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Following the first PCR confirmed case of COVID-19 in Kenya 
on 13th March 2020, the Kenyan government rapidly intro-
duced measures aimed at suppressing SARS-CoV-2 transmis-
sion in the country. These measures included: the closure of 
international borders, with the exception of cargo movement; 
closing of schools and other learning institutions; a ban on 
social gatherings and meetings; closure of places of worship, 
bars and restaurants; a dawn to dusk curfew; mandatory 
wearing of masks in public places; physical distancing guide-
lines including on public transportation; and restrictions on 
movement into or out of counties with high infection rates 
including the two main Kenyan cities, Nairobi and Mombasa 
(1) (Fig. 1). Despite these measures the rate of new COVID-19 
cases grew in Kenya indicating that measures had not been 
enough to consistently push the effective reproduction num-
ber R(t) < 1. Moreover, serological surveillance indicated that 
a higher than expected fraction of the Kenyan population had 
been exposed to SARS-CoV-2 given the case reports at the 
time: June 2020 adjusted seroprevalences, based on blood do-
nor samples from the Kenya National Blood Transfusion Ser-
vices (KNBTS), were 5.6% for Kenya, 8% for Mombasa, and 

7.3% for Nairobi (2). 
Detected COVID-19 incidence in Kenya first peaked in 

early August 2020 during a period of relaxation of measures: 
the end of the Nairobi and Coastal counties (including Mom-
basa) lockdown (7th June 2020), and the resumption of inter-
national air travel (1st August 2020). A single-wave epidemic 
in Kenya peaking within 100-200 days after SARS-CoV-2 in-
troduction into the country was initially predicted, based on 
assumptions that included a single population group, and the 
development of immunity to reinfection (3–6). However, sec-
ond and third waves occurred in mid-November 2020 and in 
March 2021, respectively. Multiple waves of COVID-19 inci-
dence in High Income Country (HIC) settings have usually 
been associated with a relaxation of previous restrictions, for 
example in the UK (7). More recently, the emergence of new 
variants has been associated with further waves of infection 
(8). In Kenya, and other countries in Africa, a temporal asso-
ciation between relaxation of restrictions and subsequent 
waves is implausible. Understanding the causation of such 
multiple waves is critical for forecasting hospitalization de-
mand and the likely effectiveness of interventions including 
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vaccination strategy. 
There are multiple potential explanations for sequential 

wave dynamics in COVID-19 incidence, which might be act-
ing singly or in concert: social clustering (9), changing adher-
ence to measures over time (7), seasonal effects on 
transmission (10), re-opening of places of learning (11), lower 
transmission rates in rural settings leading to later peaks in 
those areas (4), waning immunity after an infection episode, 
as well as the introduction of new SARS-CoV-2 variants which 
are more transmissible than previous strains, or/and, evade 
prior immunity acquired by natural infection (12). The de-
crease in cases following the peak of the first wave occurred 
at a time of relaxation of social distancing measures in Kenya 
(Fig. 1). Hence, the end of the first wave cannot be explained 
by the imposition of non-pharmaceutical interventions. In 
this work, we present evidence that the most plausible expla-
nation for the pattern of cases and seroprevalence observed 
in Kenya is a combination of differential adherence to 
measures between sub-populations which we identify with 
lower and higher socio-economic status (SES) in 2020 fol-
lowed by a sharp increase in virus transmissibility in 2021, 
consistent with that observed in other countries affected by 
variants of concern, e.g., the United Kingdom (13) and India 
(14). Previous studies undertaken in sub-Saharan Africa at 
the level of individual country (4) or pan-African exploring 
the impact of climate (15) have not had the opportunity to 
integrate longitudinal PCR, serology and Google mobility 
data. 

We developed a county-specific, two-socio-economic sta-
tus (SES) group, SEIRS-type transmission model, using a 
waning immunity rate derived from recent studies on the 
protectiveness of a natural infection to future reinfection (16–
19). Our model includes, for each Kenyan county: a) a SEIRS 
transmission model predicting new infections on each day, 
socio-economic group, and county, which accounts for assort-
ativity in infections; that is the propensity for infected indi-
viduals to cause more intra-group infections compared to 
inter-group infections; and b) an observation model reflect-
ing the data streams: PCR testing (positive and negative re-
sults), seroprevalence surveys, google mobility data, and 
determined COVID-19 deaths. The model developed for this 
paper differs from the standard SEIRS model with homoge-
neous mixing, adding the impact of new variants as detected 
by genomic surveillance and allowing the model to fit two 
socioeconomic groups in counties where this was supported 
by the data streams. We used a hierarchical approach to in-
ferring the underlying epidemic trajectories in each of the 47 
Kenyan semi-autonomous counties by the following three 
steps: a) grouping counties by similarity over a range of soci-
ological and epidemiological metrics using machine learning; 
b) for the 11 counties with a relatively high density of serology 
tests we jointly inferred epidemiological model parameters 

for each county e.g., i) baseline R0 for the county, ii) the effect 
of schools being open on R(t), iii) the increase in transmissi-
bility in February 2021 when B.1.1.7 lineage (alpha variant) 
SARS-CoV-2 was first detected in Kenya (20), iv) the fraction 
of the population in the higher SES group in each county and 
their assortative mixing rate, and v) the fraction of cases re-
ported for the county using Hamiltonian Markov chain 
Monte Carlo (21) with mildly informative priors, and c) we 
inferred model parameters for the remaining 36 counties us-
ing informative priors for reporting fractions derived from a 
synthesis of the posterior distributions of counties grouped 
as similar to that county (see supplementary materials for de-
tails). We conducted formal model selection to compare one, 
two, and three socio-economic status group models, finding 
that the one-group model was an inadequate fit to the data, 
and the three-group model was not an improvement on the 
two-group model (see supplementary materials). We have 
also conducted sensitivity analysis for different assumptions 
on waning immunity, finding consistent results for a range of 
scenarios (see supplementary materials). 

The two-SES group transmission model was able to cap-
ture the timing and intensity of all three waves of Kenyan 
COVID case incidence and the trend of increasing proportion 
seropositive among KNBTS donors (Fig. 2). We also validated 
the fitted model by comparing forecasts of seropositivity 
rates with those from data not used to infer model parame-
ters. We used rounds 1 and 2 of the seropositivity survey using 
KNBTS donors for model parameter inference, collected dur-
ing May – September 2020. Estimated seroprevalence among 
the Kenyan population, derived from the fitted two-SES 
group transmission model, was in good agreement with the 
out-of-sample round 3 of KNBTS seroprevalence data, col-
lected January – March 2021 (Fig. 2). The Nairobi-specific ep-
idemic trajectory inferred in this study agrees with 
seroprevalence estimates from a randomized survey from 
Nairobi, and, is congruent with the observation that it was 
public hospitals in Nairobi (favored by lower SES groups) 
that came under pressure in the first wave, whereas the sec-
ond wave showed increased admission to private health facil-
ities (figs. S7 and S8). As well as capturing the past trends of 
case reporting and seropositivity in Kenya, the fitted two-SES 
group transmission model accurately predicts the daily rate 
of new confirmed COVID-19 cases reported by the Kenyan 
Ministry of Health for the month after the censoring date of 
the PCR test data used to infer model parameters (Fig. 2). 

The two-SES group transmission model reconciled the ap-
parent paradox between evidence of the effectiveness of the 
rapidly introduced Kenyan measures in reducing mobility 
out of the home among Kenyan smartphone users, which was 
close to that observed in European and North American 
countries (fig. S1), and that case rates and fatality rates dis-
play two distinct waves in Kenya in 2020. The model provides 
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an explanation for the end of first wave through the depletion 
of susceptibles in geographically distinct, largely urban, sub-
populations of lower socio-economic status. In some Kenyan 
counties (e.g., the urban counties Nairobi and Mombasa, and 
some of the semi-urban counties) we infer that a substantial 
group of people belong to the higher SES group whose mobil-
ity is well-represented by Google smartphone data; a combi-
nation of school closures and reduction in mobility (by 44.5% 
see supplementary materials) reduced the effective reproduc-
tive number sufficiently that newly infected people among 
the higher SES group were on average generating less than 1 
secondary infection by April 2020 (Fig. 3). In the counties 
where the model finds evidence for distinct two group dy-
namics (fig. S13), the model predicts low rates of inter-group 
infection transmission (posterior mean for the assortativity 
parameter estimates of 2-40 disassortative infections per 
1000 potential infection events). We believe this can be as-
cribed to pandemic-induced changes in social behavior that 
enhanced intra-SES group infectious contacts (such as longer 
contact durations in families or local communities) and de-
creased inter-SES group infectious contacts due to, for exam-
ple, avoiding public transport and cancelling domestic staff 
visits. The growth rate in cases, and relatively high levels of 
seroprevalence among KNBTS donors, are explained by the 
rest of the population in the lower SES group having R(t) > 1 
into May and June 2020 (Fig. 3). The model inferred that the 
reduction in mobility among the lower SES group was sub-
stantially less than among the higher SES group: the poste-
rior mean estimate for reduction in mobility among the lower 
SES group in Nairobi was 13.8% (CI 11.3-17.5%), in Kenya’s 
second city Mombasa was 18.9% (CI 17.4-20.4%), and poste-
rior mean estimates for lower SES group mobility reduction 
across all 47 Kenyan counties had a median of 15.7% (IQR 
10.9-19.6%). We assumed that school closures reduced R(t) 
for both SES groups equally. The inferred reduction in R(t) 
due to schools closing varied from county to county, the me-
dian reduction in R(t) over counties was 13.5% (IQR 4.3-
23.7%; Nairobi estimate for school closure effect was 23.8% 
CI 16.5-31.6%, Mombasa estimate for school closure effect was 
20.2% CI 15.2-25.2%; Fig. 3). 

The second wave in Kenya in 2020 was due to the super-
imposition of two trends: a) in mainly urban areas, a second 
wave was triggered by the higher SES group returning to pre-
COVID-19 mobility patterns by early November 2020 (fig. S1), 
and, therefore, R(t) was >1 for the higher SES group (Fig. 3 
top and bottom left); and b) in more rural areas the inferred 
size of the higher SES group was small, and R(t) was low but 
persistently >1 for the lower SES group (R(t) ~ 1-1.5) until No-
vember 2020 (Fig. 3 bottom right, fig. S13, and see supple-
mentary materials). Low rates of mobility somewhat shielded 
the higher SES group from infection in the first wave among 
the lower SES group. Therefore, the lower SES group, in 

cities, suffered two waves in 2020, whereas the higher SES 
group effectively suffered one wave peaking in late 2020 (Fig. 
4). The overall detection rate was determined in part by the 
number of PCR tests performed each day, and this rate 
dropped in September 2020 (fig. S4). A consequence of the 
drop in the testing rate was that the case reporting shows a 
much sharper delineation between the first two waves (Fig. 
2) than the underlying inferred infection rates (Fig. 4), which 
reveal that there was only a moderate dip in infections in Au-
gust/September 2020. By accounting for the delay between 
infection and COVID-19 fatality, and fitting SES group spe-
cific infection-fatality-detection ratios (IFR-detection, see 
materials and methods and supplementary materials) to each 
county, we found reasonable agreement between the pre-
dicted and observed timings of peak fatality rates in Kenya 
(Fig. 4). Overall, our model-based estimate was that only 11% 
of the total Kenyan population were in the higher SES group, 
whose mobility was well-described by Google mobility data, 
with the highest concentration of higher SES group individ-
uals in the two main cities: 43.4% of the Nairobi population 
(CI 35.4-49.2%) and 40.3% of the Mombasa population (CI 
35.0-45.4%). Additionally, we estimate that infections among 
the higher SES group were substantially more likely to be de-
tected than among the lower SES group: odds ratio for Nai-
robi for detection per case between higher and lower SES 4.5 
(CI 1.5-17.9), for Mombasa for detection per case between 
higher and lower SES 4.8 (CI 3.2-6.8). The odds ratio between 
detection per infection in the two SES groups was inferred to 
be even more extreme across Kenya as a whole, with substan-
tial variation from county to county: median odds ratio esti-
mate over counties was 18.5 (counties estimate IQR 2.5-27.9), 
although most counties had a small number of people in the 
higher SES group. 

Fully reopening schools in January 2021 was associated 
with a slight increase in cases and deaths in Kenya, with a 
peak in January and early February 2021 (Figs. 3 and 4). How-
ever, school reopening does not explain the third wave in 
Kenya observed in March and April 2021, which was consid-
erably larger than the increase in January/February 2021. The 
two SES group model was not a sufficient explanation for a 
third wave, neither was loss of immunity or any detectable 
trend in mobility. The first cases of the more transmissible 
Alpha variant B.1.1.7 were identified in Kenya from mid-Jan-
uary 2021 (20). We investigated if the data supported an in-
crease in transmissibility per infected person starting at the 
beginning of February 2021 as well as an influx of new ex-
posed individuals representing domination of wildtype 
strains of SARS-CoV-2 by a fitter new variant. In the Kenyan 
urban counties, we found credible range of increase in trans-
missibility of 15.0-46.6% (Nairobi 32.5% CI 18.1-46.6%; Mom-
basa 22.8% CI 15.0-31.2%), and this was reflected in increased 
transmissibility estimates across Kenyan counties: median 
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over county estimates 46.1% (IQR 31.6-72.9%). The fitted 
model predicted that this large increase in transmissibility 
will push the overall exposure to SARS-CoV-2 in Kenya from 
a back-calculated estimate of 53.5% in February 2021 to 78.1% 
by June 2021 (Fig. 2). The rate of seroreversion, that is the 
loss of detectable antibodies rather than necessarily loss of 
protective immunity, has been identified as an important 
quantity for estimating population exposure prevalence from 
serological data (22). Because the serological data used for 
parameter inference was collected within 7 months of the 
first identified case in Kenya, we assumed that seroreversion 
was negligible over this period. However, we note that assum-
ing no future seroreversion led to closer agreement between 
model back-calculation and round 3 KNBTS data than assum-
ing a median 1 year between infection and seroreversion (Fig. 
2); that is that our modelling doesn’t support the need to in-
corporate seroreversion to capture the true population expo-
sure over the time scale of a year, unlike for Buss et al.  (22). 
This finding highlights that seroreversion rate depends on 
the serological assay used (23) and cannot necessarily be ex-
trapolated between settings. A negligible seroreversion rate 
may be more applicable for the ELISA used in Kenya where 
the cut-offs prioritize specificity over sensitivity (2, 24). 

Our modelling exercise provides a credible mechanistic 
interpretation of the three waves of COVID-19 in Kenya. We 
hypothesize the presence of two SES groups in each county 
and allow the model freedom to fit the relative proportion in 
each by county, inferred from locally collected PCR and sero-
logical test data. The model results support the notion of two 
SES groups in urban settings defined by highly assortative 
mixing (Nairobi, Mombasa and predominantly counties near 
Nairobi) whereas for most rural counties mixing was inferred 
to be less assortative and/or effectively all the population is 
in a single SES group (fig. S13). We invoke two key underlying 
assumptions. First, a stratified population differing in mobil-
ity (associated with lower and higher SES), and second, in-
creased virus transmissibility compatible with competitive 
succession of a SARS-CoV-2 variant of concern in wave 3. A 
key simplifying assumption in this modelling study is that we 
assumed that the diversity of behaviors across the population 
in each Kenyan county can be reduced to stratifying into two 
groups with assortative mixing favoring transmission within 
group, and identifying these groups into lower and higher 
SES groups based on similarity to mobility trends among 
smart phone users. We believe that this is a well-evidenced 
hypothesis for Kenya. Marked social and economic structur-
ing has been described in Kenya; 36% of the population live 
below the national poverty line (25) and 55% live in informal 
settlements (26). Further, 83% of Kenya’s labor market is in-
formal, characterized by unstable and unpredictable daily 
wages (27). Lower socio-economic groups have been identi-
fied as vulnerable to SARS-CoV-2 in the global South due to 

residence in informal settlements at high population density, 
reduced access to sanitation, and dependence on informal 
employment requiring daily mobility (28, 29). In contrast, the 
higher SES group with job security can work from home, so-
cially distance and readily access water and sanitation, 
thereby decreasing transmission. In Kenya, Google mobility 
data from smartphone users indicates a sharp decline in 
movement to settings outside of the home (fig. S1). We found 
that the two SES group model used in this paper was able to 
capture pattern of cases and seroprevalence in Kenya over 
the first three waves, despite radically simplifying the under-
lying social structure. 

We predict the proportion of the Kenya population ex-
posed to SARS-CoV-2 to be greater than 75% by the beginning 
of June 2021 (Fig. 2), corresponding to around 39 million peo-
ple. However, less than 4,000 confirmed COVID-19 deaths 
and 180,000 confirmed SARS-CoV-2 infections have been 
identified as of the 1st June 2021. We found that people among 
the lower SES group were likely to be even more under-sam-
pled than people among the upper SES group, as well as iden-
tifying wide regional variation in the detection rate. These 
results emphasize the necessity of community surveys of 
SARS-CoV-2 prevalence, exposure, and an investigation into 
the under-reporting of mortality and severe disease due to 
COVID-19. Multiple waves have been observed in many other 
African countries that do not appear to be completely ex-
plained by the timing of restrictions, and since they also have 
in common similar socio-economic groupings in urban cen-
tres, we speculate the explanations found to be plausible in 
our model for Kenya may apply more widely. 

The high population exposure suggests that a fourth 
COVID-19 wave in Kenya before the end of 2021 would only 
be likely if (i) a variant arises with substantial further en-
hancement in transmissibility or immune escape, such as the 
B.1.617.2 Delta variant (30), or (ii) significant waning of im-
munity in those previously exposed. We predict that approx-
imately 75% of the Kenyan population have been exposed to 
SARS-CoV-2 by June 2021. This will mitigate the death rate 
that might be expected in the future but taking together a) 
the markedly increased transmissibility of Delta variant; b) 
the potential for re-infection and c) the experience of other 
countries despite prevalent vaccination, this scenario is en-
tirely consistent with a significant fourth wave in Kenya. We 
conclude that our analysis which triangulates PCR test, sero-
prevalence, mobility and genomic data to develop a coherent 
explanation of the transmission dynamics of COVID-19, pro-
vides insight of public health importance in Kenya, including 
targeting health care capacity and pharmaceutical and non-
pharmaceutical interventions. 
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Fig. 1. 7day moving average of daily positive PCR tests from the Kenyan national linelist and a 
timeline of the main mitigation events applied by the Kenyan government representing tightening 
(down-arrow) and relaxation (up-arrow) of measures. (a) curfew from 7pm to 5am; (b) curfew from 
11pm to 4am; (c) curfew from 10pm to 4am; (d) front line workers and individuals older than 58 years 
(approximately 1.2m doses); (e) the region includes Nairobi, Kajiado, Machakos, Kiambu, Nakuru; (f) 
this restricted movement into and out of the block of counties in (e) but not between these counties; 
(g) curfew from 8pm to 4am. 
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Fig. 2. Daily PCR confirmed COVID-19 cases (top) and weekly serology 
estimates from KNBTS donors with overall attack rate estimates 
(bottom). Shown are daily numbers of PCR test positives from the Kenyan 
national linelist (top; grey dots are daily reports used for fitting the model, 
curves are 7-day moving averages). The model prediction for the 7-day 
moving average of daily case incidence (top; red dash curve, shading shows 
3-sigma intervals) were derived from inference on the county-specific linelist 
PCR data and rounds 1 and 2 of the KNBTS serology survey (bottom; blue 
dots). Predictions before mid-April 2021 are back-calculations using known 
numbers of PCR tests per day, whereas, after mid-April 2021 model 
predictions are forecasts which also estimate the number of PCR tests that 
will occur per day in each county. We show the next month of PCR test 
positive data, not used in fitting, as a validation of the model short-term 
predictive accuracy (top; black dashed curve). Back-calculated model 
estimates of seropositivity (bottom; green solid curve) are shown with round 
3 of the KNBTS serology survey data (bottom; red dots, not used in model 
inference). We also show back-calculated estimates of seropositivity under 
the assumption that median time to seroreversion (loss of detectable 
antibodies rather than loss of immunity) from infection was one year. Model 
estimates of overall Kenyan seropositivity are adjusted from county-specific 
estimates by weighting by number of serology tests in each county (over 
KNBTS rounds 1 and 2). The overall estimated Kenyan attack rate 
(population exposure) is shown as unweighted (bottom; red curve). 
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Fig. 3. Effective reproductive number over time (R(t)) for lower and higher 
SES groups in four representative counties. These include Nairobi (top 
left), Mombasa (top right), Kiambu (bottom left), and, Mandera (bottom 
right). Nairobi and Mombasa are Kenya’s two largest cities and form fully 
urban counties, Mandera county has a largely rural population and is remote 
from the main urban conurbations, Kiambu county borders Nairobi and has 
a ~60% urban population. The transmission model infers the proportion of 
the population in each SES group in each county. The highest proportion of 
higher SES group individuals are inferred to be in Nairobi and Mombasa out 
of all counties, whereas for Mandera county very close to all individuals are 
inferred as being in the lower SES group and the model effectively defaults 
to one group SEIRS transmission. The model inference for R(t) in Kiambu 
represents a county between these two extremes. In each county, the first 
discontinuous increase in R(t) is due to schools reopening, and the second is 
due to more transmissible variants becoming dominant in transmission. 
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Fig. 4. Model inferred underlying true incidence rates by SES group 
relative to the whole Kenyan population size (top) and reported PCR-
confirmed deaths due to COVID-19 disease (bottom). The size of the upper 
SES group was estimated to be 11% of the Kenyan population, explaining the 
lower absolute rate of incidence (red curve) compared to the lower SES 
group (blue curve). We inferred that the lower SES group have experienced 
three waves of SARS-CoV-2 transmission, whereas the upper SES group has 
experienced two. The model fit for seven day moving average (green dashed 
curve, with shading as 95% PIs) is shown against the seven-day moving 
average for deaths reported in the Kenyan linelist (black curve). Cumulative 
observed and fitted deaths are shown in the top-right inset. 
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