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Abstract

The purpose of this paper is to assess the role of financial variables and network topology as determinants of

systemic risk (SR). The SR, for different levels of the initial shock, is computed for institutions in the Brazilian

interbank market by applying the differential DebtRank methodology. The financial institution(FI)-specific

determinants of SR are evaluated through two machine learning techniques: XGBoost and random forest.

Shapley values analysis provided a better interpretability for our results. Furthermore, we performed this

analysis separately for banks and credit unions. We have found the importance of a given feature in driving

SR varies with i) the level of the initial shock, ii) the type of FI, and iii) the dimension of the risk which

is being assessed – i.e., potential loss caused by (systemic impact) or imputed to (systemic vulnerability)

the FI. Systemic impact is mainly driven by topological features for both types of FIs. However, while the

importance of topological features to the prediction of systemic impact of banks increases with the level of

the initial shock, it decreases for credit unions. Concerning systemic vulnerability, this is mainly determined

by financial features, whose importance increases with the initial shock level for both types of FIs.

1. Introduction

This paper is related to the literature on network-based models of systemic risk (SR). In these models,

SR is the result of a shock propagation throughout a network of interconnected financial institutions (FI).

Here, we apply machine learning (ML) techniques to assess the role of financial and topological variables as

determinants of SR. ML techniques are able to capture complex non-linear relationships among variables.5
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We believe such a feature is important for our task as many studies show networks can amplify shocks in

non-linear ways.1

We find the main drivers of SR vary with the size of the initial shock, as well as the dimension of the

risk – i.e., whether the risk refers to the potential loss which may be caused by or imputed to the financial

institution (FI). Due to the remarkable differences between banks and credit unions, we perform our analysis10

separately for each type of FI. Our results also indicate the main determinants of SR are different for banks

and credit unions.

In financial markets, SR and contagion are two intertwined concepts. A concise definition of SR can be

found in [1]: “The risk that (i) an economic shock such as market or institutional failure triggers (through

a panic or otherwise) either the failure of a chain of markets or institutions or a chain of significant losses15

to financial institutions, (ii) resulting in increases in the cost of capital or decreases in its availability,

often evidenced by substantial financial-market price volatility” (p. 204). Therefore, contagion is one of

the key ingredients of systemic risk. This is the mechanism through which an idiosyncratic event limited

to an individual component could propagate throughout the whole system, developing into a system-wide

impact.2 Moreover, contagion unveils the two quantitative dimensions of SR, impact diffusion and impact20

susceptibility [6]. Impact diffusion measures the potential harm that one institution could cause to the

economy, while the impact susceptibility measures the likelihood that random negative events end up causing

losses to an institution. Therefore, they capture different aspects of SR and hence complement each other.

Identifying systemically relevant FIs – both in terms of impact diffusion and susceptibility perspectives

– is crucial not only methodologically, but also from the financial regulation viewpoint. Policy instruments25

aiming at addressing systemic risk have been headed towards systemically important FIs. Their purpose is

to minimize the probability and the costs of a financial crisis. The Dodd-Frank Act is concerned about the

regulation of systemically relevant firms and sectors ([7]). The new Basel III agreement requires an additional

capital surcharge on domestic and global systemically important banks, as defined by the Financial Stability

Board (FSB) and the Basel Committee on Banking Supervision (BCBS) [8, 9]. For this reason, the proper30

detection of systemically important institutions and their determinants is a key concern to ensuring financial

stability.

The driving factors of SR depend on how it is measured. There are two approaches aiming at computing

SR: the market-based approach and the network-based approach. The market-based approach is underpinned

on the premise that banks are strongly disciplined by the market ([10]). Hence, there is a strong relationship35

between SR and market values. The main shortfall of this approach is that it neglects interconnections

1Indeed, in traditional econometric models, based on linear regression, these non-linear linkages are often neglected. These

non-linear relationships can be important in the study of the determinants of complex phenomena in a network approach.
2Contagion may take place through several transmission mechanisms, sometimes with two or more operating at the same

time. Some examples are: i) losses engendered by fire sales in face of common asset exposures [2], bank runs due to confidence

crisis [3], and default cascade among banks connected through debt obligations [4]. For a thorough review, see [5].
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between FIs, which are taken into consideration within the network-based approach. These interconnections

proved to be an important driver of SR in the 2007-2008 financial crisis. The network-based approach

assesses how an initial shock propagates throughout a network of FIs interconnected through some kind

of vulnerability link (debt obligations, common asset exposures, etc.), resulting in some kind of aggregate40

fragility (such as credit risk and liquidity risk).

Within the market-based approach, both the triggering event and its impact are evaluated in terms of

some market value, such as stock prices or credit default swaps (CDS) spreads. For instance, the marginal

expected shortfall, or MES ([11]), is defined as the expected net equity return of a bank when the market is

at its 5% worst performance level in a year. Other examples of market-based measures of SR include the45

∆CoVaR ([12]), the distress insurance premium – DIP ([13]), the Lehar’s indicator ([14]), and the SRISK

([15]).3

Studies relying on market-based measures (e.g., [17, 18, 19, 20, 21, 22, 23]) frequently pose banks’ asset size

as positively related to SR. Alternatively, banks’ equity (or equity-to-assets ratio) is pointed as a mitigating

factor of systemic relevance. Other elements with a positive effect on banks’ SR include engagement in50

non-traditional banking activities, higher leverage, lower liquidity, higher non-performing loans ratio, and

more government support. However, [18] claim the bank-specific determinants of SR are often unique to

each crisis and depend on the characteristics of the regulatory regime.

The network-based approach has emerged as an important ally for the analysis of SR. It allows for the

estimation of SR as the result of an initial shock in a given component propagating through a network of55

interlinked components. The initial shock is usually represented by a depletion in the agent’s economic value

(e.g., equity). In network models, there are two approaches of shock propagation: i) the Eisenberg and Noe

(E-N) approach ([24]), in which contagion is triggered by a complete depletion of the agent’s resources, and

ii) the distress approach, in which contagion is triggered by a partial loss of economic value ([25, 26, 27]).

The E-N approach is useful in the modeling of catastrophic events, such as the bankruptcy of big banks.60

A key limitation of this approach is that, under this contagion trigger, a shock engenders a significant SR

only when combined with other conditions. The E-N approach is unable to reproduce crises driven by the

transmission of small shocks among highly interconnected FIs, as in the 2007-2008 financial crisis. The

distress methodology overcomes this problem. It holds two differences regarding the previous approach:

i) first, it considers potential rather than real losses; ii) second, the contagion trigger may be a partial65

(not necessarily a complete) depletion of the agent’s resources. When these two mechanisms are activated,

interconnectedness gains a much more prominent role in propagating shocks throughout financial networks.

In financial network models, the links can be represented by debt obligations ([28]), common asset

exposures ([29]), ownership relationships ([30]), derivative contracts ([31]), liquidity risk ([32, 33]), among

others. A fruitful literature has employed the network approach in the assessment of SR mainly in the70

3For a comprehensive review on market-based measures of SR, see [16].
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interbank market (e.g., [28, 4, 34, 25]). However, it was also successfully applied to other contexts, such as

payment systems ([35]), production networks [36, 37], multilayer financial networks ([32, 33]), and bipartite

bank-credit networks ([38]).

The main advantage of the network approach is that it allows to understand how the topological features

of the underlying financial network contribute as amplifying or attenuating drivers of SR. Among financial75

regulators, expressions as ”too-interconnected-to-fail” and ”too-systemic-to-fail” have been used in parallel

to the term ”too-big-to-fail”. It reflects the general consensus that the most systemically important FIs are

not necessarily the biggest ones. Assessing data from U.S. institutions from August 2007 to June 2010, [25]

have shown the correlation between DebtRank and asset size is lower than 0.4. Moreover, this correlation

decreases towards the peak of the crisis. Interconnectedness, other than size, should be taken into account80

when assessing systemic relevance.4 The complex networks literature has a large body of research devoted to

designing measures that capture local to global topological patterns within the network. This paper employs

these measures to understand how the network structure drives SR.

Interconnectedness is related to how important and influential an FI is in the whole financial network. It

can be naturally captured by the concept of centrality according to the complex network literature. There85

are at least three classical measures of centrality: the degree (the number of direct neighbors of a given node),

the betweenness centrality (the fraction of shortest paths5 going through a given node), and the closeness

centrality (the average of the shortest path length from a given node to every other node in the network).

Other measures of centrality include, for instance, the eigenvector centrality ([43]), the subgraph centrality

([44]), the PageRank centrality ([45]), and the communicability centrality ([46]).90

Centrality measures have been successfully applied to the identification of systemically important banks.

Assessing two Mexican financial networks, [47] have found the contagion ranking and the centrality ranking

are highly correlated in the top 15 positions in both networks (the interbank market and the payment

systems network). In the study of [48], the centrality measures (degree, betweenness, closeness, and Bonacich

centrality) performed very well in identifying systemically relevant institutions in the Turkish interbank95

market. In a simulation exercise, [49] have found the cascade depth – the number of failed nodes as a

consequence of single failure in one of the nodes – is negatively correlated with node degree, but positively

correlated with betweenness centrality and local rank. Our paper contributes to this literature by bringing

supervised ML algorithms to understand the main drivers of systemic risk.

The aim of this paper is to assess the role of both topological and non-topological features as drivers of SR.100

4A study commissioned by the International Monetary Fund, the Bank for International Settlements, the Financial Stability

Board and the G20 ([39]) has found interconnectedness is the second most important factor in the determination of the systemic

importance of FIs. Although size is the most important factor, it is not the only dimension that prevails when establishing the

systemic importance of FIs.
5The shortest path between two nodes is the one in which the sum of the weights of the constituent edges is minimized.

There are some excellent textbooks the reader unfamiliar with the complex networks concepts may refer to, as [40], [41] and

[42].

4



We compute the systemic relevance of institutions in the Brazilian interbank market through the differential

DebtRank methodology ([27]). The triggering event, or initial shock, is represented by an equity loss of

individual institutions in a given fraction. We simulate different initial losses and analyze the importance

of topological and non-topological features in explaining the contagion losses arising from the triggering

events. We analyze both from the perspective of inflicting losses (systemic impact) and the likelihood of105

being recipient of losses initiated by any other institution in the network (systemic vulnerability). To analyze

the importance of topological and non-topological features in shaping SR, we employ two ML techniques:

XGBoost and random forest. Moreover, we perform this task separately for banks and credit unions since

they have very different business models.6 Finally, further insights were brought about by computing the

Shapley values. This provides information not only on the size, but also on the direction of the effect of a110

given feature.

Among the potential explanatory variables, there are financial and topological variables. The topological

features assessed in our study are the following centrality measures: degree, clustering coefficient, closeness

centrality, betweenness centrality, k-core, and PageRank. As for the financial variables, we use all relevant

financial information available in our data set: total assets, equity, return on equity, interbank assets-to-115

equity ratio, and interbank liabilities-to-equity ratio.

Our results can be summarized as follows: the importance of a given feature in driving SR varies with i)

the level of the initial shock, ii) the type of FI, and iii) the dimension of the risk (impact or vulnerability) which

is being assessed. Systemic impact is mainly driven by topological features for both types of FIs. However,

while the importance of topological features to the prediction of systemic impact of banks increases with120

the level of the initial shock, it decreases for credit unions. Concerning systemic vulnerability, this is mainly

determined by financial features, whose importance increases with the initial shock level for both types of

FIs.

The PageRank is the most important driver of the systemic impact of banks. Moreover, this importance

increases with the level of the initial shock. This measure reflects not only the in-degree (number of lenders)125

of the node, but also that of its direct and indirect connections. Hence, a shock in an FI with a high PageRank

will spam through a large number of FIs, causing a large impact in the whole system. On the other hand,

the systemic impact of credit unions is driven by a combination of topological (closeness centrality and

PageRank) and financial (interbank liabilities-to-equity ratio and total assets) variables. The higher the

level of the initial shock, the higher the relevance of these two financial features. Interbank assets-to-equity130

ratio is the main driver of systemic vulnerability for both banks and credit unions, especially for higher

levels of the initial shock. Thus, while the impact of an FI is mainly driven by its centrality, its vulnerability

depends on how much it is exposed to other FIs in the financial network.

6The main differences of credit unions from banks are: i) credit unions are not profit-oriented and ii) they conduct their

business activities solely with their members. To more details, see, e.g., [50].
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Our contribution to the literature is threefold. First, we address SR considering different levels of initial

shock. As discussed in [51], traditional centrality measures assess networks from a static point of view. A135

bank which is very central – that is, systemically relevant – in a financial network at a high level of external

risk (which, in our framework, is represented by the initial fraction of equity loss) will not necessarily be

central at a lower level of external risk, and vice versa. Therefore, a change in the external level of risk

can make an FI more or less systemically relevant. It is worth investigating whether not only the systemic

relevance of individual institutions, but also its determinants, are affected by the level of external risk. This140

result is also related to the study of [52], that assessed the importance of the shock size as determinant

of the relationship between interconnectedness and SR. The authors showed a more (less) interconnected

financial network brings a higher stability to the financial system under sufficiently small (large) negative

shocks. We go one step further by showing that the role of financial and other topological features, other

than interconnectedness, in driving SR changes with the shock size.145

Second, to our best knowledge, the application of ML methods to the identification of systemically

important financial institutions is a novelty. The relationship between SR and its determinants can be

expressed by the equation Yi = f(Xi) + ε. Our interest is in the optimal prediction of Yi instead of the

interpretability of f, which is often the case of microeconometric models that use linear models such as OLS

or panel fixed effects. We believe networks encode complex financial relationships among FIs. In this way,150

non-linear models could largely improve the model’s estimation quality. Hence, we employ ML methods for

this task.

Third, we clearly disentangle the two dimensions of SR. Most measures consider the SR posed by an

institution as positively correlated to its loss given a distress in the system ([22]). However, this statement

is not true in many situations. For instance, suppose there is an institution acting mainly as a borrower in155

the interbank market. Its default would cause great distress in the system: a great number of institutions

would not receive their debt obligations. Nonetheless, it would not be so impacted by the default of other

institutions, as it has few borrowers.

Besides the literature on bank-specific determinants of SR, our research is also related to studies tackling

which network properties are more relevant to the dynamics of the system (e.g., [53, 54, 55, 56]). For instance,160

in studies devoted to the dynamics of disease spreading [55, 54], the purpose is to predict the stationary

value of Yi, the share of infected nodes when the disease is seeded at node i. They concluded the degree

distribution is crucial for the existence of a vanishing threshold. Studies on other dynamical processes, as

synchronization phenomena ([53]) and rumor spreading ([57]), reached similar conclusions. Even though the

financial network is exogenous, the spreading of an initial shock can be considered a dynamical process. By165

counting each time a shock propagates from one node to its neighbors as one time step, this process spans

for a certain number of periods T. After this time, the outcome of this process – in our case, the aggregate

loss of economic value – reaches a stationary value.

This paper proceeds as follows. Methodological issues and the data set are discussed in Section 2. Section
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3 brings the results. Finally, conclusions take Section 4.170

2. Methodology and data set

2.1. The data set

Our data set comprises quarterly information from March 2012 through December 2015 on the institutions

participating in the Brazilian interbank market. We considered financial conglomerates or individual FIs

belonging to the Brazilian banking sector (classified from ”b1” through ”b4” according to the Central Bank175

of Brazil’s classification system). Institutions with negative net worth were excluded. The number of

institutions in our sample on each date varies from 839 to 950.

Next, we build the network formed by the net exposures of these institutions in the interbank market.

In this network, we consider all types of unsecured financial instruments registered in the Central Bank of

Brazil. The main types of financial instruments are credit, capital, foreign exchange operations, and money180

markets. These operations are registered and controlled by different custodian institutions: Cetip7 (private

securities), the Central Bank of Brazil’s Credit Risk Bureau System (SCR)8 (credit-based operations), and

the BM&FBOVESPA9 (swaps and options operations).

We calculate the following node centrality measures on our interbank network: degree (K), clustering

coefficient (C), closeness centrality (CC), betweenness centrality (B), PageRank (PR), and k-core (KC).185

Our network is directed. Thus, two centrality measures (K and CC) are computed for both incoming and

outgoing edges, being differentiated by the suffixes ”in” and ”out”. The incoming (outgoing) edges refer to

the relationships an institution takes part as a borrower (lender) in the interbank market.

In addition to these centrality measures, we collected some financial information on the institutions in our

sample: total assets, net worth, and return on equity.10 We also computed the interbank assets/liabilities-190

7Cetip is a depositary of mainly private fixed income, state and city public securities, and other securities. As a central

securities depositary, Cetip processes the issue, redemption, and custody of securities, as well as, when applicable, the payment

of interest and other events related to them. The institutions eligible to participate in Cetip include commercial banks, multiple

banks, savings banks, investment banks, development banks, brokerage companies, securities distribution companies, goods and

future contracts brokerage companies, leasing companies, institutional investors, non-financial companies (including investment

funds and private pension companies) and foreign investors.
8SCR is a very thorough data set that records every single credit operation within the Brazilian financial system worth

200BRL or above. Up to June 30th, 2016, this lower limit was 1,000BRL. Therefore, all the data we are assessing have been

retrieved under this rule. SCR details, among other things, the identification of the bank, the client, the loan’s time to maturity

and the parcel that is overdue, modality of loan, credit origin (earmarked or non-earmarked), interest rate, and risk classification

of the operation and the client.
9BM&FBOVESPA is a privately-owned company that was created in 2008 through the integration of the Sao Paulo Stock

Exchange (Bolsa de Valores de São Paulo) and the Brazilian Mercantile & Futures Exchange (Bolsa de Mercadorias e Futuros).

As Brazil’s main intermediary for capital market transactions the company develops, implements and provides systems for

trading equities, equity derivatives, fixed income securities, federal government bonds, financial derivatives, spot FX, and

agricultural commodities. On March 30th, 2017, BM&FBOVESPA and Cetip merged into a new company named B3.
10This information was retrieved from https://www3.bcb.gov.br/ifdata.
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to-equity ratio. The set of variables that will be explored as potential determinants of SR are presented

in Table 1, and the correlation among them is depicted in Figure 1. We can observe there are expressive

correlations between topological variables (e.g., Kin and PR), financial variables (e.g., NW and TAS), and

between different types of variables (e.g., Kout and TAS).

Type Variable Acronym

Financial

Total assets TAS

Net worth NW

Return on equity ROE

Interbank assets-to-equity ratio IBA

Interbank liabilities-to-equity ratio IBL

Topological

Degree Kin/Kout

Clustering coefficient C

Closeness centrality CCin/CCout

Betweenness centrality B

PageRank PR

k-core KC

Table 1: Potential determinants assessed in the study.

2.2. Systemic impact and vulnerability195

We compute our metrics of SR following the differential DebtRank methodology ([27]. The exposure

network of the interbank market is represented by A ∈ N ×N , where N is the number of banks and Aij is

the asset invested by i at j. At period 0, we impose an exogenous shock on FI j, reducing its equity by a

fraction of ζ. It will cause a subsequent loss Lij(1) to its creditors, indexed by i, equal to Aijζ. At period

2, j ’s creditors will propagate this loss to their creditors in a similar fashion, and so on. Formally, we have200

Lij(t) = min

(
Aij , Lij(t− 1) + Aij

[Lj(t− 1)− Lj(t− 2)]

Ej

)
, (1)

Li(t) = min

Ei, Li(t− 1) +
∑
j

Aij
[Lj(t− 1)− Lj(t− 2)]

Ej

 , (2)

in which t ≥ 0 and Ej is FI j ’s equity. Thus, when an FI j suffers an additional loss equal to fraction ζ of its

equity, it will impose a loss to its creditors that corresponds to ζ times their exposures towards j. Observe

that equity positions as well as the exposure network are time-invariant, i.e., they are taken as exogenous.

The propagation considers stress differentials rather than stress absolute values (hence the methodology’s

name) to avoid double-counting. Two more restrictions apply:205
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Figure 1: Correlation between the potential determinants.

• Lij cannot be greater than Aij , i.e., j cannot impose to i a loss greater than i ’s exposures towards j.

When Lij = Aij , j stops imposing losses on i ;

• Li cannot be greater than Ei, i.e., i ’s losses cannot be greater than its equity. When Li = Ei, i stops

propagating losses to other FIs.

The system converges after a sufficiently large number of periods T � 1. Then we have the final matrix210

of losses Lj,ζ ∈ N × 1, where Lj,ζi is the total loss suffered by agent i after an initial shock of size ζ at agent

j.

We repeat this process for the other FIs. Finally, we compute our two measures of SR. We define the

systemic impact (SI) of bank i as

SIiζ =

∑
j

[
Li,ζj − L

i,ζ
j (0)

]
∑
j Ej

, (3)

where Li,ζj (0) = ζEj if j = i and 0 otherwise. Our second measure, the systemic vulnerability (SV), is215

represented by the following equation:

SViζ =
1

N

∑
j

Lj,ζi − L
j,ζ
i (0)

Ei
. (4)
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Therefore, SIiζ measures the fraction of the aggregate FIs’ equity which is lost as a consequence of an

initial shock of size ζ at FI i’s equity. On the other hand, SViζ refers to the average i’s equity loss when the

other FIs are reduced by ζ. Observe the following:

• We remove the initial shock from the computation of the SR measures, as we are interested only in220

the losses caused by the contagion;

• We also compute SIiζ for the FI that suffered the initial shock. Due to network cyclicality, a shock

propagated by a given FI can hit it back. For the same reason, we include the loss imposed by an FI

on itself in the calculation of SViζ .

2.3. Random forest and XGBoost225

After the computation of the systemic risk measures, we employ two machine learning techniques –

XGBoost ([58]) and random forest ([59]) – to assess their determinants. Both are ensemble learning methods

that can be used for both classification and regression. In this case, they are employed for regression tasks.

Random forest (RF) operates by constructing several decision trees.11 It returns the average prediction

of the individual decision trees. XGBoost (XB) is an optimization algorithm that works with an ensemble230

of weak predictors (usually, decision trees) and creates a more efficient predictor model. At each boosting

stage, the XB algorithm attempts to increase the performance of the predecessor model by including a new

estimator.

The purpose is to estimate a predicted output ŷi from an observed output yi and a vector of explanatory

variables Xi. In this paper, the output to be predicted are the systemic risk measures SIiζ and SViζ , and the235

explanatory variables are those listed in Table 1. Both models are trained and validated through a process

known as repeated k-fold cross-validation. The data set (the observed output and the explanatory variables)

is split into k different parts (folds). k− 1 folds are used in the development of the model. Then, the model

is trained on the remaining fold: the predicted output ŷi and the observed output yi of the remaining fold

are used to compute score measures, such as the root mean squared error (RMSE). Each fold is used as the240

testing data set. In this paper, we applied a repeated k-fold cross-validation with k = 5 and 10 repetitions.

Hence, a total of 50 regressions are run.

The RMSE is used to tune the number of estimators of both methods. In the RF, the number of

estimators is the number of decision trees in each forest. In the XB, this is the number of boosting stages to

be performed. The number of estimators varies within a grid of ascending values. For each of these values,245

the regressions are run and the average score is computed. The number of estimators is chosen so that

increasing it does not improve the performance of the method. We performed the tuning within the grid [30,

50, 70, 100, 300, 500]. After this procedure, we set the value of both parameters as 50.

11On decision trees, see, e.g., [60]
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3. Results

We computed SIiζ and SViζ varying the value of ζ in the interval (0.1,1] with step 0.1. Hence, there250

are 20 dependent variables for each observation. We excluded 76 outliers out of 14,467 observations, with

SViζ > 10. These are small FIs, most of them credit unions, highly leveraged as lenders in the interbank

market between March 2012 and September 2013.

We applied the two ML techniques – RF and XB – to predict SViζ only using the observations with

positive assets in the interbank market. The reason is that, if an FI did not grant loans, it is not vulnerable255

to other FI’s defaults. Hence, its vulnerability is zero by definition. Similarly, we performed the ML analysis

to predict SIiζ only using the observations with positive liabilities. We also performed the analysis separately

for banks (FIs classified as b1, b2, or b4) and credit unions (FIs classified as b3C or b3S). Credit unions

have many differences from banks. Unlike most FIs, credit unions are not profit-oriented. Their business

activities (receive deposits or shares and grant loans) are conducted solely with their members, which are260

also their owners. Managers of credit unions do not receive bonuses and any surplus is distributed among

their members-owners ([50]). Due to these distinctive characteristics, credit unions are also expected to have

specific SR drivers.

The differences between banks and credit unions are also evidenced in our sample. Credit unions are

much more numerous than banks, but are smaller in terms of assets and equity. Banks are much more265

interconnected and leveraged (both in terms of assets and liabilities) in the interbank market. However,

while banks act mainly as lenders in the interbank market (the out-degree is greater than the in-degree),

credit unions act mainly as borrowers. All this implies that banks are more vulnerable to shocks in other

FIs and shocks in banks cause a higher impact in the whole system.

3.1. Systemic impact270

The systemic impact of the banks is mainly driven by the PageRank (Figure 2). PageRank is a centrality

measure specially designed for directed graphs and it is computed recursively. The PageRank of an FI is

positively impacted by its in-degree (number of lenders), but also by the in-degree of its direct and indirect

neighbors, weighted by a dumping factor (the further away the neighbor, the smaller its impact on the FI’s

PageRank). Therefore, a shock in an FI with a high PageRank is expected to propagate through a high275

number of other FIs.

Both methods provide similar outcomes. After PageRank, total assets appears as the second most

important feature for small values of the initial shock. As ζ increases, so the relevance of the PageRank and

total assets become less important. Considering the aggregate relevance of financial and topological variables

(Figure 3), we can observe that the latter become more important drivers of the systemic impact of banks280

as ζ increases.

As expected, the systemic impact of credit unions is driven by features different from those of banks.

Closeness centrality and PageRank appear as the main topological features driving the systemic impact of
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Bank Credit union

Number per period 128.75 775.44

Kin 11.39 1.59

Kout 16.04 0.73

IBA 1.43 0.32

IBL 1.81 0.99

NW* 3.82 0.03

TAS* 50.30 0.15

V = 0.1 0.19 0.07

V = 1 0.57 0.26

S = 0.1 0.48 0.18

S = 1 1.88 0.28

*: in BRL billions.

Table 2: Average value of some variables by type of FI.

Figure 2: Importance of the features to the prediction of the systemic impact of the banks obtained through RF (left) and XB

(right).

Figure 3: Aggregate importance of financial and topological features to the prediction of the systemic impact of the banks

obtained through RF (left) and XB (right).

credit unions. Closeness centrality is related to physical proximity. Nodes with high closeness centrality have

the shortest average distance (as measured by the shortest path) to all other nodes in the network. Both285
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Figure 4: Importance of the features to the prediction of the systemic impact of the credit unions obtained through RF (left)

and XB (right).

Figure 5: Aggregate importance of financial and topological features to the prediction of the systemic impact of the credit

unions obtained through RF (left) and XB (right).

methods attach a higher importance to two financial features – interbank liabilities-to-equity ratio and total

assets – as far as ζ increases. Unlike the case of banks, the aggregate importance of the financial variables

increases with ζ, although the topological variables are the main drivers of systemic impact for credit unions

for any value of the initial shock. All these considerations can be seen in Figures 4 and 5.

3.2. Systemic vulnerability290

Unlike the case of systemic impact, the vulnerability of FIs is mainly driven by financial variables, in

particular by the interbank assets-to-equity ratio. Thus, an FI’s systemic vulnerability essentially depends on

its exposure in the interbank market. However, this feature alone is not enough to predict the FIs’ systemic

vulnerability, mainly for smaller values of ζ. The aggregate impact of the other financial and topological

features is non-negligible. XB attaches a smaller importance to interbank assets (and to financial features295

in general) than RF. Moreover, financial variables appear to be more important for credit unions than for

banks. These considerations are depicted in Figures 6-9.
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Figure 6: Importance of the features to the prediction of the systemic vulnerability of the banks obtained through RF (left)

and XB (right).

Figure 7: Aggregate importance of financial and topological features to the prediction of the systemic vulnerability of the banks

obtained through RF (left) and XB (right).

Figure 8: Importance of the features to the prediction of the systemic vulnerability of the credit unions obtained through RF

(left) and XB (right).

Comparing Figures 3 and 7, we can observe an important asymmetry. The aggregate importance of

topological features in driving the systemic impact of banks varies between 0.8 and 0.9. Notwithstanding,

the aggregate importance of financial features in driving systemic vulnerability is smaller, in the range 0.6-300

0.8 (depending on ζ and the method used). We observe a similar asymmetry in the case of credit unions,

namely, the importance of financial variables driving systemic vulnerability is higher than the importance of

topological variables driving systemic impact (Figures 5 and 9).
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Figure 9: Aggregate importance of financial and topological features to the prediction of the systemic vulnerability of the credit

unions obtained through RF (left) and XB (right).

3.3. Shapley values

In order to go further on the interpretability of our results, we resort to the computation of Shapley305

values. This approach is originated from the coalition games theory ([61, 62]). Besides providing additional

evidence on features’ importance, Shapley values can also inform whether a given feature is positively or

negatively correlated to the systemic risk measure. We compute Shapley values through the SHAP (SHapley

Additive exPlanation) framework proposed by [63]. The authors propose an explainer model g aiming at

predicting an output using a set of M features as inputs. The predicted value for a given data-instance is310

given by

g(z′) = φ0 +

M∑
i=1

φiz
′
i, (5)

where z′ is a binary variable indicating whether feature i was included in the model or not. Therefore, the

SHAP value φi indicates in which extent the feature i shifts the predicted value up or down from a given

mean output φ0. [63] showed that, under certain properties (local accuracy, missingness, and consistency),

φi corresponds to the Shapley value of the game theory. The SHAP value of feature i is given by315

φi =
∑

S⊆Mni

|S|!(|M | − |S| − 1)!

M !
[F (S ∪ {i})− F (S)]. (6)

Therefore, the SHAP value of feature i for a given data-instance computes the difference between the

predicted value of the instance using all features in S plus feature i, F (S∪{i}), and the prediction excluding

feature i, F (S). This is weighted and summed over all possible feature vector combinations of all possible

subsets S.12 We then proceed as follows:

• Compute the SHAP value according to the explainer models (RF and XB), considering our systemic320

risk measures as the output to be predicted;

12For details on the calculation of SHAP values, see, e.g., [63] and [64].
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• Compute the average absolute SHAP value over all data-instances. This will inform the size of the

feature importance in driving the output;

• Multiply the average absolute SHAP value by the sign of the correlation between the feature value

and the SHAP value. This will show whether the feature is positively or negatively correlated to the325

output.

As in the previous section, for both models (RF and XB), we implement a k-fold cross-validation with

k = 5 and 10 repetitions. The results are presented in Figures 10-13 and roughly corroborate those of the

previous subsection. The systemic impact of banks is mainly (positively) determined by the PageRank.

However, this effect is nonlinear regarding the size of the initial shock. The maximum impact of PageRank330

on banks’ systemic impact is observed at a shock size ζmax < 1. The importance of the interbank liabilities-

to-equity ratio, net worth, and interbank assets-to-equity ratio increases monotonically with ζ. As expected,

while the first two variables have a positive impact on banks’ systemic impact, the last one impacts it

negatively.

The relative importance of total assets, interbank liabilities-to-equity ratio, and net worth in driving the335

systemic impact of credit unions increases monotonically with ζ. The most important topological variables

in determining the systemic impact of credit unions are the closeness centrality (in) and PageRank. The

impact of the former is positive, whereas the latter has a negative impact in most cases (according to the

RF model, the PageRank has a negative effect on the systemic impact of credit unions for small values of ζ).

The vulnerability of both banks and credit unions, according to both methods, is mainly driven by the340

interbank assets-to-equity ratio. Its impact is positive. However, there is an important difference between

banks and credit unions. While the effect of the feature increases monotonically with the initial shock size

in the former case, it has a maximum at a level of ζ below 1 in the latter one.
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Figure 10: Average absolute SHAP values multiplied by the sign of the correlation between SHAP values and the feature values.

The predicted output is the systemic impact of the banks obtained through RF (left) and XB (right). Dots size is proportional

to the size of the initial shock (ζ).

Figure 11: Average absolute SHAP values multiplied by the sign of the correlation between SHAP values and the feature

values. The predicted output is the systemic impact of the credit unions obtained through RF (left) and XB (right). Dots size

is proportional to the size of the initial shock (ζ).

Figure 12: Average absolute SHAP values multiplied by the sign of the correlation between SHAP values and the feature

values. The predicted output is the systemic vulnerability of the banks obtained through RF (left) and XB (right). Dots size

is proportional to the size of the initial shock (ζ).

4. Concluding remarks

In this study, we assessed the role of financial and topological features as drivers of SR. Our data set345

comprises quarterly information on FIs in the Brazilian interbank market between March 2012 and December

2015. We computed the SR in its both dimensions – systemic impact and systemic vulnerability – for different

levels of the initial shock. We performed this task using the differential DebtRank methodology. To assess
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Figure 13: Average absolute SHAP values multiplied by the sign of the correlation between SHAP values and the feature values.

The predicted output is the systemic vulnerability of the credit unions obtained through RF (left) and XB (right). Dots size is

proportional to the size of the initial shock (ζ).

the relevance of each feature, we used two machine learning techniques: random forest and XGBoost. As

banks and credit unions have different characteristics, we carried out this last step separately for each type350

of FI. We also computed the Shapley values employing these two techniques as explainer models. Shapley

values inform not only on the size of the effect of a given feature on the SR, but also on the direction of this

effect – that is, whether the feature is positively or negatively correlated to the SR measure.

We have found that the drivers of SR depend on the dimension of the risk that is being assessed. Topo-

logical features are the most important drivers of the systemic impact. PageRank appears as the main355

determinant of systemic impact for banks. In the case of credit unions, the most important topological

features are closeness centrality, and PageRank. On the other hand, financial variables are the main deter-

minants of systemic vulnerability. Interbank assets-to-equity ratio figures as the most important driver of

systemic vulnerability for both types of FIs, although the role of other variables cannot be neglected mainly

for small levels of initial shock.360

Another interesting finding is that the importance of a given feature in driving SR varies with the level

of the initial shock. In general terms, the importance of topological features on the prediction of systemic

impact of the banks increases for higher levels of the initial shock. For credit unions, the opposite happens.

Financial variables become more relevant, although topological variables play a more important role for any

value of initial shock. Moreover, the importance of financial features as drivers of systemic vulnerability365

increases with the initial shock level for both types of FIs.

Finally, our results show that different types of FIs have different key drivers of SR. Interbank assets-to-

equity ratio is the main driver of systemic vulnerability for both banks and credit unions. However, while

the systemic impact of banks is mainly determined by the PageRank, the systemic impact of credit unions

is driven by a combination of topological and financial variables.370

This study brings an important contribution to the literature on the determinants of systemic risk. We

show that the drivers of systemic risk depend on at least three aspects: the dimension of the risk – the loss

suffered or caused by the FI -, the size of the initial shock on the system, and the type of the FI. It also

provides insights to policymakers aiming at targeting systemically important FIs. Finally, it sheds some
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light on the dynamical process concerning the spread of shock in financial networks.375
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