
The Library
A refined derived Torelli theorem for Enriques surfaces, II the non-generic case
Tools
Li, Chunyi, Stellari, Paolo and Zhao, Xiaolei (2022) A refined derived Torelli theorem for Enriques surfaces, II the non-generic case. Mathematische Zeitschrift, 300 . pp. 3527-3550. doi:10.1007/s00209-021-02930-4 ISSN 0025-5874.
|
PDF
WRAP-refined-derived-Torelli-theorem-Enriques-surfaces-II-the-non-generic-case-Li-2021.pdf - Published Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (464Kb) | Preview |
|
![]() |
PDF
WRAP-refined-derived-Torelli-theorem-Enriques-surfaces-II-the-non-generic-case-Li-2021.pdf - Accepted Version Embargoed item. Restricted access to Repository staff only - Requires a PDF viewer. Download (612Kb) |
Official URL: https://doi.org/10.1007/s00209-021-02930-4
Abstract
We prove that two Enriques surfaces defined over an algebraically closed field of characteristic different from 2 are isomorphic if their Kuznetsov components are equivalent. This improves and completes our previous result joint with Nuer where the same statement is proved for generic Enriques surfaces.
Item Type: | Journal Article | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | |||||||||||||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | |||||||||||||||
Library of Congress Subject Headings (LCSH): | Enriques surfaces, Derived categories (Mathematics), Torelli theorem | |||||||||||||||
Journal or Publication Title: | Mathematische Zeitschrift | |||||||||||||||
Publisher: | Springer | |||||||||||||||
ISSN: | 0025-5874 | |||||||||||||||
Official Date: | April 2022 | |||||||||||||||
Dates: |
|
|||||||||||||||
Volume: | 300 | |||||||||||||||
Page Range: | pp. 3527-3550 | |||||||||||||||
DOI: | 10.1007/s00209-021-02930-4 | |||||||||||||||
Status: | Peer Reviewed | |||||||||||||||
Publication Status: | Published | |||||||||||||||
Reuse Statement (publisher, data, author rights): | This is a post-peer-review, pre-copyedit version of an article published in Mathematische Zeitschrift. The final authenticated version is available online at: http://dx.doi.org/[insert DOI]. | |||||||||||||||
Access rights to Published version: | Open Access (Creative Commons) | |||||||||||||||
Date of first compliant deposit: | 22 November 2021 | |||||||||||||||
Date of first compliant Open Access: | 14 February 2022 | |||||||||||||||
RIOXX Funder/Project Grant: |
|
|||||||||||||||
Related URLs: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year