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two competing firms the fear of preemption would appear to undermine this
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invest sequentially and option values are reduced by competition. A symmetric
outcome may aso occur, however, in which investment is more delayed than the
sngle-firm counterpart. Comparing this with the optima cooperative investment
pattern, investment is found to be more delayed when firms act non-cooperétively,
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Strategic Delay in a Real Options Model of R& D Competition

1 I ntroduction

When afirm has the opportunity to make an irreversble investment facing future uncertainty
there is an option vaue of delay. By andogy with afinancid cal option it is optima to delay
exercisng the option to invest, even when it would be profitable to do so a once, in the
hope of gaining a higher payoff in the future. Using this insght the red options gpproach
improves upon traditiond NPV-based investment gppraisd methods by dlowing the vaue
of dday and the importance of flexibility to be quantified and incorporated explicitly into the

andyss.

Red world investment opportunities, unlike financid options, are rarely backed by lega
contracts which guarantee the holder’s rights in precise terms. Mogt red options are non-
proprietary investment opportunities whose terms are somewhat vague or subjective, and far
from guaranteed. In particular, afirm's ability to hold the option is frequently influenced by
the possihility that another firm may exercise a related option, which affects the vaue of the
firg firm'sinvesment. In afew indances alegd right such asan ail lease or a patent gives a
firm a proprietary right amilar to that granted by a financia option. Or occasondly a firm
has such a strong market postion, as in a natura monopoly or network industry, that its
investment opportunities ae de facto proprietary. However, in most industries some
degree of competition exigts, either actud or potentia, and the option to invest cannot be
held independently of strategic congderations.

When a smdl number of firms are in competition with an advantage to the firs mover,
each one' s ability to delay is undermined by the fear of preemption. Consider a Stuation in
which two firms have the ability to exercise an option and the first to do so obtains the
underlying asset in its entirety, leaving the second mover empty-handed. Each firm would
like to exercise the option just before its rival does so, giving rise to discontinuous Bertrand-
gyle reaction functions. With symmetric firms the value of delay is diminated and the option
will be exercised as soon a the payoff from doing so becomes marginadly postive. Under



such circumstances the red options gpproach becomes irrdlevant and the traditiond NPV
rule resurfaces as the appropriate method of investment appraisal.

In order to Sudy in detail the tension between red options and strategic competition, the
continuous time framework of Fudenberg and Tirole (1985) is adapted in two important
respects to apply to the specific context of rival investment in R&D. The firms profit
functions are specified s0 as to include two digtinct forms of uncertainty: economic
uncertainty over the future profitability of the project, and technological uncertainty over the
success of R&D investment itself. Economic uncertainty gives rise to option values and a
tendency for delay, which would not arise in a determinigtic framework. Technologica
uncertainty, combined with a winner-tekes-al patent system, generates a preemption effect
that counteracts the incentive to delay. The instantaneous probability of success, or hazard
rate, of rival firms captures in a ample form the srength of the firs-mover advantage,
dlowing outcomes for varying degrees of preemption to be readily compared. In effect,
technologica uncertainty drives awedge between afirm’s decision to invest and the out-turn
of that investment, giving some scope for the follower to legpfrog the leader and preserving
its option vaue to some extent. It should be noted that the advantage gained by the first
mover is not necessrily a persstent one: if the breakthrough is not achieved before the
follower invedts, the two firms are equaly likely to succeed from then on.

In fact, the hazard rate has two distinct effects in this model. The direct effect of the
rival’s hazard rate is to reduce the expected vaue of investment to the second mover, snce
there is some probability that the leader will make the discovery fird. This effect is
andogous to the impact of riva investment in product market duopoly models such as Smets
(1991): with the option value of delay unchanged, the reduction in the value of investment
causes the follower to act later. In this paper, however, there is dso a second effect: the
hazard rate of rivd innovation reduces the option vaue itsdf, tending to hasten investment.
Thus option vaues and preemption interact in this mode. This contragts with exiging
contributions in the area, where the roles of option values and compstition are additive: in
these models the only effect of rivary is to reduce the value of investment, while the option
vaue of dday remains unchanged.



Focusing on Markov perfect equilibria, the outcome of the non-cooperétive two-player
game takes one of two forms depending upon parameter values. The firgt is a preemptive
leader-follower outcome in which one firm invests grictly earlier than the other and option
values are undermined by competition. The second has a multiplicity of equilibria, induding
a continuum of symmetric equilibriain which both firms invest a the same trigger point. The
Pareto-dominant equilibrium coincides with the optima joint-investment rule which would be
chosen by firms that agree to adopt a common trigger point. This outcome entails greater
delay than the single-firm counterpart.

Therole of the hazard rate in non-cooperative equilibrium can be understood as follows.
Its impact in lowering the expected vaue of investment to the second-mover, rdative to the
firm that invedts fird, cregtes a fird-mover advantage that will tend to induce preemptive
action. However, when the firg firm invests the vaue of its rivd’s option to delay is dso
reduced, speeding up the competitive reection to its investment. Thus, preemption is
double-edged: the leader gains a privileged postion for a time, but the option vaue effect
tends to speed up the reaction of its competitor. Anticipating this reaction, a firm may
instead choose to delay its own investment. In effect, an investing firm chooses the time at
which the patent race will begin and it is better for each firm if thisis delayed until the optima
joint-investment point is reached. A good andogy is the behaviour of contestants in along-
distance race, who typically remain in a pack proceeding a a moderate pace for most of the
distance, until near the end when someone attempts to bresk away and the sprint for the
finish begins. Compared with existing duopoly models of red options the cooperative joint-

investment outcome is achievable as a non-cooperative equilibrium.

The fully optimisng cooperative invesment rule is derived as a benchmark for
comparison. Thisis shown to involve sequentia investment of the two units, so that research
efforts are phased in over time. Compared with the non-cooperative |eader-follower
equilibrium, the cooperative trigger points are higher than their non- cooperative counterparts
snce option vaues are no longer undermined by preemption. The non- cooperative joint-
invesment equilibrium, athough preferable to the preemptive leader-follower outcome, is
seen not to be the fully-optimising choice of cooperating firms. It may, however, be

interpreted as the second-best optimum of firms that are congtrained to choose a symmetric



investment rule, given the difficulty of agreeing an asymmetric investment pattern or making
Sde-payments to support the fully-optimising solution. It is interesting to note that when
smultaneous invesment is the equilibrium outcome, the time to firgt invesment is increased
by drategic interactions between non-cooperative firms, compared with the cooperative
solution.

By combining irreversble investment under uncertainty with strategic interactions in the
presence of technologica uncertainty, the paper brings together three strands of economics
literature. Red options models have been used to explain dday and hysteresis arising in a
number of contexts, but these are moglly set in a monopolistic or perfectly competitive
framework. McDonad and Siegd (1986) and Pindyck (1988) condder irreversible
investment opportunities available to a single firm. Dixit (1989, 1991) congders product
market entry and exit in, respectively, monopolistic and perfectly competitive settings. The
second branch of related literature andyses timing games of entry and exit in a deterministic
framework. Timing games are sraightforward examples of stopping time games where the
underlying process is amply time itsdf. Papers andysing preemption games include
Fudenberg et d. (1983) and Fudenberg and Tirole (1985), while wars of attrition have been
moddled by Ghemawat and Naebuff (1985) and Fudenberg and Tirole (1986). Findly,
technologicd uncertainty in R&D, with discovery moddled as a Poisson arivd, is
considered in papers by, inter alia, Loury (1979), Dasgupta and Stiglitz (1980), Lee and
Wilde (1980), Reinganum (1983) and Dixit (1988). These papers, however, assume the
return to successful R& D (or demand in the product market from which it is derived) to be
determinidtic, thus ruling out any option value of delay and rlated timing issues.

Exiding literature combining redl options with drategic interactions is as yet rdatively
limited. Smets (1991; summarised in Dixit and Pindyck 1994, pp. 309-314), examines
irreversble market entry for a duopoly facing stochastic demand. Non-cooperative
behaviour resultsin an asymmetric leader-follower equilibrium. When the leadership role is
exogenoudy pre-assigned so that the follower is unable to invest until after the designated
leader has done so, the cooperative symmetric outcome may then be attained. Grenadier
(1996) condders the drategic exercise of options applied to rea estate markets. Joint
investment arises only when the underlying stochadtic process sarts at a sufficiently high



initid vaue and, even then, is not necessarily undertaken at the optima point. In a two-
player game where each player's exercise codt is private information, Lambrecht and
Perraudin (1997) find trigger points located somewhere between the monopoly and smple
NPV outcomes. In atwo-period model, Kulatilaka and Perotti (1998) consider the vaue
of drategic investment as the degree of uncertainty increases.

The paper is dructured as follows. The mode is described in section 2. The
optimisation problem of a sngle firm facing no actud or potential competition is solved in
section 3. Section 4 derives the optimal cooperative investment plan for two firms. Non-
cooperative equilibrium in the two-player game is found in section 5. The findings are
discussed in section 6; section 7 then concludes.

2 The model

Two risk-neutrd firms, i = 1, 2, have the opportunity to invest in competing research
projects. Research isdirectly compstitive: the firms strive for the same patent and successful
innovation by one eiminaes al possble profit for the other. The firms face both
technological and economic uncertainty. Discovery by an active firm is a Poisson arrivd,
while the vadue of the patent received by the successful inventor evolves sochagticdly over
time! The decision to invest in a research project is assumed to be irreversble. The

possible states of firm i are denoted g, 1 {0,1} for theidle and active states respectively.

The vdue of the patent, p, evolves exogenoudy and stochadticaly according to a
geometric Brownian mation (GBM) with drift given by the following expresson

dp, =np,dt+sp dwW (N

where m1 [0, r) is the drift parameter measuring the expected growth rate of p,?
r is the risk-free interest rate, assumed to be constant over time, s > 0 is the instantaneous
sandard deviation or volatility parameter, and dW is the increment of a sandard Wiener
process where dW ~ N(O, dt).



Each firm has the opportunity to invest in a research project. Following Loury (1979),

firm i sets up a research project by investing an amount K, >0.® From the time of this

investment, discovery takes place randomly according to a Poisson digtribution with

congtant hazard rate h, > 0. Thusthe hazard rate is independent of the duration of research

and the number of firms investing; possible variations on this assumption are discussed in
section 7. The probabilities of discovery by each firm are independent. We focus on the

symmetric casewhere h, = h and K; =K fori =1, 2. All parameter values and actions

are common knowledge, thus the game is one of complete information.
The following assumptions are made
_ v .
Assumption 1. EO® e ™thp, dt%— K <0.
Assumption 2. 1f q,(t )=1thenq,(t)=1"t3t.

Assumption 1 dates that the initid vaue of the patent, p,,, is ufficently low thet the

expected return from immediate invesment is negative, ensuring that naither firm will invest
a once. Assumption 2 formdises the irreversibility of investment and congtrains the strategy
of the firm accordingly: if firm i has dready invested by date t then it remains active a dl
dates subsequent to t until the game ends with adiscovery.

In a multi-agent setting the firm’s investment problem can no longer be solved using the
optimisation techniques typicaly employed in red options anadysis. Ingtead, the optimd
control problem becomes a stopping time game (for a detailled analyss see Dutta and
Rudtichini (1991)). In a stopping time game each player has an irreversible action such that,
following this action by one or more players, expected payoffs in the subsequent subgame
arefixed. Dutta and Rustichini dlow for the possihility that the stochastic process continues
to evolve &fter the leader’s action and that the follower Hill has a move to make, as is the
casein this paper. The stopping time game is described by the stochastic process p dong
with the payoff functions for the leader and follower; these are derived in section 5 below.

The game proceeds as follows. In the absence of action taken by ether firm, the
stochastic process evolves according to (1). If firm i has not commenced research at any

timet <t itsactionsetis A ={invest, don' tinvest }. If, onthe other hand, i has invested



asomet <t,then A isthenull actionset{don‘trrme}. Thus each firm faces a control

problem in which its only choice is when to choose the action ‘stop’ — or rather, in this case,
to Start research. After taking this action the firm can make no further moves to influence the

outcome of the game. The game ends when adiscovery is made by ether firm.

A drategy for firm i is a mapping from the higtory of the game H, to the action set A
asfollows s| :H, ® A'. Attimet3 0, the history of the game has two components, the

sample path of the stochastic state variable p and the actions of the two firms up to date t.
With irrevergble investment the hitory of actionsin the game at t is summarised by the fact
thet the game is Hill continuing & t (i.e. g, =0 "i). However, the history of the dtate

variable is more complex since its current value could have been reached by any one of a

huge number of possible paths.

Firms are assumed to employ sationary Markovian drategies. actions are functions of
the current state done and the strategy formulation itself does not vary with time. Since the
date variable p follows a Markov process, Markovian strategies incorporate al payoff-
relevant factors in the game.  Furthermore, if one player uses a Markovian srategy then its
rival has a best response that is Markovian aswell. Hence a Markovian equilibrium remains
an equilibrium when history-dependent dtrategies are dso permitted, athough other non-
Markovian equilibria may then aso exist. For further explanation see Maskin and Tirole
(1988) and Fudenberg and Tirole (1991, chapter 13). With the Markovian regtriction a
player's drategy is a stopping rule specifying a critical value or “trigger point” for the
stochadtic variable p a which the firm invests*

As Fudenberg and Tirole (1985) point out, the use of continuous time complicates the
formulation of drategies as there is a loss of information inherent in taking the limit of a
discrete time mixed srategy equilibrium. To ded with this problem they extend the Strategy
space to include not only the cumulative probability that a player has adopted, but dso the
“intendty” with which a player adopts “just after” the cumulative probability has jumped to
one. Although this formulation uses symmetric mixed srategies, equilibrium outcomes are
equivaent to those in which firms employ pure strategies and may adopt asymmetric roles®
Thus, dthough the underlying framework is an extended space with symmetric mixed



drategies, the andyss will proceed as if each firm uses a (possbly asymmetric) pure
Markov strategy.

3 Optimal investment timing for a single firm

We dart by deriving the optima stopping time for a single firm investing in the absence of
competition. The firm’s invesment rule is found by solving the sochagtic optima stopping

problem
. _—
V(p,) = max Et%‘e'”ﬁ e hp, dt - K% @

where E; denotes expectations conditiond on information avaladle a time t and T is the
unknown future stopping time at which the investment ismade. The vaue function V(p) has

two distinct components which hold over different intervals of p. Let V,(p) denote the
value function before the firm invests, and V; (p ) denocte the value function after investment
has taken place.

Prior to investment the firm holds the option to invest. It has no cashflows but may
experience a cgpitd gain or loss on the vaue of this option. Hence, in the continuation

region (vduesof p for which it is not yet optima to invest) the Bellman equation for the
vaue of the investment opportunity is given by

rVydt = E(dV,). 3)
Usang Itd' slemmaand the GBM equation (1) yieds the ordinary differentia equation

1
ES 2p ZVO‘II(p)+ erVo‘(p )' rVo =0. (4)

From (1) it can be seenthat if p ever goes to zero it stays there forever. Therefore the

option to invest has no vaue when p =0 and V,(p) must satify the boundary condition



V,(0) = 0. Solving the differentiad equation (4) subject this boundary condition gives the

vaue of the option to invest in research

Vo(p) =Bop ™ ®)

where B, 2 0 is an unknown congtant and b, is the postive root of the characteristic

. 2 2 11, 2 2 8
equatlonez-g-—mge-—r—0| b, -—!1 _m éa[ —TQ rzy 1.
e S°g s 2T 5?2 @ S°g b

We next consder the value of the firm in the stopping region (vaues of p for which isit
optimd to invest a once). Since investment is irreversble the vdue of the firm in the
stopping region, Vl(p ) is given by the project expected vaue done with no option vaue
terms. Recdlling that discovery is a Poisson arrival, the expected vaue of the active project

when the current vaue of the stochastic processis p, isgiven by

= ¥ () 0
E@ e " hp, dt > (6)
Recdling thet p is expected to grow at rate mand suppressing time subscripts we can write
h
Vilp)=—P— ™

Note that the hazard rate h enters the denominator in this expresson in the form of an
‘augmented discount rate r + h. Thisresult istypica of modds involving a Poisson arriva
function: for other examples of this characterigtic in the context of R&D see, inter alia,
Loury (1979), Dasgupta and Stiglitz (1980), Lee and Wilde (1980) and Dixit (1988).

The optima invetment rule is found by solving for the boundary between the
continuation and stopping regions. This boundary is given by a critical vaue of the
sochastic process, or trigger point, p, such that continued delay is optima for
p <p, adimmediateinvesmentisoptima for p 3 p, . The optima sopping time T, is



then defined as being the fird time that the stochastic process p hits the intervd
[p U ¥ ) . By arbitrage, the critica vaue mugt satisfy the vaue-matching condition

Vo(pu)zvl(pu)' K. (8)

Optimdity requires a second condition known as smooth-pasting to be satisfied. This
condition reguires the value functions V, (p) and Vl(p) to meet smoothly a p,, with equa

firs derivatives®
Viby)=Vilpy). ©)

Conditions (8) and (9) together imply that

_ by (r+h-m .
Py _(bo-l) h K; (10)
and
hp
B, =7——mmm~—. 11
° (r+h- mp, (1D

The optimd investment time a which the angle firm investsis thus defined as
T, =inf {t3 0:p 3 p,}. (12)

Briefly consdering the properties of the trigger point p, , 8 economic uncertainty is
diminaed (i.e.as s ® 0), b, ® r/mand the optima stopping point approaches the
breskeven value of the patent calculated on a smple NPV bass. As uncertainty rises b,
fals towards unity, raisng p, and increasng the expected stopping time. Thus grester

uncertainty over patent value delays investment, as expected from the papers by McDondd
and Siegd (1986), Pindyck (1988) and Dixit (1989).

an



4 The cooper ative benchmark

We next consgder the benchmark case in which the two firms (or research units) plan their
investments cooperatively.” The cooperative investment pattern may (in theory at least) take
one of two possble forms ether both units invest & a sngle trigger point, or they invest
sequentidly at digtinct trigger points. We sart by deriving the optimd joint-investment rule
when firms invest a the same trigger point, which follows straightforwardly from the andysis
of section 3. The optima sequentid investment plan is then derived and compared with the
optimal joint-invesiment Srategy in order to determine which investment pattern forms the

cooperative optimum.

The analyss of the preceding section can be readily extended to the case of two
cooperating firms (or research units under common ownership) which agree to adopt a
common investment rule. The decison is equivaent to a sngle firm optimisation problem
with an investment cost of K and arriva rate 2n. Dencting the optimd  joint-investment
trigger point by p ., value-matching and smooth-pasting conditions are used as before to

yidd

b, (r+2h-m
(b,-1) h

pc = K. (13)

The optimd joint invesment time T, is analogous to expression (12). As before, the
vaue of a (gngle) firm under this scenario has two parts. Prior to investment the firm holds
the option to invest; after (joint) investment the vaue of the active project is given by its
expected NPV to the firm, taking account of the fact that the other firm is also active, which

is

h
NPV(p)= ﬁn. (14)

Thus, the vadue of an individua firm under this scenario is described by the following vaue

function (i.e. the combined firm consisting of two research units has twice this value)



1Bp™ forp <pc

Velp)=i (15)
INPV(p)- K for psp

1 b

hp ¢

hee B, = 7————.
e Be (r+2h- mhb,

Comparing the cooperative trigger point (13) with (10) for the single firm, it can readily
be seenthat p. >p,. Given tha the initid vdue p, is suffidently low that immediate
investment is unprofitable, the ranking of trigger points entails that investment takes place
drictly later when two firms agree a common investment rule than when a sngle firm acts
adone. Note that this result is due to the indirect effect of the hazard rate on the implicit
discount rate faced by the firm &fter it invests, which is now r +2h rather than r +h.
Since both the cost and hazard rate of research are doubled, there is no direct effect on the
effidency of R&D.

We now characterise the optimal sequentid investment plan, on the assumption (for
now) that investment takes this form. Suppose that one unit invests a atrigger point p, and

the other when a second trigger p, >p, is reached. The vaue of the combined entity
under thisinvestment plan is described by

b

Ap™ forp <p,

hp

|

|

|

| b ~

i + - K forpl , 16
[ ohomt AP pT[p.p,) (16)
!

1

|

2NPV(p)- 2K for p 3 p,

] .2
where b :li[l- 2_m+ - 2_m9 +8(r+h)t‘> b, foorh>0.
1 0
2 g€ s’g s? ﬁ

The optima choice of p, and p,, dong with the option value terms A, and A, is

determined by imposing vaue-matching and smooth-pasting conditions between the relevant
components of the value function at each point. (By contrast, as will be seen in the next

11



section, no smooth-pagting obtains a the leader’ s investment trigger in the non- cooperative
cae) Solving value-matching and smooth-pasting conditions &t p,, yieds

b, (r+2h-m)(r+h-m
pz:(b1-1)( ih ) ( (rr-]m))K an

> 0. (18)

Imposing vaue-matching and smooth-pagting conditions & p, and subgituting the

above expression for A yiddsthe following implicit expresson for p ,

hp, (bl' bo)
r+h-m) (b,-1)

.01
Kg&s - b,K =0. (19)
P, g

(bo B 1)(

Lemma 1 completes the proof that the optimal sequential investment plan (p,,p,) is
uniquely defined.

Lemmal. Equation (19) hasauniqueroot p, intheinterva (O,pz).

Proof. See gppendix.

Which of the two invetment patterns sequentid or sSmultaneous, is optimd is
determined by comparing V.- with 2V, (the combined vaue of the two firms when both
invest a the optimal joint investment point). Note that, in each case, prior to the point a
which both firms have invested the vaue functions are grictly convex with continuous first
derivatives® converging to zero as p ® 0 and smooth-pasting to the linear function

2NPV(p) a some point asp becomeslarge. Thus, the value functions cannot cross in the

relevant range and the ranking of the vaue functions is given by the rdative magnitudes of
p. andp,. Lemma2 provesthat p, >p., thus demondrating that staggered investment

a (pl,pz) dominates joint investment.

1



Lemma2. p, >p. forh>0.

Proof. See gppendix.

Propostion 1 follows directly from the preceding andysis.

Propogition 1. The cooperative optimum is uniquely defined as a sequential

investment pattern in which one research unit invests at p, and the other at p,,

where these trigger points satisfy (19) and (17) respectively.

Next we compare the trigger points in the optima cooperative investment pattern with
the optimal joint-investment trigger p . .

Lemma3. p. >p, forh>0.

Proof. See appendix.

Proposition 2 The ranking of trigger points in the optimal cooperative investment

plan relative to the optimal joint-investment trigger pointisgivenby p, <p. <p,.

Proof. Follows directly from lemmas 2 and 3.

Thus, we have demondtrated that two cooperating firms which jointly optimise ther
investments would choose to phase their R&D investments progressively over time, rather
than invest both research units a once. This is despite the fact that the cost function for
research displays congtant returns to scale, dbeit with a given minimum size of a research
unit. The sequentia investment pattern gives the possbility of some return even when the
vaue of innovation is fairly low (though NPV-positive), reducing the opportunity cost of
delay while holding back from committing dl R&D costs a once and retaining an option to
increase the scde of invetment in the future.  The phasng of investment gives the
cooperating firms a higher probability of gaining a high-vaued patent, and the overdl vaue
of the (combined) investment opportunity is thereby maximised.



5 Non-cooper ative equilibrium

We turn now to the non- cooperative two-player game. We dart by assuming, without loss
of generdity, that one firm (the leader) invests drictly beforeitsriva (the follower). Asusud
in dynamic contexts the stopping time game is solved backwards, thus we sart by

consdering the optimisation problem of the follower.

5.1 Thefollower’sinvestment problem

Given that the leader has dready invested and this invesment is irreversible, the follower
faces a conditiond probability hdt thet its riva will make the breskthrough in a (short) time
interval dt. Moreover, this probability is independent of whether the follower itsdf has or
has not invested. Thus the follower’ s investment problem is equivaent to that of asingle firm
with the augmented discount rate r +h. This decison problem can be solved using the
method described in section 3, smply replacing r by r +h throughout, to yidd the
follower’ strigger point

b, (r+2h-m

Pe = (bl' 1) h K (20)

where b, is as defined following expresson (16). The follower's vadue function is

described by

_‘:,Bppbl forp <p,
VF(p):I' (21)
INPV(p)- K for p 2 p,

1 by

hp ¢

where B, = >0.
(r + 2n- mjbl

-



Denoting the leader’s investment time by T, (this being the first time that the leader’s
trigger point p, is reached, to be defined in section 5.3 below), the follower’s optimal

investment time can be written as
T. =inf{t3 T, :p3p.}. (22)

Note that p - is independent of the point a which the leader invests: given thét the firm
invests second, the precise location of the leader’s trigger point is irrdevant. Comparing
p with the trigger points derived in sections 3 and 4, it can readily be seenthat p - <p..
However p- and p,, cannot be ranked in general since, as discussed in the introduction,
the leader’ s hazard rate has two conflicting effects on the follower. The direct effect of the
leader’s research activity is to reduce the expected value of invesment to the follower,
which is now given by hp /(r +2h- m) as opposed to hp /(r +h- m) in the snglefirm
case.” However, thereis also a second effect via the option value mark-up factor, which is
now givenby b, /(b, - 1) rather than b, /(b, - 1) for the single firm. As explained in the
introduction, the hazard rate of riva innovation reduces the follower’ s option vaue of ddlay.
This can be seen dearly from the impact of h on the mark-up factor, which is reduced by its
presence. This indirect effect tends to speed up the competitive reaction to the leader’s
investment, mitigating its preemptive advantage.

52 Theleader’spayoff

We now derive the payoff to a firm that invests as the leader, given that the follower acts
optimaly in the future in accordance with the stopping rule derived above. After the leeder
has sunk the investment cost K it has no further decison to make and its payoff is given by
the expected vaue of its research project. However, this payoff is affected by the
subsequent action of the riva firm investing & p . Taking account of investment by the

follower, the leader’ s post-investment payoff is given by

V. (p,) = Ege(‘)TF e *hp dt +(‘5:e'(”2“)t hp, dt 3 (23)

anr



Two separate vaue functions must be consdered for the leader: its vaue before the
follower invests, denoted V, , (p), and its value after this investment tekes place, V., (p).

Subsequent to investment by the follower the leader’s (as well as the follower’s) vaue is
given by the expected vaue of the active research project taking account of the probability
of rival discovery, which issimply NPV (p) given by (14) above. Prior to investment by
the follower the leader’s vaue function congsts of two components. the expected flow
payoff from research and an option-like term that anticipates subsequent investment by the
follower. Solving the Bellman equation for the leader’ s vaue over thisinterval, noting thet as
the vaue of the patent approaches zero the follower’s option to invest becomes worthless

and the follower will never enter the race, the following function is derived

h
Vi )= —P—- Bp" 24

where B, > 0 isan unknown congtant and b, >1 isas previoudy defined.

The vdue of the unknown congant B, is found by consdering the impact of the
follower’s investment on the payoff to the leader. When p . is first reached the follower
invests and the leader’s expected flow payoff is reduced, since there is now a postive
probability that its riva will make the discovery indead. The firgt section of the leader’s
vaue function anticipates the effect of the follower’s action with a vaue-matching condition
holdinga p - (for further explanation see Harrison (1985)). However, since there is no
optimality on the part of the leader there is no corresponding smooth-pasting condition in
this case. This yidds the following vaue function for a firm investing as the leader (which
also takes account of the sunk cost K incurred when the firm invests)

(25)
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(r+h- m)(r+2h- m >0

where B, =

53 Solving the game

Without the ability to precommit to trigger points at the sart of the game (in contragt with the
precommitment Strategies used by Reinganum (1981), for example) the leader’s stopping
point p, cannot be derived as the solution to a single-agent optimisation problem. Whether
afirm becomes a leader, and the trigger point a which it invests if it does so, is determined
by the firm’s incentive to preempt its rival and the point a which it is necessary to do o to
prevent itsdf from being preempted.

As in Fudenberg and Tirole (1985), the form of the non-cooperative equilibrium
depends on the relative magnitudes of the leader’svaue, V, , and the value when both delay

until the optima joint-invesment point, V.. Depending upon whether or not the functions
interssct somewhere in the intevd  (O,p.), two investment paterns arise.
[Since V, (p) =NPV(p)- K for p 3 p. while V. (p)> NPV(p)- K for p <p., the
functions cannot intersect anywhere in the interval [pF,pC).] If V, ever exceeds V.
preemption incentives are too srong for a joint-investment equilibrium to be sustained and
the only possble outcome is a leader-follower equilibrium in which one firm invedts grictly

ealier than itsriva and both invest drictly prior to the optimd joint-investment time. If, on

the other hand, V, never exceeds V. a joint-invesment outcome may be sustained,

athough the leader-follower outcome is dso an equilibrium in this case.

At the leader’s investment point, p, , the expected payoffs of the two firms must be

equa. The reason for this follows Fudenberg and Tirole's rent equdisation principle if this
were not the case, one firm would have an incentive to deviate and the proposed outcome
could not be an equilibrium. By investing earlier than itsrival the leader gains the advantage
of atemporary monopoly in research and has a greater likdihood of making the discovery.
However the vadue of the prize it gands to win is likely to be lower than for the follower.
Hence, when viewed from the start of the game, there is a trade-off between the probability
of being first to make the discovery and the likely vaue of the prize thet isgained. At p

10



the two effects are in balance and the firms expected payoffs are equd. Thus, in contrast
with many other games where asymmetric equilibria arise (such as Reinganum (1981)), the
agentsin thismodd are indifferent between the two roles.

Before formdly describing the equilibria we must first define, and demondrate the
existence of, the leader’ s trigger point, p, . From the rent equdisation principle described
above, it follows directly that V, (p, ) =V, (p, ). Using this equality, an implicit expression
for p, can be derived; thisis given by expression (A4.1) in the gppendix evauated a zero.

Thusit is necessary to prove the existence of aroot of this expresson other than, and srictly

below, p ¢ .

Lemma 4. Thereexistsauniquepoint p, T (0, p . ) such that

Vi) <V p) forp <p,

V. (p)=V:(p) forp =p,
Vi p)>Ve(p) forpT (po.pe)
Vi (p)=Ve(p) forp s p,.

Proof. See gppendix.
The stopping time of the leader can thus be written as
T, =irf{t20:p1 [p..p:]}. (26)

Proposition 3. (Case 1.) If $p1 (0,p ) suchthat V, (p) >V, (p), then there exist two

asymmetric leader-follower equilibria differing only in the identities of the two firms.

In one equilibriumfirm 1 (the leader) invests when p | isfirst reached with firm 2 (the
follower) investing strictly later at p. >p; in the other equilibrium the firms

identities are reversed.

Proof. The proof isillustrated with reference to figure 1. Asp risesfrom itslow initid vadue,
we know from the premise that a point (labelled A) will eventually be reached where V, firgt

an



exceeds V.. At this point each firm has a unilaterd incentive to deviate from the

continuation strategy to become the leader. However, if one firm were to succeed in
preempting itsriva a A the payoff to the leader would be drictly greater than that of the
follower, snce V, >V, a thispoint. From Lemma 4 we know that the leader’s payoff is

grictly greater than that of the follower everywhere in the interva (pL,pF). Thus

preemption incentives rule out any putative trigger point in this range. We know aso that
V, <V, fordl p <p_; thusbefore p, is reached each firm prefersto let itsrival take the

lead. We know from Lemma 4 that p, is unique. Once the leader has invested the

follower faces a angle-agent optimisation problem, the solution to which was derived in
section 5.1, Thus, there exigs a unique equilibrium configuration in which one firm (the
leader) investswhen p, isfirst reached and the other (the follower) invedts drictly later at

p-. Snce the firms identities are interchangegble there are two equilibria of this type.
Q.ED.

We next congder the dternative case where V. aways exceeds V, and a joint
investment equilibrium is sustaingble. At p .. it is a dominant strategy to invest even though
the rivd will follow a once, thus there can be no equilibrium trigger point aove p ..
Before describing the set of joint-investment equilibria we must firgt define p ¢, the lowest

joint-investment point such that there is no unilaterd incentive to deviate. Note that the

critica value p ¢ does not necessarily exist; this depends upon the relative postions of V.

and V..

ps=irf{p, T (0O.pc]:V,(p:ip,)2 Vi) "pT Op,]} (27)

where V, (p;p,) is the firm's pre-investment value function when both invest jointly (but
not necessarily optimaly) at an arbitrary point p ;. This function, derived from the value-

matching condition & p ; , isgiven by

VJ(p;pJ):BprO (28)



where B, :pjb‘)gaeth—J- Kg;thisfundion is defined over the range (O,DJ].

2h-m 4
Lemma 5.
(@ p exissandisuniquewhenever V. (p)2 V, (p) "p T (0.pc).
() [ps.pc] forms a connected set such that V,(p;p,)3 V. (p) "pT (0p,),

p,T [pspel-

Proof. See gppendix.

Proposition 4. (Case 2). If V. (p)2 V_(p) "p T (0,p.), two types of equilibria exist.

The first is the leader-follower equilibrium described in Proposition 3; two equilibria
of this type exist as before. The second is a joint-investment equilibrium in which

both firms invest at the same trigger point p, 1 [ps,pc]; there is a continuum of

equilibriumtrigger points over thisinterval.

Proof. The proof is illustrated with reference to figure 2. As before, fear of preemption by
onegsrivd intheinterval (p L PE ) over which V, >V, entalls that the asymmetric leader-

follower outcome is dso an equilibrium configuration in this case.  From the premise,
however, there is no unilateral incentive to deviate from the continuation strategy anywhere
in the intervd (0,p.). For p 3 p. it is a dominant strategy to invest, despite the
knowledge thet the riva will follow a once. Thus the joint-investment outcome in which
both firms invest & p . isdso an equilibrium. From lemma 5 any joint-invesment point
p,1 [ps.pc] hasthe property that no unilateral deviation is profitable and is therefore an
equilibrium. Q.E.D.

Fudenberg and Tirole (1985) argue that if one equilibrium Pareto-dominates al others it
is the mogt reasonable outcome to expect. Using the Pareto criterion the multiplicity of
equilibria described in Proposition 4 can be reduced to a unique outcome.



Propogtion 5. Using the Pareto criterion, the multiplicity of equilibria arising in case
2 can be reduced to a unique outcome. This is the Pareto-optimal joint-investment

equilibriumin which both firmsinvest when p . isfirst reached.

Proof. The proof congsts of two parts.

(i) All joint-invesment equilibria, if these exid, Pareto-dominate the asymmetric leader-
follower equilibrium. From the definition of pg any joint-investment trigger point
p,1 [ps.pc]| has the property that no unilateral deviation is profiteble; thus
V,(p)2 V. (p) "pT1 (0,p,]. Thus thevalue of continuation is at leest as grest as the
amount that afirm would gain from preemption at any point. Furthermore, in the leader-
follower equilibrium the payoffs of both firms are drictly lower than the maximum
amount obtainable, since the optima preemption drategy is not an equilibrium of the
non-cooperative game.

(i) Thejoint-investment equilibria are Pareto-ranked by their respective trigger points, with
trigger points closer to p . Pareto-dominating al lower ones. This follows directly from

thederivationof p .. Q.E.D.

The asymmetric equilibria arisging in case 2 are Stuations where the leader preempts
purely because of the fear thet itsriva will do so firs. Such ingtances of ‘attack as a means
of defence’ are somewhat irretiond, as both firms achieve higher payoffs by coordinating on
any one of the symmetric equilibria. The Pareto-dominant equilibrium, by contradt,
preserves option vaues and entails that investment is more delayed than in the single-firm

counterpart.

Comparing non-cooperdtive trigger points with those comprisng the cooperative
solution, derived in the previous section, the following comparisons can be drawn. It is

aready known from Proposition 2 that p, >p. >p, forh>0. A comparison of (13) and
(20) shows that p. >p ., whilelemma 4 yidds p. >p,. Lemma 6 compares first

investment pointsin the non- cooperative and cooperetive solutions, p, and p ;.



Lemma6. p, <p, forh>0.

Proof. See appendix.

These comparisons are summarised in Proposition 6.

Proposition 6. Trigger pointsin the various cases are ranked as follows
(@ pL<pPy<Pc<P,;

() PL<Pe <Pc <P.:

(c) therankingof p, and p - isambiguous.

Whether equilibrium follows case 1, resulting in a preemptive |leader-follower outcome

withinvesmenta p, and p - respectively, or case 2, with Smultaneous investment & p .,

depends on parameter vaues. This can be determined numericaly asfollows. The question
of whether a firm has an incentive to deviate from joint invesment is identica to that of
whether a desgnated leader (which, unlike the firmsin this modd, can choose its investment
point optimaly in the knowledge that its rival cannot invest until after it has done so) would
choose to adopt the leadership role. The investment point of the designated leader, and the
option vaue of its invesment, is defined by vaue-matching and smooth-pasting conditions
between the first component of the leader’s vaue function V, ,, and the pre-investment
option value B.p ™. This problem has no closed-form solution; implicit expressions are
presented in the appendix.

Once a vaue for B, has been obtained, the equilibrium investment pattern can be
determined by comparing thiswith B (defined following expresson (15) above). If B, >
B. the vaue of becoming the leader a some point exceeds that of optima joint investment

and the only possible outcome is a preemptive leader-follower equilibrium. On the other
hend, if B, 3 B, theleader'svalue V, does not exceed V. a any point in the relevant

interval and joint invesment & p. is the Pareto dominant equilibrium.  Although this

condition cannot be written down in an explicit form, numerica solutions can be found for

any set of parameter values, some results are discussed in section 6.



6 Discussion

Comparing cooperative and non- cooperdtive outcomes, the inefficiency of non-cooperative
behaviour can readily be seen.  When non-cooperdtive behaviour results in a leader-
follower equilibrium, preemption and business-gtedling incentives prevent the option to invest
from being held for long and both firms invest too soon.  Although the leeder gains the firgt-
mover advantage of a temporary monopoly in research, this is subsequently undermined by
the follower’s invessment. The firms payoffs are equd, and low compared with the other

outcomes.

The dternative joint-investment equilibrium, if achievable, is more favourable for both
firms. It is identicd to the outcome that would be seen if the firms agreed to adopt a
common investment rule and chose this optimdly. Although it is not the cooperdtive
optimum — as section 4 has shown, smultaneous invesment is dominated by the optima
sequentid investment pattern — it could be seen as the best achievable cartd given the
difficulty in agreeing asymmetric investment rules and the need for Sde-payments implicit in

the cooperative outcome.

Interestingly, when equilibrium involves Smultaneous investment the effect of competition
isto increase the time to first investment: the non- cooperetive trigger p . exceeds the lower

trigger in the cooperative plan, p,. Invesment occurs too late in this case due to the

drategic behaviour of the firms who delay ther investment in the fear of setting off a patent
race. Hence, in this case, dday is due to drategic interactions between firms, not just the
usud option effect of uncertainty. Investment is dso more delayed than in the angle firm
counterpart. When investment does occur, however, a burst of research activity is seen
which is then excessve — under the cooperative plan the second investment would be

delayed until alater date.

The type of equilibrium that emerges in any particular case depends on the baance
between two opposing forces, the option vaue of delay and the expected benefit of

preemption. The smultaneous investment equilibrium becomes more prevaent as the option



vaue of dday is increased or the preemptive effect of earlier investment is reduced.
Numerica andyds indicates that Smultaneous investment becomes more likely as, ceteris
paribus, voldility s rises, the hazard rate h falls'® or the pure discount rate r increases.™
(As with financid options, an increase in pure discounting reduces the current value of the

investment cog, or strike price, paid a some date in the future, raising option vaues))

Limiting results as h becomes inggnificant or very large are informéative. As h tends to
zero al trigger points (expressed as an expected flow return, hp) converge to the same
vadue Thisisintuitively obvious: asthe busness-geding effect of h becomes negligible, the
investment opportunities avallable to the firms gpproximate stand-alone options unaffected
by compstition. As h becomes large on the other hand, the following results are found:
Py, P, ® b, /(b,-)K;p.® b,/(b,-1)2K;p, ® K;p,® 2K and p, ® ¥ .
Agan, the results are fairly intuitive: p,, and p. are the standard trigger points when the

return to invesment is gained immediatdy, for investments of scde K and 2K respectively.
In the non- cooperative leader-follower equilibrium, extreme preemption entirely removes the
option to delay and firmsinvest at the smple NPV breakeven points taking account of their
respective roles. In the cooperative solution, the first unit invests at the optimal stand-alone
trigger point and the second unit is redundant and never invests.

These findings have a number of implications for the understanding and assessment of
empirica investment behaviour. Since drategic interactions, in addition to uncertainty, have
ggnificant effects on the timing and paitern of investment, empiricd studies of investment
may be improved by including measures of industry concentration and strategic advantages
as explanatory variables. If preemption effects are strong competition tends to speed up
investment, which then takes place sequentidly as firms avoid competing head-to-heed.
Greater volatility, on the other hand, increases the likelihood that a patent race will occur,
with a sudden burst of comptitive activity ending a prolonged period of stagnation — a
phenomenon similar to that described by Choi (1991) but arising for different reasons.

Some welfare implications can dso be drawn. Although a full wefare assessment
requires a value function for consumers to be specified so that the socid optimum can be
determined, implications can be drawn graightforwardly from the existing anayds for one

sample case. If the consumer surplus arising from the innovation remains in fixed proportion



to p asthisvaries over time (i.e. the patent-holder extracts the same proportion of the socia
aurplus of the innovation a dl times),*? the socid optimum coincides with the cooperative
solution.”®  In this case the socid planner would phase investment progressively over time,

choosing the same trigger points as the cooperating firms.

Although patent races are not socidly optimd, they may nonetheless be preferable to the
dternative non-cooperative equilibrium. Assuming that the welfare optimum is aigned with
the cooperative solution as described above, a patent race commencing at the optimal joint-
investment time is preferable to the preemptive leader-follower outcome in which both firms
invest too soon and vauable options for the future are destroyed.  Only if for some reason
early invesment has sgnificant externd benefits for consumers — and the mere existence of
consumer surplus is not sufficient for this — would the socid planner prefer the preemptive
equilibrium.

Turning next to policy issues, the analyss has implications for the assessment of R&D
joint ventures. It provides a possible further justification for adopting a liberd gpproach to
cooperaive R&D, in addition to the exising arguments concerning the use of
complementary skills, spillover effects, the scale and riskiness of R&D investments. Again,
on the broad assumption that the option to delay is socidly aswell as privatdy beneficid, the
cregtion of an R&D joint venture with the freedom to choose the timing and scde of R&D
invesment cooperatively is strongly supported by this andyss. Of course, this and other
benefits of cooperation must be baanced againg its possible detriments, especidly the
weekening of efficiency incentives and the extenson of cooperation to product market

colluson.

It is interesting to note that in the case where a joint venture would be the most
desrable, namely that in which a preemptive leader-follower equilibrium would otherwise
occur, the joint venture would choose to delay R&D investment. Thisisin dark contrast
with the usuad policy approach whereby firms are required to demondrate that the joint
venture will invest in projects that would not otherwise be undertaken (at the present time).
A ggnificant change in approach on the part of competition authorities might be required to
take account of this point! When non-cooperative equilibrium takes the smultaneous

investment form, however, no such conflict arises: the joint venture will undertake the first



investment earlier than would otherwise be the case, and further investment will be phased in
a alater date as and when this becomes optimal.

7 Concluding remarks

This paper has shown that, in contrast to initid expectations, competition between firms
does not necessarily undermine the option to delay. Instead, the fear of sparking a patent
race may interndise the effect of competition, further rasing the vaue of dday. When firms
invest Smultaneoudy in egquilibrium, invesment occurs later than when the firms plan ther
invesments cooperatively. When this point is reached, however, a patent race ensues as the
firms compete to achieve the breskthrough.

The paper has implications for empirical and policy issues. In Stuations where both
option values and drategic interactions are important it is necessary to give careful
condderation to precise industry conditions, particularly the degree of uncertainty and
drength of preemption, in order to predict and assess the pattern of investment. The
andyss suggests that empirical studies of the impact of uncertainty on investment should aso
include industry concentration and firs-mover advantages as explanatory variables in their
modds. On the policy Sde, the paper provides a possble additiond judtification for
adopting a permissive view of cooperative R&D joint ventures.

The results are robust to changes in the precise dructure of the modd. Although
geometric Brownian motion is a convenient and tractable form, dternative stochadtic
processes, such as ones exhibiting mean-reverson or intermittent jumps, would generate
amilar quditative results. More sophisticated research technologies could aso be
consdered. For example, the hazard rate may increase with cumulative R&D spending asa
result of learning-by-doing. Note that in this case the leader has a permanent rather than a
temporary advantage, strengthening preemption incentives.  Alternatively, if the probability
of discovery isnot known a priori and the hazard rate is thus an expectation, updating from

fruitless research experience will causethisto fal over time.



The modd could be extended in a number of ways. This paper has focused on the
symmetric two-firm case. If the firms research technologies are ingtead dlowed to differ
such that one is more efficient, the identities of the leader and follower will be uniquely
defined and the more efficient firm will receive a drictly grester expected payoff. An
increase in the number of firms, however, is more problematic. Asexplained by Fudenberg
& Tirole (1985, section 5), rent equaisation holds only in the two-firm case; with three or
more symmetric firms equilibrium behaviour is more complicated and asymmetric payoffs
arepossible.

The impact of riva investment in research may dso have more complicated effects than
those considered in this moddl. Congestion effects, such as a shortage of skilled workers,
may reduce the efficiency of research as more firms invest, raising the advantage of earlier
invesment. Informational spillovers between firms, on the other hand, would cause a firm's
hazard rate to rise when itsriva invests. This generates an additiond motive for dday, asa

firm gainsby free-riding on the research efforts of itsrival.



Appendix

Lemma 1. Equation (19) hasauniqueroot p, intheinterva (O,pz).

Proof. Wewrite

_ hp (bl' bo) aep le )
Y(p)=(b,- 1)(r+h_ = Y Kép_zg b,K . (A1)

p, is the root of this function which lies in the intervd (0,p,). For existence and

uniqueness of such aroat, it is sufficient to show thet the continuous function Y (p) has the

following properties

@) Y& )=-b,(b, - by)Kp;>p®2<0forp >0, thus Y(p) is strictly concave over
(0, ¥);

(i) Y(0)=-R,K < 0;

(i) Y(p,)>0. Thisis demonstrated by writing the function evaluated a this point in the
form

Y(p,)= ——{bobyl +2b,- b,(2+1)} (AL2)

(bl - 1)

where | = >0. Whenh=0, b, =b,,| =0and Y(p,)=0. Evauating the
r-m
fird derivative
T,)_ b .
R o 1)(b0 1)K >0 (AL3)

itisclear that Y(p,)>0 for" h>0. Q.E.D.

Lemma2. p, >p. forh>0.

Proof. The objective is to compare expressons (13) and (17). This reduces to a
comparison between

b, -9 (A1)



b, (r+h-m
(b,-1) (r-m

(A2.2)

Recdl that b, isindependent of hand b, increesngin h. When h=0, b, = b, and the
two expressons ae identica. Expressng (A2.2) in the form M(h)/N(h), where
M(h) =b,(r +h- m) and N(h) =(b, - 1)(r - m), differentiation with respect to h yields

M_IN oy s IV (A23)

th h fh " 1h

Thus, (A2.2) isdrictly incressing in h and therefore p, >p . forh>0. Q.E.D.

Lemma3. p. >p, forh>0.

Proof. From lemma 1, to show that p. >p, it is necessary and sufficient to demondrate
that Y(p.)> 0 (given that it is dready known from lenma 2 thet p. <p,). Substituting
for p. we can write

Kboh  K(b,-b,)é b, (b-2) (r-m u”
r+h- m) (bl'l) g(bo'l) b1 (r+h' m)H

(A3.1)

Y(pc)=(

As a cordllary of lemma 2 we know that the term in square brackets is less than unity (as
thisisp./p,). Since b, >1, we know that

Kboh  K(b,-by)é b, (b,-2) (r-m 0_ Kb,
o) h T o] &,-0 b Fehe il e A
where Z(h) = h - ((goml))gl b—‘l’g (A3.2)

Thus, to prove lemma 3 it is sufficient to show that Z(h) >0 " h> 0. This follows from the
following facts

0 z(0)=0;
(i) z(h) isstrictly convex;
(i) Z(h) evaluated a h =0 isstrictly positive.

(i) is straightforward. To demondtrate (ii) and (iii) we start by taking partid derivatives with
respect to h



[T (by-1) b2 {(2b,-1)s2+2m (A33)

°Z _4r-m b, {(3b,-7s’+2n} 34
S N | (T A9

Recdling that b, = b, when h = 0, after some manipulation we can write

e
fh

=1- (r - m) (A35)

h=0 (I’ B m)+(bo - )G(I’)

where G(r)=2r - (b, +)m. Asr® i, b,® 1 and s0 G(r)® 0. Taking partid
derivatives we can write

16 _s. o, (A36)
Ir 2m+ (2b, - 1)s

Thus G(r)>0"r > and therefore Z(h) evaluated a h =0 is srrictly positive. Hence
Z(h) >0 " h> 0, which is sufficient to demonstrate that Y(p. )>0. Thus, p. >p, for h
>0. QED.

Lemma4. Thereexistsauniquepoint p, T (0,p. ) suchthat

Proof. We dat by defining the function P(p):VL (p) Ve (p) describing the gain to
preempting one' s opponent as opposed to being preempted. Expanding using equations
(25) and (21) we can write

hp &P o ‘e hp, 0 "
Pp)z=———- K- -Kzforpl (O,p¢). A4l
)= K g2 G KEforel (0pe) (A4D)

The following steps are sufficient to demondrate the existence of a root somewhere in
theinterva (0,p ;).

() Evauaing P(p) at zeroyidds P(0)=- K <O0.
(i) Evauating P(p) at p, yidds P(p.)=0.



(iii) Evaluating the derivative P(p ) at p - it can be shown that
0_ U

J ] h
pFg—sgn:-zmnj(r+h)(r+2h)KIv)<0. (A4.2)

Thus, P(p) must have at least oneroot intheinterva (0, p ;. ).
Uniqueness of theroot p, and the vdidity of the two inequdities can be proven by
demondrating strict concavity of P(p ) over (0, o) ) . By differentiation we can derive

@ hp,

P&p) =-b,(b, - 1)p;b1g

- Kgp b2 <Oforp > 0. (A4.3)
r+h-m g

Thus the root is unique, with P(p)<0 for pi (0,p,) ad P(p)>0 for
pi (po.Pe).

The find equdity is demondrated by consdering the follower’s optima behaviour
over the range [p F,¥). This intervd is the follower’s stopping region over which its

best response to investment by the leader is to invest a once. Thus, the vaues of the
leader and follower are equa over thisrange. Q.E.D.

Lemmas.
(@ p exigsand isuniquewhenever V. (p)2 V, (p) "p T (0,p.).

() [ps.pc] forms a connected set such that V,(p:p,)* V. (p) "pT (0.p,),
pJT [psypc]'

Pr oof.

(8) To demonstrate existence we start by showing that V, (p;p.)=V.(p). With some
smplification, the expressonsfor V; and p . yidd

h 1- by
VJ(p;pC): (r +2$](i a)b p™ =Bp” :Vc(p)' (AS.1)
0

It then follows from the premise that there exists at least one p , 1 (O,pc] such that
V,(p:p,)2 V. ) "pT (0p,] : a the very least p. itself stisfies this condition.
ps is then defined to be the smdlest dement of the sat of joint investment points
satifying the condition.

With p ; defined as the lowest joint investment point such thet the two functions
V. (p) and V,(p;p ) just touch one another, a sufficient condition for uniqueness of
psistha V,(p;p,) issrictly incressingin p, forp, 1 (0,p.). Wederive



v,
P,

T N 1 L SO (e N 7
—gboK (bo 1)(h+2r-m)HpJ p>>0forp,l (O,DC).

(A5.2)
Thus forany p, <p. ahigher vdueof p, entalsadrictly higher vdue of V, a any

givenvdueof p.

(b) To show that [pg,p.] forms a connected set satisfying the condition that
Vy(pipy )2 Vi) "pT(0p,). pyT [ps.pc] it is sufficent to show thet
V,(p;p, ) isincreasing in both of its argumentsfor dl p, T (0,p]. Since 1V, /1p,
evaluated & p . equds zero, we can write

v,

J

30forp,T (0,p.]. (A5.3)

It can easly be seen that

—2 =B,(p,)op™>*>0 "p>0. (A5.4)
Q.ED.

The designated leader’ sinvestment problem

The designated leader’ s investment point, p  , isdefined implicitly by

hp,

= b0K=O
r+h-m

(bl - bO)BLp gl + (bo - 1)

where B, is as defined following expresson (25). Having solved numerically for the value
of the trigger point p ,, , the option value constant B, is then defined by

i

~bg 3
B =Po % P, _blBLpglg'

D
b, 7r+h-m

Lemma6. p, <p, forh>0.

Proof. From rent equalisation a p, weknow that V, (p, ) =V. (p, ). Using (21) and (25)

to subgtitute for the respective vaue functions at this point, and their derivatives, we can
write

_ b,K (b,-1)h
VF¢(pL)_VLG(pL)_ P, +(I‘+h- m)- (A6.2)




From lemma 4 we know that V, crosses V. a p, from below and must therefore have
the steeper dope, thus VL((pL) >V,§(p L). Thus, the following upper bound for p, can be
derived

b, (r+h-m
(b,-2) h

p, < Kopy. (A6.2)

Given the shape of the function Y (p) (defined by (A1.1) above) of which p, is the root,
andsincep,, <p,, itissufficient to show that Y(p,, ) < 0. It can readily be shown that

NI

__ K 1 ¢ (r-m o
Y(pM)_(bl_l)_lfbo' bl'(bl' bo)gmg %/)<0f0l‘h>0.

(A6.3)

Thus p, <py <p,. Q ED.



Figure 1. Preemptive leader-follower equilibrium
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Figure 2: Joint investment equilibrium
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! This value could be interpreted as the expected NPV of profits in the relevant product
market or, if further sunk costs are required, might itself be the value of the option to invest
in this market, making investment in the research stage a compound option problem.

The restriction that m< r, commonly found in rea options models, is necessary to ensure
that thereis a gtrictly positive opportunity cost to holding the option, so that it will not be held
indefinitely. A large negative drift term would, ceteris paribus, encourage earlier
investment to raise the probability of winning the prize before its value declines significantly,
counteracting the option effects in the model. To avoid such an outcome we make the
assumption that mis non-negative. Since the mode is concerned with the effects of
uncertainty, not expected trends, the conclusions from the analysis are unaffected by this
assumption.

Thus the cost of R&D is fixed, or contractua in the terminology of Kamien and Schwartz
(1982).

To be precise, the statement that a firm invests at a trigger point p* means that the firm
invests at the time when the stochastic process p first hits the value p*, approaching this
level from below.

> For further details see Fudenberg and Tirole (1985), section 4.

If smooth-pasting were violated and instead a kink arose & p,, a deviation from the
supposedly optimal policy would raise the firm's expected payoff. By delaying for a small
interval of time after the stochastic process first reached p,, , the next step dp could be
observed. If the kink were convex, the firm would obtain a higher expected payoff by
entering if and only if p has moved (strictly) above p , , since an average of points on either
sde of the kink give it a higher expected vaue than the kink itsef. If the kink were
concave, on the other hand, second order conditions would be violated. Continuation aong
the initid vaue function would yield a higher payoff than switching to the aternative
function and switching at p, could not be optimal. More detailed explanation of this
condition can be found in appendix C of chapter four in Dixit and Pindyck (1994). Note that
this condition applies for al diffusion processes, not just a geometric Brownian motion such
as (1).

It is implicitly assumed that side payments may be used to ensure that neither firm has an
incentive to deviate; dternatively, the two firms may be separate research units controlled
by an integrated firm.

Smooth-pasting ensures that the first derivative of V. iscontinuousat p, .

® An anaogous effect is found in the duopoly models of Smets (1991) and Grenadier (1996).
The second, option value effect of rival investment is absent from these models, however.

0 With K adjusted appropriately so that the project’s expected value remains constant.
1 With madjusted in line so that the opportunity cost d =r - m remains constant.

12 Given that this proportion is determined largely by the duration of the patent and the degree
of monopoly power conveyed by the patent grant, this would not seem to be an
unreasonable assumption.

13 All values and trigger points are scaled up by the same proportion, leaving the optimal timing
of investment unchanged.



