

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/160144

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/160144
mailto:wrap@warwick.ac.uk

Time Dependent Biased Random Walks

John Haslegrave1, Thomas Sauerwald2, and John Sylvester2

1Mathematics Institute, University of Warwick
2Department of Computer Science & Technology, University of

Cambridge

We study the biased random walk where at each step of a random walk a “con-
troller” can, with a certain small probability, move the walk to an arbitrary neigh-
bour. This model was introduced by Azar et al. [STOC’1992]; we extend their work
to the time dependent setting and consider cover times of this walk. We obtain new
bounds on the cover and hitting times. Azar et al. conjectured that the controller
can increase the stationary probability of a vertex from p to p1−ε; while this conjec-
ture is not true in full generality, we propose a best-possible amended version of this
conjecture and confirm it for a broad class of graphs. We also consider the problem
of computing an optimal strategy for the controller to minimise the cover time and
show that for directed graphs determining the cover time is PSPACE-complete.

Keywords: random walk, cover time, Markov chain, Markov decision process, PSPACE.
AMS MSC 2010: 05C81, 60J10, 68R10, 68Q17.

1. Introduction

Randomised algorithms have come to occupy a central place within theoretical computer science
and had a profound affect on the development of algorithms and complexity theory [21, 26].
Most randomised algorithms assume access to a source of unbiased independent random bits. In
practice, however, truly independent unbiased random bits are inconvenient, if not impossible,
to obtain. We can generate pseudo-random bits on a computer fairly effectively [18] but if com-
putational resources are constrained the quality of these bits may suffer; in particular they may
be biased or correlated. Another reason to consider the dependency of randomised algorithms
on the random bits they use, other than imperfect generation, is that an adversary may seek to
tamper with a source of randomness to influence the output of a randomised algorithm. This
raises the natural question of whether relaxing the unbiased and independent assumptions have
a notable effect on the efficacy of randomised algorithms. This is a question many researchers
have studied since early in the development of randomised algorithms [3, 8, 31].

Motivated by this question Azar, Broder, Karlin, Linial and Phillips [5] introduced the ε-
biased random walk (ε-BRW). This process is a walk on a graph where at each step with

Some results from this paper appeared in The 11th Innovations in Theoretical Computer Science Conference
(ITCS 2020), volume 151 of LIPIcs, pages 76:1–76:19 [16]

1

probability ε a controller can choose a neighbour of the current vertex to move to, otherwise a
uniformly random neighbour is selected. One can see this process from two different perspec-
tives. The first interpretation is to see the model as a simple random walk (SRW) with some
adversarial noise. That is, the SRW moves to uniformly and independently sampled neighbour
in each time step, however there is an adversarial controller who with probability ε can change
the random bits used to sample the next step to their advantage. In particular one may con-
sider this as a basic model for any randomised algorithm which uses their random bits to find
a correct solution. A more specific class of examples is the search for a witness to the truth of
a given statement, for example [2, 30], where the objective of the adversary may be to prevent
us finding a witness. Other concrete instances are Pollard’s Rho and Kangaroo algorithms for
solving the discrete logarithm problem [22, 25, 29]. The second perspective sees the controller
as an advisor who guides an agent to some objective, however with probability 1 − ε at each
step their signal is lost and agent moves to a neighbouring vertex sampled at random. In this
setting the ε-BRW and very closely related models have be studied in the contexts of graph
searching with noisy advice [12, 19, 20] and collective navigation [14]. Another work [7] studies
the problem of searching for an adversarially placed target in a tree where a “signpost” pointing
toward the target appears at each vertex with probability ε. Thus in [7] the controller hints
appear randomly in space, as opposed to randomly at steps as in ε-BRW.

Azar et al. [5] consider a pair of different objectives for the controller. The first objective is
to maximise/minimise weighted sums of stationary probabilities, where they obtain bounds on
how much the controller can influence the stationary probabilities of certain graph classes. This
fits most naturally with the first perspective on the walk. The second controller objective they
study is that of minimising the expected hitting time of a given set of vertices. This fits more
naturally with the second perspective however, one motivation for obtaining bounds on the
hitting times is that they can also be used to bound stationary probabilities (via return times).
They show that optimal strategies for maximising or minimising stationary probabilities or
hitting times can be computed in polynomial time. Since finding an optimal controller strategy
for either objective can be cast as a Markov decision process (MDP) [11], it follows that there
exists an optimal strategy for these tasks which is independent of time. Consequently, Azar et
al. only consider fixed strategies which are independent of time.

We extend the work of Azar et al. [5] by studying the cover time of ε-biased random walks,
which is the expected time for the walk to visit every vertex of the graph. In the setting of
memoryless search algorithms with noisy advice, the cover time of a time dependent ε-biased
walk is the run time of the probabilistic following algorithm [14, Supplementary material] applied
to the task of collecting a token from every vertex (as opposed to just one token as in [12, 19, 20]).

1.1. Our Results

In Section 3 we introduce a new method which is crucial to cope with the time dependencies of
the ε-TBRW. We first consider a “trajectory-tree” which encapsulates all walks of a given length
from a fixed start vertex in a connected graph G by embedding them into a rooted tree. We
also introduce a symmetric operator on real vectors which describes the action of the ε-TBRW.
The combination of the operator and trajectory-tree allows to us to show that the ε-TBRW can
significantly increase the probabilities of rare events described by trajectories, that is:

(1) Let u ∈ V , t > 0, 0 6 ε 6 1 and S be a subset of trajectories of length t from u. Let p be
the probability the SRW samples a trajectory from S. Then a controller can increase the
probability of being in S after t steps from u from p to p1−ε. (See Theorem 3.1.)

2

This result can be applied to bound cover and hitting times in terms of the number of vertices
n, the minimum and average degrees dmin and davg, and finally thit, trel and tmix which are the
hitting, relaxation and mixing times of the lazy random walk; see Section 2 for full definitions.

(2) For any vertex u there is a strategy so that the ε-TBRW started from u covers G in
expected time at most

O
(
thit
ε
· log

(
davg · trel · log n

dmin

))
.

It should be noted that, for regular graphs, this upper bound breaks the lower bound
of Ω(n log n) for the cover time of simple random walks if trel = o((log n/ log log n)2); in
particular, for expanders we obtain a nearly-optimal cover time bound of O(n log log n).

(3) For any two vertices u, v ∈ V there is a strategy so that for the ε-TBRW the expected
time to reach v from u is at most

O

((
n · davg
dmin

)1−ε
· (tmix)

2+ε
3

)
.

(See Theorems 3.2 and 3.4 for the two results above.)
In Section 4 we study how much the controller can affect the stationary distribution of any

vertex in our graph. Azar et al. [5] introduced this problem and showed that for any bounded
degree regular graph a controller can increase the stationary probability of any vertex from p
to p1−Ω(ε). By applying the results from Section 3 we prove a stronger bound for graphs with
small relaxation time and sub-polynomial degree ratio:

(4) In any graph a controller can increase the stationary probability of any vertex from p to
p1−ε+δ, where δ = ln (16 · tmix) /|ln p|. (See Theorem 4.3.)

Azar et al. [5] conjectured that in any graph the controller can boost the stationary probability
of any chosen vertex from p to p1−ε (see Conjecture 4.1), thus we confirm their conjecture (up
to a negligible error in the exponent) for the class of graphs above, including expanders.

Motivated by this conjecture and a comment of Azar et al. stating that for regular graphs the
interesting case is when ε is not substantially larger than 1/dmax (the reciprocal of the maximum
degree). We try to quantify the effect of a controller in this regime. Establishing several bounds
and counter-examples we reveal the following trichotomy in terms of the density of the graph:

(5) For any graph with dmax = o(log n/ log logn), a controller for the ε-BRW can increase the
stationary probability of any vertex by more than a constant factor.

(6) For any graph which is everywhere dense, i.e., has a minimum degree of Ω(n), a controller
cannot increase any entry in the stationary distribution by more than a constant factor.

(7) However, any polynomial but sublinear degree regime contains regular graphs for which
entries in the stationary distribution can be increased by a polynomial factor, but for
almost all almost-regular graphs, no entry can be increased by more than a constant
factor.

(See Corollary 4.4, and Propositions 4.7, 4.9 and 4.10 respectively for the above results.)
In Section 5 we consider the complexity of finding an optimal strategy to cover a graph in

minimum expected time. Azar et al. considered this problem for hitting times and showed
that there is a polynomial algorithm to determine an optimal strategy on directed graphs; we
establish a dichotomy by proving complexity theoretic lower bounds for the cover time.

3

(8) The problems of deciding between two neighbours as the next step in order to minimise
the cover time, and deciding if the cover time of a vertex subset is less than a given value
are both PSPACE-complete on directed graphs. (See Theorems 5.2 and 5.4.)

Adapting previous results for the related choice random walk process [16], we also conclude:

(9) The two problems mentioned above in (8) are NP-hard on undirected graphs. (See Theo-
rem 5.5.)

Finally in Section 6 we conclude with some open problems and conjectures.

2. Preliminaries

We shall now formally describe the ε-biased and ε-time-biased random walk model and introduce
some notation. Throughout this paper we shall always consider a connected n-vertex simple
graph G = (V,E), which unless otherwise specified, will be unweighted. We write Γ(v) for the
neighbourhood of a vertex v and call d(v) = |Γ(v)| the degree of v. We use dmax, dmin and
davg to denote the maximum, minimum and average degrees of a graph respectively. Given a

Markov chain H = (hx,y)x,y∈V with transition probabilities hx,y, let h
(t)
x,y denote the probability

the walk started at state x is at y after t steps. Let πH denote the stationary distribution of
H, and throughout we let π = πP where P is the transition matrix of a simple random walk
(SRW), thus P = (px,y)x,y∈V where px,y = 1/d(x) if xy ∈ E and 0 otherwise.

Azar et al. [5], building on earlier work [6], introduced the ε-biased random walk (ε-BRW)
on a graph G. Each step of the ε-BRW is preceded by an (ε, 1− ε)-coin flip. With probability
1 − ε a step of the simple random walk is performed, but with probability ε the controller
gets to select which neighbour to move to. The selection can be probabilistic, but it is time
independent. Thus if P is the transition matrix of the simple random walk, then the transition
matrix QεB of the ε-biased random walk is given by

QεB = (1− ε)P + εB, (1)

where B is an arbitrary stochastic matrix chosen by the controller, with support restricted to
E(G). The controller of an ε-BRW has full knowledge of G.

Azar et al. focused on the problems of bias strategies which either minimise or maximise
the stationary probabilities of sets of vertices or which minimise the hitting times of vertices.
Azar et al. [5, Sec. 4] make the connection between Markov decision processes and the ε-biased
walk; in particular they observe that the two tasks they study can be identified as the expected
average cost and optimal first-passage problems respectively in this context [11]. As a result
of this, the existence of time independent optimal strategies for both objectives follow from
Theorems 2 and 3 respectively in [11, Ch. 3]. For this reason Azar et al. restrict to the class of
unchanging strategies, where we say that an ε-bias strategy is unchanging if it is independent
of both time and the history of the walk.

It is clear that if we wish to consider optimal strategies to cover a graph (visit every vertex)
in shortest expected time then we must include strategies which depend on the set of vertices
already visited by the walk. Let Ht be the history of the random walk up to time t, that is the
sigma algebra Ht = σ (X0, . . . , Xt) generated by all steps of the walk up to and including time
t. Thus we consider a time-dependent version, where the bias matrix Bt may depend on the
time t and the history Ht; we refer to this as the ε-time-biased walk (ε-TBRW).

Let CεTBv (G) denote the minimum expected time (taken over all strategies) for the ε-TBRW to
visit every vertex of G starting from v, and define the cover time tεTBcov (G) := maxv∈V C

εTB
v (G).

4

Similarly let HεB
x (y) denote the minimum expected time for the ε-biased walk to reach y, which

may be a single vertex or a set of vertices, starting from a vertex x. We do not need to provide
notation for the hitting times of the ε-TBRW since, as mentioned before, there is always a time-
independent optimal strategy for hitting a given vertex [5, Thm. 11], thus hitting times in the
ε-TBRW and ε-BRW are the same. We also define the hitting time tεBhit(G) := maxx,y∈V H

εB
x (y).

Any unchanging strategy of the ε-BRW on a finite connected graph results in an irreducible
Markov chain Q and thus, when appropriate, we refer to its stationary distribution as πQ.

Let I denote the identity matrix. Given a Markov chain H we call H̃ = (I + H)/2 the
lazy chain of H, and note that π

H̃
= πH. One important case is P̃, where P is the SRW,

we refer to this as the lazy random walk (LRW). Let 1 = λ1 > λ2 > · · · > λn > −1 be
the eigenvalues of a simple random walk (SRW) on a connected n vertex graph G and define
λ∗ = max {|λi| : i = 2, . . . , n}. Let trel := (1 − λ̃2)−1 be the relaxation time of G, where λ̃2 is
the second largest eigenvalue of P̃, the LRW on G. We let

tmix = min
t>1

{
t : max

x∈V
||p̃(t)

x,· − π(·)||TV 6 1/4

}
, where ||p̃(t)

x,· − π(·)||TV =
1

2

∑
y∈V

∣∣∣p̃(t)
x,y − π(y)

∣∣∣ ,
denote the total variation mixing time of G. For the lazy random walk (LRW) P̃ we define

tsep = inf

{
t : max

x,y∈V

[
1− p̃

(t)
x,y

π(y)

]
>

1

e

}
, and t∞ = inf

{
t : max

x,y∈V

∣∣∣∣∣ p̃(t)
x,y

π(y)
− 1

∣∣∣∣∣ < 1

e

}
, (2)

to be the separation time and the `∞-mixing time respectively.

3. Hitting and Cover Times

In this section we prove that the ε-TBRW has the power to increase the probability of certain
events. As a consequence of this result we obtain bounds on the cover and hitting times of the
ε-TBRW on a graph G in terms of n, the extremal and average degrees, the relaxation time,
and the hitting time of the SRW.

The approach used to prove these results is, for a given graph G, to consider events which
depend only on the trajectory of the walker (that is, the sequence of vertices visited) up to some
fixed time t. We use a “trajectory-tree” to encode all possible trajectories. This then allows us
to relate the probability of a given event in the ε-TBRW to that for the SRW; the role of the
technical lemma is to recursively bound the effects of an optimal strategy for the ε-TBRW at
each level of the tree. This section follows the conference version of this paper [16] where the
method was initially developed for the ε-TBRW. This method is flexible in the sense that it can
be applied to other random processes with choice, in particular in [17] we adapt this method to
the choice random walk.

Fix a vertex u, a non-negative integer t and a set S of trajectories of length t (here the length
is the number of steps taken). Write pu,S for the probability that running a SRW starting
from u for t steps results in a member of S. Let qu,S(ε) be the corresponding probability for
the ε-TBRW, which depends on the particular strategy used. It is important that neither the
ε-TBRW (q) nor the SRW (p) is lazy. We prove the following result relating qu,S(ε) to pu,S .

Theorem 3.1. Let G be a graph, u ∈ V , t > 0, 0 6 ε 6 1 and S be a set of trajectories of
length t from u. Then there exists a strategy for the ε-TBRW such that

qu,S(ε) > (pu,S)1−ε .

5

Here we typically think of S encoding such events as “the walker is in a set W ⊂ V at time t”
or “the walker has visited v ∈ V by time t”; however, the result applies to any event measurable
at time t. This theorem can be used to bound the cover time of the ε-TBRW.

Theorem 3.2. For any graph G, and any ε ∈ (0, 1),

tεTBcov (G) = O
(
thit
ε
· log

(
davg · trel · log n

dmin

))
.

Theorem 3.2 has the following consequence for expanders; a sequence of graphs (Gn) is a
sequence of expanders if trel(Gn) = Θ(1).

Corollary 3.3. For every sequence (Gn)n∈N of n-vertex bounded degree expanders and any fixed
ε > 0, we have

tεTBcov (Gn) = O
(n
ε
· log logn

)
.

We can also use Theorem 3.1 to bound the hitting times of the ε-BRW.

Theorem 3.4. For any graph G, any x, y ∈ V and any ε ∈ (0, 1), we have

HεB
x (y) 6 16 · π(y)ε−1 · tmix,

where π is the stationary distribution of the SRW; this bound also holds for return times. Ad-
ditionally,

tεBhit(G) 6 120 ·
(
n · davg
dmin

)1−ε
· (tmix)

2+ε
3 .

We shall prove Theorem 3.1 in Section 3.2 after proving a key lemma in Section 3.1. Theorem
3.2 is an analogue for the ε-TBRW of [17, Theorem 6.1], and the derivation from Theorem 3.1
follows that given in [17, Section 6.1] exactly. We include this for completeness in the Appendix.
The statement of Theorem 3.4 is an improvement over the analogous result in [17, Theorem
6.2] (the main improvement is replacing trel log n with tmix). We give the proof of this result in
Section 3.3 and note that the same proof will give the same improvement to [17, Theorem 6.2].

The main difference between the results here and those in [17] is that each relies on an operator
which describes the random walk process being studied. The operator used here is different to
those introduced in [17], and as a result so is the strength of the boosting obtainable. This
highlights the versatility of the technique used to prove Theorem 3.1 in that it can be used
to analyse several different random processes with non-deterministic interventions, such as the
ε-TBRW and the choice random walk (CRW) of [17].

3.1. The ε-Max/Average Operation

In this subsection we shall introduce an operator which models the action of the ε-TBRW. We
shall then prove a bound on the output of the operator, which is used to show that the ε-TBRW
can boost probabilities indexed by paths.

For 0 < ε < 1 define the ε-max/average operator MAε : [0,∞)m → [0,∞) by

MAε (x1, . . . , xm) = ε · max
16i6m

xi +
1− ε
m
·
m∑
i=1

xi.

This can be seen as an average which is biased in favour of the largest element, indeed it is a
convex combination between the largest element and the arithmetic mean.

6

For p ∈ R \ {0}, the p-power mean Mp of non-negative reals x1, . . . , xm is defined by

Mp(x1, . . . , xm) =

(
xp1 + · · ·+ xpm

m

)1/p

,

and
M∞(x1, . . . , xm) = max{x1, . . . , xm} = lim

p→∞
Mp(x1, . . . , xm).

Thus we can express the ε-max/ave operator as MAε(·) = (1 − ε)M1(·) + εM∞(·). We use a
key lemma, Lemma 3.5, which could be described as a multivariate anti-convexity inequality.

Lemma 3.5. Let 0 < ε < 1, m > 1 and δ 6 ε/(1− ε). Then for any x1, . . . , xm ∈ [0,∞),

M1+δ (x1, . . . , xm) 6 MAε (x1, . . . , xm) .

Proof. We begin by establishing the following claim.

Claim. Let η ∈ (0, 1), and suppose a, b, c ∈ R+ with c = (1− η)a+ ηb. Then

Mc 6M
(1−η)a/c
a M

ηb/c
b . (3)

Proof of claim. Hölder’s inequality states for positive reals y1, . . . , ym and z1, . . . , zm that

y1z1 + · · ·+ ymzm 6
(
yp1 + · · ·+ ypm

)1/p(
zq1 + · · ·+ zqm

)1/q
,

where p, q > 1 satisfy 1/p+1/q = 1. The desired result follows by setting yi = x
(1−η)a
i , zi = xηbi ,

p = 1/(1− η), q = 1/η, dividing both sides by m and then taking cth roots. ♦

Applying (3), we have for any k > δ that

M1+δ 6M
1−δ/k
1+δ

1 M
(k+1)δ/k

1+δ

k+1

6
1− δ/k
1 + δ

M1 +
(k + 1)δ/k

1 + δ
M∞,

using the weighted AM-GM inequality and the fact that Mp 6M∞ for any p. Taking limits as
k →∞, noting that ε > δ/(1 + δ), gives the required inequality.

Remark 3.6. The dependence of δ on ε given in Lemma 3.5 is best possible. This can be seen
by setting x1 = 0 and xi = 1 for 2 6 i 6 m, and letting m tend to ∞.

3.2. The Trajectory-Tree for Graphs

In this section we show how the “trajectory-tree” can be used to prove Theorem 3.1. This tree
encodes walks of length at most t from u in a rooted graph (G, u) by vertices of an arborescence
(Tt, r), i.e. a tree with all edges oriented away from the root r. Here we use bold characters to
denote trajectories, and r will be the length-0 trajectory consisting of the single vertex u. The
tree Tt consists of one node for each trajectory of length i 6 t starting at u, and has an edge
from x to y if x may be obtained from y by deleting the final vertex; we refer to such y as
‘offspring’ of x.

The proof of Theorem 3.1 will follow the corresponding proof in [17] closely, but we give a full
proof here in order to clarify the role played by the ε-max/average operator. We write d+(x)

7

u

v

w

x

y

z

u7
18

50
81

uv1
3

5
9

uy1
2

2
3

uw1
3

5
9

uvu

0

uvx

0

uvz

1

uyu

0

uyz

1

uwu

0

uwx

0

uwz

1

Figure 1: Illustration of a (non-lazy) walk on a non-regular graph starting from u with the
objective of being at {y, z} at step t = 2. The probabilities of achieving this are given
in blue (left) for the SRW and in red (right) for the 1

3 -TBRW.

for the number of offspring in Tt of x, and Γ+(x) for the set of offspring of x. Denote the length
of the walk x by |x|. We shall extend our notation pu,S and qu,S(ε) to px,S and qx,S(ε), defined
to be the probabilities that extending x to a trajectory of length t, using the laws of the SRW
and ε-TBRW respectively, results in an element of S. Additionally, let Wu(k) :=

⋃k
i=0{Xi} be

the trajectory of a simple random walk Xt on G up to time k, with X0 = u.

Proof of Theorem 3.1. For convenience we shall suppress the notational dependence of qx,S(ε)
on ε. To each node x of the trajectory-tree Tt we assign the value qx,S under the the ε-TB
strategy of biasing towards a neighbour in G which extends to a walk y ∈ Γ+(x) maximising
qy,S . This is well defined because both the strategy and the values qx,S can be computed in a
“bottom up” fashion starting at the leaves, where if x ∈ V (Tt) is a leaf then qx,S is 1 if x ∈ S
and 0 otherwise.

Suppose x is not a leaf. Then with probability 1 − ε we choose the next step of the walk
uniformly at random in which case the probability of reaching S from x is just the average of
qy,S over the offspring y of x, otherwise we choose a maximal qy,S . Thus the value of x is given
by the ε-max/average of its offspring, that is

qx,S = MAε

(
(qy,S)y∈Γ+(x)

)
. (4)

We define the following potential function Φ(i) on the ith generation of the trajectory-tree T :

Φ(i) =
∑
|x|=i

q1+δ
x,S · P [Wu(i) = x] . (5)

Notice that if xy ∈ E(Tt) then

P [Wu(|y|) = y] = P [Wu(|x|) = x] /d+(x).

Also since each y with |y| = i has exactly one parent x with |x| = i− 1 we can write

Φ(i) =
∑
|x|=i−1

∑
y∈Γ+(x)

q1+δ
y,S ·

P [Wu(i− 1) = x]

d+(x)
. (6)

8

We now show that Φ(i) is non-increasing in i. By combining (5) and (6) we can see that the
difference Φ(i−1) − Φ(i) is given by

∑
|x|=i−1

q1+δ
x,S −

1

d+(x)

∑
y∈Γ+(x)

q1+δ
y,S

P [Wu(i− 1) = x] .

Recalling (4), to establish Φ(i−1)−Φ(i) > 0 it is sufficient to show the following inequality holds
whenever x is not a leaf:

MAε

(
(qy,S)y∈Γ+(x)

)1+δ
>

1

d+(x)

∑
y∈Γ+(x)

q1+δ
y,S .

By taking (1 + δ)th roots this inequality holds for any δ 6 ε/(1 − ε) by Lemma 3.5, and thus
for δ in this range Φ(i) is non-increasing in i.

Observe Φ(0) = q1+δ
u,S . Also if |x| = t then qx,S = 1 if x ∈ S and 0 otherwise, it follows that

Φ(t) =
∑
|x|=t

q1+δ
x,S · P [Wu(t) = x] =

∑
|x|=t

1x∈S · P [Wu(t) = x] = pu,S .

Thus since Φ(t) is non-increasing q1+δ
u,S = Φ(0) > Φ(t) = pu,S . The result for the ε-TBRW follows

by taking δ = ε/(1− ε).

3.3. Proof of Theorem 3.4

We now prove Theorem 3.4. The idea of the proof is to use Theorem 3.1 to boost the probability
that a random walk hits a vertex within Θ(tmix) steps.

Proof. Observe that for any non-negative integer random variable Z the following holds

P [Z > 1] =
E [Z]

E [Z | Z > 1]
. (7)

Let Ny(T) = |{t 6 T : X̃t = y}| be the number of visits to y ∈ V up to time T > 0 by the lazy

random walk X̃t on G. We shall now apply (7) to Ny(T) for a suitable T .
Recall the definition tmix := tmix(1/4) of the total variation mixing time. It follows that with

probability 3/4 we can couple a lazy random walk X̃t from any start vertex with a stationary
walk by time tmix. Then, for any x, y ∈ V we have

Ex [Ny(2tmix)] >
3

4
· Eπ [Ny(tmix)] >

3π(y)tmix

4
. (8)

Now, if Ny(T) > 1 then Xt first visited y at some random time 0 6 s 6 T . Taking s = 0 gives

Ex [Ny(2tmix) | Ny(2tmix) > 1] 6
2·tmix∑
t=0

p(t)
y,y 6 2 · tmix + 1 6 3 · tmix. (9)

If we apply (7) to N(y,X), then it follows from (8) and (9) that for any x, y ∈ V we have

Px[τy 6 T] >
Ex [Ny(2tmix)]

Ex [Ny(2tmix) | Ny(2tmix) > 1]
>

3π(y)tmix

8
· 1

3 · tmix
=
π(y)

8
. (10)

9

By the natural coupling between trajectories of the simple and lazy random walks (adding in
the lazy steps) it follows that (10) also holds for the simple random walk.

Now, applying Theorem 3.1 to (10) shows that for any x, y ∈ V there exists a strategy for the
ε-TBRW to hit y within 2 · tmix steps which has success probability at least (π(y)/8)1−ε. Thus
if we run this strategy for 2 · tmix steps then repeat if necessary, we see that the expected time
for the ε-TBRW to hit y from x is at most 2 · tmix/(π(y)/8)1−ε 6 16π(y)ε−1 · tmix. Since there
exists an optimal strategy for hitting any vertex which is independent of time [5, Theorem 5]
we conclude that this bound also holds for the ε-BRW.

To prove the second bound we shall get a different bound on returns (replacing (9)) which is
independent of y. By [27, Lemma 1] and [27, Lemma 2], for any T > 0 and y ∈ V , we have

T∑
t=0

p(t)
y,y 6

e

e− 1

trel∑
t=0

p(t)
y,y + T · π(y) 6

e

e− 1
· 6π(y)

ndavg
dmin

√
trel + 1 + T · π(y). (11)

Now since trel 6 tmix 6 2thit + 1 6 2n3 + 1 6 3n3 by [23, (10.24)] and [1, (6.14)] we have

n
√
trel + 1 + tmix 6 2n

√
tmix + tmix 6 2n(tmix)

2/3 + tmix 6 4n(tmix)
2/3. (12)

Thus by (11) and (12) and since 12e/(e− 1) < 19 we have

2tmix∑
t=0

p(t)
y,y 6 π(y)

(
6e

e− 1

davg
dmin

· n
√
trel + 1 + 2tmix

)
6 21π(y)

ndavg
dmin

(tmix)
2/3 . (13)

Now, using the bound (13) on Ex [Ny(2tmix) | Ny(2tmix) > 1] instead of (9) in (10) gives us

Px[τy 6 T] >
3π(y)tmix

8
· 1

21π(y)
ndavg
dmin

(tmix)
2/3
>
dmin(tmix)

1/3

60ndavg
.

Now, by the same steps as before there is a strategy for the ε-BRW to hit any y from any x in

time at most
(

60ndavg
dmin(tmix)1/3

)1−ε
· 2tmix 6 120 (ndavg/dmin)1−ε (tmix)

2+ε
3 as claimed.

4. Increasing Stationary Probabilities

In this section we shall consider the problem of how much an unchanging strategy can affect
the stationary probabilities in a graph. Azar et al. studied this question and made an appealing
conjecture. Our result on the hitting times of the ε-BRW allows us to make progress towards
this conjecture. We also derive some more general bounds on stationary probabilities for classes
of Markov chains which include certain regimes for the ε-BRW, and tackle the question of when
the stationary probability of a vertex can be changed by more than a constant factor.

4.1. A Conjecture of Azar et al.

Azar, Broder, Karlin, Linial and Phillips make the following conjecture for the ε-BRW [5,
Conjecture 1]. Their motivation was that a corresponding bound holds for the related process
studied by Ben-Or and Linial [6].

Conjecture 4.1 (ABKLP Conjecture). In any graph, a controller can increase the stationary
probability of any vertex from p (for the SRW) to p1−ε.

10

This conjecture becomes particularly attractive in the context of Theorem 3.1, which implies
that in the ε-TBRW a controller may increase the probability of being at any given vertex at
time t from pt to p1−ε

t , where for non-bipartite graphs we have pt → p. However, a crucial point
is that the strategy guaranteed by Theorem 3.1 depends on t, and so we cannot necessarily
achieve this boosting uniformly over t, or by using only the ε-BRW.

In fact, the conjecture fails for the graph K2, as no strategy for the ε-BRW can increase
the stationary probability over that of a simple random walk. This motivates weakening the
conjecture by replacing p1−ε by p1−ε+on(1); however this fails for the star on n vertices, and
non-bipartite counterexamples may be obtained by adding a small number of extra edges to the
star. In each of these counterexamples there is a vertex with constant stationary probability,
and for large graphs this can only happen if there is a large degree discrepancy. We believe the
following should hold.

Conjecture 4.2. In any graph a controller can increase the stationary probability of any vertex
from p to p1−ε+δ, where δ → 0 as p→ 0.

Azar et al. prove a weaker bound of p1−O(ε) for bounded-degree regular graphs. As a corollary
of Theorem 3.4 we confirm Conjecture 4.2 for any graph where tmix is sub-polynomial in n. Our
techniques are different to those of Azar et al. and allow us to cover a larger class of graphs,
including dense graphs as well as sparse ones. In addition, for graphs where dmax/davg and tmix

are both sub-polynomial our result achieves the same exponent (up to lower order terms) as the
conjectured bound.

Theorem 4.3. In any graph a controller can increase the stationary probability of any vertex
from p to p1−ε+δ, where δ := δG = ln (16 · tmix) /|ln p|.

Proof. By Theorem 3.4 for each vertex v there exists a strategy so that the return time to v is
at most 16 · π(v)ε−1 · tmix. Let q denote the stationary probability of v for this ε-B walk. Then
as stationary probability is equal to the reciprocal of the return time by [23, Prop. 1.14] we
have q > π(v)1−ε/(16tmix), for the simple random walk p = π(y). For δ = ln (16tmix) /|lnπ(y)|
we have

q/p1−ε+δ >
π(v)1−ε

16tmix
· π(y)−δ

π(v)1−ε =
exp

(
− lnπ(y) · ln(16·tmix)

|lnπ(y)|

)
16tmix

= 1.

The dependence of δ on |ln p| in Theorem 4.3 imposes the condition that any vertex we wish to
boost must have sub-polynomial degree. This condition is tight in some sense as no stationary
probability bounded from below can be boosted by more than a constant factor. In Section 4.2
we prove a weaker boosting effect which holds in any sublinear polynomial-degree regime.

In the context of d-regular graphs, Azar et al. state,

The interesting situation is when ε is not substantially larger than 1/d; otherwise,
the process is dominated by the controller’s strategy. ([5])

Note that for d-regular graphs with d = ω(log n) the conjectured boost from p to p1−ε does
not change the stationary probabilities by more than a constant factor in this regime. For this
reason we shall focus on the following question for d-regular graphs.

Question 4.1. When can we boost the stationary probability by more than a constant factor in
the ε-BRW with ε = Θ(1/d)?

11

As noted when d = ω(log n) such a boost is stronger than for the AKBLP conjecture and we
think Question 4.1 is quite natural.

We will consider not only regular graphs but also almost-regular ones, that is, graphs in which
degrees differ by at most a constant factor. An interesting class is the almost-regular graphs
of linear degree; we say that a graph is everywhere dense if it has minimum degree Ω(n). We
consider Question 4.1 for such graphs in Section 4.3. In particular, we show that the answer to
Question 4.1 is negative for everywhere dense graphs. This is essentially best possible, since we
show that the corresponding result does not hold for nα-regular graphs for any α < 1. However,
it does hold for almost every almost-regular graph in this regime.

4.2. Boosting in the polynomial degree regime

In this section we prove the following boosting result for graphs whose degree is bounded by a
polynomial function of n.

Corollary 4.4. Let G be any graph satisfying dmax 6 nα for some α ∈ (0, 1). Then a controller
for the ε-BRW can increase the stationary probability of any vertex from p to p1−cαε/ ln dmax for
some cα > 0.

Let G = (V,E) be any connected, undirected graph with degree bound d 6 C. We will
associate to every edge a positive weight given by the function w : E → R+. We consider a
random walk that picks an incident edge with probability proportional to its weight. Recall
that the stationary distribution of this walk is given by π(x) =

∑
y∼xw(y, x)/(2W), where

W :=
∑
{r,s}∈E(G)w(r, s) is the total sum of weights assigned.

Fix a vertex u ∈ V and let −1 < a <∞. We consider the weight function given by

w(r, s) = (1 + a)max{d(u,r),d(u,s)} , (14)

where d(·, ·) is the graph distance. Note that this particular weight function satisfies the fol-
lowing property:

∀x, y, z : {x, y}, {x, z} ∈ E(G) :
w(x, y)

w(x, z)
∈ {1 + a, (1 + a)−1, 1}. (15)

Proposition 4.5. Let −1 < a <∞, and let G be an edge-weighted graph whose weights satisfy
(15). Then, provided ε > −a if a 6 0 and ε > a/(1 + a) if a > 0, the ε-BRW can emulate the
walk given by those weights.

Proof. It suffices to prove that we may emulate a step of the walk from any given vertex x. If
all edges meeting x have the same weight, we simply “bias” towards the uniform distribution
on neighbours of x. Otherwise a 6= 0, d = d(x) > 2 and there are exactly two weights, w1

and w2, incident to x, which satisfy w1 = (1 + a)w2. Suppose there are k incident edges of
weight w1 and d − k of weight w2; clearly 1 6 k 6 d − 1. Now we need to construct a bias
matrix B which will satisfy the walk probabilities given by (14). Note that if w(xy) = w1 then
px,y = w1/(kw1 + (d− k)w2) = (1 + a)/(ak + d) and otherwise px,y = 1/(ak + d).

We first consider the case a > 0, i.e. w1 > w2. It is sufficient to assume ε = a
1+a , since if it is

larger we may use the ε-BRW to emulate the a
1+a -BRW. In this case set

Bx,z =

{
da+2d−k
dak+d2

if w(xz) = w1

d−k
dak+d2

if w(x, z) = w2.

12

This gives
∑

z∼xBx,z = 1, all entries are positive and

px,z =
a

1 + a
·Bx,z +

1

1 + a
· 1

d
=

{
a+1
ka+d if w(xz) = w1

1
ka+d if w(x, z) = w2.

The case a < 0 may be reduced to the previous case by replacing a with a′ = −a
1+a , noting that

ε > −a is equivalent to ε > a′

1+a′ .

Theorem 4.6. Let G be any graph such that dmax > 3 and let ε > 0. Then a controller for the
ε-BRW can increase the stationary probability of any vertex from p to p1−ε̃, where

ε̃ =
ln(1− ε) ln p

ln(dmax − 1) lnn
> 0.

Proof. Consider a walk Q with weighting scheme w(r, s) = (1− ε)max{d(u,r),d(u,s)}. Note there
are at most dmax(dmax−1)i−1 vertices at distance exactly i from u (and also edges from vertices
at distance i− 1 to those at i). Thus, writing W for the total weight of the graph, for any r,

W 6
r∑
i=1

dmax(dmax − 1)i−1 · (1− ε)i−1 + n · davg · (1− ε)r

6 (2(dmax − 1)r + n · davg) · (1− ε)r.

Thus if we let r = bln(n)/ ln(dmax−1)c thenW 6 davg·n1+κ, where κ = ln(1−ε)/ ln(dmax−1) < 0.
For any u ∈ V it follows that πQ(u) > d(u)/davg · n1+κ = n · π(u)/n1+κ and so for δ > 0,

πQ(u)

π(u)1+κ+δ
>
n · π(u)

n1+κ
· n1+κ+δ

(n · π(u))1+κ+δ
= (n · π(u))−κ−δ · nδ > 1,

where the final inequality holds by taking δ = |κ ln(nπ(u))|/ lnn.

Proof of Corollary 4.4. The statement holds for paths and cycles, and for graphs such that
dmax > 3 it follows from Theorem 4.6 since − ln(1− x) > x for any x 6 1.

4.3. Boosting by more than a constant factor

In this section we show that in the case of an everywhere-dense graph, stationary probabilities for
the ε-BRW cannot exceed those for the SRW by more than a constant factor, giving a negative
answer to Question 4.1. In fact we show that this bound applies more generally to a class of
(not necessarily reversible) Markov chains which resemble simple walks on everywhere-dense
graphs. In contrast, we show that there exist regular graphs with polynomial degree arbitrarily
close to linear for which the answer to Question 4.1 is positive. However, such graphs are rare:
the answer is negative with high probability for a random graph with the same density, and
hence for almost all almost-regular graphs in the polynomial regime.

Let Q = (qu,v)u,v∈V be a transition matrix supported on G. For c, C such that 0 < c 6 C <∞
we say that the corresponding Markov chain is a (c, C)-simple walk on G if for every uv ∈ E(G),

c

d(u)
6 qu,v 6

C

d(u)
.

Proposition 4.7. For any graph G with minimum degree dmin > α ·n for some constant α > 0,
any strategy Q for the ε-BRW with ε 6 β/n satisfies πQ(u) 6 (1 + β)α−2π(u) for every u ∈ V .

13

Proof. Note that any strategy for the ε-BRW satisfies

1

d(u)
(1− ε) 6 qu,v 6 ε+

1

d(u)
(1− ε),

and, since ε 6 β/n 6 β/d(u), this is a ((1− ε), (1 + β))-simple walk on G. Noting that

π(u) =
d(u)∑
v∈V d(v)

>
α

n
,

it is sufficient to verify that for any (c, C)-simple walk on G, the stationary probability πQ
satisfies πQ(u) 6 C/(αn) for every u ∈ V . This is true since

πQ(u) =
∑
v∈V

πQ(v)qv,u 6
C

dmin

∑
v∈V

πQ(v) 6
C

αn
.

We shall now give some bounds on the stationary distribution of (c, C)-simple walks based on
variants of the mixing time. Recall the definitions of the `∞ mixing time t∞ and the separation
time tsep from Section 2 and note that throughout we follow the convention that 1/0 =∞.

Proposition 4.8. Let G be a connected graph and Q be a (c, C)-simple walk on G. Let τ1 =
min {tsep, 3 log(n)/| log λ∗|} and τ2 = min {t∞, 3 log(n)/| log λ∗|}. Then

cτ1

2
· π(x) 6 πQ(x) 6 2Cτ2 · π(x) for all x ∈ V.

Proof. Let P̃ and Q̃ be the LRW and lazy (c, C)-simple walk on G respectively and observe
that for any u, v ∈ E we have q̃u,v = (1 + qu,v)/2 > (1 + cpu,v)/2 > c(1 + pu,v)/2 > cp̃u,v since
c 6 1. Thus q̃ty,x > ct · p̃ty,x for any t > 1 and x, y ∈ V . Recall the definition of the separation

distance tsep from p̃
(tsep)
x,y > e−1

e · π(y) for any x, y ∈ V . Thus for any x ∈ V we have

πQ(x) =
∑
y∈V

πQ(y) · q̃(tsep)
y,x

> ctsep ·
∑
y∈V

πQ(y) · p̃(tsep)
y,x

> ctsep ·
∑
y∈V

πQ(y) · e− 1

e
π(x)

= ctsep · e− 1

e
· π(x).

(16)

For the upper bound recall the definition of the `∞-mixing time t∞ <∞ from (2) and observe

that p̃
(t∞)
x,y 6 e+1

e · π(y) for any x, y ∈ V . Thus by similar steps as (16) we have

πQ(x) 6 Ct∞ · e+ 1

e
· π(x).

If the graph G is aperiodic then λ∗ < 1 for the SRW P. In this case we recall the following

inequality,
∣∣∣p(t)
x,y/π(y)− 1

∣∣∣ 6 λt∗/minx∈V π(x) for any t > 1 and x, y ∈ V by [23, (12.11)]. Thus,

since minx∈V π(x) > 1/n2, if we take t = 3 log(n)/| log λ∗| then we have

π(y)/2 6 π(y) (1− 1/n) 6 p(t)
x,y 6 π(y) (1 + 1/n) 6 2π(y),

as we can assume n > 2 or else the result holds vacuously. Consequently, again similarly to
(16), we have ct · π(x)/2 6 πQ(x) 6 Ct · 2π(x). The result follows by taking the maximum of
the first two bounds with t and observing that e−1

e > 1/2 and e+1
e 6 2.

14

Now we show that for the Erdős–Rényi random graph in the polynomial average degree regime
the answer to Question 4.1 is negative w.h.p.

Proposition 4.9. Let 0 6 β <∞ be a fixed real and G d∼ G(n, p) where np ∼ nα for some fixed
real 0 < α 6 1. Then w.h.p. for every vertex u the controller of (β/np)-BRW can only increase

the stationary probability of u from π(u) to at most 3 (1 + β)6/α · π(u).

Proof. To begin, by the union and Chernoff bounds [24, Cor. 4.6] we have

P
[
∪x∈V

{
|d(x)− np| > 3

√
np log n

}]
6 n · 2 exp

−np(3

√
log n

np

)2

/3

 6 1

n2
.

Thus w.h.p., for any (β/np)-BRW strategy Q we have

qx,y 6
β

np
+

1− β/np
d(x)

6
1

d(x)

(
1 + β + 100β ·

√
log n

np

)
.

Since also qx,y > (1 − ε)/d(x) = (1 − β/np)/d(x), we see that for any fixed strategy, Q is a(
1− β/np, 1 + β + 100β ·

√
(log n)/np

)
-simple walk.

For a graph G let L = I − D−1/2AD1/2 the normalised Laplacian, where D is a diagonal
matrix with dx,x = d(x), A is the adjacency matrix, and I is the identity matrix. By [9, Thm.
1.2] there exists some c <∞ such that if np > c log n then w.h.p. we have

1− (4 + o(1))/
√
np 6 λ2(L(G(n, p))) 6 λn(L(G(n, p))) 6 1 + (4 + o(1))/

√
np. (17)

Observe that since the diagonal matrix D is invertible, the matrices L and D−1/2LD1/2 = I−P
are similar (and thus have the same eigenvalues). Thus, by shifting the eigenvalues of L to
correspond to the SRW P, [9, Thm. 1.2] implies that for np > c log n we have λ∗ 6 (4 +
o(1))/

√
np w.h.p.. Thus we have | log λ∗| > (α/2) log n − log 4 − o(1) w.h.p. and consequently

3 log(n)/| log λ∗| 6 (6/α)(1 + 2/ log n) w.h.p. for large n. Thus by Proposition 4.8 we have

πQ(x) 6 2

(
1 + β + 100β ·

√
log n

nα

)(6/α)(1+2/ logn)

π(x) 6 3 (1 + β)6/α π(x),

w.h.p. for suitably large n when 0 < α 6 1 and 0 6 β <∞ are fixed, as claimed.

Finally, we give a general d-regular example with d = poly(n) for which we can answer
Question 4.1 in the affirmative. These graphs have the largest possible diameter ≈ n/d and
feature several bottlenecks.

Proposition 4.10. Fix any 0 < α < 1 and let d = nα, ε = Θ(1/d). Then there exists a
d-regular graph for which the stationary distribution of any given vertex can be boosted by the
ε-TB random walk from 1/n to Ω(1/nα).

Proof. Let d = nα and ` = n1−α and consider the (`,Kd,d)-ring pictured in Fig. 2. The (`,Kd,d)-
ring has N = 2`(d+ 1) vertices and is d+ 1-regular graph, thus in our case N ∼ 2n.

Let x, u be the end points of one of the edges which connects two units, and u1, . . . , ud be the
vertices in the Kd,d attached to u (see Fig. 2). Assuming that x is closer to the target vertex

15

we wish to boost, the ε-BRW strategy is clear: we should prefer the walk at u to visit x and
thus set Bu,x = 1 and Bu,ui = 0, for all 1 6 i 6 d where B is the bias matrix. Now we see that

w(u, x)

w(u, ui)
=
ε+ (1− ε)/(d+ 1)

(1− ε)/(d+ 1)
= 1 +

ε(d+ 1)

(1− ε)
= 1 + Ω(1).

We seek to bound the total weight W . If we sum from the target v, where we set the adjacent
weights to 1, then we see that the ith Kd,d away from v must have weights that are at most
(1 + Ω(1))−i, thus

W 6 2
∑̀
i=0

(1 + Ω(1))−i(d2 + 2d+ 1) = O(d2).

Now we see a boosting under this ε-TB boosting strategy from 1/N to p′ where

p′ > d/O(d2) = Ω(1/d) = Ω(N−α).

x u

u1

u2

u3

Figure 2: The (`,Kd,d)-ring consists of ` complete bipartite graphs on d vertices arranged in a
cycle. The (`,K3,3)-ring, for some ` > 2, is shown above.

5. Computing Optimal Choice Strategies

In this section we focus on the following problem: given a graph G and an objective, how can
we compute a strategy for the ε-TBRW which achieves the given objective in optimal expected
time? Unless otherwise specified, this section considers walks on the more general class of
strongly-connected directed graphs. A strategy consists of a family of controller bias matrices
{B(Ht)}, where t > 0 is the time and Ht is the history of the walk up to time t. Azar et al. [5]
considered the following computational problems:

Stat (G,w): Find an ε-bias strategy min/maximising
∑

v∈V wv · πv for vertex weights wv > 0.

Hit (G, v, S): Find an ε-bias strategy minimising
∑

v∈V `v · HεB
v (S) for a given S ⊆ V (G),

v ∈ V (G) and vertex weights `v > 0.

Notice that for Stat to make sense we must fix an unchanging strategy and there exists an
unchanging optimal strategy for Hit, see (1). Azar et al. showed Stat and Hit are tractable.

Theorem 5.1 (Theorems 6 & 12 in [5]). Let G be any connected directed graph, v ∈ V (G) and
S ⊆ V (G). Then Stat (G,w) and Hit (G, v, S) can be solved in polynomial time.

We introduce the following computational problem not considered by Azar et al.

16

Cov (G, v): Find an ε-TB strategy minimising CεTBv (G) for a given v ∈ V (G).

Unlike for Stat and Hit, an optimal strategy for Cov on essentially any graph cannot be un-
changing as it will need to adapt as some vertices become visited (consider the walk on a path
started from the midpoint). Corollary 5.7 shows that there is an optimal strategy for Cov which
is conditionally independent of time, in that no more information from Ht than the set of un-
covered vertices is used. This fact means that an optimal strategy for Cov can be described
using only finitely many bias matrices.

Additionally one can show that, for undirected graphs, the ε-TBRW exhibits the same di-
chotomy as the CRW studied in [17], by a simple adaptation of the proof of hardness in [17].
That is while optimising Hit admits a polynomial-time algorithm, even computing an individ-
ual bias matrix B(Ht) from an optimal strategy for Cov is NP-hard. We may view this as an
on-line approach to solving Cov, where we compute only the specific bias matrices needed as the
random walk progresses; clearly this is an easier problem than precomputing an entire optimal
strategy. Note that at most n bias matrices will need to be computed in the course of any given
walk, since an optimal bias matrix only depends on the uncovered set, which changes at most
n times; however, a full optimal strategy may require exponentially many such matrices.

In fact we will prove PSPACE-completeness for the (online) covering problem in the more
general setting of directed graphs. Again we consider the on-line version of the problem, which
represents computing a single row of the bias matrix. The input is a (directed) graph G, a
current vertex u, and a visited set X containing u. We require G to be strongly connected, so
that the walk will almost surely eventually visit all vertices. The visited set X must have the
property that a single walk ending at u could have visited precisely those vertices; in particular,
any set X which contains u and induces a strongly connected subgraph is feasible.

NextStep (G, u,X): Output a probability distribution over the neighbours of u (a row of the
bias matrix) which minimises the expected time for the ε-TBRW to visit
every vertex not in X, assuming an optimal strategy is followed thereafter.

Any such problem may arise during the ε-TBRW on G starting from some vertex in X, no
matter what strategy was followed up to that point, since with positive probability the bias
coin did not allow the controller to influence any previous walk steps. We also introduce the
following decision version of NextStep (G, u,X) for X ⊂ V , u ∈ X and y, z ∈ Γ(u):

BestStep (G,X, y, z): Is tεTBcov (y,X ∪ {y}) < tεTBcov (z,X ∪ {z})?

We can also consider the decision problem for the expected time to cover a given unvisited set
X from a vertex u:

Cost (G, u,X,C): Is tεTBcov (u,X) < C?

We show that all three of the problems above can be solved in polynomially bounded space.

Theorem 5.2. Let G be any strongly connected directed weighted graph and u ∈ V and X ⊆ V
be any connected vertex subset containing u. Further let x, y ∈ Γ(u) and C < ∞. Then
Cost (G, u,X,C) and BestStep (G,X, x, y) are in PSPACE.

Remark 5.3. Note that NextStep(G, u,X) is not a decision problem, and so not in PSPACE;
however, it can be solved by using a polynomial number of calls to BestStep to identify an
optimal neighbour of u. This is since there is an optimal solution to NextStep supported on a
single neighbour by Corollary 5.7.

17

We show all three problems are PSPACE-hard, thus Cost and BestStep are PSPACE-complete.

Theorem 5.4. For any fixed ε ∈ (0, 1) the problems Cost, BestStep and NextStep are
PSPACE-hard on strongly connected directed graphs.

In [16] we proved that the NextStep problem for the related CRW on undirected graphs is
NP-hard. The same argument holds for the ε-biased random walk and in Appendix B we shall
provide some details of how to adapt the proof to give the following.

Theorem 5.5. For any fixed ε ∈ (0, 1) the problems Cost, BestStep and NextStep are NP-hard
on undirected graphs, even under the restriction dmax 6 3.

In a similar vein, the proofs of Theorems 5.4 and 5.2 can also be fairly easily adapted so the
same results hold for the CRW of [17, 16].

5.1. Properties of Optimal Covering Strategies

The following result from [17] says that one can encode the cover time problem as a hitting time
problem on a (significantly) larger graph. In [17] this is proved for the CRW; the same proof
applies to the ε-TBRW.

Lemma 5.6 (Lemma 7.7 of [17]). For any graph G = (V,E) let the (directed) auxiliary
graph G̃ = (Ṽ , Ẽ) be given by Ṽ = V × P(V) (where P(V) is the power set) and Ẽ =
{((i, S), (j, S ∪ j)) | ij ∈ E,S ⊆ V }. Then solutions to Cov (G, v) correspond to solutions to
Hit
(
G̃, (v, {v}),W

)
and vice versa, where W = {(u, V) | u ∈ V }.

Recall that if the next step is a bias step then the ε-TBRW strategy will output a probability
distribution over the neighbours of the current vertex which depends on the history of the walk.

Corollary 5.7. There exists an optimal strategy for the ε-TBRW cover time problem which is
unchanging between times when a new vertex is visited. Moreover, given a fixed visited set X,
for each vertex x ∈ X there is fixed y ∈ Γ(x) such that whenever the walk is at x the distribution
over neighbours of x given by the strategy is δy, that is it always moves to y when given the
choice.

Proof of Corollary 5.7. We shall appeal to Lemma 5.6 and consider the problem of covering G
as hitting the set W in the auxiliary graph G̃. This is now an instance of the optimal first-
passage problem in the context of Markov decision processes [11] (see also [5]), and the existence
of a time independent deterministic optimal policy follows from [11, Thm. 3, Ch. 3].

Regarding time independence, notice that although the strategy for hitting the vertex W in
G̃ is independent of time this is not strictly true of the original cover time problem. Recall
G̃ is a directed graph which consists of a series of undirected graphs linked by directed edges,
the undirected graphs represent the sub-graphs of G induced by possible visited sets and the
directed edges correspond to the walk in G visiting a new vertex. Since the strategy for G̃
is independent of time, between the times when a new vertex is added to the covered set the
strategy on G is fixed.

Regarding the term deterministic; using the terminology from [11], the set of actions at a
given time are the neighbours of current vertex policy/strategy is a probability distribution
over the set of actions. Derman [11] states that a policy is deterministic if at every possible step
in the process these distributions are supported on a single action. Since in our case there is a
function taking the vertices of G̃ to those of G this corresponds to a strategy always choosing the
same fixed neighbour of a given vertex during epochs when the visited set does not change.

18

5.2. The BestStep and Cost problems are in PSPACE

In light of Lemma 5.6 we can solve Cov(G, v) in exponential time using Theorem 5.1, by solv-
ing the associated hitting time problem on the (exponentially sized) auxiliary graph G̃. We
shall now prove that the problems BestStep, NextStep and Cost can be solved using polyno-
mially bounded space for any finite irreducible Markov chain, where that NextStep equates to
computing the optimal strategy for one step in the on-line cover time problem.

Proof of Theorem 5.2. For a set S ⊂ V let tεTBcov (s, S) be the optimal expected cover time of G
from s ∈ S by the ε-TBRW assuming that S has already been visited. Let ∂S = {y ∈ V \ S :
∃x ∈ S : xy ∈ E}. By Corollary 5.7 if we consider steps of the walk between times when a new
vertex is added to the set of visited vertices then the strategy can be just thought of as a fixed
bias matrix.

Claim. Let S ⊂ V , s ∈ S and assume for each x ∈ ∂S we have access to the value tεTBcov (x, S ∪
{x}). Then we can compute tεTBcov (s, S) and a bias matrix B, which is a optimal bias matrix
while S is the visited set, in poly(n) space.

Proof of claim. Given S ⊂ V , s ∈ S and a bias matrix B, let tεTBcov (s, S,B) be the expected
cover time from s assuming that S has been covered and strategy B is followed until the first
time the walk exits S and an optimal strategy is followed thereafter. If follows that

tεTBcov (s, S) = inf
B
tεTBcov (s, S,B), (18)

where the infimum is over stochastic matrices supported on the edges of G. Since G is strongly
connected the random walk on G is irreducible and so for any ε < 1 and B it follows that
tεTBcov (s, S,B) is at most polynomial in n.

The idea is that for a fixed B, tεTBcov (s, S,B) is the solution to a discrete harmonic equation
with boundary values {tεTBcov (x, S ∪ {x})}x∈∂S . Indeed, let P be the transition matrix of the
SRW on G, and hx := tεTBcov (x, S ∪ {x}) for any x ∈ S ∪ ∂S. Then

hx =

{
1 +

∑
y (pxy(1− ε) + εbx,y) · hy if x ∈ S

tεTBcov (x, S ∪ {x}) if x ∈ ∂S.

We can then solve this in polynomial space since the values {tεTBcov (x, S ∪ {x})}x∈∂S are known.
Since by Corollary 5.7 there is an optimal strategy minimising cover time where the bias distri-
butions are only supported on a single neighbour, it suffices to only consider matrices B with
a single 1 in each column. There are at most nn of these and so by Eq. (18) we can determine
tεTBcov (s, S) by calculating tεTBcov (s, S,B) for each such B sequentially and only storing the best
pair B, tεTBcov (s, S,B) found so far. ♦

We now use the claim to show that we can calculate the value tεTBcov (u,X) in poly(n) space,
consisting of the space required for the claim plus additional space to store up to n2 other
values, for each pair u,X. To be precise, we prove by induction on n − |X| that we may
calculate tεTBcov (u,X) using additional storage for at most (n − |X|)n other values. If |X| = n
then X = V and tεTBcov (u,X) = 0. If |X| = n− k and the result holds for all larger sets then we
may compute each of tεTBcov (x,X ∪{x}) for x ∈ ∂X using only (k−1)n additional storage spaces,
storing the results in at most n further storage spaces, and then use the claim to compute
tεTBcov (u,X) from these values. Thus the result holds for all pairs u,X by induction, and so
computing tεTBcov (u,X) and comparing it with C solves Cost (G, u,X,C) in poly(n) space.

19

The claim also gives us the matrix B minimising tεTBcov (u,X,B), and the column of this matrix
corresponding to the vertex u solves NextStep (G, u,X). Finally, we can solve the problem
BestStep (G,X, x, y) by computing both tεTBcov (x,X ∪ {x}) and tεTBcov (y,X ∪ {y}) and comparing
them.

5.3. The Cost problem is PSPACE-hard

We aim to show that Cost is PSPACE-hard via a reduction to quantified satisfiability, which
is the canonical PSPACE-complete problem [4]. To define this problem let φ be a conjunctive
normal form for variables x1, . . . , x2n, where we can assume that each clause contains three
literals. The decision problem is then as follows.

QSAT(φ): ∃x1, ∀x2,∃x3, . . . ,∀x2n such that φ(x1, x2, . . . , x2n) holds?

Let N(φ, x) be the number of clauses of φ featuring the literal x (where x ∈ {xi, xi | i ∈
{1, . . . , n}}) and C be the total number of clauses. We can assume that no two complementary
literals xi and xi appear in the same clause, since otherwise this clause is trivially satisfied.
We shall now introduce some gadgets which will help us make the reduction between the two
problems. For simplicity, we shall assume ε = 1/4 throughout; the proof can be adapted to
a general constant value of ε with suitable changes to the length parameters ` of the various
gadgets.

5.3.1. The Gadgets

The Quincunx Gadget Q(`). This gadget allows the walker to choose between two alter-
natives with very high probability. It consists of vertices vi,j for 0 6 i 6 j 6 `, where the
parameter ` is an odd integer, together with two other vertices x, y. The walker enters at v0,0

and leaves at either x or y. Each vertex vi,j for j < ` has two outedges to vi,j+1 and vi+1,j+1;
each vertex vi,` has a single outedge, which goes to x if 2i < ` and to y if 2i > `. We refer to
v0,0 as the “entrance”, x as the “left exit” and y as the “right exit”. Note that the time taken
to cross the quincunx is `+ 1 deterministically.

Lemma 5.8. If the controller of the 1/4-TBRW wishes to exit Q(`) at x (or y) then they may
achieve this with probability at least 1− 0.99`.

Proof. We think of each step from vi,j to vi,j+1 as moving “left”, and each step from vi,j to
vi+1,j+1 as moving “right”. In order to maximise the probability of exiting at x, the controller
should choose to move left whenever possible. In this case the number of times the walk moves
right, R, is given by a binomial random variable with mean µ = 3`/4, and by the multiplicative
Chernoff bound (see e.g [24, Thm. 4.4])

P
[
R >

`

2

]
= P [R > µ/3] <

(
e1/3(3/4)4/3

)µ
=
(

3e1/4/4
)`/2

< 0.99`.

The Steep Hill Gadget H(`). This consists of vertices v0, . . . , v` with directed edges vi−1, vi
and vi, v0 for each i ∈ {1, . . . , `}. Note that H(`) is strongly connected, but (for ` > 1) it is
much easier to reach v0 from v` than vice versa. We refer to v0 as the “bottom” and v` as the
“top”.

20

v0,0

v0,1 v1,1

v0,2 v1,2 v2,2

v0,3 v1,3 v2,3 v3,3

x y

v0

v1

v2

v3

Start

Finish

Figure 3: A Quincunx Gadget Q(3) (left) and a Slow Path Gadget P (3) (right). Removing start,
finish and the adjacent red edges from P (3) leaves a Steep Hill H(3).

The Slow Path Gadget P (`). This consists of a steep hill H(`) together with two extra
vertices, a “start” vertex and “finish” vertex, and directed edges from the start vertex to the
bottom of the hill and from the top of the hill to the finish vertex.

The slow path gadget will play the part of a very long path in the construction which follows;
we use a slow path instead of a simple path in order for the (expected) time to traverse to be
exponentially large even though the gadget has polynomial size. We calculate the expected time
to traverse now.

Lemma 5.9. For any ε < 1, the expected time taken for the ε-TBRW to traverse P (`) from
start to finish, using an optimal strategy, is given by

L(`) :=
11

3

(
8

5

)`
− 2

3
.

Proof. Let Hi be the expected time for the walk to reach the finish from vertex vi, and set
H`+1 = 0. Observe that for any 1 6 i 6 ` we have

Hi = 1 +
3

8
H0 +

5

8
Hi+1,

and H0 = 1 +H1. Using this relation one can show by induction that for any 2 6 j 6 `+ 1,

H0 = 2

(
8

5

)j−1

+

j−2∑
i=1

(
8

5

)i
+Hj .

The result follows by setting j = l + 1 and summing the geometric series, noting that the
expected time to traverse the gadget is 1 +H0.

The Roundabout Gadget R(`p, `q, k). This consists of a cyclic arrangement of k copies of
the slow path P (`p) and k copies of the quincunx Q(`q). Identify the finish vertex of each slow
path with the entrance of a quincunx, and identify the right exit of each quincunx with the start
vertex of the next slow path. We say that the left exits of the quincunxes are the “departure
vertices” of the roundabout, and the right exits of the quincunxes are the “arrival vertices”;
arrival and departure vertices are “corresponding” if they are exits of the same qunicunx.

21

Nexus

Ports

Figure 4: A Roundabout Gadget R(3, 3, 3) (left), with arrival vertices in green and departure
vertices in red, and a Star Connector Gadget S(3, 3) (right).

The Star Connector Gadget S(`, k). The purpose of this gadget is to allow us to make the
visited set of our graph strongly connected. It consists of k steep hills H(`), with their top
vertices identified. The bottoms of the hills we call the “ports” of the star connector, and the
identified top vertices are the “nexus”.

We will use the following simple lemma to bound the time spent inside the star connector.

Lemma 5.10. Consider a star connector S(`, k), with each port having at least one outgoing
edge to some vertex which is not part of the star connector. Start a 1/4-TBRW at any port.
Then, no matter what strategy is employed, the expected time spent in the star connector before

leaving is less than 14 and the probability of reaching the nexus before leaving is less than
(

13
14

)`
.

Proof. Note that from any vertex which is not a port, the next step reaches a port with proba-
bility at least 3

8 , since either there are only two outedges, each chosen with probability at least
3
8 and one of which leads to a port, or we are at the nexus and all outedges lead to ports.
Similarly, from any port there are two outedges and so the next step leaves the star connector
with probability at least 3

8 . Consequently, from any vertex in the star connector there is a

probability of at least
(

3
8

)2
of leaving the star connector within two steps.

It follows that the number of steps taken before leaving is dominated by 2X−1, where X is a
geometric random variable with success probability 9

64 ; this has mean 128
9 − 1 < 14. In order to

reach the nexus the walk needs to take at least `+ 1 steps before leaving, and so the probability

of this is bounded by P [X > d`/2e] 6
(

55
64

)`/2
<
(

13
14

)`
.

We are now able to describe how we encode an instance of QSAT as a graph.

The QSAT Graph G(φ). We shall encode a given QSAT problem on an n variable 3-CNF φ
with r clauses as the QSAT Graph G(φ) with a certain unvisited set X. We shall build this
up in stages. The construction depends on certain length parameters `p, `q, `s for the gadgets
which we choose later.

22

For each clause take one roundabout gadget R(`p, `q, 3) and label its arrival vertices with
the literals appearing in that clause. Take a star connector gadget S(`s, 6r), and identify its
ports with the start vertices of the slow paths and the entrances of the quincunxes in these
roundabout gadgets. Mark as unvisited every vertex, other than the start vertices, in the slow
paths of the roundabout gadgets. These will form the entire unvisited set U .

For each literal x, we construct a chain of N(φ, x) quincunxes Q(`q) as follows. For each
clause containing x in turn, take a quincunx and two slow paths. Identify the right exit of
the quincunx with the start vertex of one of the slow paths, and identify the end vertex of
that slow path with the arrival vertex of the clause roundabout labelled with x. Identify the
corresponding departure vertex with the start vertex of the other slow path, and identify the
end vertex of that slow path with the left exit of the quincunx. Add a directed edge from the
left exit of the quincunx to the entrance of the next quincunx; for the final quincunx, instead
add a directed edge to a new vertex outx. Label the entrance of the first qunicunx as inx. We
refer to this chain of qunicunxes as the x-cascade.

Now, for each i 6 2n we connect the xi-cascade and the xi-cascade as follows. Identify outxi
and outxi to form a new vertex lasti. If i is even, add a new vertex firsti with directed edges
to inxi and inxi . If i is odd, instead add a quincunx, with entrance firsti and left and right
exists identified with inxi and inxi . The odd values are the existentially quantified variables,
and here the controller has a very high probability of being able to choose whether to set xi as
true or false; for even values (universally quantified) this choice is approximately random, and
the controller must therefore cope with an unfavourable sequence of choices for these variables
with some probability which is not too small.

Finally, for each i < 2n identify lasti and firsti+1. Add a slow path from last2n to first1.
Designate first1 as the starting vertex of the walk.

Proof of Theorem 5.4. Our analysis of the time taken to cover the unvisited vertices will focus
on the number of slow paths traversed (counted with multiplicity). Note that once the walk
has crossed the first edge of a slow path, there is no way to leave the whole slow path until it
has been entirely traversed, and clearly it is optimal to do so as quickly as possible, taking a
random time with expectation L := L(`p) independently of the decision to start the slow path.

Suppose that a walker visits the whole set U without visiting the nexus. Then it must have
crossed at least 5r − 1 slow paths, since it must cross three slow paths in each roundabout to
visit U , one slow path to reach each roundabout, and one slow path to leave each roundabout
except the last one visited. However, in order to do this crossing exactly 5r− 1 slow paths, the
walker visit each roundabout exactly once, and must arrive and depart from each roundabout
(except the last) via corresponding vertices, since to do otherwise it would either fail to cross
all paths in that roundabout or cross one of them twice. It also cannot cross the slow path from
last2n to first1. The combination of these factors means that the walker must start from start1,
visit either the x1-cascade or the x1-cascade, visit zero or more roundabouts accessible from
that cascade, returning to the same cascade each time, then reach start2 and continue in a like
manner, visiting every roundabout before reaching final2n. In particular, the cascades visited
correspond to a (possibly incomplete) truth assignment to the variables, and the fact that every
roundabout is accessible from some visited cascade means this truth assignment satisfies φ.

The comments above apply to any walker; we now analyse the performance of the 1/4-TBRW.
If the instance of QSAT is satisfiable, then there exists a strategy to visit U while only crossing
5r − 1 slow paths, which succeeds provided the walker avoids the nexus and makes the desired
choice from each quincunx encountered. This is because the walker can choose which of the
two cascades to visit for each existentially quantified variable, based on which earlier cascades

23

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4

Firstx1

Lastx1/Firstx2

∃x1

inx1 inx1

inx2 inx2∀x2

Lastx2/Firstx3

inx3 inx3∃x3

Lastx3/Firstx4

Lastx4

∀x4
inx4 inx4

Key

Quincunx

Roundabout

Directed edge

Slow Path

Figure 5: The QSAT Graph for the QSAT problem ∃x1,∀x2, ∃x3, ∀x4 : φ(x1, x2, x3, x4), where
φ(x1, x2, x3, x4) = (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x4)∧ (x1 ∨ x3 ∨ x4). For clarity we omit
the star connector, which has six arms attached to each roundabout.

have been visited, in such a way that these cascades give a satisfying assignment, and visit each
roundabout at the first opportunity.

We first introduce two “failure” events. The first, Fn, is that the walker reaches the nexus
before crossing 5r slow paths. Note that the walker can only enter the star connector at most

10r times before crossing 5r slow paths, and so Lemma 5.10 implies that P [Fn] < 10r
(

13
14

)`s ;
this bound is independent of both the strategy followed and the start vertex, provided that this
start vertex is outside the star connector or is one of its ports. Setting `c = a(n+ r), for some
suitable constant a, this is less than 1

2000r

(
3
8

)n
.

The second failure event, Fq, is that the walker fails to make the desired decision at a quincunx
on the first occasion that quincunx is traversed. Since there are 6r+n quincunxes in the graph

in total, this has probability at most (6r + n)
(

99
100

)`q by Lemma 5.8. Setting `q = b(n + r), for
some suitable constant b, this is less than 1

2000r

(
3
8

)n
.

We now bound the expected time for an optimal strategy given that the instance is satisfiable.
The walker can succeed in visiting U while crossing exactly 5r − 1 slow paths with probability

24

at least 1− 1
1000r

(
3
8

)n
. We can control the extra time not spent in slow paths while attempting

to do this. The walker enters the star connector at most 10r times, and each time spends a
random amount of time in the star connector. By Lemma 5.10, the expectation of this time is
less than 14. The time spent in quincunxes is at most (6r+n)`q, and there are a small number
of other steps, at most 3r + 2n, coming from single edges linking quincunxes etc. Thus the
expected time for the attempt is at most (5r − 1)L+ (n+ 6r)(`q + 30).

If the attempt was unsuccessful, he attempts to “reset” by returning to start1 and restarting.
By taking at most one more step, he is outside the star connector or at one of its ports. From
here, he can reach start1 crossing at most three slow paths with probability 1 − 1

1000r

(
3
8

)n
.

A similar analysis applies to this attempt. Consequently the expected number of attempts
taken to return to start1 is at most (1 − 1

1000r

(
3
8

)n
)−1 < 1.001, each taking expected time

3L+ (n+ 6r)(`q + 30). Overall the expected number of additional attempts needed, given that
the first failed, is less than 0.001, and the expected time to “reset” after each attempt is less
than 1.001(3L+ (n+ 6r)(`q + 30)), giving a total expected time until U is visited of at most

(5r − 1)L+ (n+ 6r)(`q + 30) +
1

1000r

(
3

8

)n
((5r + 5)L+ 3(n+ 6r)(`q + 30)).

We may choose an appropriate constant c and set `p = c(n+ r) to satisfy (n+ 6r)(`q + 30) <
1

1000

(
3
8

)n
L. This ensures the value above is at most

Tsat :=

(
5r − 1 +

1

100

(
3

8

)n)
L.

Next we consider the case where the instance of QSAT is not satisfiable. In that case, no matter
how the existentially quantified variables are assigned, there is a way to choose values for the
universally quantified variables, depending on values of earlier variables, which avoids φ being
satisfied. As the walker proceeds through the graph, assuming it does not reach the nexus, each
universally quantified variable is determined by a single step, and though the controller can
influence this step he cannot decrease the probability of either alternative below 3

8 . Thus, with
probability at least

(
3
8

)n
, the truth assignment corresponding to cascades visited does not satisfy

φ; recall that in this case the walker must cross at least 5r slow paths (or visit the nexus before
crossing this number of slow paths, which has probability P [Fn]). Thus for the unsatisfiable
case the expected time taken is at least

Tunsat :=

(
5r − 1 +

99

100

(
3

8

)n)
L.

Thus, for these values of `p, `q, `s, we have a Cook reduction from QSAT(φ) to Cost(G(φ),
start1, U, (Tsat + Tunsat)/2), so Cost is PSPACE-complete.

We next briefly describe how to adapt this argument to prove that BestStep is PSPACE-hard.
Choose a value `′ = O(n+ r) to satisfy

1

3

(
3

8

)n
L < L(`′) <

2

3

(
3

8

)n
L;

this is possible since incrementing `′ increases L(`′) by a factor of less than 2 (and since `′ <
`p = O(n+ r)). We write L′ := L(`′).

Now we modify the construction above to create a graph G′(φ) as follows. Make each round-
about a copy of R(`p, `q, 4) instead of R(`p, `q, 3). Add an extra cascade, with extremal vertices

25

labelled in∗ and out∗ connected by slow paths P (`p) to the spare arrival and departure points
of every roundabout. Add a new vertex start0, with two outedges: one to start1 and the other
leading to a slow path P (`′) which in turn leads to in∗. Finally, add an edge from out∗ to last2n.

In this modified graph, if the walker starts at start1 the same analysis as above applies, with
(5r− 1)L replaced by (6r− 1)L (to account for the extra slow path in each roundabout). Thus
if the instance is satisfiable the expected time started from this point is at most Tsat +rL, and if
it is not satisfiable it is at least Tunsat + rL (since in order to make use of the new cascade from
this starting point, the walker must traverse more than 6r − 1 slow paths). However, starting
from the beginning of the slow path of length `′, the expected time is at most Tsat + rL + L′

(since after traversing this path the walker can, assuming Fn and Fq do not occur, visit all of
U using 6r − 1 other slow paths). It is also at least (6r − 1)L + L′ − P [Fn]. By choice of L′

these values lie between Tsat + rL and Tunsat + rL.
Thus, starting at start0, the optimal strategy is to prefer start1 if the instance is satisfi-

able and the the other outneighbour if not. This gives a Cook reduction from QSAT(φ) to
BestStep(G′(φ), start0, U). Notice that the unique solution to BestStep(G′(φ), start0, U) is to
give full weight to one of the two neighbours, thus both problems are PSPACE-hard. PSPACE-
hardness for BestStep follows from Remark 5.3.

6. Concluding Remarks and Open Problems

In this paper we extended the previous work on the ε-biased random walk to include strategies
which may depend on the history of the walk. Our motivation for this is the cover time problem
for which we obtained bounds using a new technique that allows us relate the probability of
any event for the ε-biased walk to the corresponding event for a simple random walk. This
technique also allowed us to make progress on a conjecture of Azar et al. [5]. We note that
this conjecture requires some further technical conditions not given in the original statement.
However, as discussed in Section 4, the only case necessitating this extra condition appears to
be that of graphs with large entries in the stationary vector, and we believe that the following
slightly refined version of their conjecture should hold.

Conjecture 4.2. In any graph a controller can increase the stationary probability of any vertex
from p to p1−ε+δ, where δ := δ(G)→ 0 as p→ 0.

We also showed that computing an optimal next step for the ε-TBRW to take in the online
version of the covering problem is PSPACE-complete on directed graphs. The class PSPACE is a
natural candidate for the covering problem given that some suitably intricate Markov decision
problems and route planning problems are PSPACE-complete [28]. We believe that the problem
is also PSPACE-hard for undirected graphs, although we can only show it is NP-hard.

Conjecture 6.1. For undirected graphs BestStep is PSPACE-hard.

The difficulty in establishing Conjecture 6.1 is that on undirected graphs it is difficult to force
the walk to make irreversible decisions and so it is not clear how to create gadgets with the sort
of one-way nature typical in PSPACE reductions [10]. In particular there does not seem to be
an easy way to adapt our proof for directed graphs to the undirected case.

Acknowledgements

J.H. was supported by ERC Starting Grant no. 639046 (RGGC) and by the UK Research
and Innovation Future Leaders Fellowship MR/S016325/1. T.S. and J.S. were supported by

26

ERC Starting Grant no. 679660 (DYNAMIC MARCH). J.S. was also supported by EPSRC
project EP/T004878/1. J.S. would like to thank Dylan Hendrickson and Jayson Lynch for
some interesting discussion about PSPACE. We thank Sam Olesker-Taylor for spotting an error
in an earlier version of this work.

References

[1] D. Aldous and J. A. Fill. Reversible Markov chains and random walks on graphs, 2002.
Unfinished monograph, recompiled 2014.

[2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In 20th Annual Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, 29-31 October 1979, pages
218–223. IEEE Computer Society, 1979.

[3] N. Alon and M. O. Rabin. Biased coins and randomized algorithms. Advances in Computing
Research, 5:499–507, 1989.

[4] S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[5] Y. Azar, A. Z. Broder, A. R. Karlin, N. Linial, and S. Phillips. Biased random walks.
Combinatorica, 16(1):1–18, 1996.

[6] M. Ben-Or and N. Linial. Collective coin flipping. In S. Micali, editor, Randomness and
Computation, pages 91–115. Academic Press, New York, 1989.

[7] L. Boczkowski, U. Feige, A. Korman, and Y. Rodeh. Navigating in trees with permanently
noisy advice. ACM Trans. Algorithms, 17(2):15:1–15:27, 2021.

[8] R. B. Boppana and B. O. Narayanan. The biased coin problem. In Proceedings of the
Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pages 252–
257, New York, NY, USA, 1993. ACM.

[9] A. Coja-Oghlan. On the Laplacian eigenvalues of G(n, p). Comb. Probab. Comput.,
16(6):923–946, 2007.

[10] E. D. Demaine, D. H. Hendrickson, and J. Lynch. Toward a general complexity theory
of motion planning: Characterizing which gadgets make games hard. In 11th Innovations
in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle,
Washington, USA, pages 62:1–62:42, 2020.

[11] C. Derman. Finite State Markovian Decision Processes. Academic Press, Inc., Orlando,
FL, USA, 1970.

[12] E. Emamjomeh-Zadeh, D. Kempe, and V. Singhal. Deterministic and probabilistic binary
search in graphs. In D. Wichs and Y. Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 519–532. ACM, 2016.

[13] W. Feller. An introduction to probability theory and its applications. Vol. I. John Wiley &
Sons, Inc., New York-London-Sydney, third edition, 1968.

27

[14] E. Fonio, Y. Heyman, L. Boczkowski, A. Gelblum, A. Kosowski, A. Korman, and O. Fein-
erman. A locally-blazed ant trail achieves efficient collective navigation despite limited
information. eLife, 5:e20185, Nov 2016.

[15] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoret. Comput. Sci., 1(3):237–267, 1976.

[16] A. Georgakopoulos, J. Haslegrave, T. Sauerwald, and J. Sylvester. Choice and bias in
random walks. In 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA, pages 76:1–76:19, 2020.

[17] A. Georgakopoulos, J. Haslegrave, T. Sauerwald, and J. Sylvester. The power of two choices
for random walks. Combinatorics, Probability and Computing, to appear., 2021.

[18] O. Goldreich. A primer on pseudorandom generators, volume 55 of University Lecture
Series. American Mathematical Society, Providence, RI, 2010.

[19] N. Hanusse, D. Ilcinkas, A. Kosowski, and N. Nisse. Locating a target with an agent guided
by unreliable local advice: how to beat the random walk when you have a clock? In A. W.
Richa and R. Guerraoui, editors, Proceedings of the 29th Annual ACM Symposium on
Principles of Distributed Computing, PODC 2010, Zurich, Switzerland, July 25-28, 2010,
pages 355–364. ACM, 2010.

[20] N. Hanusse, D. J. Kavvadias, E. Kranakis, and D. Krizanc. Memoryless search algorithms
in a network with faulty advice. Theor. Comput. Sci., 402(2-3):190–198, 2008.

[21] R. M. Karp. An introduction to randomized algorithms. Discrete Applied Mathematics,
34(1-3):165–201, 1991.

[22] J. H. Kim, R. Montenegro, Y. Peres, and P. Tetali. A birthday paradox for Markov chains
with an optimal bound for collision in the Pollard rho algorithm for discrete logarithm.
Ann. Appl. Probab., 20(2):495–521, 2010.

[23] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American
Mathematical Society, Providence, RI, 2009. With a chapter by James G. Propp and
David B. Wilson.

[24] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[25] R. Montenegro and P. Tetali. How long does it take to catch a wild kangaroo? In
STOC’09—Proceedings of the 2009 ACM International Symposium on Theory of Comput-
ing, pages 553–559. ACM, New York, 2009.

[26] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[27] R. I. Oliveira and Y. Peres. Random walks on graphs: new bounds on hitting, meeting,
coalescing and returning. In 2019 Proceedings of the Sixteenth Workshop on Analytic
Algorithmics and Combinatorics (ANALCO), pages 119–126. SIAM, Philadelphia, PA,
2019.

[28] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes.
Math. Oper. Res., 12(3):441–450, 1987.

28

[29] J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp.,
32(143):918–924, 1978.

[30] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM J. Comput.,
6(1):84–85, 1977.

[31] U. V. Vazirani and V. V. Vazirani. Random polynomial time is equal to slightly-random
polynomial time. In 26th Annual Symposium on Foundations of Computer Science, Port-
land, Oregon, USA, 21-23 October 1985, pages 417–428. IEEE Computer Society, 1985.

A. Deducing Theorem 3.2 from Theorem 3.1

Recall p
(t)
x,· is the distribution of the SRW after t steps started at x, and write π(S) =

∑
s∈S π(s)

for the stationary probability of a set S ⊆ V . We first need a lemma allowing us to approximate
instantaneous probabilities by stationary probabilities.

Lemma A.1 ([17, Lemma 6.5]). For any graph G, S ⊂ V and x ∈ V there exists t 6 4trel lnn
such that

p
(t)
x,S > π(S)/3.

Our strategy to bound the cover time will be to emulate the SRW until most of the vertices
are covered, only using the additional strength of the ε-TBRW when there are few uncovered
vertices remaining. We use the following bound on the duration of the first stage.

Lemma A.2 ([17, Lemma 6.6]). Let U(t) be the number of unvisited vertices at time t by a
SRW on a graph and let Tn/2x be the number of SRW steps taken before U 6 n/2x. Then

E [U(2x · thit)] 6
n

2x
and E

[
Tn/2x

]
6 4(x+ 1)thit.

Proof of Theorem 3.2. We first emulate the SRW (i.e. at each offered choice, choose indepen-
dently a uniformly random neighbour) until all but m =

⌊
n/ logC n

⌋
vertices have been visited,

for some C to be specified later. Let τ1 be the expected time to complete this phase. Then, by
Lemma A.2, we have τ1 6 4thit · C log2 log n.

We cover the remaining vertices in m different phases, labelled m,m−1, . . . , 1, each of which
reduces the number of uncovered vertices by 1. In phase i, a set of i vertices are still uncovered,
and we write Si for this set. By Lemma A.1 for any vertex x there is some t 6 4trel log n such
that

p
(t)
x,Si
>
π(Si)

3
=

1

3
·
∑

s∈Si d(s)

ndavg
>
dmin · i
3ndavg

,

and thus q
(t)
u,Si
> (dmin · i/(3ndavg))1−ε by Theorem 3.1. Since from any starting point we can

achieve this probability of hitting a vertex in Si within the next 4trel log n steps, the expected
number of attempts needed to achieve this is at most (dmin · i/(3ndavg))ε−1, meaning that the
expected time required to complete phase i is at most

O

((
n · davg
i · dmin

)1−ε
· trel · log n

)
.

Hence the expected time τ2 to complete all m phases satisfies

τ2 =

n/ logC n∑
i=1

O

((
ndavg
idmin

)1−ε
trel log n

)

29

= O

((
ndavg
dmin

)1−ε
trel log n

)
n/ logC n∑
i=1

iε−1.

Then, since
∑n/ logC n

i=1 iε−1 6
(
n/ logC n

)ε ·∑n/ logC n
i=1 i−1 6

(
n/ logC n

)ε · log n, we have

τ2 = O

((
ndavg
dmin

)1−ε
trel log n

)
· O
((

n

logC n

)ε
· log n

)

= O

(
n ·
(
davg
dmin

)1−ε
· trel ·

log2 n

logC·ε n

)
. (19)

For the first bound we choose C = log
(

(
davg
dmin

) · trel · log2 n
)
/ (ε · log logn) then since we have

logC·ε n = (davg/dmin)trel · log2 n and ε > 0 this gives τ2 = O(n) by (19) above. Since in any
graph thit = Ω(n), the total time is therefore O(τ1), and for this value of C we have

τ1 = O

 log
(

(
davg
dmin

) · trel · log2 n
)

ε · log logn
thit log log n

 = O
(
thit
ε
· log

(
davg · trel · log n

dmin

))
;

as claimed.

B. NextStep is NP-hard on undirected graphs

Proof of Theorem 5.5. We give a (Cook) reduction from the problem Hamilton Path of decid-
ing if a given graph has a Hamilton path. By [15], Hamilton Path is NP-complete even if H is
restricted to dmax 6 3. It suffices to prove the reduction for BestStep and Cost by Remark 5.3.

Given an instance of Hamilton Path, which is an n-vertex graph H, we construct the graph
G as follows. First replace each edge of H by a path of length 2cn2 through new vertices, where
c is a suitably large integer to be chosen later. Next add a new pendant path of length cn3

starting at the midpoint of each path corresponding to an edge of H. Finally, add edges to form
a cycle consisting of the end vertices of these pendant paths (in any order). The construction
added in the last two steps is analogous to the star connector as it makes the graph induced by
V (G)/V (H) connected. Note that if H has maximum degree 3, so does G. We now bound the
time to cross the paths added in step one.

Claim 1. Let x, y ∈ V (H) ⊆ V (G) be such that xy ∈ E(G). Then, in the graph G(H), we have

2cn2

ε
− n
√
c

ε3/2
6 HεB

x (V (H)\{x}) 6 HεB
x (y) 6

2cn2

ε
+

7

ε2
.

Proof of claim. Let the walk be at a vertex x ∈ V (H) and the controller’s aim be to reach
V (H)\{x} as quickly as possible. No optimal strategy can use the cycle/star connector as its
paths are of length cn3, thus for a lower bound we can remove it. Now, each departure from
x puts us on a path of length 2cn2 towards a vertex in V (H)\{x}. Thus, we can consider the
problem as a biased walk on the line from 0 to 2cn2. Observe that we can couple an ε-BRW on
Z to an SRW trajectory on Z by just adding in the bias steps. Thus, if S1(k) is the earliest time
k bias steps have occurred and S2(k) is first time the SRW from 0 is at position k, then the time
for the ε-BRW to hit y stochastically dominates min06k62cn2 max{S1(n − k), S2(k)}. Observe

30

that E [S1(k)] = k/ε, as this is the expectation of a negative binomial random variable, and
E [S1(k)] = k2 by classical results for SRW on Z [13, Chapter XIV]. Thus we have

HεB
x (y) > min

06k62cn2
max {E [S1(n− k)] ,E [S2(k)]} > min

06k62cn2
max

{
n− k
ε

, k2

}
>
cn2

ε
− n
√
c

ε3/2
.

For the upper bound, let z be the vertex halfway along the path from x to y, and let w be
the neighbour of x on that path. Observe that the time taken to hit z from x is stochastically
dominated by T1+T2, where T1 the number of steps taken until the last visit to x before hitting z
and T2 is the time taken by the ε-BRW on Z to hit cn2 from 0. With probability ε+(1−ε)/d(x)
the walk takes the correct edge towards y, thus it leaves x at most d(x)/(d(x)ε+ 1− ε) 6 1/ε
times before reaching w. The expected time to return to x if the walk does not take the edge
xw is bounded by the reciprocal of the stationary probability of x in the ε-BRW walk on G
(aiming to reach x) with xw removed. This is at mostcn2−1∑

i=0

(
1− ε
1 + ε

)i
+ (2cn2 + n3)(|E(H)| − 1) ·

(
1− ε
1 + ε

)cn2
 6 1 + ε

ε
+ 3cn5e−εcn

2
,

which is less than 3/ε for suitably large n. Thus E [T1] 6 3/ε2. Now, by results for the
gambler’s ruin problem from [13, Chapter XVI.3] we have E [T2] 6 cn2/ε. It follows that
HεB
x (z) 6 cn2/ε+ 3ε2. Once the walk is at z the probability that it hits x before hitting y is at

most e−Cεcn
2

for some constant C > 0. Thus, by bounding HεB
z (y) using a similar argument,

we have HεB
x (y) 6 HεB

x (z) +HεB
z (y) 6 2cn2/ε+ 7ε2. ♦

Returning to the reduction: we fix a starting vertex u ∈ V (H) ⊆ V (G), the unvisited set to
be Y = V (H) \ {u}, and set X = V (G) \ Y . Suppose that H contains at least one Hamilton
path P starting at u. Then, by Claim 1, a strategy from u following the path P covers Y in
expected time at most THam = (n − 1) ·

(
(2c/ε)n2 + 7/ε2

)
. Similarly, by Claim 1, it is clear

that if H does not contain a Hamilton path from u then the time to cover Y from u is at least
n ·
(
(2c/ε)n2 − n

√
c/ε3/2

)
, which is strictly greater than THam for a suitable c := c(ε).

Now, if we are given G(H) then we can run Cost(G, u, (V (G)\V (H))∪{u}) for each u ∈ V (H)
and if an answer less than THam is returned for some u then we conclude H contains a Hamilton
path from u. Otherwise we conclude that H does not contain a Hamilton path.

To prove the reduction to BestStep, we make the following claim.

Claim 2. If H has a Hamilton path from u, then, in the walk started at u, any optimal next
step from a vertex in Y is to move towards the next unvisited vertex of Y on some such path.

Proof of claim. Suppose the walk is at x ∈ Y the first time an optimal step chooses to move
towards a vertex y′ ∈ Y which is not the next step in a Hamilton path from u. Since the
expected remaining time decreases whenever an optimal step is taken, two successive optimal
steps cannot be in opposite directions unless the walker visits an unvisited vertex in between.
Thus the optimal strategy is to continue in the direction of y′ if possible. Such a strategy
reaches y′ before returning to x with probability at least p := 2ε/(1 + ε) − eC·εcn2

, for some
C > 0 by [13, Chapter XVI.2], and this takes at least 2cn2 steps. Suppose the walk reaches y′

before returning to x. Then, since y′ was not a vertex on any path extending the current list of
visited vertices in Y to a Hamilton path, the walk must revisit a previously visited vertex of Y .
Thus, by Claim 1, such a strategy conditioned on the first step being in the direction of y′ has
expected time at least (n− 1) ·

(
(2c/ε)n2 − n

√
c/ε3/2

)
+ p · 2cn2 > THam for a suitable c. ♦

31

Claim 2 implies correctness of the following reduction for BestStep: Given G(H) and u0 ∈
V (H), set X0 = (V (G)\V (H))∪{u0} and call BestStep(G, u0, X0) to obtain a vertex v, which
lies on the path from u0 to u1 for some u1 ∈ V (H). Now set X1 = X0 ∪ {u1} and call
BestStep(G, u1, X1); proceed like this until un−1 has been identified. If Xn−1 = V (G), then
H has a Hamilton path from u0 (and vice versa). We may therefore solve the Hamilton path
problem by checking all start vertices u0 ∈ V (H) in turn.

32

	Introduction
	Our Results

	Preliminaries
	Hitting and Cover Times
	The e-Max/Average Operation
	The Trajectory-Tree for Graphs
	Proof of Theorem 3.4

	Increasing Stationary Probabilities
	A Conjecture of Azar et al.
	Boosting in the polynomial degree regime
	Boosting by more than a constant factor

	Computing Optimal Choice Strategies
	Properties of Optimal Covering Strategies
	The BestStep and Cost problems are in PSPACE
	The Cost problem is PSPACE-hard
	The Gadgets

	Concluding Remarks and Open Problems
	Deducing Theorem 3.2 from Theorem 3.1
	NextStep is NP-hard on undirected graphs

