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" Look, this is no time to doubt our mission. You took an oath when you entered sperm

training school: to fertilize an ovum or die trying. "

Everything you always wanted to know about sex but were afraid to ask.

- Woody Allen -
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Abstract

Sperm motility and its collective motion is a subject still poorly investigated. We aim at

studying different environmental conditions that can and do affect the motility of sperm

cells, focusing into transitions to collective motion.

With increasing concentration of swimmers, sperm cells in a suspension can switch from

random motion to organised collective turbulence, which we call "spermulence". This

phase transition is strongly influenced by the boundaries of the system, which influence

conditions for the transition to spermulence. Complexity of the boundary may lead to

oscillatory modes where the flow in suspension reverses periodically. Moreover, the con-

finement can be used by the swimming sperm cells as an efficient strategy to progress

towards a point and this particular phenomenon can be important when designing meth-

ods for artificial insemination.

In addition to the confinement, other environmental conditions, such as temperature and

fluid viscosity, would influence the motion of sperm cells. We demonstrate that cells

change the radius of curvature of their trajectories when swimming in a hotter environ-

ment. This change in trajectory will result in formation of ring-like structures in a two di-

mensional system, that will turn into a oscillatory motion, with waves propagating through-

out the entire system. Self-organisations on such a wide scale and with such consistency

have not been yet seen in the spermatozoa investigations.

While working with sperm cells, a new method for swarming bacterial experiments has

been invented, allowing for bacteria to live on an agar plate and move in the space for

long times compared to their usual live span in devices. This techniques allow bacteria to

swarm for hours on agar surface previously modified with the desired structure.

ix



Chapter 1

Introduction

1.1 Introduction

The displays of collective moving animals, like fishes or birds, can result most fascinating.

But systems of animals moving in space are not the only examples of interacting moving

units. With the advance in technology, new physical and chemical systems show interact-

ing properties of the self-propelled particles composing the moving units of the system.

Indeed, the extremely small has very captivating structures that resemble the one seeing

by animals. In the past few decades there has been a lot of interest about the microscale

interaction that lead highly concentrated systems of swimming units to move collectively

in the space either for long or short period of times. Many studies concentrates on the easy

units to grow and to model, like Escherichia coli or Bacillus subtilis bacteria, or others look

at the swimming algae like Chlmydomonas. But many more biological "animacules" not

only swim, but create fascinating turbulent structures. For decades ram owners have been

aware of the "spermulence" arising within highly concentrated samples of high motility

sperm cells. This phenomenon is so well known that up to now, the method to asses the

quality of the ram sperm samples relies on the visual inspection of the collected sample

and on the experience of the farmer to define where on the 1 to 5 scale the turbulence can

be placed. It is necessary to control the collected samples to be able to filter through and

chose the best and most motile one for the fertilization, so that the chances of a successful

in loco fecundation can be as high as possible. It is hence important for farmers to have

a reliable fecundation rate for their animals, if not so, the economical feedback could be

detrimental.

Most importantly, the recent decrease in fertility rates for humans sample is very alarming,

making the study of the motility property of sperm cells very important.

The aim of this work is to look at the not so explored world of sperm motion trying to

understand as much as we can about it. Mostly, understanding how the fluid property

1



change depending on concentrations, with transition from chaotic to collective motion or

by confinement. We are interested in seeing what conditions can lead to a more efficient

displacement of spermatozoa. Finally, since in the female body the sperm cells have to

travel towards the ovum, it is important to understand the correlation between cell motion

versus the temperature of the system.

1.2 Outline of the thesis

This works start with Chapter 2, explaining the fundamentals of motility in a low Reynolds

number environment, the cell hydrodynamical interactions, the model for collective mo-

tion simulation and analysis. Finishing with an explanation of the biological structures of

the spermatozoa. Chapter 3, concentrates on the experimental methods, looking briefly at

the microscopy techniques used, the soft lithography for channel making and the particle

image velocimetry techniques used for the image analysis.

The first experimental chapter, Chapter 4, focuses on the transition from random to col-

lective motion for sperm cells in a bulk environment. We analyse the density conditions

for the phase transition to happen. The next chapter, Chapter 5, looks at the role of con-

finement in the transition to collective motion. We then look at highly concentrated sus-

pensions and how the shape of the environment they are confined in modifies the overall

spermulence. We conclude in Chapter 6, where we change another environmental con-

dition: the temperature. We analyse how this temperature variation affect both the single

cell and collective motion of the fluid.

2



Chapter 2

Swimming at a microscale

In this first chapter of the thesis, we would like to introduce some basic concepts of fluid

dynamic at the microscale that can be used to understand the systems we describe for

collective motion of self-propelled microswimmers. In addition, we review the simplest

model that can be used to describe a collective system of self-propelled particles. Finally,

we will describe the biological and morphological components of the swimmers that we

will use in this work, the spermatozoon.

2.1 Fluid Dynamics at Low Reynolds Number

Considering an organism in a fluid, in order to find the force distribution acting on the

organism, it is necessary to solve for the flow field u and the pressure p in the fluid sur-

rounding the organism. The flow satisfied the Navier-Stokes equations, in case of an in-

compressible Newtonian fluid with density ρ and viscosity η.

ρ
( ∂
∂t

+u ·∇
)
u =−∇p +η∇2u; ∇·u = 0 (2.1)

That will need boundary conditions appropriate to the considered system, for example

for a deformable body swimming with no-slip boundary conditions, the velocity of the

material points on the body surface are equal to the one at the boundary.

When flow field and pressure are known, the stress tensor can be defined as:

σσσ=−p1+η[∇u+ (∇u)ᵀ] (2.2)

where 1 is the identity tensor. The stress tensor can be used to define the hydrodynamic

force F and torque T by integrating over the surface S of the body:

3



F(t ) =
∫ ∫

S
σ ·ndS;

T(t ) =
∫ ∫

S
x× (σ ·n)dS

(2.3)

where n is the unit vector normal to the surface and x is the position on the surface of the

body.

2.1.1 The scallop theorem

The Reynolds number is a dimensionless quantity, and can be interpreted in different

physical ways, but the classical interpretation is the ratio between the inertial and viscous

forces per unit volume in the fluid. In fact, let’s consider an object of size a and velocity u

moving in a fluid with viscosity η density ρ and kinematic viscosity ν the Reynolds number

is defined as:

Re = auρ

η
= au

ν
(2.4)

When looking at the case of a micro-swimmer, like a sperm cell, of size ∼ 50µm, with

velocity u ∼ 50µm, swimming in water (in water ν ∼ 10−6m2s−1), the Reynolds number

is Re ≈ 10−4 ¿ 1. Swimming at low Reynolds numbers the viscous forces dominates over

the inertial one on the fluid. Hence, considering the limit of Re = 0, the Navier-Stokes

equations (2.1), can be simplified into the Stokes equations:

−p +η∇2u = 0; ∇·u = 0 (2.5)

Which is a linear and time independent equation, hence symmetric under time reversal,

meaning that what is happening at low Reynolds number at a specific time is determined

only by the forces exerted on the object at that specific time and completely independent

from the forces acting on the object in the past.

This characteristic is important for swimmers that change their shape periodically, as ex-

plained in the so called "scallop theorem" by Purcell in 1977 [1].

If we define swimming as a series of body deformations that propel the body and leads to

motion in the fluid, to able to move in low Reynolds number conditions, the deformation

has to be cyclical and not dependent on external forces.

The reciprocal motion can be defined as that specific type of motion where the body un-

dergoes a deformation and goes back to the initial form through the same deformation in

reverse. At low Reynold number, this type of motion doesn’t result in movement, since it

retraces the deformation already done but backwards, resulting in a net null motion.

4



Figure 2.1: Purcell swimmer, from Purcell talk in 1977 [1]. Two hinged swimmer that
moved the extremities in a cyclical motion, each space configuration from S1 to S5 cor-
respond to a point in the configuration space that instead of being reciprocal, moves in a
cyclical path in the θ1 to θ2 space.

Figure 2.2: Real solutions for purcell swimmers, again from the talk in 1977, [1]. The first
one is a flexible oar with the two parts deform separately, while the second is a corkscrew
swimmer, which rotating on itself moves in space.

An example of a real swimmer not able to move in low Reynolds number environment is

the scallop. A scallop in order to move opens and closes the shell, squirting water outside.

This type of motion would result in a return to the initial position of the scallop, without

any net movement of the animal.

The reason why a scallop won’t move in low Reynolds number is that its shape deforma-

tion has only one degree of freedom in the configuration space, which makes him reverse

to the initial position without actually moving forward, as it happens at higher Reynolds

numbers. The so called Purcell swimmer, is the easiest version of a low Reynolds num-

ber swimmer, and it has two hinges that moves cyclically in a 2 dimensional configuration

space as shown in figure 2.1. It moves from configuration S1 to S5 moving around the θ1

and θ2 coordinates in the configuration space, not moving reciprocally in the configura-

tion space, hence being able to actually move in space.
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Other possible swimmers can be imagined to be able to swim in the low Reynolds world.

The two most common solution to the low Reynolds conundrum: the flexible oar and the

corkscrew, fig. 2.2. The first one is a flexible oar deforming, in which the top and bottom

part of the oar bend separately and at different times, not creating a reciprocal movement

and making it possible for the swimmer to move. The corkscrew swimmer, in this type of

motion the animal keeps turning on itself, creating a non reciprocal motion and propelling

it.

2.1.2 Motion of a solid body

Considering a solid body in a viscous fluid, the Stokes equation (2.5), is linear. If F is the

external force exerted on the body and T the external torque, the body will have a velocity

U and a rotation rateΩ, which satisfy:

(
F

T

)
=

(
A B

B T C

)
·
(

U

Ω

)
;

(
U

Ω

)
=

(
M N

N T O

)
·
(

F

T

)
(2.6)

The matrix on the left hand side is called "resistance" matrix of the body, while the right

hand side one is the "mobility" matrix [2]. We then consider the reciprocal theorem [3],

which is a property of the Stokes flows and depends on their linearity. If we have a volume

V, bounded by a surface S with n being its outward normal, in V there are two solutions of

the Stokes equation, eq. (2.5), named u1 and u2, that satisfy at infinity the same bound-

ary condition, thenσσσ1 andσσσ2 are the respective stress flows, then the reciprocal theorem

states that the mixed virtual works are equal:

∫ ∫
S

u1 ·σσσ2 ·ndS =
∫ ∫

S
u2 ·σσσ1 ·ndS (2.7)

This property of the fluid is important because it forces the two matrices to be symmetric

[3].

Quickly doing a dimensional analysis on the matrix system we have that, at low Reynolds

number, the stresses scale as ∼ ηU /L, then the sub-matrix [A] ∼ ηL ∼ [M ]−1, [B ] ∼ ηL2 ∼
[N ]−1, and [C ] ∼ ηL3 ∼ [O]−1.

Looking at the case of a solid sphere of radius R the submatrices take the following values:

A = M−1 = (6πηR)I and C = O−1 = (8πηR3)I, while the cross-coupling terms, N and B,

vanish by symmetry.

This two matrix equations allow us to describe three major properties. The first one is the

drag anisotropy, crucial for motion at Reynolds number near zero, as discussed in subsec-

tion 2.1.4. To satisfy the drag anisotropy, the matrices A,M,C and O have to be not isotropic.
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The second property is that specific geometries, like chiral bodies, have non zero B and N

submatrices, hence, when there is no mirror symmetry plane, the translational motion can

be driven by angular forcing. Finally, these matrices can be used to calculate the diffusion

constants of solid bodies.

2.1.3 Flow singularities

Given the linearity of the Stokes equations, eq. (2.5), there is a possibility to solve for the

pressure and flow through the mathematical methods using linear superimposition of so-

lution.

The Green function is the classical solution and for a point force, defined as a Dirac-delta

function (δ(x−x′)F) is:

u(x) = G(x−x′) ·F (2.8)

where the tensor G is called Oseen tensor, the term stokeslet [4], is the fundamental solu-

tion of eq. (2.8) for the Oseen tensor and it is defined as:

G(r) = 1

8πη

(
I

r
+ rr

r 3

)
, r = |r| (2.9)

For the pressure we have:

p(x) = H(x−x′) ·F, with H(r) = r

4πr3
(2.10)

A stoklet is a representation of the flow created on the fluid by a point force F, as a singu-

larity at the position x′. The decay of the velocity field in space goes like 1/r . We can easily

show the decay if we consider a 3D force F on the fluid and linearity of the Stokes flow,

the flow velocity will be dependent on θ, which is the angle between the force F and the

distance r, as: u ∼ F f (θ,r,η) ∼ g (θ)F /ηr , with F being just the magnitude of the force.

A very important property of the stokeslet solutions is the directional anisotropy. Starting

from eq. (2.9), we evaluate the velocity in the direction parallel and perpendicular to the

direction of the applied force F, obtaining u∥ = F /4πηr and u⊥ = F /8πηr , which results

in a perpendicular flow twice as big as the perpendicular: u∥ = 2u⊥. This anisotropy is

the same as the anisotropy defined in the previous section, from eqs. (2.6), that drives the

motion for long slender bodies, as explained in section 2.1.4.

By differentiating the fundamental solution [5], eq. (2.9), we obtain the complete set of

singularities for the viscous flow. The first derivative gives a flow field decaying as 1/r 2,

which is the force dipole, the second gives a source dipole and a force quadrupole, with a

velocity decay of 1/r 3, and so on.
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Using the flow past a sphere example used in the previous chapter [5], the solution for that

problem, is a combination of a stokeslet and a source dipole at the center of the sphere.

In a low Reynolds number environment, the motion of the boundaries created an instan-

taneous response in the fluid, hence the rate at which the particle in the fluid are carried

in the flow is slower than the diffusivity of the velocity perturbations in the fluid. This

means that the momentum of a swimmer changes at a rate that is negligible compared

to the magnitude of the forces from the surrounding viscous fluid. Hence, Newton’s law

becomes and instantaneous balance of forces/torques:

Fext (t )+F(t ) = 0, Text (t )+T(t ) = 0 (2.11)

Consequently, the cells are force and torque free while swimming at low Reynolds number,

leading to the exclusion of the flow singularities that describe point force and point torque

while looking at the far field system [6]. Given that it is possible to describe the flow by

multiple flow singularities, the one with the slowest decay in space is the one dominating

in the far-field. Hnce, when a cell is swimming, the best representation of the far flow field

is a symmetric force dipole or stresslet [7]. The far field behaviour of a swimming cell is

important when looking at the hydrodynamic interactions.

Finally, the presence of solid boundaries modify the flow singularities. We will look at the

interaction of swimmers with the boundaries later in this chapter.

2.1.4 Drag based theory

Let’s consider a body submerged in a viscous fluid, with its surface deforming in a time-

varying way with velocity field on its surface us(t ). At every instant this swimmer can be

considered a solid body with velocity U(t ) and rotation Ω(t ). On the swimmer’s surface

the instantaneous velocity is u = U+Ω×r+us . The boundary conditions define the way to

derive the velocity U and torqueΩ. A squirmer is a swimmer whose shape remains con-

stant and all deformations are parallel to the surface. If we consider a spherical squirmer

of radius R, the velocity and the rotation of the swimmer are [8]:

U = 1

4πR2

∫ ∫
S

usdS; Ω= 3

8πR3

∫ ∫
S

n×usdS

After considering the solid body interacting with the fluid, we have to look how to model

the flagellum that propels the body. To model a flagellum of a sperm cell we can repre-

sent the flagellum as a collection of short filaments which movement can be described as

follow.

Considering a thin filament immersed in a fluid and deforming in time, the flow it creates

will induces movement on the filament itself. The tangent vector ts describes the filament,
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Figure 2.3: The anisotropy in slender filaments allow for a propulsive force to arise, figure
from [2].

where s is the distance along the filament where the tangent vector is positioned. The

instantaneous deformation is defined by the velocity field u(s,t), at distance s and time t.

The resulting local viscous drag force per unit length, which is opposing the motion of a

slender filament is defined as:

f =−ζ∥u∥−ζ⊥u⊥ (2.12)

with u∥ and u⊥ being the projections of the local velocity on the local filament tangent and

the ζ∥,⊥, being the corresponding drag coefficients.

Back at considering the flagellum, modelled by short straight segments, moving with ve-

locity u at an angle θ, as shown in figure 2.3. We then project to the filament obtaining:

u∥ = u cosθ, u⊥ = u sinθ, f∥ =−ζ∥u∥ =−ζ∥u cosθ and f⊥ =−ζ⊥u⊥ =−ζ⊥u sinθ. In case of

isotropic drag we have that ζ∥ = ζ⊥, resulting in a force directed as the velocity of the fila-

ment. However, if the drag is anisotropic (ζ∥ 6= ζ⊥), the drag has an additional component,

perpendicular to the direction of the velocity [9, 10], fpr op :

fpr op = (ζ∥−ζ⊥)u sinθcosθex (2.13)

From Purcell’s scallop theorem, we know that the filament velocity u and its orientation

θ have to vary periodically in time in order to obtain a net propulsion. And for biolog-

ically bodies, with a flagellum of length L, with a small amplitude y(x, t ), the generated

propulsive force on the filament, eq. (2.13), gives:
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Fpr op ∼ (ζ⊥−ζ∥)
∫ L

0

(
∂y

∂t

∂y

∂x

)
d xex (2.14)

Considering a planar wave deformation, which travels in the x direction as y(x, t ) = f (x −
ct ) we then have that Fpr op = c(ζ∥ − ζ⊥)

∫
f 2(η)dηex , with η being the viscosity, where

propulsion is directed opposite to the one of the wave. With a wave-like movement, the

product
(
∂y/∂t ·∂y/∂x

)
has a constant sign over all the filament, hence all the parts com-

posing the filament, contribute to the propulsion [11].

In a real flagellum, though, the deformations are not of small amplitude, hence the model

has to be modified to account the large amplitude deformations, but since we are con-

sidering real flagella, the fact that they are long (L) and thin (a) allow us to model them

as slender rods, modelling a flagellum as a line of singular solutions of the appropriate

strength of the Stokes flow, which by deforming creates a induced flow in the surrounding

fluid.

In a first approximation, let’s try to calculate the resistance matrix for a straight rigid rod

of length L and radius a, the external force is uniformly distributed over the length of the

rods, with constant force per unit length. The rod is modelled by N stokeslets equally

spaced along the x-axis, x j = ( j L/N ,0,0). A short segment of the rod induces a far field

flow that is represented by a stokeslet. The force of each stokeslet, when assuming uni-

formly distributed forces, is equal to Fext /N , without considering hydrodynamical inter-

actions between the different segments of the flagellum, the velocity of each segment is

u = Fext /ζseg , with ζseg ∝ ηa being the resistance coefficient of the segment.

As shown in figure 2.4, when each segment move, it induces a flow that helps the move-

ment of the other segments of the filament, hence the flow induced by the segment j is:

u j (x) = 1

8πη|x −x j |
(I+ex ex) · (Fext /N )

From which is possible to calculate the velocity of the i-th segment in the filament as:

u(xi ) = Fext /ηseg +
∑
j 6=i

u j (xi ) (2.15)

Considering that N >> 1, the integral can replace the sum, considering as the integration

bounds −L/2 and L/2, excluding the region of size a around the point xi :

u(xi ) = Fext

ηseg
+ 1

8πη

∫
1

|xi −x| (1+ex ex) ·Fext
d x

L
(2.16)

Solving the integral and evaluating it disregarding the end effect by using |xi | << L, keep-

ing only the leading order in ln(L/a) and considering u(xi ) constant for a rigid rod, we then

obtain [2] :
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Figure 2.4: Rod subject to external forces: longitudinal in the top figure and perpendicular
in the bottom one. Stokeslets are represented by the arrows, while the blue lines are the
flow field of the central stokeslet. The rod get pushed by the induced flow of every stokelet
in the rod, figure from [2].

u = ln(L/a)

4πη
(1+ex ex) · fext (2.17)

where the external imposed force per unit length is fext = Fext /L. In this simple model we

have no internal cohesive forces, only hydrodynamical force acting in between the differ-

ent composing part of the filament. The drag per uni length is f = −fext and the compo-

nents of the force perpendicular and parallel to the x-axis are:

f∥ =−ζ∥u∥; f⊥ =−ζ⊥u⊥ (2.18)

and ζ⊥ = 2ζ∥ = 4πη/l n(L/a). This anisotropy, as mentioned previously in this section and

in section 2.1.2, is necessary for the drag-based thrust.

Introducing a small deformation of the filaments, as a gentle curve with ka << 1 with k2 =
|∂2r /∂s2|, where r (s) is the position of the centerline of the filament. If the curvature of the

filament is very small, then the solutions are the same as the one for a straight filament.

For this local drag theory, eq. (2.17), we considered only the leading order in 1/ln(L/a),

which allow this theory to be valid only for exponentially thin filaments [4, 9, 12].

Let’s now consider an example, to try to see how the local drag thory shown until now can

be used to decribe the problem of a spherical swimmer with prescribed stroke. We look at

a spherical body, of radius Rb , propelled by a planar sine wave [11] beating like y(x, t ) =
b sin(kx −ωt ) and we try to find the flow velocity U that gives net force and moment on

the swimmer equal to zero.
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Figure 2.5: Forces acting on a segment of an helical flagellum pulled through a viscous
fluid with speed U, figure from [2].

Considering the drag force per unit length, eq. (2.18), acting on the filament, which gives

that the total forces per unit length have a propulsive component. We then use equation

(2.14) for the propulsive forces that derive from the deformation of the filament and a

drag component, which comes from the resistance to x-axis translation for the considered

swimmer. Let’s consider in addition the drag force on the sphere as: ζ0RbU = 6πηRbU and

we balance all the forces acting on both filament and body, finally let’s use the sinusoidal

wave form and average over a period of the oscillation, we obtain [2]:

〈U〉 =−ζ⊥−ζ∥
2ζ∥

ωkb2

1+ (ζ0Rb)/(ζ∥L)
(2.19)

where ζ0 is the resistance of the body. In case the flagellum is much longer than the radius

of the spherical body, L >> Rb , we have that the drag and the propulsive forces increase by

the same amount of length increase, leading to a speed that is independent of L for fixed k

and b.

Another example, more close to the subject of this work is, is the propulsion mechanism

of an E. coli bacteria, where its helix rotates. The helix, which is lying on the x-axis, has

a radius R which is much smaller than the body’s radius, hence the pitch angle α is very

small. A motor creates the rotation of the helix, with rotation Ωm relative with the body,

while Ω is the angular speed of the helix and Ωb is the counter-rotation of the body. The

relation between the angular speeds is: Ωb +Ω=Ωm . Using eq. 2.6, but considering only

the components on the x-axis, for external force F and moment M, we have:
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(
F

M

)
=

(
A B

B C

)
·
(

U

Ω

)
; (2.20)

Looking only at the leading order in α, for L >> Rb ,R, the resistance coefficients can be

computed approximately. The coefficient A has to be computed by considering a helix

pulled at velocity U but not rotating (A ≈ ζ∥L), vice versa C when the helix rotates with

rotationΩ but is prevented from moving along the x axis (C ≈ ζ⊥R2L). While B, since there

is symmetry in the matrix, can be computed by looking either at the moment needed to

avoid a translating helix to rotate or at the force to keep a rotating helix from being pulled

in the x direction (B ≈−(ζ⊥−ζ∥)αRL) [2], figure 2.5.

In order to calculate the swimming speed U, we start from the forces and moments acting

on both the body and the flagellum. For a spherical body: F =−ζ0RbU and M =−ζr R3
bΩb ,

with ζr = 8π being the rotational resistance [2]. The velocity U, and the rotations Ω and

Ωb are:

U ≈αζ⊥−ζ∥
ζ∥

(
ζr

ζ⊥

)( R3
b

RL

)
Ωm ;

Ωb =Ωm +O (Rb/L); Ω≈Ωm(ζr /ζ⊥)R3
b/(R2L)

(2.21)

The velocity is linear in α, so the handedness of the helix defines the direction of U. If in

case of a planar wave there is no need of a body to have propulsion, eq. (2.19), but in case

of a helix propulsion system, if Rb = 0, then U = 0.

2.1.5 Slender body theory

In the previous sections we looked at exponentially slender filaments, but in a real flagel-

lum, the relation between the radius a and the typical length scale for shape deformations

in the flagellum L, is a/L ∼ 10−2, and in the previous theories, 1/l og (L/a) needs to be

much smaller than 1.

In order to improve the model we take advantage of the slenderness of the filament so

that the solution for the 3D filament surface dynamics can be replaced by the dynamics

of the centerline described by an appropriate distribution of flow singularities [4]. Two

different approaches can be used to find these solutions. Firstly, considering the solution

as an extension of the local theory described previously, approximating as a series of log-

arithmically smaller terms [13, 14, 15]. In this case, the flow field close to the filament is

locally two dimensional and it diverges logarithmically away from the filament (Stokes’

paradox of 2D flows, [16]). On the other hand, a line distribution of stokeslets of unknown

strengths describes the flow in the far field and diverges logarithmically near the filament.
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Figure 2.6: Lighthill model for the singularity construction of the flagellar hydrodynamic
in the slender-body theory. The flow field at point s0 on the rod is computed by combin-
ing the outer and inner problems stokeslets solutions, defined by the intermediate length
scale q. The inner problem is represented by a distribution of both stokeslets and dipoles,
while the outer problem only by a distribution of stokeslets. The final dipole strength is
found imposing that the result should be independent of q, figure from [2].

This diversion is due to the line integration of stokeslets that in the near field go like 1/r .

Matching the two asymptotic behaviours it is possible to derive a series of terms of order

1/log (L/a)n that give the stokelet strengths order by order. The leading order is the lo-

cal drag theory value and gives a stokelet distribution proportional to the local velocity.

The second order, is an integral equation of the shape and velocity of the filament. The

consequent terms can be generated systematically [17, 18, 19].

This approach is an extension of the local drag theory described preciously in section 2.1.4.

The major problem of this approach is that the expansion is made of terms 1/log (L/a)

smaller than the previous, which leads to requiring a large number of terms in order to

have an accurate description of the flow.

Another option is to solve at every instant an integral equation that is the derivation for

the distribution of the singularities along the filament [20, 21, 22]. Alternatively, as done

by Lighthill [12, 23], the solution is a line distribution of stokeslets and source dipoles and

the dipole distribution’s strength is proportional to the stokeslets one. Hence, looking at a

location along the filament, s0, which is a slender rod, it exists a length scale, q, at which

a << q << L. At the location s0, the flow field at the surface of the filament is the sum

of two flows, the first one is the so called inner problem, which is the one deriving from

the singularities within the distance q from s0, and the second one is the outer problem,

which comes from the singularities at a distance larger than s0, (see figure 2.6). Consid-
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ering q >> a, the source dipoles, decay faster than the stokeslets, the latter contribute

almost uniquely on the outer problem flow field. While for the inner problem the flow

is the sum of stokeslets and source dipoles, and it is possible to find that the complete

solution is independent of q [2, 12, 23].

The dipole strength is proportional to the stokeslet one and the resulting velocity of the

filament at s = s0 is given by:

u(s0) = f⊥(s0)

4πη
+

∫
|r0−r|>δ

G(r0 − r) · f(s)d s (2.22)

with f is the local strength of the stokeslets distribution, G is the Oseen tenson, as in eq.

(2.9), δ is the natural cutoff, from regularisation of the divergence due to self-interaction

and f⊥ is the perpendicular projection to the filament of the stokeslets distribution.

This mathematical formulation is less accurate than other more rigorous solutions, but it

is easily implemented numerically and hence used very often to model filaments in differ-

ent environment, as for example near the boundaries [24, 25, 26, 27, 28].

2.2 Collective Motion

In nature, microswimmers are found swimming in semi-dilute and dense suspensions.

In order to fully characterise the complex dynamical behaviour of collective motion, it

is necessary to understand the underlying physical cooperative mechanisms on various

levels: from the interactions between single cells and fluid-mediated interactions to the

generic principles for the large-scale pattern formation.

2.2.1 Hydrodynamic interactions

There are three major types of hydrodynamic interactions that can be considered to study

micro-organisms swimming in a viscous environment: cell to cell, cell to boundary and

flagella interactions.

2.2.1.1 Cell to cell

Naturally micro-organisms swim in a dense or semi-diluted environment, where the cells

interact between each other more or less frequently depending on the concentration. Micro-

swimmers can interact hydrodynamically with each other through the flow created by

each swimmer, which can be felt by other nearby swimmers. These generated flows can, in

certain situations, affect the dynamic, not only of a single swimmer, but of the entire pop-

ulation of swimmers present in the environment. One relevant example here is a sperm

sample, they naturally swim in a dense, at times up to 6 billions cells per millilitre (ram),
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Figure 2.7: Interactions between two swimmers. The black dotted arrows in a) and b) de-
fine the flow field around the swimmer. The big arrow define the swimming direction, left
for a pusher and right for the puller, while the red arrows show the direction of the stroke
of the flagella. In figure c) and d) the interactions between the swimmers are displayed.
Blue arrows show the direction of the reorientation after the interaction, figure from [2].

suspension and they show the so called spermulence [29], which is the parallel to bacterial

turbulence [30, 31, 32, 33, 34, 35, 36]. Moreover sperm cells of the wood mouse swim faster

when aggregated [37], while opossum spermatozoa create pairs in order to swim more ef-

ficiently in very viscous fluids [38] and for similar reasons the fishfly sperm cells cluster

in dense bundles [39]. Finally, sperm cells in sea urchin, create very interesting structures

composed of vortices that move in a liquid-like manner in the space [40].

Hence it is important to understand how the flow field created by a single swimmer can

affect the motions of its neighbours. If we consider two cells and we look at how cell 1

reacts to the flow field created by cell 2, we obtain two hydrodynamical interactions: the

first one is the velocity field created by cell 2 that carry cell 1 along its flow, the second is

reorentational, cell 1 perceive the velocity gradient which tends to change the direction of

swimming of cell 1.

The far field flow generated by a swimming cell, is a force dipole and hence decays as 1/r 2.

Two different types of force dipole can be accounted for, one is where the force dipole,

p, oriented in the same direction as the swimming, is positive and the other is when it is

negative. Pushers are swimmers with p > 0, like sperm cells and E.coli, and they draw fluid

from the sides and push it in long axis direction (e). On the other hand, when p < 0, the

swimmers draw fluid from the long axis direction and push it to the sides, these type of

cells are called pullers and an example is the Chlamydonomas algae.

The dipole p = pe induces a flow at a distance r that is:
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u(r) = p

8πηr 3
[3cos2θ−1]r (2.23)

where θ is the angle between e and r. The dipole strength depends on the swimming speed

of the cell, U, and its typical length scale, L, in such a way that: |p| ∼ ηU L2.

When two cells are swimming in an aligned direction, θ = 0, then the relative velocity

scales as∆ual ∼ p/ηr 2, while if they are side by side, θ =π/2, we have that∆usbs ∼−p/ηr 2.

Both relative velocities depends on the force dipole sign, hence for p > 0, pushers, when

side by side they attract each other, while when aligned they repel each other. Vice versa

for pullers, p < 0, that repel each other when side by side and attract each other when

aligned.

When one cell is affected by the velocity field gradient of a neighbouring cell, their direc-

tion changes, reorienting accordingly to the gradient. The vorticity field is defined as the

curl of the velocity field, ω=∇×u, and interacting cells subject to this flow will rotate as:

Ω =ω/2 if cells are spherical, otherwise an additional term, E = 1/2[(∇u)+ (∇u)T ] has to

be added to account for the symmetrical part of the rate of strain [41, 42].

As in the case of the velocity flow field, the vorticity flow field depends on the sign of p,

leading to two different results for the reorientation in case of pushers or pullers, leading

them to reorient towards their attractive configuration. Nearby pushers reorient side by

side, while nearby pullers will end up aligned in the elongated direction [2], as shown in

figure 2.7.

The hydrodynamical interactions described here are the leading order of cell to cell inter-

action, but in order to reach higher accuracy when modelling systems of many cells, higher

order effects should be considered, the most important are the active component of the

hydrodynamical interactions and the higher singularities for the dipole flow induced by a

cell. In case of the active interactions, previously we have consider only what cell 1 feels

from the flow field created by the other cell, but we never considered that the flow field

of cell 1 will create a disturbance flow that will influence the velocity and the orientation

of cell 2. This reflection interaction is weaker compared to the one describe previously

and in space it decays faster. In the second case, we only looked at the cells as a dipole

on the leading order, without considering the higher singularities like source dipoles and

quadrupoles that have a faster decay, which can be important when computing correla-

tions.

These cell to cell interactions play a strong role when we move away from the dilute regime

and we have more dense suspensions, in which the cells organise and create very complex

dynamics. Example are jet and swirls [43], or long wavelength waves [44, 45] and turbu-

lence [32, 33].
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Figure 2.8: A swimming cell located at a distance h and angle θ from the boundary, will
reorient. The rotation is dependent on the type of swimmer considered, for pushers a), like
sperm cells, the hydrodynamical interactions will reorient the swimmer in the direction
parallel to the wall. For puller b), like Chlamydomonas, the reorientation is perpendicular
to the surface, figure from [2].

2.2.1.2 Cell to boundary

When cells swim they will have some interaction with the physical walls constraining them

inside the physical environmen. The presence of confinement influences the motion of

swimmers, modifies the concentration of chemicals that can influence motility and mod-

ify the hydrodynamic stresses that affect the motion of the cell [46]. Hence boundaries

change the motion of cells, which swim differently at the wall or in the bulk. For example,

sperm cells try to reach a vaginal wall and swim along it in order to arrive and fertilise the

egg [29].

Boundaries modifies primarily four aspect of cell motion. First of all, boundary influences

the cell velocity [47, 48, 49, 50, 51]. Intuitively a cell should slow down at a boundary since

the wall increase the viscous drag, but since the swimmer method of propulsion is itself

drag based, the result is not that straight forward. In order to simplify the matter, let’s con-

sider only a flagellum, without head, that beats as a planar wave, and as seen for eq. (2.19),

the flagellum, for a given wave form, has a speed that increases with the ratio between

parallel and perpendicular drag coefficients, which for their part, increase at the wall: ζ⊥
faster than ζ∥. For fixed waveforms, this unbalance in the increase leads to a ratio ζ⊥/ζ∥
that increases near a wall, meaning that the drag based propulsive force generated by the

flagellum increases near a wall. Similarly the resistive drag on the swimmer increases near

a wall, but this increase is weaker than the propulsion one, leading to an increase in the
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speed of a swimmer near a wall. In this case when there is an increase in speed for a swim-

mer there is the need to increase the rate of work produced by the swimmer. On the other

hand, if we assume that the swimmer swims with constant power, then the swimmer’s

speed will decrease near a boundary, leading, except in case of some specific wave forms

[48, 49], to a decrease in the swimming efficiency.

In addition, boundaries can influence the cell trajectory. When E.coli cells swim near a

surface, their trajectories transform from linear to circular [52, 53, 54, 55, 56]. Their propul-

sion is chiral and when the derived axisymmetric propulsive force is averaged, E.coli swims

on a straight line while away from the wall. However, near a surface the time average ax-

isymmetry is broken by the chiral propulsion itself, because interaction with a wall created

non-zero components in the motility matrix. When the helix is parallel to the surface there

is non-zero coupling between the helix rotation around its axis and the force perpendicu-

lar to the helix axis but parallel to the surface. A force which rotates opposite to the helix

rotation, creates a net effect that produces a torque when the cell is at the wall, and since

swimming bacteria are torque-free, the cell rotates in such a way that counter-balance the

wall-induce torque.

Thirdly, when a cell swims near a wall, its bulk flow field does not satisfy the no-slip bound-

ary condition and to model the interaction images on the other side of the wall are nec-

essary. Hence the cell at a distance h and angle θ from the wall, will be influenced by the

image flow field and its gradient, leading to a rotation proportional toΩ∼−pθ/ηh3 that is

directed perpendicular to the body and parallel to the surface. Basically the cell is interact-

ing with an mirror image of itself, allowing us to treat it similarly to a cell to cell interaction.

As in the case of cell to cell interaction, if the swimmer is a pusher it will be attracted by

the mirror cell and will then swim next to it, reorienting parallel to the surface [57, 58],

see figure 2.8. The attractive speed is then scaling like: u⊥ ∼ p/ηh2. On the other hand, a

puller like swimmer will be reoriented perpendicularly to the surface and hence will swim

away from it, but is the cells are confined they will always and continuously swim into a

wall; while pusher like cells will just remain at the surface. Both methods though, lead to

accumulation of cells at the boundary.

Finally, the cell to cell interactions can be potentially reduced by the presence of a wall.

This can be explained considering the singularities of a flow field generated by a cell at a

distance h from the surface. Its mirror image flow field can potentially cancel the singu-

larities at the far field. Hence the overall flow at distance grater than h from the wall can

be weaker than it would be if the cell was away from the wall.
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2.2.1.2.1 Sperm hydrodynamics near surfaces

The sperm cells need to swim in the female tract in order to arrive at the egg, hence they

naturally move in a confined environment, that at times can be extremely tortuous and full

of obstacles [59, 60]. Many works tackled the problem of sperm swimming at a surface for

different species [61, 62, 63, 64, 65, 66, 67, 68, 69]. The main observation is that sperm cells

have a curvilinear or circular trajectory when swimming close to a surface. The analysis of

the trajectories at a surface is important when we consider that the swimming strategy of

sperm cells is to move sliding over a surface, when reach it. In the work from Bukatin et al.

[70], asymmetries in the curvature of the midpiece of spermatozoa tail have been noticed,

which affect strongly the swimming trajectory of the cells, giving a curvature right or left

to the trajectories of the swimming sperm cells [71, 72], as shown in figure 2.9 a). Many

possible reasons for the midpiece curvature can be assumed. The combination of the

rotation of the planar beating in a step-wise way and the midpiece curvature lead to a

reorientation through right or left turning of cells when faced with reversing flow.

Many works have tried to analyse and explain the behaviour of sperm cells near a sur-

face [71, 72, 74, 61, 75, 64, 68]. In general, the pusher like cells should reorient parallel to

the surface and the motion can be studied through numerical simulations of the Navier-

Stokes equations [76, 77] or mesoscale simulations can help understanding the attraction

and motion at a wall [71, 74]. In this last case, the flow field around a sperm cells is dipolar

in the bulk, but when close to a wall it becomes asymmetric. Given the presence of the wall

on one side, the flux coming in the midpiece is from only the bulk direction and it results

stronger than the one for a single cell in bulk [78]. The midpiece is then attracted to the

surface by this asymmetry in the surrounding flow field, on the other hand the end part of

the tail has a flow component that repels the tail from the wall, lifting the terminal piece of

the tail. This creates a tilt in the sperm axis direction that turns the sperm cell towards the

wall, enhancing the wall attraction [71, 72, 78]. Experimental work [73], in agreement with

the theoretical one, shows the sliding motion of sperm cells over a wall, with tail lift and

head against a wall, allowing the estimation of the sperm cells minimum turning radius,

see figure 2.9 b) B and C. If the cell is long l , oriented at the point of the head, tangentially

to the surface, the radius of curvature of the trajectory R can be found from observations

as [73]:

δ

l
≈ l /2

R
; → R ≈ l

2δ
l (2.24)

with δ being the radius of the conical envelope of the beating pattern. From the experi-

mental results R ∼ 150µm for a human spermatozoon.

Experimentally [73], when these sliding sperm cells then reach a corner, they do not follow

it but if it is a concave sharp corner, they mostly do not escape and get trapped in the
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Figure 2.9: a) Shows the turning mechanism extrapolated by [70], where the both left (red)
and righ (blue) turning cells roll, in the conical envelope, the flagellum counter-clockwise.
This leads to a torque turning to the left, but since the blue cells (right turning) have a
tilted head, the torque is counteracted by an opposing force that is larger, leading to right
turn direction of motion for the cell. b)-A Shows the behaviour of a sperm cell at a hard
corner. The cell swims against the wall but when the corner is reached, it departs from
the wall and swims forward until another boundary is found. b)-B Schematic descrip-
tion of the technique of a sperm cell moving head against the wall at a boundary. b)-C
Shows the schematic representation for the estimation of the minimum turning radius,
as described by [73]. Finally, c) shows how the swimming strategy for sperm cells can be
used to create microfluidic devices to direct the flow of spermatozoa in a desired direction.
In this ansotropic "one way running track" as defined by the authors [73], the cells swim
counter-clockwise and in the insert it is possible to notice that cells swimming in the op-
posite directions are redirected towards the counter-clockwise flow only by feature proper
of the channel.

corner, but when the convex curvature is approached they leave the wall and continue

swimming following the direction their head pointed at, until they reach the next wall

and resume to slide on it, as shown in figure 2.9 b) A. This methodology of swimming

can be used to direct sperm cells’ motion with a specific pattern of the microchannel.

With "clover-leaf" structures it is possible to guide the cells and redirect the one that try

to swim upstream, see figure 2.9 c), creating a unidirectional flux of sperm cells towards a

point. This technique has been used in this work to concentrate cells in desired locations,

like pools where experiments were carried out.
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Figure 2.10: Schematic of the hydrodynamical interactions between two sperm flagella.
Two nearby sperm cells with a different phase in their beating motion will, after some
time, phase lock and coordinate their beating, figure from [2].

2.2.1.3 Flagella interactions

The final interaction we take into account is the one between flagella. We will focus on

eukaryotic flagella, like sperm cells, and cilia. It has been seen [39, 79, 80, 81] that two

sperm cells swimming nearby will, after a transient time, beat in phase. To explain this

phenomenon we can consider, in a first simplified way, two swimmers similar to two Tay-

lor sheet swimming with the same prescribed waveform. In this case for the two swimmers

it will be more energetically convenient to swim in phase and the more their phase are dif-

ferent the more energy they will dissipate. Thus, at the beginning, when the two swimmers

have different phase, their velocity are different too, but their phase difference evolves in

such a way that after a transient they will be either perfectly in phase with φ= 0 or out of

phase φ=π. In simulations both configurations are stable and theoretical work suggested

that the waveform asymmetry in between front and back of the flagellum is responsible

for the phase locking [79, 80].

If we now look at real eukaryotic cells their flagellar waveform is not fixed, but its form

is the result of the balance between internal force from the molecular motors, the elastic

and viscoelastic resistance from the flagellar structure and the viscous resistance of the

external fluid. This delicate balance is disrupted by the presence of a second swimmer

nearby that changes the forces in the surrounding fluid, consequently changing the shape

of the flagellum of the first cell. These changes induced by the neighbouring cells are

responsible for the phase locking [81].

In a recent work [82], where a system of multiple sperm cells has been modelled, it was

found that there is a tendency to aggregate in clusters where the flagella are aligned.

The majority of the studies about phase locking is concerning cilia, when they are highly

packed they behave in such a way that their shape changes in a coordinated manner with

just a very small phase difference, creating the so called metachronal waves that propa-

gates along the surface covered by cilia [83, 84, 85].

Many theoretical studies [27, 26, 25, 86, 87, 88, 89] in the years have tried to model and

explain the flagellar coordination, here we would briefly mention two approaches used.
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Firstly, a very accurate model for ciliar beating can be created, trying to model the correct

internal forces of the axoneme and the resistances [26]. When the beating mechanism is

modelled, two cilia are placed near and it has been seen that after two beating cycles they

will be in phase[26]. While the propagating wave arises when multiple cilia are placed on a

surface. In the both cases it is energetically more convenient for cilia to beat in phase or, as

for a large number of them, with a very small phase difference [27]. The second approach,

simplifies the model for the ciliar beating, but concentrating on the conditions necessary

to have phase locking. For example considering the cilia arranged into a lattice where

their movement depends on a balance between the rotation induced by the other cilia

in the lattice and Brownian motion, the cilia, after a short time will create a coordinated

beating pattern that will create itself a net flow [86, 87, 88, 89].

2.2.2 Microscale collective motion

As already mentioned, microswimmers in nature are found in semi-dilute or dense solu-

tions.

The most commonly experimentally studied organism for microscale collective motion is

bacteria. Even though these systems consist in many interacting micro-organisms their

macroscopic behaviour is non trivial. Many theoretical and experimental works try to

understand them [90, 91, 92, 93, 94, 95, 96, 97, 98].

When high concentration of bacteria are present either swarming on an agar plate or

swimming in a fluid, they create fascinating patterns and show turbulent motion. Sim-

ple models [98] of self-propelled particles have been proposed to explain the intermediate

range hydrodynamics, while more complex one [99], which take into account further bio-

logical details, can capture the more complicated behaviours.

Large scale orientational coherence has been seen in B.Subtilis [33], which is called zoom-

ing bionematics, and resemble the molecular alignment shown by nematic liquid crystals.

In this phase the cells swim in clusters in the fluid, with speed larger than the single cell

velocity.

Coordinated motion is not only used by bacteria, but in recent studies [39, 100, 101, 102,

103, 104] it has been seen that spermatozoa exploit collective motion to increase signifi-

cantly their own motility, create pattern and cooperate efficiently in confinement.

After looking at single interactions between cells, their flagella and between cells and walls,

it is time to analyse a system of collective particles, as one of self-propelled rods.

2.2.2.1 Bacterial collective motion

Looking at a system of self-propelled particles, a simple physical interaction as volume ex-

clusion of the rod-like microswimmers will lead to alignment. In this case two main types
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of interactions have to be distinguished: firstly the polar interactions, where the alignment

is in the swimming direction and nematic interactions, where alignment is independent

from the direction of motion.

In a 2D system of self-propelled particles that can cross each other, the rods are mod-

elled as linear chains of overlapping beads [105, 106, 107]. In these type of systems, self-

propulsion leads to enhanced aggregation and formation of clusters [105, 106, 108, 107,

109, 110, 111]

Comparing simulation results for system of self-propelled rods, with simulations and an-

alytical calculations for Vicsek model [93] and continuum hydrodynamical models, it is

possible to notice that for Viscek and continuum models the polar and nematic interac-

tions have to be distinguished: polar interactions lead to moving density waves [112, 113],

while for nematic interactions high-density bands with rods moving parallel to the band

itself but moving in bot directions have been predicted [114].

In these types of simulations, given the nature of the rods representation by a chain of

beads, the nematic interactions are the dominant contribution, while the polar compo-

nent is present but not as significant [105]. This means that there is a larger probability for

parallel alignment than antiparallel after rods collisions.

Simulations of self-propelled rods without noise, show very interesting phase diagram as

function of aspect ratio of rods, a, and volume fraction, φ [108]. In this phase diagram six

major motion states have been found as shown in figure 2.11.

For small volume fractions, it is possible to observe a dilute phase for the entire range of as-

pect ratios. With increasing volume fraction, several phases of densely packed rods arise.

Their internal structures differ and depend on the aspect ratio. With increasing aspect ra-

tio it is possible to distinguish: a jammed phase for very short rods and intermedaite to

high volume fractions, a turbulent phase for intermediate rods and high volume fractions,

local nematic alignment and swarming phase for intermediate to large rods and inter-

mediate volume fractions and finally a laning phase for very long rods and high volume

fractions.

In the dilute state, little or no cooperative motion is seen, but with increasing volume frac-

tion of very short rods, the mean square displacement of the moving particles drops of

nearly two orders of magnitude along the transition curve from dilute to jammed phase.

On the other hand, very long rods at intermediate volume fraction exhibit swarming be-

haviour with large spatiotemporal density fluctuations. The very long rods, with further

increase in volume fraction there is a transition from swarming to laning, characterised

by a discontinuous increase of the correlation length for the spatial velocity correlation

function. The laning phase exhibit assembles of rods in homogeneous lanes.

The bionematic phase, characterised by the coexistence of vortices and jet-like structures,

exhibit large fluctuations in the local vortex density and, in the phase diagram, is the phase

24



a)

b)

Figure 2.11: a) Schematic of a non-equilibirum phase diagram for the self-propleed parti-
cle model. Varying the aspect ratio of the particles and their volume fraction it is possible
to distinguish six different phases: dilute state D, jammed state J, swarming state S, lan-
ing state L, bionematic phase B and turbulent phase T. b) Firstly, A is the experimental
snapshot of aquasi-2D bacterial suspension with high volume fraction, then there are 3
schematics of vorticity fields with flow stream lines, for the turbulent phase: B is for the
quasi-2D bacterial experiment, C from the simulations of the self-propelled particles with
aspect ratio a=5 and volume fraction φ = 0.84 and finally D for the continuum theory. In
this latter case, the range of the simulation was adapted to the experimental field of view
by matching the typical vortex size. All the scale bars are 50 µm. Figures from [108]

adjacent to both swarming and laning phases.

However, the most important and interesting phase predicted by this model is the homo-

geneous turbulent state, that arise for intermediate aspect ratios and high volume frac-

tions. The aspect ratio for which the turbulent phase appears is the typical aspect ration

of the most commonly used bacteria for experimental studies. At high volume fractions,

with decreasing aspect ratio there is a transition between the bionematic and the turbu-

lent phase, that is characterised by velocity distribution, correlation function and density

fluctuations. Indeed, the velocity distribution for the bionematic phase is broad and non-

Gaussian, but it is shown to be Gaussian in the center for the turbulent phase, as shown

in figure 2.12 A. Additionally, the velocity correlation function for the bionematic phase

smoothly decreases, its oscillations even out given the presence of bionematic jets as dis-
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C

Figure 2.12: Comparison between different phases. A shows the velocity correlation func-
tions (VCFs), where the distance R is normalised by the bacterial length l. The correla-
tion function for the bionematic phase decreases smoothly, while for the turbulent phase
a negative minimum is found and characterise the typical vortex size Rv . B shows the
distribution of Cartesian velocity component for both the bionematic phase with a=9 and
φ=0.55 and turbulent phase, with aspect ratio is a=5 and volume fractionφ = 0.84. The dis-
tribution for the turbulent phase is approximately Gaussian with exponential tails, while
the bionematic phase has a broadened distribution that is not Gaussian. C shows the
typical number fluctuations as a function of the average particle number for the differ-
ent states. The power-law scaling reveals big number fluctuations for the swarming and
bionematic phases, while the fluctuations result strongly suppressed in the dense jam-
ming, turbulent and laning phases. Figures from [108].

cussed in [115], but the velocity correlation function of the turbulent phase shows a min-

imum that represents the typical vortex size Rv (figure 2.12 B), that in 2D is around three

times the bacteria length L. Finally, the number of fluctuations are less stronger in the

turbulent phase than in the bionematic one, see figure 2.12 C.

The turbulent phase is characterised by typical random swirls and and vortices in the ve-

locity fields, which are characteristic of turbulence at high Reynolds number. This phase

has been observed in both surfaces and 3D bulk suspension of B.Subtilis [108, 33, 35, 116,
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117] and studied in theoretical and simulation works [118, 108, 119, 36].

In order to compare the microswimmer turbulent phase with the high Reynolds number

turbulence the energy power spectrum E(k) can be calculated, where k is the wave vec-

tor, which correlate to the Fourier transform of the spatial velocity correlation function.

Looking at the behaviour of E(k) in the classical turbulence we have that it is predicted

to scale in 3D as E(k) ∼ k−5/3, called Kolmogorov-Kraichnan scaling [120], while in 2D,

there are an energy-inertial upward cascade which goes as E(k) ∼ k−5/3 and an enstrophy

transfer downward cascade decaying as E(k) ∼ k−3. Now, considering the 2D bacterial tur-

bulence two different regimes have been found: for small k, the energy spectrum decays as

E(k) ∼ k5/3, while for large k, the decay was E(k) ∼ k−8/3 [108]. Thus, self-sustained bacte-

rial turbulence at small scales has some properties in common with classical turbulence,

but it differs from it at large scales [108].

2.2.2.2 Sperm cells collective motion

In recent years the topic of spematozoa turbulence, or spermulence, has gained interest.

Indeed, some experimental studies [101, 102, 100, 40, 39, 121] have been carried on, show-

ing interesting swarming behaviours of high concentration sperm cell system, as the trains

of woodmouse sperm [100, 101] or the arrangement in vortices of sea urchin sperm [40].

As mentioned in section 2.2.1.3, flagella interactions would lead to beating synchronisa-

tion. When two spermatozoa swimming at a distance smaller than one sperm length, it is

necessary to take into account the full hydrodynamic interactions between the two time-

dependent flagellar shapes. The beating of the flagella influence each other and that typ-

ically leads to phase locking, for example synchronising their beating pattern [122]. This

hydrodynamical interaction between sperm flagella has two effects: a synchronisation at

short time scales and for longer times an attraction [122]. The two sperm cells swimming

close to each other will synchronise their beating with a time dependent on the initial

phase difference, for example for a phase difference of 1
2π the synchronisation will ap-

pear after two beating, while they will synchronise after about 5 beatings for a π phase

difference [122]. A difference in swimming velocities will adjust the relative position of the

two spermatozoa and when the beats of flagella will be in phase, the velocities will rapidly

transition and become identical.

Experimentally both synchronisation and attraction of sperm cells have been observed

[121, 122] and for example, when the sperm heads are strongly coupled mechanically then

the flagella beat in synchrony [121].

Collective behaviour of sperm cells at a finite concentration have been studied mainly

numerically [122], where a mesoscale simulation was performed for a 2D system with a

density of about three spermatozoa per square sperm length. The beating frequencies ω
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are selected from a Gaussian distribution with variance δ f = 〈(∆ω)2〉1/2/〈ω〉. The frequen-

cies are not chosen equal for every simulated sperm cells since in nature not all the sperm

beat at the same frequency.

Changing the width δ f of the Gaussian frequency distribution, the simulated system react

differently. For variance δ f = 0 when a cluster is formed, unless there is a strong external

force acting on it, like a head to head cluster collision, it will not disintegrate. For δ f > 0

there are different beat frequencies and the phase difference between a cells and other

cells in the cluster increases in time, hence cells manage to leave the cluster only after a

sufficiently long time frame. Moreover, there is a balance between formation and break-up

of clusters and the cluster size can grow by both merging with other clusters or collecting

cells in its path. The average cluster size depends on δ f , being larger for small variance

values than for large δ f .

Cluster size for δ f = 0 will continue to grow in time, without reaching a minimum, while

for δ f > 0, the cluster size remain stationary after 50 beats. If we look how the average

cluster size depends on the variance δ f of the frequency distribution, we notice that it

decays exponentially as [122]: 〈nc〉 ∼ δ−γf , where γ= 0.20±0.01. Indication that the cluster

size diverges for δ f → 0 is given by the negative exponent.

On the other hand, experimental work on sperm turbulence has been performed in the

recent times [103], where the fresh undiluted ram semen has been confined in a glass

chamber of a centimetre by a centimetre in size with a variable height h = 100,150,200 µm.

Whirlpool structures have been seen in the system, as shown in figure 2.13 a) and b), which

are clusters of cells that result forced by hydrodynamic interaction into local alignment.

From the derived flow fields, it results that there is a linear relation between energy and

entrophy of the system and their ration will give the integral length scale L∗ = (E/Ω)1/2 (fig-

ure 2.13 c)). From the experimental data, the whirlpools are detected separately and their

length scale l∗ is calculated using the major axis of the ellipses contouring the whirlpool

itself. This length scale results to be similar to the integral length scale calculated through

the velocity fields. Furthermore, using a two point correlation function, it has been seen

that the integral length scale L∗ defines the typical correlation length independently from

the initial energy of the system.

The Fourier analysis is the used to analyse the internal length scale of the velocity field

from the swimmer size a to the integral length scale L∗. The resulting energy spectrum,

shown in figure 2.13 d), is divided into three regimes. The first one, for small wavelengths

k, shows a saturation to a white noise plateau. Here the largest vortex reaches the size of

the integral scale L∗, up to a critical wavelength kc = 2πL∗, where the the velocity fluctua-

tions are uncorrelated in space and form a random set of coherent structures. The second

regime is above the critical wavelength kc , where there is a clear power law decay of the

power spectrum as k−3, which is very similar to the power spectra decay found for quasi-
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a)

b)

c)

d)

Figure 2.13: Spermulence plots. a) shows the phase-contrast microscope images of fresh
semen placed between two glass plates separated by 150 µm. b) shows the whirlpool de-
tection, segmentation, and ellipse extraction. c) represents the 2D fluctuating kinetic en-
ergy E plotted versus the fluctuating enstrophyΩ for six different experiments for the 100
µm chamber. The error bars are calculated from the enstrophy standard deviation and
the dotted line shows the linear trend associated with a constant ratio between energy
and entrophy, the square root of which provides the integral length L∗. Finally, d) shows
the fluctuating energy spectrum plotted versus the modulus of the wavelength k rescaled
by a critical wavelength kc = 2πL∗, for six different experiments in the 100 µm chamber.
The spectrum displays three regimes: between kc and ka the motion is well correlated and
presents the k−3 power law represented by the gray dotted line, k > ka which, at the indi-
vidual scale, defines the uncorrelated noise and k < kc where there are large scale coherent
but uncorrelated structures. Figures from [103].

2D turbulent flows. The final and third region is for large wavelength k > ka = 2π/a, where

the power spectrum saturates, showing again a white noise regime consistent with the size

of the single swimmers. These three regions suggest that the velocity correlations build up

from the individual swimmer scale a to a large collective scale L∗. Dilution of the sam-

ples affects mostly the smaller scales leading to a decrease of velocity correlations and to a

lower energy, while for larger scales the flow is mainly unaffected by the dilution, showing

the whirlpool structures.

Finally, the height of the channel doesn’t seem to influence drastically this system, which is

hence considered fairly robust representation of a quasi-2D system, where multiple layers

of sperm cells are present, showing a behaviour close to bacterial turbulence.
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a)

b)

Figure 2.14: Spermatozoa swimming in vortices and the consequent hexagonal configura-
tion of the vortices in 2D with a surface density of 6000 cells/ mm2. a) Shows the hexagonal
configuration of the vortices where (A) is the dark field-contrast image showing only the
heads of the swimming cells; (B) shows an arrangement of vortices thanks to the average
intensity of 25 consecutive frames; (C to E) are successive frames of nine spermatozoa
swimming in a vortex, the arrow showing the direction of rotation, in this case clockwise;
(F) Another 25 frames average showing a magnified view of the vortices. While b) shows
the hydrodynamical coupling of sperm cells in a single vortex that leads to quantized rotat-
ing waves. (A) shows both the position an the orientation of seven sperm heads, labelled
with coloured dots, present in a single vortex; (B) the circling pointers represent the differ-
ent phases of the oscillation of the sperm’s head. Finally, (C) shows the projection of the
angular postion of the heads within the vortex onto a unit circle. Figures from [40].

We intend to report another interesting phenomenon that appears for a 2D system of con-

centrated sea urchin sperm cells [40]. When sperm density at the surface increases over

2000 cells/mm2, the cells arrange into vortices, composed of several spermatozoa swim-

ming in a vortex of diameter around 25µm. On average 10 cells would swim in each vortex,

circling clockwise around a common center. The vortices themselves organise in a fluid

structure with local hexagonal order, see figure 2.14. The onset of this structure formation

correspond to the the density at which, there is overlap density of circular trajectories,

hence increasing the surface density increases the number of cells in each vortex.

In the experimental work [40], the sperm "trapped" inside the vortices have been noticed

to have a peculiar form of beating pattern synchronisation. If every spermatozoon is de-

fined by two variables: firstly, the phase of the oscillation its head, which, since it is driven
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by the flagella oscillation, has its same frequency and secondly the angular position of the

head while the sperm cells swims in the vortex. Both variables have been seen to not cor-

relate is calculated between any two spermatozoa belonging to the same vortex, but their

difference do correlate. Hence spermatozoa in the same vortex have different frequencies

and velocities, but if for example a spermatozoon swims twice as fast, it will even beat

twice as frequently. This implies that two sperm cells in the same vortex, although they

swim with different frequency and velocity, they are locally beating in synchrony, with a

trailing sperm cells following the leading one.

Moreover, given that the swimming path of the sperm cells is circular, only an integral

number of wavelength exist. Hence it is possible to calculate the wave numbers in two

ways: firstly by the ratio between head phase oscillation and head angular position and

then by the ratio between vortex circumference and average beating frequency of sperm

cells in the vortex. Both ways give a wave number around 4. This leads to the result that hy-

drodynamical coupling of the tail of sperm cells swimming inside the vortex give a quan-

tized rotating wave with wave number around 4 [40].

A simulation of this 2D system have been recently performed by Yang et al. [123], where

the sperm cells’ flagella are confined in a surface plane and the flagella interactions are

only excluded volume interactions and hydrodynamics is accounted through resistive-

force theory or 2D mesoscale hydrodynamics approach, average simulated trajectories

are shown in figure 2.15.

In both experimental work [40] and simulation [123], the correlation function G f ,c (r ) of

the instantaneous center of the circular trajectories and the variance ∆ of the spatial dis-

tribution of the centers have been calculated [40, 123]. Simulations with and without hy-

drodynamical interactions show that there is a weaker correlation for systems with the in-

teractions. This is due to the fact that hydrodynamical interactions, as mentioned before

in this section, lead to synchronisations and attraction of sperm cells, but they also dis-

rupt the path of the sperm cells swimming in the opposite direction in the neighbouring

vortices. Additionally, since the simulation results agree reasonably with the experimental

data only when anisotropic friction is considered, it is possible to conclude [74] that the

hydrodynamical interactions, in a 2D system, play a minor role in the process of vortex

creation. Still no simulation has been carried for a 3D system where the hydrodynamical

interactions would be stronger than in the 2D system. Finally, again in both simulation

and experimental work [123, 40], it has been seen that the order parameter increases lin-

early with increasing surface cell density. This means that the characteristic vortex size

does not vary, but with increasing number of sperm cells swimming inside the vortex, the

vortex mass increases.
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Figure 2.15: Snapshots of a simulated 2D system of flagella, that self-organise into vortices.
(a) is the snapshot for flagella in a mesoscopic fluid; (b) case of anisotropic friction. (c)
shows the system with anisotropic friction and lower surface density, where the dashed
lines show the local hexagonal order. (d) is the average over 30 flagellar beats in the same
system as (b). Images from [123]. Finally, A shows the pair-wise correlation function of
the vortex centers, while the insert demonstrate how the function was calculated. In order
to compare to an ideal hexagonal lattice the arrows are used to show the positions and
relative weights of the maxima for the ideal hexagonal lattice. Plot from [40].

2.2.3 Vicsek model

Collective motion of not only microswimmers but even of macro systems, like flocks of

birds and schools of fish [124, 125, 92], can be modelled with a minimal model called Vis-

cek model [93, 92], where the moving bodies adjust their motion thanks to interactions

with the neighbouring bodies, favouring alignment.

The Vicsek model was introduced by Tomas Vicsek at al. in 1995 [93, 92], and is a math-

ematical and physical method that tries to describe in a minimal way how cells interact,

changing their direction of motion depending on the nearest neighbours.

Viscek at al. demonstrated that even considering just a very basic system of particles mov-

ing and interacting between each other it is possible to capture the generic collective prop-

erties of various systems of self-propelled particles. This simple model considers a num-

ber N of point particles that at t = 0 are randomly distributed and contained in a square of

size L with periodic boundary conditions, each particle moves continuously in the plane,
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they all have the same absolute velocity v and their direction θ at time t = 0 is randomly

distributed.

The system evolves following one simple rule: a given particle swimming at a constant ab-

solute velocity, at each time step, will assume the average direction of motion of its neigh-

bouring particles in a radius r around it, plus some random perturbation [93] (see figure

2.16, (e)).

Let’s consider N polar point particles randomly distributed in space, contained in a square

of size L with periodic boundary conditions and moving with constant magnitude veloc-

ity v0. In this system, every time step ∆t , which for simplicity we consider equal to one,

the particles update their velocity direction with the average direction of motion of their

neighbouring particles. The dynamics of the position ri of particle i, evolves as:

xi (t +1) = xi (t )+vi (t )∆t (2.25)

The velocity vi of the particle i at time (t +1), is defined by the constant absolute velocity

v0, and the evolution of the angle θ between vi and the x axis of the Cartesian coordinate

system. The angle θ evolves with time as:

θ(t +1) = 〈θ(t )〉+∆θ (2.26)

where 〈θ(t )〉r is the average direction of all the particle within the circle defined by the

interacting radius r, including particle i, with center in particle i.

In eq. 2.26, ∆θ is a random number picked from a uniform probability distribution be-

tween [−η/2,η/2], where in this case η is the noise intensity. ∆θ, can be considered akin to

a temperature-like variable.

In this system there are three free parameters: the noise η, the density ρ = N /L2 and the

distance covered by a particle between two updates. The latter can be chosen such that

the particles manage to interact with the neighbours and move fast enough that the sys-

tem configuration changes after a few updates. The two extremes v → 0 and v →∞ give

respectively no particle movement at all and mean field behaviour, where in between up-

dates the particles are fully mixed.

When the system starts at t = 0 the positions and the directions are randomly distributed

in the space, as in figure 2.16 (a), now looking at the evolving system for low densities and

noise, figure 2.16 (b), we see that after some time, groups of particles move in a coherently

in a random direction. On the other hand, if both density and noise are high, figure 2.16

(c), the motion is random but with some correlation. Finally, if the density is high and

the noise is low, figure 2.16 (d), the system shows ordered motion at a macroscopic scale,

where particle move in the same selected direction.

The absolute average normalised velocity va can be used as a order parameter and it is
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Figure 2.16: Velocity fields for a system of 300 self-propelled particles. (a) is the system
at t=0, ρ = 6.12, η = 2.0, showing the initial conditions of the system. (b) is the evolved
system, t 0, at low density ρ = 0.48 and low noise η = 0.1; (c) again an evolved system
for high density ρ = 6.12 and high noise η = 2.0 while (d) is the evolved system for high
density ρ = 6.12 and low noise η = 0.1, where a polar ordered phase arises. (a) to (d) are
taken from [93]. Finally, (e) is the schematic of the set up of the alignment rule for the
Vicsek model. The i-th particle reorients due to the influence of the particles present in
the circle of radius r around itself. The red particles are the one that result in the circle at
time t, the blue one are the external one and the black one is the reference particle i.

defined as:

va = 1

N v

∣∣∣∣∣ N∑
i=1

vi

∣∣∣∣∣. (2.27)

As an order parameter, if each particle has a random direction, va has a value equal or near
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zero, while it grows to 1 if the particles are moving in a coherent way.

Variations in the values of noise and density create changes in the average normalised

velocity va , as shown in figure 2.17 (a) and (b), and in thermodynamic limit, where the

system has a phase transition similar to a system in equilibrium, we can show that:

va ∼ (ηc (ρ)−η)β, va ∼ (ρ−ρc (η))δ (2.28)

with β and δ being the critical exponents and ηc (ρ) and ρc (η) being the critical values of

noise and density for L →∞. For finite size system, the values of critical noise and density

depend on the system size L. Dependency for fixed noise or density of the order parameter

on η and ρ could be plotted, shown in figure 2.17 (c) and (d).

Thus, this simple model shows the emergence of collective motion through a continuous

transition. Many studies investigated the nature of this transition [126, 127, 128, 129, 130,

131, 132, 133, 134, 135, 136].

There are many possible variations of this model and the results depend mostly on the

type of local interaction rules used for the alignment and on the chosen parameters of the

system.

We will proceed to briefly describe three variations of this model: without or with align-

ment rule and the mean-field approaches.

2.2.3.1 Models without alignment rule

In many real systems, there is no explicit alignment rule [92, 137, 138, 139, 140, 141, 142]

and nevertheless an ordered phase arises. We can model those system considering that

the alignment is introduced with an interaction rule during collisions between particles.

The simplest model states that particles, confined in a 2D system, try to maintain their ab-

solute velocity and they are subject to repulsive force F when they are close. The repulsive

force is the only interaction.

Hence the equations describing the evolution of the system is:

dvi

d t
= vi

( v

|vi |
−1

)
+Fi +ζi (2.29)

where ζi is the white noise, and the only interaction between particles is through the pair-

wise central force Fi .

In simulations of this minimal model, the system goes from disordered phase to coherent

motion through a first order type of transition [143].

Other variations of this model or different boundary condition lead to a variety of results,

showing for example ordered migration or vortex formation or subgroups moving in a

chaotic way. In the considered model, when the isotropic particles collide inelastically,
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(c) (d)

Figure 2.17: Variation of the vortex parameter va depending on noise and density. (a)
shows the order parameter for variation of noise keeping the density constant, ρ = 4; (b)
is the order parameter for constant noise, η = 2.0, and varying density. Determination of
the critial exponent through the behaviour of the critial variables: (c) shows the plot of
the order parameter vs l n[(ηc (L)−η)/ηc (L)] for different system sizes but constant density
ρ = 4. (d) similarly shows the order parameter as function of the ln[(ρ−ρc (L))/ρc (L)] for
a fixed value of noise η= 2. All pictures taken from [93].

inducing alignment and leading to an increase of the overall velocity correlation that re-

sults in coherent collective motion in the system [144].

If the interactions considered are attractive instead of repulsive, many different patterns

arise, like swarming, undirect mills and aligned groups moving coherently [145]. This at-

tractive system is stable only when in the presence of noise.

Bacteria and other biological micro-organisms are asymmetric and can be modelled by

rod-like particles moving in 2D with constant speed. They would interact through ne-

matic collisions [140] and with the presence of noise. Nematic collisions are a specific type

of collisions, where if the included angle between two rod-like particles entering collision
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is smaller than 180°, then after collision, the two particles will align and continue their mo-

tion in the same direction in parallel. On the other hand, if the angle between the particles

before collision was bigger than 180°, then after collision, they will travel in parallel, but

moving in opposite directions. With these conditions the system shows a phase diagram

divided in four parts: the first is spatially homogeneous and ordered, the second is similar

to the first but has regions at low density that show a disordered phase, the third phase

is similar to the previous one, but in this case the bands where the motion is disordered

are not stable as in phase 2, but are thinner and more unstable. The segregation regions

appear and reform, they separate and merge, displaying space-time chaos. Finally, the

fourth phase is fully disordered, both locally and globally, it is chaotic in time and space,

being homogeneous in space.

2.2.3.2 Models with alignment rule

The original model by Viscek already includes an alignment rule, but instead of consider-

ing the interaction radius r, we can look at a particle interacting with the n nearest neigh-

bours. If the radius of interaction is changed it can lead to including the same amount of

interacting neighbours, leading to a strict correlation between the metric and topological

approaches. Even if at a first glance they can look equivalent, there is a very subtle differ-

ence that leads to a difference in the transition order. In the metric case the density can

be prescribed, hence in the range of interaction the number of particles can vary. Ginelli

and Chanté, [146, 147, 126], obtain a second order phase transition for the topological

approach and a first order transition for the metric one.

It can be seen that the metric approach for low velocities gives a continuous transition

that is similar to the topological approach, while becomes of first order with increasing

velocities [136, 148].

2.2.3.3 Continuous media and mean-field approaches

A model considering a continuous media approach is quickly described here, where col-

lective motion arises and it is possible to give a macroscopic description of a self-propelled

particle system. The intention is to write hydrodynamic equations that allow to explain the

macroscopic behaviour using general continuum equations for the particle motion. The

final large scale behaviour depends mostly on symmetry terms and conservation laws.

Toner and Tu [149, 150, 151], starting from a previous work [152], were the first one to de-

scribe a full non-linear higher dimensional dynamics, where they derived a continuum

description, considering the most general equations of motion using velocity fields and

density.

A single active self-propelled particle can be modelled as in figure 2.18 [153]. A swimmer
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Figure 2.18: Simplified physical model of a self-propelled particle, described as asymmet-
rical rigid dumb bell.

is considered as a asymmetric dumbbell of length l and orientation the unit vector n. It

creates on the fluid a force dipole. These swimmers are the one we looked at in the pre-

vious part of this chapter and can be pushers or pullers. Their velocity is vp = v0n and

the dynamics of a single particle α is described by the dynamic of the two spheres com-

posing the swimmer (L and S) separately. The flow velocity at point r is u(r) and can be

determined by solving the Stokes equation where both the active forces that the swimmer

α exert on the fluid and the effect of the fluid fluctuations are accounted for [153, 154].

Mean field theories [155, 156, 137] for self-propelled particles can treat the system as a

ferromagnetic or nematic system. Both approaches lead to a continuous phase transition

with 1/2 exponent for the order parameter scaling [156]. The difference between these

two mean field approximations is that the amplitude of the critical noise at which there

is orientational order is lower when the cells alignment is nematic, instead it is higher for

ferromagnetic-like systems [156, 155, 157].

It’s possible to model the bacteria collective behaviour using a simple Vicsek model of

rod-like particles with mean field approximation and periodic boundary conditions [98],

it is possible through simulations to show that a rotational motion which is correlated in

case of low noise and high density, in addition the directionality of the vortices present in

the fluid are selected by symmetry breaking and are equally probable to appear, without a

privileged rotation.

Looking at real bacterial systems, the hydrodynamical effects of the medium over the mo-

tion of cells are important and the regions with highly concentrated cells show a transient

phase with patterns that are jet-like and they then evolve into vortices, which are stable
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and the persistence time is around 1 second [116, 158]. The velocity measured in these

collective patterns, jets and vortices, results to be higher than the velocity of the single

bacteria. To explain this, a two-phase model [36] has been developed, where the bacteria

and fluid are modelled as two independent but interpenetrating continuum phases.

2.3 Biology of Sperm Cells

After an overview on the Physics used to describe and model microswimmers system sim-

ilar to the one we want to investigate in this work, we will proceed to describe as concisely

as possible the morphology and the biology of the swimmer used in this work: the sperma-

tozoon. We will look at the general anatomy of the mammalian spermatozoon and then

trying to connect the biological composition of the sperm tail and its chemical interac-

tions to its strategy of motion.

2.3.1 The Sperm Cell

Antonie Van Leeuwenhoek discovered in 1677 [159, 160], not only the "little animacules"

living in the water, but also some little humans. At the time it was commonly believed that

each sperm cell contained a little already formed human being.

The spermatozoon is an haploid cell that swims through the female tract and fertilises the

female gamete, creating a new life. The spermatozoon is the carrier of the chromosome

defining the sex of the foetus.

The size of a spermatozoa varies depending on the species [161], it could be as small as

the hippopotamus sperm cell (∼ 35µm) or as long as the Chinese hamster which reaches

260µm in length. Human spermatozoon is between 50 and 60µm, similar to the ram and

bull sperm cells which on average are 50−55µm.

The spermatozoon can be divided into two major part: the head and the tail [162, 163, 164,

165, 166], see figure 2.21 .

2.3.1.1 The Head

The head shape varies depending on the species, the majority of the mammals have a

spherical or ellipsoidal head, while the rodents have a hook shaped head, but it is impor-

tant to notice that even if shape and size of the head changes across species, the basic

composition does not change at all, allowing us to have an accurate description of the

spermatozoa itself.

The exterior of the head is divided into three major parts: the acrosomal cap, the postacro-

somal region and the neck. The head contains the nucleus, which carries the DNA in the

form or densely packed chromatin coil, see figure 2.19.
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During spermatogenesis, the nucleus starts assuming its shape while disulfide bonds sta-

bilise the chromatin and condense it, allowing it to be metabolically inert and highly re-

sistant to digestion, this rigid shell is called perinuclar teca. These characteristics ensure

that the chromatin can make it through the penetration of the zona pallucida of the egg,

giving the spermatozoon the possibility to fulfil its purpose of fecundating the egg.

The condensed chromatin it is usually situated in the anterior half of the nucleus, the

spermatogenesis process is a very precise one, the resulting spermatozoa are extremely

uniform, with little abnormalities in both shape of the head and development [162]. The

exception of this rule is the human spermatozoon, which has the higher percentage of ir-

regularities in mammals [163]. Most importantly human sperm cells often have cavities in

the condensed chromatin, which modify the head shape, this suggest that the condensa-

tion of chromatin in humans does not come to completion for all the sperm population in

the same ejaculate [162, 165, 166, 163].

A very important part of the spermatozoon head is the acrosomal cap. This part of the

external part of the head the one that penetrates the egg and dissolving its membrane,

allowing the nucleus to enter the egg and fertilise it. The acrosome covers the majority of

the head and its composed of multiple parts as shown in figure 2.21.

Looking from the outside towards the inside of the head, it is possible to distinguish the

outer acrosomal membrane, right under the cell membrane. It continues till the bot-

tom part of the cap, where it merges with the inner acrosomal membrane. In the cavity

between the two membranes, there is the low electron density acrosomal content. The

apical segment of the acrosome is often thick and in a specific shape dependent on the

species, in case of rodents for example, this segment is very large. These parts compose

the principal segment of the acrosomal cap, which covers the majority of the nucleus.

Under the principal segment, there is the equatorial segment, where the inner and outer

membranes fuse and there is a reduction in the thickness of the acrosome. Depending

on the different species, the length of this segment changes, for example in boar sperm

cells this segment is particularly long. The equatorial part of the acrosome is the only one

that does not disintegrate during the acrosomal reaction with the egg during fertilization

[162, 163, 164, 165, 166].

When the sperm cell arrives near the egg inside the fallopian tubes, in order to be able

to fecundate the egg, it has to undergo capacitation where physical modifications oc-

cur. Bicarbonate ions enter the sperm cell and trigger capacitation, activating the sol-

uble adenylyl cyclase enzyme in the cytosol which has been seen to correlate to differ-

ent changes in the cell. First of all the plasma membrane of the spermatozoa loses the

seminal plasma proteins and the glycoprotein coating and the membrane potential is

hyperpolarised. Then the pathways for the acrosome reaction get activated, the flagel-

lar motility increases to help penetration of the egg and more metabolic changes happen
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[167, 168, 163].

Specifically, the apical and principal segment of the acrosome fuses with the external cell

membrane in multiple sites, creating different openings for the acrosomal content to get

released. This process of membrane fusion continues until the outer acrosomal mem-

brane and the cell membrane are completely gone and the sperm nucleus is protected

only by the inner acrosomal membrane. The content of the acrosome is rich of hydrolytic

enzymes that allow the spermatozoon to penetrate the zona pallucida, helped by the beat-

ing of the spermatozoon that is enhanced and directed forward. Then it attaches to the

oocyte plasma membrane, thanks to a transmembrane protein and then the genetic con-

tent enters the egg it fertilising it [167, 168, 163].

Behind the posterior part of the acrosomal cap, there is a region called postacrosmal re-

gion, which remains intact after the acrosme reaction. The plasma membrane in this re-

gion has a trilaminar appearance which lays over a thin dense layer called postacrosomal

sheath. Between the sheath and the nucleus there is a narrow opening that closes by the

posterior ring. Under the posterior ring, a portion of the nuclear envelope lies on the im-

plantation fossa, which is the site where the tail attaches to the head. Specifically, this part

of the nuclear envelope is covered by a thick layer of dense material called basal plate. The

basal plate lined the fossa and allow a large number of fine filaments to attach to the head

and they anchor the fossa and the connecting piece[162, 163, 164, 165, 166].

2.3.1.2 The Tail

2.3.1.2.1 The connecting piece

The connecting piece, as the name suggests, is the part of the sperm tail that connects the

flagellum to the sperm head, see figure 2.20. The capitulum is the part that lies just under-

neath the implantation fossa, conforming in shape with the basal plate and attaching to it

thanks to thin filaments, that are probably dissolved when the tail gets detached from the

head during fertilisation. The capitulum is mainly composed of proteins and the bottom

part of it appears to be associated with the segmented structures in the connecting piece.

Looking at the connecting piece from the capitulum downwards we have a thin and con-

tinuous density area that caps the segmented structures that then separate into the nine

segmented columns long one or two microns, which overlap in their caudal part with the

nine outer dense fibers. The segmented columns of the connecting piece are composed

of alternating bands.

In the connecting piece can be distinguished three parts:

• Left part: it expands into a large segmented area that is the origin of the outer dense

fibers number four to seven.
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Figure 2.19: Drawing of the principal components a primate sperm head seen in a sagittal
section. The junction between the head and the neck is marked by the posterior ring.
Figure adapted from [162].

• Right part: the top of segmented columns in this part are folded, forming the proxi-

mal centriole vault. In addition, these columns are the origin of a set of three outer

dense fibers, namely the fibers nine, one and two.

• Central part: this is where the distal centriole is during maturation of the sperma-

tozoon. The two remaining outer dense fibers start from here (number three and

eight).

The proximal centriole is a in a niche obliquely oriented in the dense part of the connect-

ing piece under the capitulum. This centriole is the only one that survives the maturation

of the spermatozoon. In fact, the distal centriole during growth of the sperm cell, is at-

tached to the base of the axoneme, and during the development of the connecting piece it

disintegrates, but at times the remnants of the nine triplets of microtubules can be found

in the mature sperm cells.

The neck region does not really have organelles apart from one or two mitochondria that

are oriented longitudinally and connect with the mitochondrial sheet of the middle piece

[162, 163, 164, 165, 166].
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a) b)

Figure 2.20: Both a) and b) show the composition of the connecting piece between the
head and the tail of the spermatozoa. b) is the image EM image of the neck part of a boar
spermatozoon. Figure adapted from [162].

2.3.1.2.2 The axoneme

The axoneme is the central part of the flagellum and it is its motor apparatus. It is com-

posed by two central microtubules surrounded by nine of equally spaced doublets of mi-

crotubules arranged concentrically around the central pair, known as the 9+2 structure, as

shown in figure 2.21.

Each doublet is composed by two subunits. The subunit A is a complete microtubules,

with a circular cross section of diameter equal of around 26 nm. The subunit A cylinder

consist in 13 protofilaments made by tubulin protein in dimers, which are associated end-

to-end. The other subunit (subunit B) is not a full circular cylinder, but it is a C-shaped

tube and attached to subunit A. It is composed of 10 protofilaments. Each subunit A has

a two diverging nexin bridges connecting it with the subunit B of the adjacent doublet.

Two arms, inner and outer arms, elongate from the the subunit A and the dynein motors

present on the arms engage with the subunit B of the adjacent pair, exerting a sliding force

between doublets that leads to a bend in the flagellum. The dynein is a protein with ATPase

activity. In addition to the arms, every subunit A has a radial link that connect them to the

central pair through the helical sheet that covers it. The center tubules are made of two
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subunits A, which are joined by cross-bridges equally spaced in the tubules length and a

sheath is wrapped around them [162, 163, 164, 165, 166].

2.3.1.2.3 The outer dense fibers

The outer dense fibers surround the axoneme creating a 9+9+2 structure. This structure is

present in the internally fertilizing mammalians, while for marine species that fertilize in

seawater, the fibers attached to the 9+2 structure is missing (figure 2.21).

The outer dense fibers come from the segmented columns in the connecting piece and

they stretch for all the tail length, running parallel to the respective 9 doublets of the ax-

oneme. Each fiber has a different size, shape and cross-section. Three of the nine fibers,

number 1,5,6, are usually larger. The termination of the outer dense fibers is species de-

pendent, but at their distal point each one of them is attached to the corresponding dou-

blet.

Two sets of doublets (9,1,2 and 4-7) drive the alternating phases of the sliding to provide

bending of the tail and hence movement of the sperm cell. The outer dense fibers are

characterised by different density, creating a structure that limit the ability of the fibers to

move with respect to each other. The outer fibers reinforce the structure and regulate the

movement of the axoneme in the midpiece and principal piece of the sperm tail.

The other pair of outer dense fibers (3 and 8) are positioned parallel to the insider pair

of microtubules, defining the plane microtubules plane. In addition, they control relative

motion, restricting the bending of the tail within the plane defined by the head orientation.

These two fibers terminates at the midpiece.

The mechanism to create the flagellar beating pattern by the sliding forced induced by the

dynein motors coupled with the flagellum structure has been studied extensively mostly

through modelling and simulations [169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,

180, 181, 182, 183, 184, 185, 186, 187]. The most noteworthy of all for mammalian sperm

is Lindemann’s bull sperm model [181], where he describes the importance of the outer

dense fibers for the mechanics of the flagellum beating.

2.3.1.2.4 The mitochondrial and fibrous sheath

The mitochondria in the sperm cell is arranged end-to-end in the midpiece, creating an

helical structure that surrounds the outer dense fibers, see figure 2.21 c) and f).

The fibrous sheath is located in the principal piece of the spermatozoon and it is specific

of mammalian cells. It run from the caudal limit of the midpiece (the annulus) until the

end of the principal piece. It consists of two longitudinal columns connected by horizon-

tal ribs. The initial part of the sheath is fixed to the outer dense fibers number 3 and 8, but

these fibers then end with the end of the midpiece, while the other seven fibers continue
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down the principal piece of the tail. The longitudinal columns of the fibrous sheath, af-

ter the termination of fiber 3 and 8, have the middle and inner part of the column itself

becoming a thin edge that extend in the position of the two finished fibers.

Running down the principal piece of the tail, both the longitudinal columns and the ribs

becomes slender, reducing the diameter of the tail. Finally, reaching the proximal part of

the end piece, the fibrous sheath ends abruptly.
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Figure 2.21: Sperm cell morphology. a) shows the sperm cell sections of head and tail with
measures for human spermatozoon [161]; b) Cross section of the mid-piece of the flagel-
lum looking from the sperm head. It shows the presence of the nine outer dense fibers
right at the exterior of the concentric doublets, characteristic of sperm cells of "internal
fertilisers". The fibers are labelled with the standard convention (clockwise from 1 to 9),
where the first doublet (and hence fiber) is the one perpendicular to the centerline and to
the separation of the two central microtubules. e) represents schematically the structure
pictured in b). c) is the cross section of the principal piece, while f ) shows its schematic.
It is possible to see the circumferential ribs of the fibrous sheath and the two longitudinal
columns attached to fibers 3 and 8. Moving distally, the ribs of the fibrous sheath become
thinner and the columns appear to be attached to doublets 3 and 8 distally. g) shows the
end piece, where it persists only the axoneme structure. h and i) schematically illustrate
the structure of the axoneme. h) shows the nexin bridges and the radial links while i)
shows the inner and outer dynein arms that force bending into the flagellum, driving the
waveform. Figure adapted from [164]
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Chapter 3

Experiments at a microscale

In this chapter I would like to introduce the basic informations regarding the experimental

part, talking about the samples used, the techniques to create the microfluidics devices

used and finally the image analysis method.

3.1 Samples

The majority of the samples used for this work come from ram donors. We firstly started

with frozen samples, which we store in the lab and hence result more accessible, but as

explained below, the frozen samples had very low count of alive cells with reduced motility.

Since the experiments with frozen semen gave unreproducible results, we moved to fresh

samples, which are less accessible on a regular basis, but the samples have high sperm

count and motility. The ram sperm samples, both frozen and fresh, are provided by the

breeding company DC Fawcett Ltd.

3.1.1 Collection

The farm we obtain the ram samples from is a breeding company that, besides other ser-

vices like embryo flushing, performs assisted insemination for the costumers’ rams. For

this procedure the samples have to collected and frozen into pellets and then introduced

inside the female. Since it is a offered service, they do not own any ram, but only the an-

imal needed for the extraction. For this, both the pellets of frozen sample and the fresh

semen are not consistently from the same donor, but from a variety of different rams, for

breed, age and most importantly semen quality.

The procedure for the sample collection is straightforward and carried through manual

collection and a teaser ewe. The ewe is often a sterile specimen in order to avoid un-

wanted fertilisation. The ram is let free from his cage in an enclosed space where an ewe

is stranded by a guillotine like device. When the ram is ready will jump on the female and
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the worker of the farm will then redirect the penis inside a device and collect the ejac-

ulate. This device is composed of a plastic tube that, in order to avoid a thermal shock

for the ram during collection, has a pocket full of hot water. At the end a closed funnel

shaped glass container is positioned, which collects the sample. The full container is left

in a water-bath with temperature around 37 °C, the sample inside is then diluted, usually

1:1, and then its motility and concentration are assessed.

3.1.2 Frozen samples

The collected semen is mixed with the proper buffer and moved, in a glass of warm water,

to the fridge where, in 4 hours circa, it cools down from 37 °C to 4 °C. The sample from the

fridge is then frozen into pellets on a dry ice cube. These pellets are kept in a cryocontainer

for two hours and then the concentration of progressive motile cells is evaluated. The

evaluation is the same for fresh and frozen samples, with a 5 points scale for both motility

and concentration, where 1 is the the lowest motility or concentration and 5 the highest.

To thaw the pellets, there are different techniques, the one used by our group is to warm

up the single pellets in a water bath. In case the sample needs to be diluted further, it

is important to make sure that, independently form the type and brand of buffer used,

at least 5% glycerol present, in order to avoid instantaneous osmotic imbalance that then

destroys the cell membrane, increasing the agglutination episodes, where the sperm heads

will glue to each other, and increasing the number of dead cells in the sample.

According to our experience, after thawing between 50% and 70% of sperm cells do not

survive the process, leaving only the ∼ 30% alive and motile. If the glycerol is not present

in the thawing buffer, the percentage of alive cells decrease to . 20%. In this case the life

span of the live cells is circa halved and the motility too, partially due to agglutination.

Therefore, in experiments requiring high concentration and high motility, frozen samples

are not suitable. Even if devices to concentrate cells are used, when high concentrations

are required, cells do not live long enough to have the high concentration of alive cells

necessary for our study. However, for tracking and low concentration experiments, frozen

sperm works well.

3.1.3 Fresh samples

To work with fresh sample it has been necessary to travel and move the equipment to use

to the farm. In case of ram sperm part of the lab equipment has been loaded on cars

and drove to the Fawcett farm. This is possible only before lamb season, when the female

are ovulating and there are rams present at the farm. This happens twice a year in the

months of July-August and November-December. Hence the fresh semen experiments will

be carried twice a year in a period of a couple of days. After collection, the semen is taken
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into the water bath at 37 °C and diluted 1:1 with the buffer made in the farm, including egg

yolk. The sample is then removed from the glass funnel and moved into a plastic tube and

kept at room temperature for the rest of the day. Depending on the donor, the sample has

a different live span, from a few hours to the whole day. It is often possible to obtain more

samples during the day if needed, but not always from the same donor.

The fresh samples are visually evaluated by the farm workers on a scale from 1 to 5 for both

motility and cell number. The sample used have a score of at least 4 in both fields.

The variability in the sample motility and life span is very high even in the same donor.

Depending on the amount of samples given in that day, the number of days it already

has been giving samples and finally the time of the day. Health of the specimen and its

experience on donating samples can interfere with sample quality. Hence it is hard to

obtain consistent samples, not only throughout the day but throughout the entire journey

or in between journeys, even considering that the donors will change over different trips.

For bull samples, the collection is pursue with an artificial vagina, but instead of using a

teaser cow, a young bull will serve as a teaser, allowing the workers to control better the

big animals and reducing the amount of hormones that otherwise would be present in the

sample. The sample is then diluted 1:1 with a custom made buffer, whose composition is

proprietary and has not been shared with us. the diluted specimen is then sent to our lab

for experiments.

After describing the samples used in this work, I will proceed to describe the creation of the

other essential object that allow us to carry on our experiments: the microfluidics device.

3.2 Creating Microfluidics Devices

To be able to study microorganisms in a controlled environment, the easiest and cheap-

est way is to use microfluidics devices. But microfluidics devices can be used for so many

other purposes than just studying microswimmers [188, 189, 190, 191]. They helped au-

tomating DNA sequencing, protein crystallization and cell cultures, their design can be

customised depending on the needs [192, 193, 194, 195, 196, 197]. They are very flexible

structures they can be modified chemically, adding some sort of coating, the can be mod-

ified physically adding obstacles and barreirs or inserting agar structures for bacteria or

inserting membranes.

Microfluidics devices are composed by channels, which are planar structures characterised

by their cross section, length and height. The dimension of the channels can vary from a

few microns to a few centimetres, but it has to be taken into account that the structures

can collapse. For example, structures that are too wide and not high enough will collapse

if not supported in the middle or alternatively pillars are added.

It is possible to have multiple channels on a single device. Those channels can be dis-
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Figure 3.1: The figure tries to represent the major steps to create a microfluidic channel.
First of all, a) the mask is printed and on the silicon wafer b) a layer of photoresist is poured
c), the thickness of the photoresist will define the final thickness of the device. d) The mask
is then aligned over the photoresist and everything is exposed to UV light. The dark part
of the mask will block the light, while the white part will let the light to pass through and
to expose the photoresist, transferring the clear pattern from the mask to the photoresist.
The mask is then removed and the photoresist not exposed is dissolved, leaving only the
desired pattern embossed e). The final wafer, with the pattern imprinted on it, is called
master mould. f ) On the master mould the PDMS is poured and let cure at high temper-
atures and then pealed off, g) leaving the PDMS hollow with the pattern. Finally, h) the
PDMS is plasma treated and attached to a glass slide, creating a sealed channel with the
desired pattern. The side views for step e) to h) are shown too.

connected and used independently or they can be connected, for example in parallel, and

used at once as a single multichannel device.
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3.2.1 How to make a channel

There are different methods that can be used to create a microfluidic channel. There are

easy but not precise methods, in which the channel is written on a surface like glass or

plastic through a scribe with a tip made of a very hard material like diamond [198, 199, 200,

201]; or another method is cutting from a soft material the desired design and inserting it

in between glass slides [202]. These methods do not assure precision, the created surface

is rough and difficult to reproduce systematically. A very reliable procedure that creates

reproducible, reusable and precise channels is the soft lithography technique [203, 204,

205], shown in figure 3.1, which we will focus on.

3.2.1.1 Wafer and photoresist

The first step in the soft lithograpy technique is to "print" the desired design on the silicon

wafer [203, 204, 205, 206, 207, 208]. High quality crystalline silicon wafers are used, their

dimensions vary from a few centimetres in diameter to around 50 centimetres. The surface

used for the process has to be polished, hence it is very important to know if the wafers

are single or double side polished. When a surface is polished it results shinier than the

unpolished one, allowing by eye to distinguish the difference.

The process of printing the device on the silicon wafer, has to be done in a clean room,

in order to allow the imperfections to be minimal, the roughness and the hight to be as

controlled as possible.

The photoresist is a chemical sensitive to ultraviolet light. To coat the silicon wafer with

photoresist, the chemical is deposited onto the wafer and then the wafer is spun at high

speed and the photoresist spreads on the wafer. The speed of the rotation determines

the hight of the photoresist layer and hence of the final channel. The photoresist then

is exposed to UV light through a mask. The chemical reaction happening in the exposed

region, called cross linking, changes the solubility of the photoresist in that region, leading

to the possibility to dissolve some parts, while the others remain on the substrate creating

the channel.

The solvent used to remove photoresist is called developer, and if positive resist is used the

exposed part will be flushed away thanks to the developer, while in case of negative resist,

the unexposed region will be removed. The latest is the technique used by our group, using

a photoresist.

The photoresist needs to coat evenly the wafer, to achieve this, after pouring a few ml

of photoresist onto the surface of the wafer, the wafer is spun at high velocity and the

photoresist will spread onto the surface. This is called spin coating.

Even if the photoresist has been chemically optimised to ensure the surface adhesion,

the UV absorbancy for the specific exposure system and the viscosity, there are still a few
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things to consider when spin coating is preformed.

One of the biggest issues with spin coating is that both the rotational speed and the length

of the time of rotation are important to define the final thickness of the photoresist layer.

There are only simplified models of the system, but no fully comprehensive analytical so-

lution, resulting in the empirical testing as the only way to have a connection between

speed, time and thickness. Many manufacturers provide approximate spin curves, with

the hight of the photoresist layer vs. the rotational speed. This can be used as a starting

point to define what speed and time are needed for the desired height, but it has to be

complemented with testing.

The final complication worth mentioning is at the edge of the wafer. The photoresist after

spreading onto the entire wafer can create a thicker or thinner layer at the edge. This is

due to the surface effects at the air-wafer-liquid boundary, that change the geometry of

the liquid layer, creating an non uniform coating. These edge effects have to be taken into

account when designing the channels, considering that the channel itself has to lay away

enough from the thickness discontinuity to be able to have an uniform height.

3.2.1.2 Masks

A mask is a transparent substrate with a specific pattern on it, this is placed in contact

with the spin coated wafer. When exposed to UV light, the UV light transmits through the

transparent parts and expose the photoresist of the underlying wafer. This exposure allow

the transfer of the pattern to the coated layer of the wafer. The transparency masks can

create channels of height > 15µm. They are printed with a high quality laser printer, with

a maximum resolution around 5 µm.

Two more types of masks exist, but their cost increases with their resolution. One is the

chrome mask, which is suitable for smaller designs, of around a micron resolution. They

have a coating of photoresist over a layer of chrome laying on a soda lime or quartz glass

plate, the pattern is drawn over the photoresist layer by a laser. The photoresist is then

developed and this etches the chrome layer, when all the photoresist is washed away, the

design is engraved on the plate, creating the mask. Finally, for even smaller designs, the

mask has to be created through e-beam lithography or other very specialised equipment.

This is the most expensive method of the three.

In order to expose to UV light the wafer through the mask, a mask aligner is needed. The

mask aligners are instruments with a vapor lamp, either mercury, xenon or deuterium

lamp, that exposes the photoresist to UV light. The precision stages and the optics allow

control of alignment. The vacuum is used to hold the mask in place over the wafer, se-

curing it during the exposure process. There are two basic type of aligners, the contact

devices, where the mask and the wafer touch each other when aligned, and the proximity

52



aligners, in which there is a small separation between the mask and the wafer, protecting

the mask from any damage and ensuring that the mask can be reused. The disadvantage of

the proximity aligners is that the separation reduces the resolution of the exposed pattern.

After exposure, the pattern has to be developed and the not exposed photoresist will be

washed away, leaving a raised pattern that will be then used to do soft lithography and

create the microfluidic device, as shown in figure 3.1 e.

3.2.1.3 Soft lithography

In 1998, the Whitesider group [205], reported a method to mold some elastomer into the

desired channel. Polydimethylsiloxane is a polymeric organosilicon, composed by dime-

hylsiloxy units with a trimethylsilyl end groups linearly bonded. Depending on the num-

ber of Si(CH3)2 −O− units in the polymer, the PDMS change its viscosity, the longer the

polymer the more viscous the material. PDMS elastomer is mixed 10:1 with a curing agent

and degassed in a vacuum chamber, to avoid the presence of air bubbles in the final, so-

lidified polymer [203, 204, 205, 206, 207, 208]. The polymer mix is then poured onto the

master mold and cured at temperatures ≥ 65 °C for at least one hour, until it solidifies (fig-

ure 3.1 f). When solid, PDMS is an elastic polymer that is optically transparent and non

toxic for biological organisms.

PDMS can be used to create bio-compatible microfluidic channels, thanks to the property

that it conforms to irregular surfaces, allowing the formation of devices from a master

mold and when the PDMS is solid, it is easy to peal off the cast, not damaging the mold.

This leads to the possibility to reproduce the same devices multiple times using a single

master cast, increasing the consistency in the environment used in the experiments.

Every deformation of the device is reversible, allowing flexibility and the possibility to cre-

ate valves and switches that are pressure dependent. The surface of the devices can be

altered chemical, like coating with specific chemicals. Finally the PDMS can be bonded

either permanently or temporarily to the desired surface.

After curing, the solid PDMS replica is pealed off the master mold and cut into a size pos-

sible to attach to the desired surface (glass, PDMS, etc.). Inlets and outlets are punched

into the PDMS layer with a sharp biopsy puncher and then the PDMS surface is undusted.

To attach permanently the PDMS replica onto a surface, in our case a glass slide, the sur-

faces are treated in a plasma cleaner (figure 3.1 g). At low pressure, an oxygen plasma is

created which disrupts surface silicon-oxygen bonds on the PDMS. The treated surface of

the PDMS is usually placed over the plasma-treated surface of a glass slide and once the

activation wears off the silicon-oxygen bonds between surface atoms of glass and PDMS,

permanently sealing the channel.

The attached device is then left for 30 minutes on a hot plate at around 100 °C, stabilising
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the bond. This sealing allows the device to resist applied maximum pressures between

200 and 350 kPa. This is important because in order to eliminate the bubbles after filling

the devices, high pressure is applied. Since PDMS is air permeable, the air bubbles get

diffused out of the device when high water pressure is applied. The duration of pressuri-

sation depends on the amount of bubbles, their size and the size of the device. It could

range from a few minutes to overnight. Having air bubbles in the device alters flows inside

it, affecting in the experiments.

3.3 Analysis method

The technique used to analyse the recorded images is the particle image velocimetry (PIV),

where the motion of the particles in the fluid is evaluated in order to determine the local

velocity vectors [209, 210, 211, 212, 213]. A final flow field matrix is created per each pair of

images. Differently from the measuring technique that require a probe to be introduced

in the fluid to measure the flow, the optical techniques like particle tracking or PIV do

not disturb the flow and allow for flow visualisation without interfering with it. Particles

are introduced in the fluid to be able to follow the flow and hence to image it and either

the distance covered in a certain amount of time or the time necessary to cover a certain

distance has to be found.

PIV techniques are used when the amount of particles present in the fluid does not allow

for particle tracking, but their density is so high that paths are not recognisable and they

overlap frequently enough to not allow identification of motion of individual tracers.

3.3.1 Principles of PIV

A PIV experimental set-up needs to take into account of [214, 213, 215]:

• Tracers: In order to visualise the fluid, tracers have to be used. They need to be right

in size, compatible with the flow aimed to measure and compatible with the record-

ing method used. Their size needs to be small enough so they can be transported by

the fluid, but big enough to be recorded by the imaging method [216, 217, 218].

• Recording: the tracers will scatter a light that then has to be picked up by a recording

system, either recording two separate frames or a sequence of frames from a camera.

The recording parameters have to be set at the optimal rate in between images in

order to allow the best outcome for the displacement determination [218, 219].

• Evaluation: PIV recordings have to be evaluated in order to determine the particle

displacements between two consequent images [220, 221, 222, 223, 224].
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• Post-processing: it allows to remove invalid measurements and aberrations and to

extract the flow quantities of interest [225, 226, 227, 228].

In order to evaluate the velocity fields for the image pair, the images are divided into sub-

areas that are called interrogation windows [229, 225]. The determination local displace-

ment vectors for the tracers in the two consequent images is done through a statistical

method, specifically cross-correlation [220, 230].

The general aspects for a PIV analysis that have to be accounted for will be briefly out-

lined below. It has to considered that the mistakes made during the recording phase of the

experiment, cannot be remedied during later evaluation, analysis and post-processing.

Non-intrusive velocity measurements. The ability of measuring velocities in a flow with-

out interfering with the flow itself adding probes, wires or tubes, allows PIV to be applied

to high-speed flows, laminar boundary layers flows and micro-systems.

Whole field techniques. Another advantage of measuring the flow with an optical method

is the be able to record and analyse the field of view imaged, without the local restrictions

you encounter using a probe. The only necessary thing for PIV to work properly is that

tracers are present in the media. On the other hand, the temporal resolution is limited by

technology, in particular by the rate of recording of the images. These restrictions have to

be kept in mind when comparing tracking techniques with PIV.

Distribution and density of tracers in the fluid. A more qualitative approach for flow

visualisation can be used, locating the seeding device in the specific and desired area of

analysis. Giving to the tracers origin a specific location, the temporal evolution of the

structures in the flow can be studied in a more effective way, highlighting only the part of

the fluid of interest. Unfortunately, in order to have an optimal quantitative evaluation of

the velocities, high quality PIV recordings are needed and this is possible only when the

distribution of particles is homogeneous in the media [216, 217, 218, 231].

While considering the tracers distribution, three general types of density distributions can

be distinguished: low, medium and high. In images with low density concentration of

particles, single tracers can be located and their temporal evolution and movement can

be traced throughout consecutive images. Hence a single particle tracking method can be

used, like Particle Tracking Velocimetry (PTV). This single particle techniques doesn’t work

in two cases. Firstly, when small details of the flow have to be resolved, reduced amount of

tracers doesn’t allow full flow visualisation. On the other hand, when large structures are

present in a fluid a wider field of view is needed to resolve them. In both these cases, the

amount of tracers in the image is increased, where single particles in every instantaneous

can be detected, but from consecutive images is not possible to uniquely detect the path

taken by them. Those densities are optimal for statistical evaluations of velocities like PIV

techniques, because in each interrogation window, the number of tracers (more than three

55



particles per window) present allow the algorithm to define the position of the tracers in

the window and correlate it with the position of the tracers in the same window in the

consequent image, evaluating the average direction and velocity of the flow shown by the

particle in the interrogation window. Finally, for high density, particle recognition does

not work, making it impossible to detect tracers and their spatial path and hence compute

the flow velocities. A specific type of PIV called Laser Speckle Velocimetry can work when

tracers form speckles in the fluid [232, 233, 234, 235].

Velocity lags. It is important to find the appropriate balance between particle size, detec-

tion and flow visualisation. Tracers have to be small enough to follow the motion of the

fluid faithfully, but they have to be detectable by the camera for the desired observational

field. For example, in the case of weak and strong velocity fields are present in the system,

small particles are needed to image the flow. In case of a desired large observation field,

near the strong gradients area, the velocities can not be resolved with small tracers, bigger

particles are needed.

Optimization. Parameters such as size of particle images, interrogation windows size,

density of tracers, number of interrogating areas, etc. need to be optimised to obtain opti-

mal working of evaluating algorithms, desired accuracy and determination of appropriate

number of vectors [212, 215, 229, 230, 231].

Objects present in the flow can affect the recordings, modifying the light reflection and

hence images will results over exposed, with traces turning undetectable. The experi-

mental set up has to be optimised too, in order to achieve the best image quality possible

[211, 212, 236].

3.3.2 Micro-scale tracers

When we move to micro-PIV [237], the tracers size reduces to less than a micrometer. In

these scale, the collisions between particles and fluid molecules create a collective effect

(Brownian motion) that prevent the tracers to follow to some extent the flow. It can cause

a measurement error in either the particle location or in the calculated velocity. The Brow-

nian motion can be defined as the random motion of tracers due to collisions between the

thermally excited fluid molecules and the particles suspended in a fluid [238, 239]. Usually

this effect is modelled as the Gaussian white noise. The mean square distance covered by

the particle diffusing in a time∆t is proportional to the diffusion coefficient D of the tracer

particles and the time interval [240, 241]. The diffusion coefficient has been defined by

Einstein as:

D = kB T

3πµdp

with kB being the Boltzmann constant, T being the absolute temperature of the fluid, µ the
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fluid dynamic viscosity and dp the particle diameter. The error introduced by Brownian

motion on the local displacement of the tracer is in one dimension of the order:

ε= 1

|U|

√
2D

∆t

From the Brownian error it is possible to establish the lower limit regarding the measure-

ments of the time interval ∆t. Indeed, at short times, the Brownian motion dominates the

overall measurements for the particle movement and it has to be considered when tracing

small particles.

3.3.3 Recording techniques

The recording modes for PIV can be divided into two macro categories: the first one is

called single-frame/multi-exposure PIV, and it images the particles evolution, recording it

at multiple times but in one single frame, while the second method, multi-frame/single-

exposure PIV, records the particles into single images for every time step.

The major difference between the two methods is that when the evolution is recorded in

one single frame, the temporal order informations are not retained, leading to an ambigu-

ity when the displacement vector is recovered. Additional schemes have to be introduced

in order to account for this ambiguity, mostly if the direction of the flow is not previously

known. On the other hand, the multi-frame/single-exposure method preserves the tem-

poral order and the final velocity evaluation is more reliable results. Indeed, with this

method, detecting the correlation peak maximum is possible for both very small displace-

ments of the particles and for displacements larger than the interrogation window, which

is the method we used in this work. This latter recording technique is the one used in this

work.

3.3.4 Statistical PIV evaluation

Historically, the first mathematical description of the statistical method to evaluate PIV

velocities is given by Adrian 1988 [242, 233, 243, 244], who focused on the auto-correlation

based methods that have subsequently been expanded to the cross-correlation method

commonly used nowadays. We will proceed to briefly present a simplified mathematical

model and the statistical evaluation, trying to focus mostly on the method used during our

own velocity evaluation.
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3.3.4.1 Particles location

In the PIV evaluation process, the image is subdivided into interrogation windows, where

the tracers are white dots on a dark background. When considering a single exposure

recording, as in our case, the image shows a random distribution of particle, which corre-

spond to the pattern of N tracers inside the flow. If we look at the projection of the tracers

distribution in the window onto the image plane, we obtain an image which is the super-

imposition of the images of individual particles. In order to evaluate the velocities in the

PIV grid, the local cross correlations between the particle ensembles in the same interro-

gation windows of two consecutive images.

3.3.4.2 Fast Fourier Transform method for evaluating cross correlation

The local cross correlation is calculated for each pair of interrogation windows composing

the two frames. Off-setting the windows sampling according to the mean displacement

of tracer in between frames is advantageous, reducing the in-plane loss of correlation and

increasing the peak strength [227, 221, 226, 225, 220, 228, 222]. For a faster computation

of the cross correlation function the Fast Fourier Transform algorithm is used. The final

evaluation process can be displayed schematically as in figure 3.2.

Figure 3.2: Flow chart for the double frame/single exposure recordings with the digital
cross correlation method evaluated through Fast Fourier Transform.

This algorithm takes advantages of the correlation theorem, stating that the cross correla-

tion of two functions is equivalent to a complex conjugate multiplication of their Fourier

transforms. The computation of the FFT is an easy implementation of the discrete data,

reducing the computational operations from O (N 2) to O (N log2 N ). Hence, calculating the

cross correlation is reduced to computing two 2D FFT, on equal sized samples of the im-

age and then multiplying the complex conjugate of the resulting Fourier coefficients. The

inverse Fourier transform is then calculated and it produces the actual cross correlation

plane, which results to be with the same spatial dimensions as the two input samples.

While using a 2D FFT to compute the cross correlation plane, we have to take into account

the properties of this approach:
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• Fixed sample sizes: The efficiency of the FFT algorithm comes from recursively im-

plement the symmetry property between the even and odd coefficients of the Dis-

crete Fourier Transform.

• Periodicity of the data: If we assume data periodicity, then the FFT can be com-

puted over finite domains. Many methods for the estimation of the spectrum can

be used each one with its the associated artifacts, that can lead to bias, systematic

errors or even to no cross correlation signal at all, given the noise overpowering the

signal itself. For example changing the window size sampling, according with data

periodicity, two or three times the spatial periodicity, the bias and the systematic

error can be significantly reduced.

• Aliasing: The previously mentions data periodicity, gives periodic correlation. When

the tracer displacement is over the half-length of the interrogation window, the fre-

quency signal will be misidentified and distortion will be introduced. To reduce the

distortion, a wider interrogation window needs to be used. Showing the importance

of the choice of the sampling.

• Displacement range limitation: The sample size, N, limiting up to N/2 the maxi-

mum recoverable displacement. Practically, the strength of the correlation peak is

linked to the displacements, indeed, it will decrease with increasing displacements

since the possible particle matches decrease proportionally. Using window shifting

techniques the limit is applicable only for the first iteration of the evaluation.

• Bias error: As explained before, the periodicity of the data can give biased correla-

tions. This error in estimation decreases with a balance for the interrogation window

size, large enough to include a couple of the periodicity and smaller than half-length

of the interrogation window.

3.3.4.3 Digital interrogation techniques

Being able to transition from photographic recording to digital imaging allows to improve

the interrogation algorithms. In the following paragraphs we will concentrate on the two

we used in our work: the multiple pass and the grid refining interrogation techniques. We

used a customised MATLAB code downloaded from the MATLAB website called PIVLab -

Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB [214]. They have been

modified to satisfy the requirements of our analysis and recoded so to not use the GUI,

which used to slow down the analysis.
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3.3.4.3.1 Multiple pass

In this process the interrogation windows are shifted with an integer offset in the second

interrogation pass. Adjusting the offset accordingly to the mean displacement, the ratio

of matched to unmatched particles is increased, which itself increases the signal-to-noise

ration of the correlation peak [229, 226].

An example of working procedure for this type of technique is composed of four steps:

1. Standard digital interrogation, with windows offset close to data mean displace-

ment.

2. Scan the data in search of outliers and replace them by interpolation of the neigh-

bouring values.

3. Move the interrogation window accordingly to a previously defined offset that should

be larger than the average local displacement of the particles.

4. Repeat the interrogation process and linearly interpolate the flow fields created from

the overlapping portion of the windows. Continue until the entire image is com-

pleted.

3.3.4.3.2 Grid refining

Refining the sampling grid is a technique that can be used to improve the multiple pass

interrogation algorithm. It is a hierarchical approach where the sampling grid is refined

while at the same time the interrogation window size is reduced. This technique allows

one to use interrogation windows that are smaller than the particle image displacement,

which is helpful when the particle density is the image and their displacements are very

high. In those cases the classical evaluation schemes are not successful, because it is not

possible to use small interrogation windows without losing the large displacement corre-

lation [226, 211, 213].

The main steps to refine the sampling grid are:

1. Large interrogation sample, capturing the full dynamics of the displacements ac-

cordingly to sampling rules.

2. Perform a standard interrogation with large interrogation windows.

3. Scan for outliers and interpolate with the neighbours to replace them. The displace-

ment calculated at this point will be used as an estimate for the next iteration.

4. Offset the interrogation windows between each other using the previously estimated

displacements.
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5. Repeat steps 1 to 4 after reducing the size of the interrogation windows until the

desired resolution is reached.

6. Linearly interpolate the flow fields from the different sizes of the interrogation win-

dows, which are arranged in grids with increasingly more points as the windows

reduce in size.

The final velocity field will be the linear interpolation of increasingly more defined ma-

trices, including both the large and smaller scale effect. In this case, for example, if light

Brownian motion is present, it will be picked up by smaller windows, but on the wider

interrogation windows, the averaging over the many tracers will almost exclude the Brow-

nian effects. In the final flow field, being the interpolation of the two fields, the effect of

the Brownian motion will be reduced.

3.3.4.4 Cross correlation peak detection

A very important feature of the digital PIV process is the estimation of the correlation peaks

can be up to subpixel accuracy [230, 225, 227].

The correlation values derive from integral shift for the discretised input data, hence the

displacements determined from the highest correlation value have a half a pixel uncer-

tainty. However, interesting informations can be extracted from the correlation values

since the cross correlation functions are statistical measures of best match. The extracted

informations can be used to have an estimation on the mean shift of the particle image in

the interrogation window.

The big challenge in order to estimate the position of the correlation peak is to separate

the signal from the background noise. Many different methods can be used, but one of

the more robust is to fit the correlation data with a function. Mostly when dealing with

narrow correlation peaks, it is common to estimate the displacement using only three ad-

joining values, usually with a Gaussian peak fit. The choice of a Gaussian fit is that if the

particles are properly focused, they are represented by Airy intensity functions, which can

be approximated as Gaussian intensity distributions, finally the correlation between two

Gaussian is itself a Gaussian function.

In case of larger correlation peaks a different approach should work better. For example,

when the particles are larger, the noise level becomes more significant while there is a

decrease in the difference between close correlation values. Thus a centroiding approach

can work better, since ir uses more than three values around the peak. On the other hand,

when the particle image is too small, then both the centroid and the three-point estimators

will not work in a proper way. Hence it is important to have similar size particles and

mostly find the best approach to detect the correlation peak.
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3.3.4.5 PIV uncertainties

Errors in PIV derive from multiple sources and are a combination of a variety of aspects

[227]. We will proceed to name the most important here following.

System components errors. Optical aberrations can distort the shape of the particle im-

age and when not Gaussian, it will affect the peak detection error. In addition, those dis-

tortions can cause a small direction error, affecting the measure of the flow direction and

its magnitude.

Flow errors. The flow itself can affect the final results of PIV. For example when the flow

gradients or the velocity fluctuations are large, measurement errors are more likely to ap-

pear. Additionally, the measurement error can be due to variations in the density of tracers

in the flow.

Evaluation errors. During the digital analysis, as already mentioned, many errors and bias

can arise and influence the final results. The major error contribution derives from the es-

timation of the cross correlation function. The best approach to measure this uncertainty

is to calculate it in the cross correlation function of a uniform flow, where the flow will be

biased if the estimation of the correlation function is not optimal. This gives a realistic

estimation of the measurement uncertainty, but does not allow to find the dependence of

the error from the specific parameters, like the particle image size, its density and its in-

tensity, the background noise, the precision of the measurements, turbulent fluctuations

and velocity gradients.

Another approach is to estimate the error by using numerical simulations, where only one

parameter at the time would be modified and the PIV estimations will be carried, its errors

computed and then the results would be compared to the known results of the experimen-

tal data. Even though this approach gives full control over the parameters of the system,

since many real system are very complex and not easily described by physical laws, the

model can results very simplistic. Hence these approximations and assumptions lead to a

underestimation of the true values of the real system uncertainties.

In our case, we calculated the PIV fields of both tracers and swimming cells at low concen-

tration of swimmers and compared it with a tracking algorithm. If they the vectors of the

two flows are comparable then we assumed that the PIV estimation is a valid representa-

tion of the flow fields recorded. Additionally, the program used, calculates the distribu-

tions of velocities, from which it is possible to validate and filters the outlier vectors with

values over three times the standard deviation of the overall data distribution, which are

more likely to be due to errors in the function estimation.
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3.3.4.6 PIV post-processing

After the raw PIV analysis, the data should be processed further [220, 227, 230, 225]. Need-

ing to inspect a large number of data, a fast, reliable and automated post-processing tech-

niques is essential. The basic steps of PIV post-processing are quickly outlined below.

Validation of raw data. PIV evaluations are not perfect, resulting in a certain number of

outliers in the final results of the automatic evaluation process. The incorrectly deter-

mined velocity vectors can be recognised during visual inspection of the raw data, but

for large data, automation is needed. Special algorithms have been developed in order to

validate the flow field data.

Outliers can be identified by their magnitude and direction because they considerably

differ from the magnitude and directionality of their surrounding neighbouring vectors.

Another very common characteristic is that they can look like isolated spurious vectors.

Alternatively, They can appear as a cluster of vectors with the same direction and finally,

it is often possible to find them at the boundaries of obstacles in the fluid and the edges

of the image. After finding the outliers, they are removed from the velocity matrix and

replaced by vector calculated through interpolation or extrapolation.

Replacement of incorrect data. In order to calculate different quantities from the PIV

vector fields, the vector fields themselves should not have gaps in the Cartesian mesh.

Hence, to fill the gaps in the mash the vector have to substitute with estimated values of

the velocity. Usually in order to replace the vectors, the bilinear interpolation of the fourth

nearest neighbours is calculated and the result replaced in the mesh.

Data reduction. Simple techniques to extrapolate quantities from the vector fields can be

used, like averaging the flow field in order to infer the fluctuations and the mean flow. Con-

ditional sampling techniques can used, for example it is possible to differentiate between

the non periodic and periodic parts of the flow fluctuations through phase averaging. Ad-

ditionally, vorticity, divergence and other vector field operators can be calculated. They

are all considered under the data reduction post-processing and they all help evaluating

the structures that dominate the dynamics of the flow. Moreover, the decomposition into

modes is required in order to describe the behaviour of unsteady flows.
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Chapter 4

Transition to collective motion in bulk

environments

4.1 Introduction

The idea for the work shown in this chapter comes mostly from two main works, the first

one, experimental on sperm turbulence at high concentration of swimmers [103, 104] and

the second one, a simulation on bacterial collective motion depending on aspect ratio and

concentration of swimmers [108].

As already said in section 2.2.2.2, there are studies that focus on sperm turbulence at

high concentration of swimmers [103, 104]. In these experimental works the undiluted

fresh ram semen is introduced in glass chambers of different heights. Whirlpool struc-

tures, made of sperm cells locally aligned, are present in these systems. Analysing the flow

fields, an integral length scale L∗ is present, which depends on the square root of the ra-

tio between energy and enstrophy. This length scale is similar to the detected size of the

whirlpool structures and L∗ defines the typical correlation length of the system. Addition-

ally, doing a Fourier analysis of the flow fields, the energy power spectrum shows three

different regimes: for small wavelengths, there is a saturation to a white noise plateau;

above the critical wavelength, where there is a k−3 power law dependency as in quasi-2D

turbulent flows; for large wavelengths, there is again a saturation, but in this case consis-

tent with the single cell motion. From these three regimes from the Fourier analysis, it is

possible to deduce that the velocity correlations increase from the individual swimmer to

a collective length scale similar to L∗. In these works, a few dilutions of the samples have

been analysed, showing that the dilution affects mostly the smaller scales, decreasing the

velocity correlations. The large scales are not affected by the dilution, since in the flow the

whirlpool structures are still present.

On the other side a simulation study [108], shown in section 2.2.2.1, simulates self-propelled
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rods without noise. Variations in the aspect ratio of the considered particles and volume

fraction of swimmers in the system, creates phase diagram, where six different motion

states are present, as shown in figure 2.11. Looking at probability density functions, ve-

locity correlation functions and fluctuations it is possible to characterise the flow of the

different phases, making it possible, for the turbulent phase, to define a typical vortex size.

Looking again at the Fourier analysis, the power spectrum of the turbulent phase shows

two regimes: a k5/3 decay for small wavelengths and a k−8/3 for large wavelengths. This

points that self-sustained bacterial turbulence has some properties in common with the

classic turbulence for small scales, while at large scales they differ.

The aim of this chapter is to combine these two works in the field of sperm motion. We

increase progressively the concentration of sperm cells in a channel and we study the

changes in the flow with the increase of swimmers in a confined, yet large, volume, through

the main flow characteristics, like the correlations, power spectra and turbulent fractions.

We saw the arise of collective motion depending only on the concentration of active cells.

4.2 Experimental Methods

4.2.1 Samples

Ram samples were collected in loco, fresh in the morning from healthy animals. Exper-

iments started right after collection and got carried on for a couple of hours, until cells

were dead or enough data were taken. Only good quality semen was used for these exper-

iments, using high concentration and high motility samples (between 4 and 5 value in the

usual scale of evaluation). Usually the second donation of the day, half an hour after the

first collection, was used. The samples were kept at room temperature, which was around

20°C at any time. Usually the original sample was kept undiluted or diluted at a ratio 1:1

with a specific solution (tetradyl, egg yolk and DI water).

The bull samples are collected from healthy bulls in a dedicated facility. The sample is

diluted with a ratio 1:1 with specific solution custom made by the sample providing com-

pany. The sample is then transported to the laboratory keeping it at low temperature with

dry ice. Transport usually takes 2 hours. Then motility and concentration are assessed

before starting any experiments and only the samples with highest values of motility and

number of alive cells are used to carry on the experiments.

4.2.2 Experimental set-up

The PDMS chambers are pre-filled with buffer solution. The samples are introduced in

the external ring of the PDMS channel, in such a way the only part full of sample is the
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Figure 4.1: The PDMS device used has a structure of channels made of clove-leaf like struc-
tures that direct and "trap" the sperm cells in the central chamber of the device where the
experiments are carried and the data recorded. This method allow the progressive increase
of the number of cells in the central chamber, autonomously increasing the concentration,
without need for progressive manual dilutions or concentrations.

external one, giving motile cells the possibility to swim their way to the central chamber

of the device, increasing the concentration in loco with time (as shown in 4.1). The motile

cells progressively arrive to the central chamber, increasing the concentration of active

particles in the chamber in time. The spermatozoa will be trapped in the central cham-

ber thanks to the channels connecting the loading ring to the recording chamber. Those

channels will redirect towards the centre the swimming sperm cells that try to escape.

The ram data have been recorded in dark field microscopy. The dataset consists in mul-

tiple concentrations recorded in the same chamber, during a span of around five hours.

The distance between recordings was not uniform, as it depended on the increase of cells

in the recording area. Each record is long 10 s at 100 fps.

The bull data is a recorded in bright field. The light intensity has been kept constant

throughout the length of the experiment, which took around 4 hours. Using constant

lighting it has been possible to estimate the number of cells at each concentration. The

acquisition timing technique has been kept the same as the ram experiment, not having

regular linear time intervals, but visually assessing the concentration increase to select a

new recording time. The frame rate used for recoding is 33 frames per second on a total of

10 seconds of recording.

Finally, the camber used is 100µm thick and the recordings were performed at 30µm from

the bottom surface. The experiments were performed at ambient temperature, approxi-

mately 20 °C.
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Sample Camera Method Magnification fps sec
Ram Edgetronic Dark Field 10x 100 10
Bull Point Grey Bright Field 6x 33 10 sec

Table 4.1: Image acquisition details for the two sets of experiments.

4.2.3 Analysis

4.2.3.1 Concentrations

The concentration of sperm cells has been estimated by correlating the light intensity in

the images with the number of cells calculated at low concentration. When this correlation

has been fitted by a function, it is only necessary to assess the light intensity of the images

for the concentration and then deduce the number of cells. In this way, even in a very

dense suspension it is possible to calculate the number of sperm cells present in the fluid.

We convert the concentration from number of cells per millilitre to the percentage of vol-

ume fraction in order to compare it in an easier way to the previous works, for both sperm

and bacteria. This latter have a very different size to sperm cells, usually a bacteria is 10

times smaller than a mammalian spermatozoon. On the other hand, since the ram and

bull samples have very different starting concentrations and critical concentrations, to

collapse the two curves we decided to normalise by the critical concentration at which the

phase transition occurs.

So, the final concentration φn used in this work for the comparison between ram and bull

is:

φn = φ−φC

φC

whereφC is the concentration at which the properties of the fluid has been seen changing.

For the bull experiments φC ∼ 0.6 ·108 cells/ml, while for the ram experiments the critical

concentration is φC ∼ 7 ·108 cells/ml. To convert the concentrations from number of cells

per millilitre to volume fraction, we use an estimate of the volume occupied by the single

sperm cell Ap:

Ap = 50 ·5 ·5 ·10−12cm3 = 1.25 ·10−9cm3;

So, for the sake of completeness, the volume fractions are calculated as:

φ= (# cells/ml) ·Ap ·100.
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Figure 4.2: Velocities for ram and bull and their standard deviation. The velocities are aver-
aged in both time and space and they are then normalised by the single sperm swimming
velocity calculated from the tracking algorithm for the lower concentration data. Both
datasets after the critical concentration show an increase in average fluid velocity, up to 6
times the single cell velocity.

4.2.3.2 PIV velocity fields

The velocity fields are calculated through PIV analysis thanks to both costume made and

provided programs from MATLAB (Mathworks Inc. USA), specifically the PIVlab package

[214]. The PIV velocity fields are the used to compute the other quantities for the analysis

of the flow, which are normalised by the following constants: single cell, low concentration

velocity V0 = 50µm/s and the ratio between single cell and its lengthω0 = V0
l0
∼ 50µm/s

50µm ∼ 1s−1.

4.3 Variation of Basic Parameters

4.3.1 Velocity

Two different vector fields are created by the PIV analysis for each single couple of images,

Vx and Vy, of size depending on the interrogation window size chosen.

From the two vector fields, we calculate the average speed in space at each time step,

which can be plotted as a function of time per each concentration.

We desire to additionally average over time, in order to study the variation of the velocities

with respect of the concentration. We plotted the velocity evolution in time for all concen-

trations and given that the average value remains fairly constant in time for each separate

recording, we can feel confident in averaging the velocities over time without loosing any

important information.

After proving that the average velocity in the image is constant in recording time, it is pos-

68



Figure 4.3: Both the average vorticity and absolute vorticity are normalised and plotted as
a function of concentration. They both show a sharp increase after critical concentration,
meaning that more structures like jets ans swirls appear in the fluid, with local swimmer
alignment.

sible to average the velocity in time, resulting in 〈V(φn)〉x,y, where the over-line is the av-

erage in time. The velocity at each concentration is normalised by the velocity of a single

cell V0, which has been calculated through particle tracking at lowest concentration and

its value is 50µm/s.

The resulting plots of the average velocity per normalised concentration φn are shown in

figure 4.2 a), where both samples are shown together. In figure 4.2 b), it is possible to see

the normalised standard deviation always as a function of the normalised concentration.

This standard deviation is calculated from the probability distribution functions of the

velocity per each concentration. The standard deviations shown in figure 4.2 b), do not

appear to have a coherent behaviour between the two species.

4.3.2 Vorticity

The vorticity was analysed similarly to the velocity fields in the previous section. First of all

the average per frame of both vorticity and its absolute value have been computed. Both

quantities have been plotted as a function of the recording time, showing that they both

stay fairly constant during the time, justifying the possibility of averaging in time at each

concentration, without losing important information.

After confirming the constant behaviour of the vorticity during the time of the recording,

the average in time is computed of both space averages of vorticity and its absolute value.

Since the average vorticity has a chirality, depending on the rotations of the vortices and

jets present, we decided to loose the chirality information plotting the absolute value of

the time and space average. Finally, both values are normalised by ω0.
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Figure 4.4: Power spectra in time and space are shown, where in the first one is possible to
recognise the frequency peak of the flagellar beating for low sperm concentrations, which
disappear at higher concentrations. On the space power spectra longer range of interac-
tions can be seen appearing with increase of concentration.

4.3.3 Power Spectra

In this chapter we calculate two types of power spectra: frequency and spatial. The fre-

quency power spectrum is calculated from the Fourier transform of the time signal of each

point in the vector field. We define the 1D Fourier transform of the time signal A(x, y, t ) as:

X (x, y, f ) =
∫ +∞

−∞
A(x, y, t )e−2πi f t d t (4.1)

For each point of the vector fields we obtain a Fourier transform that then we multiply by

its complex conjugate to create the frequency power spectrum: P(x,y,f). Averaging then

over space, we obtain the frequency power spectrum of each specific concentration, that

then we plotted as shown in figure 4.4 a).

The sampling is important to avoid aliasing, the generation of a false frequency in addition

to the right frequencies detected from the Fourier analysis. Aliasing is a phenomenon that

appears in the discrete Fourier transforms. The sampling frequency is defined as Fs = 1/Ts
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where Ts is the sampling time, which in our case depends on the number of frames per

second used to record the images Ts = 1/fps. But then a band limit has to be set for the

sampling frequency while working with discrete signals. The sampling has to follow the

Nyquist theorem of sampling, which stated that the sampling frequency has to include at

least all the bandwidth of the signal in frequency, B. In other words, the best reconstruction

of the signal is guaranteed in a band B such that B ≤ Fs/2. Therefore, the upper threshold

of the frequency range is the Nyquist frequency FN = F s/2.

Figure 4.4 a) shows the frequency power spectra averaged over space for both ram and bull

samples. Only few concentrations are shown, in order to ease visualisation of the different

behaviours of the power spectra at the various points of the transition from random to

turbulent motion.

The second power spectrum calculated is the spatial one, in which we Fourier transform

the 2D signal of the space for each time step of the vector field. We define the 2D Fourier

transform of the signal B(x, y, t ) as:

X (kx ,ky , t ) =
∫ +∞

−∞

∫ +∞

−∞
B(x, y, t )e−2πi (xkx+yky )d xd y (4.2)

We again multiply by the complex conjugate to create the spatial power spectrum and

for each spectrum grid point the values are averaged over time. Then the wave vectors

k have been computed as: kn = 2π
δ

n
N , where δ is the distance between all the N points in

space and n is the considered point. After computing the wave vector k, the values of the

same k have been averaged and then plotted as function of the wave vector. Figure 4.4 b)

shows the spatial power spectra for few concentrations, so that it is possible to represent

the different stages of the transition without crowding too much the plot.

4.4 Correlations

We desire to study the correlations of the data in both time and space, as we did with the

power spectra. We then start with the autocorrelations, where we consider the time signal

of each grid point in the vector fields. The autocorrelation is defined as the correlation

between the signal A at time t, with the same signal at a subsequent time t+δ, where δ

goes from zero to the length of the signal T. Hence, the autocorrelation for the time lag δ is

defined as:

rδ =
cδ
c0

(4.3)

where c0 is the sample variance of the time series and cδ is:
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Figure 4.5: Correlation time and length are here plotted as function of concentration, with
time correlation peaking just after transition and then decay, while space interactions in-
crease with concentration.

cδ =
1

T

T−δ∑
t=1

(A(t)−A)(A(t+δ)−A) (4.4)

The autocorrelation for all lags is calculated as stated in eq. (4.3) for all the points in space

of the vector fields. The autocorrelation is then averaged in space per each time lag. To

extrapolate the time scale τ of the interactions the curve has been fitted with a simple ex-

ponential function A: A(τ) = e−tτ. The different correlation times τ have been normalised

by the constantω0 and then plotted as a function of the concentration, as shown in picture

4.5 a). The errorbars are calculated from the 75% confidence bounds of the exponential

fit.

To calculate the correlation in space at each time step we use the cross-correlation func-

tion c(r, t) between two different points in the vector fields.

c(r, t) = 〈V(x+ r, t) ·V(x, t)〉−〈V(x, t)〉2

〈V2(x, t)〉−〈V(x, t)〉2
(4.5)

where 〈·〉 is the average in space. For each distance |r| we average in time and then we

an exponential function C(|r|) to extrapolate the correlation length λ: C(|r|) = e−rλ. The

various correlation length λ is firstly normalised by the typical single cell length l0 and

then plotted as a function of the concentration, see figure 4.5 b). As in the autocorrelation

case, the errorbars are calculated from the 75% confidence bounds of the exponential fit.
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4.5 Turbulent Fraction

After analysing the basic parameters, we decide to use a similar approach as explained in

the simulation work [245], where they calculate the fraction of turbulent states in a chan-

nel filled with swarming bacteria. The aim is to calculate the activity of all the different

space-time states and look how they evolve with the increase of concentration and mostly

with the appearance of the turbulent state. In order to calculate the turbulent fraction (TF)

quantity we need to start by computing the enstrophy field Ω(x,y, t) = |ω(x,y, t)|2 from the

vorticity fields. In the simulation work [245], since the system is asymmetric the enstrophy

field is averaged over the short dimension of the channel. In this simulation the intention

is to learn if in the long direction of the channel there are stable turbulent state that cre-

ate vortices occupying the channel. In our case, the system is symmetric and circular, so

we do not have a preferred direction, but similarly, we want to learn if there are turbulent

structures in the system. Hence, we average the enstrophy field in both directions (x and

y). If in the enstrophy fields there are local active turbulence domains, then the average

fields will exhibit periodic oscillations in time. So, to localise those turbulence domains

we study the average fields. We divide the time into n intervals of identical duration and

the space is divided into the L points from the enstrophy field. We calculate the autocorre-

lation function, eq. (4.4), of the averaged enstrophy field for each point in space and each

temporal interval. We are interested in the presence of periodicity in the autocorrelation

function. We considered the autocorrelation in the time interval to be periodic if it has

more than three peak that exceed a threshold set by the 95% autocorrelation function con-

fidence bounds. In simulation work like [245] the size of the windows is chosen to be long

enough to have at least five oscillations, to reduce the possibility to include both periodic

and aperiodic intervals but long enough to be sure to detect periodicity of the autocor-

relation. In our experiments, the recording time has been divided in enough windows to

have enough statistic and in windows long enough to have two oscillations over the 95%

confidence bounds, to assure the detection of periodicity, considered that our intervals

are very shorts. The time intervals do not overlap, to avoid detecting the same oscillation

multiple times. It is important to highlight that the ram experiment was conduced with

a high speed camera recording at 100 frames per second, with a duration of 1000 images

(except the last couple of concentration which were recorded for double the time). This

allows us to have a signal long enough to detect the oscillations in a 1 second window,

for a total of n=10 windows, which are enough to study the behaviour in the system. In

the other dataset the frame rate is less than half, 33 frames per second, not favouring the

choice of a 1 second length window. Therefore, the time window is chosen to be 2.3 sec-

onds (75 images), giving enough points to compute the periodicity of the autocorrelation.

In both datasets, the first concentrations have a shorter recording time, leading to not very
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Figure 4.6: Kymographs of the turbulent fraction in x or y in time. The acrive states are
shown in yellow and the inactive states, with value zero are shown in purple. In a) we
are showing the ram turbulent fraction, the two top kymographs are for concentration
φn ∼ 0.33 while the bottom two for φn ∼ 1.63. It is possible to see the increase of active
states, in yellow, with increasing concentration. Similarly, in b), we recognise the same
behaviour in the bull sample. The top kymographs are at concentration φn ∼ 0.31 and the
two bottom one for φn ∼ 1.24.

reliable statistics justifying the exclusion of those concentrations from the analysis.

So, after calculating the autocorrelation and checking if, in that space-time state, the auto-

correlation is periodic, we assign a value, one or zero, to the space-time state s. To define

an active turbulent state, said state has not only to be periodic in autocorrelation, but even

have at least one neighbouring state, space or time, periodic. In case it is a single isolated

state, it is rejected and set to zero. The resulting space-time kymographs are the plotted,

as shown in figure 4.6, where yellow represents the active turbulent states with value one

and the purple are the zero states.

From the kymographs, the turbulent fraction (TF) is computed as follow:

T F (φn) =
∑

s = 1

L ·n
·100 (4.6)

When the percentage of active states in the space-time kymograph is calculated, it is then

plotted as a function of normalised concentration, as in figure 4.7.

The active state can be considered as to have the presence of an active turbulent vortex,

which can either split, creating new vortices, or decay into a non-turbulent state. In fig-

ure 4.7, for very small concentrations we have excluded the data from both bull and ram,

since the recording times were short not providing enough data for a reliable statistics for

the turbulent fraction computation. While reaching the critical concentration, the turbu-

lent vortices appear and instead of having a balance between the turbulent vortices that
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Figure 4.7: After the critical concentration the turbulent fraction appears to increase. The
turbulent fraction is defined as the number of active states in the system. The increase of
this quantity represents the appearance and persistence of active structures, like vortices,
in the system.

split and decay, they do not decay quickly, but the vortices reach a steady state and split

into two vortices, increasing the number of turbulent states. Further increase in concen-

tration leads to a well-defined turbulent fraction, where the competition between division

and decay of the vortices, creating a system with the majority of the system, up to 80 %,

occupied by turbulent states. At high concentrations, the bull and ram datasets differ in

behaviour. While the ram turbulent fraction increases and reaches a plateau, with turbu-

lent values between 80% and 90%, the bull turbulent fraction decreases to values of 50%.

From figure 4.6, but mostly from the values of the turbulent fraction in figure 4.7, we can

see that our system is symmetric. In fact, the values of the turbulent fraction for both

averaging cases, over x or y dimension, are very close between each other. For example,

in case of the bull data we have: TFx(0.31) = 49%, TFy(0.31) = 47%, TFx(1.24) = 75% and

TFy(1.24) = 78%. For the ram dataset the turbulent fraction values are: TFx(φn = 0.33) = 53%,

TFy(φn = 0.33) = 47%, TFx(φn = 1.63) = 74% and TFy(φn = 1.63) = 76%.
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4.6 Discussion

We have presented above the analysed quantities that we believe can describe the transi-

tion to collective motion. As shown in figure 4.2 a), for low concentrations, the velocities

are low, of the order of the single cell swimming speed, while when the critical concentra-

tion is reached, the average normalised velocity increases rapidly, almost linearly for both

datasets, up to 6 times the single cell velocity. This increase in velocity is considered to

be due to the cell to cell interactions that create local alignment [104, 246, 247, 248, 101,

102, 39]. At high concentrations, the linear increase seems to stop and plateau. It is not

sure if at a further increase in concentration, the normalised velocities would decrease.

But since our system has been evolving autonomously, with the number of cells increas-

ing in time without any interaction, we assume that the number of cells will saturate after

a long enough time. In case of the ram samples, we can see this saturation more clearly.

Indeed, the last three high concentration points in figure 4.2 a), have a φn ∼ 5, but those

three points have been taken 30 minutes apart. This suggests that the concentration did

not increase in over an hour and a half and the average velocities of the cells remain similar

over time. Of course, if the times are too long, the cells will start dying and consequently

the velocities, independently of the system concentration, will start decreasing.

Since sperm cells are pusher-like swimmers, we know that the fluid viscosity would de-

crease with increasing number of spermatozoa present [104, 246, 247, 248]. Moreover,

some previous works on the motion of single sperm cells and clusters of cells [101, 102, 39],

show an increase of the velocity in the system with increasing number of cells that would

cluster and locally swim together. In case of wood mouse spermatozoa [101], the sperm

cells clumps in trains from hundreds to several thousands cells. These trains have an aver-

age path velocity almost double than the single cell velocity. While the fishfly sperm move

in clusters of hundreds of cells attached by the head [39]. In this work [39] it is shown that

the velocity of the clusters increases with the size of the cluster itself: the larger the cluster,

the faster it moves. Given these examples in the literature, we were expecting the sperm

velocities to increase with concentrations, but we could not find previous works on sperm

with velocity increasing as much as 6 times the single cell velocity and not with a linear

increase of the concentration. Below the critical concentration, cells do not interact be-

tween each other and the resulting average velocity is close to the single cell velocity. At the

critical concentration, the cells are in a number such that they have to interact between

each other locally. With increasing concentration, the number of cells interacting should

increase, increase the number of spermatozoa in the local cluster moving. Thanks to what

stated in previous works [104, 246, 247, 248, 101, 102, 39] we can say that the higher the

number of cells in the fluid, the higher is the number of cells interacting and the number

of clusters increases the overall velocity of the cluster and hence of the detected velocities.
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We then proceeded to look at the vorticity. The values of the vorticity shown in figure 4.3

a) are near zero up to the critical concentration φc, after which the vorticity assumes non

zero values. This quantity increases with concentration after the critical one, showing that

more turbulent flows arise with the increase of concentration. After a first increase, the

ram vorticity values in figure 4.3 a) show a rapid decrease that plateaus right away. Those

vorticity values will remain fairly constant up to the highest concentration. While the bull

data, will decrease further and drop to zero for a few concentrations after which they will

plateau again at similar values as the ram data.

On the other hand, the values of the absolute vorticity in figure 4.3 b) show non zero values

for concentrations lower that φc, which implies that there are local alignments and inter-

actions for low concentrations, at least at short times. These vorticity values increase with

concentration, but the increase of the vorticity is faster after the critical concentration. No

decrease in absolute vorticity can be seen after the critical concentrations as, on the other

hand, is possible to see in figure 4.3 a). The ram absolute vorticity, in figure 4.3 b) seems to

increase linearly and not plateau, as the bull data does. Indeed, the bull absolute vorticity

data shows three different regimes, the first one before the critical concentration, where

it increases linearly, the second is a rapid increase after the critical concentration, where

the absolute vorticity seems to increase as a square root and the last regime is when the

absolute vorticity seems to plateau after φn ∼ 1.

We interpreted these two vorticity plots as follows. For values below the critical concen-

tration, the vorticity in figure 4.3 a) has zero values for both ram and bull while for the ab-

solute vorticity in figure 4.3 b) the values are non zero. Hence, the non zero values below

the critical concentration are due to summation of small but all positive values of vortic-

ity that, as shown in 4.3 a) when their chirality is taken into account, disappear because

they are random and cancel each other. After the critical concentration, the vorticity in

both plots increases, since the motion is locally organised with the appearance of vortices

and jets. In this case, the absolute vorticity plot (figure 4.3 b)) shows that for ram the local

organisation increases linearly in concentration, summing up all the contributes of the

structures independently of the chirality. When, on the other hand, we take into account

the sign of the vorticity (figure 4.3 a)), we see that there is a peak at a concentration around

φn ∼ 1, after which the vorticity values plateau, meaning that the structures present in the

fluid that are summed up in the absolute vorticity, here cancel each other at least partially,

but maintaining a constant temporary preferred sign of the vorticity. For the bull data,

the increase in the absolute vorticity (figure 4.3 b)) is steeper and at the concentration of

φn ∼ 1 it plateaus, while the vorticity (figure 4.3 a)) after the peak drops at values close to

zero and then increases again. In this case, we interpreted that the fluid vortices and jets

increases with concentration, but then since the sum of all the contributes without sign

remain constant, when considering the sign of the vorticity, the smallest variation would
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create a bigger fluctuation of the vorticity, as we can see in figure 4.3 a).

We then investigated the frequency power spectra, shown in figure 4.4 a). This plot shows

a peak at high frequencies f ∼ 10−20Hz, that are comparable to the beating frequencies of

bull and ram sperm from other works [249, 250]. The contribution of the oscillating heads

of the single sperm cells is present only for low concentrations, where the high frequencies

peak is present. These high frequencies are lost for high concentration, were the long

distance interactions are present and overtake the single cell contribution we can find for

lower concentrations. In addition, we can notice that the power spectra in frequency has

higher values for low frequencies, with a decay steeper for high concentration. This means

that with increasing concentrations, the velocity signal has a longer interaction over time

on the order of a few seconds, instead of having instantaneous interactions as in the case

of low concentrations.

The second type of power spectra calculated is the spatial one, where the Fourier Trans-

form is made over the 2D image for each time. The power spectra, figure 4.4 b), show a dif-

ference in slopes for low k depending on the concentration, which suggest a long range in-

teractions arising with concentrations that are not present for lower concentrations. While

the slope for higher k decreases slightly with increasing concentrations, suggesting vice

versa, that the short range interactions reduce in power with increasing number of cells in

the environment.

Realising that the power spectra were not giving us many quantitative informations on the

space and time correlation length, we decided to compute the autocorrelations and cross

correlations for each concentrations, resulting in the plots in figure 4.5 a) and b).

From the autocorrelation results, figure 4.5 a), we can see that the velocity signal for both

ram and bull correlates weakly in time until the critical concentration. After the critical

concentration is reached the system starts to correlate in time. There is a sharp increase in

the correlation times, up to τ of around 1.2 s and then it decays smoothly. This correlation

time variation can be interpreted as the system aligning and creating vortices and flow

structures lasting in space for long times, while with increasing concentration the system

results more active, reducing the length of the interactions in time. In this last case, the

turbulent flow structures will be lasting for a short amount of time, continuously changing

and creating and destroying the vortices.

On the other hand, results for the correlation length λ are more complex, with very differ-

ent dependence withφn for the two species. In the bull experiments, the correlation length

sharply increases after the critical concentration and then again smoothly decreases, while

the ram dataset has a continuous increase of the correlation length. Both dataset have the

highest value of the spatial correlation at around 150 µm, 3 times the cell length.

Finally, we looked at the turbulent fraction. This quantity increases with concentration

reaching a plateau for the ram experiment, similarly to the results from [245], while de-
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creasing for high concentrations for the bull experiment. The turbulent fractions shows

that the system has active states that are organised in space and time and that they in-

crease with the concentration. The space is populated by an increasing number of vortices

that finally populate almost all the space analysed and persist in space for longer times.

4.7 Conclusions

We performed a similar analysis as the one carried on for many bacterial systems with the

aim of investigating the transition from random motion of highly diluted sperm samples

to a collective motion behaviour, with turbulent flow, for high density sperm environment.

The results of the analysed quantities allow us to say that a transition between random and

turbulent motion appear with increasing concentration. The transition is smooth with

concentration, but get triggered after a critical concentration is reached φC .

We looked at samples from two mammalian species, ram and bull, that have in nature a

different concentration, being higher in the ram samples, to the point that by the naked

eye it is possible to see the swirls, jets and vortices just after collection. We investigated

the correlation between cell density and the motion in bulk environment, where boundary

conditions can be neglected. For very low concentration we saw just uncorrelated random

motion, without clear spatial structures, aligned clusters or specific density aggregations.

This random motion continued for increasing concentration up to a threshold. When the

critical concentration is reached, the major flow variables increased sharply. The corre-

lation lengths and time acquired non zero values and showed that the flow correlates for

long times and for long range. These long range interactions created the macroscale struc-

tures we saw and result similar to the one seen for bacterial turbulence, with vortices and

jets.

From all the informations discussed previously, we can conclude, that as expected the bulk

environment a phase transition can be seen solenly by modifying the cell concentration

and the turbulent state has many characteristics of the bacterial turbulence.
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Chapter 5

Collective motion in confined

environment – circles, rings, channels

5.1 Introduction

The aim of our following work is to assess how different types of confinement can influ-

ence the cell motion and the collective behaviour of a system of sperm cells. Studying

the confinement conditions is very important when talking about sperm samples, given

the characteristic of spermatozoa to swim sliding onto a wall [73]. They indeed use the

same strategy when travelling through the female tract, with the risk of being trapped at a

boundary of lost in a cavity of the tract. As it will be shown in this chapter, confinement

helps the transport towards a final destination, but when the confinement is circular or

ring-like, the system will stop moving forward and the resulting motion will be a circula-

tion or oscillation inside the confinement. Hence, very tortuous tracts could result detri-

mental for fertility and forward motion.

The literature on confined sperm suspensions is not vast. One of the only and most recent

works is by Creppy et al. [103], where manually diluted suspensions of active sperm cells

have been introduced into a annulus-like structure and the motion under confinement

evaluated. In this work a phase transition in the rotational motion appears with increase

concentrations and a oscillatory dynamical rotations has been seen to arise for high vol-

ume fractions. Two oscillations have been found for high concentrations: a larger spinning

period along the annulus of period 15 s circa and a superimposed typical secondary os-

cillation of period 3 s. For the diluted samples, the secondary oscillation is transient and

after a few periods it decays.

As already said, the literature on sperm cells is very scarce, in fact, no other experimental

works on spermatozoa in confinement have been found. Hence, the rest of the literature

we will take into account for the confinement experiments is based on bacterial motion.
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Confined bacterial suspensions have been seen to organise in single vortices inside a water

drop in oil with diameter between 10 and 150 µm, leading to the consideration that spa-

tial ordering of active vortices can be stabilised by the size of the system [251, 252, 253].

As shown in the previous works on bacteria under confinement [251, 253], when look-

ing at drops with low concentration, the few cells present in the drop will swim along the

boundary, circulating around with little interaction in between the cells. With increasing

the concentration, the cells form clusters that will slide along the interface of the drop,

with increasing the concentration further, the clusters merge and the boundary layer is

created. This layer is formed of cells swimming along the boundary of the drop, the in-

teractions between cells, make it possible to reorient the cells that are swimming in an

opposite direction from the bigger clusters and after a transient all cells in the boundary

layer are swimming in the same direction. This cells layer creates a flow going in the di-

rection opposite to the swimming direction, since the swimmers are pushers. When the

bacteria concentration is high enough that the all the cells in the drop can not be at the

boundary, some more layers appear. The direction of these layers is defined by the steric

interactions between cells. The final arrangement for a dense suspension is a spiral align-

ment, with all cells pointing in the same direction, namely pointing outwards, creating a

strong flow that at the centre of the drop is strong enough to counterbalance the swim-

ming speed. So that even if aligned as the boundary layer, the final direction of the bulk

flow is opposite to the direction of the flow at the boundary.

A highly concentrated suspension of bacteria confined in a drop of diameter between 30

and 70µm arranges as a single vortex occupying the entire space in the drop. This bacterial

rotating system does not appear to have a preferred rotation: clockwise and counterclock-

wise vortices appear with equal probability [251]. For drops with diameter larger than

70 µm and smaller than 100 µm, the flow is still rotational near the boundary but mov-

ing towards the center the vortex order decreases [251]. Finally, for drop diameters larger

than 100 µm, the flow inside the confinement is fully turbulent as in bulk suspensions

[33, 117, 35, 36].

From those works we can consider that long range hydrodynamical interactions are at

the basis of the stable circulations of a confined bacteria suspension. Moreover, the local

cell to cell interaction makes the cells align locally, but the large scale behaviour under

confinement appears when there is coupling between cell motion and the dynamics of

the fluid.

In the work presented in this chapter we try to replicate these study, aiming to find the

confinement limit for sperm cells at which single vortex circulation appears, remain stable

and finally, at which diameter size, the motion of the sperm cells in confinement transi-

tions from circulation to turbulence.

Additionally, from a recent work [252], it has been shown that for highly concentrated
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bacteria suspensions confined in two connected circles, the relative distance between the

centres of the two circles define the phase of circulation. A transition between two stable

configurations appear: one configuration is defined by the vortices in the circles rotating

both in the same direction, while the other circle has the vortices rotating in opposite di-

rection. This phase transition, depends only on the geometrical conditions of the system,

specifically in the relative position of the circles, corroborating the idea that geometrical

conditions define the active ordering of confined bacterial suspensions.

5.2 Experimental Methods

5.2.1 Sample

The samples used for this analysis are ram samples treated as described in the previous

chapter 4.2.1. Specifically, the ram samples are collected in loco, fresh in the morning

from healthy animals. Experiments started right after collection and were carried on for a

couple of hours, until cells were dead or enough data were taken. Only good quality semen

was used for these experiments, using high concentration and high motility samples (be-

tween 4 and 5 value in the usual scale of evaluation). Usually the second donation of the

day, half an hour after the first collection, was used. The samples were kept at room tem-

perature, which was around 20 degrees Celsius at any time. Usually the original sample

was kept undiluted or diluted at a ratio 1:1 with a specific solution composed of tetradyl,

egg yolk and DI water.

5.2.2 Experiments set-up

The PDMS chambers are pre-filled with buffer solution. Pictures of the different devices

are shown in figure 5.1, where it is possible to see the different size circles, the connected

circles, the rings and finally the straight channels connecting two large pools.

All the devices in this chapter have a height h ∼ 150µm. The circles shown in figure 5.1 a)

have radii between 50 and 500µm, all the connected circles in figure 5.1 b) have a radius of

200 µm and the rings (figure 5.1 c)) have a variable width, but their outer radius is 250 µm.

The channels shown in figure 5.1 d), have a total length of 1.5 cm reservoir to reservoir and

a variable width. The recordings are made with a CCD camera, in the circles experiment

the frame rate was set to 33 fps for a maximum of 10 seconds, while for the rest of the

experiments, low speed recordings were carried, in this case, the frame rate was set to

10 fps for a maximum of 2000 seconds. All the experiments were performed with a 4x

magnification, with the exclusion of the channels and transport experiments, for which a

2x lens has been used. Bight field imaging has been used for circles, rings and transport
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Figure 5.1: Pictures of the four devices used in this chapter. Firstly the central part of the
circle device, showing the range of radii considered. Secondly, the center of the device
with the two type of connected circles: and asymmetric design, with three circles and a
symmetric one with four. Thirdly, the rings or doughnut shape devices and finally the
straight channels connecting the two reservoirs. The scale bars are 250 µm in all panels.

data acquisition, while dark field for the connected circles and the oscillatory channels

has been used. All experiments have been carried at ambient temperature (∼ 20 °C).

The samples are introduced in the external ring of the PDMS channel, for the first three

devices, in such a way the only section with cells is the external one, giving motile cells the

possibility to swim into the central channels of the device, increasing the concentration

in loco with time. The cells arrive in the central chambers with time, depending on their

starting position in the outer ring, their direction and their speed. The spermatozoa will

be trapped in the central channels thanks to the channels connecting the loading ring to

the central part. Those channels will redirect towards the centre the swimming sperm

cells that try to escape. This technique is used for the rings, the circles and the connected

circles but not for the straight channels, which only have two big pools from which the

swimming cells will go to narrow channels.
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5.2.3 Analysis

As in the previous chapter 4.2.3.2, the velocity fields are calculated through PIV analy-

sis thanks to both costume made and provided programs from MATLAB (Mathworks Inc.

USA), specifically the PIVlab package [214].

5.3 Circles Experiments

This experiments and analysis have been inspired by previous work on bacteria under

confinement [251], where experiments and simulations have been combined to explain

the behaviour of bacteria, hence pusher like cells, in a confined environment, a water drop

in oil.

We aim to investigate the system of sperm cells, confined in circular chambers with radii

that vary from 50 µm to 500 µm in which the concentration increases in time, using a

spermatron-like device, as in the device shown in figure 4.1, that directs progressively

motile sperm cells towards the centre of the device. This will allow us to study the change

in various quantities as: velocity, vorticity and vortex order parameter (see section 5.3.2.1)

for increasing concentrations and radii at the same time and with the same sample.

5.3.1 Device and analysis

Figure 5.1 a), shows the device used for this experiment. The concentrations are numbered

from 1 to 17 and they are assessed by counting cells in a reference chamber. Our estima-

tion of the initial concentration C#1 ∼ 3 ·103 cell/ml, for then having a linear increase in

the concentration from C#2 ∼ 5 ·106 cell/ml to C#17 ∼ 7 ·1012 cell/ml.

5.3.2 Results

The quantities analysed are the angular velocity, the vorticity and the vortex order param-

eter. All of these quantities are calculated from the PIV velocity fields.

5.3.2.1 Vortex Order Parameter

In order to quantify the spatial ordering inside the circles and specifically to distinguish if

the motion in the circles is a single vortex rotating or a turbulent motion the vortex order

parameter, VOP, is calculated:

V OP = 1

1−2/π
·
(∑

i |vi · ti |∑
j |v j |

− 2

π

)
(5.1)
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Figure 5.2: Plots of the vortex order parameter. a) Shows the color map of the vortex order
parameter (VOP) variation with concentration and radius of the confinement. While b) is
the color map of the order parameter (OP) with respect with radii and concentration.

where vi are the velocities and i the points in time and space calculated from the PIV anal-

ysis and ti is the azimuthal vector calculated for each velocity point in time and space. The

vortex order parameter will acquire the value 0 if the motion inside the circle is chaotic

and will be 1 if the motion is an azimuthal rotation, hence a single vortex rotating. In case

of negative values of the order parameter, the motion will be a radial flow inside the circle.

This order parameter, does not distinguish between clockwise and counter-clockwise ro-

tation of the vortex. To account for the direction of the rotation, the order parameter, OP,

is calculated as:

OP =
∑

i vi · ti∑
j |v j |

(5.2)

Using the order parameter it is possible to look at what type of motion is present in the

different circles at different times and define if the circulation is clockwise (+1) or counter-

clockwise (-1). The OP shown here in figure 5.2 is the representation of a single set of

concentrations and radii, while the VOP, figure 5.1, is the result of 4 different repetitions of

concentration and radii.

In figure 5.2 a) it is possible to see that for concentrations lower than C#6 ∼ 108 cell/ml and

radii smaller than 150 µm, the VOP values are between 0.3 and 0.4, which we interpret

as the number of cells in each circle is enough to populate the entire boundary layer and

create a locally coordinated motion, rotating altogether. For largest radii, the sperm pop-

ulation at the boundary is not enough to have any overall coordinated rotational motion.

With an increase in concentration, the cells start filling the smaller chambers, reaching a

concentration where the orientation and motion of the cells is organised and the confine-

ment is small enough to allow the circulation to be coordinated in the whole chamber,
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creating a single vortex that rotates stably.

From figure 5.2 a), we can see that for the smaller radius, 50µm, the VOP does not ex-

ceeds 0.6. If we consider that the radius of the chamber is comparable with the length

of the sperm cell, then we can assume that the cells will be result close enough to inter-

act strongly. Physically their head will hit each other, leading to cells scattering, but since

the environment is so small, they will interact and scatter almost constantly. Addition-

ally, their tails could interact by touching and disrupting they beating of neighbouring or

opposite cells. All these physical interactions will disrupt instantaneously the circulation.

Moreover, in case they are not close enough to touch, but still close enough to interact by

the flow the pusher swimmers create. As explained in Chapter 1, the pusher swimmers

create a dipole flow field around them, pushing the fluid behind them. This flow interacts

with the neighbouring cells and in case of such a strict confinement, the flows interact in

a destructive way for the alignment. Hence, it is possible to see how the cells are able to

align locally and swim for short amount of time at the boundary, but then the alignment

is broken, not allowing a single vortex to be created, not even in case of higher concen-

trations. Even if slightly higher values of vortex order parameter are present when the

concentration is between 10 and 14.

At radii between 80−250µm ∼ 1.6−5l, where l is the length of the sperm cell, the low

concentration values for vortex order parameter are decreasing from the values of the

50−80µm circles, reaching a vortex order parameter of value lower than 0.2. This means

that there is no alignment in the circle. In the same way, the order parameter does not

show any directionality for the rotation, having a value around 0 and never exceeding 0.2.

The reason why there is no organisation at low concentrations is simply that the cells are

not enough to interact and create at least a boundary layer with coherent circulation. With

increasing concentration the circles with radii between 80µm ∼ 1.6l and 250µm ∼ 5l have

the highest increase in vortex order parameter. They reach maximum values between 0.75

and 0.85, between concentrations 8 and 14, showing that in these ranges of sizes and con-

centrations, the environmental conditions allow a stable circulation of the swimmers in-

side the circles. The rotation of the circles in this range of radii and concentrations is either

clockwise or counter-clockwise without any preferred direction, as shown in figure 5.2 b).

If we look at the average rotation per radius in the showed data (figure 5.2 b)), there is a

bias for the area with high values of vortex order parameter and order parameter, either

clockwise or counter-clockwise, showing that circles with similar radii tend to keep the

direction of the circulation, in average, with increasing concentration. For example, the

order parameter for radii between 100µm and 150µm and all concentrations, the average

rotation is clockwise, while in the next radii range, between 150µm and 200µm, the rota-

tions for all concentrations are mostly counter-clockwise. On the other hand, looking at

the distributions of all rotational directions, it is possible to see that there is a bias, mean-
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ing that a higher number of circles are either rotating clockwise or not, but there are circles

in the same range of radii that are rotating in both directions. Indeed, for values of radii

between 80−150µm the order parameter values at high concentrations are either higher

than 0.5 or lower than -0.5, showing that there is no preferred rotation. For higher radii,

between 15−250µm, there is a slight bias towards counter-clockwise rotation, even if the

order parameter values still reach 0.5. With increasing concentration over 14, the vortex

order parameter decreases to values around 0.5, showing that when the number of cells is

high, the interactions between swimmers, specifically at the boundary, disrupt the circu-

lation and have for the highest concentrations, a turbulent motion without a single vortex

present in the circle.

Increasing further the circle size, there is no stable vortex circulation at any specific con-

centration. The highest value for the vortex order parameter is around 0.5 for concentra-

tion 11-12 for the largest radius size. With increasing concentration the active cells create

a turbulent flow, where no overall vortex is present, but little vortices and local alignment

are present.

5.3.2.2 Velocity

The speed is calculated as in Chapter 4, using the x and y components of the velocity at

each point of the circle, the average speed per radius has been computed in addition to

the radial velocity at the boundary.

The speed increases with both concentration and radii of the chamber, without any clear

correlation between the increase in speed and the increase of the measure of order in the

system. Specifically, the presence of a single circulating vortex, as shown in fig. 5.2 a),

does not influence the increase of the cell velocity. The increase depends only on the cir-

cle radii and the concentration, without correlating with the orientational order. Looking

more closely at the dependences, we can see that the velocities lower bound per radius

is defined by the velocity at lower concentration, which is understandable, but this lower

bound depends on the radii. Indeed, it increases with increasing radius of the circular

chamber, see figure 5.3 a). If we then concentrate on the same radius and we look how the

velocity increases with concentration, we can notice that the jump between the velocities

at the lowest and highest concentration, depends on the radius, fig. 5.3 c). For small radii,

the jump is very small, while for the highest one the jump between the velocity in the cir-

cle at low and high cell concentration is more than double of the jump for the lower radii

values.

For every single radius the velocity increase after a concentration higher than 7, which is

consistent with what we have seen in a bulk condition in chapter 3. After the transition

point at concentration 7, the increase of the velocity is a power law depending on the
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Figure 5.3: Velocity and angular velocity are here plotted as function of both confinement
size and the concentration of cells. a) shows the average linear velocities recorded in the
circle at different concentrations and in different circles. It increase with the same trend
as the angular velocity, shown in b). We then show in c) the relation between velocity and
concentration per radius only for the average linear velocity, considering that the angu-
lar velocity will behave similarly. Finally we have d), where the velocities are plotted as
function of the radii at different concentrations.

radius of the circle. On the other hand, the increase of the velocity, depending on the

radius for each concentration is a simple power law, without any transition point at any

radius.

Finally, the angular velocity behaves similar to the flow speed inside the circles.

5.3.2.3 Vorticity

The vorticity measures the local spinning motion, which is conceptually different from

the vortex order parameter. The absolute vorticity of the system is very different from the

vortex order parameter. The absolute vorticity does not distinguish the direction of the ro-

tation, only if there is local spinning near the point. As shown in figure 5.4 a), the absolute

vorticity |ω|, has a transition point at concentration higher than C#7 ∼ 5 ·109 cell/ml, as for

the velocities, but instead of steadily increase, there is a peak and a reduction of vorticity

after concentration 12, and the increase depends on the circle size. The highest values
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Figure 5.4: a) shows the color plot of the absolute vorticity with respect of both radii and
concentration. While b) is the color plot of the vorticity variation with respect of both
radius and concentration.

are for the largest circle size (R ∼ 430µm), where the absolute vorticity reaches its maxi-

mum at concentration 13. On the other hand, looking at the dependence on the radius, at

fixed concentration, there is a slow increase, with a peak for a range of concentrations in

two radii regions, the 100−250µm and the 300−450µm circles. Hence, two regions in the

radii-concentration plane appear, one at 100−250µm radii and 10 to 14 concentrations,

which correspond to the golden area of the vortex order parameter, and the second one

is at high radii, 350−450µm and concentrations from 10 over, which corresponds with

the high velocity values. It is possible to interpret the first range as the region with stable

vortex, while the second one correspond to high velocities and high local organisations,

where turbulence is present assuring local swirling and organisation, but not long range

alignment and hence no single vortex rotating.

The vorticity ω, distinguishes between the two possible directions of rotation. It is dif-

ficult to recognise a specific pattern in the color-plot in figure 5.4 b), hence looking at

the single distributions of the vorticity at fixed concentrations or radii is quite important.

First of all, looking at the fixed radii situations, the vorticity start increasing after concen-

tration 6 and then peaks around concentration 10. The vorticity changes the preferred

local directionality with concentration and time. Hence at high concentration it is easier

to distinguish what direction the local swirling is taking, while for low concentration the

motion is on average not locally organised even for small circles. The distribution of the

vorticity values with radii is more complex. The low concentrations the vorticity has values

around zero, but for medium-high concentrations the small circle, R ∼ 50−150µm, have

values for the vorticity that are mostly negative, leading us to assume it is a clockwise pre-

ferred local rotation, which relates to the order parameter values, while increasing radii,

R ∼ 150−350µm, the preferred local rotation seams to be counter-clockwise, with a small
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decrease with increasing size of the circles. The largest size circle, has high values of the

vorticity, spread around positive and negative values, allowing us to say that for the highest

velocities, the turbulent motion at high velocity is locally aligned and spinning, but only

locally, which is seen comparing the order parameter values at that radius and concentra-

tions.

5.4 Oscillations in Systems: Circles, Rings and Channels

5.4.1 Connected Circles

After looking at single circle behaviour, we decided to investigate how sperm cells behave

in a more complex environment at high concentration, with three or four circles con-

nected to each other. Regarding the device their preparation and the method of usage

are the same as in the previous experiments. Moreover, the PIV analysis is again the same

as for the previous experiments.

As in some of the bacteria work, multiple stable modes for the rotation of four connected

circles have been found [252], depending on the distance between the centres of the con-

nected circles. In our case, we do not change the distance between the centre of the circles,

but we maintain that constant and change their positioning, the device used is shown in

figure 5.1 b). The symmetrical system has four connected circles, which centres are posi-

tioned at the corners of a square, while the asymmetrical one has three connected circles

which centres are positioned at the corners of an equilateral triangle (see figure 5.1 b)).

Let’s consider first the symmetrical system. In previous work [252], there are multiple sta-

ble configurations for a symmetrical system of highly concentrated bacteria, quite the op-

posite in our symmetrical system. Indeed, for a dense suspension of sperm cells, we found

that the stable configuration of the symmetrical four circles system, is the one with a same

direction of rotation for the circles which centres are positioned on the diagonals of the

square, hence top right-bottom left and top left-bottom right (see figure 5.1 b)). Here, the

vorticity has similar values, but most of all has same sign and same direction.

As shown in figure 5.5 c), an important feature we observed is that this system oscillates,

the connected circles do not stably rotate in the same direction, but they change direction

of rotation and the system returns to the stable configuration very quickly. This oscillation

happens naturally without any external input, showing a very stable and self-adjusting

system. The diagonally connected circles have very similar values of vorticity (see figure

5.5 c)) and they pair up quite consistently with the other diagonally connected one. Look-

ing at the velocity in figure 5.5 b), when the inversions of motion appeared, we can see

that the flow slows down at the time of the inversion, from second ∼ 800, dropping at the

first perturbation and then slowly regaining speed with the increase of stability, resuming
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Figure 5.5: Plot of a) vortex order parameter, b) angular velocity and c) vorticity in case of
four connected circles. Here the symmetry of the system allows the circles to rotate in a
specific direction and when perturbations lead to changes in the rotation of one or more
circles, the system adapts going back to an organised circulation. The organisation at sta-
ble condition is coordinated diagonal rotation and counter-rotation for perpendicularly
and in parallel.

similar values after second ∼ 990.

Finally, looking at an asymmetric design, with three circles connected to each other. In

this case, as we can see in figure 5.6, few temporary correlations occur, but the asymmetry

of the system disrupts these correlation quite fast. From figure 5.6 c), we notice that two

of the three circles rotate in opposite direction with the third one oscillating between the

two modes. No specific pattern can be seen in this system.
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Figure 5.6: Plot of a) vortex order parameter, b) angular velocity and c) vorticity in case of
three connected circles. The asymmetry in the system reflects on the unequal oscillations
between of the parameters with respect to the other circles of the system.

5.4.2 Rings

Intrigued by this oscillating systems, we looked at doughnuts or ring shaped devices. Main-

taining the outer radius the same, Rout = 250 µm, we looked at three different variation of

the ring size, changing the inner radius Rin = 195, 130, 35 µm, giving a final rings width of

55, 120 and 215 µm. We again looked at the average angular vorticity in time, figure 5.7 b),

which shows very short time oscillations, which are consistent and stable throughout all

the time of the experiment. We calculated the time power spectra of the system, as shown

in figure 5.8 extrapolated the oscillation frequencies for the different width of the dough-

nuts. Here we can see that the thinnest rings do not show a clear peak in the power spectra

(figure 5.8 a)), but the ∼ 120µm and ∼ 215µm rings show two distinct peaks (figure 5.8 b)

and c)), in the first case at frequency ∼ 0.05 Hz which corresponds to around 20 seconds,

while the larger rings show a peak for frequencies around ∼ 0.09 Hz corresponding to 11
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Figure 5.7: Firstly, a) shows the average over 10 seconds of the values of the velocity for a
long time (1000 seconds), while in b) and c), the non modified signal in a shorted amount
of time are plotted, with the aim of showing the natural oscillations of the system.

seconds.

We can hence see that the velocities in figure 5.7 a), for the ∼ 55µm width rings have

very low values, while for the thicker doughnuts the velocities are remarkably higher. The

same can be said for the angular velocity (figure 5.7 b)) that is considerably smaller for the

thinnest rings. On the other hand the oscillations of the angular velocity are easily notice-

able, some perturbations disturb the regular oscillation but the system quickly recover the

oscillation and the frequency of oscillation, that looks like to be around 15 seconds peak

to peak. More difficult to interpret is the vorticity, which shows oscillations but they are
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Figure 5.8: From the angular velocity the frequency power spectrum is calculated. a)
Shows the power spectra of the rings with width ∼ 55µm where no clear peak appears.
While in b) the power spectra of the rings with width ∼ 120µm show a peak for frequencies
around 0.05 Hz, which gives a period of around 20 seconds. Finally c) shows the power
spectra for the ∼ 215µm thick doughnuts, where the peak is at frequencies of around 0.09
Hz, corresponding to a period of ∼ 11 seconds.

not as well defines as the one for the angular velocity. This is probably due to the fact in

the real system no proper vortex arises, but there is in the thickest doughnut some tur-

bulent characteristics in the bulk, while the overall system at the boundaries is rotating.

Similarly the vortex order parameter for the rings shows oscillations, see figure 5.9. When

the system is about to invert the rotation, then the motion inside the device is not uni-

directionally rotating, but the motion is more turbulent and chaotic, reducing drastically

the values of the order parameter. It can be noticed that the oscillations of Vθ and OP are

not fully matching. This can be explained by the fact that the system does not instanta-

neously change from circulation to chaos, but will transition, with reduction of velocities

but still rotating, which result in the reduction of angular velocity but not on order param-

eter. Consequently, when the system is in the process of changing the direction, its order

parameter is not zero, but the velocities have drastically reduced.

Finally, these oscillations looks very robust with time, persisting for long times, over 1000

seconds.
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Figure 5.9: The order parameter for the different size doughnuts. a) shows only the first
100 second for the not averaged data over time. While b), is from the full dataset order
parameter values, but averaged over 100 frames (10 seconds).
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Figure 5.10: Schematic of the two types of devices used in this experiment. a)is a channel
as wide as the pools that we can call "slit". In both devices the distance between the reser-
voirs is 1.5 cm, the reservoirs are 200 µm thick while the channels are 100 µm thick, while
b) shows the device with multiple channels that can have different width.

5.4.3 Channels

Interested by these oscillatory motions, we designed a system shown in figure 5.10 b). This

system is composed of multiple straight channels of variable width connected between

each other by two big pools at the two extremes. The channel widths used are 100, 150

and 200 µm, while their length is maintained constant at 1 cm.

We did not only look at the undiluted sample regime, with concentration ∼ 5 ·109 cells/ml,

but we progressively diluted the samples up to 16:1, which is the lower concentration and

is equal to ∼ 3.2 ·108 cells/ml.

Looking at the velocities in the different channels, we saw that the direction of the velocity

in the channels will reverse in time with a periodicity that varied with width of the channel

and concentration of cells. In figure 5.11 a) and b) we show different examples of colour

plots, where it is possible to see the reversal of the velocity direction. The signals of each

single channel, can be analysed separately in time, calculating the wavelength and the

amplitude of the oscillatory signal in time. The average of the wavelength and amplitude

for width of the channel and concentration are shown in figure 5.11 c) and d).

We noticed changes in the frequency and amplitude depending on the width of the chan-

nels and the dilution of the sample. Unfortunately the data do not seem to follow a very

understandable relation. The amplitude of the oscillations looks to increase with width of

the channel for the high concentrations, but we can not distinguish any particular pattern

or relation. Looking at the wavelength of the channel signals, we can see that almost all

the dilutions, except dilution 8 and dilution 2, have a higher value on the 150 µm channel,

while dilution 2 has the maximum for the wider channel, 200 µm. The amplitude seems to

reduce with width of the channel only for dilution 1, while for all the other concentrations

the amplitude increases with channel widths. Dilution 2 has the highest amplitude values

overall concentrations, reaching the maximum for the 200 µm channel.
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Figure 5.11: Two examples of the velocities colour plots. a) is for a dilution 2 and channel
width 200 µm, while b) is for dilution 2 again, but the channels of width 200 µm. Wave
length c) and amplitude d) of the oscillations in channels of different width and for differ-
ent concentrations.

5.4.4 Transport

Using the devices shown in figure 5.10 we tried to investigate how fast the sperm cells will

travel across a fixed length in different conditions. We investigates three different condi-

tions: undiluted sample and channels, figure 5.10 b), undiluted sample and "slit", figure

5.10 a) and diluted sample and channels, figure 5.10 b). The devices used are shown in fig-

ure 5.10, both of them have two reservoirs, but only one of them will be filled with sample,

while the other one will be left only with clear buffer. The central part of both channel is

1 cm long, but the device shown in figure 5.10 b) is made of 150 µm wide channels, while

the other device in figure 5.10 a), called "slit", has only one channel which is wide as the

entire reservoir. We want to see what is the most efficient environment for transport of

spermatozoa from one reservoir to the the other. We decided to calculate how many cells

will travel and populate the empty reservoir in 40 minutes. In order to define the amount

of cells travelling across the device, we considered that the light intensity of an area in

each frame of the video depends on the amount of cells present in the considered area.

So, considering the maximum number of cells that can to travel to the empty reservoir as
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Figure 5.12: The number of cells arrived on the second reservoir is normalised with the
total number of initial cells from the first pool, then plotted with respect of the time. For
both high and low concentrations the best method of populating a far away zone is to have
multiple channels instead of a flat open surface.

the number of cells present in the loading reservoir, we calibrated the total number of cells

in the volume, Ntot from the loading reservoir light intensity. We then pictured the empty

reservoir and, in the same area, calculated the light intensity, which will be N ≤ Ntot. When

N = Ntot it means that the light intensity of the area is the same as the loading one, which

is the representation that all the cells travelled to the other side of the device. We plotted

the ratio between the cells present in the empty reservoir over the total number of cells

loaded against the time passed since we loaded the chamber.

Looking at the results in figure 5.12, we saw that for the slit device, the number of cells

travelling to the empty reservoir is almost null, even if the loaded sample is the same high

concentrations used for the channels high concentration (red line in figure 5.12). For low

concentrations and channels in the device, we see that the increase in number of cells trav-

elling to the other reservoir is small, but increases linearly. On the other hand, in the same

device, if the concentration is high, the number of cells reaching the initially empty reser-

voir is almost total after only 20 minutes. After those first 20 minutes, the ratio decreases

from N/Ntot ∼ 0.8 to N/Ntot∼ 0.6 in the next 20 minutes. In this case, after the majority of

the cells travel across the device very fast and populate the initially empty reservoir, the

cells start travelling back to the loading reservoir, trying to equalising the number of cells

in both reservoirs.
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5.5 Discussion

We described here in this chapter a variety of systems that have been let evolve in time,

without any external input. The aim was to look at how confinement influences cell mo-

tion and the arising of collective motion when the concentration of swimmers increases

too. Firstly, we looked at a system with increasing concentration and increasing radius

of circular confinement and we tried to see in which range of concentration and radius

the motion was a single rotating vortex. As in bacterial works [251, 253] we found a range

of radii where for a high concentration of swimmers the motion is collectively organised

as a single vortex rotating in the whole volume. Additionally, we investigated the range

for concentration to influence the single vortex collective motion in confinement. We

found that this concentration range changes with radius of confinement. For small radii,

r < 150µm, the vortex order parameter, shown in 5.2 a), has values between 0.3 and 0.4 for

small concentration. We interpreted this as the number of cells in each circle is sufficient

to populate the entire boundary layer and create a locally coordinated motion, rotating al-

together. For larger radii, the sperm population at the boundary is not enough to have any

overall coordinated rotational motion at low concentrations, but when the concentration

is increase, the boundary get populated allowing for a coordinated motion. Radii larger

than 250µm and smaller than 80µm, we did not have stable circulation. In the first case

the confinement was not enough to drive a single vortex rotation and even if the motion

on the boundary layer was a single circulation, the bulk showed a turbulent motion. In

the second case, we hypothesised that the interactions between cells confined in a disk of

size smaller than double the cell length, become so strong that they disrupt the possibil-

ity of cell organisation. For radii between 80 µm and 250 µm, the vortex order parameter

increases with concentration, up to high values of 0.9, showing that the system of more

than 108 cells/ml organise in a single rotating vortex. On the other hand, when looking

at the velocities in figure 5.3, we didn’t find a variation in the velocity values for the range

of radii and concentrations we have a stable rotation. Indeed, we found that the veloci-

ties increase in value similarly to the bulk experiments shown in the previous chapter, 4.

Looking at the single radii separately, we saw that the velocities increase after a critical

concentration, which is the same for all radii. The increase is linear, but the slope of the

increase depends on the radius of confinement: for larger radii, the slope is higher than for

smaller one. On the other hand, the increase of the velocity values per each concentration

at increasing radius is a power law. With this analysis we showed that the confinement

can drive the spatial organisation and collective motion of the system, with the arising of

single stable vortices rotating for a specific range of radii and concentrations. This spa-

tial organisation, does not influence the velocity increase, which is dependent only on the

overall concentration and confinement size.
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We then tried different types of confinement, building from the different size circles, we

created two systems: one symmetrical and one asymmetrical. We used a single radius in

the range where a single vortex arise and we connected three or four circles, in the first

case the centres of the circles were positioned at the corners of a equilateral triangle, in

the symmetric case they were positioned at the corners of a square. We used high concen-

trated sample, so to be sure to have the collective motion inside the devices. As expected,

the asymmetric system did not show any long term organisation, but had motion organ-

ised for very short period of times, as shown in figure 5.6. The symmetrical system showed

more interesting results. In previous bacterial works [252], many distinct stable configura-

tions for the direction of the vortices inside the circles have been found. These configura-

tions vary depending on the distance between the centres of the circles. For the distance

we used in our sperm cells experiments, the bacterial stable configurations are two, but

we saw that only one stable configurations is present in our system. The stable config-

uration is when the circles which centres are on the diagonal of the square rotate in the

same direction, hence top-right has a vortex rotating in the same directions as bottom-left

and they rotate in the opposite direction of top-left and bottom-right circles. The system

is not perturbed externally, but after some time of rotation the fluctuations of the system

created an internal perturbation strong enough to change and invert the rotation of one

circle, which then drives the change in rotation of the entire system. It is important to re-

iterate that the system is not touched or perturbed externally, but only the fluctuations of

velocity and directionality of the cells in the system lead to this change in motion.

Another confinement investigated is a ring device, in which the outer radius remained

constant while the internal radii changed. We looked at three different width of the rings: a

very thin one, an intermediate one and a very wide one. Previous works on various diluted

sperm suspensions confined in rings [103], showed a phase transition in the rotational

motion that appears with increasing concentration. While for high volume fractions, two

oscillatory dynamics appear: one long term oscillation of around 15 s and a short period

oscillation of 3 s circa. In our system we saw that the oscillations arising are dependent

on the size of the annulus, but the rings with the intermediate widths, ∼ 120µm, appear to

be the most stable one, with a stable circulation in the ring. In this case the frequency of

the oscillations in the system, were similar to previous works. This 15 seconds oscillations

looks very robust in time around the ∼ 120µm wide ring. On the other hand, for very thin

rings, the rotation didn’t appear to arise and the velocities in the rings are very small with

respect to the other rings. While on the very wide rings, ∼ 215µm, the motion appears to

be organised on the boundary layers, but the middle part of the rings is behaving mostly

turbulent, without sustaining a single circulation in the ring itself.

We then notice these oscillations for a system of dense suspension of sperm cells in nar-

row channels. The direction of the motion inside the narrow channels inverted with fixed
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frequency that varied depending on the width of the channel itself. Even if we could not

find a specific pattern in the frequency of reversal and in the amplitude of the reversal

oscillations, we saw that these oscillations in the direction of motion are very robust and

consistent in time.

Finally, used two different devices and two different concentrations in order to study how

confinement drives efficient cell transport. We saw that the device with multiple channels

has the majority of cells moving towards the second pool and populating it, even when

the concentration of the sample used is reduced drastically, around 1000 times. While a

system without multiple boundaries on which the cells can slide on has a very low number

of cells arriving to the other side. We then deduced that the confinement helps transport

the cells and it can be related to the tortuousness of the female tract.

5.6 Conclusions

After the analysis of the bulk environments for sperm cells, the system size was drastically

reduced and we explored how the different type of confinement we could think of would

influence the collective behaviour of the system. We found that circular chambers induce

a single vortex rotation at specific concentrations and circle sizes, creating a "golden re-

gion" where the circulation inside the circle is unified and results into a single vortex oc-

cupying the entire environment. Allowing us to conclude that the size of the confinement

plays a significant role in the type of motion.

We then looked at many different systems: connected circles, rings and channels. The

denominator of all these experiments has been the arising of oscillations in the system.

For the connected circles, when the system is symmetric it self organise and has a stable

configuration that persist along the entire experimental time. Even if intrinsic fluctuations

in the system create a perturbation strong enough to invert the directionality of the mo-

tion, the system rearrange to the stable configuration. This symmetric system results very

robust.

We saw these oscillations in the doughnuts shaped devices, where mostly angular velocity

and vortex order parameter result oscillating in time. Meaning that the rotation of the

system oscillates between clockwise and counter-clockwise almost periodically with the

same frequency for rings of width ∼ 120µm.

Finally, looking at straight channels the oscillations can be seen, but unfortunately, no

simple dependence between the concentrations and the widths investigated with the re-

versal frequency can be seen. On the other hand, using these devices compared with a

single slide connection between the two reservoirs, can be used to study the transport effi-

ciency of the cells with or without multiple boundaries. Resulting in a stunning difference,

not only for high concentration samples. But even for low concentrations, the presence of
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multiple confining boundaries makes the transport of sperm cells more efficient.

More experiments should be carried on with channels, investigating more in depth the

frequency of flow direction reversing depending on the width of the channel, its length

and the sample concentration.
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Chapter 6

Waves

6.1 Introduction

In this chapter we aim to describe and analyse a phenomenon we have witnessed during

the experiments. With the intention to increase the speed and the activity of the sperm

cells in the system we tried to increase the temperature. This temperature increase, in-

stead of making more frantic the spermatozoa motion, created a wave motion in the 3D

bulk system and a system of ring-like structures when the sperm cells were confined in 2D.

We will present in this chapter the preliminary work on 2D and 3D system of spermatozoa

when the temperature is raising from 25 °C to 37 °C. Researching in the literature, only two

works correlate strongly with what we saw.

The first one is by Chen et al. [96], where swarming E. Coli bacteria are confined in a

quasi-2D environment on top of an agar plate. For high concentration of bacteria, after

a transient time, collective oscillatory motion arise. This oscillation is characterised by a

spacial homogeneous velocity field oscillating in time, it persists for a minimum of half an

hour and it is steady in period. The period depends on the colony, ranging between 4 and

12 seconds. Some silicon-oil droplets are added on the surface of the swarming cells. The

trajectory of those tracers is tracked and they follow an elliptical trajectory whose chirality

has equal probability to be clockwise or counter-clockwise. The collective oscillations are

correlated over long distances, with identical period but with phase that varies linearly

in space. Finally, they investigated the behaviour of the individual cells swarming on the

substrate and creating these oscillations. Surprisingly, individual cells do not behave as

oscillators, leading to the assumption that a weak synchronization at the population level

is responsible for the emergence of the collective oscillations. When the system is stopped

by reducing the temperature, forcing the cells to stop moving, the cell speed decreases

as the amplitude of the oscillations. After warming up the system again, the oscillations

emerge again. This shows that the oscillations are a stable configuration for the system.
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If interfaces between two oscillations of opposite chirality are present after restarting the

system, local chirality switching and gradual orientational change of the ellipses arise.

We found a similar appearance of oscillatory motion of sperm cells swimming in a 3D sys-

tem at increasing temperature, which will be described in the first part of this chapter.

In the second part, we will restrict the system where sperm cells move to a 2D system,

confining them in a think layer. In this system, we found that, with increasing tempera-

ture, the sperm cells arrange into an array of vortices. This phenomena has been previ-

ously described by Riedel [40] in 2005, with sea urchin sperm. Indeed, as shown in chap-

ter 4, sperm cells are found to have a swarming behaviour when at high concentrations

[102, 101, 40, 100]. As shown from section 2.2.1, hydrodynamic interactions attract sperm

cells to aggregate and to synchronise the beating frequency, collective behaviour of finite

concentration sperm cells has been studied numerically [82, 254]. Experimentally, when

swarming sperm cells are confined in a 2D system two different pattern arise: the aggre-

gation trains in the wood-mouse sperm, seen by Moore and Immeler [101, 100] and the

vortex arrays of sea urchin sperm described by Riedel [40]. As already shown in chapter

2, section 2.2.2.2, when sea urchin sperm surface density ρ0 is increased over a certain

threshold, the spermatozoa start arranging into ring-like structures with diameter around

d0 ∼ 25µm. These vortices are themselves arranged in a fluid like manner, forming struc-

tures with hexagonal order. The structures started forming when ρ0d 2
0 ' 1, this dimen-

sionless density is the overlap density of circular trajectories. Each single vortex is seen to

not change in size and to contain between 8 to 12 cells, in addition the circulation inside

the vortices has been observed to be clockwise. The vortices occasionally fused or divided

and at times cells will hop between them, but overall it is a stable configuration. These vor-

tices are not anchored on the surface and they have seen to be moving with an apparent

diffusion coefficient of around D ∼ 6.2µm2/s, which results to be higher than the diffusion

coefficient calculated for disks of a similar diameter as the rings (D ∼ 0.06µm2/s). Hence,

the cells active propulsion takes the array of vortices out of thermal equilibrium.

The packing of the vortices is an hexagonal pattern of average spacing of r ∼ 49µm and

since there is no long range correlation, the array behaves liquid-like instead of as crystal.

While looking at the cells behaviour inside each vortex, Reidel at al. [40] found that there

is a peculiar form of beating synchronization. Indeed, the correlation is not between cells

phase oscillations or angular position of their heads. Instead, the correlation is between

the difference in phase and angular position of each sperm pair in the vortex. Hence over-

all they swim at different velocities and have different beating frequencies, but locally, they

are swimming and oscillating synchronously, as represented in figure 2.14 b).

Considering the model by Yang et al. [254], where cells are considered to have a planar

beat and they are confined in a 2D system, and comparing this model to the experimen-

tal results from Reidel, we can draw three points: first, the diameter of the vortices does
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not change with density of cells; secondly, the hydrodynamic interactions create weaker

correlations in simulations, leading to the hypothesis that the interactions, not only they

attract cells and help their synchronisation, but they also interact with the neighbouring

rings disrupting their circulation paths; finally, when considering the fluid above the sur-

face too, then the hydrodynamic interactions contribute to the stabilization of the arrays

of vortices.

The above phenomena resemble what we observed in our experiments explained in this

chapter. In fact, we observe both ring formation and oscillations over all the population in

the channel. In our case the ring formation does not depend on the density of swimmers

but on the temperature, while the oscillations arise when the system moves form a 2D

confinement to a 3D.

6.2 Experimental Methods

6.2.1 Sample

The samples used for this analysis are ram samples treated as described in the previous

chapter 4.2.1. Specifically, the ram samples are collected in loco, fresh in the morning

from healthy animals. Experiments started right after collection and were carried on for a

couple of hours, until cells were dead or enough data were taken. Only good quality semen

was used for these experiments, using high concentration and high motility samples (be-

tween 4 and 5 value in the usual scale of evaluation). Usually the second donation of the

day, half an hour after the first collection, was used. The samples were kept at room tem-

perature, which was around 20 degrees Celsius at any time. Usually the original sample

was kept undiluted and when diluted a buffer solution.

6.2.2 Experimental set-up

This chapter describes two major experiments. Firstly, we used a pre-filled PDMS cham-

ber is filled completely with sample, with similar modalities as the previous experiments.

This chamber, shown in figure 6.1, is a step design with six different heights: H1 ∼ 7µm,

H2 ∼ 15µm, H3 ∼ 25µm, H4 ∼ 40µm, H5 ∼ 70µm and H6 ∼ 130µm. The total length of the

device is 4 cm, and the width is 0.5 cm.

For the single cells tracking experiment, we simply introduced the sample in between two

glass slides: a drop of semen is deposited on one glass and another slide is slowly placed

on top.

The videos have been recorded with an Edgetronic camera set at 50 frames per seconds,

while the single cell tracking has been recorded with the same camera, but at a frame rate
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Figure 6.1: We used a PDMS device composed of six steps of different height, which are
shown in the schematic: H1 ∼ 7µm, H2 ∼ 15µm, H3 ∼ 25µm, H4 ∼ 40µm, H5 ∼ 70µm and
H6 ∼ 130µm. The total length of the device is 4 cm, and the width is 0.5 cm.

of 300 fps. For the first part of the data, where height and temperature are varied, the

data are collected with bright field microscopy and 15× magnification. While looking at

the wave analysis, the aim was to look only at the wide range behaviour, so we changed

to dark field imaging with 4x magnification. Same set up was considered for the circular

pattern imaging.

In the final part, where the single trajectories are followed, the speed camera was recording

phase contrast images with 40x magnification, in order to recognise more easily the single

cells.

6.2.2.1 The heated stage

As shown in figure 6.2, the heated stage system is composed of five major units: the PC

that controls the system through a LabView program; the power supply that gives enough

voltage to reach the desired temperature; the ITO (Indium Tin Oxide) covered glass; the

probe that samples the temperature on the surface of the glass and the Arduino Uno REV3,

which is used by the computer to control all the other components of the system.

Specifically, the computer runs a LabView custom made program that regulates the volt-
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Figure 6.2: Schematic of the heated stage set up. The computer runs a LabView custom
made program to regulate the temperature on the heated glass through Arduino. The Ar-
duino device receives the information about the temperature on the glass from the probe
and adjust the voltage in order to reach and maintain the desired temperature.

age across the ITO covered glass to match the temperature that was set up. The probe

glued on the glass gives the information on the surface temperature to the computer,

which will turn on or off the supply of voltage through the Arduino to the glass. If the

temperature measured by the probe does not match the desired temperature, the Arduino

will let more and more voltage through to the glass, so that it could raise the temperature.

When the temperature is reached a alternation of on and off moments will keep the tem-

perature as stable as possible. If the temperature is too high, the Arduino will stop supply

of voltage to the glass, slowly reducing its temperature.

6.3 Emergence of waves and vortices

We used a PDMS device with a step scale pattern, figure 6.1, with thickness ranging from 7

to 130µm, with overall size of around 4x0.5 cm in size. We varied the temperature between

25 °C and 35 °C. Increasing temperature we saw that in the thinnest part of the device, at

high temperatures, ring-like structure arise and stably circulate until cells die. In the rest
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Figure 6.3: Power spectra for three increasing temperature and the six thickness of the
device. They show the evolution of the system from turbulent motion to oscillations in the
volume with increasing temperature. New frequency modes correlated with these motion
phase arise and dominate the collective behaviour of the system.

of the device at high temperatures we saw a wave propagating through the entire volume

of the step is seen.

Three major quantities were changed: the confinement, with six different heights, the

temperature and finally the concentration.

6.3.1 Height and temperature

First of all we analysed a 1:1 concentration system, with concentration calculated at the

surface being of approximatly 108cells/ml. We investigated the behaviour of the different

thicknesses for three temperatures. At 25 °C, the behaviour of the power spectra, figure 6.3

resemble the one of the bulk measurements from Chapter 3, having a peak in the power

spectra at the sperm cells beating frequency. For very thin chamber, the values are smaller,

probably due to the interference of the boundaries over the beating pattern. Indeed, from

the derivation of the curvature radius, eq. 2.24, with a length of the sperm cell l = 50µm
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and since l/2δ∼ 3, as calculated by [73], the conical envelope that includes the beating

pattern has a radius δ∼ 8µm. This confinement probably modifies the beating, reduc-

ing its frequency, but with the increasing thickness, the frequency matches with the one

calculated at the bulk. Not much different behaviour can be seen from the 25 °C data

for different confinement, while if we increase the temperature to 30 °C, the two thinnest

heights still conserve the beating peak, but at ∼ 15µm, a mode starts showing, which is

the excited mode of the cells, with increasing heights, the peak on the right disappear, the

power spectra results flat apart from one or two peaks at low frequency. Those additional

peaks are excitement modes that arise from the system starting its oscillation. Ring-like

structures (as shown in figure 6.17) do not appear yet on the quasi-2D environments (H1

and H2), but from the videos, the cells seem to start vibrating at a low frequency. While

for the rest of the heights the motion is oscillatory, but not fully a propagating wave as it

emerges for the highest temperature. At this point, increasing additionally 5 °C the tem-

perature, ring-like structures at the 7 and 15 µm chambers appear. In the 7 µm chamber,

the rings appear and are stable, where spermatozoa locked in a ring without being able to

move between rings, they indeed create separate structures that often push the dead cells

to the boundary, creating enclosures between rings. While for the next chamber, 15 µm,

sperm cells are grouped in clusters swimming in a semi circular motion, where rings can

be recognised but they are not stable over time, indeed the clusters merge and move from

ring to ring, creating a more dynamic system. In the following heights, 40, 70 and 130 µm,

the motion is oscillatory, with a wave propagating though the chamber. Four peaks can

be recognised in the power spectra with the major one at frequencies between 0.8 - 1 Hz,

which results to be the frequency of the wave moving in the volume.

We then looked at the behaviour of the 25°C for a 1:2 dilution, comparing it with the 1:1

behaviour as show in figure 6.4. No noticeable difference appears with dilution, indeed

neither dilution shows characteristic of the high temperature motion.

We then moved to analyse the highest temperature, 35°C, that seems to lead to the biggest

motion changes in the fluid. We considered four dilutions, figure 6.5, one diluted sam-

ple, of 4 parts of buffer and one of sample, for concentration of 1:4 ∼ 2 ·107cell/ml. For

lower concentrations we obtain flat power spectra for 3D environments and only a slight

indication of a peak for 2D environment, showing the absence of ring-like structures in

the think chambers and of waves in the thicker chambers. We then increased the con-

centration slightly to 1 part of sample and 2 of buffer, for a concentration of around 1:2

∼ 3.34 ·107cell/ml. In this case we have the rings at H1 and H2, while the rest shows slight

oscillations, which frequency of the major mode is always between 0.8 and 1 Hz. The os-

cillation has the same frequency as in higher concentrations, but the minor modes are

very noisy. The reference concentration of 1:1 ∼ 108cell/ml, commented from now on and

finally we looked at the undiluted sample. Unfortunately in this case we have a lack of data
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Figure 6.4: At constant low temperature, 25 °C, the system at two different dilutions does
not show any significant difference. At similar to ambient temperature, the sperm cells
behave like the bulk system analysed previously, without showing any characteristic of
the high temperature dependent motion.

for the chambers with the highest thickness due to cell death, but we can still recognise

the emergence of modes for heights ≥ 25µm. Since during the experiments we noticed

that the cell death of undiluted samples at high temperatures occurred very rapidly, not

allowing for thorough measurements we decided that undiluted samples are not suitable

for high temperature, 30 °C, experiments. From now on we will consider the 1:1 dilution.
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Figure 6.5: When temperature increased to 35 °C, the systems with higher concentrations
of swimming sperm cells, show a transition to ring structures and propagating waves de-
pending on the thickness of the environment they swim in. On the other hand, there is
no appearance of frequency modes connected to rings and waves for the highest dilution,
showing only what looks like a transition to collective motion.
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Figure 6.6: The average of the velocity in space, Vx in blue and Vy in red over time is plotted
for the two thickest chambers, where the propagating wave is stronger and more accen-
tuated. The clarity of the oscillatory behaviour of the velocities in the chamber is strik-
ing, with well defined period and frequency of oscillation. The difference in amplitude
between the two direction of the flow field, show that the oscillation has a specific direc-
tionality for the propagation, preferring the propagation in the x direction.

6.3.2 Wave analysis

With the intention to study the oscillatory behaviour in the high chambers, we concen-

trated on temperature 35 °C and concentration 1:1 ∼ 108cell/ml. In order to reduce the

short interaction influence and trying to look at a wider field of view, we reduced the mag-

nification. The spatial average of the velocities is shown in figure 6.6, where it is possible to

notice the oscillatory behaviour for the two highest chambers. Both the oscillatory aver-

age velocity appear to vary in amplitude in time, but with a fixed period of variation. This

variation is more visible in the H5 velocities since it seems that a couple of variations can

be recorded.

Taking as a reference point the center of the flow fields, examples of the flow fields can be

seen in figure 6.7, we plotted the velocity kymographs of the cross section in x and then in

y over time of both Vx and Vy, figure 6.8 and 6.9. They show a wave propagating in space

and time for both chambers, but the frequency of propagation changes depending on the

height of the chamber.
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Figure 6.7: Figure from the analysed data with its quiver plot superimposed. It is possible
to see the typical flow representation in case of propagating waves in the chamber. For
the H6 chamber, 200µm is distance between the two main vortices present in the wave
pattern. Those two points do not move in the fluid and remain constant points throughout
the oscillations of the system.
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Figure 6.8: Kymographs of Vx velocity components for the two thickest chambers. The
velocities are taken at the central point of the velocity flow field and a cross section for
the x and one for the y direction are shown here as representative of the propagating wave
present in the fluid.
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Figure 6.9: Kymographs of Vy velocity components for the two thickest chambers. The
velocities are taken at the central point of the velocity flow field and a cross section for
the x and one for the y direction are shown here as representative of the propagating wave
present in the fluid.

As a first step, analysing the velocities we can conclude that there is a wave propagating

and moving along the chamber, which characteristics vary with the height of the chamber.

To corroborate this, we try to fit a sine wave y(t) = Asin
(
ωt−φ)

onto the wave signal from

the data, finding the basic quantities for the wave. Mostly, we consider the peak frequency

of the power spectra, which results on average around 0.8 Hz, giving an angular frequency

of ω= 2πf = 5rad/s and a period of the sine wave of 1.25 seconds. And then we computed

the phase of the wave at that frequency, resulting in two plot of the average phase in time

over the space shown in figure 6.10. We can notice that the phase for the highest chamber

shows a very specific pattern, representing a stable wave in the entire field of view, with fix

phase in space.

6.3.3 Correlations

We then turned our attention back again to the full set of heights and we tried to compute

the autocorrelations and cross correlations for the entire dataset of heights.
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Figure 6.10: Colour plots of the phase at the peak frequency of the oscillation for both
highest thickness of chamber of for both Vx and Vy data.

6.3.3.1 Autocorrelation

Firstly the autocorrelations show a very peculiar and specific damped oscillation patterns

that vary with height. The 7 µm environment does not show temporal correlations, while

the next one have a longer temporal correlation compared to the thickest chambers. In

fact, the chambers H3 to H6, show a similar time scale for the end of the autocorrelation,

even if their damping looks different between them. If we estimate τ, in a different way

from the previous chapters, considering it as the time scale of the end of the damped be-

haviour of the autocorrelation, we can see how the temporal correlations vary with height.

First of all, the time scale for H2 is the longest, showing that the points in space correlate

with themselves for longer times, with ring like structures reappearing continuously in

the same points in space. Hence, τ can be estimated to be around 37 seconds, almost as

long as the recording. Increasing the height of the chamber lead to two shorter correlation

times, τH3 ∼ 16s and τH4 ∼ 18s, but that are not simple damped oscillations, while they

show, one a two slope damping and the other has a recovery in the autocorrelation, before

decreasing again with a different slope. The final two chambers have a typical damped

oscillator autocorrelation, with in the first case a time scale of around 15 second and the

second one of around 17 second.
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The autocorrelations can be interpreted as that for all the chamber apart the last two and

the first one, there are two temporal correlations, one at shorter times, probably due to the

ring structures in the thinnest and temporary structures or different wave patterns in the

oscillatory phase.
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Figure 6.11: Autocorrelation functions for the velocity Vx , showing the damped oscillatory
behaviour. The different correlation times vary slightly in between thickness, but most
importantly it appears to be a oscillatory motion for the majority of the environments,
but for the intermediate heights the decrease in temporal correlation seem to follow two
or more trends, probably due to the multiple interactions taking part: the correlation of
cells in the ring-like structures, the interaction between rings and finally, when the width
is large enough the collective oscillatory motion of the fluid.
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Figure 6.12: Plot of the spatial correlations for the velocities of every height. The corre-
lation length increases with height, with correlation length shorter than the single cell
length, where the spermatozoa are "trapped" in ring-like structures dimension smaller
than the one of the swimmers composing the ring. The lack of inter-ring interaction leads
to correlation length of the order of the ring size, while with increasing 3D size of the envi-
ronment, the cells can interact leading to an increase in the correlation length. Addition-
ally, λ results to be, for the thicker chamber, near the value of the distance between fixed
points in the wave motion found previously.

6.3.4 Cross correlation

We calculated the cross-correlation as in eq. (4.5) and as in Chapter 4, we fitted an expo-

nential function and we extrapolated the correlation length as λ: C(|r|) = e−rλ.

Looking at the spatial correlation, not only the single correlation function continue corre-

late and anticorrelate, but their exponential fit λ increases up to close to 200µm.

Specifically, in fig. 6.12, it can be seen that the correlation length λ in creases logarithmi-

cally up till 50 µm and then it linearly increases for the thickest chambers. The maximum

value for the spatial correlation is similar to the distance found between vortices in the 3D

system.

6.4 Swimming patterns

After having analysed the thicker chambers we turned our attention to the single cells

swimming patterns, trying to understand the dependence between the trajectories and

the temperature that leads to the ring appearance. We diluted the sample 100 times, in-

troduced 10 µm glass beads in the sample and a drop of it was squeezed in between two

glass slides. The glass beads will provide the separation in between the slides, giving an

environment with only upper and under boundaries distant 10 µm. Slow motion videos
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of the trajectories of single cells have been recorded and the sperm cells trajectory has

been followed throughout the length of the video. With such a high number of frames per

second, the reconstruction of the sperm motion has been possible, not only defining the

overall trajectory, but even resolving the movement of the head over time. The found tra-

jectories have been then fitted with a second polynomial, the radius of curvature of the fits

have been computed and plotted against the temperature.

6.4.1 Curvature

The sign of the signed curvature k, is an indication of the rotational direction of the curve:

negative clockwise and positive counter-clockwise. In case of a plane curve defined by

parametric Cartesian coordinates (x(t),y(t)), the signed curvature k, is defined as:

k = ẋ ÿ − ẏ ẍ

(ẋ2 + ẏ2)3/2
(6.1)

where, ẋ and ẏ are the first time derivatives, while ẍ and ÿ are the second time derivatives.

The radius of the curvature is defined as R = |1/k|.
From the trajectories traced as in fig. 6.13, the radius R has been calculated. It is possible

to see in fig. 6.13 the change in the trajectories of sperm cells at different temperatures.

As explained in Chapter 1, sperm cells travel at a boundary with a curved trajectory, so

there was no surprise when the low temperature trajectories have a finite value for the

average radius of curvature. This radius reduces, as shown in figure 6.14, in value and

remains without variations at temperatures between 30 °C and 32 °C. The trajectories at

temperatures between 33 °C and 35 °C are the one with the smallest values, then they

increase again.

We can compare the values for the radius at 34 °C with the correlation length found in the

previous section from figure 6.12 at heights ∼ 7µm and ∼ 15µm, we notice that the average

radius R(34) ∼ 100µm, while the correlation length λ∼ 50−100µm.

This reduction in the radius of the turning of the trajectory, is considered to be at the base

of the ring formation at high enough concentration of sperm cells.

In order to complete the picture, we looked at the distributions of right and left turning tra-

jectories at the temperatures and we can see similar distributions, with the only variation

is in the position of the two peaks. We can then deduce that there is no preferred rotational

direction, see figure 6.15. Thus, when the trajectories of sperm cells start to close, the cells

rotating counter-clockwise will cluster and create a ring, while the one rotating clockwise,

won’t be tangled in that ring, but will create another one rotating in the clockwise direc-

tion. We can then conclude that the rings do not have a preferred rotation, but will have

an equal distribution of clockwise and counter-clockwise rotating rings.
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Figure 6.13: The trajectories of the single sperm cells are traced. Few examples of the
trajectories found for different temperatures, where it is possible to see that the trajectories
appear to follow a much steeper turn when swimming at high temperatures. Green lines
are the tracked trajectories, while the red line are the fitted trajectories. The dimensions
of the images here shown are in pixels. The cased trajectory is zoomed to show the head
tracking (in black) and the trajectory fit in red.

6.4.2 Velocities

Since we were able to reconstruct the full movement of the sperm head, we considered

that the beating frequency would reflect on the wave pattern of the sperm head trajectory.

We hence subtracted from the full trajectory, the fitted path and we Fourier transformed

the resulting function. From the power spectra we then took the main frequency and we

plotted it as a function of temperature. We saw an increase in the head oscillation fre-

quency from f ∼ 12.5Hz to ∼ 16Hz.

On the other hand, calculating the cell overall velocity from the fit function of the trajec-

tory, figure 6.16, we can notice a significant drop, more than half, in the cell speed from 25

°C to 30 °C. Indeed, the speed reduces from ∼ 50µm/s to ∼ 25µm/s over 5 degrees. After

we notice a slow and linear increase up to around 37µm/s for 35 °C.
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Figure 6.14: For different recorded temperatures the radius of curvature of the single cell
trajectories has been computed and then the average value per temperature have been
plotted.

Figure 6.15: Histogram of the radius of curvature at two different temperature, showing
that the radii are equally distributed between clockwise and counter-clockwise rotating.

6.4.3 Circular patterns

Looking at a 15µm thick chamber, similar to the one from chapter 4, with only progres-

sively motile cells in the environment, we can study the high concentration collective mo-

tion of the cells trapped in a very thin device at high temperature. High concentration of

cells are present, but the system does not enable the formation of multiple layers of circu-

lating cells, that working as oscillators creates the wave seen before. In this case, since the

system is quasi 2D, not allowing stacking of cells, the collective motion is not a propagating

wave, but it results in circular structures of different radii, figure 6.17.

It can be noticed that at lower temperatures the rings appear wide and the radius decreases

as expected with temperature. When the highest temperature of 37 °C is reached the single
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Figure 6.16: For different recorded temperatures the velocities of the single cell trajectories
has been found from the fitted trajectory and then the average value per temperature have
been plotted.

Figure 6.17: Pictures from variation of temperatures in 2D system of sperm cells. Scale bar
100µm. The rings arising at higher temperature decrease in size with increasing tempera-
tures, until the motion is strongly disrupted by temperature at 37 °C, with the breaking of
the rings structures.
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cell motion is disrupted by temperature, reducing the motility and hence destroying the

ring structures. Interestingly, when the temperatures are lowered, the cells will reactivate

and swim in a circular pattern with the same radius as previously for that specific temper-

ature. This shows a coherent and robust system, where cells swim with a specific curvature

in their trajectory, independently of the history of the system, but only depending on the

instantaneous temperature perceived.

6.5 Discussion

On this preliminary work on change of motion depending on the increase of the temper-

ature in the system we can see two main patterns: one in the bulk and one in quasi-2D.

When the system is in 3D, the collective motion of the system is a wave. From a height of

∼ 70µm to ∼ 130µm the collective behaviour is a wave propagating in space. We quanti-

fied the frequency and the phase of the propagating wave. The period of these waves are

around 1.25 s, but when the average velocity in space are plotted, figure 6.6, it is possible

to see that the waves are not homogeneous waves, but they looked encased in a oscillating

envelope, showing a possible evidence of existing beats or it could derive from a propagat-

ing wave more similar to active gels. On the other hand, the correlations for thick cham-

bers show an exponential decay of the envelope of the autocorrelation function, while the

cross correlation shows high values of the correlation lengths, around 200 µm. More ex-

periments and analysis needs to be performed in order to characterise properly the wave

seen in these experiments.

On the other hand, when the system is confined in quasi-2D, the collective motion of the

sperm cells show a peculiar pattern only seen in [40] on sea urchin sperm when concen-

tration in increased. In our case, the temperature is the variable that "activate" the ring

formation. Indeed, when the temperature increases the highly concentrated sperm cells

create circular pattern, shown in figure 6.17, which size decreases with increasing tem-

perature. In this quasi-2D system the autocorrelation varies with height. For very thin

chambers, ∼ 7µm, no temporal correlation is seen, while for 15 µm shows a long time cor-

relation that seems encased in an oscillating manner. In this latter confinement, the rings

are not only present, but more stable respect the the other heights. The correlation lengths

for the thinnest step is smaller that the cell length, while for the 15 µm chamber it increase

to just below 100 µm. In both steps ring-like structures are present, but we can deduce

that the vertical confinement can influence the distance of interactions and it could pos-

sibly influence the size of the rings. Indeed, when looking at figure 6.17, taken in a 15 µm

device, we can notice that for high temperatures, over 35 °C, the radius appears to have

values just below 100 µm.

We tried to correlate this collective ring formation to single cells tracks. We performed
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an analysis of the movement of the single cells, where we averaged over all the tracks for

each temperature. This analysis showed, figure 6.14, a very peculiar pattern in the radius

size: at first it decreases in temperature, but then it increases again. We do not see this

behaviour in the collective experiments, where the ring sizes appear to keep decreasing

with increasing temperature. On the other hand, the single tracks analysis shows that the

rotation of the cells does not have a preferred rotation, but the distributions appear to be

symmetrical, see figure 6.15. In figure 6.16, even the average velocities per temperature

show an initial decrease and then an increase in its values. We can only deduce that the

relation between radius and velocities with increasing temperature is not as simple as we

initially thought. More data and single track correlations between radius and velocities

need to be taken and carried on. We expect that after some in depth analysis of the single

cell motion, it would be possible to create a Vicsek model replicating the ring formation.

Additionally, more experiments are needed to elaborate the expansion from the quasi-2D

system to the 3D one. We hypothesise that on the upper and lower surface of the 3D bulk

environment, series of ring-like structures are present, which act like coupled oscillators

and drive the wave propagation inside the bulk.

6.6 Conclusions

This behaviour arising from thermal excitation of sperm cells is most fascinating. The sin-

gle cell motion changes drastically with temperature accentuating the tendency of sperm

cells to swim on a curvilinear trajectory. With increasing the radius of curvature of the

trajectories, there is a decrease in the overall velocity of the path and an increase in the

frequency of head movement. This could be the result of the cells beating pattern chang-

ing with temperature, with wider head oscillations which are reflection of a variation in

the shape of the tail beating itself. This results in a decrease of the overall distance covered

in time, hence the mean velocity will decrease proportionally.

With the radius of the trajectories becoming smaller with temperature and when high con-

centrations of cells swim in a 2D environment the sperm cells in the system create ring-like

structures that move in space, but most interestingly, the ring-like structures change their

sizes with temperature, following the shrinking of the single cell trajectories.

The cells trapped in the ring structures do not interact with the cells in the other rings.

This lack of interaction is due to the size of the system. Indeed, the minimum interaction

distance between cells is given by the height of the third dimension confinement, that for

very thin chamber results in almost no interaction between cells belonging to two adjacent

rings. In fact, those rings are virtually isolated from the other neighbouring rings.

Finally much further work has to be completed. The study of the variation in shape of

the beating pattern with temperature should be carried on, additionally with the study of
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the reason for the sharper turn of the trajectories with temperature. Moreover, along with

simulations, further studies on the creation of both the ring-like structures and the waves

arising with temperature. The aim should be to understand how these structure are cre-

ated and in case of the ring like structures which interactions are between them. A further

step in the understanding of these temperature controlled changes of motion, would be to

explore the biological consequences. The real temperature which the sperm cells have to

navigate to reach the egg for fecundation, is much higher than the usual ambient temper-

ature. Indeed, the body temperature in mammals is higher than 30 °C. This could imply

that inside the female tract the trajectory of the spermatozoa do not result in a wide radius

curve, but on the contrary, have very sharp turns. Interesting point would be to look at the

high temperature behaviour in very narrow and/or tortuous channels, to understand how

both temperature and confinement coexist and lead the transport of cells towards the egg.
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Chapter 7

Conclusions

From this widely spread and scattered work we would like to point out some key results:

• Bulk: A system with increasing concentration of actively swimming sperm cells con-

fined in a space large enough that the boundary interactions can be considered to

be overlooked, shows a phase transition from random to collective motion. The be-

haviour throughout the concentration range looks to behave similarly with respect

to the critical concentration for different mammalian species, showing a certain de-

gree of universality. We found that the correlation length of the velocities in the

collective state weakly depends on the cells concentration, while the velocity au-

tocorrelation time reaches a maximum value immediately after the transition, and

sharply decays with further increase in the cells’ concentration.

• Confinement: Reducing the size of the system and retrieving the importance of

boundary interactions, it is possible to see that in circular systems an lower and

upper bound for presence of single vortex motion, while outside this bounds, the

system acts randomly or turbulent, with respectively higher or lower boundary in-

teractions. Rendering the system slightly more complex with different pattern of

confinement oscillations of vortex rotations have been seen. The system change the

direction of rotation and if it is a symmetrically connected system, the perturbation

leading to directional change, is protracted to the rest of the connected system. Af-

ter a readjustement period, the connected structures appear to be again in equilib-

rium, as concerning the rotation of the system’s components. On the other hand, an

asymmetric layout, will not let the system reach rotational equilibrium at any point,

continuously varying the rotational order of the components as a result of small per-

turbations of the system. Finally, addition of an extra boundary at the center of the

circular structures, leads to more robust oscillations that periodically change the ro-

tation of the internal flow. The distance between the inner and outer boundary will

define the oscillatory frequency and the coherence of the internal flow, indeed if the
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two boundary result far away enough, the internal part of the doughnut will show

turbulence and not coherent motion.

• Channels and transport: When confining the system in narrow channels the same

oscillatory behaviour arise, but even though no significant correlation has been found

between concentrations, channel width and oscillatory frequency, this type of sys-

tem is very useful to study the characteristic of sperm transport throughout long

distances. Indeed, when presenting a wide space without boundaries and confine-

ments if not the upper and lower bounds defined by the thickness of the chamber,

the sperm cells struggle to move directionally towards the desired space. Moreover,

when confinement, in form of narrow channels, is present, the movement of the

sperm cells from one reservoir to the other is extremely efficient even for very low

concentrations. We can deduce that confinement plays an important role for egg fe-

cundation, not only directing the cells towards the right direction, but making more

efficient the displacement towards the ovum.

• Temperature: One of the most fascinating results appears to be the correlation be-

tween temperature and single cell trajectory modification. Where the sperm cells

results with a radius of curvature for their trajectories that decrease with increasing

temperature, while the overall velocity of the trajectory decreases. These single cell

behaviour translate to the creating of ring-like structures in two-dimensional sys-

tems and for the presence of waves, similar to mitochronal waves seen for the cilia

in the three-dimensional systems. For the 2D cases, the rings change size with in-

creasing temperature, shrinking proportionally with the radius of curvature radius

of the single trajectories. The rings are present when cells can move, when the tem-

perature reaches high values, they shut down, reducing motility to a minimum and

the rings then disappear. This static system will turn back to motion when the tem-

peratures will decrease, creating rings of size similar to the ones from before the

high temperature stop, showing that the dependence on the radius is only on the

perceived temperature. Additionally, when cells are in a3D environment, the differ-

ent rings, not only manage to stack on multiple layers, but since their interaction is

due to the third dimensional confinement, they can finally have the cells compos-

ing the rings interacting. This interaction leads to a system behaving like a myriad

of coupled oscillators, that macroscopically result in a wave propagating throughout

the entire fluid.
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