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Abstract

This thesis reports advances in terahertz time-domain spectroscopy, relating to the develop-
ment of new techniques and components that enhance the experimentalist’s control over the
terahertz polarisation state produced by photoconductive emitters, and in utilising the dy-
namic magnetoelectric response at THz frequencies, in the form of electromagnons, to probe
material properties at a transition between two magnetically ordered phases.

Two methods of controlling the terahertz polarisation state are reported: The first
method is based upon mechanical rotation of an interdigitated photoconductive emitter, and is
implemented in a rotatable-polarisation terahertz time-domain spectrometer, the calibration
of which is demonstrated to produce a highly uniform polarisation state at all angles. This
method is then demonstrated experimentally to identify the orientations of the normal modes
of propagation in the plane of birefringent samples, to extract the full complex refractive
index along these directions, and to investigate the optical selection rules of an absorbing
material. The second method presents a new photoconductive emitter design, based upon
separate interdigitated pixel elements for the generation of the horizontally and vertically
polarised components of the terahertz pulses, that permits rotation of the polarisation state
solely by electrical control. The design, fabrication and experimental verification of the device
is reported, demonstrating polarisation control on timescales orders of magnitude faster than
those achievable in mechanical rotation methods.

A method of using the electromagnon response in Cu;_,7Zn,O alloys as a sensitive
probe of a phase transition is also demonstrated. Using this method, the phase transition is
observed to broaden upon the introduction of spin-disorder when alloying with non-magnetic
zinc ions, and the first-order nature of the transition is confirmed by the observation of thermal
hysteresis. Additionally, preliminary investigations into the properties of materials exposed
to extreme terahertz optical electric fields are performed. Nonlinear terahertz transmission in
single-walled carbon nanotube films and evidence for nonlinear behaviour of electromagnons

in CuO are observed.



Chapter 1

Introduction

The terahertz (THz) region of the electromagnetic spectrum can be approx-
imately defined as the frequency range 0.1 - 10THz: a frequency of 1THz
corresponds to a photon energy of ~ 4meV, and therefore THz radiation en-
ables a wide variety of fascinating low energy excitations and intriguing material
properties in the far-infrared region of the electromagnetic spectrum to be in-
vestigated. Developments in THz generation and detection technology over
the past few decades have precipitated an explosion in both research output
and potential applications; the advent of femtosecond lasers and novel spectro-
scopic techniques have widely increased the availability and applicability of THz
sources. In particular, terahertz time-domain spectroscopy (THz-TDS) has ma-
tured into a powerful tool for characterizing the optical properties of materials
at THz frequencies [1, 2, 3]. THz-TDS permits the direct determination of the
full complex refractive index 7 = n + ik = +/¢f1 of the material under study,
where n is the real part of the refractive index, k is the extinction coefficient, €
is the complex permeability and i is the complex permittivity of the material,
and as such does not require the use of the Kramers-Kronig relations [4].
Many materials demonstrate anisotropic behaviour at THz frequencies,
such as birefringence created by anisotropy in the vibrational or electronic re-
sponse [5, 6], and electro- and magneto-optical effects [7, 8, 9]. One particular
class of materials which has attracted much attention in recent years are multi-
ferroics, due to a variety of potential technological applications [10, 11], such as

in spintronics [12, 13, 14] and novel electronic components [15, 16]. In the case



of ferroelectric multiferroics in particular the material must be anisotropic, due
to the requirement that the material lacks an inversion centre for ferroelectricity
to occur. In addition, designs of optical components for polarisation control in
the THz region, such as wire-grid polarisers (WGPs) [17] and wave plates [18],
depend critically on the optical anisotropy. Therefore the accurate determina-
tion of the optical properties of anisotropic materials is crucial for both optical
component design and fundamental physical research [19].

Despite the advances made in THz technology thus far, traditionally
many tabletop sources of THz radiation have remained weaker than those at-
tainable in other regions of the electromagnetic spectrum. More recently, new
THz generation techniques coupled with amplified femtosecond lasers have be-
gun to bridge the gap to high-power, tabletop sources of THz radiation, capable
of producing pulses with electric field strengths exceeding 1 MVem™! and a du-
ration of only a few hundred femtoseconds [20]. This extreme THz radiation
cannot only provide higher-power sources for applications such as chemical sens-
ing [21], but can also be utilised in the coherent control of collective degrees of
freedom in the THz range and nonlinear spectroscopy [22, 23].

The focus of this thesis is on the development of techniques for the spec-
troscopy of anisotropic materials in the THz region, particularly in terms of
enhancing the control of the polarisation state produced by photoconductive
emitters, which are perhaps the most common source of THz radiation in both
commercially available and custom-made THz spectroscopy and imaging sys-
tems. The rest of this chapter will discuss the interaction between light and
matter in the linear regime in anisotropic materials, in order to provide the
necessary background required to understand the experimental results in future
chapters of this thesis. Sections 1.1 and 1.2 will focus on the effect that an
anisotropic material structure has on the polarisation state of light propagating
through it, and how the polarisation state can be described. Section 1.3 will
then discuss the inverse scenario, regarding the effects that the electromagnetic
field of light has on anisotropic media, with a particular focus on multiferroics.

Section 1.4 will then describe the structure of the rest of this thesis.



1.1 Crystal Optics

As a guide to the reader, the following section will provide a theoretical descrip-
tion of the interaction of the electric field of light with an anisotropic dielectric
medium. This can then be used to describe the propagation of electromag-
netic waves through such an anisotropic medium, and its resulting effects on

the polarisation state of the probing light.

1.1.1 The Dielectric Tensor

In an optically isotropic, linear medium, such as a gas or an amorphous solid
such as glass, the components of the electric displacement field D are linearly

proportional to the corresponding components of the optical electric field E,

D, E,
Dy = € vl o (11)
D, E,

where the constant of proportionality € is the dielectric constant of the medium,
which is independent of the orientation and direction of propagation of the wave.
However, in an anisotroptic medium the structure is no longer the same for any
arbitrary direction of propagation, and as such the optical properties will vary
depending on the relative orientations of the crystallographic directions and the
electric field. Each of the components of D will now be made up of a linear

combination of the components of E, such that

Dx - e;tzE:c + EzvyEy + Eszza (12)
D, = ey By + ey By +€,.E,, (1.3)
D, =¢€,E,+e B +e. . F.. (1.4)

Hence the optical properties of the medium can now be described by a 3 x 3

matrix, the dielectric tensor €, where

Dy| = |y €y €ys E, |, (1.5)
‘DZ EZII/' Ezy GZZ EZ



which can alternatively be written
J

where 7, 7 represent the x, y and z coordinates. The dielectric tensor is sym-
metric, such that €;; = €;;, and can therefore be described by six independent
values. The symmetry of the crystal structure in some materials can further

reduce the number of independent components of the dielectric tensor.

1.1.2 Principal Axes and the Index Ellipsoid

The particular values of the components of the dielectric tensor depend on the
choice of coordinate system relative to the crystal structure. For any given
crystal, it is possible to choose a frame of reference such that the off-diagonal

components vanish, and the dielectric tensor becomes

€1 0 0
e= |0 €9 0 5 (17)
0 0 €3

where €, = €, €2 = €, and €3 = ¢€,,. This coordinate system is known as
the principal axis system, and defines the directions in which D and E must
be parallel to each other, e.g. D; = € F;, and equivalent equations for the
other directions. In a non-magnetic, dielectric medium we can assume that
the magnetic permeability © = 1, and as such the refractive index is given by
n= \/e/_eo , where ¢ is the permitivity of free space. Hence the refractive indices

of the principal axes are given by

€1
pu— —_— 1.8
n 607 ( )

and equivalent equations for the 2 and 3 directions. The relationship between

D and E can also be expressed in the inverse form of Equation 1.5, as

E; = Z(gl)iij. (1.9)



In this case, it is useful to define the electric impermeability tensor 1 as
1N = coe !, (1.10)

which is also a symmetric second-rank tensor with the same principal axes as

€. As such, in the principal axis system 7 is a diagonal matrix with principal

values of
€0 1
- Y _ = 1.11
T € n%> ( )

and equivalent relations for the 2 and 3 directions.
A symmetric second-rank tensor can be visually represented in three
dimensional space by a quadratic surface, such as an ellipsoid [24]; for the

impermeability tensor this can be expressed as
]

for an arbitrary coordinate system x;. This surface is invariant to the choice of
coordinate system, such that if the frame of reference is rotated the values of x;
and 7;; are altered but the ellipsoid remains unchanged. In the principal axis

system this equation simply reduces to
Mt + noxs + nzrs = 1. (1.13)

Using Equations 1.11 and 1.13 we can define the index ellipsoid of the system,

2 2 2
ry | Ty | Ty

which, along with the principal axes, contains all the information required to
completely describe the optical properties of a material. The general form of the
index ellipsoid defined in the principal axes of a material system is schematically
shown in Figure 1.1, where the half-lengths of the major and minor axes are the
principal refractive indices.

If all three principal refractive indices have the same value, e.g. ny = ny =
ns, then the index ellipsoid reduces to a sphere and the medium is isotropic. For

crystals with certain symmetries two of the principal refractive indices may be



Index
Ellipse

Index Ellipsoid

Figure 1.1: Geometrical representation of a general refractive index ellipsoid of an anisotropic
medium. The unit vector U signifies an arbitrary direction of wave propagation through the
medium, with the eigenmodes of propagation (D, and Dj) and corresponding eigenvalues (n,
and ny) in the plane perpendicular to U represented on the index ellipse. Reproduced and
adapted from reference [24].



the same, e.g. n; = ny = n,, but the third is different, e.g. n3 = n.. Here the
subscripts o and e denote the ordinary and extraordinary indices respectively,
and the direction corresponding to n. is known as the optical azxis. For a wave
propagating along the optical axis the electric field will experience the same
refractive index irrespective of the orientation of E. Crystals with this type of
symmetry are termed uniazial. If all three of the principal refractive indices are
different, e.g. ny # ng # ng, then the crystal exhibits two optical axes (which

will not be parallel to the principal axes of the crystal) and is termed biaxial.

1.1.3 Plane Wave Propagation Through an Anisotropic Medium

In this section we will consider the propagation of electromagnetic waves through
anisotropic dielectric media. We will treat the orthogonal electric and magnetic

field components of electromagnetic waves as plane waves of the form

E = Eoe—i(kr—wt)’

H= Hoe—i(k-r—wt)7 (115)

describing the wave at position r with a wavevector k = ku oriented along the

unit vector u.

Dispersion Relation in an Anisotropic Medium

Maxwell’s equations in a dielectric medium can be expressed as

OH

VXE= —MOE, (116)
OE
H=-€ —. 1.1
V x € = (1.17)

By considering the electric and magnetic fields as plane waves of the form given
in Equation 1.15 and using the relation D = eE, Equations 1.16 and 1.17 reduce

to

k x E = wuoH, (1.18)
k x H = —wD. (1.19)



Figure 1.2: Geometrical representation of the vectors describing an electromagnetic wave in
a dielectric medium. The vectors E, D, k and S all lie in the plane perpendicular to H, E
is perpendicular to S and D is perpendicular to k. Reproduced and adapted from reference
[24].

These equations define the geometry of the vectors describing an electromagnetic
wave in a dielectric medium, shown schematically in Figure 1.2: H is oriented
perpedicular to both k and E, whilst D is perpendicular to both k and H.
Defining the direction of energy flow via the Poynting vector S = E x H sets
it perpendicular to both E and H. Therefore the vectors E, D, k and S all
lie in the plane perpedicular to H; however, due to Equation 1.5 E and D
(and therefore k and S) are not necessarily parallel to each other. Rearranging

Equation 1.18 for H and substituting into Equation 1.19, we obtain

k x (k x E) 4+ w?pp€eE = 0. (1.20)



This vector equation can also be represented in matrix form, which in the prin-

cipal axis system of the dielectric medium is given by

(.L)2/JJ0€1 - k% - kg klkg klkg E1 0
k‘gk’l LUZ/LQEQ — k% — k% kzk’g . E2 = |0
k’gk’l kgk’g w2,u063 — k’% — k‘% E3 0

(1.21)

Setting the determinant of this matrix equal to zero allows us to solve for w
as a function of the principal axis components of k = (ky, k2, k3), and therefore

establish the dispersion relation of the anisotropic medium.

Propagation in an Arbitrary Direction

From Equation 1.19 we know that D in a dielectric medium lies in a plane
perpendicular to k, and therefore is also perpendicular to the direction of prop-
agation U. Rewriting Equation 1.20 in terms of D using E = € 'D, n = ¢ge!
and k = ku, we obtain

12

—1 x (U x D) + w?1ueD = 0. (1.22)
€0

If we consider the first term in Equation 1.22 as a projection of the vector nD
onto a plane perpendicular to U, we may define a projection operator P, such
that

P,nD = —u x (u x nD). (1.23)

By using the relations k3 = w?pugep and n = k/kq, we can rewite Equation 1.22

as an eigenvalue equation of the operator P,n,

P,nD — %D, (1.24)
which has two eigenvectors D, and D, corresponding to the normal modes of
propagation in the direction of u, with their corresponding eigenvalues being
1/n2 and 1/n?.

The solutions to this eigenvalue equation can be visualised using either
the dispersion relation or the index ellipsoid. In the form w = w(ky, ko, k3), the

dispersion relation can be considered as the equation of a surface in k-space.



For an arbitrary direction of propagation u there are two intersections with the
surface in k-space, which correspond to the two normal modes of propagation
along u. These normal modes are demonstrated on the index ellipsoid in Figure
1.1, with the plane perpendicular to U up to the boundary of the index ellipsoid
and passing through the origin known as the index ellipse. The major and minor
axes of this index ellipse are the directions of the eigenvectors D,;, and the
lengths of the semi-major and semi-minor axes are the values of the refractive

indices n,; along the normal modes of propagation.

1.1.4 Effects of an Anisotropic Medium on the Polarisation State of
Light

In an isotropic medium, for any given propagation direction and orientation of
E of an incident plane electromagnetic wave, the electric field will experience
the same refractive index, and so the polarisation state will remain unchanged
after propagating through an isotropic medium. So what happens when we
consider the case where the principal refractive indices are not all the same?
Having established the index ellipsoid and the two orthogonal normal modes of
propagation for a given direction, we can now use these concepts to describe how
the polarisation state of light evolves upon propagating through an anisotropic
medium.

For light with angular frequency w propagating in an anisotropic crystal
with an arbitrary wavevector k there are two orthogonal normal modes, with
polarisation eigenvectors D, ;. These normal modes each have different refrac-
tive indices. If the incident light is polarised along one of the eigenvectors of
a normal mode, then the wave experiences only one refractive index, and the
polarisation state remains unchanged after transmission through the medium.
However, if the incident light is linearly polarised with components of E along
D, and Dy, then each component will propagate through the crystal with a dif-
ferent velocity. This introduces a relative phase ¢, = wdn,/c and ¢, = wdn,/c
to each component of E, depending on the distance d the wave has propagated

through the medium. After transmission through a crystal of thickness L, the
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two components of E will have acquired a phase delay

Ap = ¢p— o = %(nb_na)a (1.25)
where the difference in refractive index n, —n, = An is the birefringence of the
medium. The polarisation state of the transmitted light will therefore depend
on the phase delay introduced: a superposition of two orthogonally polarised
waves with a phase delay of A¢ = /2 will form a circular polarisation state,
whereas for any other value of 0 < A¢ < 7/2 the polarisation state will be
elliptical.

1.2 Describing the Polarisation State of Electromagnetic

Waves

Having established that propagation through an anisotropic medium can alter
the polarisation state of light, a crucial consideration in the spectroscopy of
anisotropic materials is having a method of describing the polarisation state at
a given time or frequency. This section will outline some of the descriptions
available which will be used in this thesis: the ellipticity and orientation angle;

the ellipsometric parameters; Jones matrices; and Stokes parameters.

1.2.1 Ellipticity and Orientation Angle

The polarisation state of an electromagnetic wave can be parameterised by
two quantities, the ellipticity angle x and the orientation angle v [19]. This
parameterisation is shown schematically by the polarisation ellipse in Figure
1.3, with the viewer oriented such that they are looking into the direction of
propagation of the electromagnetic wave. For an arbitrary polarisation state
the oscillation of the electric or magnetic field when viewing from this position
can be visualised as forming an ellipse. The ellipticity angle is defined as

X = tan™! <9) : (1.26)

a

where a and b are the lengths of the semi-major and semi-minor axes of the

polarisation ellipse respectively. An ellipticity angle of zero corresponds to a
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Figure 1.3: Parameterisation of the polarisation state of an electromagnetic wave, using
the ellipticity angle x and orientation angle 1. The polarisation ellipse (blue curve) is the
projection of the oscillation of the electric field onto a plane perpendicular to the direction of
propagation.

linear polarisation state, whereas an ellipticity of £45° corresponds to right- and
left-handed circular polarisation, respectively. The orientation angle is defined
as the angle of the major axis of the polarisation ellipse away from the z-axis of
the lab coordinate system. A positive orientation angle is defined by the angle
formed by an anticlockwise rotation of the polarisation state relative to the x-
axis, e.g. 1 = 445° occurs in the top right-hand quadrant of the polarisation
ellipse as displayed in Figure 1.3.
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1.2.2 Alternative Descriptions of the Polarisation State

Ellipsometric Parameters

The ellipsometric parameters are an alternate parameterisation of the polarisa-
tion ellipse. Rather than taking into account the half-lengths of the polarisation
ellipse, the ellipsometric paramaters consider the s- and p-polarised components
of the electromagnetic wave that form the polarisation state. In terms of these

components the polarisation state is parameterised by

[Ep] i

tan We'® = e (¢r=9s) (1.27)

- E

where |E,| and ¢, are the amplitude and phase of the p-polarised component,
respectively, and |E;| and ¢, are the equivalent values for the s-polarised com-

ponent.

Jones Calculus

Jones calculus is a matrix formulation of polarised light, which makes use of
column vectors to describe the polarisation state of light, and 2 x 2 matrices
to describe the interaction of light with optical components and materials. The

Jones vector of an electromagnetic wave is expressed as

E,
E

Y

EO:): ei¢w
E0y€i¢y

E = : (1.28)

where each component contains information about both the amplitude Ey and

phase ¢. The Jones matriz J of an arbitrary polarising element is expressed as

J= [J“ ny] , (1.29)
Jym Jyy

and as such the Jones vector describing the resultant polarisation state can be
found by E' =J - E.

13



Stokes Parameters

Jones calculus is only applicable to fully polarised light; an alternative descrip-
tion of the polarisation state of light, which can account for partially- and
un-polarised light, can be made using the Stokes parameters. These are usually
given in the form of the Stokes vector St, which can be related to the parameters

of the polarisation ellipse x and v by

Iy

| Jopcos 29 cos 2x (1.30)
Toypsin 29 cos 2y ’ '

= @ O ~

Iypsin 2y

where [ is the total intensity of the electromagnetic wave and p is the degree

of polarisation, given by

JETT T o

I

The four components of the Stokes vector in Equation 1.30 can be inter-
preted as: (i) I is the sum of the intensities of the purely linearly horizontal
and linearly vertical components; (ii) @ is the difference between the intensities
of the purely linearly horizontal and linearly vertical components; (iii) U is the
difference between the intensities of the components purely polarised at +45°
and +45°; and (iv) V is the difference between the intensities of the purely
circularly right-hand polarised and circularly left-hand polarised components.

A similar description of the interaction of light with polarising elements
to that described by Jones calculus can be made via Mueller calculus and the

Mueller matriz M. In this case

My My Mz My
Moy Moy Moz Moy
M Msy Msz Msy
My Mg Myz My

Sout = M - Sy, = : (1.32)

= @ O ~

which relates the incident Stokes vector S;, to the Stokes vector after interaction

with an optical component or a material Sgy;.
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1.3 Electromagnons in Improper Ferroelectrics

A multiferroic can be defined as a material which exhibits more than one fer-
roic order parameter, such as ferromagnetism, ferroelectricity or ferroelasticity,
in a single phase [25]. While this term encompasses a plethora of different
combinations of order parameters, historically the union that has incited the
most research interest is that of electricity and magnetism, in so-called magne-
toelectric multiferroics [11, 26]. While the intimate link between electricity and
magnetism in nature was elucidated by Maxwell’s equations, for a long time
their occurrence in condensed matter appeared to be mutually exclusive: con-
ventional ferromagnetism tends to arise due to partially filled f- or d-orbitals in
rare earth and transition metal ions, whilst conventional ferroelectricity tends
to arise due to ‘lone pair’ cations and empty d-orbitals in transition metal ions
[27].

It was only in 1960 that the first magnetoelectric material, CryO3, was
disovered [28] following a prior theoretical prediction [29]. Since this initial ex-
perimental obervation, a vast number of magnetoelectric materials have been
discovered and investigated; just a small selection of the many reviews available
on the topic can be found in references [11, 26]. However, broadly speaking
the behaviour of many magnetoelectric multiferroics can be typified by the
two “poster-boy” materials, bismuth ferrite (BiFeO3) and terbium manganate
(TbMnO3). BiFeOy is one of the most promising magnetoelectric materials for
device applications, owing to its large ferroelectric polarisation (~ 90 uCcm™2)
and the persistence of electrical and magnetic ordering at temperatures far
above room temperature [30, 31]. Despite these promising properties the mag-
netoelectric coupling is weak, due to the differring origins of ferroelectricity and
magnetism in BiFeOs: ferroelectricity arises due to the 6s? lone pair in the Bi3*
ions, while the magnetism has its origins in the spins on the Fe3* ions.

Since the discovery of magnetoelectricity in BiFeOs, a variety of other
mechanisms giving rise to magnetoelectric multiferroicity in materials have been
discovered, including charge ordering [32], magnetic exchange striction [33], and
the type of magnetoelectricity typified by TbhMnOj3, spin-spiral magnetic order-
ing [34, 35]. Compared to BiFeOs, the ferroelectric polarisation in ThMnOs3
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is small (~ 0.08 uCcm™?) and multiferroicity only occurs at low temperatures
(~ 28 K), making it a far less practical material for applications. However, the
interest in TbMnO3 stems from the magnetic origin of the ferroelectricity; the
ferroelectricity in such materials is induced by competing magnetic interactions
forming a magnetic state that breaks inversion symmetry, for instance an in-
commensurate spin-cycloid [36, 37]. This so-called “improper” ferroelectricity
can result in strong magnetoelectric coupling [38, 39].

Improper ferroelectrics also exhibit dynamic magnetoelectric coupling,
whereby an oscillating electric field couples to a spin wave, or magnon. This
results in a novel quasiparticle excitation at terahertz frequencies - the electro-
magnon [8, 40, 41, 42, 43, 44]. This opens up possibilities for a new paradigm
in the control of magnetic order, using the electric fields of THz frequency op-
tical pulses [45]. However, the improper ferroelectric phase generally occurs
only at low temperatures, typically below ~ 70 K [38]; for many desired techno-
logical applications to be realised, room-temperature improper ferroelectrics
are strongly desired. A promising material system in the search for room
temperature improper ferroelectrics is cupric oxide (CuQO), which exhibits a
magnetically-induced ferroelectric phase with spin-cycloidal ordering and elec-
tromagnons up to ~230K [8, 46].

This section will provide background to the second topic of study pre-
sented in this thesis - the behaviour of electromagnons in the improper fer-
roelectric multiferroic material cupric oxide (CuQO). A brief description and
theoretical background to spin wave excitations in magnetically ordered ma-
terials, magnons, will be provided in Section 1.3.1, before discussing the unique
quasiparticle excitation that can occur in improper ferroelectric materials, elec-
tromagnons, in Section 1.3.2. Lastly Section 1.3.3 will discuss multiferroicity
and electromagnons in the principal multiferroic material system under study
in this thesis, CuO.

1.3.1 Magnons

Having discussed the effect that the properties of a particular material have on
the polarisation state of light propagating through it in Section 1.1, we may

also consider the converse - what effect do the electric and magnetic fields of
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Figure 1.4: Depiction of a magnon, as viewed (a) in side profile and (b) from a top-down
perspective, where the black curve represents the relative phase of the spins. Reproduced
from reference [47].

light have on the material? Here we consider the effects of optical electric and
magnetic fields in the linear regime only, where the field strengths are small.
The effects of large field strength optical pulses on materials will be discussed
in further detail in Section 6.1.

A charged particle exposed to an electric and magnetic field is subject
to the Lorentz force F = ¢(E + v x B). When exposed to the electric field of
light atoms or ions in a material are displaced from their equilibrium positions,
and the interactions between adjacent atoms or ions in the crystalline lattice
result in collective vibrational modes, known as phonons. The magnetic field
of light can have an analagous effect on the magnetic moments of the ions in
the crystal lattice. In a magnetically ordered material, the magnetic torque
applied by the optical magnetic field causes displacements of the spins from
their equilibrium positions; due to interactions between adjacent spins in the
crystal structure, these displacements propagate through the material as a spin
wave, the quasiparticle of which is known as a magnon, shown schematically in
Fig 1.4.

In order to describe the behaviour of magnons in a material, an equation
of motion for the spin angular momentum of the i'" spin S; can be expressed in
terms of an effective magnetic field Heg, used to represent all the interactions felt

by a single spin. This is given by the Landau-Lifshitz-Gilbert (LLG) equation

dSZ i A Sz X (Hef‘f X Sz)
dt - ryHeﬁf X SZ ﬁ 52 ) (133)

where v = gle|/2m is the gyromagnetic ratio and A is the Gilbert damping

parameter. The effective field drives the spins to align in its direction, causing
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the spins to precess about their equilibrium position. The effective field can
be expressed as the partial derivative of the free energy F' of the system with
respect to S;. In the condition where the temperature of the system is much
lower than the ordering temperature, the free energy can be approximated by
the semi-classical spin Hamiltonian JH of the system, allowing us to define the

effective field as
1 0K

eﬂ:’y_hasi.

Using this definition, the spin dynamics in a particular system can be investi-

(1.34)

gated by: defining a specific spin Hamiltonian accounting for all the interactions
between spins in the system, calculating the resultant effective field acting on
the spins, then solving the LLG equation to find properties of interest, such as

the magnon dispersion relation and the nature of the magnetic dynamics.

1.3.2 Electromagnons

While the dynamics of magnons may be understood solely by the interaction
of the magnetic field of light with the spins in a material, the electric dipole-
active nature of electromagnons requires that coupling between the spins and
phonons in the material are taken into account in the Hamiltonian. Two dis-
tinct mechanisms that give rise to electromagnons have been discussed in the
literature: Dzyaloshinskii-Moriya electromagnons, and exchange-striction (ES)
electromagnons. The different origins for these mechan