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Abstract
Weprove that twoEnriques surfaces definedover an algebraically closedfield of characteristic
different from 2 are isomorphic if their Kuznetsov components are equivalent. This improves
and completes our previous result joint with Nuer where the same statement is proved for
generic Enriques surfaces.
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Introduction

The bounded derived category of coherent sheaves Db(X) of an Enriques surface X has
been widely investigated. Over the complex numbers, a very nice result by Bridgeland and
Maciocia [5] shows that the derived category determines the surface up to isomorphism. This
goes under the name of Derived Torelli Theorem as it can be viewed as a categorification of
the usual Hodge-theoretic Torelli Theorem for Enriques surfaces.

In this paper, we want to work over any algebraically closed field K of characteristic
different from 2 and, under this assumption, Enriques surfaces have a uniform definition: they
are smooth projective surfaces X with 2-torsion dualizing sheaf and such that H1(X ,OX ) =
0. From the geometric point of view, they are quotients of a K3 surface by a fixed-point-free
involution. It is a fact [13] that the Derived Torelli Theorem above holds in any characteristic
different from 2 as soon as the field is algebraically closed.

It was first showed in [28] that Db(X) can be further decomposed into interesting pieces.
As we will explain in Sect. 1.2, such a triangulated category always has a semiorthogonal
decomposition

Db(X) = 〈Ku(X ,L),L〉,
where L = 〈L1, . . . , L10〉 is generated by 10 line bundles. If X is generic in moduli or
generic in the divisor of the moduli space of Enriques surfaces parametrizing nodal Enriques
surfaces (i.e. containing (−2)-curves), then the 10 line bundles are completely orthogonal.
Otherwise, as clarified in Proposition 1.4, these line bundles organize themselves in com-
pletely orthogonal blocks and inside of each such block they differ by a rational curve. The
residual category Ku(X ,L) is called the Kuznetsov component of Db(X). Note that, as it is
expected and will be explained later (see Corollary 2.8), the definition of Ku(X ,L) depends
on the choice of L.

The study of the properties of the Kuznetsov component got a great impulse from [16]
where the authors also investigated its relation to the derived category of generic Artin–
Mumford quartic double solids. In our previous paper [22] we proved that for a generic
Enriques surface X , its Kuznetsov component determines X up to isomorphism. As this
refines the Derived Torelli Theorem mentioned above, we refer to it as the Refined Derived
Torelli Theorem for Enriques surfaces. A natural question which remained open after [22]
was whether such a result holds in general, that is for every Enriques surface.

In this paper we positively answer this question by means of the following theorem which
is the main result of this paper.

Theorem A Let X1 and X2 be Enriques surfaces over an algebraically closed field K of
characteristic different from 2. If they possess semiorthogonal decompositions

Db(Xi ) = 〈Ku(Xi ,Li ),Li 〉,

where Li is as above, and there exists an exact equivalence F : Ku(X1,L1)
∼−→ Ku(X2,L2)

of Fourier–Mukai type, then X1 ∼= X2.
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This result sits in a very active research area. Statements as the above one are usually
referred to as categorical Torelli theorems because, in analogy with the Hodge-theoretic
Torelli theorems, they show that the geometry of a smooth projective variety can be recon-
structed, up to isomorphism, from one relevant component of its derived category (possibly
with some additional data). Such a component is meant to play the role of intermediate
Jacobians or middle cohomologies and the additional data is the analogue of principal polar-
izations or special Hodge structures. In the case of Fanomanifolds,many paperswere devoted
to this kind of problems including [1–3,14,23,26]. All these results heavily rely on the exis-
tence of Bridgeland stability conditions on the Kuznetsov component as proved in [2]. In
general, we expect that there are no stability conditions on the Kuznetsov components of
Enriques surfaces.

For this reason, in this paper we take a different perspective which is indeed the same as in
[22]. Indeed, we prove TheoremA in Sect. 3.2 by showing that the given equivalence between
the Kuznetsov components can be extended to the whole derived categories by adding the
10 line bundles one by one. Once we know that Db(X1) and Db(X2) are equivalent, we can
invoke the Derived Torelli Theorem and conclude that X1 and X2 are isomorphic. It should
be noted that Theorem A is actually a special instance of the more precise Theorem 3.3.

This extension procedure is made possible by Proposition 3.2 which was proved in [22].
In turns, to make such a result applicable in the more complicated geometric setting of this
paper, we need a complete classification of special objects in the Kuznetsov component:
3-spherical and 3-pseudoprojective objects. If X is generic and thus the 10 line bundles are
orthogonal, we only get 3-spherical objects and their classification in [22] is considerably
simpler. The hard part of this paper consists in dealing with 3-pseudoprojective objects which
appear exactly because the line bundles in the semiorthogonal decomposition are no longer
orthogonal. This is the content of Theorem2.7which is indeed the technical core of this paper.
In order to make the paper self-contained we include in Sects. 1.1 and 1.2 some introductory
material about semiorthogonal decompositions and the geometry of Enriques surfaces.

We conclude the introduction by pointing out that in [22] (see Remark 5.3 therein) we
proposed a different approach to prove Theorem A. The strategy was to deform two Enriques
surface X1 and X2 containing (−2)-curves and with an equivalence of Fourier–Mukai type
Ku(X1,L1) ∼= Ku(X2,L) to generic unnodal Enriques surfaces and then apply the generic
Refined Derived Torelli Theorem in [22]. Even though this strategy is still valid, a precise
implementation would require a careful (and possibly complicated) comparison between the
deformation theory of the Enriques surface and of its Kuznetsov component. We feel like
that the approach in the present paper is more direct and conceptually clearer.

1 Semiorthogonal decompositions and Enriques categories

In this section we provide a short introduction to semiorthogonal decompositions of triangu-
lated categories and we apply this to the derived categories of Enriques surfaces. In Sect. 1.3
we start discussing some preparatory material which will be used later for the classification
of special objects in the Kuznetsov component of those surfaces.

1.1 Semiorthogonal decompositions and Serre functors

Let T be a triangulated category. A semiorthogonal decomposition of T

T = 〈D1, . . . ,Dm〉
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is a sequence of full triangulated subcategories D1, . . . ,Dm of T such that:

(a) Hom(F,G) = 0, for all F ∈ Di , G ∈ D j and i > j ;
(b) For any F ∈ T , there is a sequence of morphisms

0 = Fm → Fm−1 → · · · → F1 → F0 = F,

such that πi (F) := Cone(Fi → Fi−1) ∈ Di for 1 ≤ i ≤ m.

The subcategories Di are called the components of the decomposition. We say that two such
distinct components Di and D j are orthogonal if HomT (F,G) ∼= HomT (G, F) = 0, for
all F in Di and G in D j .

We will be mostly interested in the case where the inclusion functor αi : Di ↪→ T has left
adjoint α∗

i and right adjoint α!
i . In this case, Di is called an admissible subcategory.

Remark 1.1 Suppose now that T has Serre functor ST and a semiorthogonal decomposition
as above, where all components are admissible subcategories. Then, for any pair of objects
F and G in Di , we have

HomDi (F,G) ∼= HomT (αi (F), αi (G))

∼= Hom(αi (G), ST (αi (F)))∨
∼= Hom(G, α!

i (ST (αi (F))))∨.

ThusDi has Serre functor SDi as well and there is a natural isomorphism SDi
∼= α!

i ◦ST ◦αi .

We need now to introduce another functor which is naturally defined in presence of a
semiorthogonal decomposition satisfying the additional assumption that its components are
admissible subcategories. The left mutation functor throughDi is the functor LDi defined by
the canonical distinguished triangle

αiα
!
i

ηi−→ id → LDi , (1.1)

where ηi denotes the counit of the adjunction. In complete analogy, one defines the right
mutation functor throughDi as the functorRDi definedby the canonical distinguished triangle

RDi → id
εi−→ αiα

∗
i , (1.2)

where εi is the unit of the adjunction.
The following is a very simple and well-known result.

Lemma 1.2 Let T = 〈D1,D2〉 be a semiorthogonal decomposition. Then we have an iso-
morphism of exact functors LD1 |D2

∼= ST ◦ S−1
D2

.

Proof We have the following natural isomorphisms of exact functors

LD1 |D2
∼= LD1 ◦ S−1

T ◦ ST |D2
∼= S−1

ST (D2)
◦ ST |D2

∼= ST ◦ S−1
T ◦ S−1

ST (D2)
◦ ST |D2

∼= ST ◦ S−1
D2

. (1.3)

Here the non-trivial isomorphism is the second one which follows from [20, Lemma 2.6] and
the easy observation that

T = 〈ST (D2),D1〉
is yet another semiorthogonal decomposition for T . The last isomorphism in (1.3) follows
from an explicit computation using Remark 1.1. ��
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We conclude this section by noting that, from now on, we will assume that all categories
are linear over a field K. In this case, E ∈ T is exceptional if Hom(E, E[p]) = 0, for all
integers p 
= 0, and Hom(E, E) ∼= K. A set of objects {E1, . . . , Em} in T is an exceptional
collection if Ei is an exceptional object, for all i , and Hom(Ei , E j [p]) = 0, for all p and all
i > j .

1.2 Enriques surfaces

In the rest of the paper we work over an algebraically closed fieldK of characteristic different
from 2. Let X be an Enriques surface. For later use, let us recall that its Serre functor SX is
defined as SX (−) := (−) ⊗ ωX [2], where ωX is 2-torsion but non-trivial. Hence S2X = [4]
but SX 
= [2]. Moreover the torsion part of the Néron–Severi group NS(X)tor is 2-torsion
as well and generated by the class of ωX . We set Num(X) := NS(X)/NS(X)tor. For a brief
but very informative survey about the geometry of Enriques surfaces, one can have a look at
[10]. A more complete treatment is in [9,11].

Let us now consider the bounded derived category of coherent sheavesDb(X) of X . On one
side we have the well-known Derived Torelli Theoremwhich is a summary of [5, Proposition
6.1] and [13, Theorem 1.1].

Theorem 1.3 (Bridgeland–Maciocia, Honigs–Lieblich–Tirabassi) Let X and Y be smooth
projective surfaces defined over an algebraically closed field K of characteristic different
from 2. If X is an Enriques surface and there is an exact equivalence Db(X) ∼= Db(Y ), then
X ∼= Y .

On the other hand we can study the structure of Db(X) by means of the following result
(which is mostly well-known to experts).

Proposition 1.4 ([22, Proposition 3.5]) Let X be an Enriques surface over K. Then Db(X)

contains an admissible subcategory L = 〈L1, . . . ,Lc〉, where L1, . . . ,Lc are orthogonal
admissible subcategories and

Li = 〈Li
1, . . . , L

i
ni 〉

where

(1) Li
j is a line bundle such that L

i
j = Li

1 ⊗ OX (Ri
1 + · · · + Ri

j−1) where Ri
1, . . . , R

i
j−1 is

a chain of (−2)-curves of A j−1 type;
(2) {Li

1, . . . , L
i
ni } is an exceptional collection; and

(3) n1 + · · · + nc = 10.

In view of the previous proposition we can state the following.

Definition 1.5 If X is an Enriques surface with a semiorthogonal decomposition as in Propo-
sition 1.4, then the unordered sequence of positive integers {n1, . . . , nc} is the type of the
semiorthogonal decomposition.

It is worth discussing when the type of the semiorthogonal decomposition may be seen
as an invariant associated to X .

Remark 1.6 If X is generic in moduli, then all possible semiorthogonal decompositions as
in the statement above get much simplified. Indeed, X does not contain (−2)-curves and
then one always gets 10 orthogonal blocks, each consisting of only one line bundle. Thus,
for unnodal Enriques surfaces, all semiorthogonal decompositions as above are of the type
given by the 10-uple {1, . . . , 1}.

123



C. Li et al.

The situation gets much more interesting if one looks at the generic Enriques surfaces
in the divisor of the moduli space of such surfaces parametrizing nodal Enriques surfaces
(i.e. surfaces containing (−2)-curves). This is very much related to the fact that a natural
polarization (called Fano polarization) is ample and not just nef. For an extensive discussion
on this, the reader can have a look at [22, Section 3.1]. In this paper we will be interested in
the following.

Example 1.7 If X is a generic nodal Enriques surface, then by [8, Theorem 3.2.2] and [12,
Corollary 4.4], the surface X has an ample Fano polarization and thus a semiorthogonal
decomposition as in Proposition 1.4 with c = 10 and of type given by the 10-uple {1, . . . , 1}.
On the other hand, by Theorem 6.5.4 and Corollary 6.5.9 in [11], any generic nodal Enriques
surface has a nef Fano polarization which is not ample and gives rise to a semiorthogonal
decomposition as in the proposition above but where c = 9 and of type given by the 9-uple
{1, . . . , 1, 2}. This implies that the type of a semiorthogonal decomposition as in Proposition
1.4 is not an invariant of the surface.

Let us now consider the following slightly more general setting. Let L = 〈L1, . . . ,Lc〉 be
an admissible subcategory of Db(X), for X an Enriques surface such thatLi = 〈Li

1, . . . , L
i
ni 〉

and

(a) the admissible subcategories Li ’s are orthogonal;
(b) the objects Li

j ’s satisfy properties (1) and (2) in Proposition 1.41.

In this situation, consider the admissible subcategory

Ku(X ,L) := L⊥ = 〈L1, . . . ,Lc〉⊥
which we will call the Kuznetsov component of X . By definition, Db(X) admits then a
semiorthogonal decomposition:

Db(X) = 〈Ku(X ,L),L〉. (1.4)

1.3 Some useful computations

In this section we discuss some preliminary computations concerning special objects in
Db(X), for an Enriques surface X with a semiorthogonal decomposition as in (1.4) and
satisfying properties (a) and (b). We set

ζK : Ku(X ,L) ↪→ Db(X)

to be the embedding, where K is a shorthand for Ku(X ,L). For fixed 1 ≤ i ≤ c and
1 ≤ j < l ≤ ni we set

Qi
j,l := Coker(Li

j ↪→ Li
l ). (1.5)

Remark 1.8 Note that Qi
j,l is supported on a chain of (−2)-curves of Al− j -type. This imme-

diately implies that Qi
j,l ⊗ ωX ∼= Qi

j,l . In particular, 〈Qi
j,l〉⊥ = ⊥〈Qi

j,l〉.
The following rather technical result will be used later.

1 Note that here we do not assume that condition (3) in Proposition 1.4 is satisfied by L as in the subsequent
argument we will need to make induction on the number of exceptional objects.
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Lemma 1.9 In the above setting, we have that

(1) For every object L in L, χ(L, L) ≥ 0;
(2) RHom(SL(Li

1), L
i
1)

∼= K⊕K[−1]⊕K[−2], when ni ≥ 2, whileRHom(SL(Li
1), L

i
1)

∼=
K, when ni = 1;

(3) ζ !
K(Li

1)
∼= . . . ∼= ζ !

K(Li
ni )

∼= ζ !
K ◦ S−1

L (Li
1).

Proof Let us first prove (1). Note thatχ(L j
i , L

m
l ) = δilδ jm . Indeed, if j 
= m, then the objects

L j
i and Lm

l are orthogonal, for all i and l, and thus χ(L j
i , L

m
l ) = 0. On the other hand, if

j = m and i 
= l, then χ(L j
i , L

m
l ) = 0 by Proposition 1.4 (1) and a simple computation

with Riemann–Roch. Finally, if j = m and i = l, then χ(L j
i , L

m
l ) = 1, because the object is

exceptional. This shows that the bilinear form χ(−,−) is positive definite on the numerical
Grothendieck group Knum(L) of L and thus the claim follows.

As for (2), when ni = 1, we have SL(Li
1) = SLi (L

i
1) = Li

1. As Li
1 is exceptional, the

statement holds by definition.
When ni ≥ 2, we first observe that we have the following isomorphisms

S−1
L (Li

1)
∼= S−1

Li
(Li

1)
∼= R〈Li

2,...,L
i
ni

〉(SLi ◦ S−1
Li

(Li
1))

∼= R〈Li
2,...,L

i
ni

〉(L
i
1) (1.6)

where the first one follows from the fact that the admissible subcategoriesLi ’s are orthogonal
and thus S−1

Li
(Li

1) = S−1
L (Li

1). The second isomorphism is indeed [20, Lemma 2.7] applied

to the object S−1
Li

(Li
1) in B with the following assignments

A = 〈Li
2, . . . , L

i
ni 〉 B = 〈S−1

Li
(Li

1)〉 T = 〈A,B〉 = Li ,

and noticing that SB = IdB.
Pick j ∈ {1, . . . , ni − 1}. Note that RHom(Li

j , L
i
j+1)

∼= H∗(X ,OX (Ri
j ))

∼= K ⊕
K[−1] by property (b) of the semiorthogonal decomposition (1.4). Therefore, we have the
distinguished triangle

RLi
j+1

(Li
j ) → Li

j → Li
j+1 ⊕ Li

j+1[1].
Consider the commutative diagram where the rows are distinguished triangles

Li
j+1 Li

j+1 0 Li
j+1[1]

Li
j+1[−1] ⊕ Li

j+1 RLi
j+1

(Li
j ) Li

j Li
j+1 ⊕ Li

j+1[1].

By the octahedron axiom, we get the morphisms

Cone(Li
j+1 → RLi

j+1
(Li

j ))
∼= Cone(Li

j [−1] → Li
j+1[−1]) ∼= Qi

j, j+1[−1].
In particular, we have the distinguished triangle

Li
j+1 → RLi

j+1
(Li

j ) → Qi
j, j+1[−1] (1.7)

for every 1 ≤ j ≤ ni − 1. If we apply R〈Li
j+2,...,L

i
ni

〉 to (1.7) and we take into account that

Qi
j, j+1 ∈ (Li

l )
⊥ ∩⊥Li

l for all l 
= j, j + 1, then we get the distinguished triangle

R〈Li
j+2,...,L

i
ni

〉(L
i
j+1) → R〈Li

j+1,...,L
i
ni

〉(L
i
j ) → Qi

j, j+1[−1], (1.8)
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for every 1 ≤ j ≤ ni −1. If we apply the functorRHom(Li
1,−) to (1.8) when j ≥ 2 (which

means that ni ≥ 3), then we get the isomorphisms of graded vector spaces

RHom(Li
1, R〈Li

3,...,L
i
ni

〉(L
i
2))

∼= RHom(Li
1, R〈Li

4,...,L
i
ni

〉(L
i
3))

∼= . . .

∼= RHom(Li
1, L

i
ni )

∼= K ⊕ K[−1]. (1.9)

Finally, if we apply RHom(Li
1,−) to (1.8), for j = 1, and we use (1.9) and the fact that

RHom(Li
1, Q

i
1,2[−1]) ∼= K[−2],

then we get the isomorphisms of graded vector spaces

RHom(SL(Li
1), L

i
1)

∼= RHom(Li
1, S

−1
L (Li

1))

∼= RHom(Li
1, R〈Li

2,...,L
i
ni

〉(L
i
1))

∼= K ⊕ K[−1] ⊕ K[−2].
For the penultimate isomorphism we used (1.6).

Finally, let us prove (3). When ni = 1, we have S−1
L (Li

1) = S−1
Li

(Li
1) = Li

1 and the only
isomorphim in the statement hold automatically.

When ni ≥ 2, since Qi
j, j+1 ∈ SX (L), for every 1 ≤ j ≤ ni −1, we have ζ !

K(Qi
j, j+1) = 0.

By definition, ζ !
K(Li

j )
∼= ζ !

K(Li
j+1), for every 1 ≤ j ≤ ni − 1. Therefore, if we apply the

functor ζ !
K to (1.8), for every 1 ≤ j ≤ ni − 1, we get ζ !

K ◦ S−1
L (Li

1)
∼= ζ !

K(Li
ni ). ��

2 Classifying spherical and pseudoprojective objects

In this section we study and classify 3-spherical and 3-pseudoprojective objects in the
Kuznetsov component of the special semiorthogonal decompositions in Sect. 1.2.

2.1 Spherical and pseudoprojective objects: construction and classification

We begin with a fairly general definition.

Definition 2.1 Let T a triangulated category that it is linear over a field K and with Serre
functor ST .

(a) An object E in T is n-spherical if:

(i) There is an isomorphism of graded vector spaces RHom(E, E) ∼= K ⊕ K[−n];
(ii) ST (E) ∼= E[n].

(b) An object E in T is n-pseudoprojective if:

(i) There is an isomorphism of graded vector spaces RHom(E, E) = K ⊕ K[−1] ⊕
· · · ⊕ K[−n].;

(ii) ST (E) ∼= E[n].
Remark 2.2 Some comments on the choice of the names in the above definition are in order
here. Spherical objects were introduced in the seminal paper [27] and our definition is exactly
the same. The name is clearly motivated by the fact the the Ext-algebra of such an object is
isomorphic to the cohomology algebra of an n-sphere.
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The situation is slightly different for n-pseudoprojective objects as in (b) of the definition
above. Our objects look very much like a variant of P

n-objects described in [15]. The first
key different is that in [15] the Ext-algebra of a P

n-object is assumed to be isomorphic
to the cohomology algebra of the complex projective space P

n and it is then generated
in degree 2. On the contrary, our n-pseudoprojective objects have non-trivial Ext’s in odd
degrees as well. The case of objects with Ext-algebra isomorphic to the cohomology algebra
of P

n but with generator in degree 1 has been studied in [17]. Indeed, our objects E in
Definition 2.1 (b) look very much like P

n[1]-objects in [17]. The key difference is that
RHom(E, E) ∼= C[x]/(xn+1), with x in degree 1, only as graded vector spaces and not
as algebras. Of course, we expect the objects studied in Theorem 2.7 to be P

3[1]-objects
but, at the moment, we have no control on their Ext-algebra and, as we will see, this is not
relevant for our computations. For these reasons we prefer to adopt a new name and call them
3-pseudoprojective with the hope that future studies may turn them into P

3[1]-objects.

In this paper we will be mainly interested in 3-spherical and 3-pseudoprojective objects.
The former were extensively used in [22] to prove the Refined Derived Torelli Theorem in
the generic case.

In the more general setting of the present paper, we want to show how one can possibly
construct 3-pseudoprojective objects in the Kuznetsov component of an Enriques surface
whose derived category is endowed with a semiorthogonal decomposition as in (1.4). To this
extent, we set

Si := ζ !
K(Li

1).

Remark 2.3 (i) By (1.1), the object Si sits in the distinguished triangle

ζ !
K(Li

1) → Li
1 → LKu(X ,L)(L

i
1).

By Lemma 1.2, we get the distinguished triangle

ζ !
K(Li

1) → Li
1

ϕi−→ SX (S−1
L (Li

1)). (2.1)

In other words, since Hom(Li
1, SX (S−1

L (Li
1)))

∼= K, the object Si [1] is isomorphic to the
cone of the unique non-trivial morphism Li

1 → SX (S−1
L (Li

1)).
(ii) Note that if ni ≥ 2, then by Lemma 1.9 (3), we get an isomorphism Si ∼= ζ !

K(Li
j ), for

all 1 ≤ j ≤ ni .

We can now discuss some additional properties of the objects Si ’s.

Lemma 2.4 In the above setting we have:

(1) If ni = 1, then Si is a 3-spherical object in Ku(X ,L).
(2) If ni ≥ 2, then Si is a 3-pseudoprojective object in Ku(X ,L).

Furthermore, if i 
= j , then RHom(Si , S j ) = 0 and thus Si � S j [k], for all k ∈ Z.

Proof If ni = 1, then the result is simply [22, Lemma4.8]. Thuswe can assume ni ≥ 2. In this
case, we can first compute the action of the Serre functor using again an argument very close

123



C. Li et al.

to the one in [22, Lemma 4.8] and which consists of the following chain of isomorphisms

SK(Si ) ∼= ζ !
K(SX (Si ))

∼= ζ !
K(Cone(SX (Li

1)
SX (ϕi )−−−→ S2X (S−1

L (Li
1)))[−1])

∼= ζ !
K(Cone(SX (Li

1)
SX (ϕi )−−−→ S−1

L (Li
1)[3]))

∼= ζ !
K(S−1

L (Li
1[3]))

∼= Si [3],
where the first isomorphism is [20, Lemma2.6], the second one is Remark 2.3 (i), the third one
follows from the the fact that S2X ∼= [4] and the fourth one follows from the observation that
ζ !
K(SX (Li

1)) = 0 (this by (1.1) and noticing that SX (Li
1) ∈ K⊥). Finally, the last isomorphism

is a consequence of Lemma 1.9 (3). This yields property (ii) in Definition 2.1 (b).
To conclude that Si is 3-pseudoprojective, we first apply Hom(Si ,−) to (2.1). Hence,

since Si ∈ K =⊥(SX (L)), we have an isomorphism of graded vector spaces

RHom(Si , Si ) ∼= RHom(Si , L
i
1). (2.2)

By Lemma 1.9 and Serre duality,

RHom(SX ◦ S−1
L (Li

1), L
i
1)

∼= (RHom(Li
1, S

−1
L (Li

1)[4]))∨ ∼= K[−2] ⊕ K[−3] ⊕ K[−4].
Finally, if we apply the functor RHom(−, Li

1) to the distinguished triangle (2.1), then we
get

RHom(Si , L
i
1)

∼= K ⊕ K[−1] ⊕ K[−2] ⊕ K[−3].
This, together with (2.2), implies (i) in Definition 2.1 (b).

To prove the last claim in the statement, observe that, as in the previous part, we have
the isomorphism of graded vector spaces RHom(Si , S j ) ∼= RHom(Si , L

j
1). If i 
= j , then

RHom(Li
1, L

j
1) = 0. On the other hand, by Serre duality,

RHom(SX (S−1
L (Li

1)), L
j
1)

∼= RHom(L j
1, S

−1
L (Li

1)[4])∨ = 0,

where the last vanishing is due to the fact that S−1
L (Li

1) is in Li which is orthogonal to L j to

which L j
1 belongs. By (2.1), these two observations imply RHom(Si , S j ) = 0, when i 
= j ,

and thus the claim follows. ��
As we learnt from the previous lemma, we need to distinguish when ni = 1 and ni ≥ 2 in

the semiorthogonal decomposition (1.4). Thus it is convenient to reformulate here and keep
it in mind for the rest of the paper the setup we are working in:

Setup 2.5 Let X be an Enriques surface with a semiorthogonal decomposition

Db(X) = 〈Ku(X ,L),L〉,
whereL = 〈L1, . . . ,Lc〉 is an admissible subcategory andL1, . . . ,Lc are orthogonal admis-
sible subcategories and

Li = 〈Li
1, . . . , L

i
ni 〉

where

(a) Li
j is a line bundle such that Li

j = Li
1 ⊗ OX (Ri

1 + · · · + Ri
j−1) where Ri

1, . . . , R
i
j−1 is

a chain of (−2)-curves of A j−1 type;
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(b) {Li
1, . . . , L

i
ni } is an exceptional collection; and

(c) If there is j ∈ {1, . . . , c} such that n j 
= 1, then there is d ∈ {1, . . . , c} such that n j ≥ 2
for all 1 ≤ j ≤ d while n j = 1 for all d < j ≤ c.

Remark 2.6 Since the components Li ’s are orthogonal, the special choice in (c) above for the
ordering of these components does not cause loss of generality.

The goal of the rest of this section is to prove the following result which is the key for our
Refined Derived Torelli Theorem and answers the open question in [22, Remark 4.11].

Theorem 2.7 In Setup 2.5, if F is an object in Ku(X ,L), then

(1) F is 3-spherical if and only F ∼= S j [k] for some d < j ≤ c and k ∈ Z;
(2) F is 3-pseudoprojective if and only if F ∼= S j [k] for some 1 ≤ j ≤ d and k ∈ Z.

Furthermore, all these 3-spherical and 3-pseudoprojective objects are not isomorphic.

Before moving to the proof of this result, we want to discuss an easy application that
shows that the Kuznetsov component of an Enriques surface is not, in general, intrinsic to
the surface, up to equivalence.

Corollary 2.8 If X is a generic nodal Enriques surface, then there exist two semiorthogonal
decompositions

Db(X) = 〈Ku(X ,Li ),Li 〉,
for i = 1, 2, as in Setup 2.5 and such that L1 and L2 consist of 10 exceptional line bundles
but Ku(X ,L1) � Ku(X ,L2).

Proof Consider the two distinct semiorthogonal decompositions on Db(X), for X a generic
nodal Enriques surface, described in Example 1.7. Assume that there is an exact equivalence
Ku(X ,L1) ∼= Ku(X ,L2). Then the two Kuznetsov components would contain, up to shifts
and isomorphisms, the same number of 3-spherical and 3-pseudoprojective objects. But this
contradicts Theorem 2.7. ��

Remark 2.9 If one could prove that, given a generic nodal Enriques surface, the Kuznetsov
components of the two semiorthogonal decompositions in Example 1.7 have no non-trivial
semiorthogonal decompositions, then Corollary 2.8 would yield another counterexample to
the Jordan–Hölder property of semiorthogonal decompositions. Roughly, such a property
predicts that if X is a smooth projective variety then the semiorthogonal decompositions of
Db(X) are essentially unique, up to reordering of the components and equivalence. It is worth
recalling that we already know counterexamples to such a property [4,18].

2.2 Proof of Theorem 2.7

It is clear that the ‘if’ part in (1) and (2) and the last part of the statement in Theorem 2.7
are the content of Lemma 2.4. Thus it remains to prove the hard implication in (1) and (2):
if F is either a 3-spherical or 3-pseudoprojective object in Ku(X ,L), then, up to shift, it is
isomorphic to one of the Si ’s. The proof is split in several steps.
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Step 1: reduction to one component

We first prove that we can simplify our computation and reduce to the case L = Li , for
some i = 1, . . . , c. For now, we can indifferently assume that F is either a 3-spherical or a
3-pseudoprojective object in Ku(X ,L).

First of all, note that the semiorthogonal decomposition in Setup 2.5 can be conveniently
rewritten as

Db(X) = 〈SX (L),Ku(X ,L)〉.

By (1.1) and Lemma 1.2, we have a distinguished triangle

ζ !
SX (L)(F) → F → SX (S−1

Ku(X ,L)(F)). (2.3)

If ζSX (L) : SX (L) ↪→ Db(X) denotes the embedding of the corresponding admissible subcat-
egory, then we set

G := SX (ζ !
SX (L)(F)) ∈ L.

We now want to prove some relevant properties of G.
Note that, by assumption, SKu(X ,L)(F) ∼= F[3]. Thus, by [20, Lemma 2.6], we have the

isomorphisms

SL(G) ∼= ζ !
L(SX (G))

∼= ζ !
L(Cone(S2X (F) → S3X (S−1

K (F)))[−1])
∼= ζ !

L(Cone(F[3] → SX (F)))

∼= ζ !
L(SX (F))

∼= SX (ζ !
SX (L)(F))

∼= G, (2.4)

where for the second one we use (2.3). The third isomorphism follows from the fact that
S2X (F) ∼= F[4] and SKu(X ,L)(F) ∼= F[3]. The fourth is a consequence of ζ !

L(F) = 0 while
the penultimate is a simple computation. Here ζL : L ↪→ Db(X) is the embedding of the
admissible subcategory L.

Furthermore, if we apply the equivalence SX to (2.3), we get the distinguished triangle

G → SX (F) → F[1]. (2.5)

This implies that [G] = 2[F] in Num(X) and thus χ(G,G) = 4χ(F, F) = 0
because F is either 3-spherical or 3-pseudoprojective. By (2.4), we have Hom(G,G[t]) ∼=
Hom(G,G[−t]) for every t ∈ Z and thus Hom(G,G) has dimension at least 2.

If we apply RHom(G,−) to (2.5) and we use Serre duality, we get the isomorphism
of graded vector spaces RHom(G,G) ∼= RHom(G, SX (F)). Furthermore, if we apply
RHom(−, SX (F)) to (2.5) and we take into consideration that, by assumption,

RHom(F, SX (F)) ∼=
{

K ⊕ K[3] if F is 3-spherical;

K ⊕ K[1] ⊕ K[2] ⊕ K[3] if F is 3-pseudoprojective,
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then we get the isomorphisms of graded vector spaces

RHom(G,G) ∼=
{

K[−3] ⊕ K
⊕2 ⊕ K[3] if F is 3-spherical;

K[±3] ⊕ K[±2] ⊕ K[±1] ⊕ K
⊕2 if F is3-pseudoprojective;

(2.6)

Here we used that Hom(G,G) has dimension at least 2.
Denote byQ the collection of torsion sheaves Qi

j,l for all 1 ≤ i ≤ c and 1 ≤ j < l ≤ ni ,

defined in (1.5). Since both F and SX (F) are in Q⊥ = ⊥Q (here we use Remark 1.8), by
(2.5) both G and SX (G) are orthogonal to Q as well. Thus

RHom(G, Q) ∼= RHom(SL(G), Q) = 0, (2.7)

for every Q ∈ Q.
We now prove the following result.

Lemma 2.10 In Setup 2.5, let E be an object in L satisfying

(a) SL(E) ∼= E;
(b) We have the isomorphisms Hom(E, E) ∼= K

⊕2; Hom(E, E[3]) ∼= K; Hom(E, E[1]) ∼=
Hom(E, E[2]) and Hom(E, E[t]) = 0, for |t | ≥ 4;

(c) Hom(E, Q) = 0, for every Q ∈ Q.

Then

(1) The object E ∈ Li for some i;
(2) There exists t ∈ Z such that for all 1 ≤ j ≤ ni ,Hom(E, Li

j [t]) ∼= Hom(E, Li
j [t+3]) ∼=

K and Hom(E, Li
j [s]) = 0 for s ≤ t − 1 and s ≥ t + 4;

(3) The composition of non-trivial morphisms E → E[3] and E[3] → Li
1[t + 3] is non-

trivial.

Proof Let us first prove (1). Since the Li ’s are orthogonal, we may write E = F1 ⊕· · ·⊕ Fc,
for Fi in Li . For the same reason,∑

χ(Fi , Fi ) = χ(E, E) = 0.

Hence, by Lemma 1.9 (1), χ(Fi , Fi ) = 0 for every 1 ≤ i ≤ c.
Since SL(E) ∼= E and the Li ’s are orthogonal, we must have SLi (Fi ) ∼= Fi , for

every i . Therefore, Hom(Fi , Fi [t]) ∼= Hom(Fi , Fi [−t]), for every t ∈ Z, and since
χ(Fi , Fi ) = 0, we must have that Hom(Fi , Fi ) is even-dimensional. As Hom(E, E) =⊕

1≤i≤d Hom(Fi , Fi ), assumption (b) implies that E ∼= Fi , for a unique i . Thus E is in Li

and we get (1).
In view of what we have just proved, we can simplify the notation and assume L = Li

and set n := ni , L j := Li
j and Q j,l := Qi

j,l . First, we can note that, if n = 1, then
E = L[t] ⊕ L[t + 3], for some t ∈ Z. Thus (2) and (3) hold true automatically and we may
assume n ≥ 2 from now on.

Let us prove (2) under this assumption. We set E1 := E ∈ L and write it as an extension

E2 → E1 → L1 ⊗ RHom(E1, L1)
∨,

where now E2 ∈ 〈L2, . . . , Ln〉. Inductively, for all j = 1, . . . , n − 1, we then define

E j+1 → E j → L j ⊗ RHom(E j , L j )
∨, (2.8)
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where Ek ∈ 〈Lk, . . . , Ln〉.
If we apply the functor RHom(−, L j+1) to (2.8) we get the exact sequence

RHom(L j , L j+1) ⊗ RHom(E j , L j ) → RHom(E j , L j+1) → RHom(E j+1, L j+1).

(2.9)

Now consider the distinguished triangle

Lk → Lk+1 → Qk,k+1, (2.10)

where the first map is the unique (up to scalar) non-trivial one, and apply RHom(E j ,−) to
it. Note that, by construction, the object E j is obtained with a finite number of extensions
involving E and elements in 〈L1, . . . , L j−1〉. On the other hand, RHom(Ls, Q j, j+1) = 0,
when s ≤ j − 1, while, by assumption (c), we have RHom(E, Q j, j+1) = 0. Therefore we
get an isomorphism of graded vector spaces

Hom(L j , L j+1) ⊗ RHom(E j , L j )
∼−→ RHom(E j , L j+1).

Recall that Hom(L j , L j+1) ∼= K with generator the non-trivial morphism in (2.10).
If we plug this into (2.9), we get the isomorphism

RHom(E j+1, L j+1) ∼= RHom(E j , L j )

and, iterating the argument, we get

RHom(E j , L j ) ∼= RHom(E, L1),

for all j = 1, . . . , n − 1. In particular, (2.8) gets the form

E j+1 → E j → L j ⊗ RHom(E, L1)
∨. (2.11)

Again by assumption (c), Serre duality and the fact that SL(E) = E , we get

RHom(E, L j ) ∼= RHom(E, L1) and RHom(L j , E) ∼= RHom(L1, E), (2.12)

for every j = 1, 2, . . . , n− 1. Hence, if we apply the functor RHom(E,−) to (2.11) and we
use this observation, then we get the distinguished triangle

RHom(E, E j+1) → RHom(E, E j ) → RHom(E, L1) ⊗ RHom(E, L1)
∨. (2.13)

Ut to shifting E , wemay assume that there is a positive integerm such that Hom(E, L1[t])
is non-trivial for t = 0,m, and it is trivial for t < 0 and t > m. Thus the graded vector
space RHom(E, L1)⊗RHom(E, L1)

∨ has non-trivial components concentrated in degrees
−m, . . . ,m. Moreover, in degrees −m and m, the corresponding components have the form

Hom(E, L1) ⊗ Hom(E, L1[m])∨ ∼= Hom(E, L1[m]) ⊗ Hom(E, L1)
∨ ∼= K

⊕a0am ,

where a0 := dimHom(E, L1) and am := dimHom(E, L1[m]).
On the one hand, we have

RHom(E, En) ∼= RHom(E, L1) ⊗ RHom(E, L1)
∨.

On the other hand, this information plugged into (2.13) for j = n − 1 yields that
RHom(E, En−1) has non-trivial component concentrated in degree −m, . . . ,m as well.
Furthermore,

dim Hom(E, En−1[±m]) ≥ a0am .
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By descending induction on j = n, . . . , 1 we get

dim Hom(E, E j [±m]) ≥ a0am

and thus the same holds true for the case j = 1.
By assumption (b), we have Hom(E, E[3]) ∼= K while Hom(E, E[t]) = 0, for t > 3.

Thus m = 3 and a0 = am = 1 as claimed in (2).
We are finally ready to prove (3). As in the proof of (2), we can assume t = 0 without

loss of generality. If we apply RHom(E,−) to (2.11) with j = 1 (recall that E0 = E), we
get the long exact sequence

· · · → Hom(E, E[3]) → Hom(E, L1[3]) → Hom(E, E1[4]) → 0 (2.14)

where the first map is given by the composition with the unique (up to scalar) non-trivial mor-
phism E[3] → L1[3] from (2). Since E1 is the extension of La, . . . , La[3], for 2 ≤ a ≤ n,
by (2.12) and the fact thatRHom(E, L1) has non-trivial components concentrated in degrees
0, . . . ,m, we getHom(E, E1[4]) = 0.Hence, sinceHom(E, E[3]) ∼= Hom(E, L1[3]) ∼= K,
the composition with any non-trivial map E[3] → L1[3], which defines the first morphism
in (2.14), induces an isomorphism Hom(E, E[3]) ∼= Hom(E, L1[3]). This is precisely (3).
��

By (2.4), (2.6) and (2.7), the assumptions (a)–(c) of Lemma 2.10 for the object G. Thus
G is in Li , for some 1 ≤ i ≤ c. The other parts of Lemma 2.10 will be use later in the proof.

Step 2: reduction to the pseudoprojective case (i ≤ d)

LetLi be the admissible subcategory identified in Step 1 and set L̂i := 〈L1, . . . ,Li−1,Li+1,

. . . ,Ld 〉. If we apply the functor S−1
X to (2.3), we get the isomorphisms S−1

X (G) ∼=
ζ !
Li

(S−1
X (F)) and S−1

Ku(X ,L)(F) ∼= ζ ∗
〈Ku(X ,L),L̂i 〉(S

−1(F)). By [20, Lemma 2.6], this yields

S−1
〈Ku(X ,L),L̂i 〉(F) ∼= ζ ∗

〈Ku(X ,L),L̂i 〉(S
−1
X (F)) ∼= S−1

Ku(X ,L)(F) ∼= F[−3].
Here ζLi and ζ〈Ku(X ,L),L̂i 〉 are the embeddings of the corresponding admissible subcategories.
Since condition (i) in Definition 2.1 is clearly satisfied, this implies that F is 3-spherical or
3-pseudoprojective in the larger category 〈Ku(X ,L), L̂i 〉 as well.

Assume now i > d . By Lemma 2.10 (2) applied to G = SX (ζ !
SX (L)

(F)) ∈ Li , we must
haveG ∼= Li [t]⊕Li [t+3] for some t ∈ Z. In particular, by (2.6), the object F is 3-spherical.
By [22, Proposition 4.10], F ∼= Si [k] for some k ∈ Z. Therefore, from now on, we may
assume i ≤ d .

Step 3: the final isomorphism

First note that, for i as in Step 2 and since SX (F) ∈ ⊥L, by Lemma 2.10 and (2.5), we have
the isomorphisms

Hom(F, Li
1[t]) ∼= Hom(G, Li

1[t]) ∼=
{

K if t = 0, 3,

0 if t ≤ −1 and t ≥ 4,

up to shifting F (and thus G).
If ψ : F → Li

1 is the unique, up to scalars, non-trivial morphism, we set

C := Cone(F
ψ−→ Li

1).
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and get the distinguished triangle

F
ψ−→ Li

1
ϕ−→ C . (2.15)

We first prove the following result.

Lemma 2.11 In the notation above, C ∼= SX (S−1
L (Li

1)).

Proof First, we apply RHom(−, Li
1) to (2.15). By definition of ψ , Hom(Li

1, L
i
1)

ψ−→
Hom(F, Li

1) is an isomorphism. Since Hom(F[1], Li
1) = 0 and Hom(Li

1, L
i
1[1]) = 0,

we get Hom(C, Li
1) = 0 and Hom(C, Li

1[1]) = 0.
Ifwe applyRHom(C,−) to (2.15),weget the isomorphismsHom(C,C) ∼= Hom(C, F[1]) ∼=

K. Since SX (S−1
L (Li

1)) is exceptional, being Li
1 so, the claim follows if we show that there

are non-trivial morphisms

SX (S−1
L (Li

1))
g−→ C

f−→ SX (S−1
L (Li

1))

whose composition is non-trivial.
To proceed in this direction, we first observe that, if we apply RHom(−, F[1]) to (2.15)

and we use Serre duality, we get

Hom(C, F[1]) ∼= Hom(F[1], F[1]) ∼= K

Hom(SX (F),C) ∼= Hom(C, F[4])∨ ∼= Hom(F[1], F[4])∨ ∼= K.

Indeed, the fact that F ∈ L⊥ yields RHom(C, F) ∼= RHom(F[1], F).
Let k1 be a non-trivial element in Hom(C, F[1]). Note that since Li

1 is exceptional, up
to scalars, the morphism k1 realizes Li

1 as the extension of F and C in (2.15) yielding the
distinguished triangle

Li
1

ϕ−→ C
k1−→ F[1] ψ[1]−−→ Li

1[1]. (2.16)

Let k2 be the non-trivial generator of Hom(SX (F),C).
On the other hand, as SX (F) ∈ 〈SX (S−1

L (Li
1))〉⊥, by (2.5) we get

Hom(SX (S−1
L (Li

1)), F[1]) ∼= Hom(SX (S−1
L (Li

1)),G[1])
∼= Hom(G[1], S−1

L (Li
1)[4])∨

∼= Hom(G, Li
1[3])∨

∼= K,

where the second isomorphisms is by Serre duality while the penultimate is obtained by
applying SL and using that SL(G) = G by (2.4). Let k3 be a non-trivial generator of the
vector space Hom(SX (S−1

L (Li
1)), F[1]).

Finally, we consider the isomorphisms

Hom(SX (F), SX (S−1
L (Li

1)))
∼= Hom(F, S−1

L (Li
1))

∼= Hom(G, S−1
L (Li

1))

∼= Hom(G, Li
1)

∼= K,

where the first isomorphism is due to the fact that SX is an equivalence. For the second
one, we apply RHom(−, SL(Li

1)) to (2.5) and use that SX (F) ∈ ⊥L. For the third one, we
apply SL and use (2.4). The last isomorphism is due to Lemma 2.10 (2). We set k4 to be the
non-trivial generator of Hom(SX (F), SX (S−1

L (Li
1))).
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Let us prove that k3 ◦ k4 is a non-trivial morphism. By Lemma 2.10 (3), the composition
of the unique (up to scalars) non-trivial morphisms

G → G[3] → Li
1[3]

is non-trivial. Call it k. If we apply S−1
L to the whole composition and since G ∼= S−1

L (G),
then the composition of non-zero morphisms

G → G[3] → S−1
L (Li

1)[3]
is non-trivial. Denote by h themorphism from F toG in (2.5). Since S(F) ∈ ⊥L, the composi-
tion of h with the non-trivial morphismsG → G[3] andG → S−1

L (Li
1)[t] are non-trivial, for

t = 0, 3. Indeed, it is enough to apply RHom(−,G[3]) and RHom(−, SL(Li
1)[t]) to (2.5).

Combining these two remarks we see that the composition of the non-trivial morphisms

F → G[3] → S−1
L (Li

1)[3]
is non-trivial because it factors as

F
h−→ G → G[3] → S−1

L (Li
1)[3]︸ ︷︷ ︸

k

.

Since Hom(F, SX (F)[3]) ∼= Hom(F, SX (F)[4]) = 0, the composition of non-trivial
morphisms

F → F[3] h[3]−−→ G[3]
is non-zero and it coincides with the non-trivial morphism F → G[3] above, up to a scalar.
Therefore, the composition of non-trivial morphisms

F → F[3] h[3]−−→ G[3] → S−1
L (Li

1)[3]
is non-zero and the same is true for the composition of non-trivial morphisms

F → F[3] → S−1
L (Li

1)[3]. (2.17)

Set

K := Cone

(
F

S−1
X (k4)−−−−→ S−1

L (Li
1)

)
.

Since the composition in (2.17) is non-zero andHom(F, F[4]) = 0,wehaveHom(F, K [3]) =
0. By Serre duality, Hom(SX (K ), F[1]) = 0. Finally, if we apply RHom(−, F[1]) to the
distinguished triangle:

SX (F)
k4−→ SX (S−1

L (Li
1)) −→ SX (K ),

we get

0 
= k3 ◦ k4 : SX (F) → SX (S−1
L (Li

1)) → F[1]. (2.18)

BySerre duality andLemma1.9,Hom(SX (S−1
L (Li

1)), L
i
1[t]) ∼= Hom(SL(Li

1)[t], Li
1[4]) =

0, when t ≤ 1. Thus, if we applyRHom(SX (S−1
L (Li

1)),−) to (2.16), we get an isomorphism

k1 ◦ − : Hom(SX (S−1
L (Li

1)),C)
∼−→ Hom(SX (S−1

L (Li
1)), F[1]).
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In particular,Hom(SX (S−1
L (Li

1)),C) ∼= K and there exists a non-trivialmap g : SX (S−1
L (Li

1)) →
C such that

k1 ◦ g = k3 
= 0. (2.19)

Let us now produce the morphism f . Consider the diagram

SX (F)[−1] F G SX (F)

0 Li
1 Li

1 0

SX (F) C M SX (F)[1],k2

(2.20)

where the first row is (a rotation of) the distinguished triangle (2.5), the second column
is (2.15) while the third column is a distinguished triangle whose morphism G → Li

1 is
the unique (up to scalars) non-trivial morphism from Lemma 2.10 (2). Since SX (F) ∈ ⊥L,
the top squares in the diagram commute and by the octahedron axiom, the bottom row is a
distinguished triangle as well.

If we apply RHom(−, Li
1) to the triangle in the third column of (2.20) and we take into

account that Hom(G, Li
1)

∼= K and Hom(G[1], Li
1)

∼= Hom(Li
1[−1], Li

1) = 0 (by Lemma
2.10 (2)), we get Hom(M, Li

1)
∼= Hom(M[−1], Li

1) = 0. By Serre duality (both in Db(X)

and in L),

Hom(M[t], SX (S−1
L (Li

1)))
∼= Hom(S−1

L (Li
1), M[t])∨ ∼= Hom(M[t], Li

1) = 0,

when t = 0 or −1.
Now, if we applyRHom(−, SX (S−1

L (Li
1))) to the distinguished triangle in the bottom row

of (2.20) and we use the vanishing above, then we get an isomorphism

− ◦ k2 : Hom(C, SX (S−1
L (Li

1)))
∼−→ Hom(SX (F), SX (S−1

L (Li
1))).

In particular, Hom(C, SX (S−1
L (Li

1)))
∼= K and there a non-trivial f : C → SX (S−1

L (Li
1))

such that

f ◦ k2 = k4 
= 0.

To summarize, all morphisms we introduced so far fit in the following diagram

SX (F)

k2
k4

SX (S−1
L (Li

1))
g

k3

C
f

k1

SX (S−1
L (Li

1))

F[1],
where the two triangles are commutative. Note now that the composition k3 ◦ f is non-trivial.
Indeed, if not, we would have 0 = k3 ◦ f ◦ k2 = k3 ◦ k4, contradicting (2.18). Thus there is
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0 
= λ ∈ K such that k3 := λk3 
= 0 sits in the diagram

SX (S−1
L (Li

1))
g

k3

C
f

k1

SX (S−1
L (Li

1))

k3

F[1],
where the two triangles are commutative.

Assume now 0 = f ◦ g. By the commutativity of the diagram above

0 = k3 ◦ f ◦ g = k1 ◦ g = k3

which contradicts (2.19). Thus f ◦ g 
= 0 as we want. ��

In conclusion we get the following sequence of isomorphisms

F[1] ∼= Cone(Li
1

ϕ−→ C) ∼= Cone(Li
1 → SX (S−1

L (Li
1)))

∼= Si [1].
Note that for the first isomorphism follows from (2.15), the second one from Lemma 2.11
while the last one is a consequence of the definition of Si and of the isomorphism

Hom(Li
1, SX (S−1

L (Li
1)))

∼= K.

This concludes the proof of Theorem 2.7.

3 Proof of themain result

In this section, after a quick discussion about Fourier– Mukai functors and the way we can
extend them from admissible subcategories to larger subcategories, we prove our main result.
As we will see the main theorem follows from the more precise statement in Sect. 3.2.

3.1 Fourier–Mukai functors and their extensions

Let us start with a short introduction to the theory of Fourier–Mukai functors. In complete
generality, assume that X1 and X2 are smooth projective varieties over K with admissible
subcategories

αi : Ai ↪→ Db(Xi ),

for i = 1, 2.
An exact functor F : A1 → A2 is of Fourier–Mukai type if there exists an object E ∈

Db(X1 × X2) such that there is an isomorphism of exact functors

α2 ◦ F ∼= �E |A1 : A1 → Db(X2).

The exact functor �E is defined as

�E (−) := p2∗(E ⊗ p∗
1(−)),

where pi : X1 × X2 → Xi is the i th natural projection.
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Remark 3.1 (i) Suppose we are given a Fourier–Mukai functor�E : Db(X1) → Db(X2) such
that F := �E |A1 : A1 → Db(X2) factors through A2. The projection functor onto Ai is of
Fourier–Mukai type by [19, Theorem 7.1]. Thus, precomposing �E with the projection onto
A1, yields a Fourier–Mukai functor �E ′ : Db(X1) → Db(X2) such that �E ′ |A1 = F and
�E ′(⊥A1) = 0.

(ii) It should be noted that, when F : A1 → A2 is an equivalence, [21, Conjecture 3.7]
should imply that F is of Fourier–Mukai type in the above sense. This expectation is moti-
vated by what is known for full functors between the bounded derived categories of smooth
projective varieties (see [6,7,24,25]).

In general, one should not expect to be able to extend an equivalence between admissible
subcategories to the whole triangulated categories. Nonetheless, this is possible under some
compatibility assumptions as illustrated in the following result which we proved in [22].

Proposition 3.2 [22, Propositions 2.4 and 2.5] Let α1 : A1 ↪→ Db(X1) be an admissible
embedding and let E ∈ ⊥A1 with counit of adjunction η1 : α1α

!
1(E) → E . Let �E :

Db(X1) → Db(X2) be a Fourier– Mukai functor with the property that �E (⊥A1) ∼= 0.
Suppose further that

(a) �E |A1 is an equivalence onto an admissible subcategoryA2 with embedding α2 : A2 ↪→
Db(X2), and

(b) there is an exceptional object F ∈ ⊥A2 and an isomorphism ρ : �E (α1α
!
1(E))

∼−→
α2α

!
2(F).

Then there exists a Fourier–Mukai functor �Ẽ : Db(X1) → Db(X2) satisfying

(1) �Ẽ (⊥〈A1, E〉) ∼= 0;
(2) �Ẽ |A1

∼= �|A1 and �Ẽ (E) ∼= F;
(3) �Ẽ |〈A1,E〉 is an equivalence onto 〈A2, F〉.

3.2 Proof of Theorem A

Let X1 and X2 be smooth Enriques surfaces overK admitting admissible subcategoriesL and
M which fall under Setup 2.5. More precisely, their derived categories Db(X1) and Db(X2)

admit semiorthogonal decompositions

Db(Xi ) = 〈Ku(X1,L),L〉 and Db(X2) = 〈Ku(X2,M),M〉
where L = 〈L1, . . . ,Lc〉 and M = 〈M1, . . . ,Mc′ 〉 and

Li = 〈Li
1, . . . , L

i
ni 〉 and Mi = 〈Mi

1, . . . , M
i
n′
i
〉

are as that in Setup 2.5.
We are now going to prove the following result which is actually a more precise version

of Theorem A.

Theorem 3.3 Under the assumptions above, let F : Ku(X1,L) → Ku(X2,M) be an equiv-
alence which is of Fourier–Mukai type. Then the two semiorthogonal decompositions have
the same type and there exists a Fourier–Mukai functor �Ẽ : Db(X1) → Db(X2) such that

(1) �Ẽ |Ku(X1,L)
∼= F;

(2) �Ẽ : Db(X1) → Db(X2) is an equivalence and thus an isomorphism X1 ∼= X2; and
(3) Up to reordering,�Ẽ (Li

j )
∼= Mi

j [ti ], for some ti ∈ Z, all i = 1, . . . , c, and j = 1, . . . , ni .
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Proof By Remark 3.1 (i), there exists E ∈ Db(X1 × X2) such that �E |Ku(X1,L)
∼= F and

�E (L) ∼= 0. The proof proceeds now by induction on c, given that when c = 0, there is
nothing to prove.

First observe that, by Theorem 2.7, we get the identity c = c′ and, up to reordering,

�E (ζ !
Ku(X1,L)(L

i
1))

∼= ζ !
Ku(X2,M)(M

i
1)[ti ] (3.1)

for every 1 ≤ i ≤ c and some ti ∈ Z. Without loss of generality, in the rest of the argument
we can assume t1 = 0. Let us show how to extend F to an equivalence 〈Ku(X1,L),L1〉 ∼=
〈Ku(X2,M),M1〉. The general argument by induction works literally along the exact same
lines.

By Proposition 3.2, there exists E1 ∈ Db(X1 × X2) such that

(1) �E1 |Ku(X1,L)
∼= F and �E1(

⊥〈Ku(X1,L), L1
1〉) ∼= 0;

(2) �E1 |〈Ku(X1,L),L1
1〉 : 〈Ku(X1,L), L1

1〉 → 〈Ku(X2,M), M1
1 〉 is an equivalence;

(3) �E1(L
1
1)

∼= M1
1 .

Actually, it is important to note that the admissible subcategories L′ := 〈L′
1, . . . ,Lc〉

and M′ := 〈M′
1, . . . ,Mc〉, where L′

1 := 〈L1
2, . . . , L

1
n1〉 and M′

1 := 〈M1
2 , . . . , M1

n′
1
〉,

give rise to semiorthogonal decompositions Db(X1) = 〈Ku(X1,L′),L〉 and Db(X2) =
〈Ku(X2,M′),M〉 as inSetup2.5.Here,Ku(X1,L′) := 〈Ku(X1,L), L1

1〉 andKu(X2,M′) :=
〈Ku(X2,M), M1

1 〉.
If n1 = 1, then, by Theorem 2.7, n′

1 = 1. Then the first step of the extension is complete.
Moreover,�E1 satisfies assumptions (a) and (b) of Proposition 3.2 forA1 = 〈Ku(X1,L), L1

1〉
and A2 = 〈Ku(X2,M), M1

1 〉. Thus we can proceed further as above.
Assume then n1 ≥ 2. Since the Li ’s (and the Mi ’s) are completely orthogonal to each

other, we get the isomorphisms ζ !
Ku(X1,L)(L

i
1)

∼= ζ !
Ku(X1,L′)(L

i
1) and ζ !

Ku(X2,M)(M
i
1)

∼=
ζ !
Ku(X2,M′)(M

i
1), for every i ≥ 2.

By (3.1) and Theorem 2.7,

�E1(ζ
!
Ku(X1,L′)(L

1
2))

∼= ζ !
Ku(X2,M′)(M

1
2 )[t], (3.2)

for some t ∈ Z. In particular, n′
1 ≥ 2.Moreover, we have the following chain of isomorphisms

RHom(L1
1, L

1
2)

∼= RHom(L1
1, ζ

!
Ku(X1,L′)(L

1
2))

∼= RHom(�E1(L
1
1),�E1(ζ

!
Ku(X1,L′)(L

1
2)))

∼= RHom(M1
1 , ζ !

Ku(X2,M′)(M
1
2 )[t])

∼= RHom(M1
1 , M1

2 [t])
∼= K[t] ⊕ K[t − 1],

where the first and penultimate one follows by adjunction, the second one uses that
�E1 |Ku(X1,L′) is an equivalence, the third one is by induction and (3.2) and, finally, the
last isomorphism is by the definition of M1

1 and M1
2 . Since RHom(L1

1, L
1
2)

∼= K ⊕ K[−1],
we have t = 0.

We can then apply Proposition 3.2 again in order to extend �E1 |Ku(X1,L′) to a Fourier–
Mukai functor �E2 inducing an equivalence

�E2 : 〈Ku(X1,L), L1
1, L

1
2〉 ∼−→ 〈Ku(X2,M), M1

1 , M1
2 〉

such that
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• �E2 |〈Ku(X1,L),L1
1〉

∼= �E1 |〈Ku(X1,L),L1
1〉,

• �E2(
⊥〈Ku(X1,L), L1

1, L
1
2〉) ∼= 0, and

• �E2(L
1
2)

∼= M1
2 .

By iterating the procedure, we get a Fourier–Mukai functor �En1 inducing an equivalence

�En1 : 〈Ku(X1,L),L1〉 ∼−→ 〈Ku(X2,M), M1
1 , M1

2 , . . . , M1
n1〉

such that �En1 (L
1
j )

∼= M1
j . By (3.1), (3.2) and Theorem 2.7, the admissible subcategory

〈M1
1 , . . . , M1

n1〉 must coincide with M1 and thus n1 = n′
1.

At each step, the assumptions (a) and (b) of Proposition 3.2 are satisfied, so we can
proceed further by induction on c and deal with the other components as we mentioned at
the beginning of this proof. In conclusion, in a finite number of step, we get an equivalence
Db(X1) ∼= Db(X2) and, by Theorem 1.3, an isomorphism X1 ∼= X2. This proves (2) in the
statement while properties (1) and (3) are automatic by construction. ��

Clearly, Theorem A has a trivial converse. Indeed, assume we are given an isomorphism
f : X1 → X2 and a semiorthogonal decomposition forDb(X2) as inSetup2.5. Since the exact
functor f ∗ : Db(X2) → Db(X1) is an equivalence,we can take onDb(X1) the semiorthogonal
decomposition as in Setup 2.5 which is the image of the given one on Db(X2) under f ∗. The
exact functor, F := ( f ∗)−1|Ku(X1,L1) : Ku(X1,L1)

∼−→ Ku(X2,L2) is an exact equivalence
of Fourier–Mukai type by construction. Of course, the two semiorthogonal decompositions
on X1 and X2 have the same type and, in the argument, we can exchange the roles of X1 and
X2.
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