

forecasts, and while it is impossible to specify which revision is informative, there is

space to posit three different assumptions regarding the timing of the revision: (1)

All revisions are informative, and are labelled as ‘recursive revisions’ in Table 2.9.

(2) Only the first revision is informative, which I refer to as a ‘one-time revision’.

More specifically, I employ the data in each vintage only revised once after the vin-

tage of 1991:12, with any subsequent revisions after the first one disregarded. (3)

The informative revisions occur once a quarter, and are referred to as ‘four equal

revisions (once every quarter)’ in the tables, including the start quarter (January,

April, July and October), mid quarter (February, May, August and November), and

end quarter (March, June, September and December). This is motivated by the

observation that variables, such as the U.S. CPI, are revised at quarterly frequency,

and by the fact that different series are revised asynchronously, with the aim being

to use the up-to-date information harmoniously; for example, I revise the data dur-

ing every start quarter, with the revisions that occur in the mid-quarter vintages

and end-quarter vintages ignored.
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Table 2.9: Real-time forecast accuracy of equal weighted forecast combination based on all six fore-
casting models (evaluation periods: 1992:01–2012:09 and 1992:01–2016:12) under different revision
assumptions

4 equal revisions, one ever quarter

Revision

assumptions Recursive revision One-time revision Start quarter Mid quarter End quarter

MH 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12

Real WTI price

Recursive MSPE ratios

1 0.903∗ 0.905∗ 1.014 0.990 1.024 0.999 0.907∗ 0.908∗ 0.899∗ 0.900∗

3 0.922∗ 0.920∗ 0.972 0.951∗ 0.974 0.952∗ 0.924∗ 0.924∗ 0.915∗ 0.913∗

6 0.986 0.976∗ 1.011 0.985 1.012 0.986 0.980 0.974∗ 0.969 0.960∗

9 0.979 0.969∗ 1.004 0.973∗ 1.007 0.975∗ 0.976 0.965∗ 0.966∗ 0.954∗

12 0.945∗ 0.940∗ 0.969∗ 0.938∗ 0.974∗ 0.939∗ 0.942∗ 0.934∗ 0.917∗ 0.908∗

15 0.940∗ 0.936∗ 0.966∗ 0.929∗ 0.970∗ 0.931∗ 0.938∗ 0.932∗ 0.920∗ 0.911∗

18 0.972∗ 0.943∗ 1.007 0.940∗ 1.012 0.942∗ 0.975∗ 0.943∗ 0.959∗ 0.925∗

21 1.004 0.969∗ 1.044 0.961∗ 1.049 0.962∗ 1.004 0.963∗ 0.986 0.943∗

24 0.980 0.952∗ 1.020 0.942∗ 1.021 0.939∗ 0.981 0.947∗ 0.963∗ 0.928∗

Success ratios

1 0.558∗ 0.567∗ 0.434 0.453 0.434 0.453 0.554 0.563∗ 0.538 0.553∗

3 0.543 0.574∗ 0.474 0.483 0.470 0.477 0.547 0.560∗ 0.547 0.567∗

6 0.537 0.556∗ 0.377 0.400 0.381 0.403 0.549 0.563∗ 0.545 0.556∗

9 0.556∗ 0.575∗ 0.419 0.469 0.423 0.476 0.531 0.565∗ 0.585∗ 0.603∗

12 0.597∗ 0.616∗ 0.466 0.502 0.475 0.512 0.588∗ 0.609∗ 0.563∗ 0.588∗

15 0.579∗ 0.591∗ 0.498 0.528∗ 0.498 0.535∗ 0.587∗ 0.615∗ 0.570∗ 0.594∗

18 0.560∗ 0.562∗ 0.474 0.509∗ 0.478 0.512∗ 0.547∗ 0.558∗ 0.573∗ 0.572∗

21 0.585∗ 0.607∗ 0.489 0.521∗ 0.485 0.511∗ 0.572∗ 0.596∗ 0.603∗ 0.621∗

24 0.531 0.545∗ 0.438 0.495 0.447 0.509 0.540 0.563∗ 0.535 0.567∗

Real U.S. refiners’ acquisition cost for oil imports

Recursive MSPE ratios

1 0.928∗ 0.931∗ 0.992 0.972 0.997 0.977 0.930∗ 0.933∗ 0.923∗ 0.924∗

3 0.921∗ 0.921∗ 0.962 0.941∗ 0.967 0.944∗ 0.922∗ 0.925∗ 0.913∗ 0.912∗

6 0.983 0.975∗ 1.004 0.978 1.005 0.978 0.973∗ 0.969∗ 0.965∗ 0.958∗

9 0.976∗ 0.968∗ 1.005 0.968∗ 1.006 0.968∗ 0.973∗ 0.964∗ 0.965∗ 0.952∗

12 0.937∗ 0.935∗ 0.970∗ 0.931∗ 0.972∗ 0.929∗ 0.936∗ 0.928∗ 0.916∗ 0.905∗

15 0.930∗ 0.931∗ 0.960∗ 0.920∗ 0.964∗ 0.920∗ 0.934∗ 0.928∗ 0.918∗ 0.908∗

18 0.973∗ 0.943∗ 1.012 0.935∗ 1.017 0.935∗ 0.979 0.939∗ 0.968∗ 0.924∗

21 1.006 0.970∗ 1.050 0.958∗ 1.056 0.956∗ 1.013 0.964∗ 0.998 0.945∗

24 0.988 0.965∗ 1.029 0.948∗ 1.036 0.947∗ 0.993 0.958∗ 0.976 0.936∗

Success ratios

1 0.558∗ 0.550∗ 0.510∗ 0.513∗ 0.506∗ 0.510∗ 0.554∗ 0.557∗ 0.554∗ 0.547∗

3 0.583∗ 0.604∗ 0.498 0.507∗ 0.486 0.500 0.607∗ 0.617∗ 0.591∗ 0.607∗

6 0.545 0.569∗ 0.410 0.444 0.410 0.451 0.557∗ 0.566∗ 0.545 0.559∗

9 0.548 0.541 0.398 0.469 0.402 0.473 0.535 0.538 0.564∗ 0.575∗

12 0.660∗ 0.651∗ 0.538∗ 0.585∗ 0.538∗ 0.585∗ 0.664∗ 0.671∗ 0.630∗ 0.644∗

15 0.621∗ 0.601∗ 0.511∗ 0.552∗ 0.511∗ 0.556∗ 0.617∗ 0.626∗ 0.609∗ 0.619∗

18 0.578∗ 0.583∗ 0.483 0.537∗ 0.496 0.548∗ 0.573∗ 0.601∗ 0.578∗ 0.608∗

21 0.576∗ 0.586∗ 0.485 0.532∗ 0.476 0.529∗ 0.568∗ 0.593∗ 0.603∗ 0.629∗

24 0.544∗ 0.556∗ 0.456 0.513 0.460 0.520 0.531 0.556∗ 0.544∗ 0.578∗

Real Brent price

Recursive MSPE ratios

1 0.918∗ 0.925∗ 1.141 1.107 1.157 1.125 0.966 0.946∗ 0.959 0.942∗

3 0.937∗ 0.945∗ 1.015 0.983 1.019 0.987 0.949∗ 0.941∗ 0.941∗ 0.932∗

6 0.992 0.991 1.032 0.994 1.033 0.994 0.992 0.976∗ 0.987 0.969

9 0.985 0.980∗ 1.017 0.969∗ 1.020 0.970∗ 0.980 0.957∗ 0.970 0.945∗

12 0.946∗ 0.948∗ 0.986 0.932∗ 0.989 0.932∗ 0.949∗ 0.924∗ 0.928∗ 0.903∗

15 0.939∗ 0.942∗ 0.981 0.920∗ 0.986 0.920∗ 0.947∗ 0.919∗ 0.932∗ 0.902∗

18 0.983 0.957∗ 1.029 0.934∗ 1.034 0.934∗ 0.992 0.934∗ 0.979 0.918∗

21 1.015 0.980∗ 1.066 0.949∗ 1.070 0.947∗ 1.025 0.951∗ 1.010 0.933∗

24 1.006 0.972∗ 1.058 0.938∗ 1.063 0.937∗ 1.022 0.943∗ 1.006 0.923∗

Success ratios

1 0.518 0.537 0.486 0.483 0.478 0.477 0.506 0.513 0.518 0.520∗

3 0.575∗ 0.581∗ 0.409 0.446 0.417 0.453 0.518 0.537∗ 0.506 0.530∗

6 0.529 0.529 0.377 0.434 0.369 0.427 0.504 0.539∗ 0.520 0.549∗

9 0.544 0.562∗ 0.386 0.445 0.390 0.445 0.477 0.534∗ 0.519∗ 0.558∗

12 0.605∗ 0.599∗ 0.496 0.554∗ 0.483 0.543∗ 0.584∗ 0.606∗ 0.597∗ 0.616∗

15 0.609∗ 0.612∗ 0.511∗ 0.573∗ 0.494 0.563∗ 0.587∗ 0.605∗ 0.591∗ 0.615∗

18 0.586∗ 0.601∗ 0.448 0.537∗ 0.444 0.534∗ 0.534∗ 0.587∗ 0.534∗ 0.583∗

21 0.563∗ 0.568∗ 0.419 0.500 0.428 0.514∗ 0.515∗ 0.561∗ 0.528∗ 0.575∗

24 0.527 0.542∗ 0.425 0.498 0.407 0.487 0.491 0.552∗ 0.487 0.552∗

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As a

rough guide, a Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is reported for significance

test. I also report the Pesaran & Timmermann (2009) test for the null hypothesis of no directional accuracy. ∗ denotes

significance at least at the 10% level.
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Accordingly, I summarise the forecast combinations’ recursive MSPE and

success ratios in periods 1992:01–2012:09 and 1992:01–2016:12 under different re-

vision assumptions in Table 2.9 for RAC, WTI and Brent measures, respectively.

I evaluate these forecasts based on the ex-post observations in vintages 2013:03

and 2017:06, which mirrors that employed in the paper, and find smaller recursive

MSPE ratios and larger success ratios of the end-quarter and mid-quarter revisions

than of the recursive revisions at the majority of forecast horizons; for instance, the

greatest reduction of recursive MSPE relative to no-change is 11% at the 1-month

horizon, revised for every end quarter for WTI and evaluated within the sample

1992:01–2012:09. While, the highest success ratio is 67.1% at the 12-month horizon,

revised every mid quarter for RAC based on the sample 1990:01-2016:12. Hence,

the quarterly uniform revisions of different real-time series promote increased fore-

casting accuracy.

(II) Alternative nowcast assumptions

A nowcast method for delayed observations under each vintage is proposed in

Baumeister & Kilian (2012), which is also utilised in Baumeister & Kilian (2015).

However, it is of interest to consider the forecast performance under alternative

assumptions on nowcasts. In this subsection, I generally find: (1) nowcasts will dra-

matically improve the forecast accuracy relative to using real-time data set without

nowcasts; and (2) if the nowcasts are only based on the most recent 12 observations,

the forecast accuracy, based on recursive MSPE and success ratios, improved by

around 3% on average.

In Table 2.10, I provide recursive MSPE and success ratios, relative to no-

change forecasts, of equal-weight forecast combinations for WTI, RAC and Brent

measures based on different nowcasts for the 1992:01–2012:09 and 1992:01–2016:12

evaluation periods respectively. An oil futures spread model is not included in

Baumeister & Kilian (2015) at horizons beyond 18 months as there are missing

values of the WTI futures data with maturities 18 to 24 months, denoted as ‘BK

(2015)’ in Table 2.10. Moreover, futures prices for the Brent oil measure have miss-

ing values during the evaluation periods considered in this chapter with maturities

from 9 to 24 months. Hence, I strictly follow Baumeister & Kilian (2015), and

exclude the forecasts from oil futures spreads in the equal-weight combination at

these horizons. Columns under ‘No-nowcast’ in Table 2.10, combines forecasts of

each specification without nowcasts, and excludes the oil futures spread model at
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horizons 18-24 months for WTI and RAC (9-24 months for the Brent measure). For

example, oil market VAR includes the variables RAC, the world crude oil produc-

tion, OECD crude oil stocks, and the world real economic activity index proposed

by Kilian & Park (2009), which become available with different lags, see Table

2.2. I iteratively nowcast missing values, then forecast out-of-sample for horizons

1 to 24 months. In this chapter, I proposed a backcast method for these miss-

ing values based on Wiki crude oil futures continuous contracts from CL1 to Cl24

(available at https://www.quandl.com/data/CHRIS-Wiki-Continuous-Futures),

see Appendix A.3.2. Thereafter, I am able to add the oil futures spread model at all

forecast horizons 1 to 24 months for ‘No-nowcast’ and ‘BK (2015)’, presented under

columns ‘No-nowcast + Futures’ and ‘BK (2015) + Futures’ respectively. Moreover,

the nowcasts proposed in Baumeister & Kilian (2012) are based on all historical ob-

servations available at the real time point, for instance, they extrapolate the world

oil production data based on the average rate of change in world oil production up

to that point in time. However, the oil market data set presents highly frequent

regime changes. Therefore, I fixed the rolling nowcasts’ window size as 12, 24 and

60 months, which are listed under the last six columns. As an example, I nowcast

the world oil production data based on the average rate of change in the last 12, 24

and 60 observations.

As shown in Table 2.10, I confirm that the nowcast method have positive con-

tributions on real oil prices forecasts as mentioned in Baumeister & Kilian (2012),

and especially at short forecast horizons comparing No-nowcast and BK (2015).

Moreover, I found additional positive contributions at horizons 18 to 24 months for

WTI, RAC, and at 9-24 months for Brent by adding forecasts of the oil futures

spread model at these horizons. For example, ‘BK (2015) +Futures’ forecast com-

binations, under evaluation period 1992:09-2016:12, are significantly improved no-

change forecasts at all forecast horizons from 1 to 24 months for all three measures.

Moreover, although fixing the rolling-nowcast window size does not add significant

improvement relative to nowcasts proposed in Baumeister & Kilian (2012), I found

around an average of 3% more deductions on recursive MSPE and improvements

on success ratios with window length 12 months, comparing columns under the ‘12’

rolling nowcast window size, relative to ‘BK (2015) +Futures’. More specifically, the

highest deductions of recursive MSPE ratios are observed at the 1-month horizon

for WTI, and the highest success ratio at the horizon 12 months for RAC, under

the ‘12’ rolling nowcast window size.
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Table 2.10: Real-time recursive MSPE and success ratios of forecast combinations with equal weights under different nowcast assump-
tions (evaluation periods: 1992:01–2012:09 and 1992:01–2016:12)

Rolling nowcasts based on windows of length

Nowcast

assumptions No-Nowcast BK (2015) No-Nowcast + Futures BK (2015 )+ Futures 12 24 60

MH 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12

Real WTI price

Recursive MSPE ratios

1 3.001 2.927 0.903∗ 0.905∗ 3.001 2.927 0.903∗ 0.905∗ 0.897∗ 0.900∗ 0.901∗ 0.903∗ 0.902∗ 0.904∗

3 1.429 1.399 0.922∗ 0.920∗ 1.429 1.399 0.922∗ 0.920∗ 0.918∗ 0.917∗ 0.920∗ 0.919∗ 0.921∗ 0.919∗

6 1.073 1.086 0.986 0.976∗ 1.073 1.086 0.986 0.976∗ 0.982 0.972∗ 0.984 0.974∗ 0.985 0.975∗

9 0.987 0.997 0.979 0.969∗ 0.987 0.997 0.979 0.969∗ 0.977 0.968∗ 0.979 0.970∗ 0.979 0.969∗

12 0.949 0.976 0.945∗ 0.940∗ 0.949 0.976 0.945∗ 0.940∗ 0.943∗ 0.940∗ 0.945∗ 0.941∗ 0.945∗ 0.940∗

15 0.907∗ 0.944∗ 0.940∗ 0.936∗ 0.907∗ 0.944∗ 0.940∗ 0.936∗ 0.938∗ 0.935∗ 0.940∗ 0.936∗ 0.940∗ 0.936∗

18 0.928∗ 0.932∗ 0.972∗ 0.943∗ 0.928∗ 0.932∗ 0.972∗ 0.943∗ 0.970∗ 0.943∗ 0.972∗ 0.944∗ 0.972∗ 0.944∗

21 1.006 1.019 1.039 1.029 0.987 0.972 1.004 0.969∗ 1.003 0.969∗ 1.004 0.970∗ 1.005 0.969∗

24 0.994 1.006 1.002 1.012 0.985 0.958 0.980 0.952∗ 0.980 0.953∗ 0.980 0.953∗ 0.980 0.953∗

Success ratios

1 0.486 0.477 0.558∗ 0.567∗ 0.486 0.477 0.558∗ 0.567∗ 0.550 0.563∗ 0.558∗ 0.570∗ 0.558∗ 0.570∗

3 0.478 0.493 0.543 0.574∗ 0.478 0.493 0.543 0.574∗ 0.547 0.577∗ 0.547 0.577∗ 0.543 0.574∗

6 0.492 0.512 0.537 0.556∗ 0.492 0.512 0.537 0.556∗ 0.533 0.553∗ 0.537 0.556∗ 0.537 0.556∗

9 0.510 0.527 0.556∗ 0.575∗ 0.510 0.527 0.556∗ 0.575∗ 0.564∗ 0.582∗ 0.560∗ 0.579∗ 0.556∗ 0.575∗

12 0.521 0.526 0.597∗ 0.616∗ 0.521 0.526 0.597∗ 0.616∗ 0.601∗ 0.619∗ 0.592∗ 0.612∗ 0.597∗ 0.616∗

15 0.570∗ 0.580∗ 0.579∗ 0.591∗ 0.570∗ 0.580∗ 0.579∗ 0.591∗ 0.579∗ 0.594∗ 0.579∗ 0.591∗ 0.583∗ 0.594∗

18 0.565∗ 0.562∗ 0.560∗ 0.562∗ 0.565∗ 0.562∗ 0.560∗ 0.562∗ 0.578∗ 0.580∗ 0.560∗ 0.562∗ 0.565∗ 0.565∗

21 0.581∗ 0.564∗ 0.511 0.518 0.563∗ 0.568∗ 0.585∗ 0.607∗ 0.581∗ 0.604∗ 0.585∗ 0.607∗ 0.585∗ 0.607∗

24 0.535 0.531 0.540 0.513 0.540 0.560∗ 0.531 0.545∗ 0.535 0.549∗ 0.535 0.549∗ 0.531 0.545∗

Real U.S. refiners’ acquisition cost for oil imports

Recursive MSPE ratios

1 4.007 4.034 0.928∗ 0.931∗ 4.007 4.034 0.928∗ 0.931∗ 0.926∗ 0.930∗ 0.928∗ 0.931∗ 0.927∗ 0.930∗

3 1.731 1.710 0.921∗ 0.921∗ 1.731 1.710 0.921∗ 0.921∗ 0.919∗ 0.919∗ 0.920∗ 0.920∗ 0.920∗ 0.920∗

6 1.136 1.171 0.983 0.975∗ 1.136 1.171 0.983 0.975∗ 0.979 0.972∗ 0.981 0.973∗ 0.982 0.974∗

9 1.042 1.053 0.976∗ 0.968∗ 1.042 1.053 0.976∗ 0.968∗ 0.975∗ 0.967∗ 0.976∗ 0.968∗ 0.976∗ 0.968∗

12 0.991 1.031 0.937∗ 0.935∗ 0.991 1.031 0.937∗ 0.935∗ 0.936∗ 0.936∗ 0.938∗ 0.936∗ 0.937∗ 0.935∗

15 0.915∗ 0.973 0.930∗ 0.931∗ 0.915∗ 0.973 0.930∗ 0.931∗ 0.928∗ 0.931∗ 0.929∗ 0.931∗ 0.930∗ 0.931∗

18 0.958 0.966 0.973∗ 0.943∗ 0.958 0.966 0.973∗ 0.943∗ 0.972∗ 0.942∗ 0.973∗ 0.943∗ 0.973∗ 0.943∗

21 1.055 1.060 1.044 1.033 1.038 1.015 1.006 0.970∗ 1.005 0.970∗ 1.006 0.970∗ 1.007 0.970∗

24 1.068 1.058 1.015 1.030 1.059 1.008 0.988 0.965∗ 0.987 0.966∗ 0.988 0.966∗ 0.988 0.966∗

Success ratios

1 0.442 0.447 0.558∗ 0.550∗ 0.442 0.447 0.558∗ 0.550∗ 0.566∗ 0.560∗ 0.550 0.543 0.558∗ 0.550∗

3 0.470 0.497 0.583∗ 0.604∗ 0.470 0.497 0.583∗ 0.604∗ 0.579∗ 0.604∗ 0.587∗ 0.607∗ 0.583∗ 0.607∗

6 0.500 0.525 0.545 0.569∗ 0.500 0.525 0.545 0.569∗ 0.541 0.563∗ 0.545 0.566∗ 0.545 0.569∗

9 0.498 0.531 0.548 0.541 0.498 0.531 0.548 0.541 0.548 0.541 0.548 0.541 0.544 0.538

12 0.534 0.540∗ 0.660∗ 0.651∗ 0.534 0.540∗ 0.660∗ 0.651∗ 0.660∗ 0.651∗ 0.660∗ 0.651∗ 0.655∗ 0.647∗

15 0.545∗ 0.563∗ 0.621∗ 0.601∗ 0.545∗ 0.563∗ 0.621∗ 0.601∗ 0.621∗ 0.605∗ 0.613∗ 0.598∗ 0.617∗ 0.601∗

18 0.569∗ 0.569∗ 0.578∗ 0.583∗ 0.569∗ 0.569∗ 0.578∗ 0.583∗ 0.591∗ 0.594∗ 0.582∗ 0.587∗ 0.582∗ 0.587∗

21 0.541 0.546∗ 0.507 0.489 0.520 0.543∗ 0.576∗ 0.586∗ 0.568∗ 0.579∗ 0.568∗ 0.579∗ 0.581∗ 0.589∗

24 0.553 0.549∗ 0.549 0.520 0.549∗ 0.563∗ 0.544∗ 0.556∗ 0.549∗ 0.560∗ 0.553∗ 0.563∗ 0.549∗ 0.560∗

Real Brent price

Recursive MSPE ratios

1 3.026 2.938 0.918∗ 0.925∗ 3.026 2.938 0.918∗ 0.925∗ 0.912∗ 0.921∗ 0.915∗ 0.923∗ 0.916∗ 0.924∗

3 1.448 1.442 0.937∗ 0.945∗ 1.448 1.442 0.937∗ 0.945∗ 0.934∗ 0.942∗ 0.935∗ 0.944∗ 0.936∗ 0.944∗

6 1.110 1.131 0.992 0.991 1.110 1.131 0.992 0.991 0.988 0.987 0.989 0.989 0.991 0.990

9 1.003 1.022 0.985 0.980∗ 1.003 1.022 0.985 0.980∗ 0.982 0.979∗ 0.984 0.981∗ 0.984 0.980∗

12 0.976 1.021 0.968∗ 0.973∗ 0.971 1.010 0.946∗ 0.948∗ 0.945∗ 0.948∗ 0.946∗ 0.949∗ 0.946∗ 0.949∗

15 0.954 0.999 0.969∗ 0.979 0.940∗ 0.975 0.939∗ 0.942∗ 0.938∗ 0.942∗ 0.939∗ 0.942∗ 0.939∗ 0.942∗

18 0.988 1.001 1.018 1.002 0.967 0.968 0.983 0.957∗ 0.981 0.956∗ 0.982 0.957∗ 0.983 0.957∗

21 1.040 1.047 1.051 1.036 1.017 1.002 1.015 0.980∗ 1.014 0.980∗ 1.015 0.980∗ 1.015 0.980∗

24 1.041 1.050 1.034 1.033 1.024 0.999 1.006 0.972∗ 1.006 0.972∗ 1.006 0.972∗ 1.007 0.972∗

Success ratios

1 0.514 0.510 0.518 0.537 0.514 0.510 0.518 0.537 0.526 0.543 0.526 0.543 0.522 0.540

3 0.470 0.483 0.575∗ 0.581∗ 0.470 0.483 0.575∗ 0.581∗ 0.571∗ 0.581∗ 0.575∗ 0.581∗ 0.575∗ 0.581∗

6 0.475 0.485 0.529 0.529 0.475 0.485 0.529 0.529 0.541 0.539 0.545 0.542 0.529 0.529

9 0.502 0.531 0.544 0.562∗ 0.502 0.531 0.544 0.562∗ 0.556∗ 0.572∗ 0.548 0.565∗ 0.544 0.562∗

12 0.487 0.491 0.567 0.564∗ 0.504 0.516 0.605∗ 0.599∗ 0.622∗ 0.612∗ 0.609∗ 0.599∗ 0.609∗ 0.602∗

15 0.532 0.517 0.591∗ 0.566∗ 0.511 0.521 0.609∗ 0.612∗ 0.609∗ 0.612∗ 0.609∗ 0.612∗ 0.613∗ 0.615∗

18 0.552∗ 0.544∗ 0.547 0.544∗ 0.543∗ 0.558∗ 0.586∗ 0.601∗ 0.591∗ 0.604∗ 0.591∗ 0.601∗ 0.591∗ 0.604∗

21 0.572∗ 0.554∗ 0.528 0.518 0.555∗ 0.554∗ 0.563∗ 0.568∗ 0.568∗ 0.571∗ 0.563∗ 0.568∗ 0.563∗ 0.568∗

24 0.558 0.542 0.522 0.505 0.535∗ 0.534 0.527 0.542∗ 0.531 0.545∗ 0.527 0.542∗ 0.522 0.538∗

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As a rough guide, a Harvey et al. (1997) small-

sample adjustment of the Diebold & Mariano (1995) test is reported for significance test. I also report the Pesaran & Timmermann (2009) test for the null hypothesis of

no directional accuracy. ∗ denotes significance at least at the 10% level.
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(III) Historical sensitivity analysis

In practice, it is also of interest to check whether all six models are systematically

necessary in Baumeister & Kilian’s (2015) combination when extending the evalu-

ation period. Baumeister & Kilian (2015) suggested to use a small set of models

excluding ‘gasoline spread’ and ‘no-change’ specifications. From this subsection, I

find that ‘VAR’, ‘commodity prices’, and the ‘oil futures spread’ models have become

increasingly important within Baumeister & Kilian’s (2015) six-models combination

during the recursive extensions of the evaluation period from 1992:01–2012:09 to

1992:01–2016:12, which echoes their conclusion. However, ‘TVP product spread’

has tended to be less accurate than was the case prior to 2014. From the view of

MSPE ratios, ‘gasoline spread’, ‘TVP product spread’ and ‘no-change’ specifications

do not significantly contribute to a combination positively over a longer evaluation

period, while, Baumeister & Kilian’s (2015) small sample is still appropriate from

the success ratios.

Table 2.11 presents the changes in real-time recursive MSPE and success ra-

tios of six “leave-one-out” forecast equal-weight combinations at selected monthly

horizons, for the 1992:01–2012:09 and 1992:01–2016:12 evaluation periods. More-

over, Figures 2.3 and 2.4 illustrate the changes of the leave-one-out forecast equal-

weight combinations at the 1-, 12- and 24-month horizons as examples for the

1992:01–2008:03 period, recursively updated to the period 1992:01 to 2016:12.

Leave-one-out forecasts are combinations that eliminate one of Baumeister &

Kilian’s (2015) six equal-weight combination models, and hence the equal weight is
1

5
. For example, the changes in recursive MSPE and success ratios of a combination

excluding the no-change forecast under the ‘No change’ column in Table 2.11 are cal-

culated as the recursive MSPE and the success ratios of the leave-one-out forecast

(omitting the no-change forecast), minus the corresponding ratios of Baumeister

& Kilian’s (2015) six-model combination at the selected forecast horizons within

the recursively extended evaluation periods, respectively. This is consistent with

Baumeister & Kilian’s (2015) sensitivity analysis; however, in my study I consider

both the changes in recursive MSPE and in the success ratios.

Since lower recursive MSPE and higher success ratios imply a more accu-

rate forecast, the positive changes of MSPE and negative changes of success ratios

(shown as boldface in Table 2.11) indicate that excluding the corresponding model
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from Baumeister & Kilian’s (2015) combination reduces accuracy results than their

six-model combination. Therefore, the positive contribution via the changes due to

the omitted model are positive for the recursive MSPE ratios and negative for the

success ratios. A rough guide of a Harvey et al. (1997) small-sample adjustment of

the Diebold & Mariano (1995) and Pesaran & Timmermann (2009) tests are cal-

culated for recursive MSPE and the success ratios of Baumeister & Kilian’s (2015)

six-model forecast combination relative to the leave-one-out forecasts respectively,

where an asterisk (*) in Table 2.11 denotes a minimum statistical significance at the

10% level.

I present the changes of recursive MSPE and success ratios for the three real

crude oil price measures under the 1992:01–2012:09 and 1992:01–2016:12 evaluation

periods, respectively (Table 2.11). Comparing the two evaluation periods, I gener-

ally confirm the consistently positive contributions of VAR, commodity prices and

the oil futures spread model, at least at some forecast horizons. For example, ex-

cluding VAR, the changes of recursive MSPE ratios become positive at all forecast

horizons for the WTI and RAC measures, and an increasing number of significant

observations extend Baumeister & Kilian’s (2015) evaluation period. Moreover, the

magnitude of all the positive contributions of leaving-oil-futures-spread-out forecasts

increases further under the extended evaluation period compared to the 1992:01 to

2012:09 evaluation period for all three measures. However, gasoline spread and no

change forecast lose their power to contribute positively. More specifically, there

is no positive change of recursive MSPE ratios committing gasoline spread or no

change for WTI and RAC at all forecast horizons when extending Baumeister &

Kilian’s (2015) evaluation period to 1992:01–2016:12. Although significant negative

changes of success ratios exist here for all three measures at some horizons, the

magnitude is negligible. Additionally, TVP product spread shows decreasing pre-

dictability, despite the fact that it can still have a positive contribution within the

combination at some horizons. For example, there are significantly positive changes

of recursive MSPE ratios for WTI at the 6- to 24-month horizons under the 1992:01

to 2012:09 evaluation period, while under the 1992:01 to 2016:12 evaluation period

only the change of recursive MSPE ratios at the 9-month horizon is significantly

positive, albeit at a far smaller magnitude of change than under Baumeister & Kil-

ian’s (2015) evaluation period (0.009 relative to 0.028).

To present recursive dynamics of the information from Table 2.11 after

1992:01–2016:12 evaluation period, I integrate selected forecast horizons and re-

30



cursively extended evaluation periods from 1992:01–2008:03 to 1992:01–2016:12 in

Figures 2.3 and 2.4. Changes in the real-time recursive MSPE (Figure 2.3) and suc-

cess (Figure 2.4) ratios of the six leave-one-out forecast equal-weight combinations

(in the columns) at horizons 1, 12, and 24 months.2 As per Figure 2.2, the dotted,

dashed, and solid lines represent the WTI, RAC and Brent measures, respectively,

but here the benchmark is zero, again drawn as a slim dashed line.

A general observation comparing the ex-post relative to Baumeister & Kil-

ian’s (2015) evaluation period (the right relative to the left of the y axis in each sub

plot) is that the volatility of changes in real-time recursive MSPE and success ratios

of the leave-one-out forecast combinations with equal weights attenuates distinctly,

as shown in Figures 2.3 and 2.4. For example, the recursive MSPE ratio changes

of the leave-commodity-prices-out combination at the 12-month horizon fluctuates

considerably from at 0.05 to at -0.03 during Baumeister & Kilian’s (2015) evaluation

period, while fluctuating slightly around zero within the interval between -0.01 and

0.01 after the 1992:01–2012:09 evaluation period.

In the first column of Figure 2.3, where the combination excludes VAR,

positive changes of the recursive MSPE ratios for all three oil price measures are

consistent at the 1-month horizon from 2012:09. Moreover, I can observe a trend in

the changes of recursive MSPE ratios, which becomes positive with the extension of

the evaluation periods at the 12- and 24-month horizons (Figure 2.3), despite the

changes being negative within the sample (1992:01–2012:09). Although there are

clear gains when including the VAR model, the changes in directional forecast accu-

racy among the three measures in Figure 2.4 exhibit divergence among the three oil

price measures. The change in the success ratios for the Brent measure, excluding

VAR, are positive at the 1-, 12- and 24-month horizons, but I can observe a down-

ward trend of the changes with the extension of the evaluation periods. Hence, the

VAR model does not contribute to increasing the directional forecast accuracy of the

combination systemically for Brent measure. For WTI and RAC, in contrast, nega-

tive changes of success ratios at the 1- and 12-month horizons indicate the necessity

of including VAR within Baumeister & Kilian’s (2015) combination. Despite the

changes of WTI’s and RAC’s success ratios being higher than zero at the horizon 24

months, clear downward pressure with the extension of the evaluation period also

promotes the inclusion of VAR.

2As per Figure 2.2, the right of the y axis in each sub plot presents extended evaluation periods
relative to Baumeister & Kilian (2015).
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Including the commodity price model (column 2, Figures 2.3 and 2.4) im-

proves the forecast accuracy at short forecast horizons. This is confirmed by both

the recursive MSPE and success ratios, with consistent positive changes in recursive

MSPE ratios at the 1-month horizon for all three measures; however, the inclusion

of commodity prices consistently introduces losses, particularly at longer horizons.

For example, the changes of the recursive MSPE and success ratios are negative and

positive, respectively, but they converge to zero following the decrease of oil prices

in 2014. These observations support Baumeister & Kilian’s (2015) conclusion.

The contribution of the oil futures spread model within Baumeister & Kil-

ian’s (2015) forecast combination (column 3, Figures 2.3 and 2.4) is mixed at the

1-month horizon, but increases with time and is considerable at the 12- and 24-

month horizons for all three measures. Since the fall of oil prices in 2014, the oil

futures spread model has become increasingly important in Baumeister & Kilian’s

(2015) combination for the WTI and RAC measures at the 12- and 24-month hori-

zons, while the importance for the Brent measure does not increase with time and

even decreases.

The TVP product spread (column 5, Figures 2.3 and 2.4) gradually loses its

predictive power in Baumeister & Kilian’s (2015) forecast combination, and with

a divergence among the three measures across horizons, when extending the eval-

uations in the post-2014 period. Excluding the TVP product spread for the Brent

measure causes larger reductions at the 1-month horizon, but increases at 12 months

in terms of the recursive MSPE ratios compared to the other two price measures.

However, the gains of including the TVP model in the recursive MSPE ratios at

the 12-month horizon are not reflected in the success ratios for Brent. The success

ratios of Brent consistently increase at 12 months when excluding the TVP model.

For WTI and RAC at the 1-month horizon, I also find consistent additional forecast

accuracy through inclusion of the TVP product spread, although the magnitudes

are more modest than for Brent. It should also be mentioned that gains contributed

by the TVP product spread for the forecast combination at the 12- and 24-month

horizons show signs of weakness for the 2014:09 to 2016:12 period.
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Table 2.11: Historical changes in real-time recursive MSPE and success ratios of leave-one-out forecast combina-
tions with equal weights (evaluation periods: 1992:01–2012:09 and 1992:01–2016:12)

Omitted

model VAR Commodity prices Oil futures spread gasoline spread TVP product spread No change

MH 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12 2012:09 2016:12

Real WTI price

Changes in recursive MSPE ratios

1 0.028∗ 0.034∗ 0.040∗ 0.036∗ −0.007 −0.005 −0.015 −0.016 −0.015 −0.018 −0.014 −0.014

3 0.017 0.027∗ 0.039∗ 0.035∗ −0.006 −0.002 −0.011 −0.015 −0.011 −0.017 −0.012 −0.013

6 0.004 0.019∗ −0.016 −0.010 0.010∗ 0.014∗ 0.004 −0.003 0.014∗ −0.001 −0.001 −0.003

9 −0.010 0.006 −0.025 −0.017 0.019∗ 0.025∗ 0.005∗ −0.003 0.028∗ 0.009 −0.002 −0.004

12 −0.010 0.007 −0.019 −0.010 0.028∗ 0.035∗ 0.003 −0.007 0.024∗ 0.003 −0.008 −0.010

15 −0.007 0.018∗ −0.024 −0.015 0.037∗ 0.048∗ 0.003 −0.010 0.023∗ −0.007 −0.009 −0.010

18 −0.008 0.025∗ −0.027 −0.021 0.037∗ 0.053∗ 0.003 −0.013 0.022∗ −0.011 −0.003 −0.009

21 −0.003 0.043∗ −0.043 −0.027 0.035∗ 0.060∗ 0.006∗ −0.013 0.031∗ −0.028 0.004 −0.003

24 −0.009 0.050∗ −0.054 −0.021 0.022∗ 0.059∗ 0.011∗ −0.021 0.065∗ −0.022 −0.001 −0.006

Changes in success ratios

1 -0.008∗ -0.010∗ -0.052∗ -0.050∗ -0.024∗ -0.027∗ -0.032∗ -0.033∗ -0.012∗ -0.017∗ 0.000 0.000

3 0.032 0.013 -0.004 -0.013∗ 0.032 0.020 0.016 0.007 0.016 -0.003∗ 0.000 0.000

6 0.012 -0.010∗ -0.033 -0.041∗ 0.000 -0.010∗ -0.025 -0.014∗ -0.037 -0.027∗ 0.000 0.000

9 -0.017∗ -0.024∗ -0.029∗ -0.041∗ -0.008∗ -0.003∗ 0.012 0.010 -0.037∗ -0.021∗ 0.000 0.000

12 -0.013∗ -0.031∗ -0.038∗ -0.045∗ -0.017∗ -0.028∗ 0.004 -0.003∗ -0.008∗ -0.017∗ 0.000 0.000

15 -0.030∗ -0.045∗ 0.013 0.014 -0.004∗ -0.028∗ 0.004 0.003 0.000 -0.003∗ 0.000 0.000

18 0.009 0.000 -0.013∗ 0.018 -0.022∗ -0.035∗ 0.022 0.028 0.000 0.014 0.000 0.000

21 0.004 -0.021∗ -0.013∗ -0.021∗ -0.074∗ -0.089∗ 0.004 -0.018∗ -0.061∗ -0.061∗ 0.000 0.000

24 0.058 0.014 0.066 0.043 0.009 -0.032∗ 0.004 0.022 -0.053 -0.004∗ 0.000 0.000

Real U.S. refiners’ acquisition cost for oil imports

Changes in recursive MSPE ratios

1 0.023∗ 0.028∗ 0.027∗ 0.024∗ −0.008 −0.007 −0.009 −0.010 −0.009 −0.012 −0.011 −0.010

3 0.011 0.024∗ 0.038∗ 0.035∗ −0.003 −0.000 −0.010 −0.015 −0.009 −0.016 −0.013 −0.013

6 −0.004 0.015 −0.006 −0.000 0.012∗ 0.015∗ 0.003 −0.005 0.012∗ −0.006 −0.001 −0.003

9 −0.020 0.002 −0.016 −0.007 0.021∗ 0.027∗ 0.005∗ −0.006 0.028∗ 0.004 −0.002 −0.004

12 −0.022 0.004 −0.008 0.004 0.029∗ 0.037∗ 0.003 −0.012 0.026∗ −0.003 −0.010 −0.011

15 −0.024 0.014 −0.006 0.004 0.036∗ 0.048∗ 0.002 −0.017 0.024∗ −0.015 −0.011 −0.011

18 −0.026 0.020∗ −0.013 −0.005 0.039∗ 0.055∗ 0.003 −0.019 0.024∗ −0.019 −0.003 −0.009

21 −0.025 0.037∗ −0.035 −0.012 0.038∗ 0.063∗ 0.007∗ −0.019 0.039∗ −0.036 0.004 −0.003

24 −0.032 0.047∗ −0.049 −0.009 0.027∗ 0.065∗ 0.013∗ −0.026 0.069∗ −0.037 0.000 −0.003

Changes in success ratios

1 -0.028∗ 0.000 0.000 0.013 0.000 0.003 -0.008∗ -0.003∗ 0.008 0.010 0.000 0.000

3 0.024 0.007 -0.065∗ -0.057∗ -0.012∗ -0.020∗ -0.008∗ -0.013∗ -0.008∗ -0.017∗ 0.000 0.000

6 0.029 -0.003∗ -0.016 -0.020∗ -0.004 -0.020∗ -0.025 -0.020∗ -0.049 -0.041∗ 0.000 0.000

9 -0.012 -0.017 -0.037 -0.034 0.000 0.007 -0.004 0.010 -0.017 0.031 0.000 0.000

12 -0.042∗ -0.069∗ -0.021∗ -0.038∗ -0.042∗ -0.052∗ -0.004∗ 0.021 -0.025∗ 0.007 0.000 0.000

15 -0.017∗ -0.038∗ -0.017∗ -0.010∗ -0.026∗ -0.049∗ 0.000 0.035 -0.043∗ 0.003 0.000 0.000

18 0.000 -0.035∗ -0.009∗ -0.011∗ -0.030∗ -0.053∗ 0.017 0.032 -0.013∗ 0.018 0.000 0.000

21 0.022 -0.025∗ -0.013∗ -0.032∗ -0.070∗ -0.096∗ 0.000 0.011 -0.057∗ -0.018∗ 0.000 0.000

24 0.040 -0.007∗ 0.053 0.025 0.004 -0.036∗ 0.013 0.036 -0.093∗ -0.029∗ 0.000 0.000

Real Brent price

Changes in recursive MSPE ratios

1 0.031∗ 0.038∗ 0.040∗ 0.038∗ −0.014 −0.014 −0.012 −0.014 −0.012 −0.017 −0.012 −0.011

3 0.018 0.030∗ 0.039∗ 0.036∗ −0.014 −0.013 −0.009 −0.013 −0.008 −0.015 −0.010 −0.008

6 −0.000 0.018∗ −0.009 −0.002 0.004 0.004 0.005∗ −0.002 0.017∗ −0.000 0.000 −0.000

9 −0.017 0.004 −0.015 −0.006 0.016∗ 0.018∗ 0.005∗ −0.004 0.028∗ 0.007 −0.001 −0.002

12 −0.022 0.006 −0.001 0.009 0.022∗ 0.025∗ 0.003 −0.010 0.025∗ −0.001 −0.009 −0.008

15 −0.026 0.013 −0.001 0.007 0.029∗ 0.037∗ 0.004 −0.014 0.024∗ −0.010 −0.010 −0.010

18 −0.027 0.018∗ −0.012 −0.004 0.036∗ 0.045∗ 0.004 −0.017 0.022∗ −0.014 −0.001 −0.007

21 −0.025 0.034∗ −0.032 −0.011 0.036∗ 0.057∗ 0.008∗ −0.019 0.032∗ −0.030 0.005∗ −0.002

24 −0.029 0.042∗ −0.050 −0.012 0.028∗ 0.061∗ 0.014∗ −0.029 0.058∗ −0.026 0.003 −0.003

Changes in success ratios

1 0.064 0.043 0.000 0.003 0.008 0.003 0.016 0.013 0.008 0.007 0.000 0.000

3 0.016 -0.020∗ -0.028∗ -0.030∗ -0.004∗ 0.000 -0.020∗ -0.020∗ -0.036∗ -0.030∗ 0.000 0.000

6 0.029 0.003 -0.012 -0.010 -0.029 -0.034 0.012 0.027 -0.029 -0.003 0.000 0.000

9 -0.017 -0.045∗ -0.037 -0.041∗ 0.000 0.000 0.004 0.007 -0.008 0.010 0.000 0.000

12 0.004 -0.035∗ -0.013∗ -0.017∗ -0.038∗ -0.035∗ 0.017 0.031 0.017 0.042 0.000 0.000

15 -0.017∗ -0.070∗ -0.026∗ -0.045∗ -0.017∗ -0.045∗ 0.013 0.021 -0.017∗ 0.000 0.000 0.000

18 0.017 -0.035∗ -0.039∗ -0.032∗ -0.039∗ -0.057∗ 0.022 0.032 -0.030∗ 0.000 0.000 0.000

21 0.026 -0.021∗ -0.022∗ -0.014∗ -0.035∗ -0.050∗ 0.000 0.021 -0.035∗ 0.007 0.000 0.000

24 0.066 0.011 0.022 0.000 -0.004 -0.036∗ 0.000 0.029 -0.080 -0.029∗ 0.000 0.000

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As a rough guide, a

Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is reported for significance test. I also report the Pesaran

& Timmermann (2009) test for the null hypothesis of no directional accuracy. ∗ denotes significance at least at the 10% level.
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To summarise, Baumeister & Kilian (2015) exclude ‘gasoline spread’ (column

4) and ‘no-change’ (column 6) forecasts based on a sensitivity analysis, a decision

confirmed by this exercise. Figures 2.3 and 2.4 show that the size of the differences

in the recursive MSPE ratios is negligible across horizons, relative to the changes

caused by excluding other specifications. These two models lose their ability to re-

duce the recursive MSPE ratios in Baumeister & Kilian’s (2015) combination from

the end of 2014. No-change forecasts do not contribute to forecast directional accu-

racy, while gasoline spread erodes the combination’s directional forecast accuracy,

excluding limited contributions at the horizon 12 months for WTI. Additionally,

over the longer evaluation period 1992:01 to 2016:12, ‘TVP product spread’ gradu-

ally losses its predictive power for all three real crude oil price measures, especially

from the view of recursive MSPE ratios. As a justification of the choice of models

beyond Baumeister & Kilian’s (2015) small set of combination, I would suggest ex-

cluding the ‘TVP product spread’ model, especially for forecasters who care more

about MSPE rather than directional forecasts.

2.4.6 Quarterly forecasts of the sample period 1992Q1—2012Q3

In this subsection, I aggregate the forecasts of RAC, WTI and Brent measures from

monthly to quarterly frequency. The method for proceeding is consistent with that

introduced in Baumeister & Kilian (2015, p. 345). First, I construct equal-weight

forecast combinations of the forecasts from specifications predicted in each vintage

at the monthly horizons of 1 to 24 months (in similarity to the results generated in

previous sections). Then, these are aggregated to quarterly forecasts; for example,

the forecast at the horizon 1 quarter is the average of the monthly forecasts at 1, 2

and 3 months, which is estimated in the vintages of March, June, September, and

December.

The data source for the EIA’s oil price forecasts is their Short-Term Eco-

nomic Outlook.3 The publication provides quarterly forecasts of the U.S. refiners’

acquisition cost for imports at horizons up to 7 quarters, while publications since

2000:10 and 2012:07 also include the quarterly forecasts of WTI and Brent crude oil

prices, respectively. Given the irregular pattern of the reports, however, consistent

time series of quarterly forecasts dating back to 1991 can only be obtained for hori-

3Available at https://www.eia.gov/outlooks/steo/outlook.php
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zons from 1 to 4 quarters.4

For the 1991 to 1996 period, the Short-Term Energy Outlook is issued every

quarter, while from 1997 onwards the publication is released on a monthly basis,

but only reports quarterly forecasts.5 The monthly publications are typically issued

within the first 2 weeks of each month. The EIA updates its quarterly forecasts in

each monthly report, incorporating new information as it becomes available.

To make the forecast comparison meaningful it is important to match the

information set of the EIA as closely as possible with the information set in this

study. Following Baumeister & Kilian (2015), I also distinguish two timing con-

ventions for EIA forecasts. Timing convention I utilise the end-of-quarter issues of

the Short-Term Energy Outlook (i.e., March, June, September and December). The

oil price reported for the current quarter is taken as the nowcast and the oil prices

reported for the subsequent quarters represent the forecasts. The corresponding real

oil price forecasts are obtained by adjusting the nominal EIA oil price forecasts for

expected inflation. The process is embodied in the following forecasting model of

quarterly EIA forecasts R̂oil,Qt+h|t at horizon h on quarter t:

R̂oil,Qt+h|t = Roil,Qt (1 + P h,EIAt − st − Et(πht+h)),

where Roil,Qt is the real quarterly observation of crude oil measures (deflated by the

U.S. CPI), P h,EIAt is the log of the current EIA forecasts at horizon h quarter(s), st

is the corresponding log spot oil price, and Et(π
h
t+h) is the expected quarterly U.S.

inflation, as the average U.S. CPI inflation available at time t, where the averaging

begins in 1986Q3, hence:

Et(π
h
t+h) = [1 +

1

τ − τ

τ∑
t=τ

(ln(CPIt+1)− ln(CPIt))]
h − 1,

where t = [τ , ..., τ ], τ=1986Q3 and τ is the quarter of the final observation in a

specific vintage. This method is consistent with the forecasts from the oil futures

spread model, introduced in Baumeister & Kilian (2015, p. 348)

4This quarterly time series allows us to gauge more directly the accuracy of the EIA’s judge-
mental forecasts and to compare their accuracy with that of alternative forecasts. Establishing this
is also pertinent because of the possibility that the EIA may have early access to oil market data,
allowing it to generate more accurate real-time forecasts than econometricians.

5Monthly forecasts have been available in the EIA’s Short-Term Economic Outlook since August
2004 for RAC and WTI, and since July 2012 for Brent.
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Timing convention II instead relies on the issue of the Short-Term Energy

Outlook that appears in the first month of the following quarter (i.e., April, July,

October and January). Under this convention, the price reported for the previous

quarter (e.g., the Q1 price in the April issue) is considered as the nowcast, and the

price quoted for the current quarter (e.g., Q2 in the April issue) is the one-quarter-

ahead forecast.

Baumeister & Kilian (2015) compared quarterly forecast combinations’ per-

formance relative to forecasts of RAC measure from Short-Term Energy Outlook.

I also summarise the quarterly forecast accuracy with a similar evaluation period

1992Q1–2012Q3 in Table 2.12. Baumeister & Kilian’s (2015) six-model combina-

tion (BK6), four-model combination (BK4), and the EIA’s forecast for quarterly

real RAC measure are listed in the first three columns. BK4 exclude no-change

and gasoline spread forecasts, guided by sensitivity analysis in Section 2.4.5 and

consistent with Baumeister & Kilian (2015). Equal weights are utilised here. As

illustrated in Baumeister & Kilian (2015), I also found that the forecasts of EIA

timing convention II are far more accurate than of timing convention I. Hence, I

just report the timing convention II forecasts, which I call it ‘EIA forecasts’, allow-

ing the EIA to offer an informational advantage of up to one month.

Quarterly point forecasts of RAC from Baumeister & Kilian’s (2015) com-

bination (especially BK4) dominate EIA forecasts, and are significant at 10% level

at forecast horizons 4 and 5 quarters based on a Harvey et al. (1997) small-sample

adjustment of the Diebold & Mariano (1995) test. EIA forecasts can improve the

sign forecasts at the 1-quarter horizon to a significant level of 5%, based on the

Pesaran & Timmermann (2009) test and have a higher success ratio relative to

Baumeister & Kilian’s (2015) combinations. However, it is clear that Baumeister

& Kilian’s (2015) combinations can provide more accurate directional forecasts rel-

ative to EIA forecasts at horizons beyond 2 quarters, and at the most horizons are

significant at 5% level. Moreover, BK4 for RAC is generally more accurate than

BK6. These observations are consistent with the results in Baumeister & Kilian

(2015). Additionally, I provide recursive MSPE and success ratios of BK6 and BK4

for WTI and Brent oil price measures in the rest columns of Table 2.12, respectively.

And the results are qualitatively comparable with the forecasts of the RAC measure.
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Table 2.12: Real-time forecast accuracy of equal-weighted forecast combinations at
quarterly horizons

Real U.S. refiners’ acquisition cost for oil imports Real WTI price Real Brent price

QH Six models Four models EIA forecasts Six models Four models Six models Four models

Recursive MSPE ratios

1 0.923 0.895 0.998 0.915 0.881 0.957 0.957

2 0.973 0.968 1.134 0.976 0.972 0.991 1.004

3 0.974 0.975 1.060 0.980 0.982 0.984 0.994

4 0.935∗∗ 0.920∗ 0.927 0.943∗ 0.932∗ 0.946∗ 0.938

5 0.925∗∗ 0.909∗∗ −− 0.939∗∗ 0.930∗ 0.939∗∗ 0.932∗

6 0.960 0.955 −− 0.968 0.966 0.974 0.976

7 1.009 1.020 −− 1.013 1.025 1.014 1.025

8 1.012 1.031 −− 1.017 1.037 1.017 1.036

Success ratios

1 0.566 0.578 0.639∗∗ 0.542 0.554 0.663∗∗ 0.627∗∗

2 0.549 0.537 0.598 0.524 0.512 0.500 0.524

3 0.642∗∗ 0.617∗ 0.593 0.617∗ 0.630∗∗ 0.531 0.519

4 0.688∗∗ 0.688∗∗ 0.600 0.650∗∗ 0.662∗∗ 0.625∗∗ 0.625∗∗

5 0.684∗∗ 0.684∗∗ −− 0.658∗∗ 0.658∗∗ 0.608∗∗ 0.646∗∗

6 0.628∗∗ 0.654∗∗ −− 0.615∗∗ 0.641∗∗ 0.603∗∗ 0.615∗∗

7 0.597∗∗ 0.584∗∗ −− 0.558∗ 0.597∗∗ 0.558∗∗ 0.571∗∗

8 0.579 0.618∗∗ −− 0.553 0.605∗∗ 0.500 0.487

Note: QH represents quarterly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As a

rough guide, a Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is used for the significance

test of recursive MSPE ratios. The Pesaran & Timmermann (2009) test for the null hypothesis of no directional accuracy

success ratios. ∗ denotes significance at the 10% level and ∗∗ at the 5% level.

Moreover, I illustrate real-time recursive MSPE and success ratios relative

to the no-change forecasts for the RAC measure in Figure 2.5, where the dashed,

dotted, and solid lines represent the MSPE and success ratios for the forecasts from

the EIA, BK4 and BK6, respectively, while the slim dashed line is the benchmarks

1 and 0.5 for the MSPE and success ratios, respectively.6 As per Figure 2.2, an

MSPE ratio below 1 and a success ratio above 0.5 indicate an improvement relative

to the no-change forecast. Meanwhile, the plots present the evolution of the MSPE

and success ratios over time for the evaluation period since 2012Q3.

A general observation from Figure 2.5 is that the MSPE and success ratios

are stable over the period since 2012Q3. The sign forecasts of BK4 and BK6 eval-

uated by the success ratios are lower than the forecasts from the EIA at the 1-

and 2-quarter horizons. However, the point forecasts from BK4 and BK6 dominate

the forecasts from the EIA, evaluated through recursive MSPE ratios. The EIA

6I found the quarterly forecasting results for WTI and Brent measures show the same pattern
with RAC. Hence, similar figures as Figure 2.5 for WTI and Brent measures are not reported in
this thesis.
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forecasts at the 2-quarter horizon present with lower accuracy than the no-change

forecasts, as the recursive MSPE ratios are consistently above 1. At the 3- and

4-quarter horizons, the sign forecasts of the EIA become less accurate than BK4

and BK6. Moreover, for forecasting beyond the 4-quarter horizon, BK4 and BK6

become increasingly accurate point forecasts, but with a slightly decreasing sign-

forecast accuracy following the plunge of oil prices in 2014. The forecasts from BK4

and BK6 at the 7- and 8-quarter horizons show a more accurate point forecast rela-

tive to the no-change forecast, whose recursive MSPE ratios are lower than 1, when

extending the evaluation period to 2016Q4.

2.5 Conclusions

I extended Baumeister & Kilian’s (2015) evaluation period to the end of 2016 using

the Brent oil price measure in this chapter. The forecast combination is robust,

and the predictive power is qualitatively comparable with the WTI and RAC oil

price measures. Utilising alternative revision and nowcast assumptions could im-

prove Baumeister & Kilian’s (2015) equal-weight combination’s forecast accuracy

by around 2% on average across different forecast horizons over the period 1992:01–

2016:12, respectively. From a historical sensitive analysis, a small sample set of

combination including ‘VAR’, ‘commodity prices’, and the ‘oil futures spread’ was

recommended. The following chapters consider the density forecasts but with a new

model space, as well as a structural analysis of the real crude oil price.
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Chapter 3

Density Forecasts of Real Crude

Oil Prices Using Macro

Founded Dynamic Models and

Extended Evaluations

Abstract

This chapter uses a Bayesian vector autoregression (BVAR) considering time-varying

parameters (TVP) and stochastic volatility (SV) modelling time variation in fore-

casting real crude oil prices. Two features are specific to this study. First, I min-

imise the one-step-ahead prediction Kullback–Leibler ‘distance’ in the sample and

then eliminate the out-of-sample extreme predictions, allowing the highly paramet-

ric model to limit shrinkage, particularly in the long-term prediction range. Second,

I extend the predictive assessment from standard statistical measures of the point

and density forecasts to those that have a profitable opportunity in the futures

market, as well as those that best predict the probability of real crude oil prices

being extreme high or low. Over the 1992:01–2016:12 period, I find strong evidence

supporting models using SV for real crude oil price density forecasts as opposed to

using a conventional VAR. A constant parameter VAR with SV can provide well

calibrated density forecasts and the highest probabilities for positive excess returns

using crude oil futures. TVP may contribute to density forecasts, but only when

incorporating SV and the majority of TVP are restricted to be time-invariant via

a stochastic model specification selection prior and a linear opinion pool combining

the 1- to 12-month VAR lag length choices.
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3.1 Introduction

Crude oil prices such as the West Texas Intermediate (WTI) boomed to approxi-

mately $133 per barrel (p/b) in June 2008, and busted to approximately $39 per

barrel (p/b) in just six months later. This extreme event has had profound im-

plications for both oil importing and exporting countries (Alquist et al., 2013). A

reliable forecast of real oil prices is being increasingly explored in the literature

to support economic participants, central banks and international organisations in

their monitoring of the change in oil prices. In the forecasting crude oil price liter-

ature, researchers concentrate on point, volatility and density forecasts in standard

statistical terms (e.g. Ye et al., 2005; Knetsch, 2007; Yu et al., 2008; Kang et al.,

2009; Mohammadi & Su, 2010; Alquist & Kilian, 2010; Baumeister & Kilian, 2012;

Alquist et al., 2013; Baumeister & Kilian, 2015; Wang et al., 2015; Wang et al.,

2017; and Baumeister et al., 2018).

In Chapter 3 I allow for time-varying parameters and stochastic volatility,

to account for smooth structural change when considering crude oil prices, imple-

mented via Bayesian methods (applied to vector autoregressions (VARs)). This is

motivated by the limited model space often utilised in the oil price forecasting liter-

ature. It is common for constant parameter multivariate models to be utilised, for

example see the oil market VAR in Baumeister & Kilian (2012, 2015), while others

employ single-explanatory-variable time-varying parameters models (see Wang et

al., 2015; 2017). Both approaches show the predictability for real crude oil prices.

However, the former neglects the time variation of parameters in real crude oil prices

forecasting, while the latter does not allow for interactions among variables.1

More specifically, price is based on demand and supply, which explains why

the model space commences with a VAR typically including the following variables:

the world crude oil production, the world real economic activity index, the real crude

oil price, and crude oil inventories, as for example in the work of the structure VAR

process, which is consistent with Baumeister & Kilian (2012, 2014, 2015). Bayesian

VARs are widely utilised for modelling and forecasting in the macroeconomic liter-

ature, taking account of both the stochastic and parameter uncertainty associated

1This is also the reason why I concentrate on the oil market VAR incorporating time-varying
parameters and stochastic volatility in this exercise, rather than the model space used in the
previous chapter. The equal-weight combination utilised in Chapter 2 instead used to generate
density forecasts as one of the benchmark models in this exercise.
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with the model, and highlighting its priority for forecasting densities (for a more

detailed discussion see Harrison & Stevens, 1976; Koop et al., 2007; and Koop et

al., 2010). Nevertheless, constant parameters are unable to detect sources of fre-

quent structural change in the crude oil price modelling, including non-linearities

or time variation in the lag structure of the crude oil market model. On the other

hand, stochastic volatility provides strong evidence for the out-performance in the

energy price and commodity price analysis literature (see Duffie et al., 1999; Trolle

& Schwartz, 2009; Vo, 2009; Larsson & Nossman, 2011; Jebabli et al., 2014; Wang

et al., 2015; and Wang et al., 2017). However, these models limit the frequency of

parameters’ change, or ignore the economic foundations. To track time variation in

multivariate linear structures, time-varying parameters and stochastic volatility are

generally considered in the macroeconomic literature. The utilisation of multivari-

ate stochastic volatility is intended to account for the potential heteroscedasticity

of the structural shocks and non-linearities of the simultaneous relations among the

variables of interests.

The inclusion of time-varying parameters and stochastic volatility is vul-

nerable to the over-parametrisation problem. Researchers propose priors achieving

shrinkage in a time-varying parameter model framework, including the least abso-

lute shrinkage and selection operator (LASSO), stochastic model specification search

(SMSS), and Bayesian variable stochastic selection priors in order to restrict the in-

sample estimates on shrinkage (see Frühwirth-Schnatter & Wagner, 2010; Korobilis,

2013; Belmonte et al., 2014; Belmonte et al., 2014; and Eisenstat et al., 2016). Al-

though the shrinkage method can restrict in-sample estimations, the random-walk

innovation of time-varying coefficients in out-of-sample periods would be too volatile

to make accurate forecasts. Nonetheless, to my knowledge, there is no method in

the forecasting literature to restrict out-of-sample forecasts on shrinkage.

When incorporating time-varying parameters and stochastic volatility, allow-

ing parameters varying in the out-of-sample forecasting horizons is limited, which

potentially circumvents extreme volatility in forecasts (see a discussion in Korobilis,

2013). However, allowing for the innovation of parameters in the out-of-sample is of

interest, because the parameters at the end of sample, estimated using time-varying

parameters and information at time T, are temporary and driven by specific timing

factors. For example, Korobilis (2013) proposes an alternative method that ignores

the uncertainty of parameters’ time variation in the out-of-sample forecast period,

but two problems arise when applying the method to oil price forecasting: (1) the
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forecasts are unable to measure the structural uncertainty during the forecast pe-

riod; and (2) the coefficients at the end of a sample are not reliable, such as the

sample end with the financial crisis in 2008 where the crude oil price surged and

crashed within 6 months.

Therefore, in this chapter I propose an econometric method applied to out-of-

sample forecasts that minimises the one-step-ahead in-sample forecasts’ Kullback-

Leibler ‘distance’, and then, eliminates extreme forecasts, defined as a value that

is more than three scaled median absolute deviations away from the median, in

the out-of-sample density forecasts. (I name the method as MKLD.) This exercise

utilises MKLD and allows for the out-of-sample innovation of time-varying param-

eters and stochastic volatility.

The second contribution of Chapter 3 extends the evaluation of model com-

parisons from a standard statistical evaluation of point and density forecasts to

one that selects specifications that are more valuable in terms of (1) forecasting

excess returns when trading in the crude oil futures market, and (2) forecasting the

likelihood of an extreme high or low real crude oil price. Evidence in the stock re-

turn forecasting literature suggests that good statistical criteria does not necessarily

contribute to a profitable portfolio allocation (Leitch & Tanner, 1991; Pettenuzzo

& Ravazzolo, 2016). This broadens the set of evaluation methods deployed in the

existing oil price forecasting literature. It is of interest to evaluate the point and den-

sity forecasts using higher frequency financial data, as crude oil futures are traded

in large volumes in commodity markets. This chapter designs a realistic long–short

trading strategy utilising daily crude oil futures and real-time data, the aim of which

is assessing whether forecasts are able to generate high probabilities for positive ex-

cess returns. Following Garratt et al. (2016), I utilise the hit rate, Kuipers Score,

symmetric (asymmetric) fair bet, as well as Brier Score and its decomposition for

checking the models’ forecasting accuracy of extreme high and low real crude oil

prices.

The sample used in this exercise is the same as in the previous chapter,

and the out-of-sample real crude oil price forecasting are evaluated in the 1992:01–

2016:12 period. I find that the SMSS proposed in Eisenstat et al. (2016) and a

linear opinion pool (LOP) combining time-varying-parameter VARs with stochas-

tic volatility for 1–12 VAR lag lengths can efficiently reduce the time variation of

time-varying parameters in in-sample estimation. As for the point forecast, the new
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generation using the time-varying MKLD model is dominated by equal-weight com-

bination using Baumeister & Kilian’s (2015) model space (BK). However, the use

of MKLD, a constant parameter VAR with stochastic volatility, and a model using

both SMSS and LOP, can provide well calibrated density forecasts and dominate a

density combination using BK. (Note uses density forecasts from BK’s combinations,

whereas the previous Chapter (and BK) considered point forecasts.) The density

forecasts from BK’s combination use simple Monte Carlo methods, at all forecasting

horizons from 1 to 24 months.

Moreover, a constant parameter VAR with stochastic volatility using MKLD

can provide higher probabilities of positive excess returns in oil futures market over

the 1992:01–2016:12 period when taking a realistic long–short strategy, at all risk-

aversion levels, than all other specifications considered in oil price forecasting liter-

ature including BK and models with time varying parameters. While, the narrow

densities predicted by the traditional VAR using ordinary least squares (OLS) are

unresponsive to different levels of risk aversion assumed in the evaluation.

Although, the density forecasts, based on a model shrinking the time-varying

parameters via both SMSS and LOP, are slightly better for the extreme low price,

the constant parameter VAR with stochastic volatility using MKLD provides one of

the highest two hit rates, Kuipers Scores, and fair bet rates for forecasting exces-

sively high real crude prices, as well as one of the lowest two Brier Scores at all the

forecast horizons from 1 to 24 months. Hence, it seems that the evidence points to

the gain from stochastic volatility rather than the time-varying parameters, which

is also observed in Chan & Eisenstat (2018) for forecasting the U.S. macroeconomic

data.

The layout of the remainder of this chapter is as follows. Section 3.2 will

introduce the methodology, including a description of the estimation, model specifi-

cations, and forecasting process. Section 3.3 will detail the sources of the data used

in the application. In Section 3.4, in-sample estimated statistics will be presented,

followed by first a standard statistical evaluation of the point and density forecasts,

and second by the extended evaluation scheme, which considers excess returns and

extreme event analysis. Finally, Section 3.6 will conclude the chapter.
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3.2 Models

The following subsections explore the Bayesian estimation, the specifications illus-

trated in this chapter and the process of MKLD.

3.2.1 Bayesian estimation of SMSS for VAR with time-varying pa-

rameters and stochastic volatility

Starting with the general formation of a time-varying parameter oil market VAR

with stochastic volatility, this subsection will detail the reparameterisation of Eisen-

stat et al. (2016). The focus of this subsection is Eisenstat et al.’s (2016) decompo-

sition for a hybrid model, which allows some of parameters to be time-varying while

some to be constant using SMSS priors.

A time varying parameter oil market VAR with stochastic volatility is for-

mulated as:

B0,tyt = Xtβt + εt, εt ∼ N(0,Σt); (3.1)

βt = βt−1 + ηt, ηt ∼ N(0, Ω̃); (3.2)

where t = [1, . . . , T ], and T is the last observations of a sample. For the oil

market, yt = [∆prodt, reat, r
oil
t ,∆invt]

′
, which is a 4 × 1 vector following Kilian &

Murphy (2014); prodt is the percent change in the global crude oil production; reat

is a business cycle index of world real economic activity; roilt is the log of the U.S.

refiners’ acquisition cost for crude oil imports (RAC) deflated by the log of the U.S.

Consumer Price Index (CPI); ∆invt is the change in global crude oil inventories; Xt

is defined as:

X
′
t = In ⊗ [1, y

′
t−1, ..., y

′
t−k],

where k is the choice of VAR lag length; the first k observations of each sample

(or vintage) are dropped for estimation (in other words, t = 1 means the (k + 1)th

sample observations are yt); and the symbol ⊗ denotes the Kronecker product. B0,t

is a lower uni-triangular matrix—i.e., a lower triangular matrix with unit diagonal

elements. Σt is diagonal with diagonal elements σ2
i,t = exp(hi,t), where in defining

ht = (h1,t, ..., hn,t)
′

the log-volatilities follow a random walk:
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ht = ht−1 + ηht , ηht ∼ N(0, R). (3.3)

I assume the random walk is initialised with h0 ∼ N(0, V h
0 ) and the prior on

the transition covariance is R ∼ IW (υ0, R0), where IW inverse-Wishart distribu-

tion.

Following Eisenstat et al. (2016), I reparameterise the general model above

as:

yt = Ztα+Wtγt + εt, εt ∼ N(0,Σt); (3.4)

γt = γt−1 + η̃t, η̃t ∼ N(0, Im); (3.5)

where η̃t is independent of each other for all leads and lags. Zt includes the contem-

poraneous values yt. For example, Zt is defined below for a four-variable unrestricted

time-varying-parameter VAR, with Cholesky decomposition, as:

Zt =


[1, ylags] 0 0 0

0 [−y1,t, 1, ylags] 0 0

0 0 [−y1,t,−y2,t, 1, ylags] 0

0 0 0 [−y1,t,−y2,t,−y3,t, 1, ylags]

 ,

where ylags = [y
′
t−1, ..., y

′
t−k]. Therefore, Zt is reconstructed as the Xt defined above,

and m is the size of time varying parameters, m = (k × n + 1) × n +
n× (n− 1)

2
.

This type of decomposition was used by Chen & Dunson (2003), Kinney & Dunson

(2007), and Eisenstat et al. (2016) for the Cholesky decomposition to a random-

effects setting.

Moreover, Wt = ZtΩ
1
2 Φ, where Ω

1
2 = diag(ω1, ..., ωm) is the diagonal covari-

ance matrix for the state transition in Equation (3.1). The Φ is lower uni-triangular

and contains the correlations of the time-varying parameters. It is necessary to note

that this exercise restricts the non-diagonal elements in Φ to zero in order to avoid a

very high-dimensional variance-covariance matrix, which may dramatically increase

the computational burden. (See a discussion in Eisenstat et al. 2016, p. 1648). The

Tobit prior proposed in Eisenstat et al. (2016), referred to as SMSS, incorporates

the essential elements in Frühwirth-Schnatter & Wagner (2010) and Belmonte et al.

(2014). The SMSS is utilised for automatically restricting ωj ≥ 0, while still allow-
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ing for a straightforward implementation of hierarchical shrinkage, namely LASSO,

through the hyper-parameters of ω∗j sampled from a truncated normal distribution,

as:

ωj =

0 if ω∗j ≤ 0

ω∗j if ω∗j > 0.
(3.6)

Appendix B.1 provides detailed prior and the posterior computation for ω∗j (for a

more detailed discussion see Eisenstat et al., 2016). It is also necessary to note that

the error covariance matrix Ω̃ for βt in Equation (3.2) is a full matrix below

Ω̃ = Ω
1
2 ΦΦ

′
Ω

1
2 .

Further, the α follows a standard independent prior, α ∼ N(a0, A
−1
0 ), and

the variance A is shrunk with the standard LASSO used in Markov chain Monte

Carlo (MCMC), see Eisenstat et al. (2016) for further details. More precisely, the

unrestricted error for the state transition Equation (3.1) is from N(0, Q−1
t ), where

Qt = B
′
0,tΣ

−1
t B0,t. It is clear that α+ γt includes the free elements in B0,t and βt in

Equation (3.1).

To sum, the distributional assumptions as regards to (εt, η̃t, η
h
t ) are stated

below. The elements of the vector γt are modelled as random walks. The standard

deviations are assumed to evolve as geometric random walks, defined as stochastic

volatility. This constitutes an alternative to the autoregressive conditional het-

eroscedasticity (ARCH) model, with the difference being that the variances gener-

ated by Equation (3.3) are unobservable components. On the other hand, assuming

Equations (3.3) and (3.5) hold for a finite period of time, the effect should be innocu-

ous. Moreover, the random walk assumption presents the advantages of focusing on

permanent shifts and reducing the number of parameters in the estimation pro-

cedure. Notice that, in principle, the model can be easily extended to consider

more general autoregressive processes. Particularly for the parameters of the vari-

ance–covariance matrix, this exemplifies this model’s advantage over the so-called

local scale models (see for example Shephard (1996) and the multivariate generali-

sation of Uhlig (1997)). Furthermore, all innovations in the model are assumed to

be jointly normally distributed as the variance–covariance matrix:

V =

Im 0 0

0 R 0

0 0 V h
0

 , (3.7)
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where Im is an m-dimensional identity matrix. R and V h
0 are positive definite

matrices, known as hyperparameters. It is worth noting that none of the restrictions

on the structure of V are essential. All the zero blocks could be replaced by non-zero

blocks, with only small modifications of the estimation procedure. The following

hyper-parameters on the priors are standard as in Eisenstat et al. (2016):

a0 = 0, A0 = Im,

h0 = 0, V h
0 = In,

ν0 = n+ 11, R0 = 0.012(ν0 − n− 1)In,

λ01 = 0.1, λ02 = 0.1.

The following subsection will detail the other specifications considered in this

Chapter.

3.2.2 Model specifications

In the real crude oil price forecasting literature, an oil market based VAR typically

uses a lag length of 12 months, without sign restrictions (Baumeister & Kilian, 2012,

2014, 2015). As one of the benchmarks, I will report the VAR estimated by OLS,

which is unrestricted, constant parameter with no stochastic volatility, denoted as

VAR. As mentioned in the introduction, this chapter aims to incorporating the time

varying parameters and stochastic volatility into the real crude oil prices modelling.

Mindful of the over-parametrization problem, I will report a Bayesian VAR with

time varying parameters restricted by SMSS and stochastic volatility, which will be

denoted as TVPSVsmss introduced in Subsection 3.2.1.

It is also interesting to compare the out-of-sample forecast performance

among the following models: a Bayesian VAR with constant parameters using

LASSO and inverse gamma prior on volatility (BVAR), a Bayesian VAR with con-

stant parameters using LASSO and stochastic volatility (SV), a Bayesian VAR with

time varying parameters based on LASSO prior and inverse gamma prior on volatil-

ity (TVP), a Bayesian VAR with time varying parameters restricted by SMSS and

inverse gamma prior on volatility (TVPsmss), and a Bayesian VAR with time vary-

ing parameters restricted by LASSO prior and stochastic volatility (TVPSV). The

technical details are in Appendix B.2.
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Moreover, I use a linear opinion pool (LOP) combining TVPSVsmss accord-

ing to the choice of VAR lag lengths, k from 1 to 12 months (TVPSVsmss(k), where

k = [1, . . . , 12]), denoted as CombineTVPSVsmss. (See a more detailed discus-

sion of the LOP in Stone et al., 1961 and Wallis, 2005.) The advantages of using

the LOP include: (1) the fact that forecasting accuracy can be improved through

the combination has been shown in forecasting literature, e.g. Geweke & Amisano

(2011), Pettenuzzo & Ravazzolo (2016), Geweke (2010), Gneiting & Ranjan (2011),

Gneiting et al. (2013), Garratt, Henckel, & Vahey (2019), and among others; (2)

LOP provides a pool that will not converge to one specific model, excepting in the

case that one specification dominates others in out-of-sample Kullback-Leibler di-

vergence; and (3) the LOP combination of TVPSVsmss(k) is a dynamic method

providing additional shrinkage on coefficients of the predictors at long lag length,

motivated by a Minnesota type prior. On the other hand, due to the fact that LOP

contains the specifications’ disagreements, the density combination always has a

different shape with respect to the specifications’ marginal density forecasts, which

will possibly influence the combination’s out-of-sample forecasting performance as

well as modelling asymmetries in risk (Garratt, Henckel, & Vahey, 2019). Therefore,

this chapter focuses on the marginal forecasting performance of economic founded

models (VAR based) with time-varying parameter and stochastic volatility, where I

use CombineTVPSVsmss only for a model comparison purpose.2

Formally, the aggregated real-oil-price density of CombineTVPSVsmss from

the 12 specifications based on density scores using LOP is:

g(roilT+h|CombineTV PSV smss) =
12∑
k=1

ωCRPSk,h,t g(roilT+h|TV PSV smss(k)), (3.8)

where g(roilT+h|TV PSV smss(k)) denotes the density forecasts of TVPSVsmss with k

VAR lag length at forecasting horizon h; T = t, ..., t, depending on the length of

evaluation period; here, for example, the out-of-sample is from 1992:01 to 2016:12.

There are two alternative weighting schemes — logarithmic score-based weights and

continuous ranked probability score (CRPS)-based weights — in the literature for

2The use of LOP in this Chapter is motivated by the purpose for a well calibrated density
forecast. Given the range of measures used to evaluate the forecasts, it would be of interest to also
using these measures to construct weights (e.g. models which have had high financial market returns
recently get more weight). For example, Leitch & Tanner (1991) and Pettenuzzo & Ravazzolo (2016)
argue for that forecasts preferred by statistical criteria, is not necessarily useful for locating to a
profitable portfolio. I leave this analysis for the future research, because this Chapter mainly
contributes to quantify the use of time varying parameters and stochastic volatility but not for the
discussion of various optimal weighting schemes.
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a linear mixture of experts’ framework, but they give standard conclusions. In this

chapter, I will present the results based on CRPS weights, and this idea is come from

Ravazzolo & Vahey (2014). As described in Baumeister & Kilian (2015), a reliable

oil market data becomes available with a 6-month delay. Hence, the construction of

weights at time T is based on the fit of a model in time T − h − 6. Consequently,

the gain from a combination is limited. I will only show the results of the combined

density, for CombineTVPSVsmss.

The CRPS weights are defined as

ωCRPSk,h,T =

∑T−h−6
t+h+6 Γ(g(roilT+h|TV PSV smss(k)))∑12

k=1[
∑T−h−6

t+h+6 Γ(g(roilT+h|TV PSV smss(k)))]
, T = t, ..., t,

where Γ is the inverse of the CRPS, which is defined as CRPS(g(.), roilT+h) =

Eg{|R − roilT+h|} −
1

2
Eg{|R − R∗|}; roilT+h is the observation of log real RAC in the

month T+h; R and R∗ are independent draws of a linear random variable with fore-

cast distribution g(.); and Eg{.} denotes the expectation operator for the predictive

g(roilT+h|TV PSV smss(k)). The initial h+ 6 months utilise the equal weights, due to the

data constraint (see the discussion in Baumeister & Kilian, 2015). ‘Sharpness’, the

centre of a forecast density, and ‘distance’, the distance between the centre of the

forecast density and the out-turn, could be considered and concentrated when eval-

uating the forecast density (Gneiting & Raftery, 2007). The CRPS metric prefers

densities with high sharpness and small distance. Hence, employing the CRPS en-

ables us to generalise the absolute error, and to provide a direct path for comparing

various deterministic and probabilistic forecasts according to a single metric. This

is why the CRPS incentives predict densities with a high probability around the ex-

post released observations (see Hersbach, 2000; Gel et al., 2004; Gneiting & Raftery,

2007; Panagiotelis & Smith, 2008; Groen et al., 2013; and Ravazzolo & Vahey, 2014).

Two different methods for computing the CRPS are as follows: method 1 is based on

closed form expectation using iterates, while Panagiotelis & Smith (2008) introduced

the computational steps required for method 2, which utilises Monte Carlo draws

from the component forecast density. Because I did not find significant difference

between the two methods, I will only present the forecasts based on the method 2.

Lastly, I extend the specifications introduced in Baumeister & Kilian (2015),

and detailed in Section 2.3, to density forecasts. Then, I use equal weights to com-

bine the densities, denominated as BK (for the extension see Appendix B.3). All the
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Table 3.1: A list of specifications used for this application, including their
label, estimator, prior and uncertainty

Label Specification Estimator Prior Uncertainty

VAR Vector Autore-
gression

OLS −− Stochastic uncer-
tainty

BVAR Bayesian Vector
Autoregression

Gibbs sam-
pler

LASSO for coef-
ficients; Inverse
gamma for vari-
ance

Stochastic and
parameter uncer-
tainty

SV BVAR with
stochastic volatil-
ity

Gibbs sam-
pler

LASSO for coeffi-
cients

Stochastic and
parameter uncer-
tainty

TVP BVAR with time
varying parame-
ter

Gibbs sam-
pler

LASSO for coef-
ficients; Inverse
gamma for vari-
ance

Stochastic, pa-
rameter, and
time varying un-
certainty

TVPsmss BVAR with time
varying parame-
ter

Gibbs sam-
pler

LASSO for con-
stant coefficients;
SMSS for time
varying param-
eters; Inverse
gamma for vari-
ance

Stochastic, pa-
rameter, and
time varying un-
certainty

TVPSV BVAR with time
varying parame-
ter and stochastic
volatility

Gibbs sam-
pler

LASSO for coeffi-
cients

Stochastic, pa-
rameter, and
time varying un-
certainty

TVPSVsmss BVAR with time
varying parame-
ter and stochastic
volatility

Gibbs sam-
pler

LASSO for con-
stant coefficients;
SMSS for time
varying parame-
ters

Stochastic, pa-
rameter, and
time varying un-
certainty

Combine
TVPSVsmss

BVAR with time
varying parame-
ter and stochastic
volatility

Gibbs sam-
pler; LOP

LASSO for con-
stant coefficients;
SMSS for time
varying parame-
ters

Stochastic, pa-
rameter, and
time varying un-
certainty

BK Equal-weight
combination

Multi
methods

−− Stochastic, pa-
rameter, and
time varying un-
certainty
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specifications considered in this chapter are listed in Table 3.1, including the label

and the specification itself, the estimator, the prior, and the uncertainty considered

by the model.

Further, the size of the burn-in is 10,000 draws, with 1,000 draws of time-

varying (or time invariant) posterior estimates stored to produce point and density

forecasts, for all specifications. I choose the number of posterior draws to be 1000

for the following reasons. First, the results did not change with larger numbers

of draws, for example I tried 10,000 draws for a VAR with time varying parame-

ters, stochastic volatility, and SMSS, and found that the results are not statistically

different from the results implied by 1,000 posterior draws. The diagnostics of con-

vergence seem satisfactory given the large dimensionality of the specifications. In

addition, in Appendix B.4 I illustrate the convergence through, Geweke’s (1992)

inefficiency factor (IF), the Z−score and Gelman & Rubin’s (1992) potential scale

reduction factor (PSRF), which are widely used in the MCMC convergence diag-

nosing literature. (See reviews in Cowles & Carlin (1996) and Roy (2019).) Second,

this exercise undertakes recursive estimation through 1991:12–2016:12, using 300

real-time vintages, where the statistical evaluation for the in-sample estimates are

based on 300 × 1, 000 = 300, 000 posterior draws for each specification, which is

computationally prohibitive. (Appendix B.4 provides evidence for the specifications

estimation consistency across vintages through the PSRF test.)

3.2.3 Out-of-sample forecast implementation

Here, two methods can achieve the out-of-sample forecasts at horizon h. The first

one, proposed in Korobilis (2013), ignores the uncertainty of structural change in

the forecast period at 1- to 24-month horizons. I reconstruct TVPSVsmss as the

companion form of the standard VAR model for forecasts:

E(yT+h) = Σh−1
i=0 (B)i(c) + (B)hylags|T , (3.9)

c = B−1
0,T cT ,

B =

[
B−1

0,TB1,T · · ·B−1
0,TBk−1,T B−1

0,TBk,T

In×(k−1) 0n(k−1)×n

]
,
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where ylags|T = [y
′
T−1, ..., y

′
T−k]; B0,T , cT , and BT are component estimated draws

from α+ Ω
1
2 ΦγT in Equations (3.4) and (3.5), plugging in the last known values of

the coefficients at T in the sample for the nonlinear model (see discussions around

the forecast method in D’Agostino et al., 2013; Korobilis, 2013; and Cogley & Sbor-

done, 2008). Within the 1- to 4-month horizons, the method described above is

consistent over the evaluation period; however, when extending the out-of-sample

forecast horizons, such as 12 months or longer, large forecast errors are inevitably

introduced into the system.

As mentioned in the introduction of this chapter, the allowance of parame-

ter variation in an out-of-sample is interesting. Hence, through the second method,

MKLD, a model with drifting coefficients, predictive simulation can be implemented

to forecast breaks in the coefficients’ out-of-sample. This implies random walk evo-

lution of the mean coefficients in a time-varying parameter VAR and simulation of

future path using Monte Carlo iterations (see Bauwens et al. (2011) for the discus-

sion).

In this subsection I introduce MKLD process by an example of TVPSVsmss.

For a posterior draw ι, the forecast at horizon 1 month, yT+1|ι is calculated through:

1. Simulate the time-varying parameters:

γT+1|ι = γT |ι + η̃T+1,

where η̃T+1 ∼ N(0, Im).

2. Innovate stochastic volatility:

hT+1|ι = hT |ι + ηhT+1, ηhT+1|ι ∼ N(0, R|ι),

where R|ι is the posterior draw ι’s transition covariance for the log-volatilities.

3. Construct B0,T+1|ι:

B0,T+1|ι = αB0
ι + Ω

1
2
,B0

ι γB0

T+1|ι,

where αB0
ι , Ω

1
2
,B0

ι and γB0

T+1|ι are the coefficients stored in αι, Ω
1
2
ι and γT+1|ι for

contemporary observations in the matrix ZT respectively. B0,T+1|ι is formed

as a lower uni-triangular matrix.
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4. Forecast yT+1|ι with a specific posterior draw ι:

yT+1|ι = B−1
0,T+1|ι(Z̃Tα

\B0
ι + Z̃TΩ

1
2
,\B0

ι γ
\B0

T+1|ι + εT+1|ι),

where εT+1|ι ∼ N(0,ΣT+1|ι), and ΣT+1|ι is diagonal matrix with diagnal ele-

ments exp(hT+1|ι). The α
\B0
ι , Ω

1
2
,\B0

ι and γ
\B0

T+1|ι are the coefficients stored in

αι, Ω
1
2
ι and γT+1|ι for lagged observations in matrix ZT respectively.

The Z̃T is ZT without contemporary observations, where

Z̃T =


[1, ylags|T ] 0 0 0

0 [1, ylags|T ] 0 0

0 0 [1, ylags|T ] 0

0 0 0 [1, ylags|T ]

.

Again, ylags|T = [y
′
T−1, ..., y

′
T−k].

The forecasts at a longer horizon h from 2 to 24 months for this application,

yT+h|ι, incorporate (or conditional on) the forecasts at previous horizons from yT+1|ι

to yT+h−1|ι, and recursively go through the steps 1 to 4 mentioned above. Hence,

the forecasts of logarithmic real RAC measure at horizon h with draw ι, denoted as

roilT+h|ι, are included in yT+h|ι.

In the forecasting literature, one model’s marginal performance (likelihood)

is closely related to its out-of-sample forecasting performance, for example, see Koop

& Korobilis (2013). Researchers utilise combination methods to minimise the loga-

rithmic score or the CRPS to reduce the out-of-sample error (see for example Garratt

et al., 2014; Ravazzolo & Vahey, 2014; Garratt & Mise, 2014). Here, I use average

one-step ahead in-sample Gaussian analytic CRPS, AvCRPS, which is calculated

as:

AvCRPS =
1

T

T∑
t=1

(CRPS(N (Xtβt, e
ht), B0,tyt)), (3.10)

where CRPS(N (µ, σ2), x) = σ[2φ(x−µσ )− 1√
π

+ x−µ
σ × (2Φ(x−µσ )− 1)] is defined in

Grimit et al. (2006); βt and B0,t can be uniformly calculated via α, γt, and Ω
1
2 .3

3The use of analytic Gaussian CRPS is motivated by both the efficiency and that Equation 3.1
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Then, I combine 1,000 draws of α, Ω
1
2 , γt, ht, and R for the out-of-sample forecasts

by minimising AvCRPS through a LOP:

p(roilT+h) =

1000∑
ι=1

ωAvCRPSι g(roilT+h|ι), (3.11)

ωAvCRPSι =
AvCRPS−1

ι

Σ1000
ι=1 AvCRPS

−1
ι
, (3.12)

where there are 1,000 independent draws of a linear random variable with forecast

distribution g(.) from Bayesian iterations. roilT+h is the log-level forecast of the real

RAC measure at horizon h from a specification. The AvCRPSι is calculated for

all endogenous variables considered in the specification for each random draw ι of

estimated coefficients.

It is necessary to note the reason why I do not use dynamic model selection

(DMS) nor Bayesian model averaging (BMA). There are three concerns. First, DMS

and BMA will finally converge to a true model (in the limit), for example, please see

a review on BMA in Hoeting et al. (1999). However, Diebold (1991) pointed that

all models could be misspecified given a long out-of-sample forecasting horizons, re-

ferred to as the model imcompleteness in Geweke (2010). Second, comparing DMS

and BMA, LOP considers the parameters’ uncertainty and will no longer converge

to unique solution, except in the case where one specification dominates in terms of

Kullback–Leibler divergence (Pettenuzzo & Ravazzolo, 2016). Third, this exercise

uses the Gibbs sampler for estimation, and the variation of posterior draws reflects

parameter uncertainty. This is different to Koop & Korobilis (2013), as their DMS

is applied on hyper-parameters, which determine the prior shrinkage of parameters.

Further, the probability of extreme forecasts is raised with the increase of

the number of coefficients to be estimated. This is because the probability of ex-

plosive out-of-sample random walk evolutions of the parameter estimates is higher

for a large model than for a small one. For example, assuming the probability

of explosive out-of-sample random walk evolutions for a one-parameter model is

i.e. 1%(= 1 − 99%), then which for a 100-parameter model it is approximately i.e.

63%(= 1−99%100). Therefore, I eliminate the draws in the posterior, when produces

extreme forecasts for any one of the out-of-sample forecast 1–24 month horizons. An

is locally Gaussian at t. I also did try logarithmic score, and did not find any different performance
relative to CRPS. In this exercise I only present the results based on CRPS.
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extreme forecast is defined as a value that is more than three scaled median absolute

deviations away from the median. Appendix B.5 justifies that MKLD, accompanied

with extreme-forecasts-elimination process, is equivalent to placing zero prior weight

on a specific region of the parameter space. Under the zero-weight region, out-of-

sample time-varying parameters’ AR(1) coefficients have standard–error estimates

that are around three times the size of the accepted estimates. I also illustrate that

the process is closely follows the estimates of the specifications, therefore rules out

the argument that ‘the resulting forecasts are not from the model being estimated’.

The forecasts of WTI and Brent oil price measures are extrapolated from

the forecast of RAC multiplied by the most recent spread between them and RAC,

respectively, from each specification considered in this chapter, through:

R
WTI/Brent
T+h|M = exp(roilT+h|M )× spreadWTI/Brent, RAC

T ,

spread
WTI/Brent, RAC
T =

p
WTI/Brent
T

pRACT

,

where, p
WTI/Brent
T and pRACT are the nominal observations for WTI, Brent and RAC,

respectively, in time T .

Here are two motivations to do so. First, the characteristics of the three mea-

sures over period 1992:01–2016:12 are illustrated in Figure 3.1. The co-movement

of three measures is consistent over the evaluation period. Although, a large diver-

gence among the three measures happened between 2011:01 and 2014:08, the spread

among three crude oil prices are generally consistent over the divergent period. And

the volatility of spread
WTI/Brent, RAC
T , is negligible relative to the volatility of crude

oil prices over the evaluation period. Second, extrapolating the forecast of real WTI

measure from the forecast of real RAC price is common in the real crude oil price

forecast literature, see Baumeister & Kilian (2012) and Baumeister & Kilian (2015).
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Figure 3.1: Monthly real crude oil prices (nominal prices divided by the
U.S. CPI)

It is necessary to note that the MKLD method is utilised for the BVAR, SV,

TVP, TVPsmss, TVPSV, and TVPSVsmss specifications, while the sub-models in-

cluded in CombineTVPSVsmss also employ the method. The following section will

detail the data, then I evaluate the specifications for the period 1992:01 to 2016:12.

3.3 The data

The data employed in this chapter include two different date frequencies for the

forecasting purpose and the calculation of futures returns respectively. First, the

data used for forecasting purpose in this chapter is the real time data set for crude

oil market developed in Chapter 2. The real time monthly time series include the

U.S. refiners’ acquisition cost for crude oil imports, WTI spot prices and the New

York Mercantile Exchange (NYMEX) WTI oil futures with maturities from 1 to 24

months, the price of Brent crude from the North Sea and its futures with maturities

from 1 to 24 months, the global crude oil production, a business cycle index of global

real activity proposed in Kilian (2009), the U.S. CPI, the U.S. crude oil inventories,

the U.S. and the OECD countries petroleum inventories. The sources of the data

include the U.S. Energy Information Administration, Bloomberg, Drewry Shipping

Consultants Ltd., the Federal Reserve Economic Data (FRED) and the Federal Re-

serve Archival System for Economic Research (FRASER) database of the Federal
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Reserve Bank of St. Louis. The details of the data are described in the previous

chapter, and the advantages of a real-time data set are discussed in Baumeister &

Kilian (2012), Kilian & Murphy (2014), and Baumeister & Kilian (2015).

Second, additional to the data employed for forecasting, Subsection 3.4.4

uses daily data for a long–short investment strategy to measure the economic per-

formance using density forecasts. Daily closing spot prices of WTI and Brent oil dur-

ing the 1991:12:01–2016:12:31 period are available respectively at https://www.eia

.gov/dnav/pet/hist/RWTCD.htm and https://www.eia.gov/dnav/pet/hist/rbrteD

.htm from the U.S. Energy Information Administration (EIA). WTI futures are

traded on the NYMEX, and Brent futures on the Intercontinental Exchange (ICE)

Futures Europe. Each crude oil futures contract represents 1,000 barrels, and the

price is denominated as USD per barrel. The daily closing futures prices for WTI

and Brent have maturities ranging from 1 to 24 months for the period 1991:12:01–

2016:12:31 and are obtained from Bloomberg using the source keys CL1:COM to

CL24:COM, and CO1:COM to CO24:COM respectively.4

Further, I collect the last trading date (LTD) of futures contracts from

1991:11 to 2019:01 using the tickers CLZ91 to CLF9 for WTI (source key: CL EXS)

and COZ91 to COF9 for Brent (source key: CO EXS) from Bloomberg. The pub-

lishing dates for each Monthly Energy Review are also collected, and are avail-

able at https://www.eia.gov/totalenergy/data/monthly/previous.php#1973

-92. This information has been taken into the consideration for a long–short

investment strategy. For example, a 1-month-maturity futures contract’s LTD is

2016:12:31, while the EIA just published its Monthly Energy Review at 2016:12:28.

The density forecast at the 1-month horizon, based on this Monthly Energy Re-

view, is not appropriate to guide a long–short investment strategy for the 1-month-

maturity contract, which is going to mature in few days. Instead, this density

forecast is used for deciding the long–short positions of a 2-month-maturity con-

tract. Please see details in Appendix B.7.

4The daily data used in this exercise is only available before the 31st December 2016, and the
calculation of excess returns requires the last trading day price of a contract. Hence, the last
contract ends at 2016:12:31. The calculation of excess return is described in Appendix B.7.
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3.4 Forecast evaluation

In this subsection, I evaluate the specifications mentioned above based on point and

density forecasts. However, there is considerable ambiguity trying to decide which

density forecast is better among SV, TVP, TVPSV, TVPsmss, TVPSVsmss, and

CombineTVPSVsmsss based on standard statistics. Further, standard statistical

measures of point and density forecasts limit the ability to communicate with de-

cision makers and market participants. Therefore, this chapter designs a realistic

long–short trading strategy using daily crude oil futures and real-time data, aiming

to answer if forecasts are able to provide a greater probability for abnormal returns.

Finally, I extend the analysis to evaluate the probability forecasts of extreme high

and low real crude oil prices.

3.4.1 In-sample diagnostic statistic

The world crude oil prices present highly frequent time variation, which provided

the motivation for introducing time-varying parameters and stochastic volatility to

measure time varying uncertainty. However, the inclusion of the TVP and SV intro-

duces a non-informative structural uncertainty in the out-of-sample forecast period,

which is why I use LASSO, SMSS, LOP and MKLD to restrict on the in-sample and

out-of-sample shrinkage. Essentially, the majority of estimates of parameters are re-

stricted to be time-invariant through SMSS, the inclusion of stochastic volatility and

LOP. Further, MKLD eliminates approximately 20% of the draws from posteriors

on average in out-of-sample forecasts.

Figure 3.2 plots the weights utilised for constructing CombineTVPSVsmss

at the 1-, 3-, 6-, 12-, 18- and 24-month forecast horizons. I also highlight the highest

and lowest weights at the end of the evaluation period per sub-figures. It is clear

that the weights are very consistent over the evaluation period. At the 3-, 6- and

12-month horizons, the highest weight is assigned to the model with a lag order of

one month but is slightly higher than the other VAR lag choices. Figure 3.3 shows

the estimated time-invariance probabilities, which are calculated as the number of

time invariant estimates divided by the size of the posterior, over 300 vintages’ real-

time estimations for the TVPsmss, TVPSVsmss, and CombineTVPSVsmss specifi-

cations, respectively. The sub-figures present the time invariant probabilities of all

estimates. The left panel is for the estimates in B0,t that are lower unitriangular con-
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Figure 3.4: The percentage of permissible draws from posterior for
BAVR, SV, TVP, TVPsmss, TVPSV and CombineTVPSVsmss over the
evaluation period 1992:01–2016:12

stituting an extension of the Cholesky decomposition, as defined in Equation (3.1).

Then, the coefficients assigned on the regressions for the crude oil production, the

real economic index, crude oil prices and crude oil inventories are presented consec-

utively. Intercepts are highlighted, with white and black boxes indicating different

VAR lag lengths; for example, the white box after the intercept in the sub-figures

for all regressions is lag one, y
′
t−1, stocked in the Zt matrix in Equation (3.4).

Generally, it is clear that the majority of coefficients are well approximated

as being time invariant, as they have a low probability, whilst some coefficients

still show a high probability of being time variant. Comparing the TVPsmss and

TVPSVsmss models, the inclusion of stochactic volatility reduces the time varying

probabilities, especially for the real economic activity and the real oil price. Compar-

ing CombineTVPSVsmss relative to TVPSVsmss, the probability of time invariance

becomes higher. Therefore, the LOP also restricts the coefficients to be time invari-

ant. This is understandable, since the LOP combines TVPSVsmsss model with the

VAR lag length choices from 1 to 12 months. The time-invariance probability of

coefficients on TVPSVsmsss with VAR lag 1 is 100% for y
′
t−i, where i=[2, ..., 12].

Moreover, Figure 3.4 presents the percentage of the draws kept for sam-

pling the density forecasts after MKLD, while the probability is based on 300 real-

time vintage estimates for each specification including BVAR, SV, TVP, TVPsmss,

TVPSV, and TVPSVsmss. It is clear that the TVP introduces a higher probability
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of inactive draws than the specifications without it or restricted through SMSS; for

example, the inclusion of SMSS, when comparing TVPsmss and TVP, will increase

the probability of active draws in the posterior from approximately 70% to 80% on

average. Surprisingly, the inclusion of SV, when comparing TVPSV and TVP, will

not significantly reduce the probability of efficient draws.

3.4.2 Point forecast evaluation

The point forecasts of all specifications are median estimates of the density fore-

casts, as it is easier to explain the relation between point and density forecasts.

For consistency, the evaluation of point forecasts will also use the recursive inverse

mean squared predictive error (MSPE) and success ratios relative to the no-change

forecasts introduced in Chapter 2, while the corresponding significance tests are the

rough guide of Harvey et al. (1997) small-sample adjustment of the Diebold & Mar-

iano (1995) test and the Pesaran & Timmermann (2009) test. If a recursive MSPE

ratio is lower than 1, the forecast is superior to a no-change forecast. Meanwhile, if

the success ratio of a forecast is higher than 0.5, then the forecast is informative in

directional forecasts. Hence, those forecasts with lower recursive MSPE and higher

success ratios are preferred.

Essentially, the point forecasts indicate that a BK equal combination domi-

nates all other specifications in both point and directional forecasts at all horizons

from 1 to 24 months. Table 3.2 presents the real-time forecast accuracy for WTI,

RAC, and Brent measures at the 1-, 3-, 6-, 12-, 18- and 24-month horizons dur-

ing the 1992:01–2016:12 evaluation period, where the forecasts of BVAR, SV, TVP,

TVPsmss, TVPSV, TVPSVsmss, and CombineTVPSVsmss are highlighted within

rectangular boxes as they utilise the MKLD method for out-of-sample density fore-

casts. The forecasts from BVAR, TVP, TVPsmss and TVPSV reveal that the

recursive MSPE ratios are higher than 1 across all horizons for all three measures

considered. Although SV and CombineTVPSVsmss are able to provide lower than

1 recursive MSPE ratios at 1-month horizons for all three measures, none of the

forecasts within the box are able to provide statistically significant improvements

relative to no-change forecasts. Additionally, it is interesting to note that the in-

clusion of the SV and SMSS processes in the estimation leads to a reduction of

the recursive MSPE ratios from the comparison between TVP and TVPsmss, and
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Table 3.2: Real-time forecast accuracy of model specifications at selected forecast monthly
horizons

Forecast Horizons

Specifications/MH 1-Month 3-Month 6-Month 12-Month 18-Month 24-Month

Real WTI price

Recursive MSPE ratios

VAR 0.985 1.008 1.124 1.207 1.205 1.157

BVAR 0.971 1.022 1.162 1.293 1.268 1.205

SV 0.936 0.997 1.148 1.333 1.383 1.338

TVP 1.354 1.412 1.451 1.649 1.907 2.553

TVPsmss 1.147 1.180 1.277 1.465 1.814 3.021

TVPSV 1.115 1.329 1.545 2.174 3.383 7.413

TVPSVsmss 1.006 1.190 1.287 1.369 1.436 1.687

CombineTVPSVsmss 0.928 1.034 1.163 1.350 1.483 1.760

BK 0.906∗∗ 0.921∗∗ 0.978∗ 0.944∗∗ 0.946∗∗ 0.955∗∗

Success ratios

VAR 0.527 0.570∗∗ 0.539∗ 0.491 0.519 0.520

BVAR 0.540∗ 0.567∗∗ 0.529 0.529 0.534 0.534

SV 0.530 0.564∗∗ 0.529 0.495 0.516 0.516

TVP 0.497 0.550∗∗ 0.461 0.443 0.428 0.365

TVPsmss 0.557∗∗ 0.557∗∗ 0.471 0.426 0.445 0.433

TVPSV 0.553∗∗ 0.584∗∗ 0.468 0.457 0.428 0.408

TVPSVsmss 0.517 0.510 0.444 0.478 0.470 0.480

CombineTVPSVsmss 0.517 0.527 0.502 0.512 0.470 0.487

BK 0.553∗ 0.581∗∗ 0.539 0.606∗∗ 0.576∗∗ 0.552∗∗

Real U.S. refiners’ acquisition cost for oil imports

Recursive MSPE ratios

VAR 0.987 1.014 1.155 1.201 1.195 1.116

BVAR 0.954 1.020 1.184 1.281 1.239 1.148

SV 0.933 0.999 1.160 1.302 1.313 1.217

TVP 1.279 1.390 1.421 1.597 1.799 2.314

TVPsmss 1.146 1.173 1.252 1.405 1.694 2.658

TVPSV 1.105 1.309 1.506 2.085 3.064 6.159

TVPSVsmss 0.991 1.159 1.280 1.371 1.393 1.544

CombineTVPSVsmss 0.924 1.019 1.162 1.337 1.423 1.592

BK 0.931∗∗ 0.922∗∗ 0.977∗∗ 0.940∗∗ 0.946∗∗ 0.969∗∗

Success ratios

VAR 0.570∗∗ 0.567∗∗ 0.536 0.540∗ 0.537 0.523

BVAR 0.597∗∗ 0.564∗∗ 0.532 0.578∗∗ 0.558∗∗ 0.545∗

SV 0.580∗∗ 0.574∗∗ 0.525 0.550∗ 0.541 0.527

TVP 0.500 0.520 0.478 0.478 0.396 0.368

TVPsmss 0.567∗∗ 0.540∗ 0.468 0.481 0.428 0.437

TVPSV 0.550∗∗ 0.540∗ 0.471 0.519 0.452 0.419

TVPSVsmss 0.547∗∗ 0.507 0.468 0.526 0.495 0.491

CombineTVPSVsmss 0.560∗∗ 0.550∗∗ 0.519 0.561∗∗ 0.495 0.498

BK 0.553∗ 0.597∗∗ 0.569∗∗ 0.633∗∗ 0.576∗∗ 0.563∗∗

Real Brent price

Recursive MSPE ratios

VAR 1.003 1.037 1.153 1.206 1.211 1.120

BVAR 1.004 1.055 1.201 1.293 1.266 1.161

SV 0.968 1.029 1.180 1.314 1.335 1.233

TVP 1.327 1.378 1.443 1.608 1.793 2.207

TVPsmss 1.146 1.157 1.274 1.424 1.688 2.491

TVPSV 1.143 1.329 1.541 2.108 3.055 6.000

TVPSVsmss 1.041 1.215 1.311 1.386 1.409 1.522

CombineTVPSVsmss 0.959 1.062 1.192 1.358 1.446 1.584

BK 0.940∗∗ 0.934∗∗ 0.978∗ 0.932∗∗ 0.939∗∗ 0.948∗∗

Success ratios

VAR 0.497 0.550∗∗ 0.546∗ 0.505 0.541∗ 0.523

BVAR 0.510 0.547∗∗ 0.536 0.543∗ 0.562∗∗ 0.531

SV 0.500 0.557∗∗ 0.549∗ 0.516 0.544 0.520

TVP 0.493 0.530 0.481 0.443 0.399 0.383

TVPsmss 0.547∗∗ 0.564∗∗ 0.492 0.439 0.438 0.451

TVPSV 0.550∗∗ 0.564∗∗ 0.481 0.478 0.449 0.419

TVPSVsmss 0.500 0.517 0.471 0.491 0.498 0.484

CombineTVPSVsmss 0.493 0.547∗∗ 0.522 0.526 0.484 0.484

BK 0.520 0.560∗∗ 0.525 0.592∗∗ 0.572∗∗ 0.542∗∗

Note: MH represents monthly forecast horizons. Boldface indicates improvements relative to the no-change forecast. As a rough guide,
a Harvey et al. (1997) small-sample adjustment of the Diebold & Mariano (1995) test is used for the significance test of recursive MSPE

ratios. The Pesaran & Timmermann (2009) test for the null hypothesis of no directional accuracy success ratios. ∗ denotes significance at

the 10% level and ∗∗ at the 5% level. The Evaluation period is from 1992:01 to 2016:12.
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between TVPsmss and TVPSVsmsss, for all three measures.

Figures 3.5 and 3.6 present the historical MSPE and success ratios over the

period after the financial crisis in 2008 to verify the stability of the statistics for the

RAC, WTI and Brent measures respectively.5 Sub-figures illustrate the results gen-

erated all the models respectively. The conclusion reflects Table 3.2, whereby only

BK can consistently provide preferred recursive MSPE and success ratios. The re-

cursive MSPE ratios of TVP, TVPSV, and TVPsmss are considerably more volatile

than others, especially at the horizons larger than 6 months.

From the perspective of the point forecasts, the proposed specifications in

this chapter are less accurate than the BK combination. However, the point fore-

casts are unable to address more economically motivated questions that might be

asked by financial market participants. Further, it is quite difficult to distinguish

the relative performance among SV, TPVSVsmss, and CombineTVPSVsmss using

the point forecasts statistics. The following subsections will turn to the evaluations

based on density forecasts.

3.4.3 Density forecast evaluation

Rosenblatt (1952), Dawid (1984) and Diebold et al. (1999) propose a methodol-

ogy utilising the probability integral transforms (pits) of the realised real oil price

regarding the forecasts of densities. The pits is gauged as:

ZT+h =

∫ roil
T+h|M

−∞
p(u)du,

where p(.) is the probability generated from the density forecasts of g(roilT+h|M ) for

the log real RAC measure based on specification M , utilised as one of the endoge-

nous variables in Equation (3.1). As mentioned in Section 3.2.3, forecasts of WTI

and Brent measures are extrapolated from the forecast of RAC multiplied by the

most recent spread between them and RAC, respectively, from each specification,

excepting BK, considered in this chapter. The performance of density forecasts for

WTI and Brent measures are closely related to the performance of forecasts for the

RAC measure. To illustrate results, I show the forecast performance of the log-level

5The historical recursive MSPE and success ratios for WTI and Brent measures are qualitatively
the same as the ratios for the RAC measure.
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RAC measure, which is directly forecasted from the vector autoregressions.

The pits, ZT+h will be uniformly, independently and identically distributed

(i.i.d.) if the density forecast is well calibrated (see Diebold et al., 1999). Hereafter,

the pits provides a means of evaluating the forecast densities relative to the real but

unknown densities of the RAC measure.

In fact, the pits-related evaluation requires goodness-of-fit tests for both uni-

formity and independence at the conclusion of the evaluation period. The Ander-

son–Darling (AD) and Pearson chi-squared (χ2) tests are employed for uniformity,

where the AD test is adjusted through the Kolmogorov–Smirnov test to place higher

weight on the tails, as encouraged by Noceti et al. (2003), while the Pearson chi-

squared (χ2) test will separate the range of the ZT+h into eight equally distributed

probability classes, and thus uniformity in the histogram can be tested. For in-

dependence, the Likelihood Ratio (LR) and Ljung–Box (LB) tests are considered,

where the former, proposed by Berkowitz (2001), utilises a three degrees of freedom

variant, and the alternative assumes that the ZT+h follows an AR(1) process, while

the LB test is designed up to the 4th order of autocorrelation.

Table 3.3 reports all of the four pits-based density forecast evaluations of

the log of real RAC measure in the first four columns at the 1-, 3-, 6-, 12-, 18-

and 24-month horizons, with the specifications listed in rows. Boldface indicates

that the test is significant at least at the 5% level. Echoing Table 3.2, I highlight

those specifications that utilised MKLD within boxes. Moreover, I also provide

the average CRPS, denoted as CRPS(g(roilT+h|M ), roilT+h), over the period for each

specification, calculated as:

CRPS(g(roilT+h|M ), roilT+h) =
1

t− t

t∑
T=t

[Eg{|R− roilT+h|} −
1

2
Eg{|R−R∗|}],

where roilT+h is the observation of log real RAC at T + h; R and R∗ are independent

draws of a linear random variable with forecast distribution g(roilT+h|M ) at horizon

h for vintages t=1992:01, to t=2016:12; Eg{.} denotes the expectation operator for

the predictive g(roilT+h|M ); and t− t is the number of in-report vintages, which is 300

in this exercise. Again, the calculation of the CRPS is based on method 2 as de-

scribed above — or in Panagiotelis & Smith (2008). The sign of Giacomini & White

(2006) test, using the CRPS as the objective function, is shown in the final column.
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Boldface indicates an improvement of predictive ability relative to the BK density

forecasts based on the Giacomini & White (2006) test, while ∗ denotes significance

at least at the 5% level.

In Table 3.3, the pits of density forecasts at the 1-month horizon for SV and

CombineTVPSVsmss are significantly uniform and independent based on χ2 and

LB tests, and their average CRPSs are smaller than the BK’s. Moreover, TVPSV

and TVPSVsmss also show significantly lower average CRPS than the BK’s, al-

though they are not significantly independent. The SV and CombineTVPSVsmss

show qualitatively lower average CRPS and perform better with respect to BK’s at

all horizons based on the Giacomini & White (2006) test, as well as at least one of

the diagnostic tests are significant.

Moreover, Figure 3.7 illustrates histograms of pits over the evaluation period

for all specifications. It is clear that the density predicted by VAR and BK are too

narrow at all forecast horizons, as there far more observations of pits near 0 and 1

than in the middle, while this is not observed in those models using the time-varying

MKLD model excepting BVAR. It is also necessary to mention that density fore-

casts generated by TVP are diffuse relative to other densities, especially at horizons

larger than 6 months.

The calibrations of pits reflect the relative performance of density forecasts,

while it is also interesting to consider the shape of the density forecasts. Figure

3.8 presents the density forecasts (98% posterior credibility sets) of log real RAC

for TVP, SV, and BK over the 1992:01 to 2016:12 evaluation period, and the corre-

sponding observations.6 The reason that only plots the three densities is for avoiding

to getting bogged down with too many details. SV stands for well calibrated density

forecasts, while TVP densities are relatively diffuse. BK is the benchmark.

Generally, SV broadens BK’s density forecasts and narrows down the TVP’s.

The density forecasts of BK are too narrow to track the observations at horizons

beyond 3 months. While, the densities forecasted by TVP are too diffuse to reflect

the information in terms of the crude oil prices, especially at horizons 18 and 24

months. Different from TPV and BK, SV can track and react sensitively to the

6The last observation at forecast horizon h is 2016:12-h+1, as the post-report vintage 2017:06
does not cover the observation after 2017:06.
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Table 3.3: Real-time density forecast accuracy of model specifications at selected forecast monthly
horizons for log(RAC)

pits related diagnostics

Uniformity Independence

Average
CRPSSpecifications AD test χ2 test LR test LB test GW

1-Month Horizon

VAR 0.000 0.000 0.000 0.155 0.054 (-)∗

BVAR 0.000 0.000 0.000 0.353 0.056 (+)

SV 0.000 0.285 0.000 0.244 0.050 (-)

TVP 0.000 0.024 0.000 0.042 0.058 (+)

TVPsmss 0.000 0.000 0.000 0.021 0.056 (+)

TVPSV 0.000 0.329 0.000 0.003 0.055 (-)∗

TVPSVsmss 0.000 0.001 0.000 0.005 0.054 (-)∗

CombineTVPSVsmss 0.000 0.071 0.000 0.086 0.051 (-)

BK 0.000 0.000 0.000 0.000 0.055 −−
3-Month Horizon

VAR 0.000 0.000 NaN 0.003 0.118 (+)

BVAR 0.000 0.000 0.000 0.002 0.109 (+)

SV 0.000 0.156 0.000 0.010 0.101 (-)

TVP 0.000 0.005 0.002 0.000 0.115 (+)

TVPsmss 0.000 0.439 0.000 0.000 0.112 (+)

TVPSV 0.000 0.134 0.222 0.000 0.112 (+)

TVPSVsmss 0.000 0.047 0.000 0.000 0.111 (+)

CombineTVPSVsmss 0.000 0.168 0.000 0.001 0.101 (-)

BK 0.000 0.000 NaN 0.002 0.104 −−
6-Month Horizon

VAR 0.000 0.000 NaN 0.502 0.185 (+)

BVAR 0.000 0.000 0.000 0.334 0.159 (+)

SV 0.000 0.290 0.000 0.495 0.148 (-)

TVP 0.000 0.042 0.194 0.019 0.164 (+)

TVPsmss 0.000 0.404 0.000 0.020 0.159 (+)

TVPSV 0.000 0.386 0.370 0.037 0.167 (+)

TVPSVsmss 0.000 0.000 0.000 0.003 0.165 (+)

CombineTVPSVsmss 0.000 0.007 0.000 0.041 0.147 (-)

BK 0.000 0.000 NaN 0.689 0.152 −−
12-Month Horizon

VAR 0.000 0.000 NaN 0.978 0.268 (+)

BVAR 0.000 0.000 0.000 0.957 0.223 (+)

SV 0.000 0.018 0.012 0.596 0.210 (-)

TVP 0.000 0.005 0.985 0.918 0.227 (+)

TVPsmss 0.000 0.000 0.000 0.961 0.226 (+)

TVPSV 0.000 0.037 0.382 0.752 0.236 (+)

TVPSVsmss 0.000 0.000 0.000 0.666 0.224 (+)

CombineTVPSVsmss 0.000 0.000 0.044 0.973 0.207 (-)

BK 0.000 0.000 0.000 0.964 0.214 −−
18-Month Horizon

VAR 0.000 0.000 NaN 0.498 0.337 (+)

BVAR 0.000 0.000 0.000 0.685 0.268 (+)

SV 0.000 0.000 0.243 0.036 0.254 (-)

TVP 0.000 0.005 0.122 0.968 0.280 (+)

TVPsmss 0.000 0.013 0.000 0.519 0.278 (+)

TVPSV 0.000 0.017 0.667 0.989 0.295 (+)

TVPSVsmss 0.000 0.000 0.000 0.998 0.258 (+)

CombineTVPSVsmss 0.000 0.000 0.002 0.402 0.246 (-)

BK 0.000 0.000 0.000 0.599 0.257 −−
24-Month Horizon

VAR 0.000 0.000 NaN 0.353 0.364 (+)

BVAR 0.000 0.000 0.000 0.746 0.284 (-)

SV 0.000 0.002 0.093 0.108 0.274 (-)

TVP 0.000 0.000 0.000 0.761 0.332 (+)

TVPsmss 0.000 0.088 0.754 0.286 0.305 (+)

TVPSV 0.000 0.008 0.013 0.705 0.337 (+)

TVPSVsmss 0.000 0.000 0.000 0.756 0.279 (-)

CombineTVPSVsmss 0.000 0.002 0.440 0.044 0.269 (-)

BK 0.000 0.000 0.000 0.114 0.284 −−

Note: AD test is the small-sample (simulated) p-value from the Noceti et al. (2003) test for uniformity of the pits, assuming independence of

the pits. χ2 test is the p-value for the Pearson chi-squared test of uniformity of the pits histogram in eight equiprobable classes. LR test is the

p-value for the likelihood ratio test of zero mean, unit variance and zero first order autocorrelation of the inverse normal cumulative distribution
function transformed pits, with a maintained assumption of normality for the transformed pits. LR test is proposed by Berkowitz (2001). LB test

is the p-value from a Ljung–Box test for independence of the pits based on autocorrelation coefficients up to four. Boldface indicates a statistical

significance at least at 5%. According to the Bonferroni correction, the four tests based on pits are jointly controlled by size, reflecting a stricter
p-value. For instance, 5% significant level signals a 5%/4=1.25% level. GW is the sign of the test-statistic for the Giacomini & White (2006) test

of predictive ability relative to the BK density forecasts, and ∗ denotes a significant level of 5% based on the test.
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real crude oil price at all forecasting horizons during the whole evaluation period

excepting the financial crisis in 2008 at the 3- and 6-month horizons.

Nevertheless, the existing “tool box” of the density forecast evaluation can

not distinguish the performances of SV, TVPSV, TVPSVsmss, and CombineTVPSV-

smss. Moreover, a well-calibrated density from standard statistics is limited to con-

cluding the use of the forecasts with market participants. In the following exercise,

I will evaluate the density forecasts from the point of view for market participants,

who consider higher frequency (daily) financial data. Finally, I turn to event prob-

ability forecasts.

3.4.4 Forecast performance measured using financial market pay-

off

As mentioned in the introduction of this chapter, it is important to evaluate the

point and density forecasts using higher frequency financial data, since the crude oil

is traded in high volumes in daily commodity markets. In asset price text books, an

investor can profit from a rise in the crude oil price by taking up a long position in

the crude oil futures market, if he or she is bullish on crude oil. Meanwhile, if the

investor is bearish on crude oil, it is profitable to adopt a short position in the crude

oil futures market. Accordingly, it is possible to extend the evaluation scheme for

models’ forecasts to a financial market pay-off. This subsection designs a realistic

long–short trading strategy using daily crude oil futures and real-time forecasts,

which provides the probability of that forecasts are able to generate positive excess

returns.

The calculation of excess returns using the “realistic” long–short trading

strategy requires as inputs a density forecast of the oil price at investment horizon

h, daily closing prices of crude oil futures (WTI and Brent) with the h-month ma-

turity, and a threshold πc ⊆ [0.5, 1] reflecting the risk-aversion level. The signal to

take either a long or short position is denoted as ζid,h,M,πc |· on day d, where i ⊆
[WTI, Brent], and M indicates the density forecast of a model specification. The |·
stands that the calculation of a signal is conditional on the futures’ LTD and the

EIA reporting date, which have multiple forms of arrangements and compositions

detailed Appendix B.6. The trading rule is as follows. (1) If the implied real crude oil

price using a daily futures with maturity h, which is calculated via a futures-spread
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forecast of real crude oil prices widely used in oil price forecasting literature (see

Baumeister & Kilian, 2015, Baumeister et al., 2018, and Garratt, Vahey, & Zhang,

2019), is smaller than the (1 − πc)-quantile of a density forecast at the horizon h,

we go long, and (2) if the implied real oil price is larger than the πc-quantile of the

density forecast at h, we go short. The technical details to construct the realistic

strategy are described in Appendix B.6.

I propose the probability of positive excess returns, defined in Appendix

B.7, using the data set dated at time T in the financial market as P (PRT ) =

(LPT + SPT )/(LNT +LPT + SNT + SPT ). The ‘LPT ’ represents the total number

of positive excess returns, at all horizons h = 1 to 24 months and on all the days

between months T and T + 1, which is conditional on that ζid,h,M,πc |· signals a long

position; SPT is the number of positive excess returns conditional on all the short

positions; LNT and SNT indicate the numbers of negative excess returns with the

long and short positions, respectively. The higher the probability of excess returns

the more we favour the use of that particular model specification using this criteria.

Table 3.4 presents the average P (PRT ) of vintages from 1992:01 to 2016:12.

Columns are risk-aversion levels, including πc = 50%, πc = 68%, πc = 75%,

πc = 85%, πc = 90%, and πc = 95%. The upper panel is for the WTI mea-

sure, and the lower is for the Brent. The probability in parenthesis after the oil

price measures’ names are the observed probability of positive excess returns when

always taking the long positions at all horizons (ex-post). Boldface highlights the

highest two average probabilities. The most important signal is that SV can gener-

ate at least the second highest average P (PRT ) under the sets of all risk-aversion

levels for both WTI and Brent measures. Moreover, CombineTVPSVsmss can gen-

erate at least the second highest average probabilities using all πc above 50% for

the Brent measure. Furthermore, VAR’s average probabilities are not sensitive to

the increase of risk-aversion levels, while the other models’ average probabilities of

positive returns rise with the increase of πc. In Appendices B.8 and B.9 I also com-

pare the cumulative excess returns and the probabilities of negative excess returns

at horizons 1 to 24 months respectively, which broadly confirm the robustness of

observations from P (PRT ).
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Table 3.4: Hit rate of financial market excess returns for the WTI and Brent measures, 1992:01–
2016:12

risk-aversion level

Specifications πc = 50% πc = 68% πc = 75% πc = 85% πc = 90% πc = 95%

The WTI measure (49%)

VAR 0.53 0.53 0.53 0.54 0.53 0.53

BVAR 0.53 0.53 0.54 0.57 0.59 0.61

SV 0.52 0.56 0.59 0.62 0.65 0.67

TVP 0.46 0.51 0.55 0.63 0.64 0.64

TVPsmss 0.49 0.54 0.55 0.61 0.63 0.65

TVPSV 0.46 0.52 0.58 0.62 0.66 0.62

TVPSVsmss 0.49 0.51 0.56 0.61 0.60 0.65

CombineTVPSVsmss 0.49 0.52 0.57 0.63 0.62 0.67

BK 0.51 0.53 0.54 0.59 0.62 0.66

The Brent measure (51%)

VAR 0.53 0.54 0.54 0.55 0.55 0.56

BVAR 0.52 0.53 0.56 0.60 0.61 0.61

SV 0.53 0.57 0.63 0.66 0.69 0.71

TVP 0.49 0.55 0.56 0.61 0.62 0.63

TVPsmss 0.51 0.57 0.60 0.59 0.63 0.67

TVPSV 0.48 0.54 0.59 0.62 0.64 0.69

TVPSVsmss 0.48 0.54 0.57 0.63 0.61 0.64

CombineTVPSVsmss 0.49 0.56 0.63 0.65 0.65 0.72

BK 0.53 0.54 0.55 0.61 0.65 0.66

Note: MH represents the monthly forecast horizons. The πc denotes the choice of probability to do long or short stratagem, representing

the financial markets participants’ risk-aversion level. Boldface indicates the top two diagnostic statistics. The probability in parenthesis after

measures’ names is the observed probability of positive excess returns when always taking the long positions at all horizons (ex-post).

3.4.5 Probability forecasts for ‘extreme high’ and ‘extreme low’

real oil prices

From the density forecasting evaluation, it is evident that the preferred specifica-

tions, including SV and CombineTVPSVsmss, differ from the conclusion in point

forecasts, where BK dominates the other specifications. Moreover, the use of daily

financial data indicates that the SV can generate a relative high probability of pos-

itive excess returns compared to other methods at all forecast horizons. Further,

this chapter also extends the evaluation scheme to the probability forecasting of

events, because in the crude oil market, participants, including investors and policy

makers, have an interest in the probability of any extreme high or low real crude oil

price. The subsequent paragraphs will evaluate the forecasts through a probability

forecasting for extreme high and low oil prices, statistically analysed through the

hit rate, Kuipers Score, a fair bet, as well as Brier Score and its decomposition.

The risk analysis in Alquist et al. (2013) and Wang et al. (2017) sets up-

per and lower thresholds for the extreme high and low nominal crude oil prices as

being higher than $80 per barrel and lower than $45 per barrel, respectively. In
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contrast, this exercise considers a dynamic attitude of the extreme events. I define

the “extreme high price” as a price at time T + h, where h is the forecast horizon,

that is higher than 95% of the previous observations during the period T − 24 to

T , which is the most recent two years’ observations at time T . Symmetrically, the

“extreme low price” of real crude oil prices is the observation at time T + h that

is lower than 95% previous of the observations in the most recent two years at time T .

The predicted probability of an extreme high crude oil price at time T for

T + h, based on a specification M , is denoted as P highT+h|M , and calculated as:

P highT+h|M = 1−
∫ Q

roilT−24,T (95%)

− inf
p(u)du, (3.13)

where Qr
oil
T−24,T (95%) is the value for which the probability of obtaining values from

[roilT−24, . . . , roilT ] below Qr
oil
T−24,T (95%) is 95%, and p(.) is the probability generated

from the density forecasts of g(roilT+h|M ).

Similarly, the probability forecast of an extreme low of crude oil price is

calculated as:

P lowT+h|M =

∫ Q
roilT−24,T (5%)

− inf
p(u)du, (3.14)

where Qr
oil
T−24,T (5%) is the value for which the probability of obtaining values from

[roilT−24, . . . , roilT ] below Qr
oil
T−24,T (5%) is 5%.

Figures 3.9 and 3.10 illustrate the probability forecasts of extreme high

and low real crude oil prices at the 1-, 3-, 12-, and 24-month horizons over the

1992:01–2016:12 period, respectively. The ‘ACTUAL’ is the observations at T +

h in the post-report 2017:06 vintage. The x-axis shows vintages T, and T ⊆
[1992:01, . . . , 2016:12]. Generally, SV is preferred to other models for forecast-

ing the extreme high price, while the preferable model for the extreme low price

is uncertain. In per Figures 3.9 and 3.10, I only plot the forecasts from TVP, SV,

and BK for a clear demonstration, since the probability forecast performances of

SV, TVPsmss, TVPSVsmss, and CombineTVPSVsmss are qualitatively the same.

TVP is used for a relatively diffuse density forecast for comparison purposes. Mean-

while, the performances of VAR, BVAR, and BK are the same, with BK being the

benchmark.
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At the 1-, 3- and 6-month horizons, the probabilities for the extreme high

and low crude oil prices forecasted by all three methods are able to meet the ma-

jority of the actually observed events. With the growth of forecasting horizons, the

probabilities of extreme high and low prices are slightly converging to 50% for all

three models. The performance of SV and BK are the same, but TVP shows less

predicative power. For example, TVP achieves approximately 40% of the probabil-

ities forecasted for extreme high price in terms of the events realised after the oil

price crisis of 1998 and before the financial crisis in 2008 at the 3- and 6-month

horizons, while BK and SV can provide a more certain answer with high predictive

probabilities.

At the 12-, 18- and 24-month forecast horizons, as shown in per Figures 3.9

and 3.10, none of the models can demonstrate predictability as robustly as at the 1-,

3-, and 6- month forecast horizons. Meanwhile, the probability forecasts for extreme

increases are far more accurate than for the extreme decreases. For example, the

majority of the realised price extreme increases were predicted by SV and BK, but

fewer decreases were forecasted by any of the models. Moreover, the probabilities

for the extreme low prices predicted by SV can match the crude oil plunge in 2014.

Furthermore, the probability forecasts of the two events from TVP generally fluc-

tuate within the 20% to 60% bands, and are thus uninformative. The reason being

that the forecasted density is too diffuse to give instructions.

Hit rate and Kuipers Score

To quantify the performance of events forecasts, there are a range of statistics to

verify how often the specifications are able to predict whether the event will or will

not manifest. Objective functions-based evaluation provides a broadly flexible en-

vironment for decision makers to evaluate the performance of the forecasts made

from specifications (see Garratt et al. (2016) and Johnstone et al. (2013) for related

analysis).

In this exercise, I illustrate the hit rate and Kuipers Score for a statistical

analysis of the probability forecasts for the extreme high and low real crude oil prices

(see a related discussion in Garratt et al., 2016). As per the hit rate in financial
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markets, I calculate this as:

HR = (Y Y +NN)/(Y N +NN +NY + Y Y ),

where ‘YY’ indicates that the extreme high or low crude oil prices are forecast

and occurs, while ‘YN’ indicates the event is forecast but not realised, and so

on. Meanwhile, the Kuiper Score is H − F , where H = Y Y/(Y Y + Y N) and

F = NY/(NY +NN).

Fair bet

The forecast performance is measured by whether it can help market participants

“generate profit” compared with a bet based on rival specifications. Following Gar-

ratt et al. (2016), I construct symmetric and asymmetric fair bet games to evaluate

the forecasts in Tables 3.5 and 3.6. In symmetric games, if the specification can

forecast the event, including extreme high and low prices, and it is observed in the

post-report vintage, the specification gains (s− 1), but otherwise loses 1. Symmet-

rically, when the specification does not predict an event that is also not observed

in the post-report vintage, then it will get (s − 1), but otherwise loses 1. This is

summarised in Table 3.5. An asymmetric game is where there is nothing to win or

lose if the specification does not foresee the event, and the payout contingencies are

summarised in Table 3.6.

Table 3.5: Payout contingencies for the outcome of a symmetric fair bet

Event Forecast
Event Occurs

Yes No

Yes s− 1 -1

No -1 s− 1

For a fair bet, the expected payout based on unconditional probability ρ

should be zero:

(s− 1)[ρ2 + (1− ρ)2]− 2ρ(1− ρ) = 0.

Therefore, s =
1

2ρ2 − 2ρ+ 1
. For the asymmetric game, the expected payout should

be zero:
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(s− 1)ρ2 − ρ(1− ρ) = 0.

Then, s =
1

ρ
, and the payout for success increases monotonically as ρ→ 0. Hence,

the ex-post payout of the fair bet rate is conditional on the natural rate based on

the post-report observation.

Table 3.6: Payout contingencies for the outcome of an asymmetric fair
bet

Event Forecast
Event Occurs

Yes No

Yes s− 1 -1

No 0 0

The payout of each specification M at horizon h in time T is calculated as:

WT+h|M =

(s− 1)I(R)− (1− I(R)) if the probability of eventT+h|M > 0.5

(s− 1)(1− I(R))− I(R) if the probability of eventT+h|M < 0.5,

where, I(R) indicates the ex-post observation of the event, which is equal to 1

or 0 depending on whether it is observed or not, respectively; the probability of

eventT+h|M is defined in Equations (3.13) and (3.14) for extreme high and low real

crude oil prices respectively for specification M . Meanwhile, the payout of the

asymmetric game is defined as:

WT+h|M =

(s− 1)I(R)− (1− I(R)) if the probability of eventT+h|M > 0.5

0 if the probability of eventT+h|M < 0.5.

Table 3.7 summarises the hit rates and Kuiper scores, as well as the cumula-

tive pay-out of symmetric and asymmetric games over the 1992:01–2016:12 period,

defined as ΣTWT+h|M , where T ⊆ [1992:01, . . . , 2016:12]. The boldface indicates

the top two statistics at the corresponding horizons across the specifications. It is

clear that SV excels in terms of the priority for forecasting the extreme high real oil
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Table 3.7: Forecasting ‘extreme high’ and ‘extreme low’ real crude oil prices, 1992:01–2016:12

Forecast Horizons

Specifications/MH 1-Month 3-Month 6-Month 12-Month 18-Month 24-Month

Extreme High Prices

Unconditional Prob. 19% 23% 26% 28% 30% 31%

Hit Rate

VAR 0.88 0.82 0.79 0.73 0.69 0.61

BVAR 0.87 0.83 0.78 0.75 0.67 0.60

SV 0.88 0.85 0.79 0.76 0.69 0.63

TVP 0.86 0.80 0.74 0.70 0.66 0.62

TVPsmss 0.87 0.80 0.75 0.69 0.62 0.63

TVPSV 0.87 0.82 0.75 0.74 0.66 0.61

TVPSVsmss 0.86 0.80 0.77 0.72 0.66 0.63

CombineTVPSVsmss 0.87 0.83 0.78 0.72 0.67 0.64

BK 0.88 0.82 0.75 0.73 0.68 0.68

Kuipers Score

VAR 0.63 0.49 0.47 0.29 0.19 0.01

BVAR 0.56 0.51 0.43 0.36 0.20 0.04

SV 0.59 0.57 0.46 0.41 0.26 0.15

TVP 0.55 0.43 0.29 0.15 0.08 -0.10

TVPsmss 0.59 0.44 0.31 0.10 -0.08 -0.02

TVPSV 0.57 0.49 0.31 0.32 0.10 -0.06

TVPSVsmss 0.56 0.45 0.44 0.22 -0.02 -0.17

CombineTVPSVsmss 0.59 0.52 0.46 0.23 0.04 -0.05

BK 0.63 0.48 0.34 0.30 0.16 0.19

Returns to Fair Bet [Symmetric/Asymmetric]

VAR [345.55/230.45] [320.14/161.80] [317.34/136.42] [273.89/89.89] [244.01/61.16] [190.28/34.32]

BVAR [333.37/225.45] [327.77/194.56] [309.46/141.25] [287.23/137.08] [235.86/86.93] [182.04/52.84]

SV [340.68/240.09] [343.03/235.28] [319.97/184.42] [297.90/176.23] [244.01/121.58] [201.28/102.87]

TVP [330.94/207.00] [309.96/157.80] [280.55/87.17] [247.21/51.77] [222.28/35.90] [193.03/4.59]

TVPsmss [338.24/215.82] [309.96/147.88] [283.17/92.08] [239.21/41.73] [192.40/4.77] [201.28/19.88]

TVPSV [333.37/213.82] [320.14/161.80] [283.17/99.92] [279.22/88.38] [227.71/40.78] [187.54/14.88]

TVPSVsmss [330.94/195.36] [309.96/128.04] [304.20/96.17] [265.89/41.19] [227.71/9.14] [201.28/-4.71]

CombineTVPSVsmss [338.24/227.45] [327.77/179.68] [309.46/109.92] [265.89/55.25] [230.43/18.77] [209.53/10.59]

BK [345.55/230.45] [320.14/181.64] [288.43/121.50] [273.89/96.92] [238.58/53.41] [237.01/69.76]

Extreme Low Prices

Unconditional Prob. 15% 17% 20% 22% 26% 25%

Hit Rate

VAR 0.93 0.88 0.79 0.76 0.72 0.75

BVAR 0.93 0.88 0.79 0.75 0.73 0.75

SV 0.92 0.86 0.79 0.75 0.75 0.77

TVP 0.91 0.87 0.79 0.76 0.73 0.74

TVPsmss 0.93 0.86 0.78 0.75 0.75 0.75

TVPSV 0.93 0.87 0.77 0.76 0.73 0.75

TVPSVsmss 0.93 0.85 0.75 0.75 0.75 0.82

CombineTVPSVsmss 0.93 0.87 0.77 0.76 0.73 0.79

BK 0.91 0.86 0.79 0.77 0.73 0.75

Kuipers Score

VAR 0.74 0.57 0.32 0.31 0.24 0.31

BVAR 0.75 0.59 0.34 0.27 0.26 0.32

SV 0.70 0.51 0.31 0.24 0.31 0.36

TVP 0.64 0.53 0.31 0.25 0.23 0.25

TVPsmss 0.73 0.51 0.29 0.24 0.31 0.27

TVPSV 0.73 0.55 0.23 0.26 0.26 0.29

TVPSVsmss 0.78 0.47 0.09 0.17 0.31 0.62

CombineTVPSVsmss 0.80 0.57 0.17 0.18 0.22 0.49

BK 0.73 0.56 0.27 0.25 0.21 0.20

Returns to Fair Bet [Symmetric/Asymmetric]

VAR [353.49/216.00] [325.13/146.92] [280.22/87.08] [266.79/100.47] [248.92/76.42] [261.39/88.13]

BVAR [351.15/203.36] [327.52/147.92] [285.18/85.17] [261.73/80.89] [256.78/73.67] [263.98/82.99]

SV [344.15/194.55] [315.58/128.04] [280.22/83.17] [259.21/65.83] [269.88/81.55] [274.34/86.99]

TVP [337.15/191.55] [317.97/134.00] [280.22/79.25] [266.79/54.77] [256.78/53.53] [251.04/62.62]

TVPsmss [351.15/209.18] [315.58/133.00] [277.74/70.42] [261.73/59.80] [272.50/68.16] [258.80/56.40]

TVPSV [351.15/209.18] [320.36/125.08] [267.82/58.58] [266.79/65.31] [259.40/63.16] [258.80/74.84]

TVPSVsmss [353.49/198.55] [308.42/110.16] [250.47/24.17] [259.21/34.19] [272.50/48.03] [310.57/91.76]

CombineTVPSVsmss [353.49/192.73] [322.74/126.08] [267.82/31.17] [264.26/29.16] [262.02/32.52] [287.28/58.18]

BK [339.48/157.64] [313.19/82.40] [282.70/37.17] [274.37/33.16] [262.02/26.77] [258.80/19.51]

Note: MH represents monthly forecast horizons. Unconditional probability of the extreme high and low prices during the 1992:01–2016:12

period are listed in the first row of each panel. Boldface indicates the top two diagnostic statistics.
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price, which collects the majority of the highest hit rates, Kuipers Scores, and sym-

metric and asymmetric returns to fair bet at all the horizons presented. At the

same time, there is no uniform conclusion on the relative performance in forecasting

extreme low prices. TVPSVsmss and CombineTVPSVsmss can provide high hit

rates, Kuipers Scores, and symmetric fair bet returns at the 1- and 24-month hori-

zons, while VAR and BVAR perform better at the 3-, 6-, 12-, and 18-month horizons.

Brier Score and its decomposition

This subsection computes the Brier Score (Brier, 1950) to gain further insight into

the forecast performance for extreme high and low real crude oil prices. A well-

known decomposition of the Brier Score into uncertainty, reliability and resolution

(Murphy, 1973), can be written as:

BS = o(1− o) +
1

N

K∑
κ=1

nκ(pκ − oκ)2 − 1

N

K∑
κ=1

nκ(oκ − o)2, (3.15)

where o is the observed frequency of a event over N evaluation periods and not the

forecasts; N is the number of evaluation periods. The whole sample is split into

verification groups, partitioned into deciles of forecast probability, such as the first

group of 1 to 5% forecasts comparing with corresponding observations, the second

contains 6 to 10% and so on. K is the number of groups, which we set 20 in this

application; and, nκ is the number of forecasts which fall into the κth group. The

term pκ denotes the forecast probability of the event, while ex-post event frequencies

observed in the group κ are denoted as oκ.

There are three terms, measuring uncertainty, reliability and resolution. The

calculation of uncertainty only uses the data to construct o and not the forecasts.

Hence, this term is the same for all specifications. According to Galbraith & Norden

(2012), reliability is the consistency between forecast probabilities pκ and ex-post

observed event frequencies oκ. Therefore, the lower is the second term indicates high

consistency between these two. For example, suppose 15% is the probability of an

extreme low real oil price, and the specification predicts that the real oil price falls

below the 5%-quantile of the last two years’ prices, which is the definition of the

extreme low oil price in this application, for 15% of the observations, then I have a

perfect match with the data, and reliability is perfect, with this term being zero.
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The third term resolution measures the difference between the observed fre-

quency oκ in the κth group and the overall sample average frequency o. The res-

olution enters negatively into the decomposition this term measures the ability to

distinguish between relatively high-probability and low-probability events. If it is

high, the conditional expectation of the outcomes will differ largely from its uncon-

ditional mean. Hence, high resolution lowers the Brier Score. Low Brier Scores are

preferred.

Table 3.8 reports the Brier Score and it’s decomposition for all model spec-

ifications, using as thresholds the extreme high and low real oil prices as in Table

3.7. The SV and CombineTVPSVsmss have approximately the same Brier Score at

all forecast horizons for forecasting extreme high prices, and both outperform the

benchmark VAR and BK at the 1-, 3-, 6-, 12-, and 18-month horizons. That is, the

Brier Score is the highest for the VAR in the upper panel of Table 3.8. Comparing

with the VAR, the major contribution to the superior performance comes from the

second term at all horizons, measuring reliability, while the contribution becomes

positive (reducing the Brier Score) from the third term (resolution) at the 12-, 18-,

and 24-month horizons. This is because SV’s density forecasts are not as sensitive

as VAR’s to the change of forecast horizons, as shown in Figure 3.7. Hence, the

reduction of VAR’s ability to distinguish between relatively high-probability and

low-probability events is larger than that of SV’s. Consequently, the resolution for

VAR gradually reduces from 0.096 at the 1-month to 0.026 at the 24-month hori-

zons, while it for SV decreases from 0.085 to 0.029. Therefore, the longer horizons

of SV perform better than the benchmark VAR by the way of both reliability and

resolution, and as opposed to reliability only at the shorter horizons.

For forecasting extreme low real oil prices in the lower panel of Table 3.8, the

model specifications using the MKLD produced lower Brier Scores than the VAR at

all forecast horizons. It is necessary to note that CombineTVPAVsmss performed

slightly better than SV at the 12-, 18-, and 24-month horizons. The TVP, TVPSV,

and TVPSVsmss, which allow parameters be more time-varying than both SV and

CombineTVPSVsmss do, performed slightly better than all other specifications at

the 12-, 18- and 24-month horizons for forecasting the low price, respectively.
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3.5 A brief discussion for the results so far

The in-sample statistics have illustrated that the prior SMSS can efficiently restrict

time-varying parameters to be time invariant. The allowance of stochastic volatil-

ity, comparing TVPSVsmss to TVPsmss, will further reduce the time variation of

parameters under the prior of SMSS. Meanwhile, the use of LOP, such as Combi-

neTVPSVsmss, will give a relative high and consistent weight on the TVPSVsmss

with one VAR lag length, and hence, restrict the majority of time-varying param-

eters in TVPSVsmss to be constant. Therefore, an out-of-sample forecasting com-

parison for the specifications listed in Table 3.1 amounts to a hierarchical model

comparison for time-varying parameters.

For the 1992:01–2016:12 evaluation period, BK dominates the new model

space using MKLD considering time-varying parameters, stochastic volatility, SMSS

and LOP, respectively, based on recursive MSPE and success ratios for point fore-

casts. However, the evaluations of density forecasts, including pits based calibra-

tions and CRPS, indicate that both the SV and CombineTVPAVsmss are better

calibrated than the VAR and BK benchmarks.

The Subsections 3.4.4 and 3.4.5, therefore, evaluate the probability that

forecasts can generate positive excess returns using daily oil futures and the event

forecasts of extreme high and low real oil prices, respectively. Incorporating high

frequency financial data, using the point forecast, where πc = 50%, increases the

probability of positive excess returns from 49% (51%) when an investor always takes

long position to a maximum of 53% (53%) across specifications for the WTI (Brent)

measure. However, the density forecasts are more flexible, as it enables investors

to choose a risk-aversion level (πc). When (πc = 95%), the probabilities of positive

excess returns are as high as 67% and 71% based on the density forecasts of SV

for WTI and Brent, respectively. The results of the probability for positive excess

returns indicate that the SV is well calibrated in both two price measures, and Com-

bineTVPAVsmss is also an improvement for the Brent measure.

For event forecasts, the Hit rates, Kuipers Score and Fair bet metrics suggest

that the SV is better calibrated than other specifications at a majority of forecast

horizons for extreme high oil prices. In contrast, these statistics do not support

SV for forecasting extreme low oil prices. To gain further insights to the event
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forecasts, Brier Scores are calculated, and indicate that both SV and CombineTV-

PAVsmss are well calibrated for the extreme high and low events, whereas the VAR

and BK benchmarks are not, despite this the BK benchmark is tougher to beat at

the 24-month horizon. Overall, there is strong empirical evidence supporting the

SV and CombineTVPSVsmss models, which are top two specifications restricting

time-varying parameters. In short the gain largely arises due to the use of stochastic

volatility.

3.6 Concluding remarks

I have developed the MKLD for improving highly parameterised models’ out-of-

sample density forecast accuracy through minimising one-step-ahead in-sample pos-

terior estimates’ Kullback–Leibler ‘distance’, followed by an elimination process for

extreme forecasts. Moreover, this chapter has extended the evaluation of the model

comparisons from a standard statistical evaluation of point and density forecasts to

one that selects specifications that are more valuable in terms of excess returns when

trading in the crude oil futures market, and forecasting the likelihood of extreme

high and low real crude oil prices.

In order to determine the time variation of the parameters in the real crude

oil price forecasts, this chapter has explored the vast model space of hybrid meth-

ods, which includes stochastic volatility, constant and time-varying parameters, as

well as specifications allowing some of the VAR coefficients that are constant, while

others that are time varying, using MKLD and the extended evaluation scheme.

Over the 1992:01–2016:12 period, I find overwhelming support for models employ-

ing stochastic volatility and SMSS versus the conventional VAR and BK. However,

the majority of the gains result from stochastic volatility.

From the point forecasting perspective, BK dominates those generations us-

ing the time-varying MKLD model over the 1992:01–2016:12 period. However, SV

and CombineTVPSVsmss with the benefit of MKLD can provide enhanced cali-

brated density forecasts compared to BK at all horizons based on the Giacomini

& White (2006) test utilising CRPS as a loss function. From a realistic long-short

stratagem using daily crude oil futures, SV can provide higher probability of posi-

tive excess returns than other models considered in this exercise by taking long or
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short positions during the evaluation period. SV using MKLD provides the highest

hit rate, Kuipers Score and a fair bet, as well as at least the second smallest Brier

Scores in order to forecast the extreme high real crude oil price at all forecast hori-

zons. CombineTVPSVsmss provides the smallest Brier Scores in the extreme low

real crude oil price forecasting at all forecast horizons

Moreover, the long–short stratagem used for evaluation purpose can be ap-

plied in practice. Firstly, it offers a more flexible platform to construct portfolio in

the oil-futures market. Secondly, policy makers can utilise the process as a monitor

to track the price of crude oil to facilitate policy reactions to predictions.
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Chapter 4

Constrained Bayesian SVARs:

Two Specifications in the World

Crude Oil Market Modelling

Structural vector autoregressions (SVARs) have been widely used for Macroeco-

nomic inferences since Sims (1980). A trade off between the computation efficiency

and the complexity of the identification becomes a central issue. An increasingly

popular way of identifying structural shocks is through a set of identification restric-

tions, which includes sign and other qualitative restrictions when shocks happen and

in their aftermath. Computation using the traditional accept-reject approach can

take a very long time since many draws can be rejected. An alternative way to iden-

tify only sign-restricted VARs using the Bayesian method, proposed by Baumeister

& Hamilton (2015), does not run into this computational problem. However, this

method limits identification restrictions to the impact matrix and, in practice, can

lead to imprecise estimates of structural parameters. This chapter proposes a paral-

lel Metropolis–Hastings algorithm to identify and compute Bayesian SVARs, which

extends Baumeister & Hamilton’s (2015) method from sign to a set of identifica-

tion restrictions. Two specifications commonly used in the world crude oil market

modelling are employed to illustrate that the new method offers improvements in

terms of computational efficiency and a more precise estimation on crude oil demand

elasticities. Moreover, I argue that the novel method proposed in this chapter can

identify uncertainty of restrictions on non-linear structural parameters, for example

demand and supply elasticities. This chapter provides empirical evidences that the

uncertainty of restrictions leads to precise estimates of the non-linear parameters of

interest.
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4.1 Introduction

Structural vector autoregressions (SVARs) have provided valuable insights in the

field of applied macro-econometrics since Sims (1980). The issue of identification

becomes central for precise estimates of structural parameters. However, the tradi-

tional accept-reject method for SVARs is computationally inefficient when imposing

restrictions, such as the dynamic sign restrictions in Kilian & Murphy (2014) and

ranking restrictions in Amir-Ahmadi & Drautzburg (2019), referred as a ‘set identi-

fication’ in SVARs literature. Often only a low number of admissible draws are avail-

able when computing standard errors around point estimates, making for imprecise

inference. For example, the sifting of 16 models in Kilian & Murphy (2014) required

5,000,000 posterior draws using their method from Journal of Applied Econometrics

data archive. The econometric literature, on the one hand, has concentrated on im-

proving the efficiency of processes for sampling the orthogonal rotation matrix using

Bootstrapping or Bayesian methods (see Uhlig, 2005; Rubio-Ramirez et al., 2010;

Inoue & Kilian, 2013; Kilian & Murphy, 2014; Arias et al., 2018; Amir-Ahmadi

& Drautzburg, 2019; and Arias et al., 2019). Nevertheless, these methods still do

not elevate the impact caused by the complexity of identification restrictions. (See

a detailed discussion in Section 4.2.) On the other hand, Baumeister & Hamilton

(2015, 2018, 2019) and Waggoner et al. (2016) sample structural parameters di-

rectly, but (1) they are unable to introduce the set restrictions after the impact of

shocks; (2) they require a specific formation for endogenous variables aiming to iden-

tify structural parameters directly. Hence, the second approach changes both the

method and the formation of the endogenous variables relative to the corresponding

literature, which leads to difficulties in terms of drawing comparisons between them.

Mindful of the gap in SVARs’ literature, this chapter proposes a novel iden-

tification and computation for Baumeister & Hamilton’s (2015) Bayesian SVARs.

Baumeister & Hamilton (2015, 2018, 2019) only allow for sign restrictions on the con-

temporaneous relations matrix of variables, using positive (or negative) truncated

Student t distributions. In contrast, this chapter identifies parameters contained

in the inverse contemporaneous relations matrix, which are the impulse response

functions (IRFs) at the zero horizon, using a truncated Student t distributions for

the sign restrictions. Moreover, a set identification is enabled, which include a broad

range, such as zero, sign and dynamic sign restrictions on IRFs, as well as bounds

(and their uncertainty) on elasticities. This is achieved through a (parallel) random-

walk Metropolis–Hastings (MH) sampler, which samples estimates constrained by
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the set identification. I refer to this as constrained Bayesian SVARs, thereafter de-

noted as C-BSVARs in this chapter.

For the computation, C-BSVARs reform Baumeister & Hamilton’s (2015)

Bayesian SVARs in the following ways. (1) C-BSVARs numerically solves a con-

ditional arg-minimisation for the initial values of the parameters for Baumeister &

Hamilton’s (2015) Markov chain Monte Carlo (MCMC) iteration, which is strictly

restricted by the set identification. To improve the computation efficiency, the log-

likelihood function will be multiplied by an indicator, signalling that the estimates

satisfy the set of identification restrictions, in the arg-minimisation step. (2) I keep

the acceptance rate within a range 30%-40%, and let the MCMC searching step

length adjust automatically through a scale factor. (3) I independently draw the

random–walk MH samplers under different restrictions by adding the uncertainty

of the threshold lower (or higher) bounds. This is because of the weakness of the

standard MH algorithm, which draws samples only within a local maximum when

the posterior is a multimodal distribution, highlighted in Waggoner et al. (2016).1

As a result, independent MCMC draws can be sampled using a parallel calculation

for improving the computational efficiency.2

In a special case, Kilian & Murphy (2014) propose global crude oil market

SVARs, which explicitly accounts for shocks to the speculative demand for oil as

well as shocks to the flow demand and flow supply. There were two major contribu-

tions in their paper. First, speculation was not an explanation for the 2003–2008 oil

price surge, driven by flow oil demand shocks, while the speculation-demand shock

played an important role in the years 1979, 1986, and 1990. Second, Kilian & Mur-

phy (2014) distinguish and provide estimates of the short-run oil demand elasticity

for use and production. Meanwhile, the absolute value of demand elasticity for use

is smaller than that for production due to the cushion of oil inventories for use,

but both of them are significantly larger than zero. Consequently, speculation will

always accompany a change in the oil inventory. In other words, there is no evidence

1It is necessary to note that this does not mean the weakness of the standard MH algorithm biases
Baumeister & Hamilton’s (2015, 2018, 2019) Bayesian inferences, because their identifications are
only applied to structural parameters directly, whose prior distributions are from Student t which
is clearly unimodal. However, C-BSVARs consider a more complex set identification, such as the
lower bound of oil demand elasticity calculated jointly through IRFs at the 0-horizon. Hence the
shape of its prior or posterior is of ambiguity and not necessarily a perfect unimodal distribution.

2It is clear that C-BSVARs do not apply to the traditional orthogonal reduced-form parameter-
isation, but do use Bayesian method for structural inferences straightly.
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for oil price endogeneity.3

Nevertheless, regarding the computational burden, only 150 of posterior mod-

els were deemed admissible for their global crude oil market SVARs (Kilian & Mur-

phy, 2010), which is statistically unreliable.4 The size of admissible models is of

importance to get a precise inference. Baumeister & Hamilton (2017, p. 21-22),

for example, claimed that the results in Kilian & Murphy (2014) are sensitive to

the choice of seeds for replicating random number generation process. More specifi-

cally, I illustrate how the sample size influences the precision of the estimates’ using

Monte Carlo sampling of a standard normal (N(0, 1)) distribution. Figure 4.1 plots

the ‘uncertainties’ (left y-axis) of the 16th, 50th, and 84th percentiles of a standard

normal. The ‘uncertainties’ are presented as Kernel fitted probability distributions

based on 1,000 ‘estimates’ of the three percentiles. The ‘estimates’ of the three

percentiles, using standard Normal Monte Carlo sampling, use sample sizes of 100,

1,000, 10,000, 100,000. It is clear that Monte Carlo sample size matters for the

precision of Bayesian inference, as increasing sample size narrows the uncertainties

of percentiles.

In this chapter, using two specifications in the world crude oil market, I il-

lustrate how C-BSVARs provide a practical solution to this problem enabling larger

numbers of posterior draws to be used for economic inference. The first specifica-

tion utilises the same identification as the oil-market structural model in Kilian &

Murphy (2014), while the second allows for uncertainty in the short-run crude oil

demand elasticity lower bound for oil use, in contrast to Kilian & Murphy (2014)

who fix the lower bound at -0.8 (see Kilian & Murphy, 2014, p. 462).

In the first specification, aiming to replicate Kilian & Murphy’s (2014) identi-

fication, I restrict C-BSVARs using parallel MH samplers, and use one long Markov

chain for the estimates. The effect of using C-BSVARs is to sharpen the distribu-

3The previous two chapters emphasis the importance of the time variation in parameters (TVP)
and stochastic volatility (SV), while Kilian & Murphy’s (2014) structural model is homoscedastic
and has constant coefficients. For the oil-market structural analysis, there are strong empirical
evidences showing that the SVAR, under suitable identification, is still valid producing economic
insights, see among others, Baumeister & Kilian (2016c), Baumeister & Kilian (2016a), Baumeister
& Kilian (2016b), and Baumeister & Hamilton (2019). Considering heteroskedastic SVARs with
TVP are of interest for the oil market structure modelling, but it would be far more complex in
both identification and computation than C-BSVARs given a large dimensional model. Therefore,
I leave this for the further research.

4Kilian & Murphy (2010, p. 34) indicate the size of their admissible models, which is the working
paper version of Kilian & Murphy (2014).
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tion of impulse response functions, whilst confirming that Kilian & Murphy’s (2014)

economic findings, including relative importance of shocks accounting for the surge

of the real oil price. Moreover, I broadly confirm Kilian & Murphy’s (2014) result

that the difference in posterior distributions between the elasticities for use and pro-

duction, as well as the size being significantly larger than zero.
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Figure 4.1: Kernel fitted probability distribution functions

Note: The kernel fitted probability distribution functions, which use the Normal method

and the bandwidth that optimal for estimating Normal densities, are the percentiles gener-

ated from a standard normal distribution with respected to the size of Monte Carlo sampling,

namely, 100, 1,000, 10,000, and 100,000, are measured by left y-axis. The dotted red line is

a standard normal distribution (right y-axis).

However, this raises two concerns. First, the multimodal posterior distri-

butions of oil demand elasticity, estimated by C-BSVARs, are diffuse lying within

the truncated bounds of [-0.8, 0], resulting in a uniform-like distribution (using

MATLAB seed 316). Therefore, it is difficult to draw a conclusion on the price en-

dogeneity using the estimates of the 68% confidence sets. Second, the elasticities are

sensitive to the choice of seed for replicating random numbers. This is problematic

as an accurate inference of crude oil demand elasticities from a structural modelling

perspective, as their magnitude reflects not only the existence of crude oil price en-

dogeneity (Kilian & Murphy, 2014), but has implications for the relative importance

of supply and demand factors in explaining oil market fluctuations (Caldara et al.,

95



2019).

There are two possible reasons for the sensitivity to the choice of seeds: (1)

the MCMC algorithm has failed to converge; (2) the latent distribution is not per-

fectly unimodal. If it is caused by reason (1), we simply increase the sample size

for MCMC convergence. However, if it is caused by reason (2), as documented in

Waggoner et al. (2016), due to the weakness of MH sampler that the posterior will

be sampled within a local maximisation, it is to my knowledge impossible to find

a global maximisation using finite MCMC iterations. As a result, simply increas-

ing the sample size would not be an appropriate idea, as there is no method can

diagnose an efficient sample size. However, it is possible to jointly use Bayesian

convergence diagnostics to give a rough guide for specifying which one of the two

reasons causes the sensitivity. (See reviews and examples in Cowles & Carlin (1996)

and Roy (2019).) Section 4.4.2 illustrates the sensitivity to the choice of seeds is

highly likely to be caused by reason (2).

To solve the limitations above, the second specification of C-BSVARs pro-

poses an additional restriction on the ‘short-run crude oil demand elasticity lower

bound for use’, which is randomly sampled from a prior distribution calibrated ac-

cording to a large range of estimates for gasoline demand elasticities taken from the

literature. The rationale underlying is that the demand elasticity of crude oil should

be smaller than that for gasoline, as it is a product of crude oil. This additional re-

striction enables C-BSVARs to use parallel MH samplers for the estimation, where

the Markov chains start with different values. As a result, the estimates of the

elasticities are diagnosed as converged using all the tests, which are not sensitive to

the seeds in this case. The inference of oil demand elasticities via C-BSVARs have

narrower distributions and are closer to zero than the estimates calculated where

the restriction is not imposed. However, they are still larger than the estimates in

literature, such as -0.06 reported in Hamilton (2008), -0.05 in Dahl (1993) and -0.07

in Cooper (2003). Hence, C-BSVARs confirm Kilian & Murphy’s (2014) conclusion

that there is no crude oil price endogeneity. Moreover, I illustrate that the economic

findings in Kilian & Murphy (2014) are similar.

Although the sensitivity of Kilian & Murphy’s (2014) inferences to the choice

of seeds may be mitigated by increasing the number of admissible posteriors to

100,000, this is impractical using their approach. Applying the C-BSVARs approach

makes this practicable, and inference is not sensitive to the choice of seeds. To my
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knowledge, there is no econometric method in the literature which can implement

the range of restrictions considered in this chapter. Finally, Caldara et al. (2019)

and Herrera & Rangaraju (2018) claim that the relative importance of supply and

demand shocks in terms of driving the real oil price is dominated by the restriction

of the oil supply elasticity. However, this exercise somewhat rules out the former’s

argument through a comparison of different upper bounds of the oil supply elasticity.

The remainder of this chapter is structured as follows. After the literature

review in the following section, Section 4.3 introduces the C-BSVARs with the MH

sampler. Under the same section, I formulate a corresponding impulse response func-

tion and a historical decomposition. Then, two specifications of the world crude oil

market will be illustrated in Section 4.4. Finally, Section 4.5 concludes this chapter.

4.2 Literature review

This section briefly reviews how SVARs have been used to make structural inferences

in the macro-econometrics literature.5 There are two main approaches for solving

SVARs. First as described by Uhlig (2005), SVARs are written as the product of

the reduced-form parameters and the set of orthogonal matrices, used to derive

the so-called ‘orthogonal reduced-form parameterisation’. Second as described in

Baumeister & Hamilton (2015, 2018, 2019), the structural parameters are sampled

directly using posterior inferences.

The traditional orthogonal reduced-form parameterisation typically uses a

Normal–inverse–Wishart–Uniform (NiWU) prior providing for a simpler analysis of

the posterior distribution (see Uhlig, 2005; Rubio-Ramirez et al., 2010; Kilian &

Murphy, 2014; Arias et al., 2018; and Amir-Ahmadi & Drautzburg, 2019).6 These

algorithms draw from a conjugate posterior distribution over the orthogonal reduced-

form parameterisation. The method only accepts draws when the restrictions hold,

and then transforms the accepted draws into the structural parameterisation using

the orthogonal matrix. For example, Arias et al. (2018) propose an importance

sampler for orthogonal matrices, which imposes zero restrictions on the structural

5This section reviews SVARs literature after Uhlig (2005), see Kilian & Lütkepohl (2017) for a
more detailed review.

6Inoue & Kilian (2013) critique the way these methods present the inference of estimates, such as
the median of the estimates, and they propose a diagnostic test indicating the most likely admissible
model.
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parameters. Arias et al. (2019) employ Arias et al.’s (2018) method to analyse

the systematic component of monetary policy, and Antoĺın-Dı́az & Rubio-Ramı́rez

(2018) utilise the same method to emphasise the narrative sign restrictions on his-

torical decomposition applied in Kilian & Murphy’s (2012) three-variable oil market

model. Arias et al. (2018) claim that their choice of conjugate density over the set of

orthogonal matrices conditional on the reduced-form parameters is uniform. How-

ever, Baumeister & Hamilton (2015) emphasise that the method based on NiWU

cannot transform the orthogonal matrices to a uniform distribution over the identi-

fied set of the structural parameters, as also observed in Amir-Ahmadi & Drautzburg

(2019).

The inefficiency of this accept–reject method for SVARs has been docu-

mented in the applied econometrics literature. Amir-Ahmadi & Drautzburg (2019),

for an example, develop the orthogonal reduced-form parameterisation, aiming to

address the inefficiency, as evidenced by a diagnostic test for whether the identified

set is empty, which avoids sampling orthogonal matrices based on the unrestricted

models that cannot be rotated to an admissible set. Responding to the criticism

from Baumeister & Hamilton (2015) on uniformity, Amir-Ahmadi & Drautzburg

(2019) also propose a prior-robust algorithm to sample the posterior bounds of the

identified set for acceptable reduced models. Bruns & Piffer (2019), in another ex-

ample to improve the efficiency of orthogonal reduced-form parameterisation, allow

for prior flexibility as in Baumeister & Hamilton (2015) at no additional computa-

tional cost, then employ the importance sampler using the distribution proposed by

NiWU in Rubio-Ramirez et al. (2010) for structural reparameterisation.

The methods, nonetheless, are still constrained by the natural accept–reject

ratio, conditional on the strength of identifying restrictions, or what Amir-Ahmadi

& Drautzburg (2019) refer to as ranking restrictions. In the literature, the restric-

tions are based on evidence from micro data, theory (e.g. elasticities) and dynamics.

The more stringent the restrictions are leads the algorithm to become increasingly

inefficient when accepting the unrestricted models. For example, the algorithm’s

structural reparametrisation in Amir-Ahmadi & Drautzburg (2019) is conditional

on only 500 unrestricted estimations, whose identified set is not empty based on

their diagonal test. Nevertheless, a 500-size is not statistically reliable. Moreover,

Amir-Ahmadi & Drautzburg (2019) retain any unrestricted model whose parame-

ters’ maximum absolute eigenvalue is < 1.03 without a detailed explanation for the

choice. However, for a stable VAR system, the corresponding eigenvalue should be
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< 1 (see Hamilton, 1994, p. 260–311). Further, exact zero restrictions, identifying

contemporary IRFs equal to zero, are not allowed in Amir-Ahmadi & Drautzburg

(2019), despite their use of soft zero restrictions as a substitute for the exact zero

restriction. As for the example in Bruns & Piffer (2019), the proposal density of the

importance sampler is NiWU, and hence, its efficiency is limited by the strength of

restrictions imposed.

Some recent papers in this literature have focused instead on drawing struc-

tural parameters directly through Bayesian methods, for example see Baumeister

& Hamilton (2015, 2018, 2019) and Waggoner et al. (2016). Using the structural

parameterisation can not only define priors’ densities directly through economi-

cally interpretable structural parameters, but also this is not limited by the natural

accept–reject ratio when reparametrising the unrestricted model for structural in-

terpretation using orthogonal matrices. A random-walk MH sampler is utilised in

Baumeister & Hamilton (2015, 2018, 2019). Considering that the MH sampler is

limited by only using sample posterior draws within one local peak when the pos-

terior is not a perfectly unimodal distribution, Waggoner et al. (2016) propose a

sequential approach for drawing high-dimensional posteriors, which they call ‘the

striated MH sampler’. The multimodal-posterior assumption also used in this exer-

cise, motivated by the fact that parameters (elasticities) of interest is non-linear.

However, Kilian & Zhou (2018) criticise the method of sampling the struc-

tural parameters directly as it is unable to use the restrictions after the impact, and

utilises non-linear restrictions. Moreover, directly drawing structural parameters re-

quires a set pattern of corresponding endogenous variables. For example, due to the

definition of an elasticity relating to percentage changes, the endogenous variables

should be formed as the change in log levels. In other words, the model not only

changes the method for imposing restrictions, but also the transformations of the

variables. Hence, it is hard to draw comparisons of the new model with respect to

the existing literature. Further, the striated MH sampler in Waggoner et al. (2016)

is not only subject to the criticisms above, but is also inefficient (Bruns & Piffer,

2019). This is because the sampler transforms the posterior distribution by temper-

ing the likelihood from sequential stages. Each stage runs a standard random-walk

Metropolis algorithm with a tempered posterior kernel, and the starting value does

not come from the maximization, but from a proposal draw at the previous stage

using importance weights.
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In contrast to the existing literature, this chapter finds an admissible solu-

tion numerically, and sampling the structural parameters undertaken a random-walk

MH algorithm starting with the admissible solution. Inferences from C-BSVARs are

based on parallelly calculation of the above process for addressing the multimodal-

posterior assumption. Following sections will detail the method, and using two

specifications in oil market modelling to illustrate that the approach can address

both the efficiency and implementations of complex restrictions used in SVARs.

4.3 The constrained Bayesian structural vector autore-

gression

A structural VAR model can be written as:

Ayt = BXt−1 + ut, (4.1)

where yt is a (n× 1) vector, and Xt−1 is defined as [1, y
′
t−1, ..., y

′
t−p]

′
, in which p is

the VAR lag length. Hence, Xt−1 is a (n × p + 1) vector, and A is a matrix that

contains all structurally identified restrictions, being referred to as an identification

matrix. The parameter matrix capturing the lagged structural coefficients, B, is a

(n, n × p + 1) matrix, ut is a (n × 1) vector of structural disturbances distributed

as ut ∼ N(0,Σu), where the corresponding variance matrix (denoted Σu) is diagonal.

Traditional accept-reject methods for SVARs have to sacrifice efficiency to

ensure the effectiveness of the identifications. Estimation employing traditional

methods utilises two steps: (1) Estimate the corresponding reduced-form model:

yt = ΦXt−1 + εt

= C + Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + εt,
(4.2)

where

Φ = A−1B,

εt = A−1ut, εt ∼ N(0,Σε),

and Σε = A−1Σu(A−1)
′
, through the conventional maximum likelihood/least squares

estimator. (2) Utilise the Cholesky decomposition for A−1, which is then rotated via
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an orthogonal matrix sampled randomly or from NiWU to identify the admissible

models, utilising the estimated covariance matrix Σε (see Kilian & Lütkepohl (2017)

for a review). In the literature, this method is referred to as the orthogonal reduced-

form parametrisation. As described in the literature review, however, as the degree

of stringency, complexity and number of restrictions implied by the microeconomic

literature increases, the probability of accepting a model as admissible from the step

(2) decreases sharply.

Differently, Baumeister & Hamilton (2015, 2018, 2019) outline a Bayesian

method, which considers the uncertainty underlying identification in advance. They

identify the model using the A matrix as opposed to the A−1 in Equation (4.1), while

the matrices B and Σu are conditional on A. Waggoner et al. (2016) also identify

the A matrix directly. However, there are two main shortcomings to reproduce the

SVARs of orthogonal reduced-form parameterisation using their Bayesian SVARs,

as mentioned in the literature review and described below.

First, the method in Baumeister & Hamilton (2015, 2018, 2019) is limited

to the complicated restrictions following the impact of shocks, which are based on

the impulse response functions. A joint set of sign restrictions, in Kilian & Murphy

(2014) for example, are such that responses of the oil production and the global

real activity to an unanticipated flow supply disruption are negative for the first

12 months, while the response of the real price of oil is positive. The joint set is

necessary because the restriction rules out specifications in which unanticipated flow

supply disruptions lead to a decline in the real price of oil below its starting level,

which would be at odds with the conventional views of the effects of unanticipated

oil supply disruptions (Kilian & Murphy, 2014). It is impossible to identify the

joint set with the A matrix directly, despite the influence of identified priors does

not vanish asymptotically under the system of Baumeister & Hamilton (2015).

Second, identifying the A matrix from the microeconomic literature requires

a certain formation of endogenous variables, such as the first difference of log level.

More specifically, Baumeister & Hamilton’s (2019) oil market structural model

utilises the first difference of log-level real crude oil price as one of the endogenous

variables, but not the log-level employed in the crude oil literature (e.g. Kilian,

2009; Kilian and Murphy, 2012; 2014). The reason being that Baumeister & Hamil-

ton (2019) identify the short-run crude oil supply and demand elasticities in A,

where the definition of elasticities is the percentage change of supply or demand
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caused by the percentage change in the price.

In contrast to Baumeister & Hamilton (2015, 2018, 2019), C-BSVARs iden-

tify A−1 with positively or negatively truncated Student t distributions for sign

restrictions. A closed-form likelihood function based on A (conditional on A−1 in

C-BSVARs) is demonstrated in Baumeister & Hamilton (2015). Aiming for a more

precise estimation, identification beyond the signs, such as restrictions after impos-

ing the shocks, namely dynamic sign restrictions, are proposed in structural anal-

ysis literature. C-BSAVRs enable these broader identifications beyond Baumeister

& Hamilton’s (2015) sign restrictions through searching to maximise the likelihood

function using all the constraints. Additionally, I add two more constraints for

all specifications using C-BSVARs. I measure the performance using the log-level

marginal likelihood (denoted as LogML). (1) The posterior draws have higher or

equal LogML relative to the estimates of a reduced-form model (Equation 4.2) us-

ing the maximum likelihood/least squares estimator. And (2) I require a stable

VAR system, avoiding explosive impulse responses.

The motivation for the additional constraints described in (1) is to rule out

estimates that are not consistent with the data. The traditional method for struc-

tural interpretation is based on the orthogonal rotation of unrestricted VAR, which

has been referred to as being ‘observationally equivalent’, (e.g. Kilian & Murphy,

2014; Amisano & Giannini, 2012; Kilian & Lütkepohl, 2017; and Arias et al., 2018).

Differently, C-BSVARs samples A−1 directly but is not orthogonally rotated from

unrestricted model. The potential sample of A−1, whose LogML is less than the

unrestricted VAR’s, is the one to avoid. The marginal empirical fit of a model in

this chapter is measured through LogML, which is widely utilised for measuring

the models’ performance in the out-of-sample forecasting literature (e.g. Garratt

et al., 2011; Garratt et al., 2014; Chan, Eisenstat, et al., 2018; Mitchell & Wallis,

2011), and is referred to as the logarithmic score, which is usual justified from the

perspective of Kullback-Leibler information criterion.

To resolve the constrained maximisation problem, I propose an MH algo-

rithm to enable estimation of the parameters in A−1 through the following three

steps: (I), estimate the reduced-form and calculate its LogML for the first restric-

tion; (II), numerically determine a starting point that satisfies all restrictions; and

(III), use a random-walk MH process to estimate A−1. Accordingly, the rest of this

section details the three steps of the estimator in three subsections.
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4.3.1 Step I: estimation of the reduced-form model and measuring

its empirical fit

C-BSVARs use Baumeister & Hamilton’s (2015) MCMC chain, but identifies A−1

for signs and considers identifications beyond signs of the contemporary correlation

matrix, such as dynamic sign restrictions. I add one additional restriction, that

the LogML of each accepted MCMC draw using C-BSVARs is equal or higher than

the LogML of unrestricted VARs, estimated via least squares estimator, which is

equal to the LogML for all the models deemed as admissible using the traditional

accept-reject methods.7 The estimation of a reduced-form model creates a bench-

mark measure of the estimated fit with respect to the data (Kilian & Murphy, 2014).

Since the shocks in Equation (4.2) are assumed to be locally Gaussian at

each time t = [1, . . . , T ], the log-level marginal likelihood of the reduced-form

model (LogMLobs) is calculated as:

LogMLobs =
T∑
t=1

log(f(y
′
t, (ΦXt−1)

′
,Σε)), (4.3)

where the joint probability, f(y
′
t, (ΦXt−1)

′
,Σε), is defined as

f(y
′
t, (ΦXt−1)

′
,Σε) =

1√
|Σε|(2π)n

e−
1
2

(y
′
t−(ΦXt−1)

′
)Σ−1
ε (y

′
t−(ΦXt−1)

′
)
′
.

(4.4)

Additionally, the estimation of the log-level marginal likelihood in C-BSVARs is an

alternative criterion for specifying the most likely admissible model relative to the

diagnostic test proposed in Inoue & Kilian (2013).

7The estimation of the reduced-form model can utilise either the maximum likelihood/least
squares estimator, or the Bayesian method defined in Giannone et al. (2015). In this exercise, I
employ the least squares estimator, following Kilian & Murphy (2014).
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4.3.2 Step II: numerically determine the starting point for the MH

algorithm

This subsection proposes a non-linear arg-minimisation method, based on a closed

log likelihood function, to identify the starting point for the constrained maximiza-

tion issue with the MH algorithm. Initially, instruction is presented for mapping the

identification matrix A−1 to A. Then, I briefly introduce the closed-form likelihood

conditional on the A matrix, as proposed by Baumeister & Hamilton (2015, 2018,

2019). Finally, an arg-minimisation problem is illustrated.

The structural prior information is given in matrix A−1, represented from

a Bayesian perspective, in the form of a density p(A−1). The analytical impulse

response functions are derived via its reduced-form moving average formation, and

the conventional sign restrictions are identified through the impulse response func-

tions at horizon zero. Continuing with the model of Equation (4.2), the (n × n)

non-orthogonalised impulse–response matrix at horizon s is:

Ψs =
∂yt+s

∂ε
′
t

= jF sj
′
,

(4.5)

where j and Ft are:

j = [In 0(p−1)×n],

and

F =

[
Φ1 . . .Φp−1 Φp

In×(p−1) 0n(p−1)×n

]
.

Hence, the dynamic effects of structural shocks at horizon s are given by

Hs =
∂yt+s

∂u
′
t

= ΨsA
−1,

(4.6)

based on the chain rule since εt = A−1ut, (see Hamilton, 1994, p. 260–311). As

ut ∼ N(0,Σu), where Σu is diagonal, the dynamic effect of standardised shocks

et ∼ N(0, In) is
Hs =

∂yt+s

∂e
′
t

= ΨsA
−1chol(Σu)′.

(4.7)
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Then the dynamic effects of the structural shocks can be decomposed through:

yt = ŷt|t−r +
r−1∑
s=0

Hset−s

= ŷt|t−r +
r−1∑
s=0

ΨsA
−1chol(Σu)′et−s,

(4.8)

where ŷt|t−r is the r-period-ahead forecast using Equation (4.2). The standard error

et can be computed as et = (chol(Σu)′)−1Ayt − (chol(Σu)′)−1BXt−1.

When s = 0, the sign of impulse response is defined by the non-diagonal

elements in A−1 from Equation (4.7), because Ψ0 is identical and the variance ma-

trix Σu is positive definite. Additionally, the VAR system is considered to be stable

when the maximum absolute eigenvalue denoted as %max for F , is strictly smaller

than 1 (see Hamilton, 1994, p. 260–311).

To ensure that the A (or A−1) matrix is invertible, it is necessary to establish

a prior belief of h1 = det(A) > 0, as presented in the asymmetric t distribution,

where p(h1) = k1σ
−1
1 φ̃ν1((h1 − µ1)/σ1)Φ(λ1h1/σ1), introduced by Baumeister &

Hamilton (2018, 2019). φ̃ν1((h1−µ1)/σ1) is a probability density function of a stan-

dard Student t with ν1 degree of freedom evaluated at the point (h1−µ1)/σ1, while

Φ(λ1h1/σ1) is the cumulative distribution function for a standard normal, and k1 is

a constant for integrating the density to unity. The parameter λ1 determines how

strongly the distribution of h1 skews to positive. Under the set µ1 = 0.6, σ1 = 1.6,

ν1 = 3, and λ1 = 2, the prior probability of h1 > 0 is 91.2% from the simulation

practice.

More plausible a prior are larger values for p(A−1), whilst p(A−1) = 0 for

any values of A−1 are completely ruled out. Information may pertain to individ-

ual elements of A−1 or to non-linear combinations such as specified elements of the

impulse response functions ΨsA
−1chol(Σu)′, which represent the equilibrium effects

of structural shocks. The application in this chapter draw on both sources of prior

information. Implementation of the procedure requires only that p(A−1) be a proper

density that integrates to unity, where any distribution can be utilised to present

the prior information in A−1.

Prior information regarding the other parameters can be represented by par-
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ticular families of parametric distributions that enable many features of the Bayesian

posterior distribution to be calculated with closed-form analytic expressions, such

as in Baumeister & Hamilton (2015, 2018, 2019). Specifically, prior information re-

garding Σu conditional on A can be represented using gamma distribution Γ(κi, τi):

p(Σu|A) =

n∏
i=1

p(σii|A), (4.9)

p(σii|A) =


τκii

Γ(κi)
(σ−1
ii )κi−1exp(−τiσ−1

ii ) for σ−1
ii ≥ 0

0 otherwise,

where σii is the row i and column i of Σu. Since this is a gamma distribution, the

mean and variance of σii are κi/τi and κi/τ
2
i , respectively. Theoretically, both κi and

τi can be conditional on A. However, while following Baumeister & Hamilton (2019),

I only allow τi conditional on A, which determines the tightness of prior beliefs.

(For further details on the choice of κi and τi, see Appendix C.1 or Baumeister &

Hamilton, 2019.) The conditional Gaussian distribution of B|A,Σu is:

p(B|A,Σu) =
n∏
i=1

p(bi|A,Σu), (4.10)

where p(bi|A,Σu) ∼ N(mi, σiiMi), and the vector mi denotes the best possible pre-

diction for the value of b
′
i prior to appraising the data, where b

′
i denotes row i of B,

that is, bi contains the lagged coefficients for the ith structural equation, while the

matrix Mi characterises the confidence in this prior information. A large variance

would represent high uncertainty, while having no useful prior information could

be regarded as the limiting case when M−1
i returns as zero. The application in

Baumeister & Hamilton (2019) allows mi to depend on A, but assumes that Mi

does not. (For more details on the specifications of mi and Mi, see Appendix A of

Baumeister & Hamilton, 2019.)

Then, the overall prior is:

p(A,B,Σu) = P (A)
n∏
i=1

[p(σii|A)p(bi|A,Σu)]. (4.11)

With Gaussian residuals, the likelihood function in closed-form is given by:
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p(Yt|A,B,Σu) =

(2π)−Tn/2|det(A)|T |Σu|−T/2 × exp[−(1/2)
T∑
t=1

(Ayt −Bxt−1)′Σ−1
u (Ayt −Bxt−1)],

(4.12)

where |det(A)| denotes the absolute value of the determinant of A.

Starting with the conjugate prior, the posterior distribution is:

p(A,B,Σu|Yt) = p(A|Yt)p(Σu|A, Yt)p(B|A,Σu, Yt), (4.13)

which summarises the researcher’s uncertainty regarding the parameters. (For fur-

ther details of the posterior sampling of p(A|Yt), p(Σu|A, Yt), and p(B|A,Σu, Yt),

see Appendix C.2 or Baumeister & Hamilton 2015; 2018; 2019.)

The structural inference is conditional on the reduced-form estimation in

Equation (4.2). This differs from the random sampling of the orthogonal rotation

matrix for observationally equivalent structural analysis. In this chapter, I numer-

ically determine a conditional local minimisation, aiming to identify the starting

value for the MH sampler:

min
φ

− (log(p(Yt|φ)) + log(p(A−1
1 )|φ))× g(Θ)

s.t. log(f(yt, A
−1
1 BXt−1, (A

′
1ΣuA1)−1)) ≥ LogMLobs

%max < 1

φ < φ < φ

A set of structural identifications depending on the application,

(4.14)

where φ is a vector that contains all the elements in A−1
1 , which are the initial

values of A−1 for the MH process, as well as one hyper parameter for the tightness

of the prior density of the largest uncertain element in A−1
1 . The inclusion of the

hyper parameter decides the relative tightness for priors in general. The rationale

of including it is that the model is sensitive to the relative tightness for prior den-

sities (e.g. Bańbura et al., 2010; Giannone et al., 2015; and Chan, Jacobi, & Zhu,
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2018). It is also demonstrated in practice that including the measure of a relative

tightness helps to solve the arg-minimisation and can accelerate the computational

speed. Hence, it is straightforward that the probability of p(A−1) is conditional on φ.

The %max is the maximum absolute eigenvalue, and %maxt < 1 indicates the

VAR system’s stationarity. The restriction log(f(yt, A
−1
1 BXt−1, (A

′
1ΣuA1)−1)) ≥

LogMLobs results in the structural formation locally and observationally having a

higher or equal marginal likelihood than the reduced form. The upper and lower

bounds of structural identifications are given in vectors φ and φ with the same

length of vector φ, respectively. The inclusion of these bounds avoids searching the

minimisation from infinities. The last restriction is with respect to the equilibrium

effects of structural shocks, such as the dynamic sign restrictions. The vector Θ

contains all indicators (θi) signalling that the ith system restriction is not satisfied,

denoted as 1, and 0 otherwise. The indicator g(Θ) is defined as:

g(Θ) =

1 if
∑

i θi > 0

0 if otherwise.
(4.15)

Furthermore, the constrained posterior densities, where
∑

i θi = 0, are denoted as

pR(A|Yt), pR(Σu|A, Yt), and pR(B|A,Σu, Yt). The pR(A−1) denotes the prior den-

sity of A−1 restricted by
∑

i θi = 0.

4.3.3 Step III: the MH algorithm

Commencing with the arg-minimisation, a random-walk MH algorithm maximises

the restricted likelihood function (4.12), denoted as pR(Yt|A−1) since A, B and Σu

are conditional on A−1. The numerical starting values are contained in the vector

φ̂, which provides a guess for the posterior mean of φ. Meanwhile, the numerically

calculated matrix of second derivatives may contain the curvature of the posterior

distribution:

Λ̂ = −∂
2q(φ)

∂φ∂φ
′

∣∣∣∣
φ=φ̂

,

where q(φ) = −(log(p(Yt|φ)) + log(p(φ)))× g(Θ).

Thereafter, the guess above is employed to inform a random-walk MH algo-
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rithm to generate candidate posterior draws for vec(A−1), including all elements in

A−1. As a result of draw ι, I have generated values for vec(A−1
ι+1):

ṽec(A−1
ι+1) = vec(A−1

ι ) + ξ(Q̂−1)
′
vι, (4.16)

where the starting value A−1
ι is denoted as the A−1

1 contained in φ̂.8 The white noise

error vι is a vector that has the same number of elements in A−1, which is generated

from a fat-tailed Student t with 2 degrees of freedom. Q̂Q̂
′

= Λ̂A
−1

, where Λ̂A
−1

is

the second derivative with respect to the elements in A−1, with Q̂ lower triangular.

However, the numerical minimisation will always stop at g(Θ) = 0. Hence, the

second derivative is not always meaningful, in which case Q̂ is set to be an identical

matrix.

Algorithm 1 - Structural posterior sampling

Step I: Reduced-form model estimation

• Utilise the least square estimator to estimate Φ and Σε

• Calculate the LogMLobs =
∑T

t=1 log(f(y
′
t, (ΦXt−1)

′
,Σε))

Step II: Numerically determine a starting point

•

min
φ

− (log(p(Yt|φ)) + log(p(A−1
1 )|φ))× g(Θ)

s.t. log(f(yt, A
−1
1 BXt−1, (A

′
1ΣuA1)−1)) ≥ LogMLobs

%max < 1

φ < φ < φ

A set of structural identifications depending on an application

Step III: the random-work MH algorithm for A−1
ι , where

ι=[1, . . . , N1, . . . , N2]

• Sample A−1
ι+1 ∼ p(A

−1
ι+1|A−1

ι ) , where A−1
1 is solved in Step II

• Accept A−1
ι+1 substituting A−1

ι with probability:

exp[qR(Yt|A−1
ι+1)− qR(Yt|A−1

ι )]

• Gather A−1
ι constrained by restrictions for ι=[N1, . . . , N2]

Then, repeat Steps II and III until N3 posterior draws are saved

The tuning scalar, ξ, is automatically selected, which is based on every 100

random draws, so that approximately 30%–40% of the newly retained vec(A−1
ι )

8In MH process, C-BSVARs only allow the elements in A−1 following the random work, but not
for the elements of the strength of shrinkage contained in φ. This is because I want to keep the
likelihood function consistent over the MH process.
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meets the condition through:

vec(A−1
ι+1) =

vec(A−1
ι ) with probability 1− exp[qR(Yt|A−1

ι+1)− qR(Yt|A−1
ι )]

ṽec(A−1
ι+1) otherwise,

(4.17)

where I denote qR(Yt|A−1
ι ) = log(pR(Yt|A−1

ι )) + log(pR(A−1
ι )). If the acceptance

ratio is too high, the algorithm will converge slowly to PR(A|Yt). Otherwise, if the

acceptance ratio is too low, then PR(A|Yt) may arrive to the low-probability region

of the true posterior distribution.

In the algorithm, summarised as Algorithm 1, I use N1 draws for burn-in, and

N2−N1 draws for gathering the admissible posterior draws in the MH process (Step

III). The algorithm parallelly calculates both the II and III steps until N3 draws,

which is the size desired for the posterior draws selected by researchers, are achieved.

4.4 Two world crude oil market specifications

In this section, I illustrate how to apply C-BSVARs with two empirical specifica-

tions of the world crude oil structural model. The first specification utilises the

world crude oil market model under the exact identification of Kilian & Murphy

(2014), while the second imposes ‘lower bound uncertainties of the short-run crude

oil demand elasticity for use’, as an additional restriction.

The multivariate time series utilised in their paper include the U.S. refiners’

acquisition cost (RAC) for crude oil imports, the global crude oil production, a busi-

ness cycle index of global real activity proposed in Kilian (2009), the U.S. consumer

price index (CPI), and global crude oil inventories. The data resource is taken from

the Journal of Applied Econometrics data archive for Kilian & Murphy (2014) (avail-

able at http://qed.econ.queensu.ca/jae/2014-v29.3/kilian-murphy/). The

original resources of the data include the U.S. Energy Information Administra-

tion, Bloomberg, Drewry Shipping Consultants Ltd., the Federal Reserve Economic

Data (FRED) and the Federal Reserve Archival System for Economic Research

(FRASER) database of the Federal Reserve Bank of St. Louis.
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As in Kilian & Murphy (2014), the endogenous variables yt = [%∆prodt,

reat, r
oil
t ,∆invt]

′
are a 4×1 vector (n = 4), where %∆prodt is the percentage change

of oil production times 100; reat is the measure of fluctuations in global real activity;

roilt represents the log-levels of RAC deflated by the U.S. CPI times 100; and ∆invt

is the first difference of oil inventories in levels. The reduced-form model allows

for up to two years of lags, p = 24, which is consistent with evidence presented in

Hamilton & Herrera (2004), Kilian (2009), and Kilian & Murphy (2012, 2014) on

the importance of allowing for long lags in the transmission of oil price shocks and

in modelling business cycles in commodity markets. (For more detailed motivations

of the choice of endogenous variables, see Kilian & Murphy, 2014.)

Subsections 4.4.1–4.4.3 will first introduce the identification used in Kilian &

Murphy (2014). Then, empirical results using C-BSVARs for the first specification

are presented, which are followed by a discussion of the inference for oil demand

elasticities. Finally, I illustrate the results under the second specification when con-

sidering the uncertainty of ‘the short-run lower bound for oil demand elasticity for

use’.

4.4.1 Specification I: identification restrictions in Kilian & Murphy

(2014)

The structural VAR model in Kilian & Murphy (2014) is set-identified based on

a combination of sign restrictions and bounds on the implied price elasticities of

oil demand and supply, motivated by economic theory or extraneous information.

There are four sets of restrictions: (1) the impact sign restrictions listed in Ta-

ble 4.1 below; (2) the bounds on the impact price elasticity of oil supply, where

0 < ηSupply < 0.0258; (3) the bounds on the impact price elasticity of oil demand

for use, where −0.8 6 ηO,Use 6 0; and (4) dynamic sign restrictions — for the first

12 months, responses of the oil production and the global real activity to an unan-

ticipated flow supply disruption are negative, while the response of the real oil price

to the disruption is positive. (For a more detailed discussion on identifications, see

Kilian & Murphy, 2014, p. 460–462.)
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Table 4.1: Sign restrictions on impact responses in the VAR model

Flow supply shock Flow demand shock Speculative demand shock

Oil production − + +

Real activity − + −
Real price of oil + + +

Inventories +

Note: All structural shocks have been normalised to imply an increase in the real price of oil. Missing entries

indicate that no sign restriction is imposed. (The same table is available in Kilian & Murphy, 2014, p. 461.)

In C-BSVARs, the choice of prior distributions of the elements A−1 is selected

from asymmetric, truncated or symmetric Student t distributions, as suggested in

Baumeister & Hamilton (2019), while the choice is conditional on the aforemen-

tioned restrictions (1)–(4). Appendix C.3 provides detailed guidance on how to

apply the identifications above to A−1 in C-BSVARs.

It is necessary to note that the prior density of oil inventory (the 4th endoge-

nous variable) response to a speculative demand shock (a shock from the 3rd equa-

tion), A−1
43 , is Student t(2, σA

−1
43 , 3), truncated to be positive with a large mode. The

positive truncation is due to the sign restriction in Table 4.1 (the last row and col-

umn). Here, I allow the uncertainty σA
−1
43 to be estimated through arg-minimisation

within a range [0, σA
−1
43 ]. This is because (1) the posterior is not sensitive to the

location of the prior but rather to its relative shrinkage as discussed in Subsection

4.3.2; and (2) there is no empirical evidence in terms of the size for oil inventories’

responses directly from the corresponding microeconomic literature.

Therefore, the prior of structural parameters, considering a positive deter-

mined A as discussed in Subsection 4.3.2, becomes:

p(A−1) ∝p(A−1
21 )p(A−1

31 )p(A−1
41 )p(A−1

12 )p(A−1
32 )p(A−1

42 )p(A−1
13 )p(A−1

23 )p(A−1
43 )p(A−1

14 )

p(A−1
24 )p(A−1

34 )p(A−1
11 )p(A−1

22 )p(A−1
33 )p(A−1

44 )p(h1(A−1)).

(4.18)

The non-linear restrictions (2–4) are unable to be formulated through A−1.

For example, Kilian & Murphy (2014) proposed the elasticity of oil demand for use,

ηO,Use as:

ηO,Use =
1

t− 1

t−1∑
i=1

Qt−1×A−1
11 /100−A−1

41

Qt−1−∆S

A−1
31 /100

, (4.19)
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where Qt−1 is the quantity of oil produced in period t− 1, and ∆S is the observed

mean of the change in crude oil inventories (see the derivation in Kilian & Murphy,

2014, p. 477-478), while A−1
31 and A−1

41 represent the oil price and inventory responses

to a negative flow supply shock. Hence, the additional constraints are proposed in

C-BSVARs for arg-minimisation:

min
φ

− (log(p(Yt|φ)) + log(p(A−1
1 )|φ))× g(Θ)

s.t. log(f(yt, A
−1
1 BXt−1, (A

′
1ΣuA1)−1)) ≥ LogMLobs

%max < 1

φ < φ < φ

0 < ηSupply < 0.0258

ηO,Use 6 ηO,Use 6 0
s∑
i=0

Hs,11 < 0, ∀s 6 12

Hs,21 < 0, ∀s 6 12

Hs,31 > 0, ∀s 6 12,

(4.20)

where φ = [A−1
21 , A

−1
31 , A

−1
41 , A

−1
12 , A

−1
32 , A

−1
42 , A

−1
13 , A

−1
23 , A

−1
43 , A

−1
14 , A

−1
24 , A

−1
34 , A

−1
11 , A

−1
22 ,

A−1
33 , A

−1
44 , σ

A−1
43 ]′ corresponding φ = [0,−10,−10, 0, 0,−10, 0,−10, 0,−10,−10,−10,

−10,−10,−10,−10, 0]′, and φ = [10, 0, 10, 10, 10, 10, 10, 0, 10, 10, 10, 10, 10, 10, 10, 10,

σA
−1
43 ]′. Since there is no instruction for setting σA

−1
43 in Baumeister & Hamilton

(2019), I allow σA
−1
43 and its upper bound σA

−1
43 to be 0.8 and 2 for searching re-

spectively. Aiming to numerically find feasibly constrained starting values of φ,

σA
−1
43 and σA

−1
43 will increase with 0.1 and 0.5 respectively in case that there is no

constrained solution.9 For a consistent MH process, A−1 follows a random walk for

the posterior, but σA
−1
43 and σA

−1
43 are kept constant at their arg-minimisation level.

Under the exact Kilian & Murphy’s (2014) identification, the lower bound of ηO,Use,

denoted as ηO,Use, is -0.8.

The responses of the oil production and the economic activity to an unan-

ticipated flow supply disruption are negative for the first 12 months are denoted∑s
i=0Hs,11 < 0, ∀s 6 12 and Hs,21 < 0, ∀s 6 12 , respectively. Moreover, the re-

9The choice of σA
−1
43 could be any number, whose purpose is calculating an admissible solution

from the arg-minimisation (4.20). The reason that σA
−1
43 begins with 0.8 is because A−1

43 is more
uncertain (using a diffuse prior) than the rest of elements in A−1 (using a variance of 0.2). (See a
detailed discussion in Appendix C.3.)
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striction — the responses of the real price to a supply disruption are positive within

the first 12 months — is denoted as Hs,31 > 0, ∀s 6 12.

Estimation results

I use 1,000 draws for burnin (N1 = 1, 000), and 1,000,000 draws for gathering ad-

missible posterior draws (N2 = 1, 001, 000), until 100,000 admissible draws (N3 =

100, 000). The lower-bound of demand elasticity for use is set to -0.8, following Kil-

ian & Murphy (2014), and hence the constraints under the arg-minimisation (4.20)

will not change. Since the arg-minimisation (4.20) will always find the same starting

value A−1
1 under the same constraints, I choose a large N2 in this specification. In

other words, the gathering of 100,000 admissible draws will not parallelly repeat

Steps II and III in Algorithm 1. This is also because Kilian & Murphy (2014) have

not identified any multimodal distribution assumption on the parameters of interest.

Hence, the specification is designed for consistency with Kilian & Murphy (2014),

despite the fact that it may be restricted by the standard weakness of the MH sam-

pler that the posterior will be sampled within a local maximisation. To summarise,

the results from the C-BSVARs approach confirm Kilian & Murphy’s (2014) eco-

nomic findings, and sharpen the impulse response functions. (See Appendix C.4 for

the C-BSVAR results relating to Kilian & Murphy’s (2014) economic findings.)

The structural impulse responses to the oil supply and demand shocks are

illustrated in Figure 4.2 for the same sample period in Kilian & Murphy (2014),

1973:02–2009:08. The solid black lines are the Bayesian posterior median from the

C-BSVARs, and the shaded regions are 68% posterior credible sets. I also draw the

estimates utilising Kilian & Murphy’s (2014) code available on the aforementioned

journal’s website for the comparison. The solid red lines are the impulse response

estimates for Kilian & Murphy’s (2014) model with an impact price elasticity of oil

demand in use closest to the posterior median of that elasticity amongst the admis-

sible structural models obtained, while the dotted blue lines are the corresponding

68% posterior error bands from Kilian & Murphy’s (2014) estimates. Following Kil-

ian & Murphy (2014), all shocks have been normalised to imply an increase in the

real price of oil, and the flow supply shock refers to an unanticipated disruption.

Primarily, the impulse responses are similar, but the key part is the narrowing of

the distributions by utilising C-BSVARs relative to using the method in Kilian &

Murphy (2014).
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For example, Kilian & Murphy’s (2014) preferred responses of the oil pro-

duction to the flow demand shock (red line) are close to the lower bound of its 68%

confidence sets (the lower blue dotted lines). Meanwhile, the corresponding 68%

posterior credible sets from C-BSAVRs are located in the lower half of Kilian &

Murphy’s (2014) 68% bands, and the median estimates from C-BSVARs cover the

red line. Moreover, the real oil price’s response to the flow demand shock is closer

to zero when estimated via C-BSVARs than using the method in Kilian & Murphy

(2014). However, the responses are still above zero, and persistent. Meanwhile, the

most preferred admissible prediction by Kilian & Murphy (2014) (i.e. the red line)

are covered by the 68% confidence sets estimated by C-BSVARs.

4.4.2 Discussion: what can we learn about oil demand elasticities

from C-BSVARs relative to the oil literature?

As mentioned in Kilian & Murphy (2014), Hamilton’s (2009) observation that the

speculation drives up oil prices without the increase of oil inventory (the oil price

endogeneity) is dependent upon the magnitude of the short-run price elasticity of

demand. More specifically, if the oil demand elasticity is significantly larger than

zero, the oil price endogeneity will not exist. The conventional estimates of oil de-

mand elasticity are based on a smaller model, ignoring the role of inventories (Kilian

& Murphy, 2014). Echoing Kilian & Murphy (2014), the oil consumption explored

in this chapter is smoothed through the inclusion of inventories, which is a more

appropriate definition for policy questions. Kilian & Murphy (2014) provided esti-

mates of the short-run price elasticities of oil demand and their 68% confidence sets,

which were significantly above zero. Consequently, they present no evidence for oil

price endogeneity.

The corresponding estimates calculated by C-BSVARs are presented in Fig-

ure 4.3, where the black and blue X-tick labels are the 16th, 50th, and 84th quantiles

of ηO,Production and ηO,Use reported in Kilian & Murphy (2014), respectively. A reli-

able numeric estimator should not be sensitive to the choice of seeds for the random

number generating process. As an illustration, I present the estimates with seed

316 in the upper panel, while the lower panel features seed 613 (in MATLAB). Due

to their posterior sample size being only 150, it is impossible to replicate identi-

cal estimates of corresponding elasticities utilising C-BSVARs. However, it is clear
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that the C-BSVARs broadly confirm that (1) the magnitude of ηO,Use is smaller than

that of ηO,Production, and (2) the boundaries of the 68% confidence sets exclude zero.
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Figure 4.3: Posterior densities of the oil demand elasticity in production and use
under a -0.8 lower bound

Note: ηO,Production refers to the impact price elasticity of oil demand in production, ηO,Use

indicates the average impact price elasticity of oil demand in use, and ηSupply indicates the

impact price elasticity of the oil supply. Solid vertical lines: medians of the posterior; dotted

vertical lines: 68% posterior error bands. Black X-tick labels: 16th, 50th, and 84th quantiles

of ηO,Production, as reported in Kilian & Murphy (2014); blue X-tick labels: 16th, 50th, and

84th quantiles of ηO,Use, as reported in Kilian & Murphy (2014). Posterior densities are

Kernel fitted, using the Normal method and the bandwidth that optimal for estimating

Normal densities.

Nevertheless, two concerns are raised. On the one hand, the distributions of

oil demand elasticities, estimated by C-BSVARs, are diffuse within the truncated

bounds of [-0.8, 0], which appear as a uniform distribution for ηO,Use using seed

316. Moreover, there is a peak within the range of [-0.09 0] for ηO,Production. On

the other hand, the elasticities are sensitive to the choice of seeds for replicating

random numbers. For example, as shown in Figure 4.3, the median of ηO,Use under

seed 316 is -0.36, but for the seed 613 it becomes -0.27. Furthermore, the shape of

the two elasticities under seed 613 is narrower than that for the seed 316.
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There are two possible reasons causing the sensitivity to seeds as mentioned

in the introduction, the MCMC is unconverged and the method suffers the standard

weakness of the MH sampler. This is detectable by using joint convergence diagnos-

tics. In this exercise, I use Geweke’s (1992) Z−score diagnosing the unconvergence

for estimates in parallel MCMC chains independently, Gelman & Rubin’s (1992)

potential scale reduction factor (PSRF) considering the covariance among parallel

chains and Brooks & Gelman’s (1998) multivariate PSRF (MPSRF) conditional on

both the covariances among estimates and MCMC chains. (Please see simulation

examples in Cowles & Carlin (1996) and Roy (2019).) If all the tests diagnose the

unconvergence, the sensitivity to seeds will simply mean the MCMC algorithm has

failed to converge. If estimates are diagnosed as converged independently, but there

are evidences for unconvergence considering the covariance among MCMC chains

and estimates, the sensitivity would be likely to be caused by the standard weakness

of the MH sampler.

Geweke (1992) recommended using methods from spectral analysis to com-

pare the mean difference between the first 10% and the last 50% iterations of a

retained MCMC chain. If the calculated Z−score is between the critical values at

5% significance levels, ±1.96, the chain is accepted as being converged. Gelman &

Rubin (1992) construct two estimators of the underestimated within-chain-variance

and overestimated pool-variance estimates, based on parallel MCMC chains. The

PSRF is calculated as the square-root of the ratio between pooled and within-chain

variances, which is compared with 1. Gelman & Rubin (1992) set the cutoff value

1.1. If PSRF is smaller than 1.1, the parallel chains are converged. Brooks & Gel-

man (1998) suggested the use of MPSRF is in the case of multivariate estimates,

built upon the PSRF. Hence, if the MPSRF is smaller than 1.1, the chains are

converged. It is necessary to mention that all these diagnostics are rough guide for

evidence of unconvergence, none of them can precisely indicates the convergence

(Cowles & Carlin, 1996; Roy, 2019).

Figure 4.4 illustrates the convergence diagnostics in Specification I, consid-

ering two parallel MCMC chains with seeds 316 and 613. The first 16 diagnos-

tics (x-axis) are for parameters in A−1 matrix, and the last two are ηO,Use and

ηO,Production respectively. Geweke’s (1992) Z−score (right y-axis) is calculated for

the two MCMC chains independently. Hence, there are two statistics (orange hex-

agrams) for each parameter. It is clear that excepting A−1
24 using seed 316, all

parameters from the two chains including the elasticities are converged significantly
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at the 5% level. Meanwhile, the left y-axis measures Gelman & Rubin’s (1992)

PSRF for the two parallel chains jointly. For all the elements’ in A−1 excepting

A−1
41 are diagnosed as converged, because their PSRFs are smaller than 1.1. How-

ever, when considering the covariance among the estimates in A−1, they could be

unconverged, as the MPSRFA−1 = 1.2515 which is larger than 1.1. Nether ηO,Use

nor the multiple test for it and ηO,Production can be concluded as converged. This is

understandable as the ηO,Use is calculated through Function (4.19), which is jointly

decided by A−1
11 and A−1

41 .

It is necessary to say that an accurate inference of crude oil demand elas-

ticities from a structural model is of importance, because the magnitude of them

decides not only the existence of crude oil price endogeneity (Kilian & Murphy,

2014), but also the conclusion on the relative importance of supply and demand

factors in explaining oil market fluctuations (Caldara et al., 2019).

In the oil-market literature, the lower bound of crude oil demand elasticity is

determined by the price elasticity for gasoline demand (e.g. Kilian & Murphy, 2014;

Baumeister & Hamilton, 2019), since crude oil represents the main cost of refined

products, and therefore a 10% increase in the price of crude oil should result in a

6 10% increase in the price of gasoline. Following this logic, the lower bound of

short-run oil demand elasticity for use should be smaller than the short-run gasoline

demand elasticity.

There is a broad number of papers devoted to the estimation of the demand

elasticity for gasoline. The long-run gasoline demand elasticity is approximately

-0.8, (see Hausman & Newey (1995) and a review in Espey (1998), who concluded

at -0.58). Therefore, Kilian & Murphy (2014) set the lower bound of short-run oil

demand elasticity for use at -0.8. Meanwhile, the short-run elasticity for gasoline

demand is approximately -0.26 (see the survey in Dahl & Sterner (1991), utilising

the U.S. data). The majority of the microeconomic literatures’ estimates are in the

range from -0.18 to -0.5, (see Gelman et al., 2016; and Coglianese et al., 2017).

Hughes et al. (2006) concluded that the short-run gasoline demand price elasticity

is as low as -0.08 for the U.S. data during the 2001–2006 period. Echoing the logic

that the short-run elasticity of crude oil should be smaller than that for gasoline, the

short-run lower-bound crude oil demand elasticity is uncertain. In summary, there is

little consensus about the lower bound of the short-run oil price elasticity of demand.
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In the SVARs literature, the importance of the uncertainty has been realised.

Baumeister & Hamilton (2019) gives a prior for the demand elasticity as Student

t(−0.1, 0.2, 3), truncated to be negative, to address the importance of the uncer-

tainty. However, the oil demand elasticity for use is non-linear, calculated using

Equation (4.19) and conditional on the impulse responses at horizon zero. There-

fore, this chapter proposes a novel approach to the uncertainty of non-linear lower

bounds in SVARs literature, with the following subsection detailing another spec-

ification of C-BSVARs for the world crude oil market, which is restricted by the

identifications in Kilian & Murphy (2014) as well as a lower-bound uncertainty of

the crude oil demand elasticity for use.

4.4.3 Specification II: the uncertainty of the short-run lower bound

for oil demand elasticity for use

In contrast to Baumeister & Hamilton (2019), this chapter identifies the parame-

ters in A−1; otherwise, it is impracticable to identify the demand elasticity through

the direct use of the prior distribution. This is because the demand elasticity is

non-linear, as described in Equation (4.19). Therefore, this chapter proposes mod-

elling the short-run uncertainty of the lower-bound of oil demand elasticity for use,

ηO,Use, using a Student t(−0.1, 0.2, 3) distribution truncated within the range [-0.8,

-0.1]. Short-run lower bounds are randomly sampled from the truncated distribu-

tion, which enables infinite possibilities of constrains (or the set identification) for

the arg-minimisation (4.20). Hence I can use parallel computing in Steps II and III

in Algorithm 1, avoiding the possible weakness of the MH sampler by sampling the

parameters only within a local sharp mode, as mentioned in Waggoner et al. (2016).

Under the prior, the probability of a random lower bound within the range (-0.5,

-0.1) is approximately 89%.

In practice, at each ηO,Use, I utilise 1,000 (N1 = 1, 000) draws for burnin,

and 1,000 (N2 = 2, 000) additional draws for gathering constrained posterior draws.

The rationale being that the MH process converges quickly and normally within 500

draws. Since B and Σu are randomly sampled conditional on A−1 being accepted,

not all posterior draws satisfy the constraints, and I only retain the constrained

posterior draws as admissible posteriors. Then, Steps II and III are repeated with

different ηO,Use, which differs from Specification I whose ηO,Use = −0.8. In this

specification, the loop will continue until the size of admissible posteriors is equal
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to 100,000 (N3 = 100, 000), which requires no more than 3,580,000 draws including

burnin.10 The following paragraphs describe the empirical results of the model.

Before the analysis of elasticities, I illustrate the convergence of Specification

II based on two parallel chains with seeds 316 and 613 using Figure 4.5, which is the

same as Figure 4.4. It is clear that all the diagnostic statistics indicate that there is

no evidence for unconvergence of all elements in A−1 individually nor jointly. The

crude oil demand elasticities for use and production, ηO,Use and ηO,Production, are

significantly converged.

As shown in the top-left subplot in Figure 4.6, the posterior density of ηO,Use

is skewed towards zero relative to the posterior distribution of ηO,Production. Com-

paring with the estimates from C-BSVARs without the uncertainty shown in Figure

4.3, the distributions for the elasticities are sharper or less diffuse and are close

to zero. The posterior distribution’s 84th quantile of ηO,Use is -0.06, close to the

estimates in the literature (e.g. Hamilton, 2008; Dahl, 1993; and Cooper, 2003).

However, these estimates in the literature are the oil demand elasticity for pro-

duction. The 68% confidence set of ηO,Production via C-BSVARs is [-0.40, -0.15] is

significantly larger than the estimates presented in the literature.

Meanwhile, the economic findings in Kilian & Murphy (2014) and described

in Appendix C.4 are again confirmed through the second specification with the un-

certainty, which are illustrated in Appendix C.5. Therefore, adding the uncertainty

of the short-run lower bound for oil demand elasticity for use confirms that Kilian &

Murphy’s (2014) economic findings are coherent, and modifies the estimations of oil

demand elasticities. Further, a prior for key structural parameters, which reflects

the corresponding uncertainty, is important. (For a more detailed discussion see

Baumeister & Hamilton (2015, 2018, 2019), and Bruns & Piffer (2019).) The uncer-

tainty over the oil demand elasticity provides an alternative means of implementing

a prior for the key structural parameters by identifying restrictions.

The following subsection will demonstrate the C-BSVARs’ sensitivity to the

different upper bounds on oil supply elasticity including 0.0258 to 0.05, 0.1 and 0.5,

as well as seeds for random numbers. Subsection 4.4.3 then breaks down the move-

ment of the oil prices, that is, what proportion of the movement is attributable to

10Since this step is independent, the parallel calculation can help conserve computational time.
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which shocks and at each point in time. Additionally, a comparison between prior

and posterior distributions for the identified A−1 is illustrated in the first part of

Appendix C.5.
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Figure 4.6: Posterior densities of the oil demand elasticity in production and use
under an uncertain lower bound with different oil supply elasticity higher bounds,
including 0.0258, 0.05, 0.1 and 0.5

Note: ηO,Production refers to the impact price elasticity of oil demand in production, ηO,Use

to the average impact price elasticity of oil demand in use, and ηSupply indicates the impact

price elasticity of oil supply. Posterior densities are Kernel fitted, using the Normal method

and the bandwidth that optimal for estimating Normal densities. The dashed red line

represents the prior density for the random lower bounds of oil demand elasticity.

Model sensitivity for the short-run price elasticity of oil demand

Different upper bounds of oil supply elasticity such as 0.0258, 0.05, and 0.1 in Kilian

& Murphy (2014) are utilised for the sensitivity check. Meanwhile, Baumeister &

Hamilton (2019) argue against the estimates of Kilian & Murphy (2014), which are

sensitive to the choice of seeds for random numbers, and assert for that the upper

bound of oil supply elasticity to be extended to 0.5. Therefore, this subsection also

verifies whether C-BSVARs are sensitive to random number generation seeds and

an additional 0.5 upper oil supply elasticity bound.
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Figure 4.6 plots the posterior densities of the oil demand elasticity in produc-

tion, denoted by ηO,Production, the price elasticity of oil demand in use, ηO,Use, and

a prior density of random lower oil demand bound for posterior simulation under

restrictions of ηSupply ≤ 0.0258, ηSupply ≤ 0.05, ηSupply ≤ 0.1, and ηSupply ≤ 0.5, re-

spectively. The absolute estimates for ηO,Production are clearly larger than the prior

given in the literature. Posterior densities of ηO,Use skew to the left of ηO,Production

for oil supply upper bounds of 0.0258, 0.05, and 0.1. However, when increasing the

upper bound of the oil supply elasticity to 0.5, as proffered by Baumeister & Hamil-

ton (2019), the differences of the quantiles between the two distributions of demand

elasticities for production and use will vanish. Meanwhile, ηO,Use has a fatter tail

within the range (-0.1, 0) relative to the density of ηO,Production.

Table 4.2: Posterior distributions of the short-run price elasticities of demand for crude oil

ηO,Production ηO,Use

Seed 2.5th 16th 50th 84th 97.5th 2.5th 16th 50th 84th 97.5th

ηSupply ≤ 0.0258 316 -0.58 -0.40 -0.26 -0.15 -0.05 -0.53 -0.30 -0.14 -0.06 -0.01

[-0.80] [-0.44] [-0.23] [-0.54] [-0.26] [-0.09]

613 -0.58 -0.41 -0.27 -0.15 -0.05 -0.51 -0.30 -0.15 -0.07 -0.02

ηSupply ≤ 0.05 316 -0.58 -0.42 -0.27 -0.15 -0.04 -0.54 -0.31 -0.15 -0.06 -0.01

[-0.80] [-0.45] [-0.29] [-0.57] [-0.27] [-0.09]

613 -0.60 -0.43 -0.28 -0.15 -0.03 -0.56 -0.32 -0.16 -0.07 -0.01

ηSupply ≤ 0.1 316 -0.60 -0.43 -0.29 -0.17 -0.02 -0.61 -0.36 -0.19 -0.09 -0.02

[-0.76] [-0.47] [-0.24] [-0.61] [-0.30] [-0.10]

613 -0.58 -0.43 -0.28 -0.17 -0.03 -0.59 -0.38 -0.18 -0.09 -0.02

ηSupply ≤ 0.5 316 -0.45 -0.29 -0.20 -0.15 -0.06 -0.49 -0.31 -0.19 -0.11 -0.05

613 -0.43 -0.29 -0.20 -0.14 -0.06 -0.47 -0.30 -0.19 -0.11 -0.05

Note: ηO,Production refers to the impact price elasticity of oil demand in production, and ηO,Use to the average impact price

elasticity of oil demand in use, where the latter definition accounts for the role of inventories in smoothing oil consumption.

Meanwhile, ηSupply indicates the impact price elasticity of oil supply. 16th, 50th, and 84th are the respective percentiles of the

posterior. Seed refers to the seed state set in MATLAB for replicating the results. The numbers in square brackets indicate

the percentiles reported in Table II of Kilian & Murphy (2014, p. 474).

Table 4.2 illustrates different quantiles (located in the columns) of posterior distri-

butions for ηO,Production and ηO,Use under different restrictions (located in the rows).

Comparing seeds 316 and 613, the estimates are not the maximum percentage dif-

ference, and can produce the same economic conclusions. C-BSVARs for the world

crude oil market assign substantial probability mass to the values of ηO,Production

between -0.40 and -0.15, and a lower than 2.5% probability of mass to values close

to zero, whose magnitudes are far smaller than the estimates in Kilian & Murphy

(2014). Considering inventories, the range [-0.40, -0.15] for ηO,Production decreases to

the range [-0.30, -0.06] for ηO,Use with a probability of 68% under ηSupply ≤ 0.0258.

Kilian & Murphy’s (2014) estimates of the 16th quantile for ηO,Use are close to
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the 2.5th quantile utilising C-BSVARs and the uncertainty restriction. C-BSVARs

modify the posterior distributions reported in Kilian & Murphy (2014), for both

ηO,Production and ηO,Use under all three supply elasticities’ upper bounds of 0.0258,

0.05 and 0.1 towards zero.

Historical decomposition of the real oil price

In this subsection, I illustrate the median cumulative effects of flow supply shock

(grey), flow demand shock (yellow) and speculative demand shock (blue) on the

real oil price in the upper panel of Figure 4.7. Over the 1978:06–2009:08 period,

the flow demand shock drives the trend of the real oil price, while the short-run

fluctuation is jointly driven by the flow supply and speculative demand shocks. For

example, the log-level real oil price will fluctuate above zero during the majority of

the period when the cumulative effects of the flow demand shock are positive. These

are consequent to the fact that the absolute values of the oil demand elasticities are

larger than those of the oil supply elasticities.

The lower panel of Figure 4.7 reviews the five events mentioned by Kilian

& Murphy (2014) and detailed in Appendix C.4. The box plots are the cumulative

effects’ median and the corresponding 68% posterior confidence sets, with black,

orange and blue markers representing the cumulative effects of flow supply, flow

demand, and speculative demand shocks, respectively.

During the Iranian revolution, an upward trend of the real oil price was

driven by the persistent recovery of the flow oil demand, where the upward hump-

shaped oil price from 1979:04 to 1980:01 was caused by the speculative demand

shock. Meanwhile, there were no observed supply disruptions, which is consistent

with the observation that oil output from outside Iran filled the gaps. In contrast,

a high oil price prevailed during the Iran–Iraq War, jointly caused by three shocks:

persistently high positive flow demand shocks, speculation demand shocks, and sup-

ply disruption shocks. Both episodes resulted in a high oil price accompanied with

positive flow demand shocks.

Meanwhile, the Persian Gulf War and Iraq War resulted in weak oil demand.

Consequently, the increase of the log real oil price, driven by high volumes of specu-

lation, presented within the short windows of 1990:07–1990:10 and 2002:11–2003:02,

respectively. During the 1990:07–1990:10 period, Saudi oil fields were under threat
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from the Iraqi military, which induced that investors were bullish on crude oil prices.

The threat was removed by the presence of the U.S. troops from 1990:11, which re-

sulted in a drop in the real oil price associated with the weak demand. In October

2002, the U.S. President George W. Bush’s proposal to use military strikes against

Iraq was authorised by Congress. Coupled with the ongoing crisis in Venezuela,

investors became concerned about the drop in world crude oil production, resulting

in a subsequent increase in speculative demand that raised oil prices during the

2002:11–2003:02 period. In 2003:03, the Iraq War broke out and the U.S. military

did not encounter significant resistance. Declining speculative sentiment and over-

supply in crude oil market during that period caused oil prices to fall again.

Moreover, during the first half of the 1980s, OPEC countries decreased pro-

duction on several occasions with the intention of maintaining high oil prices. Con-

sequently, OPEC’s share of the global market fell from about half in the 1970s

to less than one-third in 1985. During the same period, despite OPEC members

being required to meet their production quotas, many of them exaggerated their

foreign exchange reserves in order to achieve higher quotas, engaged in deception

or directly refused to comply with the quotas. This phenomenon presents as high

positive speculation demand shocks over the 1980:09–1985:12 period in the upper

panel of Figure 4.7. By the end of 1985, Saudi Arabia had tired of this behaviour

and decided to punish those OPEC countries that lacked discipline by producing

at full capacity. Over 1986, high-cost oil production facilities were becoming less or

even unprofitable, and the nominal oil price fell to $7 a barrel.

Further, a comparative analysis between the estimates under ηSupply ≤ 0.0258

and ηSupply ≤ 0.5 for the impulse responses and historical decompositions is pre-

sented in Appendix C.6. Controlling for all other restrictions, the inflation of the

oil supply elasticity’s upper bound does not change the relative importance of the

cumulative effect of supply and demand shocks in terms of the real oil price. De-

spite, it does lead to a slight divergence of the relative importance of the cumulative

effect of flow supply regarding speculation demand shocks (see Figure C.7). This

is also confirmed by a comparison of the impulse responses for the two restrictions

in Figure C.8. Increasing the upper bound for the supply elasticity will not change

any endogenous variable’s response to the flow demand shock. These estimates rule

out the argument that identifying the restrictions on oil supply elasticity is the key

factor for determining the relative importance between the effects of flow oil supply

and demand shocks, and the subsequent impact on the real oil price.
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4.5 Conclusion

This chapter has developed a novel method to identify and compute the Bayesian

SVARs, which is both more efficient and general than the methods used in the

existing literature. C-BSVARs use a parallel MH sampler, which simultaneously

draws MCMC chains within numerical solutions constrained by a set identifica-

tion for parameters of interest, to compute posterior inferences. The C-BSVAR,

to my knowledge, is the first method for replicating a sufficient posterior sample

size using Kilian & Murphy’s (2014) world crude oil market structural model. Un-

der their identification, C-BSVARs can replicate all the economic findings described

in Kilian & Murphy (2014) but narrow the distribution of their impulse response

functions. Moreover, the use of C-BSVARs improved the researcher’s efficiency in

obtaining for models that satisfied all the restrictions in Kilian & Murphy (2014)

from 16/5,000,000 to 100,000/3,580,000, including half of the draws for burnin.

However, the posterior densities of the oil price demand elasticities are too diffuse

to conclude oil price endogeneity, and their density estimates were sensitive to the

choice of Matlab seeds. The convergence diagnostics provide evidence suggesting the

cause for the sensitivity is highly likely to be non-unimodal posterior distributions

for the elasticities.

Given the importance of the oil demand elasticities and the concern of non-

unimodal property, this chapter also proposed an additional restriction for Kilian &

Murphy’s (2014) set identification — the short-run lower-bound uncertainty of oil

demand elasticity for use — in order to shrink the estimates of demand elasticities.

Imposing the additional restriction, none of diagnostics considered in this exercise

showed evidence of unconvergence, and the sensitivity to the choice of seeds disap-

peared. C-BSVARs confirmed the economic findings in Kilian & Murphy (2014),

and modified their estimations of 68% confidence sets for both impulse response

functions and oil demand elasticities. There is evidence that during the 1973:02–

2009:08 period, the flow demand played an important role in determining the long-

run trend of the real oil price, while the speculation and oil supply shocks jointly

drove the short-run oil price fluctuations. This is consequent on the fact that the

absolute value of oil demand elasticities are higher than those of oil supply elastic-

ities. Moreover, the uncertainty for a lower-bound oil demand elasticity provides

a novel means of giving a prior to the uncertainty of key structural parameters in

identifying non-linear restrictions.
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Chapter 5

Conclusion

As one of the leading world economic indicators, the crude oil price has long been

monitored by central banks, policy makers, and market participants. Moreover, it

has been recognised that forward-looking expectations are of importance in terms

of agents’ price setting behaviour. Therefore, an accurate forecast of the crude oil

price is desirable, with Chapters 2 and 3 concerned with improving the point and

density forecasting accuracy of real crude oil prices.

Chapter 2 has extended Baumeister & Kilian’s (2015) evaluation period to

the end of 2016 using the Brent oil price measure, which confirms that their forecast

combination is robust in point forecasts. Further, I provided alternative revision and

nowcast assumptions, aiming to improve Baumeister & Kilian’s (2015) equal-weight

combination’s forecast accuracy across different forecast horizons. In Chapter 3,

I examined the density forecasts. In order to improve the predictability of time-

varying parameter models, I have developed an out-of-sample forecasting process

for improving highly parameterised models’ density forecast accuracy through min-

imising one-step-ahead in-sample posterior estimates’ Kullback–Leibler ‘distance’,

with a process incorporated to eliminate the extreme forecasts. Moreover, this chap-

ter has extended the standard statistical evaluations of point and density forecasts

to (1) the probability forecast that are more valuable in terms of excess returns in

futures market, and (2) forecasting the likelihood of extreme high and low real crude

oil prices.

The computational inefficiency of the traditional SVARs approaches under

a set identification used in the oil literature motivates a novel method C-BSVARs,
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which is developed in Chapter 4. C-BSVARs use parallel MH samplers to dramat-

ically improve the computation efficiency, and enable a far boarder identification

scheme than sign restrictions in Baumeister & Hamilton (2015). The use of C-

BSVARs are, to my knowledge, the first method which allows for replicating a

sufficient posterior sample size using Kilian & Murphy’s (2014) world crude oil mar-

ket structural model. Nevertheless, a large sample size of posterior is not enough

to guarantee the precise estimates of oil demand elasticities, which are diagnosed

by unconvergence tests as its underline posterior distribution is highly likely non-

unimodal. This will induce the standard weakness of MH sampler, documented in

Waggoner et al. (2016). Considering the non-unimodal posterior distribution and

the importance of implications for oil demand elasticities, this chapter also proposed

an additional restriction for the Kilian & Murphy (2014) model — a prior for the

short-run lower-bound uncertainty of oil demand elasticity for use, which is utilised

for shrinking the estimates of demand elasticities. The prior is virtually impossible

to impose using the methods that currently exists in the econometric literature, but

it serves statistically consistent estimates of the elasticities. C-BSVARs provide a

novel way of acquiring a prior on the uncertainty of key structural parameters in

identifying non-linear restrictions.

Further research

Given the promising results in Chapter 3, the long–short investment stratagem

utilised for evaluation purposes can be applied in practice. Firstly, this is a more

flexible platform for hedgers or speculators to construct their portfolio. Secondly,

policy makers can utilise the process as a monitor to track the price of crude oil in

order to facilitate policy reactions.

The improvement in terms of stochastic volatility for density forecasting in

Chapter 3 has implications for structural analysis. Moreover, the observed smooth

structural change for parameters in the global oil market implies that a time-varying

analysis is desirable. Therefore, an extension of the C-BSVARs in Chapter 4 con-

sidering time-varying parameters and stochastic volatility may be of interest.

The C-BSVARs enable researchers to use complex set identifications. For

example, there is a considerable literature contributing to the transmission analysis

of oil shocks to stock returns using stock indices. However, none of them allows
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firms-level stock returns. The relative magnitude of firms-level stock returns’ re-

sponses should be ordered as a measure of the firms’ exposure to oil. This kind of

ranking restrictions could be considered in the further research. C-BSVARs may be

a method for adding it into a structural analysis.

As emphasised in Chapter 3, parameter time variation is of importance in

real crude oil price forecasting, and there also be a key factor for oil market struc-

tural analysis as well. For example, the role of fossil fuels in the energy mix is

diminishing, and the U.S. is becoming an oil exporter from the largest importer

around the world due to the boom of shale oil. Both of these developments may

lead elasticities of oil demand and supply to change over time. Both identifications

and computations are the difficulty of applying time-varying SVARs with stochastic

volatility in world crude oil market analysis. However, this is a crucial topic in the

future analysis.

132



Appendix A

Process for Constructing CPI,

World Economic Activity Index

and Backcasts

A.1 The U.S. consumer price index for all urban con-

sumers (CPI)

Real-time data for the monthly seasonally adjusted the U.S. CPI for all urban con-

sumers are obtained from the Economic Indicators published by the Council of

Economic Advisers (CEA). Data in the most resent month of a vintage is made

available by the Federal Reserve Archival System for Economic Research (FRASER)

database of the Federal Reserve Bank of St. Louis.1 Additional real-time CPI data

is obtained from the macroeconomic real-time database of the Federal Reserve Bank

of Philadelphia, which is only available after the vintage 1998:11.2 In constructing

real-time CPI data before the vintage 1998:11, I encounter a challenge in that the

CEA only reports the 12 most recent months of each vintage. The missing data back

to 1973:01 are populated according to the quarterly vintages of monthly real-time

CPI data from the Federal Reserve Bank of Philadelphia, exploiting the fact that

the observations shown in each vintage represent the data available in the middle of

the quarter. I have updated the data set on a monthly basis since 2016:12 according

to the monthly publication of the Economic Indicators from CEA.

1https://www.gpo.gov/fdsys/browse/collection.action?collectionCode=

ECONI&browsePath=1995&isCollapsed=true&leafLevel%5CBrowse=false&ycord=208
2https://www.philadelphiafed.org/research-and-data/real-time-center/real-time

-data/data-files/pcpi
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A.2 An index of the bulk dry cargo ocean shipping

freight rates

This index is proposed in Kilian (2009), known as the global real economic activity

(rea) index. The rea is one of the regressor in an unrestricted global oil market

vector autoregression (VAR) model, detailed as Equation (2.2) in Section 2.3. Re-

sources for constructing rea in this chapter include the single voyage freight rates

collected by Drewry Shipping Consultants Ltd., historical exchange rates available

in Bloomberg, quoted as GBPUSD, the U.S. Consumer Price Index (CPI) intro-

duced above, and the Baltic Dry Cargo Index available in Bloomberg quoted as

BDIY:INDEX.

Kilian’s (2009) rea index is continually updated on Kilian’s web page (https://

drive.google.com/file/d/1GsjrZtJG7k4Z1PCs45q6IPF7tqb2rLOc/view), which

is constructed as follows: (1) access the single voyage freight rates collected by

Drewry Shipping Consultants Ltd. for various bulk dry cargoes comprising grain,

oilseeds, coal, iron ore, fertilizer and scrap metal, which are provided for different

commodities, routes and ship sizes; (2) take simple averages of the freight rates;

(3) compute the period-to-period growth rates for each series; (4) take the equal-

weighted average of these growth rates, and cumulate the average growth rate,

having normalised 1968:01 to unity; (5) deflate this series with the U.S. CPI; and

(6) linearly detrend the real index.

However, CPI is revised and the deterministic trend is recursively calculated

through historical vintages. Therefore, it is impossible to construct a real-time Kil-

ian’s (2009) rea index without the raw data of freight rates mentioned above. I seek

the raw data published in the Shipping Statistics and Economics journal (ISSN:

0306-1817, No.1–282, 1970–1994).

Therefore, I break the time series into two components: (1) the average

monthly single voyage freight rates for 1970:05 to 1985:11; and (2) the nominal

shipping rate raw data (the Baltic Dry Cargo Index), available after 1985:01. The

Baltic Dry Cargo Index is utilised to construct Kilian’s real economic index for

analysing the oil market models (see Baumeister & Kilian, 2012; Kilian & Murphy,

2014; Baumeister & Kilian, 2015). The detailed process to construct real-time rea

is as follows:
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1 Single voyage freight rates from 1970:05 to 1985:115 are collected by Drewry

Shipping Consultants Ltd. (only available in hard copy).3 Various bulk dry

cargoes are considered including grain, coal, iron ore, fertiliser and chemicals,

oilseeds, scrap metal, iron, steel, miscellaneous products, sugar, other agri-

cultural products,4 manufactured products,5 forest products, and other ores

and minerals,6 which are provided for different commodities, routes and ship

sizes. During the period considered here, since some of these items are priced

in pound sterling (GBP), the GBP value is converted into USD through the

monthly historical exchange rates calculated as the average of the daily last

observations (available in Bloomberg, quoted as GBPUSD).

2 Take the average of the single voyage freight rates by bulk dry cargoes, shown

in the first (top) panel in Figure A.1.

3 Take the average of the average rates categorised by bulk dry cargoes, and

then magnify the size of the average rate by normalised 1985:01 to 1,000, as

the Baltic Dry Cargo Index begins with 1,000 in 1985:01. This is shown in the

second panel in Figure A.1.

4 The Baltic Dry Cargo Index is shown in the third panel in Figure A.1.

5 Combine the equal-weighted dry cargo index and the Baltic Dry Cargo Index,

where the over-lapping portions (1985:01 to 1985:11) are the average between

the two indexes. Then, the combined index normalises 1970:05 to unity, as

shown in the fourth panel in Figure A.1.

6 The real-time world real economic activity index is recursively constructed by

the combined index deflated with the U.S. CPI and linearly detrended, and

scaled by times 100. The final vintage of 2017:06 is shown in the last panel in

Figure A.1.

I also highlight events in oil market after 1973, including the Yom Kippur

War/OPEC oil embargo (1973–1974), the Iranian Revolution (1978–1979), the Iran–

Iraq War (1980–1988), the Gulf War (1990–1991), Venezuela’s civil unrest (2002),

3Kilian (2009) track rates back to 1968; however, the data published in the Shipping Statistics
and Economics journal are only available back to 1970:05.

4Inclusive of citrus pellets, lentils, logs, flour, soya, and tallow.
5Inclusive of agricultural products, rice, cement, and petroleum coke.
6Inclusive of alumina, barytes, concentrates, bauxite, chrome ore, tincal borate, magnesite and

manganese ore.
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the Iraq War (2003–2011), the financial crisis (2008), the Gaza War (2009), and the

European sovereign debt crisis (2010–2014). These events profoundly influenced the

balance of the world oil markets. Consistent with Kilian’s (2009) rea, the combined

index react to the global real economic activity shown in Figure A.1. Notedly, the

real-time rea changes over vintages, due to the revisions of the U.S. CPI, linearly

detrending, and rescale processes.
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100
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Figure A.1: Monthly index of the global real economic activity based on dry cargo
bulk freight rates and the Baltic Dry Cargo Index (1973:01-2017:06)

A.3 Backcasts

This appendix introduces the backcasts for RAC, OECD petroleum stocks, and

the futures of WTI and Brent measures. The backcasts of the first two variables

are following Baumeister & Kilian (2012), while the backcast for futures are original.
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A.3.1 The backcasts for RAC and OECD petroleum stocks

Echoing Baumeister & Kilian (2012), the real-time data set contains vintages from

1991:12 to 2017:06, each covering data extending back to 1973:01. However, RAC

and OECD petroleum stocks are available after 1974:01 and 1988:01, respectively.

In this appendix, I introduce the method for extrapolating these missed observations.

In constructing the monthly RAC from 1973:01 to 1974:01, I follow Baumeis-

ter & Kilian (2012). This procedure involves scaling the monthly percentage rate

of change in the U.S. crude oil producer price index (PPI for oil), provided by the

U.S. Bureau of Labor Statistics (available at: https://data.bls.gov/timeseries/

PCU333132333132), for 1973:01 to 1974:01 by the ratio of the growth rate in the an-

nual refiners’ acquisition cost over the growth rate in the annual U.S. PPI for crude

oil. The process is:

1. Estimate the approximate monthly RAC growth rate,
̂RAC1973:i+1 −RAC1973:i

RAC1973:i
,

where i = [1, . . . , 12] and if i = 12, 1973:12+1 represents 1974:01, through:

̂RAC1973:i+1 −RAC1973:i

RAC1973:i
=
PPIoil1973:i+1 − PPIoil1973:i

PPIoil1973:i

RAC1974−RAC1973
RAC1973

PPIoil1974−PPIoil1973

PPIoil1973

,

where, RAC1973:i is the RAC observation in the month 1973:i, while PPIoil1973:i

is the monthly PPI for oil observed in the month 1973:i. RAC1973 and RAC1974

are the annually observation of RAC in 1973 and 1974, which is 4.08 and

12.52 dollars per barrel respectively (Available at https://www.eia.gov/

opendata/qb.php?category=293676&sdid=PET.R1300 3.A). PPIoil1974 and

PPIoil1973 are annual PPI for oil, calculated as the average of the monthly ob-

servations, in the years 1973 and 1974.

2. The backcasts of RAC then utilise the backward induction from 1974:01 to

1973:01. Initially, ̂RAC1973:12 is backcast through:

̂RAC1973:12 =
RAC1974:01

1 +
̂RAC1974:01 −RAC1973:12

RAC1973:12

.

Then conversely, ̂RAC1973:i can be estimated where i=[11, . . . , 1] through:
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̂RAC1973:i =
̂RAC1973:i+1

1 +
̂RAC1973:i+1 −RAC1973:i

RAC1973:i

.

For OECD petroleum stocks prior to 1988:01, I extrapolate the percentage

change in OECD inventories, OECDpetrot, backwards at the growth rate of U.S.

petroleum inventories (USpetrot), following Kilian & Murphy (2014):

̂OECDpetro1987:12 =
OECDpetro1988:01

1 +
USpetro1988:01 − USpetro1987:12

USpetro1987:12

.

Then, it can be estimated ̂OECDpetrot where t is from 1987:11 backwards to

1973:01 through:

̂OECDpetrot =
̂OECDpetrot+1

1 +
USpetrot − USpetrot−1

USpetrot−1

.

Additionally, I adjust the real-time OECD petroleum inventory data to ac-

count for changes in the set of OECD members reporting inventories in 2001:12.

EIA (2001) reported here are four routine revisions: (1) South Korea is added to

the table; (2) data for the Czech Republic, Hungary, and Poland are added to

“OECD Europe”; (3) data for Mexico are added to “Other OECD”; and (4) OECD

is recalculated to reflect the changes in other columns. It is necessary to preserve

the consistency of the real-time and the ex-post revised inventory data by adding

them into previous vintages provided by Baumeister & Kilian (2012). Consistent

with Baumeister & Kilian (2012) ex-post revised data from the EIA supplement the

petroleum inventories of these countries to construct real-time equivalents of the

OECD petroleum inventory data in vintages prior to 2001:12.

A.3.2 The backcast for oil futures with maturities 1–24 months

WTI futures are traded on the New York Mercantile Exchange (NYMEX), while the

Brent oil price futures are traded on the trading floor of Intercontinental Exchange
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Futures Europe (ICE). I collect these monthly WTI and Brent futures prices, with

maturities from 1 to 24 months, from Bloomberg, calculated as the average of the

daily last prices (quoted as cl‘n’:com and co‘n’:com for WTI and Brent, respectively,

where ‘n’ is the maturity).

The missing values from the online source in WTI futures are with the 18-

to 24-month maturities from 1991:12 to 1995:08, while the missing values in Brent

futures are with the 9- to 24-month maturities between 1991:12 and 1994:04, and

with the 12- to 24-month maturities in the 1994:04–2005:02 period, respectively. Val-

ues for monthly missing data are recursively added through the following process,

based on Wiki crude oil futures continuous contracts from CL1 to Cl24 (available

at https://www.quandl.com/data/CHRIS-Wiki-Continuous-Futures), where CL

is the code for the Light Sweet Crude Oil futures contracts:

1. Calculate the spread between WTI (Brent) futures and different Wiki futures

prices with the h maturity.

rhij,t =
fhi,t

fhWiki,j,t

,

where i denotes WTI and Brent crude oil, and t = [1991:12, ..., 2017:06]; rhij,t
is the rate with the h−month maturity, h = 1, 2, ...., 24; fhi,t is the futures

of WTI or BRENT with the maturity h; and, fhWiki,j,t is the Wiki crude oil

futures with the same maturity h, where j indicating 5 Wiki prices at time

t: the open, high, low, last and settle prices. If the WTI (or Brent) futures

and the 5 Wiki futures with 1- to 24-month maturities at time t are available,

there will be the maximum 120 (5× 24) spreads calculated.

2. At time t, where there is a missing value of the WTI (or Brent) futures with

the maturity h, I replace the missing value, denoted as f̂hi,t, using:

f̂hi,t =
1

J × v

v∑
h̃=1

J∑
j=1

(rh̃ij,t × fhWiki,j,t),

where v is the number of available observations with the 1- to 24-month ma-

turities at t for the measure WTI (or Brent); and, h̃ is the maturity not equal
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to (any) of h maturities, where there are missing values. In the event of one

missing maturity h over the 24 this will be the mean of J × v approximations

of the missing data, where J is the number of available Wiki prices indicated

by j with the maturity h. Hence, the number of observations over which I

take the mean depends on the number of maturities’ observations that are

available. For example, I have missing WIT futures with maturities 18, 21,

and 24 months in 1991:12, while all five Wiki prices are available. Hence, the

number of values averaged over to fill in the value at h = 18 in 1991:12 is

5 × 21 = 105, where 21 is calculated as 24 maturities considered in this data

set minus the three missing maturities in 1991:12.
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Appendix B

Technical Details and

Additional Results in Chapter 3

B.1 Prior and the posterior computation for ω∗j in SMSS

Following Eisenstat et al. (2016), I define m × 1 vectors ω∗ = (ω∗1, ..., ω
∗
m)
′
, ω =

(ω1, ..., ωm)
′
, and τ = (τ1, ..., τm)

′
, to complete the model specification (3.4) and

save

y =


y1

...

yT

, W =


W1 . . . 0
...

. . .
...

0 . . . WT

, Z =


Z1

...

ZT

, γ =


γ1

...

γT

, ε =


ε1

...

εT

,

Wt = ZtΩ
1
2 Φ, where Ω

1
2 = diag(ω1, ..., ωm); and, W is stored as a sparse matrix.

Moreover, I store h = (h1, . . . , hT )′. Then, specification (3.4) becomes:

y = Zα+Wγ + ε. (B.1)

And then, ε ∼ N(0,Σ), where

Σ =


Σ1 . . . 0
...

. . .
...

0 . . . ΣT

 .

Therefore, the posterior draws are obtained by sequentially sampling (MCMC) from:
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1. p(α|y, γ, h, ω∗, τ, λ);

2. p(γ|y, α, h, ω∗, τ, λ);

3. p(h|y, α, γ, ω∗, τ, λ);

4. p(ω∗|y, α, γ, h, τ, λ);

5. p(τ |y, α, γ, ω∗, h, λ);

6. p(λ|y, α, γ, ω∗, h, τ).

Steps 1–3 are standard (see details in Eisenstat et al., 2016). As per the Tobit

prior explained in Section 3.2.1, ωj is fully determined by ω∗j , which is sampled from

its full conditional distribution. To that end, define Gt = Ztdiag(γt), and let

G =


G1

...

GT

 .

Then the measurement Equation (B.1) becomes

y = Zα+Gω + ε. (B.2)

And, gj denotes the j-th column of G, while G\j is the rest of the columns of G

stacked in a Tn× (m− 1) matrix. Similarly, ω\j is ω eliminating ωj . And,

υj ≡ y − Zα−G\jω\j .

Calculate the further posterior quantities:

τ̂2
j = (τ−2

j + g
′
jΣ
−1gj)

−1;

µ̂j = τ̂2
j (µj/τ

2
j + g

′
jΣ
−1υj);

ψ̂j =
Φ(µ̂j/τ̂j)

Φ(−µj/τj)
τ̂j
τj
exp{1

2
(
µ̂2
j

τ̂2
j

−
µ2
j

τ2
j

)};

π̂j = (1− ψ̂j)−1.

The µj is the expected mean of a normal distribution, and it is restricted to zero in

Chapter 3 to reduce the computation burden. Then, the conditional density of ω∗j
in step 4 is a 2-component mixture of truncated normals:
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p(ω∗j |y, α, γ, h, τ, λ, ω∗\j) = π̂jφ−∞,0(ω∗j |µj , τ2
j ) + (1− π̂j)φ0,∞(ω∗j |µ̂j , τ̂2

j ), (B.3)

(see a more detailed discussion in Eisenstat et al., 2016, p. 1646). Steps 5 and 6 are

standard as below:

(τ−2
j |λ, ω

∗
j ) ∼ IG(

√
λ2

(ω∗j )
2
, λ2),

(λ2|τ) ∼ Γ(λ01 +m,λ02 +
1

2

m∑
j=1

τ2
j ),

where IG and Γ denote the inverse Gaussian and Gamma distributions respectively.

The starting value of τ2
j is based on exponential (E) distribution τ2

j ∼ E(1).

B.2 Technical details for specifications

The models without stochastic volatility, including BVAR, TVP, and TVPsmss, use

a constant variance of ε, Σ so that:

Σ =


Σ1 . . . 0
...

. . .
...

0 . . . Σ1

 ,

Σ1 is sampled following a standard independent prior from an inverse Gamma dis-

tribution, IΓ:

Σ1 ∼ IΓ(v0 + T/2,
1

S0 + ε′ε/2
).

The hyper parameters v0 and S0 are n × 1 vector with zeros and -1 respectively.

This follows Chan & Eisenstat (2018).

Moreover, the specifications with TVP but without SMSS include TVP and

TVPSV. I sample ω∗j using the positive truncated distribution

ω∗j ∼ φ0,∞(ω∗j |µ̂j , τ̂2
j )
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and ignoring π̂j in Equation (B.3). This utilises a straightforward implementation

of hierarchical shrinkage, namely LASSO.

Further, the specifications without TVP include BVAR and SV, where the

ωj is restricted to zeros for all j = 1, . . . , m.

B.3 The extension of Baumeister & Kilian’s (2015) com-

bination into density forecasts

In this appendix, I extend the models introduced in Section 2.3 with approximate

density forecasts. The majority of them are sampled from a normal distribution

with the mean of the point forecast at a forecasting horizon and the variance based

on the square of the model’s recursive historical forecasting error.

B.3.1 An unrestricted globe oil market vector autoregression (VAR)

The density forecast from VAR is based on the point forecast of R̂1
t+h in Equation

(2.2). The density is simulated through 1,000 simple Monte Carlo iterations, condi-

tional on a normal distribution with the mean of the point forecast at the horizon

h, and the variance calculated by the VAR.1 Then, the density forecast of RAC is

denoted as g(R̂1
t+h). WTI and Brent measures are again extrapolated from the RAC

forecasts, as mentioned in Section 3.2.3.

B.3.2 A commodity price based model

The density forecast based on the price of non-oil industrial raw materials is calcu-

lated as:

R̂2
t+h = R̂oilt (1 + πh,industrial raw materials

t − Et(πht+h)) + εt+h,

where εt+h ∼ NID(0, σ2
h|C), and σ2

h|C is the observed average forecast squared error

at horizon h conditional on the commodity price based model; Et(π
h
t+h) is the infla-

tion expectation formulated in Equation (2.4). Hence, the forecast density g(R̂2
t+h)

1The choice of density size is detailed in the end of Section 3.2.1.
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at the horizon h is the Monte Carlo integration simulated by 1,000 simple Monte

Carlo iterations conditional on the most recent data.

B.3.3 An oil futures spread based model

The oil futures-based density forecast, g(R̂3
t+h), is based on the addition of a mean-

zero error:

R̂3
t+h = R̂oilt (1 + fht − st − Et(πht+h)) + εt+h,

where εt+h ∼ NID(0, σ2
h|f ) and σ2

h|f is the observed average forecast squared error

at horizon h conditional on the oil futures spread based model; and again, Et(π
h
t+h)

is the inflation expectation calculated in Equation (2.4). Then, the density forecasts

from the oil futures spread based model for real oil prices are the Monte Carlo in-

tegration based on the simulation of 1,000 simple Monte Carlo iterations.

B.3.4 A gasoline spread based model

The forecast based on the spread between the spot prices of gasoline and crude oil

is specified as:

R̂4
t+h = R̂oilt exp{β̂[sgast − st] + εt+h − Et(πht+h)},

where sgast is the log of the nominal U.S. spot price of gasoline, st is the log nominal

WTI spot price of crude oil, and Et(π
h
t+h), similarly, is defined as the expected

inflation rate over the next h periods.2 β̂ is correspondingly the recursively least-

square estimation based on:

∆st+h|t = β[sgast − st] + εt+h,

where εt+h ∼ NID(0, σ2
h|g); and σ2

h|g is the constant variance of the error term at

the forecast horizon h. Therefore, the density forecasts of real oil prices based on

this model, g(R̂4
t+h), are calculated by the Monte Carlo integration simulated with

1,000 simple Monte Carlo iterations.

2Whereas crude oil prices are reported in U.S. cents per barrel, gasoline prices are reported in
cents per gallon, which are then transformed to dollars per barrel. This involves multiplying by 42
(gallons/barrel) and dividing by 100 (cents/dollar).
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B.3.5 A time varying parameter product spread model

The time-varying parameter model is a two state–space model, which recursively es-

timates the time-varying regression with its uncertainty. According to the estimates,

the TVP model forecast is constructed directly through:

R̂5
t+h = R̂oilt exp{β̂1t[s

gas
t − st] + β̂2t[s

heat
t − st]− Et(πht+h)},

where the time-varying parameters β̂1t and β̂2t, are estimated from:

∆st+h = β1t[s
gas
t − st] + β2t[s

heat
t − st] + et+h,

where, et+h ∼ NID(0, σ2
h|TV P ), σ2

h|TV P is the constant variance of the error term.

This time-varying parameter model is motivated by Reeve & Vigfusson (2011) and

developed by Baumeister et al. (2013), which employs independent Normal-Wishart

prior and the Gibbs sampling algorithm for the forecasts. Moreover, Et(π
h
t+h) is the

inflation expectation introduced in Equation (2.4). The density forecasts use the

1,000 Gibbs posterior iterations of the time-varying parameters, excepting burn-in

draws (5,000). Therefore, the size of the forecast density g(R̂5
t+h) is 1,000.

B.3.6 No-change or random walk model

The no-change density forecast adds εt+h ∼ NID(0, σ2
h|N ), where σ2

h|N is the ob-

served average forecast squared error at horizon h conditional on the no-change

forecasts, into the model as R̂6
t+h = Roilt + εt+h with the aim of generating the fore-

cast densities g(R̂6
t+h). The Monte Carlo integration is the forecasts simulated by

1,000 simple Monte Carlo iterations, conditional on the most recent data.

The density forecasts of BK are the average of the six densities forecasted at

the 1- to 24-month horizons with size 1,000. More specifically, I have six random

numerical densities at size 1,000, forecasted by the six models above respectively.

Then I randomly choose a forecast from each density and calculate the mean of the

six forecasts to replicate Baumeister & Kilian’s (2015) equal-weight point forecast.

Repeating this, I randomly calculate 1,000 means, which is defined as a density

forecast of BK.
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B.4 Convergence diagnostics

The results from MCMC runs with 1000 and 10,000 draws are not statistically differ-

ent, where the convergence diagnostics seem satisfactory considering the very high

dimensionality of the specifications. In this exercise, I diagnose the unconvergence

using Geweke’s (1992) IF and Z−score, as well as, Gelman & Rubin’s (1992) PSRF,

which are widely used in MCMC convergence diagnosing literature (see reviews in

Cowles & Carlin (1996) and Roy (2019)).

IFs are the inverse of the relative numerical efficiency measure of Geweke

(1992), for the posterior estimates of the parameters, and is calculated as (1 +

2
∑∞

k=1 ρk), where ρk is the kth autocorrelation of the chain. In this application the

estimate is performed using a 4 percent tapered window for the estimation of the

spectral density at frequency zero. Values of the IFs below or around 20 are regarded

as satisfactory, see for example in Primiceri (2005). Geweke’s (1992) Z−score uses

methods from spectral analysis to compare the mean difference between the first

10% and the last 50% iterations of a retained MCMC chain. Hence, if the Z−score

were close to zero, there would be no evidence for unconvergence. Since the Z−score

follows the normal distribution, its 5%-significance interval is [-1.96, 1.96]. Gelman

& Rubin’s (1992) PSRF is calculated using the two parallel chains, where I use

the adjacent vintages T − 1 and T in this exercise for all estimates, except the last

time-varying coefficients at time T for the T -vintage, such as hT and γT . PSRF is

calculated as the square root of the ratio between an overestimated variance con-

sidering the variance between parallel chains and an underestimated variance which

is calculated within the chains respectively. The cutoff point, suggested by Gelman

& Rubin (1992), is 1.1. In other words, the parallel chains are diagnosed as ‘no

evidence of unconvergence’ when PSRF< 1.1.

In this exercise, I also test the null hypothesis that one specification’s esti-

mates across vintages from 1992:12 to 2016:12 are converged (or consistent). There-

fore, one specification’s convergence diagnostic is conditional on a very high dimen-

sional estimates. For example, the parameters for TVPSVsmss(12) includes α, Ω
1
2 ,

γt, ht, and R, where there are 105,888 estimates for vintage 2016:12 only. Consid-

ering all vintages from 1991:12 to 2016:12, there are 22,527,300 estimates in total,

while the VAR contains the smallest size of estimates, which is 61,800 for all vintages.
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Table B.1 presents the mean, min, max and the percentage of unconvergened

estimates for the three diagnostics respectively. Under Geweke’s (1992) Z−score,

the percentage of unconverged estimates for all specifications are below 10%, and

the mean of the absolute values for all Z−scores are strictly smaller than 0.1. From

the view of IFs, all the mean of all estimates of IFs are less than 20 for all spec-

ifications, and the probabilities that IF > 20 are smaller than 10%, excepting for

model TVPsmss. However, when considering a larger threshold of 25, the probabil-

ity of unconverged estimates is below 10% including the TVPsmss method. (See a

discussion for the convergence of large dimensionality estimates in Primiceri (2005).)

Table B.1: Convergence diagnostics for all specifications

IF Z-score PSRF

Specifications Mean Min Max P (IF > 20) Mean Min Max P (Z < −1.96) + P (Z > 1.96) Mean Min Max P (PSRF > 1.1)

VAR 1.2312 0.3936 4.0317 0.00% 0.0013 -3.6837 3.3661 0.80% 1.0147 0.9995 4.4781 0.62%

SV 12.6123 0.3030 37.6800 2.77% -0.0819 -11.1718 4.3027 0.23% 1.0827 0.9995 5.2672 9.91%

TVP 12.5502 0.2759 39.0466 2.54% 0.0183 -9.3226 5.3054 7.39% 1.3458 0.9995 14.8160 11.03%

TVPsmss 14.1749 0.3520 39.2386 21.60% 0.0677 -13.5797 8.3048 8.70% 1.4969 0.9995 90.8418 27.21%

TVPSV 15.1013 0.3469 37.2953 0.34% -0.0474 -6.5837 5.7793 2.48% 1.0612 0.9995 3.2818 0.73%

TVPSVsmss(1) 13.5622 0.3377 38.4233 6.46% -0.0595 -26.2229 24.5103 2.75% 1.1121 0.9995 6.4201 13.83%

TVPSVsmss(2) 13.4108 0.3987 38.0386 2.27% -0.0396 -28.4348 33.4840 2.02% 1.1082 0.9995 6.0292 9.81%

TVPSVsmss(3) 13.3589 0.3575 36.7675 1.68% -0.0585 -16.9409 7.6970 2.14% 1.0949 0.9995 5.2638 6.65%

TVPSVsmss(4) 13.5151 0.3642 36.9858 1.40% -0.0688 -21.2937 18.8466 2.47% 1.0952 0.9995 5.6086 5.66%

TVPSVsmss(5) 13.6738 0.3693 37.4659 1.30% -0.0735 -7.1556 9.0330 2.67% 1.0882 0.9995 5.6457 5.23%

TVPSVsmss(6) 13.8491 0.3610 37.1207 1.34% -0.0860 -10.3858 12.7081 3.17% 1.0895 0.9995 5.0822 5.80%

TVPSVsmss(7) 14.0589 0.3560 37.6535 1.09% -0.0786 -6.2233 10.6698 3.39% 1.0972 0.9995 5.0337 5.55%

TVPSVsmss(8) 14.0187 0.3086 37.2777 0.93% -0.0944 -9.9592 7.4143 3.28% 1.0908 0.9995 4.8400 4.52%

TVPSVsmss(9) 14.0796 0.3637 37.3003 0.84% -0.0721 -6.7994 9.0406 3.21% 1.0834 0.9995 4.8073 3.64%

TVPSVsmss(10) 14.3398 0.3228 37.7328 0.80% -0.0557 -9.9488 10.9417 3.12% 1.0980 0.9995 6.1269 4.04%

TVPSVsmss(11) 14.6952 0.3728 37.1757 0.78% -0.0487 -5.5527 10.5308 3.20% 1.0767 0.9995 6.8567 3.12%

TVPSVsmss(12) 14.6159 0.3503 37.9918 0.68% -0.0606 -9.4254 17.5765 3.24% 1.0795 0.9995 8.0405 3.18%

Note: IF presents the inefficiency factor, which is the inverse of the relative numerical efficiency measure of Geweke (1992). Values of the IFs below or around 20 are regarded as satisfactory,

see for example in Primiceri (2005). Geweke’s (1992) Z−score using methods from spectral analysis to compare the mean difference between the first 10% and the last 50% iterations of a

retained MCMC chain. Hence, if the Z−score closes to zero, there would be no evidence for unconvergence, and its 5%-significance interval is [-1.96, 1.96]. Gelman & Rubin’s (1992) PSRF

is calculated through the two parallel chains, where I use the adjacent vintages T − 1 and T in this exercise for all estimates excepting the last time-varying coefficients at time T for the

T -vintage, such as hT and γT . The parallel chains are diagnosed as ’no evidence of unconvergence’ when PSRF< 1.1.

The Gelman & Rubin’s (1992) PSRF statistic considers not only the con-

vergence of the estimates, but their consistency across vintages. I utilise the cor-

responding estimates of vintages t and t + 1, where t ⊆ [1991:12, . . . , 2016:11],

excepting the estimates of time varying parameters on month t + 1 of the vintage

t+1, as parallel MCMC chains for the calculation of PSRF. In Table B.1, all specifi-

cations’ mean PSRFs, except TVP, TVPsmss, TVPSVsmss(1), and TVPSVsmss(2),

are smaller than 1.1, and the P (PSRF > 1.1) are smaller than 10%. However, when

considering a higher cutoff point of 1.2, which is often used in the literature (Vats

& Knudson, 2018), more than 90% PSRFs for TVPSVsmss(1) and TVPSVsmss(2)

are under the threshold. The TVP’s and TVPsmss’s PSRFs indicate some evidence

of unconvergence, but the majority of the PSRFs estimates are smaller than 1.1,

88.79% and 72.79% for the two respectively. It is also necessary to mention that,

there is no diagnostic that can provide precise tests for convergence, where all of the

148



diagnostics are an approximate guide on the evidence of the unconvergence (Cowles

& Carlin, 1996; Roy, 2019).

All in all statistics, there is weak evidence for unconvergence, given a large

sample of estimates.

B.5 A justification for MKLD accompanied with the

extreme-forecasts-elimination process

MKLD accompanied with the extreme-forecasts-elimination process is used as an

additional shrinkage method applied directly on the forecasts. It is necessary to

justify if the resulting forecasts are from the model being estimated. Bearing in

mind this consideration, comparing the out-of-sample (from the 1- to 24-month

forecasting horizons) autocorrelation coefficients at one lag (without intercept) —

AR(1) coefficients — I found that the method used in this exercise is equivalent

to placing zero prior weight on a specific region of the out-of-sample random walks

of time-varying-parameter estimates, whose standard error of the AR(1) coefficients

are around three times the size of the accepted estimates. It is clear that the process

is closely follows the estimates of specifications.

In this exercise I use TVPSVsmss(12) based on the 2016:12 vintage as an ex-

ample. I collect all accepted and rejected draws of B0,T+h, α\B0 + Ω
1
2
,\B0γ

\B0

T+h, and

hT+h, for h=1, . . . , 24, respectively. (Note: I discard all time-invariant estimates,

as they are the same for accepted and rejected draws.) Since the out-of-sample

time-varying coefficients are drawn through the random walk process, I calculate

recursive out-of-sample AR(1) coefficients, estimated using OLS. For example, the

estimate bh, drawn from vec(B0,T+h) = bhvec(B0,T+h−1) + e and e ∼ N(0, 1), is

based on samples for accepted and rejected forecasts respectively. The vec(B0,T+h)

is a vector [[b01,T+h|1, . . . , b06,T+h|1]
′
, . . . , [b01,T+h|ι, . . . , b06,T+h|ι]

′
, . . . ]

′
, where

there are 6 estimates in a small block for the elements in a lower triangular matrix

B0,T+h|ι for draw ι in the accepted and rejected samples respectively. The AR(1)

coefficients are calculated for horizons h = 1, . . . , 24 recursively.

Moreover, I also calculate the pooled OLS AR(1) estimates, based on all

h = 1, . . . , 24 together. For example, the pooled OLS AR(1) for B0,T is estimated
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based on the independent and dependent variables x and y. The x vector con-

tains [vec(B0,T ), . . . , vec(B0,T+23)]
′

and the corresponding y is [vec(B0,T+1), . . . ,

vec(B0,T+24)]
′

for accepted and rejected samples respectively. Table B.2 illustrates

the relationship between the time-varying coefficients from the accepted and rejected

samples. The columns under recursive AR(1) estimates are the mean, min, max,

standard deviation across h, as well as a ratio between the standard deviations for

the draws rejected and accepted. The columns under pooled OLS AR(1) estimates

are the estimates of the coefficients, standard errors and a ratio for the standard

errors of the draws rejected relative to accepted.

Table B.2: Out-of-sample AR(1) coefficients for time-varying parameters

Recursive AR(1) estimates Pooled OLS AR(1) estimates

TVPs Sample Mean Min Max Sd. sdR
sdA

AR(1) Coefficient Se. seR
seA

B0,T

Accept 1.0002 0.9983 1.0025 1.2×10−3

3.5082
1.0002 2.1×10−4

2.7563
Reject 1.0000 0.9922 1.0078 4.3×10−3 1.0000 5.7×10−4

α\B0 + Ω
1
2
,\B0γ

\B0
T

Accept 1.0000 0.9996 1.0002 1.8×10−4

3.4420
1.0000 2.6×10−5

2.8337
Reject 1.0006 0.9992 1.0016 6.0×10−4 1.0006 7.2×10−5

hT
Accept 0.9989 0.9982 1.0004 4.3×10−4

1.8131
0.9989 5.0×10−5

2.9407
Reject 0.9989 0.9976 1.0008 7.8×10−4 0.9989 1.5×10−4

Note: The recursive out-of-sample AR(1) coefficients are estimated through OLS, which are, for example, the estimate bh from vec(B0,T+h) =

bhvec(B0,T+h−1) + e and e ∼ N(0, 1), based on samples stocked for accepted and rejected forecasts respectively. The vec(B0,T+h) is a vector

[[b01,T+h|1, . . . , b06,T+h|1]
′
, . . . , [b01,T+h|ι, . . . , b06,T+h|ι]

′
, . . . ]

′
, where there are 6 estimates in a small block for the elements in a lower

triangular matrix B0,T+h|ι for draw ι in accepted and rejected samples respectively. The AR(1) coefficients are calculated for horizons h = 1, . . . ,

24 recursively. Moreover, I also calculate the pooled OLS AR(1) estimates, based on all h = 1, . . . , 24 together. For example, the pooled OLS

AR(1) for B0,T is estimated based on the independent and dependent variables x and y. The x is a vector contains [vec(B0,T ), . . . , vec(B0,T+23)]
′

and the corresponding y is [vec(B0,T+1), . . . , vec(B0,T+24)]
′

for accepted and rejected samples respectively. The columns under recursive AR(1)

estimates are the mean, min, max, standard deviation across h, as well as a ratio between the standard deviations for the draws rejected and

accepted. The columns under pooled OLS AR(1) estimates are the estimate of the coefficient, standard error and a ratio for the standard errors

of the draws rejected relative to accepted.

From Table B.2, there is no significant differences between the accepted and

rejected draws at the mean for the contemporary correlations, time-varying pa-

rameters for lagged observations and stochastic volatilities, and the AR(1) coeffi-

cients are close to 1. This is acceptable, as their out-of-sample innovation follows

a random walk. However, there is a significant difference for the standard divina-

tions (Sd.) across the 1- to 24-month forecasting horizons. The Sd. for B0,T and

α\B0 + Ω
1
2
,\B0γ

\B0

T , using rejected draws, is around 3.5 times of it using accepted

draws. For hT , the sdR
sdA

is 1.8131, which is still large. This is also observed when

using the pooled OLS AR(1) estimation. The estimates of AR(1) coefficients are

around 1 for all the three blocks of time-varying parameters using accepted and

rejected samples respectively, while the estimated standard errors, Se., between the

two samples are different. The estimates of seR
seA

for the three blocks are about 2.8,
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which is close to the definition of an extreme forecast that a value is more than three

scaled median absolute deviations away from the median forecast.

Figure B.1 presents all recursive AR(1) coefficients forB0,T , α\B0+Ω
1
2
,\B0γ

\B0

T ,

and hT respectively. It is confirmed that the AR(1) coefficients for rejected forecasts

are more volatile than for accepted draws. The recursive AR(1) coefficients of the

time-varying parameters for lagged variables using rejected draws are slightly above

1 over the 5- to 18-month horizons. These observations motivate an assumption of

placing a stationary restriction on the VAR or TVP-VAR (as is commonly done)

and discarding all non-stationary MCMC draws. Considering the out-of-sample

forecasts, the selection of stationary VAR with constant coefficients is not difficult,

while it is difficult to achieve where keeping time-varying parameters stable when

allowing their out-of-sample innovation.

Two ways were tried: (1) randomly sampling time-varying parameters in

out-of-sample, following a random-walk assumption, and accepting the stable VAR

system at T+h. Unfortunately, due to the large number of estimates, the acceptance

rate is strictly below 1% for 1-step ahead forecasts. (2) I allow time-varying param-

eters to innovate in out-of-sample, then only choose the draws’ AR(1) coefficients

strictly below 1. Nevertheless, at forecasting steps beyond 5, some of parameters are

close to 0. Setting a lower bound in the selection of AR(1) coefficients is practically

impossible. On the one hand, if the lower bound is close to 1, the acceptance rate

will be too low to apply the innovation rule. On the other hand, if the bound is

low, the problem of sustainability over a long forecasting horizons would be raised

again. To set a constant AR(1) coefficient for the out-of-sample time-variation is

not a good idea, as we do not know the AR(1) coefficient.

To summarise, the method used in this exercise for out-of-sample forecasts

is equivalent to rejecting a specific region for the time-varying parameters, whose

AR(1) coefficient standard deviation in the out-of-sample period (across the 1- to

24-month horizons) is around three times of those for the accepted draws.
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Figure B.1: Recursive out-of-sample AR(1) coefficients for time-varying
parameters

Note: The recursive out-of-sample AR(1) coefficients are estimated through OLS, which
are, for example, the estimate bh from vec(B0,T+h) = bhvec(B0,T+h−1) + e and e ∼ N(0, 1),
based on samples stocked for accepted and rejected forecasts respectively. The vec(B0,T+h)

is a vector [[b01,T+h|1, . . . , b06,T+h|1]
′
, . . . , [b01,T+h|ι, . . . , b06,T+h|ι]

′
, . . . ]

′
, where there are

6 estimates in a small block for the elements in a lower triangular matrix B0,T+h|ι for draw
ι in accepted and rejected samples respectively. The AR(1) coefficients are calculated for
horizons h = 1, . . . , 24 recursively.
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B.6 A realistic signalling strategy for daily crude oil

futures, conditional on real crude oil price density

forecasts

Four possible scenarios in realistic world for WTI and Brent futures, when calcu-

lating the indicator of long or short positions, denoted as ζid,h,M,πc |·, are shown in

Figure B.2. During the two EIA reporting dates T and T + 1, or vintages T and

T + 1, there could be zero, one or two LTDs. When there is one LTD and it is

located in the “second half” (the right side of the vertical red-dashed line), shown

as the top timeline in Figure B.2, the daily signal before the LTD for long or short

WTI (Brent) futures is conditional on both the implied log real RAC in T + h,

which is denoted as Ed(r
oil|i
T+h) and based on daily WTI (Brent) futures with matu-

ration of h observed on day d, as well as, the h-month ahead density forecasts from

specifications in vintage T , g(roilT+h|M ). I denote it as ζid,h,M,πc |Ed(r
oil|i
T+h)&g(roilT+h|M ).

After the LTD, the most recent futures contract (CL1 or CO1) becomes the contract

maturation in one month later. Therefore, I use the density forecasts in h + 1 for

calculating the long–short signal, which is ζid,h,M,πc |Ed(r
oil|i
T+h)&g(roilT+h+1|M ).

When the LTD is located in the “first half”, shown in the second timeline, the

calculation of long–short signals will use the futures maturation in h+1 months later,

where ζid,h,M,πc |Ed(r
oil|i
T+h+1)&g(roilT+h|M ). This is because the most recent futures

(CL1 or CO1) is too soon to maturate and the density forecast at the 1-month hori-

zon is far later than the LTD. After the LTD, I use ζid,h,M,πc |Ed(r
oil|i
T+h)&g(roilT+h|M )

again. The same logic can be applied in the scenario that there are two LTDs shown

in the third timeline. If the day locates before the LTD and within the range of the

“first half”, the long–short signal will be calculated as ζid,h,M,πc |Ed(r
oil|i
T+h+1)&g(roilT+h|M ).

Meanwhile, if the day is after the LTD and in the “second half”, the signal will be

ζid,h,M,πc |Ed(r
oil|i
T+h)&g(roilT+h+1|M ). Between the two LTDs, the calculation returns to

ζid,h,M,πc |Ed(r
oil|i
T+h)&g(roilT+h|M ), which is also used for the situation when there is no

LTD between the two EIA reporting dates (vintages T and T + 1), as shown in the

last timeline. For the purpose of an evaluation, I calculate all the excess returns on

the days between the two EIA reporting dates.
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Figure B.2: Four scenarios for the calculation of ζT,h

The calculation of ζid,h,M,πc |· depends on the density forecasts and daily im-

plied log real RAC prices. For example, ζid,h,M,πc |Ed(r
oil|i
T+h)&g(roilT+h|M ) is a strategic

indicator (signal) at horizon h on day d based on the forecasts in the vintage T :

ζid,h,M,πc |Ed(r
oil|i
T+h)&g(roilT+h|M ) =

1 (Long) if P [g(roilT+h|M ) < Ed(r
oil|i
T+h)] >= πc)

-1 (Short) if P [g(roilT+h|M ) > Ed(r
oil|i
T+h)] >= πc)

0 (No Actions) Otherwise,

(B.4)

where g(roilT+h|M ) is the density forecasts of real log RAC using the specification M .

Ed(r
oil|i
T+h) is the implied log-level real RAC spot price on day d, h months later,

conditional on the WTI (or Brent) measure, and their nominal daily futures price

on day d with maturity in h months is denoted as f ih|d, where:

Ed(r
oil|i
T+h) = log(

RiT (1 + f ih|d − s
i
d − ET (πhT+h))

spreadi, RAC
T

). (B.5)

where spreadi, RAC
T is the spread between the last observation of the nominal price

WTI (Brent) measure in vintage T relative to the last observation of the nominal

price of RAC, such as:
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spreadi, RAC
T =

pi
T

pRACT

;

RiT (1 + f ih|d − sid − ET (πhT+h)) is widely used for real crude oil price forecasting

literature (see Baumeister et al., 2018; Baumeister & Kilian, 2014; and Baumeister &

Kilian, 2015), namely futures-spread forecasts; the RiT is the last observed real WTI

(Brent) in vintage T ; and sd is the corresponding log-level daily WTI (Brent) spot

price. Echoing Baumeister & Kilian’s (2015) definition of ET (πhT+h), the expected

U.S. inflation, as the average U.S. CPI inflation available at time T , where the

averaging begins in 1986:07, is hence:

ET (πhT+h) = [1 +
1

τ − τ

τ∑
t=τ

(ln(CPIt+1)− ln(CPIt))]
h − 1,

where t = [τ , ..., τ ], τ=1986:07 and τ is the last observation in time T .

Moreover, the probability of that the forecast g(roilT+h|M ) is smaller than

the log level transferred real futures price of RAC, Ed(r
oil|i
T+h), from WTI or Brent

measures is notated as:

P [g(roilT+h|M ) < Ed(r
oil|i
T+h)] =

∫ Ed(r
oil|i
T+h)

−∞
p(u)du,

where p(.) is the probability based on density forecasts g(roilT+h|M ). Thereby,

P [g(roilT+h|M ) > Ed(r
oil|i
T+h)] = 1− P [g(roilT+h|M ) < Ed(r

oil|i
T+h)].

The πc is a threshold, reflecting the risk-aversion level, and decided by the relevant

decision maker who participates in the financial market for the purpose of hedging

or speculation. From the point forecast view, the market participants can only set

πc = 50%, which is risk-nature. Thereafter, the long–short strategy based on density

forecasts would be more flexible, and may help investors to recover from difficulties

when using the point forecasts for signalling.
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B.7 The calculation of excess returns

The calculation of futures returns in this study is broadly consistent with the fi-

nancial literature (see Gorton et al., 2012; Hong & Yogo, 2012; and Bakshi et al..

2017). However, the procedure for constructing futures returns in this exercise ac-

counts for the last trading day (LTD), but not the first notice day (FND) in Bakshi

et al. (2017), in order to avoid a physical delivery from the counterparty. This is

because after the LTD, the most recent crude oil futures contract (CL1) will be

stopped being able to trade in the market. Moreover, the FND is approximately

10 days after the LTD for WTI, and which has been the same day as the LTD for

Brent futures since the contract from 1992:11 (COX92). In this chapter, the return

of long–short futures daily position, which is taken on day d for the contract with

maturity h, until the LTD is defined as:

rih|d =


f ih|LTD − f

i
h|d

f ih|d
+ rfd if take long position

−
f ih|LTD − f

i
h|d

f ih|d
+ rfd if take short position,

(B.6)

where i represents the WTI and Brent measures, respectively: i ⊆ [WTI, Brent];

f ih|d and f ih|LTD are the nominal oil futures with the maturity h observed on day

d and the corresponding LTD, respectively; and rfd indicates the interest earned

on the fully collateralised futures position (see for example Bakshi et al.’s (2017)

Eq‘uation (1) or Hong & Yogo’s (2012) Equation (14)). Hence, the excess return

with the maturity h, denoted as erih|d, is calculated as:

erih|d = rih|d − r
f
d .

Aiming to make the erih|d at different horizons are comparable, I standardise

the erih|d to be a monthly return, denoted as erim|d,h, via:

erim|d,h = h

√
1 + erih|d − 1. (B.7)

This is because the h-month compound excess return should satisfy:

(1 + erim|d,h)h = 1 + erih|d.

Following this exercise, I respectively calculate daily returns at the h-month
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horizon, where h=1, . . . , 24, between the two EIA data release dates, which dis-

tinguishes the vintages T and T + 1, of the Monthly Energy Review, thus updating

the oil supply, demand and inventories data used for density forecasts. Hence, there

are three assumptions: (1) the investor can afford any additional deposit (initial

margin) charge for holding the futures position until the LTD; (2) the transition

fee is negligible, as we do not have data for real-time transition fees; and (3) the

duration is the same for daily returns calculated with the h−month maturity. For

example, when daily returns calculated for h = 12, each of them will be treated as

a 12-month cumulative return. Hence, I can cumulate the erim|d,h between T and

T + 1 for the 1- to 24-month horizons independently, conditional on forecasts at the

corresponding horizons.

B.8 The cumulative excess returns for WTI and Brent

measures in futures market

WTI and Brent measures’ cumulative excess returns at horizon h with risk-aversion

level πc for specification M , denoted as cerih,M,πc and calculated via

cerih,M,πc =
∑
d

eri,longm|d,h × ζ
i
d,h,M,πc |·,

where, eri,longm|d,h is the excess return of a long position. According to Equation (B.6),

the excess return for a short position is −eri,longm|d,h. This is a good measure for checking

the model’s ability to generate profit. However, cerih,M,πc is sensitive to an extreme

excess return erim|d,h. For example, the positive cerih,M,πc may be caused by a large

gain at one time. And the extreme erim|d,h offers less opportunity to learn from a

forecasting perspective. Consequently, if there is one extreme positive erim|d,h that

can drive the cerih,M,πc to be positive, then the cerih,M,πc will basically measure if the

density forecast can catch the extreme observations. In other words, the narrower

the density, the higher the probability of identifying the extreme, and the higher

cerih,M,πc . The illustration of cerih,M,πc with πc = 50%, πc = 68%, and πc = 85%

during the 1992:01–2016:12 period at the 1-, 3-, 6-, 12-, 18-, and 24-month horizons,

for WTI and Brent measures indicate five observations in Figures B.3 and B.4:

• VAR’s, BVAR’s and BK’s cerih,M,πc are not sensitive to πc, because their

density forecasts are narrow, please (see Section 3.4.3 for a detailed discussion)

and the cerih,M,πc is generally conditional on their main forecasts. Therefore,

their abnormal returns relative to other models using πc = 68% and πc = 85%
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cannot imply that their forecasts are superior.

• The increase of πc can improve the probability of positive erim|d,h for the SV,

TVP, TVPsmss, TVPSV, TVPSVsmss, and CombineTVPSVsmss models. For

example, the rise of πc from 50% to 85% improves SV’s cerih,M,πc from negative

to positive over the 1992:01–2016:12 period at horizon 1 for the WTI measure.

• Although the cerih,M,πc generated by SV at horizon 1 is negative for WTI

measure using πc = 50% and πc = 68%, SV’s cerih,M,πc can dominate BK’s at

all horizons for both WTI and Brent measures using the same πc.

• The cerih,M,πc based on VAR, TVP, and TVPSV, whose density forecasts are

relatively more diffuse than other models’ (see Section 3.4.3 for a detailed

illustration), is positive and higher than other models’ at the 1-month horizon

for both WTI and Brent measures. However, their cerih,M,πc are dominated

by SV’s and CombineTVPSVsmss’s at the majority of horizons lager than 1,

using πc = 50%, πc = 68%, and πc = 85% for the two measures.

• The cumulative excess returns of all models for the Brent measure are higher

than for WTI at 1-month horizon using πc = 50%, πc = 68%, and πc = 85%.

B.9 Probabilities for negative excess returns

The cumulative excess return is sensitive to extreme observations. Instead, this

appendix will employ the probability of negative erim|d,h at the 1-, 3-, 6-, 12-, 18-, and

24-month horizons over the 1992:01–2016:12 period for evaluating the specifications.

Tables B.3 and B.4 present the probability of negative returns for all models using

πc = 50%, πc = 68%, πc = 75%, πc = 85%, πc = 90%, and πc = 95% for the WTI

and Brent measures, respectively. There are six observations below.

• Under πc = 68%, πc = 75%, and πc = 85%, SV performs better than all

other specifications. For example, SV generates the lowest negative erim|d,h
probabilities among all models at the 6-, 12-, and 18-month horizons using

πc = 68% and πc = 75% for both WTI and Brent measures.

• The probabilities of BVAR, BK and particularly VAR are not sensitive to πc,

due to their narrow density forecasts, please (see Section 3.4.3 for a detailed

discussion of the densities’ calibration), while the probability of negative excess

returns generated by the other methods presents a decreasing trend when
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increasing πc. Therefore, in practice the narrow density forecasts are not

preferred to the density forecasts of other models for risk control through πc.

• Under πc = 50%, the specifications SV, TVP, TVPsmss, TVPSV, TVPSVsmss,

and CombineTVPSVsmss result in higher negative erim|d,h probabilities than

the narrow density forecasts generated by VAR, BVAR, and BK. For instance,

the probabilities of negative erim|d,h generated by all specifications excepting

VAR, BVAR, and BK are even above 50% at the 18-month horizon for the

WTI measure.

• Under πc = 90%, SV generates the lowest probabilities of negative erim|d,h
among all specifications at all horizons excepting the 1-month for Brent. For

the WTI measure, SV can generate the lowest probabilities at 1- and 3-month

horizons, but it performs worse at the 18- and 24-month horizons, which are

larger than 50%. Additionally, the wide density forecasts for the WTI mea-

sure generated through TVP can generate the lowest probabilities of negative

erim|d,h.

• Under πc = 95%, there are limited long–short positions have been taken at

6-, 12-, 18- and 24-month horizons. Hence there are not available (NaN), 0

and 1 observations. Moreover, CombineTVPSVsmss performs better than all

other models at the 1-month horizon for WTI, while TVPSV performs better

than other specifications at both the 1- and 3-month horizons for the Brent

measure.

• The probability of negative erim|d,h using the Brent measure is smaller than

using WTI. As an example, the average negative erim|d,h probability using πc =

68% at the 1-month horizon for WTI for all specifications is approximately

0.46, while the probability for the Brent measure is approximately 0.39.
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Table B.3: Probability of negative financial market excess returns for the WTI measure,
1992:01–2016:12

Forecast Horizons

Specifications/MH 1-Month 3-Month 6-Month 12-Month 18-Month 24-Month

πc = 50%

VAR 0.47 0.44 0.44 0.44 0.48 0.40

BVAR 0.47 0.43 0.43 0.45 0.48 0.42

SV 0.49 0.43 0.43 0.45 0.50 0.46

TVP 0.46 0.45 0.52 0.55 0.57 0.55

TVPsmss 0.49 0.46 0.48 0.52 0.50 0.51

TVPSV 0.46 0.46 0.48 0.55 0.59 0.57

TVPSVsmss 0.47 0.46 0.51 0.49 0.53 0.49

CombineTVPSVsmss 0.50 0.46 0.50 0.47 0.53 0.52

BK 0.44 0.45 0.42 0.46 0.48 0.48

πc = 68%

VAR 0.46 0.44 0.43 0.45 0.47 0.40

BVAR 0.48 0.46 0.43 0.45 0.50 0.46

SV 0.47 0.42 0.41 0.42 0.42 0.43

TVP 0.43 0.48 0.49 0.46 0.53 0.51

TVPsmss 0.46 0.41 0.43 0.49 0.50 0.53

TVPSV 0.44 0.47 0.48 0.46 0.51 0.53

TVPSVsmss 0.47 0.46 0.45 0.45 0.50 0.50

CombineTVPSVsmss 0.46 0.47 0.45 0.46 0.50 0.53

BK 0.46 0.45 0.41 0.43 0.48 0.47

πc = 75%

VAR 0.44 0.44 0.43 0.45 0.49 0.40

BVAR 0.46 0.44 0.41 0.44 0.48 0.45

SV 0.43 0.41 0.34 0.37 0.41 0.41

TVP 0.41 0.48 0.44 0.46 0.45 0.40

TVPsmss 0.41 0.44 0.44 0.43 0.43 0.49

TVPSV 0.38 0.46 0.45 0.39 0.48 0.49

TVPSVsmss 0.42 0.48 0.48 0.41 0.47 0.47

CombineTVPSVsmss 0.42 0.46 0.42 0.41 0.46 0.45

BK 0.45 0.46 0.41 0.41 0.49 0.46

πc = 85%

VAR 0.41 0.43 0.44 0.46 0.48 0.41

BVAR 0.46 0.44 0.43 0.42 0.43 0.45

SV 0.41 0.51 0.33 0.32 0.29 0.43

TVP 0.38 0.37 0.54 0.38 0.40 0.10

TVPsmss 0.39 0.47 0.43 0.44 0.50 0.41

TVPSV 0.37 0.45 0.48 0.39 0.51 0.41

TVPSVsmss 0.40 0.52 0.50 0.37 0.39 0.48

CombineTVPSVsmss 0.38 0.52 0.50 0.35 0.33 0.44

BK 0.42 0.45 0.37 0.36 0.39 0.44

πc = 90%

VAR 0.38 0.43 0.42 0.46 0.49 0.41

BVAR 0.43 0.44 0.44 0.34 0.44 0.48

SV 0.34 0.41 0.44 0.42 0.53 0.64

TVP 0.38 0.41 0.48 0.57 0.33 0.00

TVPsmss 0.40 0.47 0.34 0.52 0.56 0.25

TVPSV 0.36 0.49 0.50 0.44 0.57 0.13

TVPSVsmss 0.38 0.51 0.61 0.48 0.42 0.45

CombineTVPSVsmss 0.35 0.53 0.40 0.45 0.50 0.63

BK 0.39 0.47 0.35 0.33 0.39 0.44

πc = 95%

VAR 0.36 0.43 0.44 0.46 0.50 0.41

BVAR 0.42 0.40 0.37 0.33 0.41 0.55

SV 0.35 0.43 0.20 0.33 0.00 NaN

TVP 0.38 0.47 0.20 1.00 0.50 NaN

TVPsmss 0.37 0.52 0.36 0.31 0.54 0.11

TVPSV 0.40 0.38 0.54 0.67 0.33 0.00

TVPSVsmss 0.37 0.52 0.50 0.46 0.40 0.08

CombineTVPSVsmss 0.34 0.56 0.00 NaN 1.00 1.00

BK 0.37 0.42 0.38 0.32 0.31 0.35

Note: MH represents monthly forecast horizons. πc denotes the choice of probability to conduct a long or short stratagem, representing

the financial markets participants’ risk-aversion level. Boldface indicates the lowest diagnostic statistics, including 0. ‘NaN’ indicates that

there is no long–short positions during the 1992:01–2016:12 period.
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Table B.4: Probability of negative financial market excess returns for the Brent measure,
1992:01–2016:12

Forecast Horizons

Specifications/MH 1-Month 3-Month 6-Month 12-Month 18-Month 24-Month

πc = 50%

VAR 0.41 0.40 0.43 0.45 0.45 0.33

BVAR 0.43 0.40 0.47 0.43 0.47 0.38

SV 0.42 0.37 0.45 0.43 0.48 0.40

TVP 0.43 0.47 0.47 0.50 0.53 0.52

TVPsmss 0.40 0.42 0.49 0.49 0.52 0.52

TVPSV 0.39 0.47 0.47 0.50 0.54 0.51

TVPSVsmss 0.41 0.45 0.49 0.51 0.54 0.45

CombineTVPSVsmss 0.42 0.43 0.48 0.48 0.52 0.49

BK 0.45 0.40 0.44 0.40 0.48 0.44

πc = 68%

VAR 0.39 0.40 0.45 0.45 0.44 0.33

BVAR 0.39 0.39 0.47 0.44 0.51 0.37

SV 0.37 0.36 0.42 0.36 0.41 0.30

TVP 0.39 0.46 0.49 0.46 0.51 0.38

TVPsmss 0.36 0.41 0.45 0.46 0.45 0.37

TVPSV 0.40 0.42 0.49 0.49 0.55 0.45

TVPSVsmss 0.37 0.42 0.48 0.45 0.46 0.38

CombineTVPSVsmss 0.39 0.43 0.45 0.46 0.47 0.37

BK 0.44 0.38 0.43 0.38 0.45 0.41

πc = 75%

VAR 0.36 0.41 0.45 0.44 0.45 0.33

BVAR 0.38 0.41 0.45 0.41 0.50 0.38

SV 0.37 0.40 0.38 0.34 0.38 0.23

TVP 0.36 0.45 0.49 0.45 0.51 0.27

TVPsmss 0.36 0.41 0.46 0.44 0.44 0.28

TVPSV 0.37 0.42 0.49 0.42 0.50 0.40

TVPSVsmss 0.37 0.42 0.48 0.45 0.46 0.34

CombineTVPSVsmss 0.38 0.39 0.42 0.35 0.39 0.24

BK 0.44 0.39 0.40 0.38 0.44 0.41

πc = 85%

VAR 0.34 0.38 0.45 0.44 0.46 0.34

BVAR 0.38 0.40 0.44 0.34 0.41 0.30

SV 0.34 0.44 0.34 0.28 0.24 0.13

TVP 0.38 0.38 0.56 0.30 0.53 0.10

TVPsmss 0.38 0.48 0.47 0.44 0.40 0.24

TVPSV 0.39 0.38 0.45 0.39 0.59 0.29

TVPSVsmss 0.39 0.44 0.47 0.40 0.40 0.33

CombineTVPSVsmss 0.37 0.45 0.33 0.35 0.19 0.05

BK 0.43 0.42 0.37 0.26 0.27 0.31

πc = 90%

VAR 0.29 0.40 0.45 0.43 0.47 0.34

BVAR 0.35 0.39 0.47 0.31 0.45 0.20

SV 0.34 0.38 0.25 0.29 0.22 0.00

TVP 0.39 0.38 0.50 0.50 0.50 0.00

TVPsmss 0.35 0.42 0.36 0.41 0.59 0.17

TVPSV 0.35 0.38 0.45 0.42 0.52 0.19

TVPSVsmss 0.39 0.43 0.56 0.52 0.39 0.21

CombineTVPSVsmss 0.36 0.46 0.00 0.50 0.00 0.00

BK 0.38 0.40 0.39 0.30 0.27 0.23

πc = 95%

VAR 0.31 0.40 0.43 0.42 0.48 0.34

BVAR 0.35 0.38 0.43 0.31 0.37 0.27

SV 0.27 0.33 0.67 0.00 0.00 0.00

TVP 0.35 0.24 0.00 1.00 NaN NaN

TVPsmss 0.33 0.45 0.20 0.33 0.60 0.11

TVPSV 0.24 0.22 0.50 0.40 0.60 0.00

TVPSVsmss 0.34 0.48 0.53 0.58 0.33 0.00

CombineTVPSVsmss 0.28 0.50 NaN NaN NaN NaN

BK 0.35 0.43 0.39 0.31 0.30 0.14

Note: MH represents monthly forecast horizons. πc denotes the choice of probability to conduct a long or short stratagem, representing

the financial markets participants’ risk-aversion level. Boldface indicates the lowest diagnostic statistics, including 0. ‘NaN’ indicates that

there is no long–short positions during the 1992:01–2016:12 period.
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Appendix C

Technical Details and

Additional Results in Chapter 4

C.1 Reference priors for Σu and B

Prior for Σu|A. According to Equation (4.9), prior information of Σu|A uses the

gamma distribution Γ(κi, τi). Hence, the expected mean E(σii) and variance V (σii)

before see the data, where σii is the ii element in Σu, are:E(σii) = κi
τi

V (σii) = κi
τ2i
.

(C.1)

It is clear that the increase of τi leads to a more confident belief on prior (or a

tighter prior). Following Baumeister & Hamilton (2019), I set κi = 2, and τi is

conditional on A, denoted as τi(A). Recalling Equation (4.2), let ε̂it denote the

pth-order univariate autoregression estimation residual of the series i, and Σ̂ε stands

for the sample variance matrix of these univariate residuals, whose element sij =

T−1
∑T

t=1 ε̂itε̂jt. As Σε = A−1Σu(A−1)
′
,

E(Σu) = AΣ̂εA
′
.

In other words, the ii element in E(Σu), E(σii) = aiΣ̂εa
′
i, where a

′
i is the ith row of

A. Recall Equation (C.1),

τi(A) = a
′
iΣ̂εai.
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Prior for B|A,Σu. Echoing Equation (4.10), the expectation and variance

of B are: E(bi) = mi

V (bi) = σiiMi,
(C.2)

where bi is the ith row of B. Following Baumeister & Hamilton (2015, 2018, 2019),

mi depends on A denoted as mi(A), while Mi does not. The prior is Minnesota type,

where the individual series are assumed to be random walk (Doan et al., 1984). This

exercise follows Sims & Zha (1998) to present the random-walk assumption.

As shown in Equation (4.2), Φ = A−1B, assuming E(Φ) = ϕ, where

ϕ
[n×(n∗p+1)]

=

[
In

(n×n)
0

[n×(n∗p+1−n)]

]
.

From B = AΦ, E(B|A) = E(AΦ) = Aϕ. Hence, its mean of the ith row is:

E(bi|A) = mi(A) = ϕ
′
ai.

Meanwhile, as proposed in Doan et al. (1984) modified by Sims & Zha (1998),

the shrinkage of B is conditional on the assumption that parameters of higher lags

are more confident to be zero than lower lags.

v
′
1

(1×p)
= (1/12λ1 . . . , 1/(p2λ1)),

v
′
2

(1×n)

= (s−1
11 , . . . , s

−1
nn),

v3 = λ2
0

[
v1
⊗
v2

λ2
3

]
.

where
⊗

indicates Kronecker product. Then Mi is taken to be a diagonal matrix

whose (r, r) element is the rth element of v3, where

Mi,rr = v3r.

It is clear that the Shrinkage is jointly controlled by λ0, λ1 and λ3, which are sum-
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Table C.1: Hyperparameter for Shrinkage

Hyperparameter Meaning Example Setting

λ0 Over all confidence in the
prior

λ0 ↓ =⇒ weights to prior ↑ 0.5

λ1 Confidence in higher-lag co-
efficients equal to 0

λ1 = 0 =⇒ equal weights for
all lags

1

λ3 Tightness of the constant
term

−− 100

marised in Table C.1.

C.2 Sampling from the posterior distribution

Since the Minnesota prior is natural conjugate, this appendix will introduce the pos-

terior sampling, denoted as P (A,B,Σu|YT ) = P (A|YT )P (Σu|A, YT )P (B|A,Σu, YT ),

which starts with the prior P (A,B,Σu) = P (A)P (Σu|A)P (B|A,Σu) then is revised

by data YT = (y
′
1, . . . , y

′
T )
′
.

First, recalling σ−1
ii |A ∼ Γ(κi, τi(A)) – the ii element of prior P (Σu|A), then

the corresponding element in posterior P (Σu|A, YT ) is:

σ−1
ii |A, YT ∼ Γ(κ∗i , τ

∗
i (A)),

where

κ∗i = κi + T/2;

τ∗i (A) = τi(A) + ζ∗i (A);

and ζ∗i (A) denotes the sum of squared residuals of regression of Ỹi(A) on X̃i, detailed

as below.

ζ∗i (A) = (Ỹ
′
i (A)Ỹi(A))− (Ỹ

′
i (A)X̃i)(X̃

′
iX̃i)(X̃

′
i Ỹi(A)),

Ỹi(A)
[(T+n∗p+1)×1]

=
[
a
′
iY1 . . . a

′
iYT mi(A)

′
Pi

]′
,

X̃i
[(T+n∗p+1)×(n∗p+1)]

=
[
X0 . . . XT−1 Pi

]
,
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where Pi is the Cholesky factor of M
′
i = PiP

′
i .

Second, as the ith row of prior P (B|A,Σu) is bi|A,Σu ∼ N(mi(A), σiiMi),

then the ith row of posterior P (B|A,Σu, YT ) becomes:

bi|A,Σu, YT ∼ N(m∗i (A), σiiM
∗
i ),

where

m∗i (A) = (X̃
′
iX̃i)

−1(X̃
′
i Ỹi(A)),

and

M∗i = (X̃
′
iX̃i)

−1.

Third, the posterior of A is derived by Baumeister & Hamilton (2015) as:

P (A|YT ) =
ktP (A)[det(AΩ̂tA

′
)]T/2

Πn
i=1[(2/T )τ∗i (A)]κ∗

n∏
i=1

τi(A)κi ,

where P (A) is the prior for A; Ω̂t is the sample variance matrix for the reduced form

VAR residuals,

Ω̂t = T−1{
T∑
t=1

yty
′
t − (

T∑
t=1

ytx
′
t−1)(

T∑
t=1

xt−1x
′
t−1)−1(

T∑
t=1

xt−1x
′
t−1)};

and, kt is the function of data and prior parameters, but not related to A, Σu, and

B, which is used to integrate the probability to unity over the set of allowable values

for A. Hence, there is no necessity to calculate kt for forming the posterior.

C.3 Instruction for A−1 based on the identification re-

strictions in Kilian & Murphy (2014)

This appendix guides the application of the identifications in Kilian & Murphy

(2014) on A−1 as constraints.

Recall the impulse response function defined in (4.7): Hs = ΨsA
−1chol(Σu)′.
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Since chol(Σu)′ is positive definite and Ψs takes the form of the identity matrix when

s = 0, the sign restrictions proposed in Table 4.1 are defined by the non-diagonal

elements in A−1. I utilise the truncated Student t distributions prior to present

the sign of response restrictions, as per Baumeister & Hamilton (2015, 2018, 2019).

Meanwhile, the prior of diagonal elements, A−1
ii where i=1, . . . , 4 in this applica-

tion, is presented through symmetric Student t(µ2, σ2, ν2) with µ2 = 0.8, σ2 = 0.2,

and ν2 = 3, implying a 98.6% prior probability that A−1
ii > 0. The prior reflects a

modest probability that the endogenous variables’ response to the shocks they have

caused is negative.

Table C.2 summarises the prior distributions for all the identified parame-

ters, where the (asymmetric or truncated) Student t distributions are utilised. The

location parameter refers to the prior distribution mode, while the scale and degree

of freedom parameters jointly indicate the uncertainty of the prior. In this exercise,

all the degrees of freedoms are kept to 3 to ensure a fatter tail relative to the normal

distribution. Additionally, the majority of the scales are set at 0.2 in order to ad-

dress the relative uncertainty. Since Bayesian models are sensitive to the tightness

of the prior in the macro-econometric literature, as per Bańbura et al. (2010) and

Chan, Jacobi, & Zhu (2018), I leave one of the scale parameters with the highest

uncertainty in the parameter for the arg-minimisation process, φ.

As shown in Table C.2, A−1
21 is the economic activity response to a “negative

flow supply shock”, namely an unexpected boom of oil production such as “flow

supply shock”, defined in the oil literature as unexpected oil supply disruptions.

Hence, the response is positive defined and presented as Student t(0.1, 0.2, 3), trun-

cated to be positive, where the mode, scale, and degree of freedom are at 0.1, 0.2,

and 3, respectively. With the same logic, the prior distribution of the economic

activity response to speculative demand shock is Student t(−0.1, 0.2, 3), truncated

to be negative.

Moreover, Equation (4.19), the demand elasticity for oil in use, ηO,Use, is non-

linear and conditional on A−1
31 and A−1

41 , for the responses of the oil price and inven-

tories to a negative flow supply shock. I represent them by Student t(−1.5, 0.2, 3),

truncated to be negative and symmetric Student t(−1, 0.2, 3), respectively. Under

the prior distribution, the probability of −0.8 6 ηO,Use 6 0 is 87.8% based on 50,000
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random prior samples of A−1
31 and A−1

41 .1

Table C.2: Prior distributions for model parameters

Parameter Meaning Location Scale DoF Skew Truncate

Restrictions

Prior affecting contemporaneous coefficients A−1

Student t distribution

A−1
21 Economic activity response to

negative flow supply shock

0.1 0.2 3 – 0 < A−1
21

A−1
31 Oil price response to negative flow

supply shock

-1.5 0.2 3 – A−1
31 < 0

A−1
41 Oil inventory response to negative

flow supply shock

-1 0.2 3 – none

A−1
12 Oil supply response to flow

demand shock

0.01 0.2 3 – 0 < A−1
12

A−1
32 Oil price response to flow demand

shock

0.8 0.2 3 – 0 < A−1
32

A−1
42 Oil inventory response to flow

demand shock

0 0.2 3 – none

A−1
13 Oil supply response to speculative

demand shock

0.01 0.2 3 – 0 < A−1
13

A−1
23 Economic activity response to

speculative demand shock

-0.1 0.2 3 – A−1
23 < 0

A−1
43 Oil inventory response to

speculative demand shock

2 σA
−1
43 3 – 0 < A−1

43

A−1
14 Oil supply response to inventory

shock

0 0.2 3 – none

A−1
24 Economic activity response to

inventory shock

0 0.2 3 – none

A−1
34 Oil price response to inventory

shock

0 0.2 3 – none

A−1
ii Effect of endogenous variables’

shocks on themself (diagonal

elements of A−1)

0.8 0.2 3 – none

ηO,Use Lower bound of oil demand

elasticity for use

-0.1 0.2 3 – −0.8 ≤ ηO,Use ≤ −0.1

Asymmetric t distribution

h1 Determinant of A 0.6 1.6 3 2 none

Note: For the (Asymmetric) Student t distribution, the location parameter refers to the mode; scale and degree of freedom (DoF )

parameters that jointly determine the uncertainty of the prior. This chapter sets all the DoF to 3 for a fat tail prior relative to a

normal distribution.

Short-run oil supply elasticities, restricted as 0 < ηSupply < 0.0258, are cal-

1From a simulation practice, the smaller A−1
31 ’s location (e.g. -5), the higher the probability

of −0.8 6 ηO,Use 6 0. However, a large negative value of A−1
31 ’s location will lead the model to

violate a dynamic sign restriction — the responses of the global real activity to an unanticipated
flow supply disruption are negative for the first 12 months, which is Hs,21 < 0, ∀s 6 12.
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culated through the oil supply response to the flow demand shock divided by the oil

price response to the same shock,
A−1

12

A−1
32

, as well as the oil supply response to specu-

lative demand shock divided by the oil price response to the same shock,
A−1

13

A−1
33

. The

median of A−1
33 is approximately 0.8, as its prior is symmetric Student t(0.8, 0.2, 3).

Therefore, to locate the prior model in the restricted range, the prior distributions

for A−1
12 , A−1

32 and A−1
13 are Student t(0.01, 0.2, 3), Student t(0.8, 0.2, 3) and Student

t(0.01, 0.2, 3), which are positively truncated, respectively.

The oil inventory response to a flow demand shock (A−1
42 ) and the responses

of the oil price, the short-run production and the economic activity to an inventory

shock (A−1
14 , A−1

24 , and A−1
34 ) are not restricted by sign, but should not be restricted

to exactly zero. Therefore, their prior distribution is symmetric Student t(0, 0.2, 3).

The contemporary economic activity response to a speculative demand shock is re-

stricted to be negative, and hence is presented as Student t(−0.1, 0.2, 3), truncated

to be negative.

C.4 The economic findings in Specification I

In this appendix I illustrate the economic findings in Kilian & Murphy (2014)

through the historical decompositions.

Figure C.1 plots the historical decomposition of the real oil price expressed

in log-level (times 100) for the 1978:06–2009:08 period. The solid black lines are the

Bayesian posterior median from C-BSVARs, the shaded regions are the correspond-

ing 68% posterior confidence sets, the dotted red lines are the real price of oil, while

the dotted blue lines are the benchmark estimates in Kilian & Murphy (2014, p.

466). It is clear that the 68% confidence sets from C-BSVARs cover the preferred

measure of the cumulative effects by Kilian & Murphy (2014) over the periods of

interest. During the 2003–2008 period, the estimates of C-BSVARs confirm the

observation in Kilian & Murphy (2014) that the effects of the flow demand shock

drove the real crude oil price. There was no significant up-ward trend for the flow

supply and speculative shocks’ effects, which fluctuated around their mean during

the period.

The C-SBVARs, following Kilian & Murphy (2014), illustrated five episodes
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where the speculative demand shock played an important role, namely the oil price

shocks in 1979 and 1980, the collapse of OPEC in 1986, the inventory conundrum of

1990, the Venezuelan crisis and the Iraq War of 2002/03. Echoing Kilian & Murphy

(2014), Figure C.2 illustrates the cumulative effects of the flow supply (in grey) and

speculative demand (in blue) shocks on the real oil price (upper panel) and on the

change of oil inventories (lower panel) during the five periods, respectively.

In 1979 and 1980, Kilian & Murphy (2014) argue that the oil price increase

was caused by the cumulation of positive speculative demand, but not by the flow

supply disruptions associated with the Iranian Revolution of late 1978 and early

1979. The first column of Figure C.2 shows that not only was there a dramatic and

persistent increase in the real oil price driven by the positive flow demand shocks in

1979 and 1980, but also that the increase was reinforced after 1979:04 by a cumu-

lation in speculative demand. This differs from the persistent price increase after

2003. Persistently positive effects of the speculative shock were also reflected in the

change of oil inventories. However, there was little evidence of flow supply shocks

being responsible for the oil price surge of 1979, consistent with the fact that over-

all the global oil production increased in 1979, reflecting additional oil productions

outside of Iran. Only in late 1980 and early 1981 was there a moderate spike in the

real price of oil driven by flow supply shocks, in part associated with the outbreak

of the Iran–Iraq War presented in the second column of Figure C.2.

Prior to the collapse of OPEC (in 1985:12), the real oil price was driven by

the cumulative effect of speculative demand shocks. Following the collapse, shown

in the third column of Figure C.2, a drop in the real oil price was reinforced by

a decline in speculative demand from 1986:01. Additionally, unexpected increases

in oil supply before 1986:03 reduced the real price of oil, while the oil inventories

rose in response. These observations are consistent with Kilian & Murphy (2014).

Moreover, the last column of Figure C.2 focuses on the flow supply shock of 2002/03

when, within the space of several months Venezuelan oil productions slowed con-

siderably (at the end of 2002) and then Iraqi oil productions ceased altogether in

early 2003. These events reflect a combination of negative flow supply and positive

speculative demand shocks.

Furthermore, an unexpected flow supply disruption and increase of specula-

tive demand jointly caused the oil price spike during the Persian Gulf War. Given

one of the largest unexpected oil supply disruptions in history in August of 1990, the
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change of inventory was modest. Kilian & Murphy (2014) found there was a definite

negative effect of the oil-supply drop in 1990:08 on the change in inventories, and

the influence of this oil-supply drop on inventories was absorbed by a positive effect

caused by the increase of speculative demand. C-BSVARs also found evidence for

the joint influence of speculative and flow supply shock in 1990:08, illustrated in the

fourth column of Figure C.2. When the threat of Saudi oil fields being captured by

Iraq had been removed by the presence of the U.S. troops in 1990:11, a drop in the

speculative demand drove the real price of oil down, while the flow demand did not

show any change from its average level during this episode.

Cumulative Effect of Flow Supply Shock on Real Price of Crude Oil

1980 1985 1990 1995 2000 2005
-150

-100
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Cumulative Effect of Flow Demand Shock on Real Price of Crude Oil

1980 1985 1990 1995 2000 2005
-150

-100

-50

0

50

100

150
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Figure C.1: Historical decomposition for the 1978:06–2009:08 period, based on the
model with ηSupply ≤ 0.0258

Note: Solid black lines: Bayesian posterior median; shaded region: 68% posterior credible

sets; dotted red lines: the real price of oil expressed in log-level (times 100); dotted blue lines:

benchmark estimates in Kilian & Murphy (2014, p. 466); vertical bars indicate the major

exogenous events in the oil markets, notably the outbreak of the Iranian Revolution and

the Iran–Iraq War, the collapse of OPEC, the outbreak of the Persian Gulf War, the Asian

Financial Crisis, and the Venezuelan crisis, followed by the Iraq War. Following Kilian &

Murphy (2014), I discard the first five years of data in an effort to remove the transition

dynamics in constructing the historical decomposition.
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C.5 Additional results for Specification II

Prior and posterior distributions for A−1

Figure C.3 compares the prior distribution (solid red lines) with posterior distribu-

tions shown as histograms.

Figure C.3: Prior (red lines) and posterior (black histograms) distributions for the
unknown elements in A−1 in the Bayesian implementation of the 4-variable baseline
model (ηSupply 6 0.0258)

Impose response functions and historical decompositions

The structural impulse responses to the oil supply and demand shocks are illus-

trated in Figure C.4, produced by C-BSVARs with the lower-bound uncertainty of

oil demand elasticity for use. Additionally, I draw the 95% posterior credible sets

as dotted black lines.
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Cumulative Effect of Flow Supply Shock on Real Price of Crude Oil
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Figure C.5: Historical decomposition under the uncertainty of the oil demand elastic-
ity in use for the 1978:06–2009:08 period, based on the model with ηSupply ≤ 0.0258

Note: Solid black lines: Bayesian posterior median; shaded region: 68% posterior credible

sets; dotted red lines: the real price of oil expressed in log-level (times 100); dotted blue

line: benchmark estimates in Kilian & Murphy (2014, p. 466); vertical bars indicate major

exogenous events in oil markets, notably the outbreak of the Iranian Revolution and the

Iran–Iraq War, the collapse of OPEC, the outbreak of the Persian Gulf War, the Asian

Financial Crisis, and the Venezuelan crisis, followed by the Iraq War. Following Kilian &

Murphy (2014), I discard the first five years of data in an effort to remove the transition

dynamics in constructing the historical decomposition.
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C.6 ηSupply ≤ 0.0258 VS. ηSupply ≤ 0.5

Figure C.7: Historical decomposition under the uncertainty of the oil demand elas-
ticity in use for the 1978:06–2009:08 period, comparing the models with ηSupply ≤
0.0258 and ηSupply ≤ 0.5

Note: The model with ηSupply ≤ 0.0258 is shown as grey, while the model with ηSupply ≤ 0.5

is blue. Solid lines: the Bayesian posterior median; shaded region: 68% posterior credible

sets; dotted red lines: the real price of oil expressed in log-level (times 100); vertical bars

indicate the major exogenous events in the oil markets, notably the outbreak of the Iranian

Revolution and the Iran–Iraq War, the collapse of OPEC, the outbreak of the Persian

Gulf War, the Asian Financial Crisis, and the Venezuelan crisis, followed by the Iraq War.

Following Kilian & Murphy (2014), I discard the first five years of data in an effort to remove

the transition dynamics in constructing the historical decomposition.
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