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High-Dimensional Feature based Non-Coherent
Detection for Multi-Intensity Modulated Ultraviolet
Communications

Wenxiu Hu, Min Zhang, Zhe Li Member, IEEE, Sergei Popov, Member, IEEE, Fellow, OSA,
Mark Leeson, Senior Member, IEEE, Tianhua Xu Member, IEEE

Abstract—Ultraviolet communication (UVC) has been re-
garded as a promising supplement for overloaded conventional
wireless communications. One challenge lies in the communica-
tion deterioration caused by the UV-photon scattering induced
inter-symbol-interference (ISI), which will be even worse when
encountering multilevel pulse amplitude modulation (multi-PAM)
symbols. To address this ISI, traditional coherent detection
methods (e.g., maximum-likelihood sequence detection, MLSD)
require high computational complexities for UV channel estima-
tion and sequential detection space formation, thereby making
them less attractive. Current non-coherent detection, which
simply combines the ISI-insensitive UV signal features (e.g., the
rising edge) into a one-dimensional (1D) metric, cannot guarantee
reliable communication accuracy. In this work, a novel high-
dimensional (HD) non-coherent detection scheme is proposed,
leveraging a HD construction of the ISI-insensitive UV signal
features. By doing so, we transform the ISI caused sequential
detection into an ISI-released HD detection framework, which
avoids complex channel estimation and sequential detection space
computation. Then, to compute the detection surface, a UV
feature based unsupervised learning approach is designed. We
deduce the theoretical bit error rate (BER), and prove that the
proposed HD non-coherent detection method has a lower BER
than that of the current 1D non-coherent scheme. Simulation
results validate our results, and more importantly, demonstrate a
BER that approaches that of the state-of-the-art coherent MLSD
(< 1dB in SNR at BER= 4.5 x 1072, the 7% overhead forward-
error-correction limit), and also a reduction of computational
complexity by at least two orders of magnitude.

Index Terms—Ultraviolet communications, inter-symbol inter-
ference, unsupervised learning, non-coherent detection.

I. INTRODUCTION

Attributed to its solar-blind and non-line-of-sight (NLoS)
properties, ultraviolet communication (UVC) has been re-
garded as a promising candidate for sharing the steeply rising
demands of conventional wireless communication systems
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[1]-[5]. Key research areas include, inter alia, UVC de-
vice designs [6]-[9], channel modelling [4], [10]-[14], cod-
ing/modulation [15]-[17], and signal detection designs [18]-
[23].

From a fundamental prospective, one challenge that causes
the deterioration of the communication performance is inter-
symbol-interference (ISI), which is induced by the strong
UV photon scattering phenomenon, and will cause delaying
and multi-path effects that contaminate the received sig-
nals [19], [21], [23]. This will be even worse when multi-
amplitude/intensity modulation schemes are employed, for
example, the Mth symbol in M > 2-level pulse amplitude
modulation (M-PAM) will amplify the long-tail channel im-
pulse response (CIR) which strengthens the ISI contamination
[15].

To address this, coherent signal detection schemes have been
widely studied and designed, leveraging an exact estimation
of CIR to compute the channel state information (CSI) for ISI
compensation and signal detection [19]-[22], [24]. The state-
of-the-art maximum likelihood sequence detection (MLSD),
i.e., maximizing the sequentially conditioned likelihoods for
signal detection, has been proved to obtain the optimal bit error
rate (BER) with accurate CIR acquisition [19]. However, the
scheme is less attractive when addressing long-tail intensive
ISI (say with ISI length L and M -PAM modulation), due to the
high computational complexity caused by (i) the computations
of M" likelihood functions for each symbol, and (ii) the
complex Viterbi-like implementation. Other less computa-
tional particle-filtering approximations of MLSD [21], [24]
require either a heavy likelihood computation burden given
the large number of particles for approximation, or deliver
poor detection accuracy for insufficient particle numbers.

Alternatively, non-coherent detection schemes have been
proposed and researched in [18], [25]-[27], whose ideas are
to transform the ISI induced sequential detection space into
an ISI-released binary detection framework, thereby avoiding
the aforementioned high computational CSI estimation and
sequential signal detection. Whilst these approaches offer low
computational demands, their accuracy is severely compro-
mised. For example, the work in [18], [25] illustrates BER
saturation when facing intensive ISI. In our previous work
[23], four ISI insensitive features of the UV signals’ geometric
shapes (such as rising edge and inflexion) were extracted
and exploited, showing reliable performance in counteracting
intensive ISI. However, the linear combination of the features



does not fully employ the signal’s properties and results in a
high BER, e.g., a > 5dB loss in SNR when compared with
the coherent MLSD method (see Fig. 4).

In this work, we propose a high-accuracy non-coherent
detection scheme with a low-computational burden, leveraging
a high-dimensional (HD) construction of the UV signals’
geometric features that are insensitive to the ISI contam-
ination. Compared with the coherent sequential detection
schemes [19]-[21], the proposed scheme does not require
heavy computational operations for exact CIR estimation and
sequential likelihood computation. Compared to the current
non-coherent schemes [18], [23], [25]-[27], the constructed
HD feature is ISI-insensitive and can provide lower BER for
signal detection (see theoretical proof in Section III. C), which
thereby guarantees better accuracy performance.

The rest of the paper is structured as follows. In Section
II, we describe the UVC model, along with the problem
formulation. In Section III, we elaborate our proposed HD
non-coherent detection scheme, and compute its theoretical
BER. The simulation results are provided in Section IV. We
finally conclude the work in Section V.

II. SYSTEM MODELS AND PROBLEM FORMULATION

A generic UVC system is composed of a UV transmitter
(Tx), the wireless UV channels, and a UV receiver (Rx),
which is shown in Fig. 1(a). In the Tx, the binary input is
modulated by the M € NT pulse amplitude modulation (M-
PAM), which then will be converted to different intensities
of UV photons for transmission. By denoting the kth M-
PAM modulated symbol as s, = m € {0,1,--- , M — 1},
the transmitted signal s(¢) over time ¢ in terms of the number
of UV photons is expressed as:

s(t) = sk 0(t—kT}) ®c(t). (1)

k=1

In Eq. (1), Ty is the symbol interval, 6 (¢t — kT}) accounts for
the Dirac delta function at ¢t = k7, ® denotes the convolution
operator, and c(t) = Np/T, - rect((t — T,/2)/T,) is the
rectangular pulse shape of the UV-LED, with T}, the pulse
width, and N the transmitted number of UV photons for a
single-level symbol (i.e., s = 1).

Then, the UV signal s(t) will be transmitted through the
wireless UV channel. As seen in Fig. 1(a), the UV CIR,
denoted as h(t), shows a long tail nature given the NLoS
UV photon scattering. h(t) is governed by the Tx-Rx distance
r, the Tx’s beam divergence #7 and apex angle S, the Rx’s
half-field of view fr and apex angle Sg, and the atmospheric
parameters [11], [12]. In this work, h(t) is simulated via the
Monte-Carlo process as discussed in [10], [11]. The exact form
of h(t) is unnecessary to non-coherent detection schemes,
while it has to be accurately estimated in coherent detection
approaches.

At the Rx, the photon detector (e.g., photomultiplier tube,
PMT [1]) firstly converts the received photons into electrical
voltages, which then pass through the sampling oscilloscope
to derive discrete signals. As we assign the sampling interval
as Ty = T,/ J (i.e., J samples are collected for kth symbol),

the discrete received signal can be expressed via the linear
time-invariant (LTI) model [19], [23]:

k—1
Yi = hif(kfl),] - Sk + Z hi,(l,l),] -S1+ €
S~ =k—L+1 ~~ (2
current signal — noise
ISI
In Eq. (2), y; is the received signal at time ¢t = 7§,

ie{(k—1)J+1,---,kJ}, so we have the [i — (k — 1)J]th
discrete signal sample for kth symbol. 2;_(;_1) is the discrete
UV CIR coefficient, accounting for the electrical voltage
corresponding to the mean number of the received UV photons
emitted at the [th symbol interval [23], ie., hi__1); =

i—(1—1)J)Ts

f.((il((lfl.))le)Tb: h(t.) ®c(t)dt.. € ~ N(u,o0?) represents Gaus-
sian noise, which is comprises the sum of dominant device
induced Gaussian noise and subordinate Poisson distributed

photon counting noise [23].

Given the expressions of the received signals in Eq. (2),
the aim of this work is to detect the current M-PAM s; from
the received signals yi, ..., y%s. The main challenge lies in
how to combat the ISI with the unknown CIR coefficients
hi—(l—l) 7> which, if multiplied by the multi-PAM symbols,
i.e., hi_—1)7 - 81, makes the ISI more severe. To cope with
this, coherent detection schemes (e.g., MLSD [19], [20] and
particle-filter methods [21]) demand heavy pilot overheads for
CIR estimation, and high computational complexity to search
the M symbol space for a posteriori computation and symbol
detection (given M-PAM with L length ISI). Non-coherent
schemes are all designed for binary inputs [23], [28], and
offer poor detection accuracy when dealing with multi-symbol
detection (we show this in Fig. 5). This thereby motivates us to
design a pilot-less, computationally efficient and more reliable
non-coherent detection scheme for M-PAM UVC systems.

III. HIGH-DIMENSIONAL NON-COHERENT DETECTION

In this section, we elaborate our proposed HD feature based
non-coherent detection. This contains (i) the construction of
HD UV features, and (ii) the unsupervised learning (clustering)
and signal detection under UV feature based constraints. Then,
we will compute and compare the theoretical symbol error rate
(SER) from this proposed HD non-coherent scheme with the
current 1D method in [23].

A. High-dimensional Feature Construction

We construct a D-dimensional feature space R” via our
previously designed UV sub-features, i.e.,

Zp = [z1k, 225 2Dk € RP. 3)
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Schematic flow. a) illustrates the UVC system and the non-coherent detection scheme. b) shows the four UV sub-features: rising-edge, number of

photons, inflexion, and photon difference, with respect to M = 4-PAM modulation.

Here, D = 4 of our previously designed UV sub-features are
used [23]:

A
ZLk = Yi — Yi, (4a)
\Rmaxl e; |72 | Z
N AR (4b)
23 k L2 _ Z yi + = EiERlen Yi + ZiERrigm Yi
7 |Rmﬂx| iERu ! 2 ‘Rleft| |Rrighl| ’
(4¢)
A
Pk = i i) (4d)
4,k \Rk| Z Yi — |Rk N Z Yi

PERK—

In Eq. (4a), the sub-feature z;j is referred to the rising-
edge of kth symbol-interval, whose value is ISI-insensitive
but only depends on the different PAM input symbols sy.
Rinax = (B — DJ + {imax — [ /4], ,imax + |J/4]} and
Ro 2 (k—1)J +{1,--- [ J/4]} are set to determine the
related index areas for rising-edge computation. ip,.x iS the
index corresponding to the maximum value of discrete CIR
[A1, -+, hioo]. We approximate im,y using the index of the
maximum value of the non-zero symbols related received
signals in training data. Here, i,,,x does not need to be very
accurate, since Rpax i defined to include the adjacent area of
Tmax fOr rising edge computation. In Eq. (4b), 23 j is referred
to as the number of received photons within kth symbol-
interval, where Ry, = {(k —1)J +1,--- ,kJ}. In Eq. (4c),
23, accounts for the inflexion feature, whose value is also
ISI-insensitive and increases with a larger symbol pulse sj.
Here, the inflexion feature is computed by the left and right
neighbours’ values subtracting the central area’s values. We
hereby define Rinax = (k — 1)J + {—|J/4], -, [J/4]},
Riefe £ (k — 1)J—|— {—I_J/QJ,' .- ,—I_J/4J — 1}, and Rright £
(k—10J+{|J/4] +1,---,|J/2]}. 24 gives the received
photon number difference between successive symbol intervals
k and k — 1.

From Eq. (4) and the corresponding sub-feature shapes in
Fig. 1(b), each of the sub-features is able to transform the

received ISI contaminated signals y; into a new detection-
space that is insensitive to ISI. For instance, given a fixed ISI
intensity and any of sy, the expectations of zy1 2y, 2, 2x,3 and
z,4 Temain quasi-constant, as they reflect only the common
geometric shapes of the UV signals (e.g., the rising edge and
the inflexion). In this view, by stacking them into a HD signal
feature, i.e., zy = [21 4, - , 21|, we are able to counteract
the ISI effect, and convert the sequential detection with ISI into
an ISI-insensitive detection framework (see Fig. 3(b)). Also,
differing from the previous 1D feature, i.e., 2z = ZdDzl Zd,k
in [23], the HD feature z; can provide a HD decision surface
and result in a lower SER for signal detection (we will show
this in Section III. C and in Fig. 4).

With the help of the HD feature z; in Egs. (3)-(4), we
provide the likelihood PDF of z;, conditioned on different M-
PAM symbols s =m € {0,1,--- ,M — 1}, i.e.,

= N(z&; o, 2)
exp (—0.5 (21

p(zk|si =m)
1
- det(X)

[I>

— ) =T (2 — um)) :
(5)

(2m)4

where pt,, = [1.m -+, tp.m]T represents the expectation of
z = [214, - 2pk|T conditioned on s, = m, X gives the
covariance matrix (of size D x D) among the total D = 4
features in Eq. (4), and det(-) is the determinant operator of
a matrix. As such, the signal detection process is converted to
determining p,, and X, and selecting s € {0,--- , M — 1}
that corresponds to the maximal likelihood PDF p(zk|sk =
m), which can be viewed as a clustering problem (see Fig.
3(b) for illustration).

B. Non-Coherent Signal Detection Design

After the derivation of the HD UV feature z; in Eqgs. (4a-
4d), and its probability distributions Eq. (5), we design the UV-
feature constrained unsupervised detection method, aiming to
determine the expectations p,, and the covariance matrix 33,
via the unlabeled first / computed features, i.e., z1, - - -

1) Initialization: The initialization of w,, leverages the
increasingly equal difference characteristics, i.e., f,, 1 —

L4g.



2, + My, 1 = 0. This is because the increasingly equal dif-
ference among the M-PAM symbols, i.e., {0,1,--- ,M — 1},
remains after passing through the LTI signal model in Eq. (2),
and the linear sub-feature constructions in Eq. (4). Here, we
characterize this increasingly equal difference by the following
equations:

[No» te 7/1’1\/171] ‘¥ =0, Py < B (6)
1 -2 1 0 0 01"
0 1 -2 10 --- 0

S : . (7)
0 0 01 -2 1

where < is the elemental-wise less than operator, and matrix
W of size M x (M — 2) to ensure the equal difference.

The initialization of pu,,, denoted as uﬁS) =
[ugozn,. ,pg)m]T is to implement Egs. (6)-(7) via the

first 1 (unlabelled) features, i.e.,

Zdky < < Zdkps with {kl,'“ ,k[}:{l,“- ,I} (821)
Lam = {k‘ (me1)I/M+15" > Km1/ar} s (8b)
Cd,m = |Id m‘ Z Zd,ky Cm = [Cl,m; s 7CD,m]T- (SC)

k€Za,m

0 T
[l’l'( ) 7“5\4)71] = [CO7"' 7CM71] ([(P17Lp2]T) [8017802]7—"
(8d)
Here, Eq. (8a) is to re-order the first I sub-features

Zd,1,- " ,%q,7 into an ascending order. Eqs. (8b)-(8c) are to
assign M sets (clusters) given the ascending order of z4 ,, and
compute each cluster’s centre (mean). Eq. (8d) is to ensure the
increasingly equal difference of g, - , 5,1, OF saying to

ensure [u(()o),- , u(o) J¥ in the null-space of ¥ according
to Eq. (6). We do so by firstly computing the null-space of
O (of size (M —2) x M), i.e., its two eigenvectors ¢, and
,, corresponding to 0 eigenvalue. Then, we use the null-space
basis to approximate the centre of each set by the least square
error (LSE), and assign the approximation as the initialization.
As such, the initial [u(()o), e 7“5\?—1] can be computed as
Eq. (8d) following the increasingly equal difference and also

located around the centres of the feature set.

2) Constrained Learning: After the initialization of w,,,
we adopt the Gaussian mixture model (GMM) clustering
framework to identify the expectation p,,, and the covariance
3 of the UV feature zx|(sp = m) in Eq. (5). In essence,
GMM clustering is to maximize the the log-likelihood, i.e.,

max ‘C(Z11[|HO:N17172)7 &)
Ho.nr—1s

where z1.; £ 21, ,21], Moar—1 £ (Ko, 5 ps—q] For

this work, £(z1.7|po.pr—1, 2) is computed as:

I M—1
=1 m=0

L(z1.1|po.nr—1

I
3
:Z Zw M (10a)
P m—0 Wk, m
I M-
Z |, 2
ZZZ Wen 1 % (10b)
k=1 m=0 )
I M-1

M

.~ Tob(um) ~ 3 Ton(®) )

k=1m
I —1

E

]
)

||M

1
Wm,k ( (Zk - Ilm)TE (zk - y’m)) .
(10¢)

In Eq. (10), wy, i is referred to as a hidden variable. Eq. (10b)
is due to the Jensen inequality and concavity of logarithms,
where equality holds if N (zg|u,,, X)/wk,m is constant, i.e.,
Wk = N(Zk;ﬂmvz)/zyl\r{;ol N (2k; pys 2). Then, the
maximization problem in Egs. (9)-(10) can be pursued via

the expectation maximization (EM) algorithm, i.e., [29], [30]
) N(z %)7 » )
wgr]z)k = M E ) )(j) ) (11a)
Zm QN(Zk;Hmvz )
(J+1) — Zk:l wfn?k " Zk 11b
Py Wik
M— I j i+1 1
s+ _ Somzo Sk W — )T (o — ™)
Z Zk 1w(J)
(11c)

where j is the iteration step. Eq. (1la) refers to the E-
step, which rises the previous jth iteration maximized lower-
bound to the original log-likelihood, by equalizing the Jensen
Inequality. Egs. (11b)-(11c) are to maximize the lower-bound
in Eq. (10c) given the fixed hidden variable w(j ) As such,
an optimal (local or global) solution of u,, and 3 can be
obtained by iteration using Eqs. (11a)-(11c).

However, it is noteworthy that directly using Eq. (11) may
fall into a local optimal solution, due to the likelihood approx-
imation by Jensen’s inequality and the following successive
optimization steps [29], [30]. We illustrate this in Fig. 2.

To avoid such local optimal solutions, we propose to exploit
the properties of the extracted UV features, and convert Eq.
(11b) into a convex problem. We do so, by re-writing the
objective function corresponding to p,, (the second term in
Eq. (10c)), and then adding convex constraints in accordance
with the characteristics of the UV features. The second term
in Eq. (10c) can be re-written as:

I M-1

_ ; mzzowmk ( z — ) 27 (2, — Nm))
I

=St (wk (Zr, - U272 — U)) ;

12)



Fig. 2. Illustration of clustering errors using classic GMM in Eq. (11): four
cases of GMM trapped in local optimal solutions.

Algorithm 1 Non-Coherent Signal Detection Algorithm
Input: Received UV signals y1, - - - yx v, modulation type M -
PAM, and number of features I for unsupervised training.
1: Yk € {1,--- , K}, compute HD UV feature z; via Egs.
(3)-4.
Initialize 'Y via Eq. (8).

2:

3: Assign j =0 and AU) = ||[[l,§j), e ,u%)71]||fm.

4: while AU > ¢ do

5: Compute wffl)k via Eq. (11a).

6: Assign j = j’+ 1.

7: Update p,,, by solving convex problem in Eq. (13).
8: Update X 7) via Eq. (11c). ‘ ‘

o AD =[] g
10: end while

: Assign @, = u%), and ¥ = 20,

:for ke {1,--- ,K} do

13: Determine the M-PAM symbol §; via Eq. (14).
14: end for

Qutput: Return the detected symbol §1,- -, Sk

—_—
N -

where Wy = diag([wo g, - ,war—1T) is the diagonal
matrix from vector [wo g, ,war—1.k|7s Z = [Zk, - 2]
reproduces M times the vector zp, U 2 [mg, -+, tys_1)»
and tr(-) gives the trace operator of a matrix. Then, the
maximization problem over p,.,,_; in Eq. (11b) can be
converted to the following convex problem with UV signal
related constraints:

I
min > tr (Wk (Z — U = (Z) — U)) (13a)
k=1
st [UP|% < v, (13b)
ciUb = pg a1 — pap >0, vd€ {1,---,D},  (13¢c)
C?Ub = pf1,M—1 — H1,0 < 1;&%;%]{2’1,1@ - Zl,k’}y (13d)
cIUb = 1 = o > 05 (), — u)  (30)

Eq. (13a) is the objective function. Eq. (13b) is to ensure the
equal difference expressed in Eq. (6), by making the squared

g ‘ ' 1 ' s, =0
s 50 ‘\““‘ |- =1
D “ | sk =2
: J | wm ‘ —
§ |
0 ) n.w’
-1 -0.5 0 0.5 1 1.5 2
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a
02 §
0.5 €
N 0o 8
o =
é o
= 0.2 §
0%
3 =
0.4 0.2 0.4 0.2 [am
number 2o, Rising edge 21
(b)
Fig. 3. TIllustration of non-coherent schemes that transform the ISI caused

sequential detection space into an ISI-released multi-hypothesis detection
framework. Under the same received UV signals, (a) shows the poor detection
accuracy from 1D non-coherent schemes, (b) gives the higher detection
accuracy of the proposed HD non-coherent scheme (as proved by Section
II. C).

Frobenius norm of UW, i.e., [U¥|%, less than some small
v. Egs. (13c)-(13e) are to confine the differences between
the expectations (clustering centres), where Eq. (13c) is to
assign p,,_; and p corresponding to the largest and smallest
symbols, respectively. Egs. (13d)-(13e) are to confine the
difference of the expectation of the rising-edge with respect
to the largest and the smallest symbols.

After the derivation of p,, and X, the signal detection
process can be pursued by computing and comparing the
logarithm-form of the conditioned likelihood PDF, i.e.,

s, = argmax — (z —p,,) 2 Nz — ). (14)

me{0, ,M—1}

3) Overall Non-Coherent Detection Algorithm: After the
elaboration of the HD non-coherent detection scheme de-
signed, we provide a algorithm flow in Algo. 1. The inputs
are the received UV signals, the modulation type M, and the
number of features I for unsupervised learning. Step 1 is to
compute the HD feature z;, from the received signals for each
symbol. Steps 2-11 are to learn the expectations p,, and the
covariance matrix X for the conditioned likelihood PDF of zy,.
Steps 12-14 are to pursue the signal detection for an M-PAM
symbol. Here, we assign € = 10~2 as the terminal condition.
Below this e, the clustering points and the co-variance matrix
will not change drastically, and these changes will not have
a significant influence on the further clustering (detection)
results.

4) Convergence Analysis: We then analyze the conver-
gence of the proposed scheme in Algo. 1. We prove this
by showing that the objective log-likelihood function in Eq.
(10) is non-decreasing from iteration} J to iteration j + 1, i.e.,
Lzrlu§hy 1 BY) < Lizg|pdy”,, YY), This can



be illustrated by following relationships:

I M-1

E(Z1:I|MS{J)\4—17 %

M-1 ) ()
i 3
SISy s;“;‘z;z’ ) (150
k=1 m=0 k.m
I M-1 (1) ()
; Nz, 2
= Z w}gzﬂ 1 % (15b)
k=1 m=0 km
I M-1

o~ WDV (2) i) )

(15¢)
wd),) - ;log(z(j))>
1 . . )
(2<zk ~ B EO) - )
(15d)

. 1 .
k <_IOg(w£fL?k) 3 log(z(ﬁl)))

I
A (1 o
=30 3wl (o — TR )
k=1 m=0
(15e)
I M-1 (J+1) s (+1)
- G) g0 N2kl " XV
=2 D wimlog o) (15
k=1 m=0
M—1 g+1) (+1)
N (ze|pmn ", )
< Zlog Z w,?! G (15g)
m= k,m
_Zlog Z N (2| pG D, 20HDY = Lz, |pf T, 2O
m=0
(15h)
Eq. (15a) describes the computation of the log-
likelihood objective function. Eq. (15b) holds for
the equality condition in Jensen’s inequality, i.e.,
wl) = Nzepd 20) SN (), 50)

(corresponding to step 5 in Algo. 1). Eq. (15¢) is the
expansion of Eq. (15b). Eq. (15d) holds since ué]j[[l_)l
is the optimal solution of the proposed convex problem,
which maximizes Eq. (15c) given fixed wkj ) and £
(corresponding to step 7 in Algo. 1). Eq. (156) holds since
»U+ is the optimal solution that maximizes Eq. (15d), given
fixed w,(jzn and M(()];;\;l_)1 (corresponding to step 8 in Algo. 1).
Eq. (15f) is the direct computation from Eq. (15e). Eq. (15g)
arises from Jensen’s inequality, which then gives Eq. (15h).
Meanwhile, it is noted that there always exists a maximum of
the log-likelihood in the GMM clustering. As a consequence,
combined with Egs. (15a)-(15h), the convergence of the

proposed non-coherent detection algorithm can be proved.

C. Theoretical Symbol Error Rate Analysis

After the unsupervised learning of the likelihood PDFs (i.e.,
with learned p,, and X), we provide the theoretical SER
of our proposed HD feature based non-coherent detection,
and compare it with our previously proposed one-dimensional
feature based non-coherent scheme in [23].

Similar to the binary case (e.g., OOK), the theoretical SER
for the M-PAM symbol is expressed by the summation of
the detection error probability for each symbol, i.e., p(5; #
m|sp = m), which then can be expressed given the Gaussian
type likelihood PDF in Eq. (3). As such, we provide the
theoretical SER as follows:

M-1
SER(z) = Z p(8k £ m|sk =m) - Pr(sp =m)
m=0
| M
_M Z ¢ (_05\/(”’m - Pl’m—l)T 271 (Nm - Nm—l))
m (16)
where ®(z) = [*_1/1/(27)exp(—u?/2)du is the cumu-

lative probablhty functlon (CDF) of the Normal distribution
N(0,1).

Then, we will prove that the proposed HD non-coherent
detection can provide a lower SER as opposed to the 1D non-
coherent scheme, i.e.,

SER(zy) < SER(p" - z,), (17)

here the latter is the SER of the 1D non-coherent scheme
Zith p = [p1, -+ ,pp]T the optimal weights [23]. By taking
g. (16) into Eq. (17) and using the monotonically increasing
property of ®(x), we prove a more strict inequality as follows:

Tz =p(p"=p) T pT) x20,  (8)

— W1, Vm € {0,--- ,M — 1}. Given
the symmetric positive definite property of the covariance
matrix 3, we have the eigenvalue decomposition as ¥ =
Q - diag([M, -+ ,Ap]T) - QT. Then, by assigning v
U1, 7UD]T = QTp and y = [yla"' 7yD]T = QTX7 we
re-write the left-hand side of Eq. (18), and prove it no less
than 0, i.e.,

(o[- m

where x = pu,,

VVT

— .y
Didep M- U?z)

= Z Z Aarvg - T — Z V4V YdYar
d€D d’eD\{d} d,d' €D, dAd!
)\d/vd/ )\,ﬂ/ 2
= / > 0.
S (- A, )

d,d’'€D,d#£d’

(19)

As such, we have proved theoretically that our proposed HD

feature based non-coherent detection scheme has a lower SER

than the 1D non-coherent scheme. We will further demonstrate
this in Fig. 3, and via Section IV below.

IV. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of our proposed
HD non-coherent detection scheme. We measure the detection



accuracy via the BER. The computational complexity is rep-
resented by the number of multiplication operations required.

For the UV channel modelling, we adopt the Monte-Carlo
techniques proposed by [10], [11], to obtain the discrete CIR
coefficients in Eq. (2). The relevant channel parameters are
configured as follows, which are typical and consistent with
the studies in [21], [23]. The number of emitted photons for
a single symbol-unit (i.e., s, = 1) is Ny = 10'°, over a
transmission distance between Tx and Rx of » = 500m. We
set Tx’s beam divergence and apex angle to be Oy = 7/12
and 8y = 7/4, and Rx’s half-field of view and apex angle to
be r = w/12 and Sr = w/4. The atmospheric coefficients
are kK, = ks = 5 x 107*m~!. For simulating different ISI
intensities, we set the range of the symbol interval as T; €
[106, 5 x 10°bit/s] (with units of us). The SNR is assigned to
range from 5dB to 25dB to illustrate the BER versus different
levels of ambient noise.

For comparison, we select the 1D non-coherent scheme
[23], the minimum mean square error (MMSE) based linear
equalizer as a benchmark, and the state-of-the-art coherent
MLSD using least square (LS) channel estimator and Viterbi
detection algorithm [19]. We aim to demonstrate our BER
proximity to that of MLSD, but at a lower computational
complexity given the exploitation of the HD ISI-intensive
features. For fairness, the number of samples during one
symbol interval T}, is assigned as JJ = 10 for all three schemes.

A. Communication Accuracy

We evaluate the detection accuracy of our proposed HD
non-coherent detection scheme in Figs. 4-6. Fig. 4 provides the
BER comparison of the four schemes versus different levels
of SNR, under OOK modulation (given that the compared
schemes in [19], [23] were designed only for OOK). It is
observed from Fig. 4 that, the proposed HD non-coherent
detection scheme outperforms the previous 1D non-coherent
scheme (a gain of 5dB in SNR). This matches the theoretical
error analysis in Section III. C. The theoretical BER of the
proposed scheme is also provided, which gives a tight lower-
bound of numerical simulations. A small gap can be found
between the theoretical and the simulated curves, especially
in the low SNR region. This is because the training errors
in our designed clustering method become worse as the SNR
decreases. Then, it is seen from Fig. 4 that the BER of our
proposed HD non-coherent scheme is lower than that of the
MMSE equalizer benchmark, and is close to the state-of-the-
art MLSD. For example, an 1dB gap can be achieved when
the BER reaches the 7% overhead hard-decision forward error
correction (FEC) limit (i.e., BER=4.5 x 1073) [31], which
suggests a comparable error-free communication performance
with MLSD method when adopting an appropriate FEC code.
This is attributed to the exploration of the ISI-insensitive
UV features (e.g., rising edge, inflexion), which are able to
inherently counteract the ISI effect, and are thereby offer a
remarkable detection performance.

Fig. 5 illustrates the BER comparisons versus the different
intensities of the ISI effect. Here, we use a range of symbol
rates (i.e., Ry € [105, 1.5 x 107] bit/s) to reflect the different
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Fig. 4. BER comparison versus SNR under OOK modulation. Our proposed
HD non-coherent detection outperforms the MMSE equalizer and the previous
1D non-coherent scheme, and approaches that of the MLSD method.
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Fig. 5. BER comparison versus ISI (rendered by different symbol rates Rs),
under OOK modulation. The result suggests the robustness of our proposed
HD non-coherent detection scheme to different ISI intensities and approaches
that of the MLSD method.

intensities of ISI, as a higher symbol rate will introduce a more
severe ISI and will then negatively impact the performance of
the communication system more significantly. We can observe
from Fig. 5 that with the growth of the ISI intensities (i.e.,
the increase of symbol rate R,), the BERs of all schemes
become larger, showing that the ISI induced by the NLoS
UV scattering effect causes deterioration in the communication
performance. For comparison among these schemes, two sim-
ilar results are obtained. Firstly, the HD non-coherent scheme
outperforms the 1D non-coherent scheme, which matches the
proof in Section III. C. Secondly, the proposed scheme can
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Fig. 6. BER versus SNR under M = 4,8-PAM symbol. Our proposed
scheme shows comparable accuracy with the MLSD and MMSE equalizer,
suggesting its suitability for multi-symbol UVC scenarios.
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Fig. 7. Computational complexity comparison with the MLSD method,

emphasizing the computational efficiency of our proposed HD non-coherent
scheme.

approach the state-of-the-art MLSD method, given its ability
to transform (approximate) the ISI caused sequential detection
space into the ISI-released detection framework (see Fig. 3(b)).

Fig. 6 shows the performance of our proposed scheme
for M-PAM modulation. Here, we only compare it with the
MMSE equalizer and the MLSD requiring an M* searching
space, as the 1D non-coherent scheme in [23] cannot address
the M > 2-PAM situation. We can firstly see that, similar
to the OOK case, the deduced theoretical BER serves as a
very tight lower-bound. The gap between them is induced
by training errors, which are worse in the low SNR region,
but tolerable with high SNR. Then, it is observed that for
the M > 2 symbol cases, our approach outperforms the
benchmark provided by the MMSE equalizer, and shows a

comparable BER accuracy with the MLSD method. This, com-
bined with the previous OOK simulation results, demonstrates
both the reliability and the robustness of our proposed scheme,
which is suitable for different signal modulation schemes in
UVC systems combating ISI distortion.

B. Complexity Comparison

After the demonstration of the comparable communication
accuracy with the state-of-the-art MLSD, we will show that
our proposed HD non-coherent scheme demands a smaller
amount of computational complexity. We measure the compu-
tational complexity via the number of multiplications. For our
proposed HD non-coherent scheme, the number of multiplica-
tions in the detection process in Eq. (14) is M -(D?+D)-N =
O(MD?N). The detection process for MLSD has an order
of O(LMYN) multiplications (L is the length of ISI). For
the previous 1D non-coherent scheme, only M = 2-PAM
(i.e., OOK) modulated signal can be detected and the number
of multiplications has an order of O(D?N) [23]. To further
compare the computational complexity in UV communica-
tions, Fig. 7 provides a comparison of the multiplication
numbers for different schemes, under D = 4 sub-features,
N = 10* transmitted symbols, and the length of ISI L = 8, for
M = 2,4,8-PAM. We can see that the proposed scheme has a
very similar order of computational complexity to the previous
1D non-coherent scheme, but a significantly smaller order
when compared to the MLSD. For OOK modulation, this gap
is 2 (4244) x10* = 4x10° < 8x28x10* = 2x 107, which,
however, increases drastically for M = 4, 8-PAM modulation
(.., 4x (424+4) x10* = 8x 105 < 8 x 4% x 10* = 5.2 x 107,
and 8x (42+4)x 10 = 1.6 x 105 < 8x 8% x10* = 1.3x10'%).
As such, by combining the results from Figs. 4-7, we conclude
that our proposed HD non-coherent scheme can provide a low-
complexity based detection paradigm as well as comparable
communication accuracy with the state-of-the-art coherent
MLSD method.

V. CONCLUSION

For most optical wireless communications, signal detection
with intensive ISI is extremely difficult. Current coherent
schemes require high computational consumption, and non-
coherent schemes cannot guarantee reliable detection accuracy.
In this work, we have proposed a HD feature based non-
coherent detection scheme, relying on the HD construction
of four ISI-insensitive UV signals’ sub-features, which has
the following two merits. Firstly, it transforms the ISI caused
sequential detection into the ISI-released multi-hypothesis de-
tection framework, therefore avoiding high computational CIR
estimation and sequential likelihood computations required by
coherent schemes (a reduction of at least 2 orders of magnitude
of complexity is achieved). Secondly, compared with previous
1D non-coherent schemes, the proposed HD feature based
detection has been proved to provide a lower BER for signal
detection, which is close to the detection accuracy of the state-
of-the-art coherent MLSD (< 1dB in SNR at the FEC limit
BER=4.5 x 1073). These thereby demonstrate the promising
pathway of the proposed non-coherent scheme towards a



low-computational but high-accuracy detection paradigm for
optical wireless communications with intensive ISI.
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