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Strategic Delay in a Real Options Model of R&D Competition

1 Introduction

When a firm has the opportunity to make an irreversible investment facing future uncertainty

there is an option value of delay.  By analogy with a financial call option it is optimal to delay

exercising the option to invest, even when it would be profitable to do so at once, in the

hope of gaining a higher payoff in the future.  Using this insight the real options approach

improves upon traditional NPV-based investment appraisal methods by allowing the value

of delay and the importance of flexibility to be quantified and incorporated explicitly into the

analysis.

Real world investment opportunities, unlike financial options, are rarely backed by legal

contracts which guarantee the holder’s rights in precise terms.  Most real options are non-

proprietary investment opportunities whose terms are somewhat vague or subjective, and far

from guaranteed.  In particular, a firm’s ability to hold the option is frequently influenced by

the possibility that another firm may exercise a related option, which affects the value of the

first firm’s investment.  In a few instances a legal right such as an oil lease or a patent gives a

firm a proprietary right similar to that granted by a financial option.  Or occasionally a firm

has such a strong market position, as in a natural monopoly or network industry, that its

investment opportunities are de facto proprietary.  However, in most industries some

degree of competition exists, either actual or potential, and the option to invest cannot be

held independently of strategic considerations.

When a small number of firms are in competition with an advantage to the first mover,

each one’s ability to delay is undermined by the fear of preemption.  Consider a situation in

which two firms have the ability to exercise an option and the first to do so obtains the

underlying asset in its entirety, leaving the second mover empty-handed.  Each firm would

like to exercise the option just before its rival does so, giving rise to discontinuous Bertrand-

style reaction functions.  With symmetric firms the value of delay is eliminated and the option

will be exercised as soon at the payoff from doing so becomes marginally positive.  Under
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such circumstances the real options approach becomes irrelevant and the traditional NPV

rule resurfaces as the appropriate method of investment appraisal.

In order to study in detail the tension between real options and strategic competition, the

continuous time framework of Fudenberg and Tirole (1985) is adapted in two important

respects to apply to the specific context of rival investment in R&D.  The firms’ profit

functions are specified so as to include two distinct forms of uncertainty: economic

uncertainty over the future profitability of the project, and technological uncertainty over the

success of R&D investment itself.  Economic uncertainty gives rise to option values and a

tendency for delay, which would not arise in a deterministic framework.  Technological

uncertainty, combined with a winner-takes-all patent system, generates a preemption effect

that counteracts the incentive to delay.  The instantaneous probability of success, or hazard

rate, of rival firms captures in a simple form the strength of the first-mover advantage,

allowing outcomes for varying degrees of preemption to be readily compared.  In effect,

technological uncertainty drives a wedge between a firm’s decision to invest and the out-turn

of that investment, giving some scope for the follower to leapfrog the leader and preserving

its option value to some extent.  It should be noted that the advantage gained by the first

mover is not necessarily a persistent one: if the breakthrough is not achieved before the

follower invests, the two firms are equally likely to succeed from then on.

In fact, the hazard rate has two distinct effects in this model.  The direct effect of the

rival’s hazard rate is to reduce the expected value of investment to the second mover, since

there is some probability that the leader will make the discovery first.  This effect is

analogous to the impact of rival investment in product market duopoly models such as Smets

(1991): with the option value of delay unchanged, the reduction in the value of investment

causes the follower to act later.  In this paper, however, there is also a second effect: the

hazard rate of rival innovation reduces the option value itself, tending to hasten investment.

Thus option values and preemption interact in this model.  This contrasts with existing

contributions in the area, where the roles of option values and competition are additive: in

these models the only effect of rivalry is to reduce the value of investment, while the option

value of delay remains unchanged.
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Focusing on Markov perfect equilibria, the outcome of the non-cooperative two-player

game takes one of two forms depending upon parameter values.  The first is a preemptive

leader-follower outcome in which one firm invests strictly earlier than the other and option

values are undermined by competition.  The second has a multiplicity of equilibria, including

a continuum of symmetric equilibria in which both firms invest at the same trigger point.  The

Pareto-dominant equilibrium coincides with the optimal joint-investment rule which would be

chosen by firms that agree to adopt a common trigger point.  This outcome entails greater

delay than the single-firm counterpart.

The role of the hazard rate in non-cooperative equilibrium can be understood as follows.

Its impact in lowering the expected value of investment to the second-mover, relative to the

firm that invests first, creates a first-mover advantage that will tend to induce preemptive

action.  However, when the first firm invests the value of its rival’s option to delay is also

reduced, speeding up the competitive reaction to its investment.  Thus, preemption is

double-edged: the leader gains a privileged position for a time, but the option value effect

tends to speed up the reaction of its competitor.  Anticipating this reaction, a firm may

instead choose to delay its own investment.  In effect, an investing firm chooses the time at

which the patent race will begin and it is better for each firm if this is delayed until the optimal

joint-investment point is reached.  A good analogy is the behaviour of contestants in a long-

distance race, who typically remain in a pack proceeding at a moderate pace for most of the

distance, until near the end when someone attempts to break away and the sprint for the

finish begins.  Compared with existing duopoly models of real options the cooperative joint-

investment outcome is achievable as a non-cooperative equilibrium.

The fully optimising cooperative investment rule is derived as a benchmark for

comparison.  This is shown to involve sequential investment of the two units, so that research

efforts are phased in over time.  Compared with the non-cooperative leader-follower

equilibrium, the cooperative trigger points are higher than their non-cooperative counterparts

since option values are no longer undermined by preemption.  The non-cooperative joint-

investment equilibrium, although preferable to the preemptive leader-follower outcome, is

seen not to be the fully-optimising choice of cooperating firms.  It may, however, be

interpreted as the second-best optimum of firms that are constrained to choose a symmetric
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investment rule, given the difficulty of agreeing an asymmetric investment pattern or making

side-payments to support the fully-optimising solution.  It is interesting to note that when

simultaneous investment is the equilibrium outcome, the time to first investment is increased

by strategic interactions between non-cooperative firms, compared with the cooperative

solution.

By combining irreversible investment under uncertainty with strategic interactions in the

presence of technological uncertainty, the paper brings together three strands of economics

literature.  Real options models have been used to explain delay and hysteresis arising in a

number of contexts, but these are mostly set in a monopolistic or perfectly competitive

framework.  McDonald and Siegel (1986) and Pindyck (1988) consider irreversible

investment opportunities available to a single firm.  Dixit (1989, 1991) considers product

market entry and exit in, respectively, monopolistic and perfectly competitive settings.  The

second branch of related literature analyses timing games of entry and exit in a deterministic

framework.  Timing games are straightforward examples of stopping time games where the

underlying process is simply time itself.  Papers analysing preemption games include

Fudenberg et al. (1983) and Fudenberg and Tirole (1985), while wars of attrition have been

modelled by Ghemawat and Nalebuff (1985) and Fudenberg and Tirole (1986).  Finally,

technological uncertainty in R&D, with discovery modelled as a Poisson arrival, is

considered in papers by, inter alia, Loury (1979), Dasgupta and Stiglitz (1980), Lee and

Wilde (1980), Reinganum (1983) and Dixit (1988).  These papers, however, assume the

return to successful R&D (or demand in the product market from which it is derived) to be

deterministic, thus ruling out any option value of delay and related timing issues.

Existing literature combining real options with strategic interactions is as yet relatively

limited.  Smets (1991; summarised in Dixit and Pindyck 1994, pp. 309-314), examines

irreversible market entry for a duopoly facing stochastic demand.  Non-cooperative

behaviour results in an asymmetric leader-follower equilibrium.  When the leadership role is

exogenously pre-assigned so that the follower is unable to invest until after the designated

leader has done so, the cooperative symmetric outcome may then be attained.  Grenadier

(1996) considers the strategic exercise of options applied to real estate markets.  Joint

investment arises only when the underlying stochastic process starts at a sufficiently high
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initial value and, even then, is not necessarily undertaken at the optimal point.  In a two-

player game where each player’s exercise cost is private information, Lambrecht and

Perraudin (1997) find trigger points located somewhere between the monopoly and simple

NPV outcomes.  In a two-period model, Kulatilaka and Perotti (1998) consider the value

of strategic investment as the degree of uncertainty increases.

The paper is structured as follows.  The model is described in section 2.  The

optimisation problem of a single firm facing no actual or potential competition is solved in

section 3.  Section 4 derives the optimal cooperative investment plan for two firms.  Non-

cooperative equilibrium in the two-player game is found in section 5.  The findings are

discussed in section 6; section 7 then concludes.

2 The model

Two risk-neutral firms, i = 1, 2, have the opportunity to invest in competing research

projects.  Research is directly competitive: the firms strive for the same patent and successful

innovation by one eliminates all possible profit for the other.  The firms face both

technological and economic uncertainty.  Discovery by an active firm is a Poisson arrival,

while the value of the patent received by the successful inventor evolves stochastically over

time.1  The decision to invest in a research project is assumed to be irreversible.  The

possible states of firm i are denoted { }1 ,0 ∈iθ  for the idle and active states respectively.

The value of the patent, π , evolves exogenously and stochastically according to a

geometric Brownian motion (GBM) with drift given by the following expression

   dWdtd ttt σπµππ += (1)

where µ ∈ [0, r) is the drift parameter measuring the expected growth rate of π ,2

r is the risk-free interest rate, assumed to be constant over time, σ > 0 is the instantaneous

standard deviation or volatility parameter, and dW is the increment of a standard Wiener

process where dW ∼ N(0, dt).
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Each firm has the opportunity to invest in a research project.  Following Loury (1979),

firm i sets up a research project by investing an amount 0>iK .3  From the time of this

investment, discovery takes place randomly according to a Poisson distribution with

constant hazard rate 0>ih .  Thus the hazard rate is independent of the duration of research

and the number of firms investing; possible variations on this assumption are discussed in

section 7.  The probabilities of discovery by each firm are independent.  We focus on the

symmetric case where hhi =  and KK i =  for i = 1, 2.  All parameter values and actions

are common knowledge, thus the game is one of complete information.

The following assumptions are made

Assumption 1.  ( ) 0 
 

0 

 
0 <−





∫

∞ +− KdtheE t
thr π .

Assumption 2.  If ( ) 1=τθ i  then ( ) 1=tiθ  τ≥∀t .

Assumption 1 states that the initial value of the patent, 0π , is sufficiently low that the

expected return from immediate investment is negative, ensuring that neither firm will invest

at once.  Assumption 2 formalises the irreversibility of investment and constrains the strategy

of the firm accordingly: if firm i has already invested by date τ then it remains active at all

dates subsequent to τ until the game ends with a discovery.

In a multi-agent setting the firm’s investment problem can no longer be solved using the

optimisation techniques typically employed in real options analysis.  Instead, the optimal

control problem becomes a stopping time game (for a detailed analysis see Dutta and

Rustichini (1991)).  In a stopping time game each player has an irreversible action such that,

following this action by one or more players, expected payoffs in the subsequent subgame

are fixed.  Dutta and Rustichini allow for the possibility that the stochastic process continues

to evolve after the leader’s action and that the follower still has a move to make, as is the

case in this paper.  The stopping time game is described by the stochastic process π  along

with the payoff functions for the leader and follower; these are derived in section 5 below.

The game proceeds as follows.  In the absence of action taken by either firm, the

stochastic process evolves according to (1).  If firm i has not commenced research at any

time t<τ  its action set is { }investt don' invest, =i
tA .  If, on the other hand, i has invested
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at some t<τ , then i
tA  is the null action set { }movet don' .  Thus each firm faces a control

problem in which its only choice is when to choose the action ‘stop’ – or rather, in this case,

to start research.  After taking this action the firm can make no further moves to influence the

outcome of the game.  The game ends when a discovery is made by either firm.

A strategy for firm i is a mapping from the history of the game tH  to the action set i
tA

as follows: i
tt

i
t AH →:σ .  At time t ≥ 0, the history of the game has two components, the

sample path of the stochastic state variable π  and the actions of the two firms up to date t.

With irreversible investment the history of actions in the game at t is summarised by the fact

that the game is still continuing at t (i.e. 0=iθ  i∀ ).  However, the history of the state

variable is more complex since its current value could have been reached by any one of a

huge number of possible paths.

Firms are assumed to employ stationary Markovian strategies: actions are functions of

the current state alone and the strategy formulation itself does not vary with time.  Since the

state variable π  follows a Markov process, Markovian strategies incorporate all payoff-

relevant factors in the game.  Furthermore, if one player uses a Markovian strategy then its

rival has a best response that is Markovian as well.  Hence a Markovian equilibrium remains

an equilibrium when history-dependent strategies are also permitted, although other non-

Markovian equilibria may then also exist.  For further explanation see Maskin and Tirole

(1988) and Fudenberg and Tirole (1991, chapter 13).  With the Markovian restriction a

player’s strategy is a stopping rule specifying a critical value or “trigger point” for the

stochastic variable π  at which the firm invests.4

As Fudenberg and Tirole (1985) point out, the use of continuous time complicates the

formulation of strategies as there is a loss of information inherent in taking the limit of a

discrete time mixed strategy equilibrium.  To deal with this problem they extend the strategy

space to include not only the cumulative probability that a player has adopted, but also the

“intensity” with which a player adopts “just after” the cumulative probability has jumped to

one.  Although this formulation uses symmetric mixed strategies, equilibrium outcomes are

equivalent to those in which firms employ pure strategies and may adopt asymmetric roles.5

Thus, although the underlying framework is an extended space with symmetric mixed
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strategies, the analysis will proceed as if each firm uses a (possibly asymmetric) pure

Markov strategy.

3 Optimal investment timing for a single firm

We start by deriving the optimal stopping time for a single firm investing in the absence of

competition.  The firm’s investment rule is found by solving the stochastic optimal stopping

problem

        ( ) ( )







 





 −= ∫

∞ +−− KdheeEV
T

hrrT
tTt τππ τ

τ  max
 

 

 (2)

where Et denotes expectations conditional on information available at time t and T is the

unknown future stopping time at which the investment is made.  The value function ( )πV  has

two distinct components which hold over different intervals of π .  Let ( )π0V  denote the

value function before the firm invests, and ( )π1V  denote the value function after investment

has taken place.

Prior to investment the firm holds the option to invest.  It has no cashflows but may

experience a capital gain or loss on the value of this option.  Hence, in the continuation

region (values of π  for which it is not yet optimal to invest) the Bellman equation for the

value of the investment opportunity is given by

        ( )00 dVEdtrV = . (3)

Using Itô’s lemma and the GBM equation (1) yields the ordinary differential equation

     ( ) ( ) 0 
2
1

000
22 =−′+′′ rVVV πµπππσ . (4)

From (1) it can be seen that if π  ever goes to zero it stays there forever.  Therefore the

option to invest has no value when 0=π  and ( )π0V  must satisfy the boundary condition
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( ) 000 =V . Solving the differential equation (4) subject this boundary condition gives the

value of the option to invest in research

( ) 0
00

βππ BV = (5)

where 00 ≥B  is an unknown constant and 0β  is the positive root of the characteristic

equation 0
2

 
2

1 22
2 =−






 −−

σ
ε

σ
µ

ε
r

, i.e. 1
82

1
2

1
2
1

2

2

220 >












+





 −+−=

σσ
µ

σ
µ

β
r

.

We next consider the value of the firm in the stopping region (values of π  for which is it

optimal to invest at once).  Since investment is irreversible the value of the firm in the

stopping region, ( )π1V , is given by the project expected value alone with no option value

terms.  Recalling that discovery is a Poisson arrival, the expected value of the active project

when the current value of the stochastic process is tπ  is given by

          ( ) ( ) 




= ∫

∞ +− τππ τ
τ dheEV

t

hr
tt  

 

 

 
1 . (6)

Recalling that π  is expected to grow at rate µ and suppressing time subscripts we can write

      ( )
µ

π
π

−+
=

hr
h

V1 . (7)

Note that the hazard rate h enters the denominator in this expression in the form of an

‘augmented discount rate’ hr + .  This result is typical of models involving a Poisson arrival

function: for other examples of this characteristic in the context of R&D see, inter alia,

Loury (1979), Dasgupta and Stiglitz (1980), Lee and Wilde (1980) and Dixit (1988).

The optimal investment rule is found by solving for the boundary between the

continuation and stopping regions.  This boundary is given by a critical value of the

stochastic process, or trigger point, Uπ  such that continued delay is optimal for

Uππ <  and immediate investment is optimal for Uππ ≥ .  The optimal stopping time UT  is
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then defined as being the first time that the stochastic process π  hits the interval

[ )∞,Uπ .  By arbitrage, the critical value must satisfy the value-matching condition

  ( ) ( ) KVV UU −= ππ 10 . (8)

Optimality requires a second condition known as smooth-pasting to be satisfied.  This

condition requires the value functions ( )π0V  and ( )π1V  to meet smoothly at Uπ  with equal

first derivatives6

       ( ) ( )UU VV ππ  10 ′=′ . (9)

Conditions (8) and (9) together imply that

        ( )
( )

K
h
hr

U
µ

β
β

π
−+

−
=

10

0 ; (10)

and

               ( ) 0

1

0

0

βµ
π β

−+
=

−

hr
h

B U . (11)

The optimal investment time at which the single firm invests is thus defined as

{ }UU tT ππ ≥≥= :0inf  . (12)

Briefly considering the properties of the trigger point Uπ , as economic uncertainty is

eliminated (i.e. as σ → 0), 0β  → r/µ and the optimal stopping point approaches the

breakeven value of the patent calculated on a simple NPV basis.  As uncertainty rises 0β

falls towards unity, raising Uπ  and increasing the expected stopping time.  Thus greater

uncertainty over patent value delays investment, as expected from the papers by McDonald

and Siegel (1986), Pindyck (1988) and Dixit (1989).
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4 The cooperative benchmark

We next consider the benchmark case in which the two firms (or research units) plan their

investments cooperatively.7  The cooperative investment pattern may (in theory at least) take

one of two possible forms: either both units invest at a single trigger point, or they invest

sequentially at distinct trigger points.  We start by deriving the optimal joint-investment rule

when firms invest at the same trigger point, which follows straightforwardly from the analysis

of section 3.  The optimal sequential investment plan is then derived and compared with the

optimal joint-investment strategy in order to determine which investment pattern forms the

cooperative optimum.

The analysis of the preceding section can be readily extended to the case of two

cooperating firms (or research units under common ownership) which agree to adopt a

common investment rule. The decision is equivalent to a single firm optimisation problem

with an investment cost of 2K and arrival rate 2h.  Denoting the optimal joint-investment

trigger point by Cπ , value-matching and smooth-pasting conditions are used as before to

yield

          ( )
( )

K
h
hr

C
µ

β
β

π
−+

−
=

2
10

0 . (13)

The optimal joint investment time CT  is analogous to expression (12).  As before, the

value of a (single) firm under this scenario has two parts. Prior to investment the firm holds

the option to invest; after (joint) investment the value of the active project is given by its

expected NPV to the firm, taking account of the fact that the other firm is also active, which

is

  ( )
µ

π
π

−+
=

hr
h

NPV
2

. (14)

Thus, the value of an individual firm under this scenario is described by the following value

function (i.e. the combined firm consisting of two research units has twice this value)
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     ( )
( )








≥−

<
=

C

CC

C

KNPV

B
V

πππ

πππ
π

β

for     

           for    0

 (15)

where 
( ) 0

1

2

0

βµ
π β

−+
=

−

hr
h

B C
C .

Comparing the cooperative trigger point (13) with (10) for the single firm, it can readily

be seen that UC ππ > .  Given that the initial value 0π  is sufficiently low that immediate

investment is unprofitable, the ranking of trigger points entails that investment takes place

strictly later when two firms agree a common investment rule than when a single firm acts

alone.  Note that this result is due to the indirect effect of the hazard rate on the implicit

discount rate faced by the firm after it invests, which is now hr 2+  rather than hr + .

Since both the cost and hazard rate of research are doubled, there is no direct effect on the

efficiency of R&D.

We now characterise the optimal sequential investment plan, on the assumption (for

now) that investment takes this form.  Suppose that one unit invests at a trigger point 1π  and

the other when a second trigger 12 ππ >  is reached.  The value of the combined entity

under this investment plan is described by

( ) [ )

( )













≥−

∈−+
−+

<

=+

               for     22  

,for      

                              for      

2

211

10

1

0

πππ

ππππ
µ

π

πππ

π β

β

KNPV

KA
hr
h

A

V FL (16)

where 
( )











 +

+







−+−= 2

2

221
82

1
2

1
2
1

σσ
µ

σ
µ

β
hr

 > 0β  for h > 0.

The optimal choice of 1π  and 2π , along with the option value terms 0A  and 1A , is

determined by imposing value-matching and smooth-pasting conditions between the relevant

components of the value function at each point.  (By contrast, as will be seen in the next
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section, no smooth-pasting obtains at the leader’s investment trigger in the non-cooperative

case.)  Solving value-matching and smooth-pasting conditions at 2π  yields

( )
( ) ( )

( ) K
r
hr

h
hr

µ
µµ

β
β

π
−
−+−+

−
=

    
2

11

1
2 (17)

and

( )11
21

1

−
= −

β
π β K

A  > 0.                    (18)

Imposing value-matching and smooth-pasting conditions at 1π  and substituting the

above expression for 1A  yields the following implicit expression for 1π

 ( ) ( )
( )
( ) 0

1
1 0

2

1

1

011
0

1

=−







−

−
−

−+
− KK

hr
h

β
π
π

β
ββ

µ
π

β
β

. (19)

Lemma 1 completes the proof that the optimal sequential investment plan ( )21 ,ππ  is

uniquely defined.

Lemma 1.  Equation (19) has a unique root 1π  in the interval ( )2,0 π .

Proof. See appendix.

Which of the two investment patterns, sequential or simultaneous, is optimal is

determined by comparing FLV +  with 2 CV  (the combined value of the two firms when both

invest at the optimal joint investment point).  Note that, in each case, prior to the point at

which both firms have invested the value functions are strictly convex with continuous first

derivatives,8 converging to zero as π  → 0 and smooth-pasting to the linear function

( )πNPV2  at some point as π  becomes large.  Thus, the value functions cannot cross in the

relevant range and the ranking of the value functions is given by the relative magnitudes of

Cπ  and 2π .  Lemma 2 proves that Cππ >2 , thus demonstrating that staggered investment

at ( )21  ,ππ  dominates joint investment.
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Lemma 2. Cππ >2  for h > 0.

Proof. See appendix.

Proposition 1 follows directly from the preceding analysis.

Proposition 1. The cooperative optimum is uniquely defined as a sequential

investment pattern in which one research unit invests at 1π  and the other at 2π ,

where these trigger points satisfy (19) and (17) respectively.

Next we compare the trigger points in the optimal cooperative investment pattern with

the optimal joint-investment trigger Cπ .

Lemma 3. 1ππ >C  for h > 0.

Proof. See appendix.

Proposition 2. The ranking of trigger points in the optimal cooperative investment

plan relative to the optimal joint-investment trigger point is given by 21 πππ << C .

Proof. Follows directly from lemmas 2 and 3.

Thus, we have demonstrated that two cooperating firms which jointly optimise their

investments would choose to phase their R&D investments progressively over time, rather

than invest both research units at once.  This is despite the fact that the cost function for

research displays constant returns to scale, albeit with a given minimum size of a research

unit.  The sequential investment pattern gives the possibility of some return even when the

value of innovation is fairly low (though NPV-positive), reducing the opportunity cost of

delay while holding back from committing all R&D costs at once and retaining an option to

increase the scale of investment in the future.  The phasing of investment gives the

cooperating firms a higher probability of gaining a high-valued patent, and the overall value

of the (combined) investment opportunity is thereby maximised.
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5 Non-cooperative equilibrium

We turn now to the non-cooperative two-player game.  We start by assuming, without loss

of generality, that one firm (the leader) invests strictly before its rival (the follower).  As usual

in dynamic contexts the stopping time game is solved backwards; thus we start by

considering the optimisation problem of the follower.

5.1 The follower’s investment problem

Given that the leader has already invested and this investment is irreversible, the follower

faces a conditional probability hdt  that its rival will make the breakthrough in a (short) time

interval dt.  Moreover, this probability is independent of whether the follower itself has or

has not invested.  Thus the follower’s investment problem is equivalent to that of a single firm

with the augmented discount rate hr + .  This decision problem can be solved using the

method described in section 3, simply replacing r by hr +  throughout, to yield the

follower’s trigger point

       ( )
( )

K
h
hr

F
µ

β
β

π
−+

−
=

2
11

1 (20)

where 1β  is as defined following expression (16).  The follower’s value function is

described by

       ( )
( )
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Denoting the leader’s investment time by LT  (this being the first time that the leader’s

trigger point Lπ  is reached, to be defined in section 5.3 below), the follower’s optimal

investment time can be written as

{ }FLF TtT ππ ≥≥= : inf . (22)

Note that Fπ  is independent of the point at which the leader invests: given that the firm

invests second, the precise location of the leader’s trigger point is irrelevant.  Comparing

Fπ  with the trigger points derived in sections 3 and 4, it can readily be seen that CF ππ < .

However Fπ  and Uπ  cannot be ranked in general since, as discussed in the introduction,

the leader’s hazard rate has two conflicting effects on the follower.  The direct effect of the

leader’s research activity is to reduce the expected value of investment to the follower,

which is now given by ( )µπ −+ hrh 2/  as opposed to ( )µπ −+ hrh /  in the single-firm

case.9  However, there is also a second effect via the option value mark-up factor, which is

now given by ( )1/ 11 −ββ  rather than ( )1/ 00 −ββ  for the single firm.  As explained in the

introduction, the hazard rate of rival innovation reduces the follower’s option value of delay.

This can be seen clearly from the impact of h on the mark-up factor, which is reduced by its

presence.  This indirect effect tends to speed up the competitive reaction to the leader’s

investment, mitigating its preemptive advantage.

5.2 The leader’s payoff

We now derive the payoff to a firm that invests as the leader, given that the follower acts

optimally in the future in accordance with the stopping rule derived above.  After the leader

has sunk the investment cost K it has no further decision to make and its payoff is given by

the expected value of its research project.  However, this payoff is affected by the

subsequent action of the rival firm investing at Fπ .  Taking account of investment by the

follower, the leader’s post-investment payoff is given by

   ( ) ( ) 




 += ∫∫

∞ +−+− τπτππ τ
τ

τ
τ dhedheEV

F

F

T

hrT
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hr
ttL

 

 

 2 

 

   )( . (23)
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Two separate value functions must be considered for the leader: its value before the

follower invests, denoted ( )π)1(LV , and its value after this investment takes place, ( )π)2(LV .

Subsequent to investment by the follower the leader’s (as well as the follower’s) value is

given by the expected value of the active research project taking account of the probability

of rival discovery, which is simply ( )πNPV  given by (14) above.  Prior to investment by

the follower the leader’s value function consists of two components: the expected flow

payoff from research and an option-like term that anticipates subsequent investment by the

follower.  Solving the Bellman equation for the leader’s value over this interval, noting that as

the value of the patent approaches zero the follower’s option to invest becomes worthless

and the follower will never enter the race, the following function is derived

    ( ) 1
)1(

βπ
µ

π
π LL B

hr
h

V −
−+

= (24)

where 0>LB  is an unknown constant and 11 >β  is as previously defined.

The value of the unknown constant LB  is found by considering the impact of the

follower’s investment on the payoff to the leader.  When Fπ  is first reached the follower

invests and the leader’s expected flow payoff is reduced, since there is now a positive

probability that its rival will make the discovery instead.  The first section of the leader’s

value function anticipates the effect of the follower’s action with a value-matching condition

holding at Fπ  (for further explanation see Harrison (1985)).  However, since there is no

optimality on the part of the leader there is no corresponding smooth-pasting condition in

this case.  This yields the following value function for a firm investing as the leader (which

also takes account of the sunk cost K incurred when the firm invests)

     ( )
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










≥−

<−−
−+

=
            for     

for    1

F

FL

L

KNPV

KB
hr
h

V
πππ

πππ
µ

π

π

β

(25)



18

where ( ) ( ) 2 
 112

µµ
π β

−+−+
=

−

hrhr
h

B F
L  > 0.

5.3 Solving the game

Without the ability to precommit to trigger points at the start of the game (in contrast with the

precommitment strategies used by Reinganum (1981), for example) the leader’s stopping

point Lπ  cannot be derived as the solution to a single-agent optimisation problem.  Whether

a firm becomes a leader, and the trigger point at which it invests if it does so, is determined

by the firm’s incentive to preempt its rival and the point at which it is necessary to do so to

prevent itself from being preempted.

As in Fudenberg and Tirole (1985), the form of the non-cooperative equilibrium

depends on the relative magnitudes of the leader’s value, LV , and the value when both delay

until the optimal joint-investment point, CV .  Depending upon whether or not the functions

intersect somewhere in the interval ( )Fπ ,0 , two investment patterns arise.

[Since ( ) ( ) KNPVVL −= ππ  for Fππ ≥  while ( ) ( ) KNPVVC −> ππ  for Cππ < , the

functions cannot intersect anywhere in the interval [ )CF ππ  , ].   If LV  ever exceeds CV

preemption incentives are too strong for a joint-investment equilibrium to be sustained and

the only possible outcome is a leader-follower equilibrium in which one firm invests strictly

earlier than its rival and both invest strictly prior to the optimal joint-investment time.  If, on

the other hand, LV  never exceeds CV  a joint-investment outcome may be sustained,

although the leader-follower outcome is also an equilibrium in this case.

At the leader’s investment point, Lπ , the expected payoffs of the two firms must be

equal.  The reason for this follows Fudenberg and Tirole’s rent equalisation principle: if this

were not the case, one firm would have an incentive to deviate and the proposed outcome

could not be an equilibrium.  By investing earlier than its rival the leader gains the advantage

of a temporary monopoly in research and has a greater likelihood of making the discovery.

However the value of the prize it stands to win is likely to be lower than for the follower.

Hence, when viewed from the start of the game, there is a trade-off between the probability

of being first to make the discovery and the likely value of the prize that is gained.  At Lπ
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the two effects are in balance and the firms’ expected payoffs are equal.  Thus, in contrast

with many other games where asymmetric equilibria arise (such as Reinganum (1981)), the

agents in this model are indifferent between the two roles.

Before formally describing the equilibria we must first define, and demonstrate the

existence of, the leader’s trigger point, Lπ .  From the rent equalisation principle described

above, it follows directly that ( ) ( )LFLL VV ππ = .  Using this equality, an implicit expression

for Lπ  can be derived; this is given by expression (A4.1) in the appendix evaluated at zero.

Thus it is necessary to prove the existence of a root of this expression other than, and strictly

below, Fπ .

Lemma 4. There exists a unique point Lπ  ∈ (0, Fπ ) such that

( ) ( )ππ FL VV   <  for Lππ <

( ) ( )ππ FL VV   =  for Lππ =

( ) ( )ππ FL VV   >  for ( )FL πππ  ,∈

( ) ( )ππ FL VV   =  for Fππ ≥ .

Proof. See appendix.

The stopping time of the leader can thus be written as

         [ ]{ }  , :0 inf FLL tT πππ ∈≥= . (26)

Proposition 3. (Case 1.) If ( )Fππ  ,0∈∃  such that ( ) ( )ππ CL VV > , then there exist two

asymmetric leader-follower equilibria differing only in the identities of the two firms.

In one equilibrium firm 1 (the leader) invests when Lπ  is first reached with firm 2 (the

follower) investing strictly later at LF ππ > ; in the other equilibrium the firms’

identities are reversed.

Proof. The proof is illustrated with reference to figure 1.  As π  rises from its low initial value,

we know from the premise that a point (labelled A) will eventually be reached where LV  first



20

exceeds CV .  At this point each firm has a unilateral incentive to deviate from the

continuation strategy to become the leader.  However, if one firm were to succeed in

preempting its rival at A the payoff to the leader would be strictly greater than that of the

follower, since FL VV >  at this point.  From Lemma 4 we know that the leader’s payoff is

strictly greater than that of the follower everywhere in the interval ( )FL ππ , .  Thus

preemption incentives rule out any putative trigger point in this range.  We know also that

FL VV <  for all Lππ < ; thus before Lπ is reached each firm prefers to let its rival take the

lead.  We know from Lemma 4 that Lπ  is unique.  Once the leader has invested the

follower faces a single-agent optimisation problem, the solution to which was derived in

section 5.1.  Thus, there exists a unique equilibrium configuration in which one firm (the

leader) invests when Lπ  is first reached and the other (the follower) invests strictly later at

Fπ .  Since the firms’ identities are interchangeable there are two equilibria of this type.

Q.E.D.

We next consider the alternative case where CV  always exceeds LV  and a joint

investment equilibrium is sustainable.  At Cπ  it is a dominant strategy to invest even though

the rival will follow at once, thus there can be no equilibrium trigger point above Cπ .

Before describing the set of joint-investment equilibria we must first define Sπ , the lowest

joint-investment point such that there is no unilateral incentive to deviate.  Note that the

critical value Sπ  does not necessarily exist; this depends upon the relative positions of LV

and CV .

( ] ( ) ( ) ( ]{ }  ,0   ;: ,0 inf JLJJCJS VV ππππππππ ∈∀≥∈= (27)

where ( )JJV ππ;  is the firm’s pre-investment value function when both invest jointly (but

not necessarily optimally) at an arbitrary point Jπ .  This function, derived from the value-

matching condition at Jπ , is given by

  ( ) 0 ; βπππ JJJ BV = (28)
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where 
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0 ; this function is defined over the range ( ]Jπ ,0 .

Lemma 5.

(a) Sπ  exists and is unique whenever ( ) ( )ππ LC VV ≥  ( )Cππ  ,0∈∀ .

(b) [ ]CS ππ  ,  forms a connected set such that ( ) ( )πππ LJJ VV ≥ ;  ( )Jππ  ,0∈∀ ,

[ ]CSJ πππ  , ∈ .

Proof. See appendix.

Proposition 4. (Case 2). If ( ) ( )ππ LC VV ≥  ( )Cππ  ,0∈∀ , two types of equilibria exist.

The first is the leader-follower equilibrium described in Proposition 3; two equilibria

of this type exist as before.  The second is a joint-investment equilibrium in which

both firms invest at the same trigger point [ ]CSJ πππ  , ∈ ; there is a continuum of

equilibrium trigger points over this interval.

Proof. The proof is illustrated with reference to figure 2.  As before, fear of preemption by

one’s rival in the interval ( )FL ππ  ,  over which FL VV >  entails that the asymmetric leader-

follower outcome is also an equilibrium configuration in this case.  From the premise,

however, there is no unilateral incentive to deviate from the continuation strategy anywhere

in the interval ( )Cπ ,0 .  For Cππ ≥  it is a dominant strategy to invest, despite the

knowledge that the rival will follow at once.  Thus the joint-investment outcome in which

both firms invest at Cπ  is also an equilibrium.  From lemma 5 any joint-investment point

[ ]CSJ πππ  , ∈  has the property that no unilateral deviation is profitable and is therefore an

equilibrium.  Q.E.D.

Fudenberg and Tirole (1985) argue that if one equilibrium Pareto-dominates all others it

is the most reasonable outcome to expect.  Using the Pareto criterion the multiplicity of

equilibria described in Proposition 4 can be reduced to a unique outcome.
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Proposition 5. Using the Pareto criterion, the multiplicity of equilibria arising in case

2 can be reduced to a unique outcome.  This is the Pareto-optimal joint-investment

equilibrium in which both firms invest when Cπ  is first reached.

Proof. The proof consists of two parts.

(i) All joint-investment equilibria, if these exist, Pareto-dominate the asymmetric leader-

follower equilibrium.  From the definition of Sπ  any joint-investment trigger point

[ ]CSJ πππ  , ∈  has the property that no unilateral deviation is profitable; thus

( ) ( )ππ LJ VV ≥  ( ]Jππ  ,0∈∀ .  Thus, the value of continuation is at least as great as the

amount that a firm would gain from preemption at any point.  Furthermore, in the leader-

follower equilibrium the payoffs of both firms are strictly lower than the maximum

amount obtainable, since the optimal preemption strategy is not an equilibrium of the

non-cooperative game.

(ii) The joint-investment equilibria are Pareto-ranked by their respective trigger points, with

trigger points closer to Cπ  Pareto-dominating all lower ones.  This follows directly from

the derivation of Cπ .  Q.E.D.

The asymmetric equilibria arising in case 2 are situations where the leader preempts

purely because of the fear that its rival will do so first.  Such instances of ‘attack as a means

of defence’ are somewhat irrational, as both firms achieve higher payoffs by coordinating on

any one of the symmetric equilibria.  The Pareto-dominant equilibrium, by contrast,

preserves option values and entails that investment is more delayed than in the single-firm

counterpart.

Comparing non-cooperative trigger points with those comprising the cooperative

solution, derived in the previous section, the following comparisons can be drawn.  It is

already known from Proposition 2 that 12 πππ >> C  for h > 0.  A comparison of (13) and

(20) shows that FC ππ > , while lemma 4 yields LF ππ > .  Lemma 6 compares first

investment points in the non-cooperative and cooperative solutions, Lπ  and 1π .
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Lemma 6. 1ππ <L  for h > 0.

Proof. See appendix.

These comparisons are summarised in Proposition 6.

Proposition 6. Trigger points in the various cases are ranked as follows

(a) 21 ππππ <<< CL ;

(b) 2ππππ <<< CFL ;

(c) the ranking of 1π  and Fπ  is ambiguous.

Whether equilibrium follows case 1, resulting in a preemptive leader-follower outcome

with investment at Lπ  and Fπ  respectively, or case 2, with simultaneous investment at Cπ ,

depends on parameter values.  This can be determined numerically as follows.  The question

of whether a firm has an incentive to deviate from joint investment is identical to that of

whether a designated leader (which, unlike the firms in this model, can choose its investment

point optimally in the knowledge that its rival cannot invest until after it has done so) would

choose to adopt the leadership role.  The investment point of the designated leader, and the

option value of its investment, is defined by value-matching and smooth-pasting conditions

between the first component of the leader’s value function )1(LV  and the pre-investment

option value 0βπDB .  This problem has no closed-form solution; implicit expressions are

presented in the appendix.

Once a value for DB  has been obtained, the equilibrium investment pattern can be

determined by comparing this with CB  (defined following expression (15) above).  If DB  >

CB  the value of becoming the leader at some point exceeds that of optimal joint investment

and the only possible outcome is a preemptive leader-follower equilibrium.  On the other

hand, if CB  ≥ DB  the leader’s value LV  does not exceed CV  at any point in the relevant

interval and joint investment at Cπ  is the Pareto dominant equilibrium.  Although this

condition cannot be written down in an explicit form, numerical solutions can be found for

any set of parameter values; some results are discussed in section 6.
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6 Discussion

Comparing cooperative and non-cooperative outcomes, the inefficiency of non-cooperative

behaviour can readily be seen.  When non-cooperative behaviour results in a leader-

follower equilibrium, preemption and business-stealing incentives prevent the option to invest

from being held for long and both firms invest too soon.  Although the leader gains the first-

mover advantage of a temporary monopoly in research, this is subsequently undermined by

the follower’s investment.  The firms’ payoffs are equal, and low compared with the other

outcomes.

The alternative joint-investment equilibrium, if achievable, is more favourable for both

firms.  It is identical to the outcome that would be seen if the firms agreed to adopt a

common investment rule and chose this optimally.  Although it is not the cooperative

optimum – as section 4 has shown, simultaneous investment is dominated by the optimal

sequential investment pattern – it could be seen as the best achievable cartel given the

difficulty in agreeing asymmetric investment rules and the need for side-payments implicit in

the cooperative outcome.

Interestingly, when equilibrium involves simultaneous investment the effect of competition

is to increase the time to first investment: the non-cooperative trigger Cπ  exceeds the lower

trigger in the cooperative plan, 1π .  Investment occurs too late in this case due to the

strategic behaviour of the firms who delay their investment in the fear of setting off a patent

race.  Hence, in this case, delay is due to strategic interactions between firms, not just the

usual option effect of uncertainty.  Investment is also more delayed than in the single firm

counterpart.  When investment does occur, however, a burst of research activity is seen

which is then excessive – under the cooperative plan the second investment would be

delayed until a later date.

The type of equilibrium that emerges in any particular case depends on the balance

between two opposing forces, the option value of delay and the expected benefit of

preemption.  The simultaneous investment equilibrium becomes more prevalent as the option
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value of delay is increased or the preemptive effect of earlier investment is reduced.

Numerical analysis indicates that simultaneous investment becomes more likely as, ceteris

paribus, volatility σ rises, the hazard rate h falls,10 or the pure discount rate r increases.11

(As with financial options, an increase in pure discounting reduces the current value of the

investment cost, or strike price, paid at some date in the future, raising option values.)

Limiting results as h becomes insignificant or very large are informative. As h tends to

zero all trigger points (expressed as an expected flow return, hπ) converge to the same

value.  This is intuitively obvious: as the business-stealing effect of h becomes negligible, the

investment opportunities available to the firms approximate stand-alone options unaffected

by competition.  As h becomes large on the other hand, the following results are found:

( ) KU  1/  , 001 −→ ββππ ; ( ) KC 2 1/ 00 −→ ββπ ; KL →π ; KF 2→π  and ∞→2π .

Again, the results are fairly intuitive: Uπ  and Cπ  are the standard trigger points when the

return to investment is gained immediately, for investments of scale K and 2K respectively.

In the non-cooperative leader-follower equilibrium, extreme preemption entirely removes the

option to delay and firms invest at the simple NPV breakeven points taking account of their

respective roles.  In the cooperative solution, the first unit invests at the optimal stand-alone

trigger point and the second unit is redundant and never invests.

These findings have a number of implications for the understanding and assessment of

empirical investment behaviour.  Since strategic interactions, in addition to uncertainty, have

significant effects on the timing and pattern of investment, empirical studies of investment

may be improved by including measures of industry concentration and strategic advantages

as explanatory variables.  If preemption effects are strong competition tends to speed up

investment, which then takes place sequentially as firms avoid competing head-to-head.

Greater volatility, on the other hand, increases the likelihood that a patent race will occur,

with a sudden burst of competitive activity ending a prolonged period of stagnation – a

phenomenon similar to that described by Choi (1991) but arising for different reasons.

Some welfare implications can also be drawn.  Although a full welfare assessment

requires a value function for consumers to be specified so that the social optimum can be

determined, implications can be drawn straightforwardly from the existing analysis for one

simple case.  If the consumer surplus arising from the innovation remains in fixed proportion
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to π  as this varies over time (i.e. the patent-holder extracts the same proportion of the social

surplus of the innovation at all times),12 the social optimum coincides with the cooperative

solution.13  In this case the social planner would phase investment progressively over time,

choosing the same trigger points as the cooperating firms.

Although patent races are not socially optimal, they may nonetheless be preferable to the

alternative non-cooperative equilibrium.  Assuming that the welfare optimum is aligned with

the cooperative solution as described above, a patent race commencing at the optimal joint-

investment time is preferable to the preemptive leader-follower outcome in which both firms

invest too soon and valuable options for the future are destroyed.  Only if for some reason

early investment has significant external benefits for consumers – and the mere existence of

consumer surplus is not sufficient for this – would the social planner prefer the preemptive

equilibrium.

Turning next to policy issues, the analysis has implications for the assessment of R&D

joint ventures.  It provides a possible further justification for adopting a liberal approach to

cooperative R&D, in addition to the existing arguments concerning the use of

complementary skills, spillover effects, the scale and riskiness of R&D investments.  Again,

on the broad assumption that the option to delay is socially as well as privately beneficial, the

creation of an R&D joint venture with the freedom to choose the timing and scale of R&D

investment cooperatively is strongly supported by this analysis.  Of course, this and other

benefits of cooperation must be balanced against its possible detriments, especially the

weakening of efficiency incentives and the extension of cooperation to product market

collusion.

It is interesting to note that in the case where a joint venture would be the most

desirable, namely that in which a preemptive leader-follower equilibrium would otherwise

occur, the joint venture would choose to delay R&D investment.  This is in stark contrast

with the usual policy approach whereby firms are required to demonstrate that the joint

venture will invest in projects that would not otherwise be undertaken (at the present time).

A significant change in approach on the part of competition authorities might be required to

take account of this point!  When non-cooperative equilibrium takes the simultaneous

investment form, however, no such conflict arises: the joint venture will undertake the first
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investment earlier than would otherwise be the case, and further investment will be phased in

at a later date as and when this becomes optimal.

7 Concluding remarks

This paper has shown that, in contrast to initial expectations, competition between firms

does not necessarily undermine the option to delay.  Instead, the fear of sparking a patent

race may internalise the effect of competition, further raising the value of delay.  When firms

invest simultaneously in equilibrium, investment occurs later than when the firms plan their

investments cooperatively.  When this point is reached, however, a patent race ensues as the

firms compete to achieve the breakthrough.

The paper has implications for empirical and policy issues.  In situations where both

option values and strategic interactions are important it is necessary to give careful

consideration to precise industry conditions, particularly the degree of uncertainty and

strength of preemption, in order to predict and assess the pattern of investment.  The

analysis suggests that empirical studies of the impact of uncertainty on investment should also

include industry concentration and first-mover advantages as explanatory variables in their

models.  On the policy side, the paper provides a possible additional justification for

adopting a permissive view of cooperative R&D joint ventures.

The results are robust to changes in the precise structure of the model.  Although

geometric Brownian motion is a convenient and tractable form, alternative stochastic

processes, such as ones exhibiting mean-reversion or intermittent jumps, would generate

similar qualitative results.  More sophisticated research technologies could also be

considered.  For example, the hazard rate may increase with cumulative R&D spending as a

result of learning-by-doing.  Note that in this case the leader has a permanent rather than a

temporary advantage, strengthening preemption incentives.  Alternatively, if the probability

of discovery is not known a priori and the hazard rate is thus an expectation, updating from

fruitless research experience will cause this to fall over time.
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The model could be extended in a number of ways.  This paper has focused on the

symmetric two-firm case.  If the firms’ research technologies are instead allowed to differ

such that one is more efficient, the identities of the leader and follower will be uniquely

defined and the more efficient firm will receive a strictly greater expected payoff.  An

increase in the number of firms, however, is more problematic.  As explained by Fudenberg

& Tirole (1985, section 5), rent equalisation holds only in the two-firm case; with three or

more symmetric firms equilibrium behaviour is more complicated and asymmetric payoffs

are possible.

The impact of rival investment in research may also have more complicated effects than

those considered in this model.  Congestion effects, such as a shortage of skilled workers,

may reduce the efficiency of research as more firms invest, raising the advantage of earlier

investment.  Informational spillovers between firms, on the other hand, would cause a firm’s

hazard rate to rise when its rival invests.  This generates an additional motive for delay, as a

firm gains by free-riding on the research efforts of its rival.
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Appendix

Lemma 1.  Equation (19) has a unique root 1π  in the interval ( )2,0 π .

Proof.  We write
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1π  is the root of this function which lies in the interval ( )2 ,0 π .  For existence and
uniqueness of such a root, it is sufficient to show that the continuous function ( )πY  has the
following properties

(i) ( ) ( ) 02
2011

11 <−−=′′ −− ββ ππβββπ KY  for π  > 0, thus ( )πY  is strictly concave over
(0, ∞);

(ii) ( ) 0    0 0 <−= KßY ;

(iii) ( ) 0 2 >πY .  This is demonstrated by writing the function evaluated at this point in the
form
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.  When h = 0, 01 ββ = , λ = 0 and ( ) 02 =πY .  Evaluating the

first derivative
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it is clear that ( ) 02 >πY  for ∀h > 0.  Q.E.D.

Lemma 2. Cππ >2  for h > 0.

Proof.  The objective is to compare expressions (13) and (17).  This reduces to a
comparison between

( )10

0

−β
β

(A2.1)

and
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    ( )
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Recall that 0β  is independent of h and 1β  increasing in h.  When h = 0, 1β  = 0β  and the
two expressions are identical. Expressing (A2.2) in the form M(h)/N(h), where

( ) ( )µβ −+= hrhM 1  and ( ) ( ) ( )µβ −−= rhN  11 , differentiation with respect to h yields
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Thus, (A2.2) is strictly increasing in h and therefore Cππ >2  for h > 0.  Q.E.D.

Lemma 3. 1ππ >C  for h > 0.

Proof. From lemma 1, to show that 1ππ >C  it is necessary and sufficient to demonstrate
that ( ) 0>CY π  (given that it is already known from lemma 2 that 2ππ <C ).  Substituting
for Cπ  we can write
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As a corollary of lemma 2 we know that the term in square brackets is less than unity (as
this is Cπ / 2π ).  Since 11 >β , we know that
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Thus, to prove lemma 3 it is sufficient to show that ( ) 0>hZ 0>∀h .  This follows from the
following facts:

(i) ( ) 00 =Z ;

(ii) ( )hZ  is strictly convex;

(iii) ( )hZ ′  evaluated at 0=h  is strictly positive.

(i) is straightforward.  To demonstrate (ii) and (iii) we start by taking partial derivatives with
respect to h
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Recalling that 01 ββ =  when h = 0, after some manipulation we can write
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( ) ( ) ( )rGr
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h
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h  1
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where ( ) ( )µβ 12 0 +−= rrG .  As µ→r , 10 →β  and so ( ) 0→rG .  Taking partial
derivatives we can write
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Thus ( ) 0>rG µ>∀r  and therefore ( )hZ ′  evaluated at 0=h  is strictly positive.  Hence
( ) 0>hZ  ∀h > 0, which is sufficient to demonstrate that ( ) 0>CY π .  Thus, 1ππ >C  for h

> 0.  Q.E.D.

Lemma 4.  There exists a unique point ( )FL ππ  ,0∈  such that

( ) ( )ππ FL VV   <  for Lππ <

( ) ( )ππ FL VV   =  for Lππ =

( ) ( )ππ FL VV   >  for ( )FL πππ  , ∈

( ) ( )ππ FL VV   =  for Fππ ≥ .

Proof.  We start by defining the function ( ) ( ) ( )πππ FL VVP −=  describing the gain to
preempting one’s opponent as opposed to being preempted.  Expanding using equations
(25) and (21) we can write
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 for ( )Fππ  ,0∈ . (A4.1)

The following steps are sufficient to demonstrate the existence of a root somewhere in
the interval ( )Fπ ,0 .

(i) Evaluating ( )πP  at zero yields ( ) KP  0 −=  < 0.

(ii) Evaluating ( )πP  at Fπ  yields ( ) 0=FP π .
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(iii) Evaluating the derivative ( )πP′  at Fπ  it can be shown that
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Thus, ( )πP  must have at least one root in the interval (0, Fπ ).
Uniqueness of the root Lπ  and the validity of the two inequalities can be proven by

demonstrating strict concavity of ( )πP  over ( )Fπ ,0 .  By differentiation we can derive

    ( ) ( ) 2
11

11   1 −−
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πββπ K
hr

h
P F

F  < 0 for π  > 0. (A4.3)

Thus the root is unique, with ( ) 0<πP  for ( )Lππ ,0∈  and ( ) 0>πP  for
( )FL πππ  ,∈ .

The final equality is demonstrated by considering the follower’s optimal behaviour
over the range [ )∞ , Fπ .  This interval is the follower’s stopping region over which its
best response to investment by the leader is to invest at once.  Thus, the values of the
leader and follower are equal over this range.  Q.E.D.

Lemma 5.

(a) Sπ  exists and is unique whenever ( ) ( )ππ LC VV ≥  ( )Cππ  ,0∈∀ .

(b) [ ]CS ππ  ,  forms a connected set such that ( ) ( )πππ LJJ VV ≥ ;  ( )Jππ  ,0∈∀ ,
[ ]CSJ πππ  , ∈ .

Proof.

(a) To demonstrate existence we start by showing that ( ) ( )πππ CCJ VV = ; . With some
simplification, the expressions for JV  and Cπ  yield

    ( ) ( ) ( )πππ
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π
ππ ββ

β
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=

−
00

0

0

1

2
 ; . (A5.1)

It then follows from the premise that there exists at least one ( ]CJ ππ  ,0∈  such that
( ) ( ) ( ]  ,0   ; JLJJ VV πππππ ∈∀≥ : at the very least Cπ  itself satisfies this condition.

Sπ  is then defined to be the smallest element of the set of joint investment points
satisfying the condition.

With Sπ  defined as the lowest joint investment point such that the two functions
( )πLV  and ( )SJV ππ  ;  just touch one another, a sufficient condition for uniqueness of

Sπ  is that ( )JJV ππ ;   is strictly increasing in Jπ  for ( )CJ ππ  ,0∈ .  We derive
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(A5.2)
Thus, for any CJ ππ <  a higher value of Jπ  entails a strictly higher value of JV  at any
given value of π .

(b) To show that [ ]CS ππ  ,  forms a connected set satisfying the condition that
( ) ( )πππ LJJ VV ≥ ;  ( )Jππ  ,0∈∀ , [ ]CSJ πππ  , ∈  it is sufficient to show that
( )JJV ππ  ;  is increasing in both of its arguments for all ( ]CJ ππ  ,0∈ .  Since JJV π∂∂

evaluated at Cπ  equals zero, we can write

 0≥
∂
∂

J

JV
π

 for ( ]CJ ππ  ,0∈ . (A5.3)

It can easily be seen that

     ( ) 01
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∂
∂ −βπβπ

π JJ
J B
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Q.E.D.

The designated leader’s investment problem

The designated leader’s investment point, Dπ , is defined implicitly by
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where LB  is as defined following expression (25).  Having solved numerically for the value
of the trigger point Dπ , the option value constant DB  is then defined by
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Lemma 6. 1ππ <L  for h > 0.

Proof. From rent equalisation at Lπ  we know that ( ) ( )LFLL VV ππ = .  Using (21) and (25)
to substitute for the respective value functions at this point, and their derivatives, we can
write
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111 . (A6.1)
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From lemma 4 we know that LV  crosses FV  at Lπ  from below and must therefore have
the steeper slope, thus ( ) ( )LFLL VV ππ ′>′ .  Thus, the following upper bound for Lπ  can be
derived

( )
( )

ML K
h
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π
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β
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−
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11

1 . (A6.2)

Given the shape of the function ( )πY  (defined by (A1.1) above) of which 1π  is the root,
and since 2ππ <M , it is sufficient to show that ( ) 0<MY π .  It can readily be shown that
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(A6.3)

Thus, 1πππ << ML .  Q. E. D.



Figure 1: Preemptive leader-follower equilibrium
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Figure 2: Joint investment equilibrium
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1 This value could be interpreted as the expected NPV of profits in the relevant product

market or, if further sunk costs are required, might itself be the value of the option to invest
in this market, making investment in the research stage a compound option problem.

2 The restriction that µ < r, commonly found in real options models, is necessary to ensure
that there is a strictly positive opportunity cost to holding the option, so that it will not be held
indefinitely.  A large negative drift term would, ceteris paribus, encourage earlier
investment to raise the probability of winning the prize before its value declines significantly,
counteracting the option effects in the model.  To avoid such an outcome we make the
assumption that µ is non-negative.  Since the model is concerned with the effects of
uncertainty, not expected trends, the conclusions from the analysis are unaffected by this
assumption.

3 Thus the cost of R&D is fixed, or contractual in the terminology of Kamien and Schwartz
(1982).

4 To be precise, the statement that a firm invests at a trigger point π* means that the firm
invests at the time when the stochastic process π first hits the value π*, approaching this
level from below.

5  For further details see Fudenberg and Tirole (1985), section 4.
6 If smooth-pasting were violated and instead a kink arose at Uπ , a deviation from the

supposedly optimal policy would raise the firm’s expected payoff.  By delaying for a small
interval of time after the stochastic process first reached Uπ , the next step dπ could be
observed.  If the kink were convex, the firm would obtain a higher expected payoff by
entering if and only if π has moved (strictly) above Uπ , since an average of points on either
side of the kink give it a higher expected value than the kink itself.  If the kink were
concave, on the other hand, second order conditions would be violated.  Continuation along
the initial value function would yield a higher payoff than switching to the alternative
function and switching at Uπ  could not be optimal.  More detailed explanation of this
condition can be found in appendix C of chapter four in Dixit and Pindyck (1994).  Note that
this condition applies for all diffusion processes, not just a geometric Brownian motion such
as (1).

7 It is implicitly assumed that side payments may be used to ensure that neither firm has an
incentive to deviate; alternatively, the two firms may be separate research units controlled
by an integrated firm.

8 Smooth-pasting ensures that the first derivative of FLV +  is continuous at 1π .
9 An analogous effect is found in the duopoly models of Smets (1991) and Grenadier (1996).

The second, option value effect of rival investment is absent from these models, however.
10 With K adjusted appropriately so that the project’s expected value remains constant.
11 With µ adjusted in line so that the opportunity cost µδ −= r  remains constant.
12 Given that this proportion is determined largely by the duration of the patent and the degree

of monopoly power conveyed by the patent grant, this would not seem to be an
unreasonable assumption.

13 All values and trigger points are scaled up by the same proportion, leaving the optimal timing
of investment unchanged.


