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Abstract

In this thesis, we present theoretical studies and molecular dynamics (MD)
simulations of nanoscale interfacial flows taking the crucial effects of thermal fluc-
tuations and slip into account.

Adopting a long-wave approximation to Fluctuating Hydrodynamics, we de-
rive stochastic lubrication equations (SLEs) for planar films and annular films with
slip modelled. It is found that Navier’s slip condition has to be modified by including
a random stress at the boundary and relating its covariance with slip.

This ‘long-wave’ paradigm used to derive the SLEs has the inherent prob-
lem of being inaccurate for dynamics of interfacial waves with short wavelengths.
We thus propose a Langevin equation to overcome this inadequacy, based on the
Ornstein-Uhlenbeck process and classic Capillary Wave Theory (CWT).

Using the SLE, we investigate the effects of thermal fluctuations on the in-
stability of dewetting nanofilms. A linear stability analysis of the SLE allows us
to derive a power spectrum for the surface waves, which is quantitatively validated
against the spectrum observed in MD. Thermal fluctuations are shown to be critical
to the instability of nanoscale films. Compared to the classical instability mech-
anism, which is driven by disjoining pressure, fluctuations (a) massively amplify
the instability, (b) create a time-dependent fastest growing wavenumber, and (c)
increase the critical wavenumber so that classically stable films can be ruptured.

The proposed Langevin model can describe both the growth of capillary wave
spectra and the relaxation of capillary wave correlations, with the former providing
a time scale for the surface to reach thermal equilibrium. The capillary spectra of
planar films are found to advance towards a static spectrum described by CWT,
with the roughness of the surface W increasing as a power law of time W ∼ t1/8

before saturation. However, the spectra of an annular film (with outer radius h0)
are unbounded for dimensionless wavenumber qh0 < 1 due to the Rayleigh-Plateau
instability. Slip is shown to accelerate the growth of spectra for both kinds of films.

Temporal correlations of interfacial Fourier modes for nanofilms on anisotropic-
slip substrates, measured at thermal equilibrium in MD, demonstrate that (i) larger
slip lengths lead to a faster decay in wave correlations, and (ii) unlike on isotropic-slip
substrates, the time correlations of waves on anisotropic-slip substrates are wave-
direction dependent. These findings can be well predicted by the Langevin model
with a newly derived dispersion relation considering the anisotropic-slip condition.
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Chapter 1

Introduction

1.1 Research background

The emergence of microfluidic and nanofluidic technologies has focused attention

on the nature of liquid flows at the nanoscale. These flows can often behave in a

manner that is qualitatively different from those at the macroscale. One important

difference is the breakdown of the deterministic description at the nanoscale and

the increasingly dominant role of thermal fluctuations of liquid molecules. For ex-

ample, at the nanoscale, the position of a contact line in equilibrium is not fixed,

as deterministic models predict, but instead fluctuates with a Gaussian probabil-

ity distribution (see Fig. 1.1(a)) [1]; the free surface of a liquid film at rest is not

flat, but instead fluctuates due to thermal capillary waves [2]; the breakup of liq-

uid nanojets in molecular dynamics simulations (MD) shows a double-cone rupture

profile, in contrast to the long-thread profile predicted by deterministic equations

(see Fig. 1.1(b)) [3]; and, deterministic models fail to accurately predict the rupture

time of a dewetting polymer nanofilm [4, 5].

Stochastic modelling is thus essential to capture nanoscale flow physics,

and broadly there are two options: a model based on Langevin theory or one

based on fluctuating hydrodynamics (FH). Langevin theory is based on fluctuation-

dissipation theorem and its applications to stochastic modelling include Brownian

motion, single-file water transport in carbon nanotubes (CNT) [6], fluctuating con-

tact lines [1, 7], fluctuating contact angles [8], and more. The equations of FH pro-

posed by Landau and Liftshiz [9] are stochastic versions of the Navier-Stokes (NS)

equations, with thermal fluctuations modelled by an additional random stress ten-

sor. The applications of FH include the study of fluctuations in a dilute gas [10],

fluctuations in diffusively mixing fluids [11], and the rupture of nanoscale liquid jets

1



Figure 1.1: (a) Fluctuating contact lines in a liquid bridge between the two solid
plates simulated in MD simulations. Reproduced from [1]. (b) Breakup of nanojets
simulated by MD simulations, LE (deterministic lubrication equation) and SLE
(stochastic lubrication equation). Reproduced from [3].

and films [3, 5].

Another aspect that makes nanoscale flows differ from macroscale flows is

the breakdown of the no-slip condition, and the greater importance of slip effects

on flows. For instance, the fast water transport inside CNTs, which is far beyond

the predictions of no-slip hydrodynamics, can be attributed to slip at the water-

carbon interface [12]. This flow-rate enhancement makes CNTs promising membrane

materials for ultrafiltration devices [13, 14]. Thus, incorporating slip condition is key

to describing nanoscale flows correctly.

Interfacial flows (in our case, flows involving free surfaces) are commonly

encountered at the nanoscale, such as in nanojets [3], nanofilms [4], nanobubbles

and nanodroplets [15], with a host of applications in modern technologies, such as

nanoprinting and nanocoating [16]. It is of broad interest to investigate the mutual

effects of thermal fluctuations and liquid-solid slip on nanoscale interfacial flows,

but this remains a challenge, posing difficult questions about how to model them

correctly.

This thesis seeks to develop new theories to describe nanoscale interfacial

flows with thermal fluctuations and liquid-solid slip, based on the FH equations and

Langevin theory. The developed new theories are then used to study the instability

of nanofilms on substrates and dynamics of thermal capillary waves. Understanding

the instability mechanism of nanofilms is important for preventing film rupture

during nanocoating. Studying the dynamics of thermal capillary waves is helpful

for establishing a non-invasive technique to measure the properties of soft matter or

biological fluids that can be sensitive to external forces.

So far, experimental studies on the effects of thermal fluctuations on nanoscale

interfacial flows have been limited due to the technical difficulties associated with
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the spatio-temporal scale. As such, MD simulations are a convenient tool to validate

all new theories developed, and they are used throughout this thesis.

1.2 Thesis overview

This thesis has the following structure:

• Chapter 2 gives a literature review of thin-film flows (with or without ther-

mal fluctuations), thermal capillary waves (TCWs), and liquid-solid slip. We

outline how thermal fluctuations are modelled in thin-film flows and thermal

capillary waves in literature, and the challenges faced in simultaneously con-

sidering thermal fluctuations and slip .

• Chapter 3 develops the new theories used in this thesis. Starting with FH

equations, the stochastic lubrication equations (SLE) with slip effects are de-

rived for nanoscale films on both planar and cylindrical substrates (Planar-film

SLE and Annular-film SLE, respectively), using a long-wave approximation to

FH equations. Knowing that the assumption of long waves may be inaccu-

rate for the dynamics of interfacial waves with short wavelengths, a Langevin

model is developed based on the Ornstein-Uhlenbeck process and classic Cap-

illary Wave Theory that overcomes this inadequacy.

• Chapter 4 introduces the foundations of molecular dynamics (MD) simula-

tions for the general reader. Then, the MD models of liquid films and sub-

strates (plates and fibres in geometry), which are used throughout this thesis

to validate new theories, are presented. We also present the method used to

extract free-surface positions from MD simulations, and validate the formula

of Laplace pressure at the nanoscale.

• Chapter 5 studies the effects of thermal fluctuations on the instability of

nanofilms lying on planar substrates, using MD simulations and the Planar-

film SLE developed in Chapter 3. We repeat the classical linear stability

analysis of the deterministic Planar-film LE, in which disjoining pressure is

thought to be the cause of the dewetting of nanofilms. We then conduct a lin-

ear stability analysis of the Planar-film SLE and derive a surface spectrum to

reveal the effects of thermal fluctuations on the nanofilm instability. MD sim-

ulations of nanofilm dewetting are performed and compared with the surface

spectrum derived from the Planar-film SLE.
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• Chapter 6 discusses the evolution of TCW spectra for nanofilms on plates

and fibres with initially smooth surfaces. Time-dependent capillary spectra

are obtained from the SLEs and Langevin model, which are then compared

with MD simulations. Scaling relations are used to analyse the surface rough-

ening of nanofilms on plates. Slip effects on the capillary spectra and surface

roughening are also discussed.

• Chapter 7 investigates the relaxation of TCW correlations on an anisotropic-

slip substrate. We discuss how the surface anisotropy modifies the Navier’s

slip boundary condition. A new dispersion relation for Stokes flow with the

anisotropic-slip boundary condition is derived. This dispersion relation is then

built into the Langevin model to predict the results from MD simulations of

TCWs on anisotropic-slip substrates. We also discuss the applicability of using

TCWs to measure anisotropic slip in experiments.

• Chapter 8 is the concluding chapter of this thesis. We summarise our findings

and outline future directions in this chapter.

1.3 Published articles

1. Yixin Zhang, James E. Sprittles, and Duncan A. Lockerby, Molecular simula-

tion of thin liquid films: Thermal fluctuations and instability, Physical Review

E 100.2 (2019): 023108. (Editor’s suggestion)

2. Yixin Zhang, James E. Sprittles, and Duncan A. Lockerby, Nanoscale thin-

film flows with thermal fluctuations and slip, Physical Review E 102.5 (2020):

053105.

3. Yixin Zhang, James E. Sprittles, and Duncan A. Lockerby, Thermal capillary

wave growth and surface roughening of nanoscale liquid films, Journal of Fluid

Mechanics, 2021, 915.

4. Yixin Zhang, Duncan A. Lockerby, James E. Sprittles, Relaxation of ther-

mal capillary waves for nanoscale liquid films on anisotropic-slip substrates,

Langmuir, accepted.
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Chapter 2

Literature review

This chapter gives a literature review of two kinds of important and extensively

studied interfacial phenomena: thin-film flows (Sec. 2.1) and thermal capillary waves

(Sec. 2.2). As both phenomena will involve liquid-solid boundaries in this thesis, the

recent advances in the understanding of nanoscale slip is also discussed (Sec. 2.3).

2.1 Thin-film flows

Thin liquid films are ubiquitous in a variety of settings such as lava flows, tear films

in the eye, foam films, falling water threads from a tap, and coating layers of a fibre

or plate [17].

They are characterised by disparities of length scale in different dimensions,

i.e. the ratio of film width to film length is very small: ε = h/λ � 1. This

allows the adoption of a long-wave approximation to derive lubrication equations

(LE) from the full NS equations, reducing the dimensionality of the problem. In

terms of macroscopic thin-film flows, which are well studied, deterministic LEs have

been developed from NS: for liquid jets (which we here refer to as the ‘Jet LE’) to

study their breakup [18]; for planar liquid films on plates (the ‘Planar-film LE’) [17],

which has important applications in dewetting of polymer films [4, 19], as shown in

Fig. 2.1(a); and for an annular liquid film on a fibre (the ‘Annular-film LE’) [20–

23], which is used to predict the surface morphologies of falling liquid films down a

fibre [20, 21] and the dynamics of fibre coating [22, 23], as shown in Fig. 2.1(b). LEs

are much simpler to solve than the NS, and can be easily extended to consider many

interesting effects, such as electric field forces [24, 25], Marangoni stresses [26, 27] and

evaporation [28].

The instability of thin liquid films has been extensively studied using those
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Figure 2.1: A comparison of thin-film experiments and numerical solutions of LEs.
(a) Dewetting of a thin film on a plate. The top panel shows experimental results
and the bottom panel shows simulations of the Planar-film LE, reproduced from [4];
(b) Falling of an annular film down a fibre. Experimental results (left) compared to
simulations of the Annular-film LE (right); reproduced from [21].

LEs. In some circumstances, the instability of films needs to be prevented, such

as when coating a fibre or a plate. In other situations, the instability of films

is exploited, such as in recently-developed printing technology that relies on the

rupture of thin liquid threads [29]. In either case, understanding the instability

mechanisms is necessary for making accurate predictions.

The instability of liquid jets or annular films around fibres is due to the well-

known Rayleigh-Plateau instability, where the destabilising surface tension force

from the circumferential curvature competes with the stabilising surface tension

force from the axial curvature, as described by the equations of Jet LE [18] and

Annular-film LE [21].

In contrast, the spontaneous dewetting of thin liquid films (< 100 nm) de-

posited on planar substrates is considerably more complicated, but the study of

the responsible instabilities is of broad engineering interest due to a myriad of

applications in coatings [30, 31], lubricants [32], chemical sensors [33] and microflu-

idics [34]. Dewetting experiments of polymeric [35–39] and metal films [40] have re-

vealed three different instability mechanisms [41]: spinodal dewetting due to the
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Figure 2.2: Three kinds of dewetting mechanisms and the corresponding dewettng
patterns. Reproduced from [43].

undulation growth by disjoining pressure; thermal nucleation of random holes; and

heterogeneous nucleation around defects. Varying dewetting mechanisms lead to dif-

ferent dewetting patterns, which are shown in Fig. 2.2. While the rupture of a film

can be influenced by all three modes simultaneously [42], the breakup of relatively

thin films, where the disjoining pressure is strong, is dominated by the spinodal

dewetting mode [35–38]. In this regime, thermal roughness can be amplified by the

disjoining pressure, but in competition with the restoring force of surface tension,

such that only disturbances above a critical wavelength (λc) grow. This can be

determined by a linear stability analysis of the Planar-film LE. A dominant wave-

length (λd), which grows fastest, is also obtained from the linear analysis and it is

often used to estimate the rupture time and the number of holes/drops after film

rupture [41].

The presence of unstable modes can be used as an indication that spinodal

dewetting is the primary dewetting mechanism for a particular liquid film [35, 39,

40, 42], which can be investigated by Fourier transforms of free-surface profiles.

For example, Xie et al. [35] studied the dewetting of polystyrene films on a silicon

substrate with varying thickness. The radially averaged interfacial Fourier modes for

films with thickness < 10 nm indeed show that the critical wavenumber qc (= 2π/λc)

and dominant wavenumber qd (= 2π/λd) exist (see Fig. 2.3(a)), indicating that the

dewetting is spinodal dewetting. Similar observations were also reported in other

dewetting experiments of thin films [44] shown in Fig. 2.3(b).

These experimental studies appeared to suggest that the deterministic Planar-

film LE is accurate enough to predict the dewetting of nanofilms. However, although

the dewetting pattern in experiments performed in [4] agrees with numerical solu-

tions to the LE (see Fig. 2.1(a)), a quantitative analysis of the dewetting time

showed that the results from experiments were much faster than the predictions of
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Figure 2.3: Fourier transforms of the surface of dewetting films in two independent
experiments. The y-axis in both figures represent the amplitude of surface modes.
(a) Reproduced from [35]; (b) Reproduced from [44].

the Planar-film LE. As dewetting is often observed for films at the nanoscale, one

can expect that thermal fluctuations will influence the dewetting. However, pending

a theoretical breakthrough in stochastic modelling of interfacial flows using a long-

wave approximation to Fluctuating Hydrodynamics (FH) equations, little progress

has been made to understand the effects of thermal fluctuations.

Moseler and Landman [3] were pioneers in deriving a stochastic lubrication

equation (SLE) from FH using a long-wave approximation. They proposed an SLE

for nanojets (the ‘Jet SLE’) that is able to predict the double-cone rupture profile

observed in MD, unlike the deterministic Jet LE (see Fig. 1.1(b)). Later, based on

the Jet SLE, Eggers [45] confirmed that thermal noise leads to a symmetric self-

similar rupture profile and thermal fluctuations speed up the rupture.

Similarly, Grün et al. [5] derived a SLE for planar liquid films on substrates

Figure 2.4: A comparison of numerical solutions to the Planar-film SLE (Red line)
and LE (Blue line) starting with the same initial condition. Reproduced from [46].
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(the ‘Planar-film SLE’) able to reconcile the aforementioned discrepancy in dewet-

ting time between experiments [4] and solutions to the Planar-film LE. Indepen-

dently, Davidovitch et al. [47] derived the same Planar-film SLE but in a study of

nanodroplet spreading where thermal fluctuations are shown to enhance the spread-

ing. The rupture of thin films has subsequently been widely investigated by numer-

ical solutions to the Planar-film SLE [5, 46, 48–50], showing thermal fluctuations

do indeed speed up the instability growth. For example, in Fig. 2.4, droplets have

already formed after film dewetting from the results of the SLE (red line) but per-

turbations only start to grow from the results of the LE (blue line) [46].

These numerical solutions to the Planar-film SLE are able to focus on the

effects of thermal fluctuations on the rupture of nanofilms, which is at the nonlin-

ear stage of instability of nanofilms. To consider the effects of thermal fluctuations

on the linear stability of nanofilms, Mecke and Rauscher [51] analytically derived a

spectrum for the surface waves using the Planar-film SLE, and showed that noise

can shift the spectrum from exhibiting an exponential to a power law decay with in-

creasing wavenumbers for large wave vectors. This finding was later investigated in

experiments on the dewetting of thin polymer films [52]. However, due to experimen-

tal limitations, a direct comparison between the theoretical and the experimental

spectrum could not be made. Diez et al. [48] considered the noise to be spatially

correlated and found that to produce close agreement between their theoretical

spectrum and experimental data for metal films, different correlation lengths for the

non-white noise had to be employed, as shown in Figs. 2.5 (a) and (b), where sym-

bols are experimental results and solid red lines are the analytical solutions. The

Figure 2.5: A comparison of experimental spectra (symbols) and analytical spectra
(solid-red lines). (a) spectra at early time with a small correlation length. (b)
spectra at later time with a large correlation length. Reproduced from [46].
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Figure 2.6: Time-lapse TEM images showing ionic liquid flowing along two SnO2

nanowires, reproduced from [34].

spectra in Figs. 2.5 (a) are obtained at an early time with a small correlation length

while the spectra in Figs. 2.5 (b) are at a later time with a large correlation length.

So far, experimental studies on the effects of thermal fluctuations on thin-

film flows are extremely limited due to the technical difficulties associated with the

spatio-temporal scale. As thermal fluctuations are inherent in MD simulations, they

are useful tools to improve our understanding of the effects of thermal fluctuations

on thin-film instability. For example, recently Zhao et al. [53] derived a spectrum for

surface waves of a nanojet using the Jet SLE and found good agreement with MD

simulations. In this thesis (Chapter 5), we conduct MD simulations of the dewetting

of liquid films on substrates, and focus on the influence of thermal fluctuations on

the initiation of instability by comparing the spectra from MD simulations directly

with the analytical spectra with or without thermal fluctuations. This allows us to

reveal how thermal fluctuations change the classical instability mechanism such as

the critical and dominant wavenumbers.

Both the existing Jet SLE and Planar-film SLE can be viewed as extensions

of the Jet LE and Planar-film LE with an additional, appropriately-scaled, noise

term. However, an extension of the Annular-film LE to a stochastic version (an

‘Annular-film SLE’) is performed for the first time in this thesis. An analysis of

this geometry is timely, being driven by state-of-the-art applications, such as, the

use of nanofibres to transport annular films of liquids [34] (see Fig. 2.6) and the

manufacture of ultra-smooth optical fibres [54].
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Figure 2.7: (a) TCWs and roughness on ultra-low surface tension interface. Sub-
figures are arranged with decreasing surface tension from top to bottom, reproduced
from [2]. (b) Decay of the temporal correlations of TCWs for three different wavenu-
mers [55].

2.2 Thermal capillary waves

A well developed topic of nanoscale interfacial flows with thermal fluctuations is

thermal capillary waves (TCWs), which lead to the roughness of the free surface

of a liquid film at rest. The roughness created by TCWs is usually on the scale of

nanometres, but it has also been observed optically at the microscale in ultra-low

surface tension mixtures [2], as shown in Fig. 2.7(a).

Traditionally, research in TCWs has been strongly focused on the analysis

of their equilibrium states. The classical theory that describes the equilibrium state

of TCWs is called as Capillary Wave Theory (CWT), which, from the equiparti-

tion theorem, provides the mean amplitude of each surface mode as a function of

wavenumber (q). For a planar film, the r.m.s. spectral density is given by:

〈∣∣∣δ̂h(q, t)
∣∣∣〉 ∝ √kBT/γ

q
, (2.1)

where δ̂h is the Fourier transform of height deviations varying with time t, kB

is the Boltzmann constant, T is temperature, and γ is the surface tension. The

〈 · · · 〉 denotes an ensemble average over time when the free surface is in thermal

equilibrium, and | · · · | the norm of the transformed variable. The
√
kBT/γ defines

a length parameter which is known as the thermal length scale. The root-mean-

squared roughness W of the film is related directly to the capillary wave spectrum

Eq. (2.1) by Parseval’s theorem. For a d-dimensional surface (d = 1, 2) with a lateral
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size L, the root mean squared roughness is

W =

√
1

Ld
〈
∫

(δh)2ddx〉 =

√
1

(2π)dLd

∫
〈|δ̂h|

2
〉ddq. (2.2)

A substitution of Eq. (2.1) into Eq. (2.2) leads to the expression for W , and one

can find that a smaller surface tension leads to a larger roughness as validated in

Fig. 2.7(a). The CWT expressed by Eq. (2.1) is also widely used to explain the

structure of a liquid-vapour interface [56, 57] in the field of chemical physics.

In thermal equilibrium, it is well known that the temporal correlations of

surface modes show an exponential decay, with a decay rate given by the dispersion

relation of the system Ω(q) [58]. The temporal correlations of TCWs are thus given

by: 〈
δ̂h(q, t)δ̂h

∗
(q, t′)

〉
∝ kBT

γq2
e−Ω(q)|t−t′|, (2.3)

where the asterisk denotes a conjugate value. Based on this, x-ray photon correlation

spectroscopy (XPCS) or similar techniques, can be used to infer the features of

liquid-solid systems such as surface tension, viscoelasticity, and substrate surface

structures [55, 59–61]. For example, Kim et al. demonstrated that the temporal

correlations of TCWs on polymer films decay with time using XPCS (see Fig. 2.7(b)),

and by fitting the experimental results with Eq. (2.3), the viscosity of polymer films

can be obtained (the viscosity is the fitting parameter in the dispersion relation)

in agreement with other independent measurements [55]. This technique has the

advantage of being non-invasive since no external forces are applied, which is crucial

for soft matter and biological fluids that can be sensitive to external forces.

Importantly, Eq. (2.1) has no time dependence; it cannot reveal the evolution

of a non-equilibrium surface to its thermal equilibrium, such as how a smooth surface

develops to a rough one, or how sudden changes in material parameters generate

evolution towards new spectra – as such, we refer to it as the static spectrum.

Understanding dynamics is also essential as it allows prediction of the time required

for a smooth film to reach its static spectrum, thus determining when the adoption

of classical CWT is valid.

In fact, studying non-equilibrium surfaces and their transition to the equi-

librium states is of broad interest, since surface roughening due to randomness is

ubiquitous in nature, and a problem spanning many disciplines, such as, in the prop-

agation of wetting fronts in porous media (see Fig. 2.8(a)), in the growth of bacterial

colonies (see Fig. 2.8(b)), and in atomic deposition during the manufacture of com-

puter chips [62].
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Figure 2.8: (a) The propagation of wetting fronts in paper [63]. (b) The morphol-
ogy growth of a bacterial colony [63]. (c) The prediction of surface roughness at
increasing time. Before the transition time ts, the roughness grows as a power-law;
it saturates after ts as a result of the interplay between deterministic and stochastic
forces.

To allow us to predict and control surface roughening, it is essential to un-

derstand how surface morphology develops in time, something usually described by

scaling relations [62, 63]. The roughness W is expected to grow as a power law of

time (W ∼ tκ) before reaching the saturated roughness Ws, which is a power law of

domain length L (Ws ∼ Lm). The transition of growth and saturation happens at

the transition time ts, which is also a power law of domain length (ts ∼ Lα). Figure

2.8(c) provides examples of the appearance of this kind of surface roughening.

The three exponents (κ, m, α) define a universality class to connect different

physical phenomena which belong to the same universality class. Thus, it is exciting

to see whether a universality class exists for the surface roughening of a liquid film

where the roughness is due to TCWs.

For the aforementioned dynamic problems, it is natural to seek solutions

to SLEs discussed in Sec. 2.2. Indeed, linear stability analyses of the SLEs have

provided time-dependent spectra of TCWs for both jets and planar films [51–53, 64].

However, despite their success, the long-wave approximation inherent in each of

these SLEs creates restrictions on the wavelengths that can be accurately predicted,

which requires the development of a more general method, and this is attempted

using the Langevin theory in this thesis.

2.3 Liquid-solid slip

NS or FH equations require boundary conditions at the substrate surface to describe

flows. At the nanoscale, the no-slip condition breaks down and slip effects become
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important. For example, the fast water transport inside CNTs, which is far beyond

the predictions of no-slip hydrodynamics, can be attributed to slip at the water-

carbon interface [12].

Navier’s slip condition, which describes the scalar proportionality between

the slip velocity us and shear stress at the hydrodynamic boundary (HB), is com-

monly used as the boundary condition at the substrate surface to consider slip. The

one-dimensional form of Navier’s slip condition is:

us = `
∂u

∂z
|z=zHB , (2.4)

where ` is the slip length, the distance between the HB and the position where the

linear extrapolation of the velocity profile vanishes. Navier’s slip condition is also

often written as:

ηus = µ
∂u

∂z
|z=zHB , (2.5)

where µ is the viscosity and η = µ/` is the friction factor. Equation (2.5) expresses

the force balance between the friction force from the wall and the viscous shear

stress at the HB. We note that research has shown that the HB is often inside the

fluid, separated from the substrate surface by a few molecular diameters [63, 65],

which is due to a density layering of liquid molecules near the substrate surface.

The misaligning between the HB and the substrate surface has negligible effects for

macroscopic flows but is important for nanoflows.

In the literature, the effects of slip have been incorporated into the determin-

istic Planar-film LE using Navier’s slip boundary [66]. However, until this thesis,

thermal fluctuations and slip have never been explored simultaneously for thin-film

flows, due to the lack of proper tools: the Planar-film SLE proposed in [5, 47] does

not model slip. The main challenge is to understand whether Navier’s slip condition

can accurately describe boundary phenomena at the nanoscale, given the stochastic

nature of nanoflows, and given the adoption of the fluctuating bulk NS equations.

In this thesis (Chapter 3), this question is investigated, and the no-slip Planar-film

SLE is extended to consider slip effects and a new Annular-film SLE is derived, also

with slip modelled.

There are extensive MD studies of the nature of slip at the nanoscale. It

has been shown to depend on factors such as wettability (contact angle), surface

roughness of substrates, and applied shear rates. As shown in Fig. 2.9(a), slip length

increases with contact angle [67]. In Fig. 2.9(b), non-equilibrium MD simulations of

Couette flows by Thompson and Troian [68] showed that slip length is constant at

low-shear rates but grows rapidly at high-shear rates.
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Figure 2.9: (a) Slip length as a function of contact angle [67]. (b) Slip length as a
function of shear rates [68].

In thermal equilibrium, transport properties (such as viscosity and heat con-

ductivity) can usually be expressed in terms of integrals of time correlation functions,

namely, Green-Kubo relations. Bocquet and Barrat [69] were pioneers in proposing

a Green-Kubo-type expression for the friction factor η (η = µ/`), to identify slip as

a property derivable within thermal equilibrium, providing a way to measure slip

length in equilibrium simulations. The Green-Kubo expression for the friction factor

is

η =
1

LxLykBT

∫ ∞
0
〈Ff (t)Ff (0)〉dt, (2.6)

where Ff is the friction force at the HB (whose area is LxLy) along the x direction.

Notably, slip length grows rapidly at high-shear rates in non-equilibrium MD simu-

lations. The constant slip at low-shear rates is thus where non-equilibrium MD and

equilibrium MD measurements should coincide [70].

Besides those MD studies, seeking accurate methods to measure the slip

length experimentally is necessary in real situations. However, this is challenging

since such experiments often have to be performed at small scales where invasive

techniques are complex. For example, known measurement methods (see the re-

view [71]) include: determining the flow rate at a given pressure drop [72]; mea-

suring the drainage force felt by a submerged sphere approaching the solid using

Surface Force Apparatuses and Atomic Force Microscopes [73–75]; finding the flow

velocity near the solid directly using Particle Image Velocimetry (PIV) [76], fluores-

cence recovery and fluorescence cross-correlations [77]. Notably, the aforementioned

methods all have to impose a flow in the fluid by external forces, which are difficult

to control at small scales and can easily alter the properties of the underlying sys-
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tem, e.g. through introducing nanobubbles [78] or deforming soft/biological matter.

Therefore, a non-invasive method to measure slip length is needed. Such a method,

based on the measurement of the thermal motion of confined colloids, has been pro-

posed and performed experimentally, able to achieve nanometric resolution of the

slip length measurement and avoid generating nanobubbles [78].

As mentioned in Sec. 2.2, the correlations of TCWs can be used to infer

the properties of liquid-solid systems based on the specific dispersion relation for

each system, which has the advantage of being non-invasive. For thin liquid films,

the dispersion relation for surface waves depends on the level of slip [58] so that

measuring the correlations of thermal capillary waves appears to be a potential

method for inferring slip. In fact, it has been recently attempted in experiments

for a hexadecane film on a glass [60]. However, the negative slip length obtained

is in conflict with the results from other methods [77]. The conflicting result may

be due to external forces used in [77] to drive the liquid, potentially leading to a

non-linear slip, as pointed out by [60]; though it is clear that further research in this

direction is required. On the other hand, the existing experimental study [60] has

not considered the exciting possibility that slip is anisotropic.

At larger than nano-scales, it is commonplace to create anisotropic surfaces,

with slip becoming flow-direction dependent, which can be used to control drag [79–

81]. Such surfaces can be created by patterning micro-ribs and micro-cavities onto a

substrate and their effects on flow are measured by the PIV technique [80]. However,

at the nanoscale much less is known, partially due to the complexity and the poten-

tial problem of invasive methods at these scales. It is thus necessary to investigate

how temporal correlations of TCWs behave on anisotropic-slip surfaces and whether

measuring correlations of TCWs is a valid and viable way to infer the anisotropic

slip.

2.4 Summary of challenges

Through the literature review, one can see that stochastic lubrication equations

(SLEs), a long-wave approximation to FH equations, are the tools usually used

to study the effects of thermal fluctuations on interfacial flows, but it is an open

question how the thermal fluctuations and slip can be modelled simultaneously in

thin-film flows. The stochastic nature of flows at the nanoscale may not only change

the bulk flow but also change the boundary condition, which calls into question the

adoption of Navier’s slip condition. The Green-Kubo expression for the friction

factor might provide clues on how Navier’s slip condition can be modified to accom-
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modate these fluctuations.

The ‘long-wave’ paradigm used to derive SLEs has the inherent problem of

being inaccurate for the stochastic dynamics of interfacial waves with short wave-

length, and thus may not be applicable to the study of thermal capillary waves.

A more general model, beyond the long-wave paradigm, is needed and remains an

unknown field to be investigated in this thesis.
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Chapter 3

Stochastic modelling of

nanoscale interfacial flows

In this chapter, we use both fluctuating hydrodynamics (FH) and Langevin theory to

model nanoscale interfacial flows with the effects of thermal fluctuations and liquid-

solid slip included. In Sec. 3.1, by virtue of the geometrical assumption for thin

films on plates and fibres, we derive stochastic lubrication equations (Planar-film

SLE and Annular-film SLE) from FH, with a special treatment for the slip condition.

In Sec. 3.2, we propose a Langevin model for the stochastic modelling of interfacial

flows, which goes beyond the lubrication paradigm and its long-wave assumption.

The theories established in this chapter are used in the work of Chapters 5 to 7.

3.1 Stochastic lubrications equations with slip

The equations of FH for incompressible constant-density flow are given by [9]:

∇ · u = 0 , (3.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u+∇ · τ . (3.2)

Here u, ρ, t, p and µ are the velocity field, density, time, pressure and viscosity,

respectively. The random stress tensor τ captures thermal fluctuations, modelled

by white noise with zero mean and covariance:

〈τ ij(x, t) τlm(x′, t′)
〉

= 2µkBT (δilδjm + δimδjl) δ
(
x− x′

)
δ(t− t′), (3.3)
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Figure 3.1: Sketch of a liquid film on a plate, where h = h(x, t) is the film thickness,
λ is the characteristic length, u is the x−component of liquid velocity and ` is the
liquid-solid slip length. The film has depth Ly in the y direction (into the page).

where x = (x, y, z) and 〈 · 〉 is the ensemble average (mean of a random variable over

a time interval or a space interval).

3.1.1 Thin films on plates

For a two-dimensional (2D) film on a substrate (Fig. 3.1) with thermal fluctuations

and no-slip, Grün et al. [5] derived the Planar-film SLE. To do this, a long-wave

approximation to the equations of FH was adopted, i.e, ε = h0/λ � 1. We extend

this analysis to consider the effect of slip at the liquid-solid interface, using a similar

long-wave approximation to the equations of FH, but with a special treatment for

the slip boundary condition.

In terms of a 2D film on a plate, Eq. (3.1) in Cartesian coordinates is

∂u

∂x
+
∂w

∂z
= 0, (3.4)

and Eq. (3.2) is

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂z2

)
+

∂

∂x
ψxx +

∂

∂z
ψzx, (3.5)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂z2

)
+

∂

∂x
ψxz +

∂

∂z
ψzz. (3.6)

Here u and w are the x and z components of velocity, and ψ is a 2D random stress

tensor with zero mean and covariance given by

〈ψ ij(x, t) ψlm(x′, t′)
〉

=
2µkBT

Ly
(δilδjm + δimδjl) δ

(
x− x′

)
δ
(
z − z′

)
δ(t−t′). (3.7)
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The factor 1/Ly appears because the planar films we consider here are quasi-2D

(Ly � Lx, Lx and Ly are film length in the x and y directions), allowing all variables

of interest to be averaged over the y direction; in particular, ψ = 1
Ly

∫ Ly

0 τdy. For

boundary conditions, at z = h(x, t), we have the dynamic condition:

(ϑ+ψ) · n = −[γ∇ · n + φ(h)]n, (3.8)

where ϑ is the hydrodynamic stress tensor, γ is the surface tension, φ(h) is the

disjoining pressure, and n is the normal vector at the surface

n =
(−∂h/∂x, 1)√
1 + (∂h/∂x)2

. (3.9)

The kinematic condition at z = h is

∂h

∂t
+ u

∂h

∂x
= w. (3.10)

At z = 0, Navier’s slip boundary condition is

u = `
∂u

∂z
, (3.11)

where ` is the slip length. The substrate is impermeable so that

w = 0. (3.12)

To get a lubrication equation from governing equations Eq. (3.4-3.12), we

need to establish the leading order terms of Eq. (3.4-3.12) by their asymptotic ex-

pansion in ε, for which we use the scaling relations suggested by Grün et al. [5],

before then returning to the dimensional form of the equations for ease of interpre-

tation:

X = x/λ, Z = z/h0, H = h/h0, T =
u0

λ
t, U = u/u0,

W =
w

εu0
, P =

h0ε

u0µ
p, (Ψxx,Ψzz) =

λ

u0µ
(ψxx, ψzz) ,

(Ψxz,Ψzx) =
h0

u0µ
(ψxz, ψzx) , Φ =

h0ε

u0µ
φ, Γ =

ε3

u0µ
γ. (3.13)

Here non-dimensional variables are upper-case and u0 is the characteristic velocity.
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Using these scaling relations, Eq. (3.5) and Eq. (3.6) become

εRe

(
∂U

∂T
+ U

∂U

∂X
+W

∂U

∂Z

)
=− ∂P

∂X
+ ε2 ∂

2U

∂X2
+
∂2U

∂Z2
+
∂Ψzx

∂Z
+ ε2∂Ψxx

∂X
,

(3.14)

ε3 Re

(
∂W

∂T
+ U

∂W

∂X
+W

∂W

∂Z

)
=− ∂P

∂Z
+ ε2

(
ε2∂

2W

∂X2
+
∂2W

∂Z2
+
∂Ψxz

∂X
+
∂Ψzz

∂Z

)
.

(3.15)

Here, the Reynolds number Re = ρu0h0/µ is assumed to be order one or smaller,

which is usually valid for nanoscale flows. The leading-order form of the dimensional

momentum equations Eq. (3.5) and Eq. (3.6) are thus

0 = −∂p
∂x

+ µ
∂2u

∂z2
+

∂

∂z
ψzx, (3.16)

0 = −∂p
∂z
. (3.17)

On the other hand, the leading-order form of the incompressible condition, Eq. (3.4),

remains unchanged.

In the normal direction to the surface, the scaled dynamic condition, Eq. (3.8),

is

P + Γ
∂2H/∂X2[

1 + ε2(∂H/∂X)2
]3/2

=ε2

{
2

[
1−

(
∂H

∂X

)2
]
∂W

∂Z
− 2

∂H

∂X

(
∂U

∂Z
+ ε2∂W

∂X

)

+ ε2

(
∂H

∂X

)2

Ψxx −
∂H

∂X
(Ψxz + Ψzx) + Ψzz

}
+ Φ,

(3.18)

and the scaled dynamic condition in the tangential direction to the surface is

ε2∂H

∂X

[
2

(
∂W

∂Z
− ∂U

∂X

)
+ Ψzz −Ψxx

]
+[

1− ε2

(
∂H

∂X

)2
] [(

∂U

∂Z
+
∂W

∂X
ε2

)
+ Ψzx

]
= 0. (3.19)

Therefore, the leading order of the dimensional dynamic boundary conditions in the
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normal and tangential direction are seen to be

p = −γ ∂
2h

∂x2
+ φ, (3.20)

∂u

∂z
+ ψzx = 0. (3.21)

The leading order of the kinematic condition is unchanged. For the slip boundary

Eq. (3.11), its scaled form is

U =
`

h0

∂U

∂Z
. (3.22)

Thus, the leading-order slip boundary depends on the ratio `/h0. In the present

work, we consider the slip is at the order of h0 so that the leading order of the slip

boundary condition is unchanged from Eq. (3.11).

To obtain the lubrication equation, Eq. (3.16) is integrated in the z direction,

and using Eq. (3.21) gives

∂u

∂z
=

1

µ

[
(z − h)

∂p

∂x
− ψzx

]
. (3.23)

Integrating Eq. (3.23) from 0 to z then gives

u− u|z=0 =
1

µ

[(
1

2
z2 − hz

)
∂p

∂x
−
∫ z

0
ψzx(z′)dz′

]
, (3.24)

and u|z=0 is determined by

u|z=0 = `
∂u

∂z
|z=0 = − `

µ

[
h
∂p

∂x
+ ψzx|z=0

]
. (3.25)

Thus the expression for velocity u is

u =
1

µ

[
(
1

2
z2 − hz − `h)

dp

dx
−
∫ z

0
ψzx(z′)dz′ − `ψzx|z=0

]
. (3.26)

Integrating Eq. (3.4) in z from 0 to h and using the boundary condition

Eq. (3.10) and (3.12) gives
∂h

∂t
= − ∂

∂x

∫ h

0
udz. (3.27)

By substituting Eq. (3.26) into Eq. (3.27) one can obtain

∂h

∂t
=

1

µ

∂

∂x

[
M(h)

∂p

∂x
+

∫ h

0

∫ z

0
ψzx(z′)dz′dz +

∫ h

0
`ψzx |z=0 dz

]
, (3.28)
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where the mobility M(h) = 1
3h

3 + `h2 takes the usual form obtained in the deter-

ministic setting for the Planar-film LE. For the above double integral, integration

by parts leads to

∂h

∂t
=

1

µ

∂

∂x

[
M(h)

∂p

∂x
+

∫ h

0
(h− z)ψzxdz + `hψzx |z=0

]
. (3.29)

Before simplifying the noise terms in Eq. (3.29), the covariance of ψzx|z=0

has to be determined, which we will show is given by

〈
ψzx|z=0(x, t)ψ′zx|z=0(x′, t′)

〉
=

2µkBT

`Ly
δ(x− x′)δ(t− t′) =

2ηkBT

Ly
δ(x− x′)δ(t− t′).

(3.30)

Here η = µ/` is the so-called friction factor. Eq. (3.30) is inferred from Bocquet and

Barrat’s Green-Kubo type expression of friction factor [69], which is

η =
1

LxLykBT

∫ ∞
0
〈Ff (t)Ff (0)〉dt, (3.31)

where Ff is the friction force at the wall (whose area is LxLy) along the x direction.

As Ff = LxLyψzx|z=0, Eq. (3.31) leads to

η =
LxLy
kBT

∫ ∞
0
〈ψzx |z=0 (t)ψzx |z=0 (0)〉dt, (3.32)

which suggests that the friction factor is related to the stochastic shear stress at

the boundary. Notably, this expression for friction factor appears analogous to the

Green-Kubo expression for bulk shear viscosity, namely, µ = V
kBT

∫∞
0 〈ψzx(t)ψzx(0)〉dt

(V is the volume of fluid), from which one can obtain the covariance of bulk shear

stress 〈ψzxψ′zx〉 = 2µkBT
Ly

δ(x−x′)δ(z−z′)δ(t−t′) [82]. Thus the covariance of ψzx |z=0 ,

namely, Eq. (3.30), is obtained from Eq. (3.32).

Now to simplify the noise terms in Eq. (3.29), we use the method provided

in Appendix A for the simplification of the stochastic integral. The two noise terms

in Eq. (3.29) are respectively simplified to

∫ h

0
(h− z)ψzxdz =

[∫ h

0
(h− z)2dz

]1/2

ξ1 =

√
1

3
h3ξ1, (3.33)

`hψzx |z=0 =
√
`h2ξ2. (3.34)

The
√
` in Eq. (3.34) comes from Eq. (3.30). The ξ1 and ξ2 have zero mean and
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covariance

〈
ξ1(x, t)ξ1(x′, t′)

〉
=

2µkBT

Ly
δ(x− x′)δ(t− t′), (3.35)

〈
ξ2(x, t)ξ2(x′, t′)

〉
=

2µkBT

Ly
δ(x− x′)δ(t− t′), (3.36)〈

ξ1(x, t)ξ2(x′, t′)
〉

= 0. (3.37)

Note that the noise term in the bulk is assumed to be uncorrelated to the value at

the surface, Eq. (3.37), so that the two noise terms can be combined together:∫ h

0
(h− z)ψzxdz + `hψzx |z=0 =

√
1

3
h3ξ1 +

√
`h2ξ2 =

√
1

3
h3 + `h2ξ3. (3.38)

Here ξ3 has the same covariance as ξ1 and ξ2. Thus we derive the Planar-film SLE

with slip effects as
∂h

∂t
=

1

µ

∂

∂x

{
M(h)

∂p

∂x
+
√
M(h)ξ

}
, (3.39)

where p = −γ ∂2h
∂x2

+ φ(h) is the driving pressure, and the noise ξ (the subscript ‘3’

is omitted) has zero mean and covariance 〈ξ(x, t)ξ(x′, t′)〉 = 2µkBT
Ly

δ(x− x′)δ(t− t′).
Notably, to derive the Planar-film SLE including slip effects, it is essential to

include a random friction force at the liquid-solid interface as defined by Eq. (3.30).

This finding was also noticed in the study of Brownian motion of solid particles

within fluids when slip effects were prominent [83]. We also note that there are

several other ways [5, 47, 49, 84] to simplify the stochastic integral in Eq. (3.29).

The fluctuation-dissipation theorem is satisfied by the SLE: the variance of the

noise (the square of the pre-factor to the noise term) is equal to the mobility, which

appears in the diffusion term (the first term of the right-hand side of the SLE). For

efficient numerical solutions of stochastic partial differential equations such as this,

the reader is referred to the numerical integration schemes discussed in [85, 86].

The generalization of this 2D Planar-film SLE to a 3D version is quite

straightforward, and one can obtain

∂h

∂t
=

1

µ
∇ ·
{
Q(h)∇p+

√
Q(h)ς

}
. (3.40)

Here Q(h) = 1
3h

3+`h2, p = −γ∆h+φ, and the noise ς has zero mean and covariance,

〈ςi(x, y, t)ςj(x′, y′, t′)〉 = 2µkBTδijδ(x − x′)δ(y − y′)δ(t − t′), where i and j denote

components of the noise vector.
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Figure 3.2: Sketch of an annular liquid film on a fibre, where h = h(z, t) is the
outer radius of the film, λ is the characteristic length and a is the fibre radius.

3.1.2 Thin films on fibres

Consider now axisymmetric flow of an annular liquid film on a fibre, as shown in

Fig. 3.2. Using the same procedure as for the planar thin-film case, at leading order

in ε = h0/λ� 1, the incompressibility condition in cylindrical coordinates is

∂w

∂z
+

1

r

∂

∂r
(ur) = 0 . (3.41)

Here w and u are the axial and radial components of velocity, respectively. The

governing momentum equations in cylindrical coordinates (with only leading-order

terms) become

0 =− ∂p

∂z
+ µ

1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r

∂

∂r
(rζrz) , (3.42)

0 =− ∂p

∂r
. (3.43)

Here ζrz is the rz component of the random stress tensor ζ, which has zero mean

and covariance,

〈
ζrz(r, z, t)ζrz(r

′, z′, t′)
〉

=
µkBT

πr
δ(r − r′)δ(z − z′)δ(t− t′), (3.44)
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as we will show now. The covariance of τ in cylindrical coordinates is

〈τ ij(r, θ, z, t) τlm(r′, θ′, z′, t′)
〉

=
2µkBT

r
(δilδjm + δimδjl)

× δ
(
r − r′

)
δ
(
θ − θ′

)
δ
(
z − z′

)
δ(t− t′). (3.45)

Due to the axisymmetry of the flow the variables of interest are averaged over the

azimuthal direction, e.g., ζ = 1
2π

∫ 2π
0 τdθ. Thus the covariance for the azimuthally

averaged fluctuating stress tensor is

〈
ζij(r, z, t)ζlm(r′, z′, t′)

〉
=

1

(2π)2

∫ 2π

0

∫ 2π

0

〈
ττ ′
〉
dθdθ′

=
µkBT

πr
(δilδjm + δimδjl) δ

(
r − r′

)
δ
(
z − z′

)
δ(t− t′).

(3.46)

At the free surface r = h, the dynamic condition in the normal direction of

the surface (at the leading order) is

p = −γ
(
∂2h

∂z2
− 1

h

)
+ φ . (3.47)

Notably, the term γ ∂
2h
∂z2

is not at leading order, but conventionally in this field it is

still included in the pressure in an attempt to extend the validity of the model [18,

21]. In the tangential direction (on the r − z plane),

µ
∂w

∂r
+ ζrz = 0. (3.48)

The kinematic condition at r = h is

∂h

∂t
+ w

∂h

∂z
= u . (3.49)

At the substrate surface r = a, the slip boundary is

w = `
∂w

∂r
, (3.50)

and the impermeability condition is

u = 0. (3.51)

Integrating Eq. (3.42) twice and using two boundary conditions, Eq. (3.48) and
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(3.50), leads to an expression for velocity:

w =
1

µ

[
1

4

(
r2 − a2

)
− 1

2
h2 log

(r
a

)
+

(
1

2
a− 1

2

h2

a

)
`

]
∂p

∂z

− 1

µ

[∫ r

a
ζrz(r

′)dr′ + `ζrz |r=a
]
. (3.52)

Using Eq. (3.41), Eq. (3.49) and Eq. (3.51), one can obtain

h
∂h

∂t
= − ∂

∂z

∫ h

a
rw dr . (3.53)

Substituting Eq. (3.52) into Eq. (3.53) results in

h
∂h

∂t
=

1

µ

∂

∂x

[
G(h)

∂p

∂z
+

∫ h

a
r

∫ r

a
ζrz(r

′)dr′dr +

∫ h

a
`rζrz|r=adr

]
, (3.54)

where the mobility G(h) is

G(h) =
−3h4 − a4 + 4a2h2 + 4h4 log(h/a) + 4(h2 − a2)

2
`/a

16
. (3.55)

A simplification of the double integral in Eq. (3.54) leads to

h
∂h

∂t
=

1

µ

∂

∂z

[
G(h)

∂p

∂x
+

1

2

∫ h

a
(h2 − r2)ζrz(r)dr +

1

2
`
(
h2 − a2

)
ζrz |r=a

]
. (3.56)

From Bocquet and Barrat’s expression of friction factor (in cylindrical coordinates),

the covariance of ζrz|r=a is found to be

〈
ζrz |r=a (z, t)ζrz |r=a (z′, t′)

〉
=
µkBT

πa`
δ(z − z′)δ(t− t′). (3.57)

Now we are left with the task of finding an equivalent stochastic partial

differential equation that does not contain integrals. Using the method in Appendix

A, the two noise terms in Eq. (3.56) are simplified respectively to

1

2

∫ h

a
(h2 − r2)ζrz(r)dr =

[∫ h

a

(
h2 − r2

)2
4r

dr

]1/2

β1, (3.58)

1

2
`
(
h2 − a2

)
ζrz |r=a =

1

2
(h2 − a2)

√
`

a
β2. (3.59)
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Here the noise β1 and β2 have covariance,

〈
β1(z, t)β1(z′, t′)

〉
=
µkBT

π
δ(z − z′)δ(t− t′), (3.60)〈

β2(z, t)β2(z′, t′)
〉

=
µkBT

π
δ(z − z′)δ(t− t′), (3.61)〈

β1(z, t)β2(z′, t′)
〉

= 0. (3.62)

Eq. (3.62) results from the assumption that the bulk noise is uncorrelated with the

noise at the boundary, allowing the two noise terms to be combined:

1

2

∫ h

a
(h2 − r2)ζrz(r)dr +

1

2
`
(
h2 − a2

)
ζrz |r=a

=

[∫ h

a

(
h2 − r2

)2
4r

dr

]1/2

β1 +
1

2
(h2 − a2)

√
`

a
β2

=

√∫ h

a

(h2 − r2)2

4r
dr +

1

4
(h2 − a2)2

`

a
β3

=
√
G(h)β3. (3.63)

Here β3 has the same covariance as β1 and β2. Thus the stochastic lubrication

equation for an annular film on a fibre with slip effects (the Annular-film SLE) is

derived as

h
∂h

∂t
=

1

µ

∂

∂z

[
G(h)

∂p

∂z
+
√
G(h)β

]
. (3.64)

Here p = −γ(∂
2h
∂z2
− 1

h) + φ, and the noise β (the subscript ‘3’ is omitted) has zero

mean and covariance 〈β(z, t)β(z′, t′)〉 = µkBT
π δ(z− z′)δ(t− t′). Notably, the derived

Annular-film SLE can be viewed as an extension of the existing Annular-film LE [21];

an extension that constitutes the addition of an appropriately-scaled noise term.

3.2 Langevin equation: beyond the lubrication paradigm

Central to the derivation of the SLEs above, is the long-wave assumption, which

means they cannot accurately predict dynamics of interfacial waves with short wave-

lengths comparable to that of the film height. To derive the SLEs, we also assumed

that the slip length is of the order of the film thickness, which limits their application

to relatively small-slip systems. A Langevin model, beyond the current lubrication

framework, is thus proposed in this section, to predict the dynamics of capillary

waves (at the linear stage) in these more general cases.
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3.2.1 Background: the Ornstein–Uhlenbeck process

A basic Langevin equation is the Ornstein–Uhlenbeck (OU) process, which is given

by

dXt = −bXtdt+ <Wt, (3.65)

where Xt is the stochastic variable of interest, Wt is the Wiener process, parameters

b > 0 and < > 0. Alternatively, Eq. (3.65) can be written symbolically as

dXt

dt
= −bXt + <N(t), (3.66)

where N(t) = dWt/dt is the white noise. The solution of the OU process can be

found in many textbooks [87], which is

Xt = X0e
−bt + <

∫ t

0
e−b(t−s)dWs . (3.67)

The expectation (mean) of Xt is

E(Xt) = X0e
−bt, (3.68)

and the variance of Xt using the Itô isometry is

Var(Xt) =E
{

[Xt − E(xt)]
2
}

=E

{[
<
∫ t

0
e−b(t−s)dWs

]2
}

=E

[
<2e−2bt

∫ t

0
e2bsds

]
=
<2

2b

(
1− e−2bt

)
. (3.69)

One useful conclusion can be drawn from the expression of Var(Xt). At thermal

equilibrium, i.e. as t → ∞, the relation between the noise amplitude and the

parameter of dissipation can be obtained as follows:

Var(Xt)|t=∞ =
<2

2b
. (3.70)

Equation (3.70) can be used to determine the amplitude of the white noise, since

Var(Xt) and b are often known beforehand; this is known as the fluctuation-dissipation

theorem. The famous example is in application to Brownian motion. One can con-

sider that Xt is the velocity of a Brownian particle with a unit mass and b is the
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friction exerted on the particle. At thermal equilibrium, Var(Xt) = kBT based on

the equipartition theorem, so that the noise amplitude is < =
√

2bkBT .

3.2.2 Capillary wave theory

The free surface of a liquid film at rest is rough because of thermal capillary waves

(TCWs). At thermal equilibrium, the static spectrum of capillary waves on a planar

film can be determined by the equipartition theorem; this forms the basis of classical

Capillary Wave Theory (CWT) [56, 88, 89]. For a planar film influenced by the

interfacial potential Π, whose derivative is disjoining pressure φ = ∂Π
∂h , the free

energy f1 (henceforth, the subscript ‘1’ denotes that variables are for planar films)

due to the change of surface area (in 2D configuration) is

f1 = Lyγ

∫ [√
1 + (∂h/∂x)2 − 1

]
dx+ Ly

∫
[Π(h(x))−Π(h0)]dx. (3.71)

For small deformations (∂h/∂x� 1),
√

1 + (∂h/∂x)2 − 1 ≈ 1
2(∂h/∂x)2 and Π(h)−

Π(h0) ≈ ∂Π
∂h |h0 (h− h0) + 1

2
∂2Π
∂h2
|h0(h− h0)2, so that Eq. (3.71) is simplified to

f1 =
Ly
2
γ

∫
(∂h/∂x)2dx+

Ly
2

∂2Π

∂h2
|h0
∫

[h(x)− h0]2dx. (3.72)

Let us define the Fourier transform of δh = h(x) − h0 as δ̂h =
∫
δhe−iqxdx.

From Parseval’s theorem, we can express Eq. (3.72) in terms of Fourier modes:

f1 =
1

2

Ly
Lx
γ
∑

q2
∣∣∣δ̂h∣∣∣2 +

1

2

Ly
Lx

∂2Π

∂h2
|h0
∑∣∣∣δ̂h∣∣∣2. (3.73)

As each summand appears quadratically, each mode has the same energy 1
2kBT ,

from equipartition theorem, so that

1

2
kBT =

Ly
Lx

(
1

2
γq2 +

1

2

∂2Π

∂h2
|h0
) ∣∣∣δ̂h∣∣∣2. (3.74)

Thus, the well-known CWT for a planar film is derived [56, 88, 89]:〈∣∣∣δ̂h∣∣∣2〉
1

=
Lx
Ly

kBT

γq2 + ∂2Π/∂h2 |h0
. (3.75)

It is easy to extend consideration to an axisymmetric annular film. The free

energy for an annular film, f2 (the subscript ‘2’ denotes that variables are for annular
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films henceforth), is

f2 = πh0

∫ {
γ(∂h/∂z)2 − γ

h2
0

[h(z)− h0]2
}
dz + πh0

∫
∂2Π

∂h2
|h0 [h(z)− h0]2dz,

(3.76)

so that in Fourier space

f2 =
πh0

Lx

∑(
γq2
∣∣∣δ̂h∣∣∣2 − γ

h2
0

∣∣∣δ̂h∣∣∣2 +
∂2Π

∂h2
|h0
∣∣∣δ̂h∣∣∣2). (3.77)

Applying the equipartition theorem, we obtain the static spectrum of an annular

film 〈∣∣∣δ̂h∣∣∣2〉
2

=
Lx

2πh0

kBT

γ
(
q2 − 1/h2

0

)
+ ∂2Π/∂h2 |h0

. (3.78)

3.2.3 Langevin equation for thermal capillary waves

For nanoflows, where inertia is usually negligible, Stokes flow governs the flow dy-

namics. In this regime, for the deterministic setting, linear analyses of free-surface

flows are described by equations for the surface perturbation (in Fourier space) of

the form:
∂

∂t
δ̂h+ Ω δ̂h = 0 , (3.79)

where Ω(q) is the dispersion relation (the decay rate of a particular mode). The

dispersion relation for films depends on the domain geometry, the physics at play,

and any approximations adopted. For example, for a planar film with slip, no

disjoining pressure, and a long-wave approximation, the dispersion relation is

ΩLW,1(q) =
M(h0)

3µ
γq4, (3.80)

from a linear stability analysis of the Planar-film LE [90]. Here ‘LW’ denotes ‘long-

wave’. A similar expression is obtained for the annular film from a linear stability

analysis of the Annular-film LE, again, adopting a long-wave approximation, which

is

ΩLW,2(q) =
G(h0)

µh0
γ
(
q4 − q2/h2

0

)
, (3.81)

For nanoscale liquid films, where the Reynolds number is small, Stokes flow

is accurate but the long-wave approximation is less valid, particularly as noise can

excite short-wavelength perturbations. For planar films with slip, the Stokes-flow
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dispersion relation was obtained in [58],

ΩStokes,1 =
γq

4µ

sinh(2qh0)− 2qh0 + 4q`sinh2(qh0)

cosh2(qh0) + q2h2
0 + q` [2qh0 + sinh(2qh0)]

. (3.82)

whilst for annular films with slip, we have derived an expression ΩStokes,2 for the

first time, with details of the relatively standard derivation in Appendix B.

The main idea in this subsection is to establish a framework for taking

thermal fluctuations into account in modelling films in the general case (i.e. for

whichever film geometry, physics, or modelling approximation we adopt). Knowing

the restoring pressure due to surface tension is βδ̂h (β = γq2 for planar films and

β = γ(q2− 1/h2
0) for annular films), we can rewrite Eq. (3.79) and add a fluctuating

pressure term (white noise) at the same time. This results in a Langevin equation

of the form:
β

Ω

∂δ̂h

∂t
= −βδ̂h+ ζN̂ , (3.83)

where N̂(q, t) is a complex Gaussian random variable with zero mean and correlation

〈|N̂N̂ ′|〉 = δ(q − q′)δ(t − t′), and ζ is the noise amplitude. Since Eq. (3.83) is

an OU process, ζ is determined straightforwardly by considering the surface at

thermal equilibrium, where 〈|δ̂h|2〉s = S2
s = ζ2Ω

2β2 (‘s’ denotes ‘static’, namely, thermal

equilibrium) from Eq. (3.70). Thus, we must have

ζ =

√
2

Ω
βSs, (3.84)

where the static spectrum Ss given by CWT in Sec. 3.2.2 (without disjoining pres-

sure) is:

Ss,1 =

√
Lx
Ly

kBT

γq2
, (3.85)

Ss,2 =

√
Lx

2πh0

kBT

γ(q2 − 1/h2
0)
, (3.86)

for planar films and annular films, respectively. The static spectrum for an annular

film only works for qh0 > 1. We note that disjoining pressure or gravity can be

included in the Langevin model simply by substituting the appropriately modified

dispersion relation and static spectrum.

This newly developed Langevin model is one of the key contributions of this

thesis, which creates a single theoretical framework under which the dynamics of
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thermal capillary waves on films can be studied.

3.3 Summary

In this chapter, to investigate the effects of thermal fluctuations and slip on thin-

film flows at the nanoscale, we derive SLEs (Planar-film SLE and Annular-film SLE)

for thin films on both plates and fibres using the long-wave approximation to FH

equations. To complete the derivation, it is essential to include a random stress

at the liquid-solid interface and its covariance is related to the slip length. The

derivation process is general, as we demonstrated for films on different substrate

geometries, and can be extended to study other thin-film flows at the nanoscale,

like free liquid films [91].

In this thesis, the applications of the derived SLEs in Chapters 5 and 6 are

linear, with focus on the instability and growth of surface waves at early stages in

their development. In the future, it will be interesting, using the developed SLEs,

to investigate how thermal fluctuations and slip influence the dynamics during the

non-linear stages of film growth, such as on rupture profile, rupture time and droplet

distribution. The SLEs developed here also provide useful tools to study nanoscale

film dewetting, nanofibre coating and liquid transport using nanofibres [34] where

thermal fluctuations and slip are expected to play an important role.

The assumptions made to derive the SLEs (long-waves and small slip) limit

their applicability. Thus, we propose a Langevin equation with a Stokes-flow dis-

persion relation to predict the growth of capillary waves in these more general cases.

The applications of this Langevin equation are shown in Chapters 6 and 7.
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Chapter 4

Molecular dynamics simulations

With the rapid development of computing power, molecular dynamics (MD) sim-

ulations have become a popular tool to explore new physics at the nanoscale, in

many different disciplines such as Chemistry and Engineering. As thermal motions

of molecules are inherent in MD simulations, performing MD simulations is an ex-

cellent method as virtual experiments to study the effects of thermal fluctuations on

many physical problems at the nanoscale, such as the motion of contact lines and

contact angles [1, 7, 8] and the rupture of nanojets [3].

Most modern codes of MD simulations have been developed relying on the

work of Allen and Tildesley [92] and Rapaport [93], where optimised algorithms such

as cell lists and Verlet lists are proposed to significantly reduce computational costs.

Nowadays, MD codes are well developed and one of the most popular open-source

codes is LAMMPS [94], which is adopted in this work to perform MD simulations.

LAMMPS has the advantage of running large-scale MD simulations in parallel using

message-passing techniques and a spatial-decomposition of the simulation domain,

which is needed in our MD simulations where the number of atoms can be up to

one million.

In this chapter, Sec. 4.1 introduces the foundations of MD simulations. The

MD models of liquid films and solid substrates, used in Chapters 5-7, are presented

in Sec. 4.2. Section 4.3 shows the method to extract the free surface of liquid films

from MD simulations. The formula of Laplace pressure used in the theoretical

modelling is validated in Sec. 4.4, and Sec. 4.5 summarizes the work of this chapter.
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4.1 Foundations of MD simulations

In this section, we present the basis of MD simulations including the equations of

motion, Lennard-Jones potentials, thermostat strategies, boundary conditions and

the calculation of transport properties.

4.1.1 Equations of motion

MD simulation is a particle-based method. The positions and velocities of particles

evolve based on Newton’s equations of motion, which are

dri
dt

=vi, (4.1)

mi
dvi
dt

=fi, (4.2)

where ri, vi, mi and fi are positions, velocities, mass and intermolecular forces of

the i particles, respectively. The fi is given by

fi =
∑
i 6=j
−∇U(rij). (4.3)

Here, U(rij) is the intermolecular potential, which depends on the distance of pair-

wise particles, rij . The above equations of motion are integrated using the Velocity

Verlet algorithm [93], a second-order integrator, to update the positions and veloci-

ties of particles. The equations of the Velocity Verlet are:

ri (t+ ∆t) = ri (t) + vi(t)∆t+
1

2
(∆t)2f i (t)

mi
, (4.4)

f i(t+ ∆t) = f i (ri (t+ ∆t)) , (4.5)

vi (t+ ∆t) = vi(t) +
1

2
∆t (f i (t) + f i(t+ ∆t)) . (4.6)

Firstly, we use Eq. (4.4) to update the positions of particles at time t + ∆t, which

only depend on velocities and forces at the past time t. Secondly, we use the updated

positions of particles to calculate the forces at time t + ∆t, as shown in Eq. (4.5).

Thirdly, unlike the way of updating the positions, the velocities at time t + ∆t

depend on both the forces at the past time t and the current time t+ ∆t, based on

Eq. (4.6).
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4.1.2 Intermolecular potentials

The mostly common used potential is the 12-6 Lennard-Jones (LJ) potential and it

is also used throughout this thesis, which is given by

U(rij) =

4ε

[(
σ
rij

)12
−
(
σ
rij

)6
]

if rij ≤ rc,

0 if rij > rc,

(4.7)

where ε is the energy parameter, σ is the length parameter, and rc is the cut-off

distance, beyond which the potential is zero. The choice of ε and σ depends on

which liquid is to be simulated. As the computational cost increases significantly

with the cut-off distance, a typical cut-off distance is chosen as 5.5σ for a reason-

able computation level and good agreements with experimental measurements of

transport properties of materials [95].

The force corresponding to this potential is

fi =
48ε

σ2

[(
σ

rij

)14

− 1

2

(
σ

rij

)8
]
rij , (4.8)

provided rij ≤ rc, and zero otherwise. The vector rij = rijeij , where eij is the unit

vector along pairwise particles. It can be seen that there is no discontinuity for the

potential and the force at rc (since they are not zero at rc) but this has no real effect

on the numerical solutions [93]. One can also find that the force has zero value at

rij = 21/6σ so that the force is purely repulsive for rij < 21/6σ, which can be used

to model immiscible liquids.

4.1.3 Thermostatting strategies

In this thesis, all MD simulations are isothermal, which requires a thermostatting

method to keep the temperature constant. Popular thermostats include veloc-

ity scaling, the Andersen thermostat [96], the Berendsen thermostat [97] and the

Nosé-Hoover thermostat [98]. For the current work, the Nosé-Hoover thermostat

is adopted as it is one of the most accurate and efficient methods for constant-

temperature MD simulations [92]. This method was originally proposed by Nosé

and subsequently developed by Hoover [98, 99]. Their central idea is to couple the

simulated system to an external heat bath with a fixed temperature.
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Figure 4.1: (a) The meaning of periodic boundary conditions; (b) The meaning of
the reflective wall condition.

4.1.4 Boundary conditions in MD simulations

Periodic boundary conditions are frequently used in MD simulations. Their intro-

duction is equivalent to considering an infinite, space-filling array of identical copies

of the simulation region [93], as shown schematically in Fig. 4.1(a). In practice,

there are two consequences of this periodicity. The first is that an atom that leaves

the simulation region through a particular bounding face immediately re-enters the

region through the opposite face but without changing its velocities. The second is

that atoms lying within a distance rc of a boundary interact with atoms in an adja-

cent copy of the system, or, equivalently, with atoms near the opposite boundary –

a wraparound effect. To avoid the interaction between a particle and its own copies

in neighbouring boxes, it is necessary to make sure that the cut-off distance rc is no

more than half the smallest region dimension.

Importantly, periodic boundary conditions inhibit the occurrence of any fluc-

tuations with wavelengths longer than the domain length [92]. For example, for a

cube of side L, the periodicity will suppress any density waves with a wavelength

greater than L. This also applies to surface waves; the smallest wavenumber of

interfacial modes is q = 2π/L.

Another boundary condition used in this thesis is the reflective wall, as

sketched in Fig. 4.1(b), which means if an atom moves outside the wall on a timestep

by a distance delta, then it is put back inside the face by the same delta, and the

sign of the corresponding component of its velocity is flipped.

4.1.5 Calculating transport properties

To compare with the predictions of continuum models, the transport properties

(such as dynamic viscosity and surface tension) of molecular liquids need to be
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Figure 4.2: MD systems to obtain transport properties. (a) a cubic box of liquid
for the measurement of viscosity; (b) a bulk of liquid with two free surfaces for the
measurement of surface tension.

obtained. The dynamic viscosity is obtained by the Green-Kubo expression [100]:

µ =
V

kBT

∫ ∞
0
〈ψzx(t)ψzx(0)〉dt, (4.9)

0 10 20 30 40
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.000 0.002 0.004 0.006 0.008 0.010

0.0

0.2

0.4

0.6

0.8

1.0

2y
zz

-y
xx

-y
yy

 [e
 /s

3 ]

z [s]

(b)(a)

<y
zx

(t)
y

zx
(0

)>
/<
y

zx
(0

)y
zx

(0
)>

t [ns]

Figure 4.3: (a) the decay of the correlation of shear stress; (b) the distribution of
2ψzz − ψxx − ψyy.
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where V is the volume of the liquid and ψzx is the shear stress. To calculate the

viscosity numerically in MD simulations, a cubic box of molecules undergoing ther-

mal motions is simulated with periodic conditions in all three directions, as shown

in Fig. 4.2(a). The temporal correlation of the shear stress, which decays to zero

with time, is then obtained from the MD simulation (see Fig. 4.3(a)) and integrated

to obtain the viscosity (using trapezoidal rule).

The value of surface tension is obtained by the viral expression [95] in a

domain containing two free surfaces (see, Fig. 4.2(b)):

γ =
1

4

∫ Lz

0
(2ψzz − ψxx − ψyy) dz. (4.10)

Here Lz is the length of the MD domain in the vertical direction, z. The integrand

of Eq. (4.10) is obtained from the MD simulation (by dividing the domain into bins)

and plotted in Fig. 4.3(b), which is then integrated to obtain the value of surface

tension.

4.2 Molecular models of liquid films and solid substrates

In this section, the molecular models of liquid films and solid substrates (plates and

fibres in geometry) are presented, which are used in Chapters 5–7.

The molecular liquid we use is argon. For argon, the energy parameter εll

(the subscript ll stands for liquid-liquid interactions), the length parameter σll, and

atomic mass are 1.67 × 10−21 J, 0.34 nm, and 6.63 × 10−26 kg, respectively. The

temperature of this system is kept at T = 85 K or T ∗ = 0.7εll/kB (* henceforth

denotes LJ units). At this temperature, the mass density of liquid argon is 1.40×103

kg/m3 and number density n∗ = 0.83/σ3
ll [101]. The number density of the vapor

phase is 1/400n∗ [101]. As such, in the continuum models in Chapter 3, the vapor is

assumed to be dynamically passive and has no effect on the dynamics of liquid films.

The cut-off distance, beyond which the intermolecular interactions are omitted, is

chosen as rc
∗ = 5.5σll. To compare with the predictions of a continuum model, the

transport properties of liquid argon are calculated based on the methods described

in Sec. 4.1.5. It is found that the surface tension γ = 1.52 × 10−2 N/m and the

dynamic viscosity µ = 2.87× 10−4 kg/(ms).

The substrate is platinum with a face centred cubic (fcc) structure with

a mass density 21.45 × 103 kg/m3 and an atomic mass 3.24 × 10−25 kg. It has

been noticed before that the different planes of the fcc lattice lead to varying slip

properties due to the difference in interfacial atom structures [102]. In this work,
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the 〈100〉 surface and 〈110〉 are adopted to form plates (planar substrates), which

are shown in Fig. 4.4.

In terms of fibres (cylindrical substrates), two different atomic structures are

considered: the one in Fig. 4.5(a) is generated by cutting a cylinder from a large

cube of platinum; the one in Fig. 4.5(b) consists of two concentric surfaces, of which

the cross section consists of two rings with a same number of particles distributed

uniformly.

The solid substrate is assumed to be rigid, which saves considerable compu-

tational cost compared with flexible walls. Instead, one may use flexible substrates

if the computational cost is affordable but previous studies show the two kinds of

wall produce very similar results [12]. The liquid-solid interactions are also modelled

by the same 12-6 LJ potential with εls = Cεll and σls = 0.8σll. We vary C to obtain

different amounts of slip. The value of C is detailed in Chapters 5–7.

Figure 4.4: Snapshots of the 〈100〉 and 〈110〉 substrate surface in MD simulations.
(a) perspective and top views of the 〈100〉 surface; (b) perspective and top views of
the 〈110〉 surface. The light blue color indicates solid atoms in the second layer.
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Figure 4.5: Two kinds of fibres. (a) Fibre 1, cut out from a bulk of platinum with
a fcc structure. (b) Fibre 2, consisting of two concentric surfaces.

4.3 Extracting free-surface positions

To obtain the position of the liquid-vapour interface, we first locate all liquid

molecules by calculating the number density within one spherical radius of each

molecule. For example, if the total number of molecules within the d distance from

a given molecule is N , the density of this molecule will be N/(4/3πd3). The thresh-

old density for defining a liquid molecule is chosen as 0.5n∗ as the interface molecules

have half of their spherical volume in vapour and half in liquid. For planar films, liq-

uid molecules are then subdivided into columns and the molecules with the highest

vertical coordinate in each column are found; this defines the liquid-vapour inter-

face. One example of finding the liquid-vapour interface for planar films is shown

by Fig. 4.6(a), where the dots are liquid molecules and the solid line is the extracted

interface. Note that the film has a small depth into the page and the solid line is

the averaging result over the depth. Similarly, for annular films, liquid molecules

are subdivided into circular sectors and the molecules with the largest distance to

the center in each sector are found, which forms the liquid-vapour interface, as

demonstrated in Fig. 4.6(b).

4.4 Validation of Laplace pressure at the nanoscale

In this section, we are interested in validating the formula of Laplace pressure which

is adopted in our theoretical models of interfacial flows. The Laplace pressure is

given by

∆p = −γ
(

1

R1
− 1

R2

)
, (4.11)

where R1 and R2 are the two principal radii of curvatures. To validate this ex-

pression, we simulate a liquid bridge between two solid plates as shown in Fig. 4.7.
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Figure 4.6: The extraction of the free surface, (a) for planar films and (b) for annular
films. The dots are particles and the solid lines are the extracted interface.

Figure 4.7: Liquid bridges between two plates, (a) εls = 0.65εll, (b) εls = 0.35εll,
(c) εls = 0.20εll.

Note that we apply a periodic condition into the page so that those bridges are

two-dimensional. The extra pressure in the liquid due to the curvature is

∆p = −2γ cos θc
h

, (4.12)
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Figure 4.8: Liquid cylinders on plates simulated in MD simulates (on the left panel)
and the extractions of contact angles by fitting the surface shape with a circle (on
the right panel), (a) εls = 0.65εll, (b) εls = 0.35εll, (c) εls = 0.20εll.

where θc is the contact angle and h is the distance between two plates. Figures

4.7(a-c) shows three liquid bridges with different contact angles, which is achieved

by changing the liquid-solid interactions εls.

To obtain the contact angles of those bridges, we simulate liquid cylinders on

plates, as shown in the left panel of Fig. 4.8. We use the method discussed earlier

in the previous subsection to extract the free surface and average it over different

time instances, and fit it with a circle (the equilibrium profile), see the right panel

of Fig. 4.8. Thus, the contact angle is the angle between the tangent line to the

circle at the solid surface and the tangent line with the solid surface.

After obtaining the contact angles, we use Eq. (4.12) to predict the values

of pressure in those liquid bridges in Fig. 4.7, which are then compared with the

pressure measured directly from MD simulations. The comparison between the
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predicted pressure and the measured pressure is listed in Table 4.1, and the good

agreements between them validate the correctness of the formula of Laplace pressure

at the nanoscale (note that the pressure of the vapour is zero).

εls Contact angle (degree) Pressure inferred Pressure measured

0.65 65 -0.0308 -0.0311

0.35 117 0.0331 0.0362

0.20 143 0.0582 0.0615

Table 4.1: Validation of the Laplace pressure.

4.5 Summary

In this chapter, the basis of MD simulations is introduced and then extended to

describe the MD models of liquid films and solid substrates. We also validate the

formula of Laplace pressure. Though these models are simple and ideal, they are

sufficient to demonstrate the important physics we find in Chapters 5–7, since ex-

perimental studies are extremely limited currently.
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Chapter 5

Instability of nanofilms on

plates

In this chapter, we consider the spinodal dewetting of nanofilms on substrates caused

by disjoining pressure, which is conventionally described by the deterministic Planar-

film LE, but here we revisit this problem using the Planar-film SLE developed in

Chapter 3 to consider the effects of thermal fluctuations.

This chapter is organized as follows. Sec. 5.1 shows a linear stability analysis

of the Planar-film LE. In Sec. 5.2, we present a linear stability analysis of the Planar-

film SLE to derive the spectra of surface waves. MD simulations of the dewetting

of nanofilms are shown in Sec. 5.3. Sec. 5.4 shows the comparison of MD results and

the theoretical predictions. We summary all findings in Sec. 5.5.

5.1 Classical instability mechanism with disjoining pres-

sure

Williams and Davis [19] derived the Planar-film LE with the effects of disjoining

pressure. A linear stability analysis of the Planar-film LE equation reveals a fastest

growing mode and a critical wavelength (perturbations with a wavelength larger

than this value grow) [19]. The critical wavelength is often used to predict whether

a film of a particular size is stable, and the fastest growing mode is used to estimate

the rupture time and number of holes/drops after film rupture [35, 42]. Here we

repeat the process of the classical instability analysis. The Planar-film LE equation,

in one-dimensional form is (Eq. (3.39) without the stochastic term and slip length):

∂h

∂t
=

1

µ

∂

∂x

[
1

3
h3 ∂

∂x

(
φ− γ ∂

2h

∂x2

)]
. (5.1)
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This equation is linearised using h = h0+δh, with the assumption that δh represents

small deviations from the initial film thickness h0, so that one can obtain:

∂δh

∂t
=

1

3µ
h3

0

∂

∂x

[
−γ ∂

3δh

∂x3
+
∂φ

∂h
|h=h0

∂δh

∂x

]
. (5.2)

The stability of Eq. (5.2) is examined using normal modes:

δh = δ̂h eω(q)t+iqx. (5.3)

A substitution of Eq. (5.3) into Eq. (5.2) leads to the dispersion relation

ω(q) =
h3

0

3µ

(
−γq4 + q2∂φ

∂h
|h=h0

)
. (5.4)

The critical wavenumber qc is when ω(q) = 0, and the dominant wavnumber qd is

when ω(q) has its maximum, so that one can obtain:

qc =

√
−1

γ

∂φ

∂h
|h=h0 , (5.5)

qd =

√
2

2
qc. (5.6)

Figure 5.1: A sketch of the molecule-substrate interaction. The molecule is located
at (x = 0, y = 0, z = 0) and the semi-finite substrate (the shadow area) is located
at z = D. Image taken from [103].

46



On the other hand, the surface spectra (amplitude of surface modes) is∣∣∣δ̂h(q, t)
∣∣∣ =

∣∣∣δ̂h(q, 0)
∣∣∣ eω(q)t, (5.7)

from the assumption of normal modes. Here
∣∣∣δ̂h(q, 0)

∣∣∣ is the initial condition of the

surface.

To continue the analysis, one has to specify the expression of disjoining

pressure. There are many forms of disjoining pressure reported in the literature

and different choices of disjoining pressure cause different flow behaviour in a thin

film [104, 105]. The disjoining pressure for the work considered here is based on our

molecular simulation of a thin film on a substrate. As shown in Fig. 5.1, the total

interaction energy exerted on a molecule by a semi-infinitely extended substrate

with density ns is

f (D) =

∫ z=∞

z=D

∫ x=∞

x=0

[
4εlsσ

12

r12
− 4εlsσ

6

r6

]
2πxns dx dz

=

∫ z=∞

z=D
dz

∫ x=∞

x=0

[
4εlsσ

12

(z2 + x2)6 −
4εlsσ

6

(z2 + x2)3

]
2πxnsdx

=
4εlsnsσ

12

45D9
− 4εlsnsσ

6

6D3
, (5.8)

where D is the distance between the molecule and the solid surface, and 2πx dx dz

is the volume of the circular ring (its cross-sectional area is dx dz and radius is x

shown in Fig. 5.1). Thus, for a unit volume of liquid at the free surface of a film

with thickness h, the interaction energy is

φ (h) = f (h)nl

=
4εlsnsnlσ

12

45h9
− 4εlsnsnlσ

6

6h3
. (5.9)

With the classic definition of the Hamaker constant Als = 4π2εlsσ
6
lsnlns, one can

rewrite Eq. (5.9) as

φ (h) =
Als
6π

2

15
σ6

(
1

h

)9

− Als
6π

(
1

h

)3

. (5.10)

In the static case, the NS equation reduces to a simple pressure balance:

∇p = ∇φ, (5.11)
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so that the disjoining pressure in the film surface due to the solid is

p = φ(h). (5.12)

From Eq. (5.10), the ratio of the attractive part of LJ potential (the h−3

term) to the repulsive part (the h−9 term) is 15
2

(
h
σ

)6
. Therefore, as σ has the size of

one molecule, and given the film thickness h in this work is chosen to contain several

molecules, the repulsive part of the LJ potential makes a negligible contribution to

the linear stability analysis and will be ignored. Furthermore, considering that a free

liquid film will rupture itself due to the attraction of its two surfaces, the Hamaker

constant Als in Eq. (5.10) is replaced by the difference between the Hamaker constant

of the liquid film itself All and the liquid-solid Hamaker constant, i.e. All−Als [106,

107], so that Eq. (5.10) becomes

φ =
All −Als

6πh3
. (5.13)

Here, All = 4π2εllσ
6
lln

2
l . Finally, due to the finite thickness of the substrate in MD

simulations, the disjoining pressure takes the form

φ =
All −Als

6πh3
+

Als

6π(h+ hs)
3 . (5.14)

This is because the top surface of a liquid film, which is located at h from a semi-

infinite substrate, has the pressure φ1 = Als/(6πh
3) and if located at h + hs away

from the substrate, the pressure is φ2 = Als/[6π(h + hs)
3]. Thus the contribution

from a substrate with thickness hs should be φ1 − φ2. Added to the disjoining

pressure of the liquid film itself, we arrive at Eq. (5.14).

5.2 New instability mechanism accounting for thermal

fluctuations

As the thickness of thin liquid films reaches the nanoscale, thermal fluctuations

may play an important role in the instability process. Recently Zhao et al. [53]

derived a spectrum for growing surface waves of a nanojet due to the Rayleigh-

Plateau instability, with the inclusion of the effects of thermal fluctuations, and

found good agreement with MD simulations, which cannot be predicted by the

classical instability analysis.

Here, the effects of thermal fluctuations on the instability of thin films on
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plates are considered using the Planar-film SLE. In this problem, we ignore slip so

that the Planar-film SLE is reduced to

∂h

∂t
=

1

µ

∂

∂x

[
1

3
h3 ∂

∂x

(
φ− γ ∂

2h

∂x2

)]
+

√
2kBT

µLy

∂

∂x

(√
1

3
h3N

)
. (5.15)

We linearise Eq. (5.15) using h = h0 + δh, with the assumption that δh represents

small deviations from the initial film thickness h0 and the noise amplitude is also

assumed to be small, as explained in [51]. By expanding Eq. (5.15) to first order,

the linearised SLE equation is

∂δh

∂t
=

1

3µ
h3

0

∂

∂x

[
−γ ∂

3δh

∂x3
+
∂φ

∂h
|h=h0

∂δh

∂x

]
+

√
2kBTh3

0

3µLy

∂N

∂x
. (5.16)

Taking the Fourier transform of Eq. (5.16) using

δ̂h =

∞∫
−∞

δh(x, t)e−iqxdx, (5.17)

N̂ =

∞∫
−∞

N(x, t)e−iqxdx, (5.18)

leads to

∂δ̂h

∂t
= ω(q)δ̂h+ i

√
2kBTh3

0

3µLy
qN̂ . (5.19)

Here ω(q) is the same dispersion relation as that of the deterministic LE equation,

Eq. (5.4).

The solution of Eq. (5.19) can be represented as the linear superposition of

two contributions

δ̂h = δ̂hdet + δ̂hflu, (5.20)

where δ̂hflu is the contribution purely caused by thermal fluctuations and δ̂hdet is

the solution to the deterministic part of Eq. (5.19), i.e., ∂δ̂h
∂t = ω(q)δ̂h; obtained as

below

δ̂hdet(q, t) = δ̂h(q, 0)eω(q)t, (5.21)

where the initial disturbance is δ̂h(q, 0); here this is the Fourier transform of the

liquid surface found in MD simulations at t = 0. This result can be directly obtained

by assuming the surface has the normal modes for the Planar-film LE, see Eq. (5.7).

To find the contribution of the fluctuating component to the spectrum, we
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determine the impulse response of the linear system ∂δ̂h
∂t = ω(q)δ̂h through:

∂δ̂h

∂t
= ω(q)δ̂h+ δ (t) . (5.22)

Performing a Laplace transform of Eq. (5.22) using g(q, s) =
∫∞

0 δ̂h(q, t)e−tsdt with

zero initial disturbance δ̂h(q, 0) = 0 gives

g =
1

s− ω(q)
, (5.23)

so that from the inverse Laplace transform, the impulse response is simply

H = δ̂h = eω(q)t. (5.24)

Now with thermal fluctuations i
√

2kBTh
3
0

3µLy
qN̂ as the input, we find

δ̂hflu = i

√
2kBTh3

0

3µLy
q

∫ t

0
N̂ (q, t− τ)H(q, τ)dτ. (5.25)

As δ̂h is both a random and complex variable, the root mean square (rms)

of its norm is sought, which, from Eq. (5.20), is given by

∣∣∣δ̂h∣∣∣
rms

=

√∣∣∣δ̂hdet + δ̂hflu

∣∣∣2 =

√∣∣∣δ̂hdet

∣∣∣2 +
∣∣∣δ̂hflu

∣∣∣2, (5.26)

(as the average of δ̂hflu is zero) where from Eq. (5.21)∣∣∣δ̂hdet

∣∣∣2 = |δ̂h(q, 0)|
2
e2ω(q)t, (5.27)

and from Eq. (5.25)

∣∣∣δ̂hflu

∣∣∣2 =
2kBTh

3
0q

2

3µLy

∣∣∣∣i ∫ t

0
N̂ (q, t− τ)H(q, τ)dτ

∣∣∣∣2
=

2kBTh
3
0q

2

3µLy

∫ t

0

∣∣∣N̂ (q, t− τ)
∣∣∣2H(q, τ)2dτ

=
2kBTh

3
0q

2

3µLy
Lx

∫ t

0
H2dτ (5.28)

=
kBTh

3
0q

2

3µLyω(q)
Lx[e2ω(q)t − 1].
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Here we have used
∣∣∣N̂ (q, t)

∣∣∣2 = Lx, due to the finite length of the discrete Fourier

transform used in MD simulations. Thus, we derive the spectrum of surface waves

of bounded film flows as follows:

S =
∣∣∣δ̂h∣∣∣

rms
=

√
|δ̂h(q, 0)|2e2ω(q)t +

kBTh3
0q

2

3µω(q)

Lx
Ly

[
e2ω(q)t − 1

]
. (5.29)

Here we use S to represent the spectra for notational simplicity. A similar expression

for the surface wave spectrum can be found in Ref. [48, 51], but the derivation

provided here is potentially more intuitive.

5.3 MD simulations of dewetting nanofilms

Figure 5.2: Snapshots of a section of a thin liquid film on a substrate simulated
in MD; (a) initial configuration, (b) undulation growth, and (c) rupture. Lx is the
film length and h is the film thickness (y is into the page).

MD simulations are used to simulate the rupture of a liquid film on a sub-

strate. The domain contains three phases with the liquid bounded by the vapor

above and the solid below, as shown in Fig. 5.2(a). The liquid of the film is ar-
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gon and the substrate is platinum with a face centred cubic (fcc) structure and its

〈100〉 surface in contact with the liquid. The parameters of argon and platinum are

detailed in Chapter 4. The liquid-solid interactions are modelled by the 12-6 LJ

potential with εls = 0.7εll and σls = 0.8σll, which creates partial wetting of argon

on the substrate. After specifying the values of interactions, the Hamaker constants

can be calculated. The All is evaluated to be 4.5 × 10−20 J, from the expression

4π2εllσ
6
lln

2
l and Als is 2.61× 10−20J, from the expression 4π2εlsσ

6
lsnlns.

The initial dimensions of the liquid film (Lx, Ly, h0) in Fig. 5.2(a) are chosen

so that Lx � Ly, with Lx = 313.90 nm and Ly = 3.13 nm, making the 3D MD sim-

ulations quasi-2D, which allows us to consider large aspect ratio films and compare

to 2D theories. Three cases with different film thickness h0 = (a) 1.18 nm, (b) 1.57

nm and (c) 1.96 nm are considered. Thus, Lx is also much larger than h, enabling

the system to be described by lubrication (long-wave) theory. The lateral size of the

substrate is the same as that of the liquid film and has a thickness hs = 0.78 nm

(composed of five layers of platinum atoms). The vapour above the liquid film has

a thickness of 15.70 nm.

Based on the classical theory of instability (Eq. (5.5) & (5.6)), the criti-

cal wavelength (λc = 2π/qc) and fastest growing wavelength (λd = 2π/qd) are

λc =
√
−4π2γ/(∂φ/∂h) and λd =

√
−8π2γ/(∂φ/∂h), respectively [19]. For the

thickest film (case (c)) which has the largest critical wavelength and fastest growing

wavelength, λc is evaluated to be 48.33 nm and λd = 68.35 nm. Thus the cho-

sen length of the film Lx is long enough to contain multiple waves of the fastest

growing wavelength for all the cases, and the chosen width of the film Ly is small

enough to suppress any wave growth in the y direction for all the cases; ensuring

the simulations remain quasi-2D.

We initialise each MD simulation as follows. Firstly, the liquid film and

vapour are equilibrated separately in periodic boxes at T ∗ = 0.7εll/kB. The liquid

film is then deposited on the substrate and the vapour on top of the film. After

assembly, the positions and velocities of the liquid and vapour atoms are updated

with a Nosé-Hoover thermostat. Periodic boundary conditions are applied in the x

and y directions of the system whilst vapour particles are reflected specularly in the

z direction at the top boundary of the system (see Fig. 5.2).

The position of the liquid-vapour interface is obtained using the method in

Chapter 4. After determining the 2D interface, we average over the y direction

(since these simulations are expected to be quasi-2D). Thus, the final interface is

1D and allows comparison with the 1D Planar-film SLE. After defining the interface

h(x, t), the undulations δh are obtained by subtracting the initial thickness h0 from
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h. Then we perform a discrete Fourier transform of the data and average over a

number of realisations (70, 50 and 30 times for cases (a)-(c)) to obtain the spectra
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Figure 5.3: Spectra of MD simulations (dashed lines) and Eq. (5.29) (solid lines)
at different times for (a) h0=1.18 nm (t =0.086, 0.171, 0.428 ns); (b) h0=1.57 nm
(t =0.086, 0.257, 0.852 ns); and (c) h0=1.96 nm (t =0.086, 0.857, 3.428 ns). The
inset shows the deterministic spectrum for h0=1.18 nm.
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presented in Sec. 5.4.

5.4 Results and discussions

In this section, the surface undulation spectrum obtained from MD simulations is

compared with the analytical spectrum derived above.

Figure 5.2 shows an MD simulation of a flat liquid film (case (a)), in which

perturbations spontaneously grow (Fig. 5.2(b)) and subsequently rupture the film

(Fig. 5.2(c)).

Figure 5.3 shows the rapidly growing amplitude of certain low wavenumber

disturbances in MD simulations, which suggests that the rupture of these liquid

films is mainly due to the spinodal instability. Notably, the analytical spectra (solid

red lines in Fig. 5.3) compare very well with MD simulations. In Fig. 5.3(a), the

inset shows the deterministic spectrum for h0 = 1.18 nm. As can be seen, the

amplitude of waves in the deterministic spectrum is far below that of MD results,

showing that conventional models cannot be relied on at such scales. On the other

hand, the stochastic spectrum agrees well with MD, suggesting thermal fluctuations

substantially amplify the underlying instability and promote the rupture process.

The deterministic spectrum in the inset of Fig. 5.3(a) indicates that the

dominant wavenumber qd (wavenumber with peak amplitude) is constant over time,

while both MD simulations and the stochastic spectra show clearly that this evolves.

The dominant mode at different times is extracted from MD simulations and plot-

ted in Fig. 5.4 (triangles) along with values obtained from the stochastic spectrum

(solid red lines) and the deterministic spectrum (dashed black lines). The results

demonstrate that thermal fluctuations induce a dominant wavenumber much higher

than classical predictions and that this gradually decreases to the classical result

over time; but in these cases, not before rupture of the film. It is also interesting

to note that, while the stochastic spectra are strictly only valid in the early linear

stages of the rupture process, the dominant wavenumber matches well with MD

results even close to rupture.

Apart from wave amplitude and the dominant wavenumber, thermal fluctu-

ations can also affect the critical wavenumber below which waves grow. From the

classic theory, the critical wavenumber (wavelength) for the bounded film studied

here is given by Eq. (5.5) and it is 0.35× 109 (17.95 nm), 0.2× 109 (31.41 nm), and

0.13×109 (48.33 nm) for cases (a)-(c) respectively. We perform here MD simulations

with a film length considerably smaller (i.e conventionally stable): 13 nm, 24 nm

and 36 nm for cases (a)-(c), respectively. Interestingly the result in Fig. 5.5, shows

54



0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10 12 14 16 18
0.0

0.2

0.4

0.6

0.8

1.0

 MD
 SLE
 LE

q m
ax

 [1
/n

m
]

t [ns]

tr

(a)

 MD
 SLE
 LE

q m
ax

 [1
/n

m
]

t [ns]

tr

(b)

 MD
 SLE
 LE

q m
ax

 [1
/n

m
]

t [ns]

tr

(c)

Figure 5.4: Dominant wavenumber as a function of time for (a) h0 = 1.18 nm,
(b) h0 = 1.57 nm, (c) h0 = 1.96 nm. Solid red lines are from the SLE, Eq. (5.29)).
Triangular symbols are MD data and dashed black lines are from the deterministic
LE, Eq. (5.6). tr is the film rupture time when first dry-spot appears on the solid,
averaged over a number of realisations (70, 50 and 30 times for cases (a)-(c)).

that a spontaneous rupture still occurs so that the critical wavenumber has been

significantly altered. For example, the amplitude of qc is not constant as expected
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conventionally, but rather grows algebraically in time as

Sq=qc (t) =

√〈∣∣∣δ̂h(qc, 0)
∣∣∣2〉+

2

3

Lx
Ly

kBT

µ
h3

0q
2
c t. (5.30)

Figure 5.5: Rupture of three short films with their lengths inside classic critical
wavelength λc in MD simulations (a) h0=1.18 nm, (b) h0=1.57 nm, (c) h0=1.96 nm.

To identify wavenumbers which grow in time we consider the critical wavenum-

ber q
′
c to be defined by ∂S

∂t |q=q′c = 0, i.e. the position at which the spectra are

constant, and find that

q
′2
c = qc

2 +
kBT

γ

Lx

Ly|δ̂h(q, 0)|2
, (5.31)

where |δ̂h(q, 0)|2 is from the initial condition of the film and kBT
γ is the square of

the thermal length which premultiplies the new term due to thermal fluctuations.

The expression indicates that, as observed in Fig. 5.5, thermal noise will increase

the critical wavenumber, making liquid films of a certain thickness more susceptible

to rupture by shorter-wave undulations. The parameters |δ̂h(q, 0)| = 0.0977×10−18

m2, 0.1328× 10−18 m2, and 0.1625× 10−18 m2 are directly obtained from MD sim-

ulations for cases (a)-(c), respectively to find that q′c = 5.80 × 109 (λ′c = 1.08 nm),
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5.79× 109 (λ′c = 1.08 nm), and 5.79× 109 (λ′c = 1.08 nm). Therefore, it is seen that

at the nanoscale the critical wavenumber can become independent of film height

as thermal fluctuations (second term in Eq. (5.31)) overwhelm the conventional in-

stability mechanism of disjoining pressure (first term in Eq. (5.31)). In this case,

the new critical wavenumber depends on thermal fluctuations and the initial distur-

bance. Given the consistency between the MD results and the theoretical analysis,

we can have some confidence that thermal fluctuations have the potential to rupture

conventionally-stable film geometries.

5.5 Summary

Thermal fluctuations play an important role in different types of free-surface flow

at the nanoscale. In this chapter, we investigate their effects on the instability of

a thin liquid film on a substrate using MD simulations as an experimental probe,

and analytically by solving stochastic thin film equation, to provide a deeper insight

into the underlying physics. While thermal fluctuations are intrinsically captured in

MD simulations, the SLE equation models these fluctuations using an appropriately

scaled white noise. To facilitate the comparison between MD simulations and the

SLE equation, we derive a stochastic spectrum of surface waves, and show close

agreement between the analytical result and MD. By comparison with a determinis-

tic (fluctuation-free) result, we conclude that thermal fluctuations are critical to the

nature of the instability of nanoscale thin-film flows: they significantly intensify the

amplitude of undulations, render the dominant wavenumber time-dependent, and

decrease the critical wavelength. Thus, our work indicates that the consideration of

thermal fluctuations is essential when investigating the behaviour of liquid films at

the nanoscale.

A potentially related phenomenon occurs in the study of water transport in

carbon nanotubes, where recent experiments show continuous flowing water in a

channel tends to breakup and form a consecutive void-water structure [108], which

may be due to thermal fluctuations. The current work reveals the effects of thermal

fluctuations on the initial stages of instability growth. However, there are also

abundant interesting flow dynamics in the later stages of the process where thermal

fluctuations could play a role. For example, future research could consider the

coarsening dynamics after the film has ruptured into droplets [109, 110].
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Chapter 6

Thermal capillary wave growth

and surface roughening

The well-known Capillary Wave Theory (CWT), which describes the capillary spec-

trum of the free surface of a liquid film at thermal equilibrium, does not reveal

the transient dynamics of surface waves, e.g., the process through which a smooth

surface becomes rough. Here, we use the SLEs and Langevin model developed in

Chapter 3 to resolve this problem and study the effects of slip on the evolution of

thermal capillary waves (TCWs).

This chapter is organised as follows. In Sec. 6.1, the time-dependent spec-

tra obtained from the SLEs and the Langevin model are presented. In Sec. 6.2,

the molecular configuration for nanoscale liquid films on substrates (plates and fi-

bres) is presented; these simulations will be used as virtual nanoscale experiments,

against which new theories will be validated. The slip length used in the analytical

solutions is obtained from independent MD simulations, and details of how these

are performed are also given. Sec. 6.3 compares the new theories with MD results

and previous experiments, and discusses new findings. In Sec. 6.4, we summarise

the main contributions of the chapter and outline exciting future directions for this

research.

6.1 Time-dependent TCW spectra

6.1.1 TCW spectra obtained from SLEs

Using the linear stability analysis method in Chapter 5, we obtain time-dependent

spectra from the Planar-film SLE and Annular-film SLE (both with slip). We do

not consider disjoining pressure here as disjoining pressure will lead to the rupture
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of films, which is beyond the scope of the classic CWT, where films are expected to

be stable at rest (at least for planar films).

With the Planar-film SLE (Eq. (3.39)), the transient spectrum for planar

films is

S1 (q, t) =

√〈∣∣∣δ̂h(q, 0)
∣∣∣2〉 e−2ΩLW,1(q)t +

Lx
Ly

kBT

γq2

[
1− e−2ΩLW,1(q)t

]
. (6.1)

The explicit expression for Ω is shown earlier in Chapter 3. As we are interested in

how thermal fluctuations roughen a surface (i.e., the evolution of a non-equilibrium

surface to its thermal equilibrium), the initial condition of the surface is assumed to

be smooth 〈
∣∣∣δ̂h(q, 0)

∣∣∣2〉 = 0. As we will see, a smooth interface allows us to extract

the maximum time for a non-equilibrium liquid surface to reach its thermal equi-

librium, which provides a useful guideline either for computational or experimental

investigation of non-equilibrium surfaces. Assuming the initial surface is smooth,

Eq. (6.1) is simplified to

S1 (q, t) =

√
Lx
Ly

kBT

γq2

[
1− e−2ΩLW,1(q)t

]
. (6.2)

For an annular film, the time-dependent spectrum derived from the Annular-

film SLE (Eq. (3.64)) is

S2 (q, t) =

√〈∣∣∣δ̂h(q, 0)
∣∣∣2〉 e−2ΩLW,2(q)t +

Lx
2πh0

kBT

γ(q2 − 1/h2
0)

[
1− e−2ΩLW,2(q)t

]
.

(6.3)

With an initially smooth surface, Eq. (6.3) becomes

S2 (q, t) =

√
Lx

2πh0

kBT

γ(q2 − 1/h2
0)

[
1− e−2ΩLW,2(q)t

]
. (6.4)

6.1.2 TCW spectra from the Langevin model

From the Langevin model, Eq. (3.83), the TCW spectra can also be immediately

obtained using the linear-stability-analysis method in Chapter 5, since a SLE is a

type of Langevin equation after linearisation (see Eq. (5.19)). The transient TCW

spectrum from the Langevin model is

S(q, t) =

√〈∣∣∣δ̂h(q, 0)
∣∣∣2〉 e−2Ω(q)t + S2

s (1− e−2Ωt). (6.5)
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Again, we assume the initial condition for the surface is smooth so that Eq. (6.5)

becomes

S(q, t) = Ss

√
1− e−2Ωt. (6.6)

Thus, one can see that the power of this Langevin model is its generality: to

find the time-dependent spectrum for the linear treatment of any Stokes-flow film, all

that is required is to substitute the appropriate static spectra and dispersion relation

into Eq. (6.6). For example, substituting Eq. (3.80) and Eq. (3.85) into Eq. (6.6)

generates exactly the spectra derived from the Planar-film SLE, namely, Eq. (6.2).

It also offers the opportunity of improving on such SLE predictions by adopting more

accurate dispersion relations, such as those utilising Stokes flow (see Appendix B

for the derivation of the Stokes dispersion relation for annular films), or adding

additional physics without having to always return to the full equations of FH, and

performing an asymptotic analysis.

6.2 MD simulations

6.2.1 Settings of films on slippery plates and fibres

To demonstrate the growth of TCWs, MD simulations of films on plates and fibres

are performed, as shown in Fig. 6.1. The film is composed of liquid argon and kept

at a constant temperature T = 85 K. For a planar substrate, the solid is platinum

made of five layers of atoms, with a face centred cubic (fcc) structure and its 〈100〉
surface in contact with the liquid. For cylindrical substrates, Fibre 1 and Fibre 2 are

used, which are described in Chapter 4. The liquid-solid interactions are modelled

by the 12-6 LJ potential with σls = 0.8σll for the length parameter. For planar

films, three different values of the energy parameter are used, in order to generate

varying slip lengths: Case (P1) εls = 0.65εll, Case (P2) εls = 0.35εll and Case (P3)

εls = 0.20εll. For annular films and Fibre 1, Case (A1) εls = 0.7εll; for Fibre 2, Case

(A2) εls = 0.6εll.

The initial dimensions of a planar liquid film (see Fig. 6.1(a)) are Lx =

313.90 nm, Ly = 3.14 nm and h0 = 3.14 nm; the MD simulations are quasi-2D

(Lx � Ly) allowing comparison with 2D theory. The initial size of the annular film

(see Fig. 6.1(c)) has film length Lx = 229.70 nm and outer radius h0 = 5.74 nm.

The radius of Fibre 1 is defined by the radius of cylinder, a1 = 2.35 nm, used to cut

the fibre out of a bulk cube of platinum. Fibre 2 has an outer radius a2 = 2.17 nm,

with spacing 0.22 nm from the inner ring. Solid particles are distributed uniformly

with 5◦ spacing.
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Figure 6.1: Snapshots of a thin liquid film (a section) on a substrate in MD. For
planar films, (a) initial configuration with a smooth surface; (b) surface roughening.
For annular films, (c) initial configuration; (d) beads formed due to the Rayleigh-
Plateau instability. Two types of cylindrical substrates are used: (e) Fibre 1, cut out
from a bulk of Platinum with fcc structure. (f) Fibre 2, consisting of two concentric
surfaces. Lx is the film length, h is the film thickness for a planar film and film
radius for an annular film, and a is the fibre radius (y and θ are into the page).

Notably, the film thickness for both planar films and annular films are cho-

sen to be much larger than the cut-off distance so that disjoining pressure can be

ignored [111].

For the planar case, we separately equilibrate a liquid film with thickness

h0 = 3.14 nm and a vapour in periodic boxes at T = 85 K. The film is then

deposited above the substrate and the vapour is placed on top of the film. Because

there exists a gap (a depletion of liquid particles) between the solid and liquid,

arising from the repulsive force in the LJ potential, it is necessary to deposit the

liquid above the substrate by some distance. The thickness of the gap is found to

be about 0.2 nm after the liquid-solid system reaches equilibrium so that we choose

a deposit distance d = 0.2 nm. This makes the initial position of the film surface at

z = h0 + d = 3.34 nm if the substrate surface has position at z = 0.

For an annular film, cuboid boxes of liquid and vapour are equilibrated sep-

arately in periodic boxes at T = 85 K. Then an annular film is cut out from the

cuboid box with the outer radius at 5.74 nm and inner radius above the fibre radius

61



with an interval 0.2 nm. Then the fibre is put into the annular film and vapour is

placed to surround the film. Notably, in this case, the position of film surface is still

at h0 = 5.74 nm, initially.

Periodic boundary conditions (PBC) are applied in the x and y directions of

a planar system whilst vapour particles are reflected specularly in the z direction

at the top boundary of the planar system. For annular films, PBC are applied in

all three directions. After initialisation of the simulated systems, the positions and

velocities of the liquid and vapour atoms are updated with a Nosé-Hoover thermostat

(keeping the temperature at T = 85K) and the boundary conditions detailed above.

6.2.2 Measurements of slip length

Slip length is measured from independent configurations by simulating pressure-

driven flow past a substrate surface as shown by the MD snapshots in the top-left

corner of Fig. 6.2(a) (for a planar film) and Fig. 6.2(c) (for an annular film). The

pressure gradient is created by applying a body force g to the fluid. The generated

velocity distribution is u(z) = ρg
2µ(z − z1)(2z2 − z1 − z) + us for a planar film. Here

z1 and z2 are positions of the hydrodynamic boundary (HB) and free surface (FS)

for a planar film, respectively, and us is the slip velocity at the HB. For an annular

film, the axisymmetric velocity profile is u(r) = − ρg
4µ

[
r2 − r2

1 − 2r2
1 log(r/r2)

]
+ us,

where r1 and r2 are positions of the HB and FS for this system.

The precise location of two boundary positions for each system is not triv-

ial since there is an interfacial zone between the two different phases (solid-liquid

and liquid-vapour) as demonstrated by the density distribution (the orange line in

Fig. 6.2(a) and the inset of Fig. 6.2(c)). For the HB, research has shown that it is

located inside the liquid, between first-peak density and second-peak density rather

than being located at the solid surface [65, 69]; this is found by comparing the an-

alytical solution and MD measurements of the correlations of momentum density.

In line with this finding, we choose the position of HB at the first valley of density

distribution: z∗1 = 1.3σ for a planar film and r∗1 = 7.65σ for an annular film (see

Figs. 6.2(a) and 6.2(c)). The position of FS is determined in the standard way by

the location of equimolar surface where density is 0.5n∗l , with z∗2 = 9.8σ for a planar

film and r∗2 = 16.55σ for an annular film (see Figs. 6.2(a) and 6.2(c)).

After locating the boundary, the slip velocity is obtained by fitting velocity

profiles of MD data (symbols) with analytical expressions of velocity (solid black

lines) as shown in Fig. 6.2(a). The slip length ` is the distance between the HB

and the position where the the linear extrapolation of the velocity profile vanishes.

Figure 6.2(a) is, in particular, for case P2 where the slip length is measured to be
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Figure 6.2: Slip length measured using pressure-driven flows. Figures (a-b) are for
planar films with (a) for case P2 and (b) for case P1 and P3. MD calculations of
velocity (triangles) are fitted with analytical solutions (black solid lines) with the
HB (z1) at the first valley of MD density (yellow solid line) and FS (z2) at 0.5n∗l .
The inset shows slip length as a function of driving force. Figure (c) is for annular
films, case A1 and A2. The inset shows the density profile.

`∗ = 9.3σ (3.16 nm) (` = 0.68 nm for P1 and ` = 8.77 nm for P3, see Fig. 6.2(b)). In

Fig. 6.2(a), two different values of driving forces g∗ = 0.01 and g∗ = 0.006 are used
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to prove that the measured slip length is a constant independent of driving forces

(g∗ ≤ 0.01). However, as the inset shows, the slip length becomes shear-dependent

for g∗ ≥ 0.01, which is beyond current consideration [68]. As the driving forces

in the free-surface flows studied for capillary waves are small, the assumption of a

constant slip length holds.

For annular films, as shown in Fig. 6.2(c), the slip lengths are ` = 0 nm

(no-slip) for case A1 and ` = 1.18 nm for A2. Similar to the planar cases, we make

sure that the slip lengths for annular cases are constant independent of driving force

strength.

We note that as the HB does not align with the edge of the solid, the effective

thickness of the fluid domain simulated for capillary waves is different to its initial

thickness. For a planar film, as the position of the initial free-surface is at 3.34 nm

and the HB is at z1 = 0.44 nm, the effective thickness of a planar film is 2.9 nm.

For an annular film, this means a = r1 = 2.6 nm and outer radius h0 is 5.74 nm.

6.3 Results and discussions

As the film thickness is larger than the cut-off distance, there is no disjoining pressure

at the free surface. According to classical theory, the surface of the initially smooth

planar film, Fig. 6.1(a), should thus remain smooth indefinitely. However, thermal

fluctuations generate surface roughness over a period of time, see Fig. 6.1(b), and

it is the evolution of this roughness that we study here. The situation for the

annular film is more complex, since, as seen in Fig. 6.1(d), it can be prone to a

Rayleigh-Plateau instability, due to the ‘pinching’ surface tension force generated

by the circumferential curvature.

6.3.1 Spectra of planar films

We now compare the proposed Langevin model directly to MD data. Figures 6.3(a-

c) show spectra of (long) planar films with three different slip lengths. The first

thing we note is that the spectra are, indeed, time dependent, and only gradually

approach the static spectrum. One can see that the transient characteristics of the

spectra are strongly influenced by the slip length, which is controlled in the MD

indirectly by the solid-liquid interaction potential (Sec. 6.2 provides details on how

this parameter, and the effective film thickness, are extracted from independent MD

simulations for use in the Langevin model, see the caption of Fig. 6.3 for values).

From Figs. 6.3(a-c), the MD spectra compare remarkably well with the

Langevin model when a Stokes-flow approximation to the dispersion relation is
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Figure 6.3: Evolution of capillary spectra of a (long) planar film for increasing
slip length. A comparison of spectra extracted from MD results (triangles), and
Langevin model with Stokes-flow dispersion relation (solid lines) or with long-wave
dispersion relation (dash lines) at four different times, along with the static spectrum
(dash-dot line). (a) ` = 0.68 nm, (b) ` = 3.16 nm, (c) ` = 8.77 nm. The effective
thickness of the film h0 = 2.90 nm and film length is 313.9 nm.
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adopted (solid lines) for all slip lengths and at all times. In contrast, the Langevin

model with a dispersion relation derived from a long-wave approximation (dashed

lines) – equivalent to the Planar-film SLE – is only accurate (i) when slip lengths

are small relative to the film thickness (i.e. not for the case in Fig. 6.3(c)) and (ii)

only in the later stages of capillary wave growth where the dominant (dimension-

less) wavenumber qdh0 (the one with peak amplitude) becomes much smaller than

unity (i.e. when the wavelength becomes large), as discovered and detailed in [90].

Thus, the new Langevin model developed here allows us to go beyond the long-wave

paradigm.

The dominant wavenumber is seen to decrease with time and qd can be esti-

mated from the dynamic spectrum Eq. (6.6), by finding the spectrum’s maximum,

∂S/∂q|q=qd = 0:

1− e−2Ω(q)t − q dΩ (q)

dq
te−2Ω(q)t = 0. (6.7)

Adopting the long-wave approximation for the dispersion relation Eq. (3.80), one

can obtain

1− e−2ΩLW,1(q)t − 4ΩLW,1 (q) te−2ΩLW,1(q)t = 0. (6.8)

The non-zero root of Eq. (6.8) is

ΩLW,1 (q) t ≈ 15

8
(6.9)

Using the explicit expression for the ΩLW,1 allows analytical results to be obtained:

qd ∼=
[

15

8

µ

γ(3`h2
0 + h3

0)

] 1
4

t−
1
4 . (6.10)

As can be seen from Fig. 6.4, this prediction agrees well with the MD results.

6.3.2 Roughness of planar films and their universality class

For the free surface considered here, the roughness of the film, W , can be defined

in terms of the evolving surface spectrum from Parseval’s theorem:

W (t) =

√
1

Lx

〈∫ Lx

0
(δh)2 dx

〉
=

√
1

2πLx

∫ qmax

qmin

S2 dq , (6.11)

where qmin = 2π/Lx is usually defined by the domain size Lx. The qmax = 2πNb/Lx

and Nb is the number of bins used to extract the surface profile from MD simula-

tions, which provides an upper bound on the wavenumbers that can be extracted.
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A quick inspection of the MD results presented in Fig. 6.5 (symbols) reveals that,

approximately, the roughness grows with some power law in time, which motivates

the use of scaling relations (see the literature review in Chapter 2) to study sur-

face roughening, as considered previously for the interface roughening between two

immiscible inviscid gases [112]. In other words, this opens up the remarkable pos-

sibility of obtaining a simple parametrisation for this complex roughening process

that aligns the process to seemingly unrelated physical phenomena.

Scaling relations for surface roughness can be summarized by [63]

W ∼ Lαf(t/Lm), (6.12)

where L is the system size, f(v) = vκ for v � 1 (during roughness growth), and

f(v) = 1 for v � 1 (at roughness saturation; which is not reached in the MD results

of Fig. 6.5). The time to transition, between roughness growth and saturation, scales

with ts ∼ Lm. The three exponents (α, m and κ) define a universality class, and

are here related by κ = α/m.

For the planar film, α can be obtained by considering the surface at satura-

tion, i.e. from the static spectrum given in Eq. (3.85). Substituting Eq. (3.85) into

Eq. (6.11) leads to

Ws =

√
1

2πLy

kBT

γ

(
Lx
2π
− Lx

2πNb

)
. (6.13)

For large Nb, which is the case in our MD simulations, Ws becomes independent of
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Nb, and one can find that Ws =
√

Lx
4π2Ly

kBT
γ ∼ Lx1/2 assuming Ly is fixed.

An upper estimate on the transition time, between growth and saturation,

can be estimated from the inverse of the dispersion relation at the largest per-

missible wave length (q = 2π/Lx). For this it is reasonable to use the long-wave

approximation, Eq. (3.80), to find

ts =
3µL4

x

16π4γ(h3 + 3`h2)
, (6.14)

so that ts ∼ Lx4, and thus W (t) ∼ t1/8. In summary, we find the exponents α = 1/2,

m = 4 and κ = 1/8, assuming, as we have done, long-wave dominated roughness.

The MD results in Fig. 6.5 indicate that, indeed, W ∼ t1/8; this scaling is

more apparent at later times, but before saturation, when the roughness is charac-

terised by long wavelengths. This precise scaling, as well as the anticipated rough-

ness saturation, is confirmed by the Langevin model with a long-wave approxima-

tion to the dispersion relation (dashed lines). A closer agreement with MD at earlier

times, when the roughness has a shorter characteristic wavelength, is provided by a

Stokes-flow dispersion relation (solid lines), but this model does not permit the sim-

ple extraction of power laws. The results also show that enhanced slip accelerates

the roughening of the surface, but does not alter the final saturated value.

Interestingly, the new analysis enables us to see that the exponents we find

for the surface roughening of a planar film using the long-wave dispersion relation
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(i.e. the planar-film SLE by [5, 90]) are the same with those for surface roughening

of atomic depositions in molecular beam epitaxy (MBE) [63]. Thus the two distinct

physical problems belong to the same universality class (1/2, 4, 1/8).

The strong dependency of the transition time on domain length (ts ∼ L4
x)

which we have uncovered, explains why in our simulations for a film length Lx =

313.9 nm this time is of the order of microseconds (see Fig. 6.5) and is thus impossible

to resolve in MD. For example, for case P2, the transition time ts = 1/|Ω| = 3389.3

ns using the long-wave dispersion relation and ts = 3458.5 ns using the Stokes-flow

dispersion relation, evaluated at the smallest permissible wavenumber, q = 2π/Lx.

However for a shorter film with film length 62.78 nm (other parameters are the same

with P2), the transition time is ts = 5.4 ns with the long-wave dispersion relation

and ts = 8.2 ns with the Stokes-flow dispersion relation (with better accuracy).

Note that the growth of wave amplitude means the increase of surface free energy,

which comes from the constant-temperature used in MD simulations. Thus, the

complete evolution of capillary waves to the static capillary wave can be realised in

MD simulations, which is shown in Fig. 6.6, but our results have highlighted that

care should be taken when interpreting results for larger film lengths where reaching

thermal equilibrium (the static spectrum) for the surface is often computationally

intractable.
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the Langevin model. Dispersion relations used in the Langevin model assuming
Stokes flow (solid lines) and a long-wave approximation (dashed lines). Slip lengths
(a) Fibre 1, ` = 0; and (b) Fibre 2, ` = 1.18 nm. The hydrodynamic boundary
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6.3.3 Spectra of annular films

Figure 6.7 shows the evolving spectra of the capillary waves of annular films. For

wavenumber qh0 > 1, the MD spectra (triangles) of different times collapse onto

the static spectrum, Eq. (3.86). However, for qh0 < 1, the Laplace pressure from

the circumferential curvature results in a negative dispersion relation such that the

amplitude grows unboundedly until the film ruptures and beads are formed (seen in

Fig. 6.1(d)).

The surprise finding discussed earlier is that the noise amplitude in the

Langevin model appears independent of whether CWT (which assumes disturbances

are saturated) or a long-wave approximation (which does not) is adopted. It is

therefore interesting to see that the Langevin model compares closely to the MD

simulation for the annular film, particularly in unstable regions of the spectra. Note,

while the noise amplitude seems independent of the long-wave approximation, the

dispersion relation is not, see the inset of Fig. 6.7(b); hence the improved agreement

when adopting the Stokes-flow dispersion relation, particularly in Fig. 6.7(b), which

is rather dramatic in the annular case.

Though the Annular-film SLE (equivalent to the Langevin model with a long-

wave dispersion relation) overpredicts the spectra amplitude currently, its accuracy

can be improved for larger a/h0 (the ratio of the fibre radius to the total thickness),
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namely thinner films compared to the fibre radius. Currently, a/h0 = 0.45. For the

no-slip case, we plot the dependence of the dispersion relation (Stokes and long-wave)

on a/h0 in Fig. 6.8, which shows that the long-wave dispersion relation compares

well with the Stokes-flow dispersion relation for a/h0 ≥ 0.6. Thus, the Annular-film

SLE with large a/h0 is a good model to predict the stochastic dynamics of annular

films.

As with the dominant wavenumber for a planar film, the dominant wavenum-

ber for an annular film also decreases with time but approaches a constant value

which is qdch0 =
√

2/2 from a linear stability analysis of the Annular-film LE. It is

interesting to know at what time scale the qd reaches the constant value qdc. By

requiring ∂S2
∂t = 0 from Eq. (6.4), we obtain

2e2ΩLW,2(qd)tΩLW,2(qd)t
[
2− 1/(qdh0)2

]
+ 1− e2ΩLW,2(qd)t = 0. (6.15)

When qdh0 is close to
√

2/2, this expression is simplified to

(qdh0)2 ∼= (qdch0)2 +
µh5

0

2γG(h0)

1

t
. (6.16)

Thus, the time scale for the dominant wavenumber to reach qdch0 =
√

2/2 is
µh50

γG(h0) .

However, it is not feasible to extract the dominant wavenumber from current MD

simulations to confirm Eq. (6.16), as the number of data points is too sparse, as

shown in Fig. 6.7. One would need to simulate a much longer film to have data
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dense enough to verify Eq. (6.16), and the computational cost of this is currently

prohibitively high.

6.3.4 Connections with experiments
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Figure 6.9: Slip effects on surface roughening of a dewetting planar film. A com-
parison is made between our Langevin model and previous experiments [52] of a
rupturing film without slip but with effects of disjoining pressure. A further exper-
iment with large slip is suggested.

Using the parameters found in experiments of polymer systems considered in

[59–61] where a static spectrum has to be presupposed, we calculate the transition

time to be hours long – it is therefore not immediately clear that the assumption of

saturation is justified, and this should be confirmed before analysing experimental

data.

Fetzer et al. [52] presented experiments of dewetting polymer films and com-

pared the experimental data with the no-slip Planar-film SLE [5, 51] to investigate

the effects of thermal fluctuations on thin-film dewetting. The high viscosity of ex-

perimental liquids makes the time scales for instability growth so slow that AFM can

be used to provide spatio-temporal observations. One of the variables they analysed

is the roughness of the film surface in experiments, with which we can compare our

developed Langevin model.

In their experiments, the dewetting is influenced by disjoining pressure so

that the capillary spectrum from Langevin model is slightly modified to consider
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disjoining pressure φ:

S(q, t) =

√
S2(q, 0)e−2Ωt + L2

kBT

γq2 + dφ/dh |h0
(1− e−2Ωt). (6.17)

Here φ = A
6πh30

and A is the Hamaker constant. The long-wave dispersion relation

considering slip and disjoining pressure is

Ω′LW,1 =
M(h0)

µ

(
γq4 +

dφ

dh

∣∣
h0q

2

)
, (6.18)

while the Stokes-flow dispersion relation considering slip and disjoining pressure is

Ω′Stokes,1 =
γq2 + (dφ/dh)|h0

4µq

sinh(2qh0)− 2qh0 + 4q`sinh2(qh0)

cosh2(qh0) + q2h2
0 + q` [2qh0 + sinh(2qh0)]

. (6.19)

The surface roughness W is thus determined by the spectrum with

W =

√
1

L2

∫ L

0

∫ L

0
(δh)2 dxdy =

√
1

2πL2

∫ qmax

qmin

Sq dq. (6.20)

Here one has to think of the spectrum as radially symmetric in the wavenumber

space for a two-dimensional surface.

We use the data of roughness from Experiment 1 (Exp. 1) presented in the

figure 2 of [52]. To evaluate Eq. (6.20), the values of parameters (film thickness,

surface tension, Hamaker constant, viscosity, qmin, qmax and initial condition S(q, 0))

have to be known. Some of them (qmin, qmax, S(q, 0)) are unavailable from [52].

For others, reference [52] provided referenced values but did not provide the fitting

values of parameters used to align with experimental data. Therefore, we have to

adjust some values of the parameters to have best match with the fitting curve in

the figure 2 of [52] to infer what values may have been used by [52]. In summary, the

values we use are h0 = 3.9 nm, γ = 0.045 N/m, µ = 2× 104 kg/(ms), A = 2× 10−20

J, S(q, 0) = 0, qmin = 0.42 nm-1 and qmax = 0.1qd, where qd is the dominant

wavenumber and qd =
√

1
γ

A
2πh40

.

The modified Langevin model compares well (see Fig. 6.9) with no-slip ex-

periments of dewetting polymer films [52], where disjoining pressure plays a role.

However, polymer films usually have a large slip (up to 1µm) [113, 114] on certain

substrates. We thus suggest a experiment using the same polymer film mentioned

above, but for a film with thickness h0 = 9 nm and a large slip length ` = 450

nm, to investigate the effects of slip on the dewetting of polymer films. We predict,
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for future experiments, large slip would greatly accelerate the roughening and thus

dewetting as shown in Fig. 6.9, and highlight the importance of using the Langevin

model with Stokes-flow dispersion relation.

6.4 Summary

We have investigated the dynamic capillary waves of both planar and annular liquid

films at the nanoscale. A Langevin model with a Stokes-flow dispersion relation is

able to accurately predict the growth of capillary waves with slip effects, as vali-

dated by MD simulations. Our work provides grounds for carefully evaluating future

experiments of thin films that currently rely on Capillary Wave Theory. The quan-

titative analysis of spontaneous roughening, which is connected to the theory of

Universality Classes, allows better understanding of the instability of liquid-vapour

or liquid-liquid interfaces [115]. The established relation between capillary spectra

and slip also provides a method to measure large slip length such as water films on

graphene where a shear-driven method shows considerable statistical errors [116].
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Chapter 7

Anisotropic relaxation of

capillary wave correlations

In this chapter, the relaxation dynamics of TCW correlations for nanoscale liquid

films lying on anisotropic-slip substrates are studied using both MD simulations and

the Langevin model developed in Chapter 3.

This chapter is organised as follows. In Sec. 7.1, we present the molecular

dynamics setup adopted for simulating nanoscale liquid films on anisotropic-slip

substrates. A description of how we obtain slip lengths from independent molecular

dynamics is also provided. In Sec. 7.2, we extend the Langevin model introduced

in Chapter 3 to consider anisotropic dynamics of TCWs and derive the dispersion

relation for Stokes flow with anisotropic slip effects. Sec. 7.3 shows the comparison

of MD simulations with theoretical models and discusses the effects of anisotropic-

slip boundary conditions. We conclude our findings and outline future directions

for this research in Sec. 7.4.

7.1 MD simulations

7.1.1 Setup for films on anisotropic-slip substrates

In this chapter, MD simulations are used to simulate TCWs of planar films on

isotropic-slip and anisotropic-slip substrates. Unlike the simulations presented in

earlier chapters, where the simulated films were quasi-2D with a very long length in

the x-direction, the system here is fully 3D. Of course, this comes at considerable

computational cost, and so the films considered here have a largest dimension that

is smaller than those considered in Chapters 5 and 6. The domain contains three

phases, with the liquid bounded by the vapor above and the solid below, as shown
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Figure 7.1: Snapshots of the set-up of a liquid film on a substrate in MD simulation.
(a) A perspective view of the whole system. The fluid atoms are orange and the solid
atoms are navy blue. The free surface generated by post-processing is coloured olive
green. (b) Top view and perspective view of the isotropic 〈100〉 substrate surface.
(c) Top and perspective view of the anisotropic 〈110〉 substrate surface. The red
dash lines in (b) and (c) denotes the lines of symmetry and the light blue color
indicates solid atoms in the second layer.

in Fig. 7.1(a). The liquid of the film is argon and the substrate is platinum with a

face centred cubic (fcc) structure.

It has been noticed before that the different planes of the fcc lattice lead

to varying slip properties due to the difference in interfacial atom structures [102],

see Fig. 7.1(b) and (c). For example, the 〈100〉 surface has four lines of reflectional

symmetry, and so is for practical purposes isotropic: a unidirectional flow in the x

or y direction generates the same slip velocity at the hydrodynamic boundary, see

Fig. 7.2(b). However, the 〈110〉 surface is evidently anisotropic with only two lines

of symmetry (see Fig. 7.2(c)), since these unidirectional flows generate different slip

velocities. Therefore, in this work, we use the 〈100〉 surface to represent a good

approximation to an isotropic-slip substrate and the 〈110〉 surface to represent an

anisotropic-slip substrate. We note that the slip anisotropy of the 〈110〉 surface was

first discovered by Soong et al. [102]. However, their description of the resulting

macroscopic slip boundary condition is incorrect, see the discussion in Sec. 7.2.

The liquid-solid interactions are modelled by the 12-6 LJ potential with εls =

Cεll and σls = 0.8σll. We vary C to obtain different amounts of slip. For the 〈100〉
surface, we choose case 1: C〈100〉, 1 = 0.7 and case 2: C〈100〉, 2 = 0.35. For the 〈110〉
surface, we choose case C〈110〉 = 0.7.

The initial dimensions of the liquid film (Lx, Ly, h) in Fig. 7.1(a) are chosen
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Figure 7.2: Slip length measured using a pressure-driven flow past a plate. MD
velocity (triangles) are fitted with analytical solutions (olive solid lines) with the
HB (z1) at the first valley of MD density (orange solid line) and FS (z2) at 0.5n∗l .
The tangent line (blue dash lines) gives the slip length `∗. (a) the measurement is
done for the isotropic 〈100〉 surface; (b) the measurement is done for the anisotropic
〈110〉 surface.

as, Lx = 31.4 nm, Ly = 31.4 nm, and h0 = 3.14 nm. The lateral size of the substrate

is the same as that of the liquid film and it has a thickness hs = 0.78 nm.

The initialization of MD simulations are the same with the one in Chapter

6. The initial position of the film surface is at h0 + d = 3.34 nm.

The free surface position is defined as the usual equimolar surface. The way

to extract the surface profile h(x, y, t) from MD simulations is detailed in Chapter

3. Then two-dimensional Fourier transforms of the surface profile are performed to

obtain the amplitude of interfacial Fourier modes.

7.1.2 Measurements of anisotropic slip length

Slip length is measured from independent configurations by simulating unidirectional

(x or y direction) pressure-driven flow past a substrate surface as shown by the MD

snapshots in the top-left corner of Figs. 7.2(a) and (b). The pressure gradient

is created by applying a body force g (along x or y direction) to the fluid. The

generated velocity distribution is parabolic: ux,y(z) =
ρgx,y

2µ (z−z1)(2z2−z1−z)+us.

Here z1 and z2 are positions of the hydrodynamic boundary (HB) and free surface

(FS), respectively, and us is the slip velocity at the HB.

As discussed earlier in Chapter 6, the HB is not at the solid surface. We

choose the position of HB at the first valley of density distribution: z∗1 = 1.2σ

(see Fig. 7.2(a)). The position of the FS is determined in the standard way by the
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location of equimolar surface where density is 0.5n∗l , with z∗2 = 9.5σ (see Fig. 7.2(a)).

After locating the boundary, the slip velocity is obtained by fitting velocity profiles

of MD data (symbols) with analytical expressions of velocity (solid green lines) as

shown in Fig. 7.2. The slip length ` is the distance between the HB and the position

where the the linear extrapolation of the velocity profile vanishes, see the dashed

blue lines (since the slip length is small for each case, the tangent line is close to the

fitting line).

Figure 7.2(a) is for the measurement of slip length of case C〈100〉, 1. The

individually applied body forces are g∗x = 0.01 and g∗y = 0.01. It can be seen that

the velocity profiles ux and uy are nearly the same, indicating that the 〈100〉 surface

is isotropic in terms of slip. The slip length is thus characterised by a scalar value

`∗ = 1.41σ (0.48 nm). In the same way, the slip length ` = 3.34 nm for case C〈100〉, 2

is obtained. We note that applying larger body forces may lead to a shear-dependent

slip length [90], but here we have ensured that we remain in the regime where the

measured slip length is constant independent of driving force magnitude.

For the 〈110〉 surface, the individually applied body forces are also g∗x = 0.01

and g∗y = 0.01. There is a clear difference between ux and uy (see Fig. 7.2(b)),

indicating that the 〈110〉 surface exhibits significant anisotropy. The slip length in

the x and y direction is measured to be `x = 0.80 nm and `y = 0.05 nm respectively,

for the case C〈110〉.

We note that as the HB does not align with the edge of the solid, the effective

thickness of the fluid domain simulated for capillary waves is different from its initial

thickness. As the position of the initial free-surface is at 3.34 nm and the HB is at

zHB = 0.41 nm, the effective thickness of a planar film is 2.93 nm.

7.2 Theoretical approach

7.2.1 Langevin model for TCW correlations

As shown in Chapter 3, the dynamics of capillary waves can be described by a

Langevin equation:
γq2

Ω(qx, qy)

∂

∂t
δ̂h = −γq2δ̂h+ ζN̂ . (7.1)

Here the Langevin model is extended to consider waves that are vectors instead

of scalars, as presented before, and where q is the magnitude of a wave vector

q = (qx, qy) with q =
√
q2
x + q2

y . The Ω (qx, qy) is the wave-direction dependent

dispersion relation, N̂(q, t) is a complex Gaussian random variable with zero mean

and covariance 〈|N̂N̂ ′|〉 = δ(q − q′)δ(t− t′), and ζ is the noise amplitude.
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Using the equipartition theorem, the static spectra of a 2D surface are

Ss,2D =

√
〈|δ̂h|

2
〉s =

√
L2kBT

γq2
. (7.2)

As discussed in Chapter 3, the noise amplitude ζ can be found from the static

spectrum

ζ =

√
2

Ω
γq2 Ss,2D . (7.3)

To obtain the temporal correlations of interfacial Fourier modes from the

Langevin equation, we use the Itô integral [48, 51]. Substituting Eq. (7.3) into

Eq. (7.1) leads to
∂

∂t
δ̂h = −Ωδ̂h+

√
2ΩSs,2DN̂ . (7.4)

The solution to Eq (7.4) is

δ̂h (qx, qy, t) = δ̂h (qx, qy, 0) e−Ωt +
√

2ΩSs,2D

∫ t

0
e−Ω(t−s)dŴ (qx, qy, s) , (7.5)

where Ŵ =
∫
N̂ dt is the Wiener process with covariance〈

Ŵ (q, t) Ŵ ∗
(
q, t′

)〉
= min(t, t′). (7.6)

Here the asterisk denotes a conjugate value.

The temporal correlations of surface modes are thus obtained from Eq. (7.5)

as 〈
δ̂h(qx, qy, t)δ̂h

∗
(qx, qy, t

′)
〉

= B1 +B2, (7.7)

where B1 is given by

B1 =
〈
δ̂h (qx, qy, 0) δ̂h

∗
(qx, qy, 0)

〉
e−Ω(qx,qy)te−Ω(qx,qy)t′

=

〈∣∣∣δ̂h (qx, qy, 0)
∣∣∣2〉 e−Ω(qx,qy)(t+t′), (7.8)
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and B2 is given by

B2 = 2ΩS2
s,2D

〈∫ t

0
e−Ω(t−s)dŴ (qx, qy, s)

∫ t′

0
e−Ω(t′−s′)dŴ ∗

(
qx, qy, s

′)〉

= 2ΩS2
s,2D

∫ t

0
e−Ω(t−s)

∫ t′

0
e−Ω(t′−s′)

〈
dŴ (qx, qy, s) dŴ

∗ (qx, qy, s′)〉
= 2ΩS2

s,2D

∫ min(t,t′)

0
e−Ω(t+t′−2s)ds

= −S2
s,2D

[
e−Ω(t+t′) − e−Ω|t−t′|

]
. (7.9)

By putting B1 and B2 together we obtain the final expression for temporal correla-

tions of TCWs〈
δ̂h(qx, qy, t)δ̂h

∗
(qx, qy, t

′)
〉

=

〈∣∣∣δ̂h(qx, qy, 0)
∣∣∣2〉 e−Ω(qx,qy)(t+t′)

− L2kBT

γq2

[
e−Ω(qx,qy)(t+t′) − e−Ω(qx,qy)|t−t′|

]
, (7.10)

A similar expression is presented in [48, 51], but, is limited to the application in

thin liquid films without slip.

Equation (7.10) can describe two important aspects of capillary wave dy-

namics. The first aspect is the growth of capillary wave spectra to the static spectra

(using t = t′ to obtain the equal-time correlations), namely, the process of surface

roughening, which is studied in Chapter 6. For our case, one can assume that the

free surface is smooth, 〈|δ̂h(qx, qy, 0)|
2
〉 = 0, so that Eq. (7.10) is simplified to〈∣∣∣δ̂h(qx, qy, t)

∣∣∣2〉 = L2kBT

γq2

[
1− e−2Ω(qx,qy)t

]
. (7.11)

Thus, the time scale for a smooth surface to reach the static spectra, i.e. ther-

mal equilibrium, is ts = max [1/Ω(qx, qy)]. In the following, we use S (qx, qy, t) =√
〈|δ̂h(qx, qy, t)|

2
〉 for notational simplicity.

The second aspect is the relaxation of capillary wave correlations after a free

surface reaches the static spectra. In this case, the initial condition 〈|δ̂h(qx, qy, 0)|
2
〉 =

L2kBT/
(
γq2
)

so that Eq. (7.10) is reduced to

〈
δ̂h(qx, qy, t)δ̂h

∗
(qx, qy, t

′)
〉

= L2kBT

γq2
e−Ω(qx,qy)|t−t′|. (7.12)

Thus, the Langevin equation bridges the gap between the growth of capillary wave

spectrum and the relaxation of capillary wave correlations, allowing them to be
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described in a single framework. We note that Eq. (7.12) can be derived alternatively

using fluctuation-dissipation theorem shown by Henle et al. [58], which, however, is

unable to predict the growth of capillary waves at the same time. Also, the work

in [58] only considers isotropic-slip effects so that the dispersion relation in Eq. (7.12)

is Ω(q) instead of Ω(qx, qy). In the following, we define a dimensionless variable

Rhqh∗q
(
qx, qy,

∣∣t− t′∣∣) =
〈
δ̂h(qx, qy, t)δ̂h

∗
(qx, qy, t

′)
〉
/

(
L2kBT

γq2

)
= e−Ω(qx,qy)|t−t′|, (7.13)

to normalise Eq. (7.12) with the static spectrum.

7.2.2 Anisotropic boundary condition and dispersion relation

To derive the required dispersion relation, we perform a linear stability analysis of

three-dimensional Stokes flow. We outline the governing equations for this problem

and keep the details of the derivations in Appendix C. The liquid is assumed to

be incompressible and the vapour is dynamically passive. Incompressibility requires

that

∇ · u = 0, (7.14)

where u = (ux, uy, uz), and ux, uy, uz are the velocities in x, y, z directions, respec-

tively. The momentum equation with the assumption of Stokes flow is:

µ∇2u = ∇p, (7.15)

where µ is the liquid viscosity and p is the liquid’s pressure with respect to that of the

vapour. For the boundary conditions, at the position of free surface z = h(x, y, t),

we have the dynamic condition:

ϑ · n = − (γ∇ · n) n, (7.16)

where ϑ is the hydrodynamic stress tensor, ϑij = −pδij + µ (∂ui/∂xj + ∂uj/∂xi); γ

is the surface tension; and n is the outward normal to the free surface:

n =
(−∂h/∂x,−∂h/∂y, 1)√

1 + (∂h/∂x)2 + (∂h/∂y)2
. (7.17)
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Under the assumption of small perturbations (∂h∂x ,
∂h
∂y � 1), the dynamic boundary

condition is reduced to (in the normal direction):

−p+ µ
∂uz
∂z

= γ

(
∂2h

∂x2
+
∂2h

∂y2

)
, (7.18)

and in the tangential directions to the surface

∂ux
∂z

+
∂uz
∂x

= 0 , (7.19)

∂uy
∂z

+
∂uz
∂y

= 0 . (7.20)

The kinematic condition at the free surface is given by

uz =
∂h

∂t
+ ux

∂h

∂x
+ uy

∂h

∂y
. (7.21)

At the substrate surface, the no penetration condition is,

uz = 0, (7.22)

and the anisotropic-slip boundary condition is,

ux = `x
∂ux
∂z

, (7.23)

uy = `y
∂uy
∂z

, (7.24)

as we will explain now.

The Navier-slip boundary condition describes the proportionality of wall

shear stress (τ) to velocity slip (u) so that for a two-dimensional flow (and one-

dimensional boundary) in the x-direction we have:

ux = βτx , (7.25)

where β = `/µ. Extending Eq. (7.25) to two-dimensional surfaces is straightforward

when the surface is isotropic (i.e. when β is scalar):

u|| = βτ|| . (7.26)

Here the subscript || after a vector denotes its parallel components to the solid

surface. At first thoughts, one could consider incorporating anisotropy into the

Navier-slip condition by maintaining the form of Eq. (7.26), but making the slip
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length dependent on direction (e.g. β(θ))[102]. However, this is incorrect, since

it assumes that velocity slip is always in the direction of the wall shear stress.

Consider, for example, the case βy = 0 (i.e. no-slip in this direction) and βx > 0:

the y-component of slip (uy) is zero irrespective of the direction of the wall shear

stress, and therefore slip velocity and shear stress can easily be misaligned (apart

from when τ|| is in the x direction).

In other words, surface anisotropy breaks the simple scalar proportionality

described by Eq. (7.26). To generalise the boundary condition requires the intro-

duction of a slip-coefficient (second-order) tensor:

u|| = β · τ|| . (7.27)

For isotropic surfaces β = βI, where I is the identity tensor. In this article we

consider slip on orthotropic surfaces; surfaces that have two axes of symmetry (see

Fig. 7.1), which are orthogonal (unlike isotropic surfaces, which have an infinite

number). In the case of orthotropic surfaces:

β =

(
β1 0

0 β2

)
, (7.28)

where β1 and β2 are slip related parameters along the two lines of symmetry (e.g.

with the grain and against the grain). Thus, the slip boundary for the 〈110〉 is

obtained as Eq. (7.23) and Eq. (7.24).

Notably the slip boundary condition obtained by combining Eq. (7.27) and

Eq. (7.28) assumes that the coordinate system is aligned to the axes of symmetry of

the orthotropic surface. More generally, if this is not the case, we would have:

β =

(
βx βxy

βyx βy

)
=

(
β1 cosα β2 sinα

−β1 sinα β2 cosα

)
, (7.29)

where α is the angle between the cartesian coordinate system and the orthotropic

axes, but henceforth we do not consider this possibility as for our case we know

α = 0.

With above Eqs. (7.14-7.24), the linear stability analysis gives the dispersion
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relation (see Appendix C):

Ω (qx, qy) =
γq

4µ

sinh (2qh0)− 2qh0 + 4Jsinh2 (qh0)

q2h2
0 + cosh2 (qh0) + J [2qh0 + sinh (2qh0)]

,

J = q`x − q
`x − `y

1 +
q2x[q`y sinh(qh0)+cosh(qh0)]
q2y [q`x sinh(qh0)+cosh(qh0)]

. (7.30)

If `x = `y, Eq. (7.30) is reduced to the existing dispersion relation for films on

isotropic substrates[58, 117, 118].

Notably, one may solve the fluctuating hydrodynamics equations to predict

capillary wave dynamics [52, 53, 64, 90, 119] instead of the Langevin model pre-

sented here. However, to do so analytically, previous works [52, 53, 64, 90, 119]

have had to exploit the long-wave approximation, which limits their application to

thin liquid films and slender jets. In particular, they are not suitable for the work

considered here where the film length (compared to the film thickness) is not large.

Direct solution to fluctuating hydrodynamics without the long-wave approximation

is needed to apply to more general cases such as the problem considered here.

7.3 Results and Discussions

In this section, we present and discuss our MD simulation results and their compar-

ison to analytical solutions. Firstly, we show the transient growth of capillary wave

spectra to the static spectrum. Secondly, using the isotropic-slip 〈100〉 substrate,

we explore the effects of different slip length on the relaxation of capillary wave

correlations. Thirdly, the effects of anisotropic slip on the relaxation of capillary

wave correlations are demonstrated using the 〈110〉 substrate.

7.3.1 Transient growth of capillary wave spectra

The growth of capillary waves to the static spectrum, from an initially smooth

interface, is shown in Fig. 7.3 for case C〈100〉, 2 where slip length `x = `y = 3.34

nm. As the simulation starts, the free surface becomes rough, and the Fourier

transform of the free surface shape is performed at various intervals to obtain the

evolving spectra. As shown by the inset of the Fig. 7.3, the spectra of surface

waves from MD simulations is radially symmetric, which is expected from Eq. (7.11)

and Eq. (7.30) due to the isotropic slip length. Thus, the spectra can be averaged

over the azimuthal direction and represented in terms of q =
√
q2
x + q2

y , with the

results shown by triangles in Fig. 7.3. The spectra are also ensemble averaged over
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Figure 7.3: Capillary wave growth for case C〈100〉, 2. MD spectra after averaging over
azimuthal directions are shown by triangles, with different color represents varying
time. The analytical solutions are given by solid lines. The inset shows the 2D
spectra from the 2D Fourier transform of the free surface at t = 0.86 ns.

40 independent realizations. It can be seen that the spectra evolve with time but

the static spectrum given by the capillary wave theory forms an upper limit. The

transition time for the smooth surface to reach the static spectrum is 1/Ω(q = qmin),

where qmin = 2π/L is based on the longest wavelength on the periodic surface, and

it is evaluated to be about ts = 1 ns. This is confirmed by the positions of the dark

yellow symbols in Fig. 7.3, at time t = 1.7 ns, which show the surface has safely

reached the static spectrum.

To measure the correlation of capillary waves presented in the next subsec-

tions, it is important to make sure the surface has the state of thermal equilibrium

characterised by the static spectrum. As shown, the transition time found from

our knowledge of the growth of capillary waves provides a useful guideline. In the

long-wave approximation, 2πh0/L� 1, one can find the transition time scales with

L4 from the Stokes dispersion relation [90], which means that care should be taken

when interpreting results for larger film lengths where reaching thermal equilibrium

(the static spectrum) for the surface is often computationally intractable. This prob-

lem seems to appear in previous MD simulations of thermal capillary waves using

very long films but has not been pointed out and explained [111]. It may also not

be negligible in experimental studies of thermal capillary waves using high-viscosity

polymers, where the film length is at the microscale or macroscale [90].
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Figure 7.4: Effects of varying slip length on temporal correlations of thermal cap-
illary waves. MD results (different symbols) are compared with the analytical so-
lutions Eq. (7.13) (solid lines). Wave vectors are represented by q = (qx, qy) =
2π
L (nx, ny), where (nx, ny) are pairwise integers, and without loss of generality, we
consider waves in the x-direction due to the isotropy.

7.3.2 Relaxation of capillary wave correlations with varying slip

In this subsection, we explore the effect of different slip length on the relaxation

of capillary wave correlations using the isotropic 〈100〉 surface. As shown earlier in

Sec. 7.2, increased slip length is achieved by decreasing the liquid-solid interactions;

case C〈100〉, 2 has slip length ` = 3.34 nm, while case C〈100〉, 1 has slip length ` = 0.48

nm. After the transition time of each case (ts = 1.7 ns for case C〈100〉, 1 and ts = 1.0

ns for case C〈100〉, 2), the 2D Fourier transform of the surface position at different

times is performed and the temporal correlations calculated (averaged over 10000

times). Wave vectors are represented by q = (qx, qy) = 2π
L (nx, ny) where (nx, ny) are

pairwise integers, characterising the wave numbers. As the relaxation of capillary

wave correlations on the 〈100〉 surface is expected to be radially symmetric (see

further discussions in Sec. 7.3.3), only correlations in the x-direction (qy = 0) are

presented in Fig. 7.4, without loss of generality. In Fig. 7.4, for the same wave

vector, it can be seen that larger slip length leads to faster decay of Rhqh∗q , from

the MD results (olive triangles and red squares, for instance). On the other hand,

given the same slip length, wave vectors with larger wavenumbers (the norm of a

vector) decay faster (see olive triangles and blue circles, for instance). Both of these

features, and the actual values, are well predicted by the Langevin equation results

from Eq. (7.13) and Eq. (7.30), using the independently measured slip length.
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Figure 7.5: Effects of anisotropic slip on temporal correlations of thermal capillary
waves. MD results (symbols) are compared with analytical solutions (solid lines).
Figure (a) and (c) are for the 〈100〉 surface, and figure (b) and (d) are for the 〈110〉
surface. Wave vectors are represented by (qx, qy) = 2π

L (nx, ny) where (nx, ny) are
pairwise integers.

7.3.3 Relaxation of capillary wave correlations with anisotropic slip

Consider now the effects of anisotropic slip on the relaxation of capillary wave cor-

relations. Fig. 7.5 shows the comparison of wave correlations with different ori-

entations for the case C〈100〉, 1 and case C〈110〉. For the isotropic 〈100〉 surface, the

relaxation of correlations of wave vectors at different directions for a given wavenum-

ber are the same as shown in Figs. 7.5(a) and (c). For example, the relaxation of

the correlation of a wave vector at the direction (1, 0) is the same as that of a wave

vector at (0, 1), and the relaxation of the correlation of a wave vector at (1, 2) is the

same as that of a wave vector at (2, 1). However, for the anisotropic 〈110〉 surface,

as shown in Figs. 7.5 (b) and (d), the relaxation of correlations of waves for a given

wavenumber varies with directions. For example, the correlation of the (1, 0) wave
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vector relaxes faster than that of the wave vector (0, 1). The wave vector (2, 1)

also decays faster than the wave vector (1, 2) in terms of correlations. Clearly, the

anisotropic relaxation of capillary wave correlations is due to the anisotropic slip

boundary conditions. A wave vector closer to the x-direction having a faster decay

than a wave vector (with the same wavenumber) closer to the y-direction; this is

also due to the larger slip length in the x-direction similar to the case in Sec. 7.3.1.

However, the difference becomes smaller when the wavenumber is increased. This

means that to infer the anisotropy of a substrate from measuring the correlations

of capillary waves, it is better to measure the correlations of waves with smaller

wavenumbers. Using the measured slip length at Sec. 7.2, and the derived new dis-

persion relation, the relaxation of capillary waves for 〈110〉 surface can be predicted

well by Eq. (7.13) and Eq. (7.30) (see solid lines).

Now we consider the relaxation time tR, which is equal to 1/Ω. We focus

on the relaxation time of wave vectors along the x or y direction as the relaxation

of those waves only depends on the slip length in that direction. Figure 7.6 shows

the values of relaxation time obtained from MD simulations agree well with the

analytical solutions. A simple asymptotic analysis of the dispersion shows that

there are two scaling relations between the dispersion relation and non-dimensional

wavenumber qh0.

Figure 7.6: Relaxation time as a function of wavenumbers. MD results (symbols)
are compared with analytical solutions (solid lines).

Firstly, for a very long film (or thin film) qh0 � 1 with small slip `x ≤ h0
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and `y ≤ h0, the dispersion relation Eq. (7.30) can be significantly simplified to

Ω(qx, qy) ≈
γ

3µ
q4h2

0

[
h0 + 3

(
q2
x`x + q2

y`y
)

q2

]
. (7.31)

Thus, the relaxation time tR scales with q−4 for a wave vector along the x or y

direction, which is supported by Fig. 7.6 when qh0 goes to zero. This also means that

the relaxation time for q = 2π/L scales with L4 so that it becomes experimentally

measurable for long films (the relaxation time for a short film is a few nanoseconds

in our MD simulations).

Secondly, in the opposite limit, if qh0 � 1, the dispersion relation is simplified

to

Ω(qx, qy) ≈
γ

2µ
q, (7.32)

so that the relaxation time scales with q−1, which is shown by Fig. 7.6 when qh0

goes to infinity. Equation (7.32) also means that dispersion relation is independent

of slip length and becomes isotropic so that we cannot use thermal capillary waves

of thick films (qh0 � 1) to measure slip length.

We note that if the slip length is very large ` � h0, there may be other

scaling relations, as shown in [58] though the analysis there is for isotropic slip. The

effects of disjoining pressure or gravity can be easily incorporated into Eq. (7.2) and

Eq. (7.30) to extend the applicability of the theory.

7.4 Summary

In this work, the effects of anisotropic slip on the relaxation of correlations of thermal

capillary waves are investigated both numerically and analytically. We perform

molecular dynamics simulations of liquid films bounded by isotropic-slip substrates

and anisotropic-slip substrates. The correlations of Fourier modes obtained from

simulations compare well with a Langevin equation, where a new dispersion relation

considering the anisotropic-slip boundary condition is derived. Our results show that

the larger slip length leads to faster decay of the correlations, and the anisotropic-slip

leads to anisotropic relaxations of capillary wave correlations.

Though the anisotropic surface used in our MD simulations is ideal, it may

provide inspiration for making engineered surfaces that are anisotropic in slip, which

may be useful in micro- or nano-fluidics to obtain a directional control on liquid

transport. We also believe this work strengthens the applicability of using thermal

capillary waves as a non-invasive method to infer slip length in future experiments
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using existing isotropic or anisotropic-slip substrates. The temporal correlations can

be directly obtained in experiments using x-ray techniques[55, 60] and they can be

fitted with analytical solutions developed here to obtain slip lengths, which is the

usual way to infer properties of interest using surface waves. Notably, this chapter

provides guidance on the experimental setup, in particular showing that temporal

correlations of capillary waves of thick films (qh0 � 1) cannot be used to measure

slip.

90



Chapter 8

Conclusion and future work

Due to the rapid progress in microfluidics and nanofluidics, there is a growing num-

ber of studies investigating the effects of thermal fluctuations on nanoscale flows. In

this thesis, we focus on how thermal fluctuations and slip affect interfacial flows at

the nanoscale.

In bulk flows, Fluctuating Hydrodynamics (FH) equations model thermal

fluctuations by introducing an additional stochastic stress (white noise) into the

conservation equations. However, FH equations cannot predict how or whether

Navier’s slip condition, at the liquid-solid interface, is modified by thermal fluctua-

tions. Navier’s slip condition phenomenologically describes the mechanical equilib-

rium between the shear stress at the boundary and the friction force from the wall.

Thus, it is natural to extend the stochastic stress in the bulk to the boundary. In

Chapter 3, it is found that the covariance of the stochastic stress at the boundary

should be related to slip length, which is consistent with the Green-Kubo expression

for the friction factor [69].

Direct solutions to FH either numerically or analytically in application to

interfacial flows are very complicated. Instead, using a long-wave approximation

to FH allows us to derive stochastic lubrication equations (SLE) for planar films

and annular films, and perform analysis (see Chapter 3). This approach needs to

carefully scale each component of the noise tensor and they are usually scaled as

the same as the corresponding component of the hydrodynamic tensor.

We apply the SLE for planar films to study the dewetting of nanofilms in

Chapter 5, where, conventionally, the dewetting is due to disjoining pressure. But

we reveal that thermal fluctuations can overwhelm disjoining pressure and become

the dominant cause of the dewetting of films of a few nanometres thickness. Impor-

tantly, we show that thermal fluctuations are critical to the nature of the instability
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of nanoscale thin-film flows: they significantly intensify the amplitude of undula-

tions, render the dominant wavenumber time-dependent, and decrease the critical

wavelength.

Central to the derivation of the SLEs is the long-wave assumption, which

means they cannot accurately predict dynamics of interfacial waves with wavelengths

comparable to that of the film height. To derive the SLEs, we also assumed that

the slip length is of the order of the film thickness, which limits their application

to relatively small-slip systems. A Langevin model, beyond the current lubrication

framework, is thus proposed (Chapter 3), to predict the dynamics of capillary waves

(at the linear stage) in these more general cases. In the Langevin model, a Stokes-

flow dispersion relation is adopted, and since it is derived for interfacial modes

with any wavelength and any slip length, the Langevin model resolves the inherent

problems of those SLEs in the prediction of capillary wave dynamics.

We apply the Langevin model to study the growth of thermal capillary waves

(TCWs) in Chapter 6. We make interesting observations of surface roughening of

planar films due to TCWs. It is found that the roughness can be described by a type

of Universality Class, where the roughness grows as a power of time W ∼ t1/8 before

saturation. A knowledge of the transient growth of TCWs allows us to predict the

time for a flat surface to reach its thermal equilibrium (saturated roughness), which

provides guidelines for the widely studied relaxation dynamics of TCW correlations,

where thermal equilibrium has to be assumed.

At thermal equilibrium, the correlations of TCWs show a simple exponential

decay and the decay rate is the dispersion relation, in which the liquid-solid slip can

be included. Thus, measuring the correlations of TCWs seems to be a good method

to infer slip, having the advantage of being non-invasive. With this motivation, we

investigate the effects of slip on correlations of TCWs in Chapter 7. Unlike the usual

consideration of isotropic-slip substrates, we consider slip to be anisotropic and it is

found that anisotropic slip leads to the anisotropic relaxation of TCW correlations.

These interesting relaxation dynamics of TCW correlations can also be predicted by

our Langevin model, with a newly derived dispersion relation taking into account

the anisotropic slip boundary.

Following on from the success of our current models, there are several exten-

sions or improvements that could be made in future work.

Nonlinear dynamics of SLEs

The applications of the derived SLEs are linear, with a focus on the instability and

growth of surface waves at early stages in their development. In the future, it will
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be interesting, using the developed SLEs, to investigate how thermal fluctuations

and slip influence the dynamics during the non-linear stages of film growth, such as

rupture, the formation of droplets, and their coarsening process.

Solving the deterministic Planar-film LE has shown that the rupture due

to disjoining pressure has similarity solutions and the film thickness decreases like

(tr−t)1/5, where tr−t is the time remaining before rupture [120]. As for the solution

to Jet SLE, where thermal fluctuations are shown to speed up the rupture of a slender

thread and lead to a new similarity solution [45], thermal fluctuations may result in

new similarity solutions of thin-film rupture described by the Planar-film SLE.

The influence of thermal fluctuations on droplet formation after film rupture

was investigated by Nesic et al. [46] using numerical solutions to the Planar-film SLE

without slip, and they show thermal fluctuations reduce the number of droplets but

increase the variability in size and space distribution of droplets when compared to

the deterministic counterparts. Our newly derived SLE with slip modelled allows the

investigation of the combined effects of thermal fluctuations and slip on the droplet

formation and coarsening. Though slip is expected to accelerate the rupture of a

film, it is uncertain how slip influences the number of droplets and their distribution.

Inertial effects in nanoscale interfacial flows

Inertial effects are not considered in current SLEs or the Langevin model. In the

literature, for free liquid films or bounded films with very large slip, plug flow is

assumed and often inertial effects are accounted for in the derivation of LEs for

both cases [66, 91]. Interestingly, the LE for a bounded film with infinite slip is the

same as the LE for a free liquid film.

To develop new theories to consider inertial effects in stochastic modelling

of interfacial flows, one may also use a long-wave approximation to FH equations

to derive a new SLE to include inertial terms, but the process of the asymptotic

expansion of FH may be different from what has been done in this thesis. In fact,

to derive the deterministic LE for a free liquid film, one has to keep the second-

order terms after the asymptotic expansion of the NS equations [91]. Therefore, it

is expected that new scaling of the noise tensor in FH equations should be adopted

in contrast to the one in this thesis, and a Free-film SLE may be derived.

To investigate whether inertial effects can be observed in MD simulations,

a free liquid film or a bounded film with infinite slip can be simulated. Then the

capillary spectra can be obtained from MD simulations and compared to current

models assuming Stokes flows, to see whether inertial effects need to be considered.
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Linear stability analysis of FH equations

The Langevin model for nanoscale interfacial flows in this thesis is a phenomenolog-

ical model. Alternatively, one may perform linear stability analyses of the Stokes

version of FH equations directly and get the evolving equation of film height.

In fact, this idea is not new at all. The Langevin equation describing the

Brownian motion of a macroscopic particle in a fluctuating fluid is also quite phe-

nomenological. Interestingly, research has shown that this Langevin equation for

Brownian motion can be derived independently from FH equations, but only under

certain conditions [121].

There are several works that have already investigated the possibility of

obtaining the governing equation of the interfacial height of an infinite-depth film

from FH equations in Fourier space [122, 123]. In order to accomplish this task,

Green’s-function identity was used to solve linearised FH equations with boundary

conditions at the free surface in these works. The static spectrum can be recovered

from the derived equation of motion for the free surface. However, the growth of

capillary wave spectra or the relaxation of capillary wave correlations studied in this

thesis are not obtained in these works [122, 123]. It is thus interesting to see whether

the interfacial equation in these works [122, 123] agrees with the phenomenological

model in this thesis in more detail.

On the other hand, it is much more difficult to obtain such interfacial equa-

tions for a finite-depth film from FH equations where the liquid-solid boundary

condition is involved. This remains a great challenge to be investigated in the fu-

ture.
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Appendix A

Simplification of the stochastic

integral

Here the method to simplify the stochastic integral in Eq. (3.29) for the planar film

and in Eq. (3.56) for the annular film, is presented. The main result used, that we

will derive in this appendix, is:∫ w2

w1

f(z)N (z)dz =

[∫ w2

w1

f(z)2dz

]1/2

N. (A.1)

Here N is Gaussian white noise, with covariance 〈N (z)N (z′)〉 = Bδ(z − z′) (the

δ(x−x′) and δ(t− t′) are transposed out the integral since the integral is performed

only in z direction), and f(z) is some function of z. The w1 and w2 are non-Gaussian

random variables that are uncorrelated with N (but potentially correlated with

each other). The N is a single Gaussian random number with the same variance

as N (i.e. var(N) = B). To verify Eq. (A.1) holds, we start by defining a simple

transformation:

α =
z − w1

w2 − w1
, (A.2)

such that ∫ w2

w1
f(z)dz = (w2 − w1)

∫ 1

0
f(α)dα, (A.3)∫ w2

w1
f(z)2dz = (w2 − w1)

∫ 1

0
f(α)2dα. (A.4)
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In discretised forms,

∫ w2

w1
f(z)N (z)dz =

√
w2 − w1

M

M∑
i=1

f(zi)Ni, (A.5)

∫ 1

0
f(α)N (α)dα =

√
1

M

M∑
i=1

f(αi)Ni. (A.6)

where M is the number of grid points (M → ∞) and 〈NiNj〉 = Aδij . Since
M∑
i=1

f(zi)Ni and
M∑
i=1

f(αi)Ni are Gaussian, and from Eq. (A.4), one can show

M∑
i=1

f(zi)
2 =

M∑
i=1

f(αi)
2, (A.7)

which means
M∑
i=1

f(zi)Ni and
M∑
i=1

f(αi)Ni have the same variance and are thus equal.

Therefore, it is found∫ w2

w1
f(z)N (z)dz =

√
w2 − w1

∫ 1

0
f(α)N (α)dα. (A.8)

Due to the Gaussian property of
M∑
i=1

f(zi)Ni, it can also be shown that

∫ 1

0
f(α)N (α)dα =

(∫ 1

0
f(α)2dα

)1/2

N. (A.9)

Essentially, Eq. (A.9) is a continuous form of Bienayme’s formula. Finally, one can

get ∫ w2

w1
f(z)N (z)dz

=
√
w2 − w1

∫ 1

0
f(α)N (α)dα

=

[
(w2 − w1)

∫ 1

0
f(α)2dα

]1/2

N

=

[∫ w2

w1

f(z)2dz

]1/2

N. (A.10)
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Appendix B

Stokes dispersion relation for

annular films with slip

Figure B.1: Sketch of a liquid film on a fibre

For a liquid film flowing on a fibre, axisymmetric Stokes flow is assumed

in the annular film. We use the method in [21] to calculate the dispersion rela-

tion analytically, but now assuming we have slip at the liquid-solid interface. The

momentum equations are

∂p

∂r
= µ

[
∂

∂r

(
1

r

∂(ru)

∂r

)
+
∂2u

∂x2

]
, (B.1)

∂p

∂z
= µ

[
1

r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2

]
. (B.2)

Here u, w and p are the radial velocity, axial velocity and pressure, respectively.
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The mass conservation with incompressible assumption is

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (B.3)

In terms of the boundary conditions, we have the slip boundary condition

and no-penetration condition at the fibre surface r = a such that

w = `
∂w

∂r
, (B.4)

u = 0. (B.5)

At the free surface r = h, the no-shear boundary condition, for small surface per-

turbations, is
∂w

∂r
+
∂u

∂z
= 0, (B.6)

and the normal force balance requires (for small surface perturbations)

−p+ 2µ
∂u

∂r
= γ

 ∂2h/∂z2[
(∂h/∂z)2 + 1

]3/2
− 1

h
[
(∂h/∂z)2 + 1

]1/2

 . (B.7)

Meanwhile, the kinematic condition is

∂h

∂t
+ w

∂h

∂z
= u. (B.8)

The linear stability analysis of the above equations (B.1-B.8) is performed

using u = ũeΩt+iqz, w = w̃eΩt+iqz, p = p0 + p̃eΩt+iqx, and h = h0 + h̃eΩt+iqz. The

linearisation of the momentum equations leads to

µ

[
d

dr

(
1

r

d(rũ)

dr

)
− q2ũ

]
=
dp̃

dr
, (B.9)

µ

[
1

r

d

dr

(
r
dw̃

dr

)
− q2w̃

]
= iqp̃. (B.10)

For the equation of mass conservation, we have

1

r

d(rũ)

dr
+ iqw̃ = 0. (B.11)

Using (B.9-B.11), the elimination of w̃ and p̃ leads to a fourth-order ordinary
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partial differential equation for ũ

d

dr

1

r

d

dr

{
r
d

dr

[
1

r

d(rũ)

dr

]}
− 2q2 d

dr

[
1

r

d(rũ)

dr

]
+ q4ũ = 0. (B.12)

The general solution of this equation is [21]

ũ = C1rK0[qr] + C2K1[qr] + C3rI0[qr] + C4I1[qr], (B.13)

where K0(K1) and I0(I1) are zeroth (first) order modified Bessel function of second

and first kind. We can also get the expressions for w̃ and p̃ which are

w̃ = − 1

iq
{C1 [2K0(qr)− qrK1(qr)]− C2qK0(qr)

+ C3 [2I0(qr) + qrI1(qr)] + C4qI0(qr)} , (B.14)

p̃ = 2µ [C1K0(qr) + C3I0(qr)] . (B.15)

The four coefficients (C1-C4) are determined by the boundary conditions (B.4-B.8).

For boundary conditions (B.4) and (B.5) at r = a, their linearised form are

w̃ = `
dw̃

dr
, (B.16)

ũ = 0. (B.17)

And for boundary conditions (B.6-B.8) at r = h0, their linearisation gives

dw̃

dr
+ iqũ = 0, (B.18)

−p̃+ 2µ
dũ

dr
= (−γq2 + γ

1

h2
0

)h̃, (B.19)

Ω =
ũ

h̃
. (B.20)

A substitution of (B.13-B.15) into linearised boundary conditions (B.16-B.20)

leads to a set of four homogeneous equations, which is
m11 m12 m13 m14

aK0(qa) K1(qa) aI0(qa) I1(qa)

−K1(qh0) + qh0K0(qh0) qK1(qh0) qh0I0(qh0) + I1(qh0) qI1(qh0)

m41 m42 m43 m44



C1

C2

C3

C4

 = 0,

(B.21)
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where the elements of first row are given by

m11 = q(2`− a)K1(qa)− (`aq2 − 2)K0(qa),

m12 = −qK0(qa)− `q2K1(qa),

m13 = −(`aq2 − 2)I0(qa)− q(2`− a)I1(qa),

m14 = qI0(qa)− `q2I1(qa). (B.22)

The elements of fourth row are given by

m41 = 2µqh0K1(qh0)−Dh0K0(qh0)/Ω,

m42 = 2µ [qK0(qh0) +K1(qh0)/h0]−DK1(qh0)/Ω,

m43 = −2µqh0I1(qh0)−Dh0I0(qh0)/Ω,

m44 = −2µ [qI0(qh0)− I1(qh0)/h0]−DI1(qh0)/Ω. (B.23)

Here D is the driving force D = γ(q2 − 1/h2). The vanishing of the deter-

minant of 4× 4 matrix gives the dispersion relation Ω = Ω(q). Numerically, we use

Matlab to solve the determinant of the matrix.
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Appendix C

Anisotropic dispersion relation

for planar films

In this appendix, we show the details of derivation of the dispersion relation Eq. (7.30)

using the anisotropic-slip boundary conditions. Equations (7.14-7.24) are linearised

using normal modes

ux = ũxe
Ωt+iqxx+iqyy,

uy = ũye
Ωt+iqxx+iqyy,

uz = ũze
Ωt+iqxx+iqyy,

p = p0 + p̃eΩt+iqxx+iqyy,

h = h0 + h̃eΩt+iqxx+iqyy. (C.1)

With those, the linearised forms of Eqs. (7.14-7.15) are

iqxũx + iqyũy +
dw̃z
dz

= 0, (C.2)

µ

(
−q2

xũx − q2
y ũx +

d2ũx
dz2

)
= iqxp̃, (C.3)

µ

(
−q2

xũy − q2
y ũy +

d2ũy
dz2

)
= iqyp̃. (C.4)

The expression for the single variable ũz can be obtained from Eqs. (C.2-C.4) as:

d4ũz
dz4

− 2q2d
2ũz
dz2

+ q4ũz = 0. (C.5)
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The general solution for ũz is thus [58, 117]

ũz = C1 cosh (qz) + C2 sinh (qz) + C3qz cosh (qz) + C4qz sinh (qz) , (C.6)

and one can also obtain the solution for ũx, ũy, and p̃:

ũx =
1

q2

{
iqx

dw̃

dz
+ iqy [D1 cosh (qz) +D2 sinh (qz)]

}
, (C.7)

ũy =
1

q2

{
iqy

dw̃

dz
− iqx [D1 cosh (qz) +D2 sinh (qz)]

}
, (C.8)

p̃ = 2µq [C3 cosh (qz) + C4 sinh (qz)] . (C.9)

Here, C1 − C4, D1 and D2 are six coefficients to be determined by the boundary

conditions Eq. (7.18-7.24), whose linearised forms are

ũz = 0, (C.10)

ũx = `x
dũx
dz

, (C.11)

ũy = `y
dũy
dz

, (C.12)

for those at the free surface z = 0 respectively, and

−p̃+ 2
dw̃

dz
= −γ

(
q2
x + q2

y

)
h̃, (C.13)

dũx
dz

+ iqxũz = 0, (C.14)

dũy
dz

+ iqyũz = 0, (C.15)

Ω =
ũz

h̃
. (C.16)

for those at the solid surface z = h0 respectively.

Substituting Eqs. (C.6-C.9) into Eqs. (C.10-C.12) leads to

C1 = 0, (C.17)

qyD1 + qxq (C2 + C3)− `x
[
qxq

2(C1 + 2C4) +D2qqy
]

= 0, (C.18)

−qxD1 + qyq(C2 + C3)− `y
[
qyq

2(C1 + 2C4)−D2qqx
]

= 0, (C.19)
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and substituting Eqs. (C.6-C.9) into Eqs. (C.13-C.15) leads to

2µq[sinh (qh0)C1 + cosh (qh0)C2 + qh sin (qh0)C3 + qh cosh (qh0)C4] = −γq2h̃,

(C.20)

2q2 {cosh (qh0)C1 + sinh(qh0)C2 + [sinh (qh0) + qh cosh (qh0)]C3

+ [cosh(qh0) + qh sinh(qh0)]C4}+
qy
qx
q sinh (qh0)D1 +

qy
qx
q cosh (qh0)D2 = 0,

(C.21)

2q2 {cosh (qh0)C1 + sinh(qh0)C2 + [sinh (qh0) + qh cosh (qh0)]C3

+ [cosh(qh0) + qh sinh(qh0)]C4} −
qx
qy
q sinh (qh0)D1 −

qx
qy
q cosh (qh0)D2 = 0.

(C.22)

Using Eqs. (C.6-C.9), Eq. (C.16) and Eq. (C.17), the dispersion relation is

given by:

Ω =
−γq2w̃

−p̃+ 2µdw̃dz
=
−γq2

2µq

sinh (qh)C2 + qh cosh (qh)C3 + qh sin (qh)C4

cosh (qh)C2 + qh sinh (qh)C3 + qh cos (qh)C4
. (C.23)

The remaining task is writing C2 and C3 as a function of C4. Using Eqs. (C.17-C.22),

we can obtain:

D1 = MD2,M = −cosh(qh0)

sinh(qh0)
,

D2 =
2 (`x − `y) q2qxqy

q2
y(M − `xq) + q2

x(M − `yq)
C4,

C2 = −C3 + JC4, J = 2`xq −
2 (`x − `y) qq2

y(M − `xq)
q2
y(M − `xq) + q2

x(M − `yq)
,

C3 = −sinh (qh0) J + cosh(qh0) + qh sinh (qh0)

qh cosh(qh0)
C4. (C.24)

Substituting Eq. (C.24) into Eq. (C.23) and eliminating C4 lead to the anisotropic

dispersion relation

Ω (qx, qy) =
γq

4µ

sinh (2qh0)− 2qh0 + 4Jsinh2 (qh0)

q2h2
0 + cosh2 (qh0) + J [2qh0 + sinh (2qh0)]

,

J = q`x − q
`x − `y

1 +
q2x[q`y sinh(qh0)+cosh(qh0)]
q2y [q`x sinh(qh0)+cosh(qh0)]

. (C.25)
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[86] Markus Hütter and Hans Christian Öttinger. Fluctuation-dissipation theorem,

kinetic stochastic integral and efficient simulations. J. Chem. Soc., Faraday

Trans., 94(10):1403–1405, 1998.

[87] Bernt Oksendal. Stochastic differential equations: an introduction with appli-

cations. Springer Science & Business Media, 2013.

[88] Scott W Sides, Gary S Grest, and Martin-D Lacasse. Capillary waves at liquid-

vapor interfaces: A molecular dynamics simulation. Phys. Rev. E, 60(6):6708,

1999.

[89] Luis G MacDowell. Capillary wave theory of adsorbed liquid films and the

structure of the liquid-vapor interface. Phys. Rev. E, 96(2):022801, 2017.

[90] Yixin Zhang, James E Sprittles, and Duncan A Lockerby. Nanoscale thin-film

flows with thermal fluctuations and slip. Phys. Rev. E, 102(5):053105, 2020.

[91] Thomas Erneux and Stephen H Davis. Nonlinear rupture of free films. Phys.

Fluids, 5(5):1117–1122, 1993.

[92] Michael P Allen and Dominic J Tildesley. Computer simulation of liquids.

Oxford university press, 2017.

[93] Dennis C Rapaport. The art of molecular dynamics simulation. Cambridge

university press, 2004.

[94] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics.

J. Comput. Phys., 117(1):1–19, 1995.

111
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[98] Shuichi Nosé. A unified formulation of the constant temperature molecular

dynamics methods. J. Chem. Phys., 81(1):511–519, 1984.

[99] William G Hoover. Canonical dynamics: Equilibrium phase-space distribu-

tions. Physical review A, 31(3):1695, 1985.

[100] Berk Hess. Determining the shear viscosity of model liquids from molecular

dynamics simulations. J. Chem. Phys., 116(1):209–217, 2002.
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the young-laplace model for cluster growth during dewetting of thin films: Ef-

fective coarsening exponents and the role of long range dewetting interactions.

Phys. Rev. E, 88(3):032113, 2013.

[110] Karl B Glasner and Thomas P Witelski. Coarsening dynamics of dewetting

films. Phys. Rev. E, 67(1):016302, 2003.

[111] AM Willis and JB Freund. Thermal capillary waves relaxing on atomically

thin liquid films. Phys. Fluids, 22(2):022002, 2010.

[112] Eirik G Flekkøy and Daniel H Rothman. Fluctuating fluid interfaces. Phys.

Rev. Lett., 75(2):260, 1995.

[113] Renate Fetzer, K Jacobs, A Münch, B Wagner, and T. P Witelski. New

slip regimes and the shape of dewetting thin liquid films. Phys. Rev. Lett,

95(12):127801, 2005.

[114] Oliver Bäumchen, Ludovic Marquant, Ralf Blossey, Andreas Münch, Barbara

Wagner, and Karin Jacobs. Influence of slip on the rayleigh-plateau rim in-

stability in dewetting viscous films. Phys. Rev. Lett., 113(1):014501, 2014.

[115] A Vrij and J Th G Overbeek. Rupture of thin liquid films due to spontaneous

fluctuations in thickness. J. Am. Chem. Soc., 90(12):3074–3078, 1968.

[116] Sridhar Kumar Kannam, BD Todd, Jesper Schmidt Hansen, and Peter J

Daivis. Slip length of water on graphene: Limitations of non-equilibrium

molecular dynamics simulations. J. Chem. Phys., 136(2):024705, 2012.

[117] Olivier Pierre-Louis. Thermal fluctuations of a liquid film on a heterogeneous

solid substrate. Phys. Rev. E, 94(3):032802, 2016.

[118] Kajari Kargupta, Ashutosh Sharma, and Rajesh Khanna. Instability, dynam-

ics, and morphology of thin slipping films. Langmuir, 20(1):244–253, 2004.

[119] Chengxi Zhao, Duncan A Lockerby, and James E Sprittles. Dynamics of liquid

nanothreads: Fluctuation-driven instability and rupture. Phys. Rev. Fluids,

5(4):044201, 2020.

113



[120] Wendy W Zhang and John R Lister. Similarity solutions for van der waals

rupture of a thin film on a solid substrate. Phys. Fluids, 11(9):2454–2462,

1999.
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