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Abstract 1 

Translation of acute ischemic stroke (AIS) research to the clinical setting remains limited over  2 

the last few decades with only one drug, recombinant tissue plasminogen activator, 3 

successfully completing the path from experimental study to clinical practice. To improve the 4 

selection of experimental treatments before testing in clinical studies, the use of large 5 

gyrencephalic animal models of AIS has been recommended. Currently, these models include, 6 

among others, dogs, swine, sheep and non-human primates, that closely emulate aspects of the 7 

human setting of brain ischemia and reperfusion. Species-specific characteristics, such as the 8 

cerebrovascular architecture or pathophysiology of thrombotic/ischemic processes, 9 

significantly influence the suitability of a model to address specific research questions. In this 10 

article, we review key characteristics of the main large animal models used in translational 11 

studies of AIS, regarding (i) anatomy and physiology of the cerebral vasculature, including 12 

brain morphology, coagulation characteristics and immune function, (ii) ischemic stroke 13 

modelling, including vessel occlusion approaches, reproducibility of infarct size, procedural 14 

complications and functional outcome assessment, and (iii) implementation aspects, including 15 

ethics, logistics and costs. This review specifically aims to facilitate the selection of the 16 

appropriate large animal model for studies on AIS, based on specific research questions and 17 

large animal model characteristics.  18 



For S
tro

ke
 P

ee
r R

ev
iew

. D
o n

ot d
ist

rib
ute

. D
es

tro
y

    
    

    
    

    
    

    
    

   a
fte

r u
se

.

4 
 

Non-standard Abbreviations and Acronyms 1 

AIS  Acute Ischemic Stroke 2 

CoW  Circle of Willis 3 

ICA  Internal Carotid Artery 4 

MCA  Middle Cerebral Artery 5 

MCAO Middle Cerebral Artery Occlusion 6 

NHP  Non-Human Primates 7 

RM  Rete Mirabile 8 

rt-PA  Recombinant tissue Plasminogen Activator  9 
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Introduction 1 

Animal models of acute ischemic stroke (AIS) are instrumental to translate novel 2 

experimental therapies from the laboratory to the clinical setting. In 1999 and again in 2009, 3 

the Stroke Therapy Academic Industry Roundtable (STAIR) recommended the use of large 4 

gyrencephalic models as an important translational step together with rodent studies as a 5 

complement to clinical trials.
1,2

 AIS models have been developed in several species including 6 

dogs, swine, sheep and non-human primates (NHP). A selection between these models is 7 

relevant when translating basic science research to clinical studies. 8 

Rodent models are invaluable for experimental stroke research due to the availability 9 

of transgenic and immuno-compromised strains, ethical acceptance, and low costs. However, 10 

with the exception of recombinant tissue plasminogen activator (rt-PA), to date no drugs have 11 

been proven effective in AIS patients despite numerous successful drug studies in rodents.
3
 12 

This poor translatability has been linked to preclinical  as well as clinical methodological/trial 13 

design issues, e.g. sensitivity to detect modest effects and failure to mirror study design.
4,5

 14 

However, this could also, at least partially, be explained by anatomical differences between 15 

the human and rodent brain with respect to size, morphology (gyrencephalic versus 16 

lissencephalic), and gray/white matter ratio.
6
 Consequently, the STAIR consortium has 17 

recommended the addition of a large gyrencephalic model as a critical extra step in the 18 

translational pathway towards clinical application.
1,2

 19 

Large animal models enable application of the same clinical diagnostic imaging 20 

modalities and therapeutic devices as in humans. Use of the same scanners and scanning 21 

protocols as for human patients facilitates translation of research findings. Another advantage 22 

is the larger circulating blood volume, as compared to rodents, which allows for extensive and 23 

safe serial blood sampling (Supplemental Material) to study, for instance, kinetics of plasma 24 

biomarkers of ischemia or pharmacokinetics of novel therapeutics. Large animal models are 25 
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particularly valuable in areas of translational stroke research, investigating novel devices that 1 

require a larger brain or larger diameter of cerebral vessels. For instance, a recent study in 2 

dogs showed that catheter-based focal brain cooling initiated prior to recanalization was safe 3 

and reduced infarct size as compared to recanalization alone.
7,8

 Clearly, this type of catheter-4 

based intervention could not have been performed in a rodent model. Similarly, responses to 5 

currently employed clinical interventions such as mechanical thrombectomy should ideally be 6 

studied in large animal models.
9
 Moreover, large animal models can be useful to explore 7 

opportunities emerging from sophisticated imaging approaches in stroke
10

 and related fields.
11

 8 

In order to improve the quality of pre-clinical research, the Planning Research and 9 

Experimental Procedures on Animals Recommendations for Excellence (PREPARE) 10 

guidelines were introduced in 2018 and point to the “assessment of the relevance of the 11 

species to be used, its biology and suitability to answer the experimental questions with the 12 

least suffering, and its welfare needs.”
12

 13 

In light of these considerations, the aim of this review is to guide AIS investigators in 14 

choosing the appropriate large gyrencephalic animal model to address their specific research 15 

question. This review originated from our quest to set up our own large-animal model of AIS. 16 

We wanted to address issues that were raised discussions with leading experts on large-animal 17 

models of AIS about how to address the most relevant questions when establishing a large-18 

animal model of AIS. For this purpose, we reviewed the literature and compared important 19 

features of dog, swine, sheep and NHP models. Cats also have a gyrenchephalic brain and 20 

were among the first large animals being used in stroke research.
13-15

 Despite their pioneering 21 

role, cat stroke models are nowadays less frequently used, potentially due to ethical 22 

considerations and less demanding husbandry of similarly-sized (lissencephalic) rabbits. 23 

Therefore, cat stroke models are not included in this review. 24 
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Here, we discuss (i) comparative anatomy and physiology, including cerebral 1 

vasculature, brain morphology, and coagulation characteristics and immune function, (ii) 2 

ischemic stroke modelling, including vessel occlusion approaches, reproducibility of infarct 3 

size, procedural complications and functional outcome assessment, and (iii) implementation 4 

aspects, including ethical aspects and practical aspects, such as logistics and costs. Taking this 5 

approach, this review aims to provide a rational and informed approach for investigators to 6 

select the most appropriate large animal model for their particular research. 7 

 8 

i. Comparative anatomy and physiology 9 

Structure and function of the cerebral vasculature  10 

Lesion size and reproducibility of the ischemic injury are key determinants of a stroke 11 

model’s translational value. Both factors largely depend on cerebrovascular anatomy and 12 

variability. The middle cerebral artery (MCA) provides the major proportion of blood volume 13 

to the brain, particularly to motor and sensory areas. It is the most common occlusion site in 14 

human AIS, making it the most important site to induce focal cerebral ischemia in animal 15 

models.  16 

In humans, large artery occlusion mostly occurs in M1 (main stem) or M2 segments of 17 

the MCA.
16

 Proximal MCA occlusions in humans, dogs, swine, sheep, and NHP have all 18 

shown to affect the ipsilateral cortex and, when the occlusion is located proximal to the 19 

lenticulostriate arteries, the basal nuclei as well.
17-21

 The origin (terminal branch of the 20 

internal carotid artery [ICA]) and branching of the MCA are similar in humans, dogs and 21 

NHPs. In swine and sheep, the MCA branches from the circle of Willis (CoW) and these 22 

animals sometimes have a duplicate or even triplicate MCA.
22

 23 

The MCA diameter is generally smaller in animals as compared to humans. In 24 

humans, the diameter is 3.2±0.3 mm,
23

 whereas the reported external diameters are 1.5±0.3 25 
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mm in dogs, 1.3±0.3 mm in sheep, and 1.2±0.1 mm in macaques (Macaca mulatta) (mean ± 1 

SD).
24

 In swine, MCA diameter is 1.2 mm,
25

 whereas in baboons the diameter is up to 2.0 mm 2 

(personal communication GDZ). Vessel sizes are also strain- and age-dependent. The vessel 3 

diameters are relevant for development of catheter-based methods using similar catheters as in 4 

the human setting. Nonetheless, the capacity to reach the MCA endovascularly also depends 5 

on the anatomical configurations of the head-neck vasculature, namely the access to the CoW 6 

and the existence of a physiological rete mirabile epidurale rostrale (RM). This is an 7 

anatomical structure composed of a compact and complex network of anastomosing vessels, 8 

interlaced with a venous plexus located in the cavernous sinus (Figure 1), and has been used 9 

to model vascular malformations as seen in humans.
26

 It is unclear whether the RM affects 10 

distal blood pressure and flow during recanalization. 11 

Figure 2 provides a schematic overview of the CoW, and proximal and distal arteries 12 

of importance for each model. Humans, dogs and NHP do not have a physiological RM. 13 

Swine and sheep possess a RM located proximal to the intracranial ICA. The RM supplies a 14 

short ICA, which continues into the CoW. In sheep, the extracranial part of the ICA is 15 

obliterated after birth, and the RM is then fed by the maxillary arteries. In swine, the RM is 16 

fed by the ascending pharyngeal artery. The function of the RM is not fully understood, 17 

however, it effectively prevents the occurrence of thromboembolic stroke.
27

 It also poses a 18 

limitation to the use of intravascular techniques for induction of focal ischemia in these 19 

species, as most catheters cannot pass the RM.
27

 Catheter-based occlusions are feasible in dog 20 

and NHP. Moreover, the size of their brain vasculature allows for the use of microcatheters, 21 

stent-retrievers or coils used in routine (human) interventional radiology procedures.  22 

The human MCA can react to stimuli such as hypercapnia by vasodilation,
23

 and it is 23 

known that cerebral vasoregulation is impaired in stroke.
28,29

 In baboons, the arterial supply 24 

and regional flow characteristics have been studied in the setting of normoxia and 25 
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ischemia.
30,31

 However, while vascular reactivity of the coronary circulation following 1 

ischemia-reperfusion has been studied extensively in swine and dogs,
32,33

 studies on 2 

cerebrovascular reactivity in both species are scarce. In swine, cerebral traumatic injury was 3 

shown to influence vascular reactivity to acetylcholine and hypocapnia. This change in 4 

reactivity depends on injury size.
34

 Knowledge of the vascular response to ischemia in the 5 

various large animal models will add to the interpretation of research findings. 6 

 7 

Brain structure and gray and white matter 8 

The translational value of a stroke model also depends on the respective species’ brain 9 

morphology, weight, and complexity. Humans, dogs, swine, sheep and NHPs are all 10 

gyrencephalic species and have a higher percentage of white matter compared to 11 

lissencephalic animals such as rodents. The percentage of white matter also increases with 12 

brain size.
35

 Gray and white matter have different metabolic demands as their vulnerability to 13 

ischemia and collateral blood supply differ.
36,37

 Literature indicates intra-species variations in 14 

white matter percentages, but this depends on whether the white matter is given as a 15 

percentage of the cortex or of the total brain. Percentages of white matter in the cortex of 16 

large animals (swine 28.4%; sheep 27.7%; NHP 27.7% (Macaca Mulatta))
38

 are closer to 17 

humans (40-45%) than that of rodents (10-12%).
6
 Apart from susceptibility to ischemia, 18 

different percentages and organization of white matter are relevant when studying brain 19 

connectivity (e.g. by MRI diffusion tensor imaging). Compositional differences between non-20 

human primates (e.g. Papio sp, Macaca sp) and rodents (e.g. locations and distributions of 21 

organized white matter bundles in subcortex and basal nuclei) support the use of the former 22 

for human-relevant focal ischemia studies. This may (partially) explain failures of rodent 23 

interventional studies to translate to successful human treatments.
39

 For instance, subcortical 24 

white matter typically represents a larger proportion of tissue at risk following MCA 25 
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occlusion in larger primates than in rodents. In fact, in all large-animals described in this 1 

review, white matter is organized as the internal capsule, but in rats and mice many small 2 

fiber tracts are scattered throughout the basal ganglia gray matter.  3 

 4 

Coagulation and immune function 5 

In addition to ischemia as a result of the primary thromboembolic occlusion, AIS is known to 6 

induce thrombo-inflammation, an interaction between platelets and inflammatory cells, that 7 

can contribute to infarct maturation and growth.
40

 Moreover, stroke triggers substantial central 8 

and peripheral immune reactions.
41

 Therefore, it is important to consider the significant 9 

differences in the coagulation and immune function in the various large animal models as 10 

compared to humans. It is not clear whether these differences, e.g. shorter PT/PTT in dogs, 11 

have a direct effect on infarct size. However, they are particularly relevant when coagulation 12 

values and inflammation characteristics are measured as outcomes. A detailed description of 13 

relevant coagulation and immune system characteristics of dog, swine, sheep and NHP can be 14 

found in Supplemental Material and Supplementary Table I. Importantly, surgical 15 

procedures for the induction of stroke will influence and contribute to thrombo-inflammation, 16 

making sham animals essential for assessing coagulation and inflammatory responses 17 

triggered by the intervention. 18 

 19 

ii. Ischemic stroke modeling  20 

MCA occlusion (MCAO) in large animal models can either be performed endovascularly 21 

using a catheter-based approach, or externally using a neurosurgical approach, depending on 22 

the chosen species. Table 1 summarizes the approaches for AIS models in dogs, swine, sheep 23 

and NHP as reported in previous studies. A more complete listing of NHP models, both in 24 

awake and anesthetized animals, is given in Supplementary Table IV. Neurosurgical and 25 
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endovascular methods can be used for permanent and transient MCAO. In transient occlusion 1 

models, occlusion times generally vary between one and four hours, similar to occlusion 2 

durations in AIS patients receiving reperfusion treatments. Duration of reperfusion is an 3 

important parameter to take into account. This is determined by the research question, for 4 

example acute experiments for mechanistic studies or long-term follow-up studies when 5 

assessing functional outcome.  6 

 7 

External occlusion 8 

External occlusion is achieved by specific neurosurgical approaches and can be used for both 9 

permanent (i.e. ligation, external compression or electrocoagulation) or transient (i.e. clipping, 10 

external compression or arterial thrombosis) occlusions. The use of removable microvascular 11 

clips allows for recanalization of the artery at a desired occlusion site and at a well-controlled 12 

point in time. Arterial thrombosis can be induced by arterial crush injury, chemical injury, or 13 

photothrombosis, which all tend to lead to platelet-rich occlusions, and recanalization can be 14 

achieved by thrombolysis.
42-45

 Alternatively, severe vasoconstrictors such as endothelin-1 can 15 

be introduced intra-parenchymally to induce ischemia.
46

 These options are not well-controlled 16 

in terms of the timepoint of reperfusion. 17 

 Of note, a craniotomy/craniectomy can be used for direct measurements on the brain 18 

tissue, including tissue oxygenation, microvascular function and flow, and functional 19 

monitoring using electroencephalography. Although the neurosurgical approach has benefits, 20 

including direct visualization of brain vasculature, it has also been associated with untoward 21 

effects that may influence outcome. Those comprise accidental brain tissue damage, 22 

hemorrhage, and altered intracranial pressure due to removal of the overlying bone, dural 23 

resection and loss of cerebrospinal fluid. The exposure of the MCA may require enucleation 24 

in some approaches, as performed in an AIS model in baboons (Papio species), using an 25 
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external balloon occlusion.
47,48

 Although neurological evaluation has been extensively 1 

performed in this model, loss of in-depth vision should be taken into consideration when 2 

designing behavioral assessment in follow-up experiments.  3 

 4 

Endovascular occlusion 5 

Endovascular models have been used for both permanent and transient MCAO. This approach 6 

is only possible in dogs and NHP, due to the RM in swine and sheep. 7 

Different approaches have been developed and are used to induce endovascular 8 

MCAO in dogs and NHP, for example using thrombo-emboli, silicone plugs, coils, balloon 9 

catheters, nylon threads or micro-beads.
18,49-54

 All of these are used for recanalization in AIS 10 

models, although when using micro-beads, there are limitations regarding specific occlusion 11 

of the MCA and recanalization. Of these methods, the thrombo-embolic occlusion most 12 

closely mimicks human stroke pathogenesis. In this type of model, an externally generated 13 

thrombus is injected using a guiding catheter selectively positioned in the targeted 14 

vasculature. Although this method closely emulates the pathogenesis of a large proportion of 15 

strokes in humans, it is less controllable than external occlusion and results in variable 16 

occlusion patterns across experiments. Thrombi can be created using autologous blood under 17 

static or flow conditions, which has a significant influence on thrombus composition and 18 

mechanical characteristics.
50,55,56

 To circumvent the RM in swine, an endovascular model has 19 

been developed by injecting thrombin proximal to the RM.
53

 This approach occludes most of 20 

the downstream vasculature causing massive strokes, but is less controllable than a targeted 21 

occlusion in dogs and NHP. 22 

In order to study mechanical thrombectomy, swine extracranial arteries are often used 23 

for endovascular thromboembolic occlusion.
8,57,58

 These models do not induce ischemic 24 

stroke, but are suitable for studying the success rate and associated endovascular damage of 25 



For S
tro

ke
 P

ee
r R

ev
iew

. D
o n

ot d
ist

rib
ute

. D
es

tro
y

    
    

    
    

    
    

    
    

   a
fte

r u
se

.

13 
 

recanalization strategies, and can effectively replicate the tortuosity of human brain-supplying 1 

vessels. Similar studies have been performed in dogs.
58

 2 

 3 

Reproducibility of infarct size and procedural complication rate  4 

Large animal studies, particularly for NHPs, require well-trained multidisciplinary research 5 

teams and specialized animal facilities for housing and for surgery.
59

 Both from an ethical as 6 

well as an economics point of view, the number of studied animals should always be 7 

minimized by reducing variation between animals and standardizing research procedures. For 8 

these reasons, reproducibility of infarct size and location should be taken into account when 9 

deciding which animal model to use. In general, thromboembolic endovascular models 10 

inherently have a more variable occlusion site due to varying vascular anatomy. Additionally, 11 

clot fragmentation can cause secondary lesions, further adding to the variability of infarct size 12 

and location. External occlusion models tend to result in highly reproducible infarcts.
60,61

 13 

However, some species including dogs exhibit an extensive collateral circulation via maxilla-14 

carotid and meningocerebral anastomoses, and a large draining cerebral vein that can reverse 15 

flow, which reduces reproducibility of infarcts and thus increases required sample sizes.
62

 16 

Infarct size in endovascular NHP models can also be highly variable. 17 

Periprocedural complications, e.g. hemorrhages, also increase the number of animals 18 

required. Loss due to complications in the surgical approach in swine and sheep is typically 5 19 

to 10%, including follow-up drop-outs due to uncal herniation as a result of edema, or 20 

epilepsy. Estimated complication rates for endovascular models in dogs tend to be higher,
51

 21 

mostly due to perforation of the highly tortuous arteries encountered for access to the MCA. 22 

However, complication rates for all species can significantly differ depending on, for 23 

example, the model of MCAO, occlusion duration, or center expertise. 24 

 25 
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Functional testing 1 

Testing of functional outcome is not as widely applied in large animal models as in rodent 2 

models, in part due to study constraints (such as the surgical approach) and ethical 3 

considerations.
20

 While behavioral assessments only require a baseline and follow-up 4 

measurement, assessment of cognitive function following stroke in large animals generally 5 

requires pre-training of the animals.
21,63,64

 Given the gyrencephalic nature, large brain size and 6 

proportion of white matter, such tests can provide a closer model of functional outcome in 7 

humans as compared to rodent models. 8 

Different neurological assessments have been described for different species. In dogs, 9 

various neurological scores are used to assess a combination of the following features: 10 

consciousness, motor function, sensory function, head position, gaze, hemianopia and 11 

circling.
18,51,65

 A study in sheep added facial paralysis and ataxia outcomes.
60

 Sensory 12 

function is difficult to test in sheep, as they habituate quickly to nociceptive stimuli.
60

 In 13 

addition to the functional outcome measures mentioned above, swine AIS models also 14 

focused on appetite, vocalization
66

, and standardized qualitative gait assessments using video 15 

recordings.
19,67

 Analyzed parameters in gait assessment include swing time, stance time, step 16 

length, step velocity and hoof height.
67

 Gait assessment methods developed in swine are less 17 

subjective and available for comparison. For NHP models, the Non-Human Primate Stroke 18 

Scale (NHPSS) was developed in order to standardize functional testing in an experimental 19 

stroke setting based upon similar experience in canine studies.
68

 This scale is similar to the 20 

National Institutes of Health Stroke Scale (NIHSS) for humans. It studies the level of 21 

awareness, the ability to self-care, tone and posture, distal strength and coordination. 22 

Furthermore, cognitive tests such as the 6-tube search task are also used in NHP stroke 23 

models,
21

 but not implemented in baboons. Although cognitive tests are also available for 24 

dogs
69

, swine
70

, and sheep
71,72

 they are not yet widely applied in AIS models. 25 
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Various functional outcome assessment scales are available. However, following the 1 

NHPSS, a consensus on standardized and translatable scales for dogs, swine and sheep should 2 

be introduced to improve comparability between large animal stroke studies and translation to 3 

clinic. 4 

 5 

iii. Implementation aspects 6 

Ethical and societal considerations 7 

In addition to anatomical and scientific aspects, in time some concerns over the management 8 

of animals both environmental and during and after experiments have come to influence the 9 

choice of specific large animal models. In the last two decades, there have been multi-level 10 

discussions about how to manage potential issues, however, in general, their solution has been 11 

a local and/or national  affair. Legislation or local rules can restrict the use of specific species 12 

based upon experiment requirements, local housing and care capabilities, expertise, former 13 

experience, and other features felt to be important to the welfare of the animal (and 14 

researcher).  In some instances national requirements/rules may only allow certain 15 

experiments when those studies are not feasible in other animals. For example, de novo 16 

setting up of dog and NHP biomedical research facilities is highly restricted in Europe.  17 

 18 

Practical aspects 19 

Another factor in determining the choice of the large animal model for AIS studies relates to 20 

the expertise available in the research center, as setting up a new animal model without 21 

existing infrastructure requires considerably more time and effort than rodent models and may 22 

carry considerable risk for the animal. For housing, dogs must have a courtyard for outside 23 

running and NHP should be able to run, climb and jump. Aside from this standard care, 24 

performing transcranial surgery or endovascular occlusions requires experience in 25 
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neurosurgery or neuro-interventions, respectively. This, together with experience in 1 

anesthesia and analgesia for the specific species, will reduce complication rates considerably 2 

and reduce the number of animals needed for setting up and optimizing the model. 3 

Moreover, differences in costs should be considered and can vary per study site. NHP 4 

models are most similar to human patients but are also most expensive to acquire. Estimated 5 

costs for the four species are given in Supplementary Table III, but depend strongly on 6 

strain, age and comorbidity. Housing costs also vary per location, but tend to be higher for 7 

dog and NHP. 8 

 9 

Selecting the most appropriate large-animal AIS model 10 

The suitability of an animal model to answer a specific research question depends on the 11 

strengths of the model (over other available models) and on the associated practical 12 

challenges (Table 2). Therefore, different research settings (line of investigation, availability 13 

of dedicated facilities or specific expertise) might favor a different large-animal model. In 14 

other words, the most appropriate animal model for researcher A might not be the same as for 15 

researcher B. We have designed a flowchart (Figure 3) to assist in choosing an appropriate 16 

large animal model based on research questions and animal model characteristics. 17 

The first aspect to be taken into account is the pathophysiological or therapeutic entity 18 

(perfusion studies, coagulation/thrombosis, (neuro-)immunology, neuroprotection or 19 

recanalization/thrombolysis) to be studied, and the main aim of the study (descriptive/proof of 20 

concept or to confirm robust results obtained in other animal models). Although thrombolysis 21 

in swine is closer to humans, and dogs and NHP are the most recognized models for 22 

confirmatory preclinical studies before moving into the clinical setting, there is no gold-23 

standard model to study these topics. More elements have to be considered to properly select 24 

the animal model that suits your research and infrastructure. 25 
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The second and probably most important determinants are cerebrovascular anatomy 1 

and physiology. Dogs and NHP models are the first choice when using endovascular and 2 

autologous thromboembolism to induce AIS. However, this requires a skilled experimenter as 3 

ICA tortuosity can complicate the endovascular approach and increases the peri-procedural 4 

complications due to the risk of perforations and intracerebral hemorrhage. If AIS is not a 5 

prerequisite to study endovascular techniques, then extracerebral vessels, particularly in 6 

swine, are an excellent alternative. 7 

When direct endovascular access to the brain is not an essential condition, the surgical 8 

AIS models in sheep and swine should be considered as they have lower associated costs, less 9 

housing requirements and less societal resistance. Moreover, the transcranial approach allows 10 

for precise control of occlusion site and occlusion duration. This enhances reproducibility of 11 

infarct size and location, and reduces the number of animals needed to achieve sufficient 12 

statistical power. The accurate timing of recanalization is especially useful when studying 13 

reperfusion. Trepanation also enables direct on-tissue measurements of the infarct zone, e.g. 14 

tissue oxygenation, microvascular function and flow, and functional monitoring using 15 

electroencephalography. Nonetheless, the different variants of the craniotomy to expose the 16 

MCA demand experienced staff. We recommend involving neurosurgeons and veterinarians 17 

to perform or assist in the surgery and manage or assist in anesthesia and post-operative care.  18 

 19 

Conclusion  20 

The decision of which animal model to use depends on the research question and available 21 

expertise and infrastructure. The dog and NHP model are suitable for endovascular 22 

approaches but their availability is limited, mainly due to ethical considerations and societal 23 

aspects. While the NHP model is considered the best approximation of the human situation, it 24 

requires highly specialized expertise and can be very costly. For the external surgical 25 
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approach, swine and sheep models are very suitable as they have lower associated costs, are 1 

easily available, and lead to less societal resistance. 2 
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Figure Legends 1 

Figure 1. Antero-posterior (panel A) and lateral (panel B) view of 3-D angiography showing 2 

rete mirabile epidurale rostrale (RM), middle cerebral arteries (MCA) and ascending 3 

pharyngeal arteries (APA) in swine.   4 

Figure 2. Comparative overview of circle of Willis (CoW) in humans, dogs, swine, sheep 5 

and NHP. In men, the CoW is composed of the left and right anterior cerebral artery (ACA), 6 

the anterior communicating artery (ACoA), left and right internal carotid arteries (ICA), left 7 

and right posterior cerebral arteries (PCA), as well as left and right posterior communicating 8 

arteries (PCoA). The CoW in dogs and NHP is relatively similar to humans with the 9 

exception of an absent ACoA. Instead, both ACAs merge into a single median ACA, which 10 

then divides into right and left branches. This anatomical variation also exists in human 11 

anatomy and is known as ‘azygos ACA’. As a variation, swine and sheep can have a fine 12 

plexiform network of vessels between the two ACAs, instead of one complete ACoA. The 13 

PCA branches off the PCoA in swine and sheep whereas it branches off the basilar artery in 14 

humans. The anterior cerebellar artery in dogs and sheep is a branch of the PCA, whereas a 15 

similar artery arises from the basilar artery in primates and humans, namely the anterior 16 

inferior cerebellar artery. Anatomical variations in the CoW exist in both humans and animals 17 

and an incomplete circle is associated with a reduction of the compensatory ability and a 18 

higher risk of stroke.  19 

Figure 3. Flowchart describing the most relevant aspects to take into account when choosing 20 

a large animal model of AIS. For perfusion studies requiring direct visualization of the tissue, 21 

we advise craniectomy and consequently an external/surgical approach rather than an 22 

endovascular approach. However, in general, the choice between external/surgical or 23 

endovascular should be based on the specific expertise of the research center. Moreover, 24 

when infrastructure, funding and ethical approval are available for NHP models, we 25 
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recommend their use due to the anatomical and physiological similarities to humans. 1 

However, for proof-of-concept, descriptive, or non-stroke EVT studies, we recommend using 2 

sheep and swine models due to wider availability, less demanding housing requirements, and 3 

lower associated costs compared to dog and NHP models. When studying EVT in a 4 

thromboembolic stroke model, dogs and NHP are the only options due to the rete mirabile in 5 

swine and sheep. CV indicates cerebrovascular; EVT, endovascular treatment; and NHP, 6 

non-human primate.  7 
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Tables 1 

Table 1. Feasiblity and implementation of occlusion techniques in large animal models of 2 

acute ischemic stroke. 3 

 4 

The feasibility of performing each occlusion technique in each of the different animal models 5 

is indicated with ✓. References are added as an example in those models where the technique 6 

has been implemented and reported, but we do not give a complete overview of the available 7 

literature. A hyphen (-) indicates lack of feasibility of the occlusion technique due to the 8 

presence of rete mirabile. NHP indicates non-human primate.  9 

Occlusion technique Dog Swine Sheep NHP 

Surgical   
  

Clipping ✓89
 ✓66, 90, 91

 ✓20
 ✓92-94

 

Electrocoagulation ✓89
 ✓61, 90

 ✓20, 60
 ✓21, 95

 

Ligation ✓ ✓ ✓ ✓96
 

Chemical thrombosis ✓ ✓43
 ✓ ✓44, 45

 

Endothelin-1 injection ✓ ✓46
 ✓ ✓88

 

Endovascular     

Thromboembolic ✓50, 97, 98
 - - ✓99

 

Silicone plugs ✓18, 100
 - - ✓ 

Endovascular coils ✓51
 - - ✓64, 101

 

Balloon occlusion ✓ - - ✓52, 102
 

Nylon threads ✓ - - ✓49, 103
 

Microbeads ✓ - - ✓54, 104
 

Thrombin injection ✓ ✓53
 ✓ ✓ 
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Table 2. Strengths, limitations and challenges of large animal stroke models. 1 

 2 

* The external approach can be achieved transorbitally or transcranially. For NHP, the 3 

preferred external approach is transorbital, as it involves less postoperative care. † Expertise 4 

and infrastructure are not scored as they differ per research facility. They can be scored by 5 

each center individually as it should be taken into account when deciding which animal 6 

model to use. + + = very beneficial. + = beneficial. +/- = slightly challenging. - = challenging. 7 

- - = very challenging / not possible. NHP indicates non-human primates.  8 

Animal model Dog Swine Sheep NHP 

Anatomy and physiology   
  

Cerebrovascular anatomy 

External approach  

Endovascular approach 

 

+ + 

+/- 

 

+ 

- - 

 

+ 

- - 

 

+ + 

+ + 

Brain structure + + + + + 

Coagulation + + + + + 

Modeling techniques     

External approach* + + + +  

Endovascular approach + - - - - + + 

Reproducible infarct size 

External approach  

Endovascular approach 

 

+ 

- 

 

+ 

- - 

 

+ 

- - 

 

+ 

- 

Procedural complications 

External approach  

Endovascular approach 

 

+ 

- 

 

+ 

- - 

 

+ 

- - 

 

+ 

+ 

Functional testing + + + + 

Implementation aspects     

Housing - + + - 

Costs + + + + + - 

Expertise and infrastructure†     
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