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Household-structured infectious disease models consider the increased transmission potential between
individuals of the same household when compared with two individuals in different households.
Accounting for these heterogeneities in transmission enables control measures to be more effectively
planned. Ideally, pre-control data may be used to fit such a household-structured model at an endemic
steady state, before making dynamic forward-predictions under different proposed strategies.
However, this requires the accurate calculation of the steady states for the full dynamic model. We
observe that steady state SIS dynamics with household structure cannot necessarily be described by
the master equation for a single household, instead requiring consideration of the full system.
However, solving the full system of equations becomes increasingly computationally intensive, particu-
larly for higher-dimensional models. We compare two approximations to the full system: the single
household master equation; and a proposed alternative method, using the Fokker–Planck equation.
Moment closure is another commonly used method, but for more complicated systems, the equations
quickly become unwieldy and very difficult to derive. In comparison, using the master equation for a sin-
gle household is easily implementable, however it can be quite inaccurate. In this paper we compare
these methods in terms of accuracy and ease of implementation. We find that there are regions of param-
eter space in which each method outperforms the other, and that these regions of parameter space can be
characterised by the infection prevalence, or by the correlation between household states.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Transmission of an infectious disease is often seen to be greater
within a household than between those from different households
(Kinyanjui et al., 2016). Household structured models take these
population heterogeneities into account, and can be used to inform
different potential control policies. In particular, they explicitly
include (at least) two different forms of infection (Black et al.,
2013): infection from within the same household as the infected
individual and infection from outside the same household as an
infected individual. The first of these typically corresponds to a
higher rate of infection, but between a smaller number of contacts,
while the latter often corresponds to a lower rate of infection, but
affecting a much larger number of individuals (Hilton and Keeling,
2019; Ball et al., 1997).

Household-structured infectious disease models have been
used extensively in the literature, particularly in the case of pan-
demic influenza (Fraser et al., 2011; Wu et al., 2006). Benefits of
these models include better representation of the population under
consideration (Frank and Neal, 2002) and the ability to incorporate
different intervention strategies. This is useful as control policies
are often targeted at the level of households, for both practical
and structural reasons (Pellis et al., 2009). For example, the current
eradication strategy for yaws (a neglected tropical disease)
includes treating infected individuals and their contacts, which
can be easily modelled using a household structure (Holmes
et al., 2020). Similarly, there are a large number of studies investi-
gating household-based vaccination strategies for pandemic influ-
enza (House and Keeling, 2009; Black et al., 2013).

In spite of the widespread use of household models, there are
some subtleties in their use. A natural way to fit a household model
to data is to assume the system is at steady state, which enables
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the fitting of a constant force of infection experienced outside the
household. However, when subsequently predicting the response
to potential changes in strategy, it is necessary to then link this
external force of infection to infections in other households. The
different approximations involved can lead to discrepancies, how-
ever, between the dynamic forward projection and the steady
state. We describe in more detail below how these discrepancies
arise.

Compartmental stochastic models in epidemiology can typi-
cally be expressed as a set of master equations. That is, a set of
ordinary differential equations (ODEs) that describe how the prob-
ability of being in each state varies with time (Keeling and Ross,
2008). This gives a set of linear ODEs which can be written in the
form _p ¼ Ap, where A is the state transition matrix. This then has
solution p tð Þ ¼ p 0ð ÞeAt , or we can calculate the steady state distri-
bution by calculating the eigenvector corresponding to the 0 eigen-
value of A (Keeling and Ross, 2008) or by solving the system of
linear equations Ap ¼ 0.

For example, consider the stochastic steady state SIA model in
Dyson et al. (2017). This is a household-structured model in which
each individual in a household can either be susceptible to infec-
tion, S, infected and infectious, I, or asymptomatic and not infec-
tious, A. An individual can be infected from someone within the
same household at rate b, or they can be infected from someone
outside their household with external force of infection, e. Data
were used to parameterise the model at steady state, allowing
the effects of other households on the external force of infection
to be considered implicitly, by taking e to be constant. An infec-
tious individual can recover at rate d, or they can become asymp-
tomatic at rate k. Finally, asymptomatic individuals can recover
at rate d, or their symptoms can recur causing them to become
infectious again (without further exposure to an infectious individ-
ual), which occurs at rate q. These dynamics are summarised in fig-
ure 1. Letting PN

S;I;A denote the probability of a household of size N
containing S; I and A susceptible, infectious and asymptomatic indi-
viduals respectively, the master equation describing the dynamics
of a single household of size N for this system is given in Eq. 1.

dPNS;I;A
dt ¼ � eþ bI

N�1

� �
Sþ d Aþ Ið Þ þ qAþ kI

� �
PN
S;I;A þ eþ b I�1ð Þ

N�1

� �
Sþ 1ð ÞPN

Sþ1;I�1;A

þd Aþ 1ð ÞPN
S�1;I;Aþ1 þ d I þ 1ð ÞPN

S�1;Iþ1;A þ q Aþ 1ð ÞPN
S;I�1;Aþ1 þ k I þ 1ð ÞPN

S;Iþ1;A�1;

ð1Þ
Fig. 1. Visual depiction of the steady-sta
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subject to the following constraints on S; I;A and N:

Sþ I þ A ¼ N;
S P 0; I P 0; A P 0:

How can this system be simulated forwards in time? It is neces-
sary to make an assumption that links the rate of external infection
to the infection within households. One approach is to assume the
external force of infection, e, takes the form

e ¼ a

XM
i¼1

I ið Þ

XM
i¼1

N ið Þ
; ð2Þ

where a is the between–household rate of infection that would
achieve the same force of infection at steady state, M is the number
of households, I ið Þ denotes the number of infectious individuals in
household i, and N ið Þ denotes the size of household i. However, if
we simulate the system forward to steady state using this new
between household rate of infection, a, calculated by rearranging
Eq. 2 using the steady state prevalence (calculated by solving the
master equation with constant e, Eq. 1), we find that the simulated
steady state is lower than expected. This is shown in Fig. 2, which
compares: the numerical solution to the system of master equations
(Eq. 1) for the number of households in state S; I;Að Þ, but with e
given by Eq. 2 (solid blue line); the expected steady state (using a
constant e) calculated by solving Eq. 1 (red dashed line); and an
ensemble average of trajectories simulated using the Gillespie algo-
rithm for the system in Fig. 1 with e given by Eq. 2 (solid black line).
Both the red dashed line and the solid blue line represent solutions
to Eq. 1 (with the red-dashed line representing the steady state).
However, the red line is calculated using a constant e, while the blue
line used e given by Eq. 2. As such, this means the external force of
infection is time varying (and the corresponding value of a was
selected to ensure the steady states match).

This suggests that the approximation taken by the master equa-
tions for the number of households in state S; I;Að Þ breaks down
when there is between–household interaction with a finite number
of households. In the limit of a large number of households, the
approximation is valid (Ross et al., 2010), but not in the case of a
te household-structured SIA model.



Table 1
State transitions for SIS household model.

Event Symbol State Transition Rate

Infection am;n;k m;n; kð Þ ! m� 1;nþ 1; kð Þ a
N nþ 2kð Þmð Þ

Recovery bm;n;k m;n; kð Þ ! mþ 1;n� 1; kð Þ cn
Infection cm;n;k m;n; kð Þ ! m;n� 1; kþ 1ð Þ a

2N nþ 2kð Þ þ b
� �

n
Recovery dm;n;k m;n; kð Þ ! m;nþ 1; k� 1ð Þ 2ck

Fig. 2. Plot showing the steady state obtained with a constant e, the average
trajectory obtained by solving the master equations with Eq. 2 and an ensemble
average of trajectories simulated using the Gillespie algorithmwith e given by Eq. 2.
The population consists of 1500 households with household size distribution
detailed in Dyson et al. (2017). Other parameter values used are
b; d; k;q; e;að Þ ¼ 0:0516;0:0513;0:185;0:0165;0:004;0:168ð Þ..

A. Holmes, M. Tildesley and L. Dyson Journal of Theoretical Biology 534 (2022) 110974
finite population size. Instead, we need a set of master equations
that captures the full range of interactions between households.
Unfortunately, this significantly increases the number of possible
system states, and this quickly becomes impractical unless the
number of households is very small (Ball and Lyne, 2001). Previous
work has also looked at approximating household models. In Black
et al. (2014), the authors investigate infectious disease processes
on clumped population structures (e.g. households). They use a
branching process approximation to investigate the start of the
exponential growth phase, and then apply a diffusion approxima-
tion to investigate the variance during the early asymptotic phase
of the infectious process. However, the authors do not address the
question of how accurate these approximations are at a finite num-
ber of clumps (or households), but rather just consider the situa-
tion in which the number of clumps tends to infinity.

In this paper we consider different approximations to a similar
system (SIS dynamics, starting with households of size 2), to deter-
mine the steady state distributions of households in such a popu-
lation. We investigate which approximations are more accurate
in different regions of parameter space. We then extend this to lar-
ger household sizes, determine how the accuracy of approxima-
tions is affected by the population structure and in particular
what happens when we have the same population size partitioned
into fewer, but larger, households.

Depending on the parameter values used, the correlation
between household states can vary substantially. We investigate
the relationship between this correlation and the accuracy of dif-
ferent approximations. Finally, we return to our original question
— how accurate is each approximation when used to convert a
steady state force of infection into a between household rate of
infection?.

2. Methods

2.1. Master equation

We begin by considering the simplest such system — a popula-
tion of households of size 2 undergoing SIS dynamics. This can be
expressed as a set of master equations describing the household
states s; ið Þ, where s denotes the number of susceptible individuals
and i denotes the number of infectious individuals. For a household
of size h, the set of permissible household states under this model
can be defined as
3

s; ið Þ 2 N2 : sþ i ¼ h
� 	

:

Similarly, the set of system states can be expressed in terms of
these household states, assuming a constant population of N
households each of size 2 (so the total population size is 2N). Let
m denote the number of households in household state 2;0ð Þ
(the number of households with 2 susceptible individuals) and
let n denote the number of households in household state 1;1ð Þ
(the number of households with 1 susceptible individual and 1
infectious individual). Then N �m� n denotes the number of
households in household state 0;2ð Þ (the number of households
consisting of 2 infectious individuals and no susceptible individu-
als), denoted by k. A system state is then given by the tuple
m;n; kð Þ and the full set of permissible system states is expressed
as

m;n; kð Þ 2 N3 : mþ nþ k ¼ N
� 	

:

We consider the stochastic compartmental SIS model incorpo-
rating the household structure as described above, with events
and corresponding rates summarised in Table 1. In this model, a
denotes the rate of between–household transmission, b denotes
the rate of within–household transmission, and c denotes the
recovery rate. The possible transitions are summarised in Fig. 3.

Let pm;n;k tð Þ denote the probability that the system is in a state
containing m;n and k households in their respective states. We
define the bivariate step operators, Ea;b (Van Kampen, 2007) such
that

Ea;bf m;nð Þ ¼ f mþ a;nþ bð Þ:
Substituting in k ¼ N �m� n to eliminate k, we can use the

bivariate step operator to write the master equation as

@pm;n

@t
¼ E1;�1 � 1
� �

am;npm;n þ E�1;1 � 1
� �

bm;npm;n

þ E0;1 � 1
� �

cm;npm;n þ E0;�1 � 1
� �

dm;npm;n; ð3Þ

with the following rates:

am;n ¼ a
N nþ 2 N �m� nð Þð Þm

bm;n ¼ cn
cm;n ¼ a

2N nþ 2 N �m� nð Þð Þ þ b
� �

n

dm;n ¼ 2c N �m� nð Þ:
Numerically solving this system of equations at steady state

gives us the probability of occupying each system state at steady
state. From this, quantities of interest such as the expected number
of infectious individuals can be calculated. However, due to the
large state space, it is not feasible to solve this system for large
population sizes.

2.2. Quasi-steady state

While the above system of equations are difficult to solve for
larger populations, it can be solved numerically when dealing with
small population sizes. However, due to the absorbing state at
N;0;0ð Þ (N households in household state 2;0ð Þ, so no infection
in the population), every system will eventually reach a state of



Fig. 3. Figure showing possible transitions between each individual in a population of size N undergoing SIS dynamics.

Table 2
State transition rates.

Description State Transition Rate

Within household infection (S,I) ! (S-1,I + 1) bI
N�1

Between household infection (S,I) ! (S-1,I + 1) a Ih i
Treatment (S,I) ! (S + 1,I-1) c

A. Holmes, M. Tildesley and L. Dyson Journal of Theoretical Biology 534 (2022) 110974
no infection (Dickman and Vidigal, Jan 2002). Thus, the 0 eigen-
value corresponds to the disease-free eigenvector and we obtain
a singular matrix. During this time, a systemmay spend a long per-
iod of time at a quasi-steady state. This quasi-steady state is the
steady state of interest. To find the quasi-steady state, the system
of master equations are solved conditioned on non-extinction
(Mubayi et al., 2019). That is, we consider the sub-matrix formed
by removing the rows and columns corresponding to the disease-
free states. The eigenvector corresponding to the smallest eigen-
value of this sub-matrix then represents the quasi-steady state dis-
tribution for this system. In this way, the system can be studied at
low population sizes.

As mentioned before, this system of equations is too large for
more than a small number of households to find an exact steady
state solution. As such, methods to approximate this system which
would allow the steady state distribution to be approximated. One
commonly used approximation method that works well for simple
systems is moment closure (Keeling, 2000). However, for more
complicated systems, the system of moment closure equations
can become very difficult to derive (Kuehn, 2016), and so here
we restrict ourselves to methods that can be generalised more
easily.

Two different methods for approximating the steady state dis-
tributions are compared here, which we will refer to as the single
household (SHH) approximation and the Fokker–Planck peak (FPP)
approximation. To assess which method approximates the true
steady state distribution more accurately, we calculate the Kull-
back–Leibler (KL) divergence (Kullback and Leibler, 1951) of each
approximation from the true steady state distribution. Letting Q
denote the distribution obtained from the approximation and P
the distribution obtained from solving the master equation, we
denote the KL divergence of Q from P by DKL Q jjPð Þ. For the purposes
of calculating the KL divergence, we take the steady state distribu-
tion to be the proportion of households in each household state.

2.2.1. Single household (SHH) approximation
The first approximation is derived by looking at stochastic SIS

dynamics in a household of size 2. This differs from the previous
system as these equations only look at transitions between house-
hold states, rather than system states. On the other hand, the cor-
responding fully system of master equations give us a probability
of finding each steady state household distribution.

To write down this system, let pn denote the probability of find-
ing n infectious individuals, and N � n susceptible individuals in a
household of size N. There are two events that can then happen: an
infectious individual becomes susceptible, or a susceptible individ-
ual becomes infectious. However, unlike a standard SIS model,
there are two components to the rate of infection. One component
comes from inside the household, and one from outside the house-
hold. We assume the rate of infection from outside the household
is proportional to the fraction of the population that is infectious. A
summary of these rates can be seen in Table 2, and the relationship
to the master equation of the system can be seen in Fig. 4.

Using these rates, the master equation (a system of N þ 1 differ-
ential equations describing the time-evolution of pn) in the case
n ¼ 2 can be written down as
4

dp0
dt ¼ �a p1 þ 2p2ð Þp0 þ cp1;

dp1
dt ¼ a p1 þ 2p2ð Þp0 � a

2 p1 þ 2p2ð Þ þ bþ c
� �

p1 þ 2cp2;

dp2
dt ¼ a

2 p1 þ 2p2ð Þ þ b
� �

p1 � 2cp2;

ð4Þ

which can be solved analytically to give the SHH approximation to
the steady state.

2.2.2. Fokker–Planck peak approximation
We now consider another approximation to this system. Our

aim is to find an alternative method that provides a good level of
accuracy, without quickly becoming infeasible to derive analyti-
cally. To that end, we start by deriving the Fokker–Planck equation
for this system (Gardiner, 2004), which can be thought of as a
second-order Taylor expansion of the master equation. Doing so,
we obtain

@u
@t

¼ @

@x
A� Bð Þu x; yð Þf g þ @

@y
B� Aþ C � Dð Þu x; yð Þf g þ 1

2N
@2

@x2

� Aþ Bð Þu x; yð Þf g � 1
N

@2

@x@y
Aþ Bð Þu x; yð Þf g þ 1

2N
@2

@y2

� Aþ Bþ C þ Dð Þu x; yð Þf g;
where

x ¼ m
N
; y ¼ n

N
; u x; y; tð Þ ¼ pm;n tð Þ;A x; yð Þ ¼ am;n

N
;

B x; yð Þ ¼ bm;n

N
C x; yð Þ ¼ cm;n

N
D x; yð Þ ¼ dm;n

N
:

From the Fokker–Planck equation, we can obtain a determinis-
tic drift vector �f and a diffusion matrix D. Using these, we define

�a �xð Þ ¼ f �xð Þ � 1
2N

X
ij

@Dij

@xj
�ei;

where �ei is a unit vector in the direction xi. The FPP approximation is
then obtained by solving the following system of ODES (Mendler
et al., 2018):

d�x
dt

¼ �a �xð Þ;

More details of this derivation can be found in Section A.1.
We note that �f xð Þ represents the deterministic drift term for this

system, and corresponds to the system of equations obtained for
the single household approximation. Similarly, as the number of
households N ! 1, the diffusion term tends to 0, and we again
obtain the single household approximation. A summary detailing
how to obtain each approximation and how they each relate to
each other and the master equations can be seen in Fig. 4.



Fig. 4. Figure showing possible transitions between each household state in a population of households of size 2 undergoing SIA dynamics. FPP = Fokker–Planck peak, SHH
= single household.
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2.3. Phase portraits and correlation

The behaviour around the steady state can vary depending on
the parameter values used in the model. More specifically, the cor-
relation between household states 2;0ð Þ and 1;1ð Þ is greater under
certain parameter values. Quantifying the differences in this beha-
viour could identify another method for distinguishing between
parameter regimes in which each approximation is more accurate.
To that end, we look at phase portraits of the Fokker–Planck
approximated system under different parameter values, as this
allows us to examine the steady state behaviour more closely.
We plot the nullclines for this system, and the steady state (where
the nullclines intersect). We also plot trajectories around the
steady state, simulated using the Gillepsie Algorithm and the
steady state as determined by this simulated trajectory. Finally,
we calculate the steady state distribution from the master
equation.

To investigate this further, we generate a set of parameter val-
ues using latin hypercube sampling (LHS) (Iman, 2014) to ensure
we thoroughly search the parameter space. We then calculate
the KL divergence of both the SHH and FPP methods from the true
steady state under these parameter values.

The correlation between household states 2;0ð Þ and 1;1ð Þ is
then calculated in two ways. The first is using the Gillespie algo-
rithm to simulate the steady state distribution, from which we
can calculate the correlation between household states 2;0ð Þ and
1;1ð Þ. We then plot this correlation against KL divergence.
5

Secondly we assume the number of households in each house-
hold state follows a multinomial distribution, with parameters
equal to the steady state solution obtained from the FPP approxi-
mation. If our steady state solutions are pm; pn;1� pm � pnð Þ, then

Corr m;nð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
pmpn

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pmð Þ 1� pnð Þp :

Similarly, we plot this correlation against KL divergence to
ensure we get the same qualitative results when calculating the
correlation from the simulated trajectories.
2.4. n-Person households

We extend the work above to now consider households of some
arbitrary size n, rather than just size 2 as considered before. In this
case, we let mi denote the number of households in household
state n� i; ið Þ. That is, the number of households with n� i suscep-
tible individuals, and i infectious individuals. So m0 denotes the
number of households with n susceptible individuals, while mn

denotes the number of households with n infectious individuals.
We consider a fixed population of size N households such thatPn

k¼0mk ¼ N. This gives us a population consisting of nN individu-
als. For a household of size n, we have nþ 1 different possible
household states, and 2n state transitions. Of these 2n state transi-
tions, n are associated with infection events, while the other n are
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associated with recovery events. This is demonstrated in Fig. 5.
Each of these transition rates is summarised in Table 3.

The master equation and Fokker–Planck equation can be
derived in the same way as before (see Section A.3) with rates ik
and rk as given in Table 3. From these, the FPP and SHH approxima-
tions can be derived as before.

2.5. Simulating forward steady state master equations

In this section, we look at determining between–household
rates of infection from a model that has been fitted at steady state.
This can be useful as we may only have steady state data available
to us (as in Dyson et al. (2017)), but will still want to simulate the
dynamics forward in time after perturbing the system. We can do
this by finding the between household rate of infection which, at
steady state, corresponds to the distribution of household states
we obtain from the steady state model. In particular, we are inter-
ested in looking at how well each of the approximations perform.

Suppose we have a household structured model (a population
of size 2M consisting of M households of size 2) undergoing SIS
dynamics that has been parameterised at steady state. That is,
we have a constant external force of infection (in a similar manner
to the SIA model described previously), e, rather than explicitly
considering the interactions between different households using
a between–household rate of infection, a. As the houses are now
independent (e does not depend on the infection level of other
households), we can solve this system exactly at steady state using
the master equation for a single household. Alternatively, we can
use the master equation described initially to obtain a set of ODEs
describing the time evolution of the moments of the system. As the
equations are linear, this will correspond precisely to the deter-
ministic system we obtain by considering a single household
(Hahl and Kremling, 2016).

The master equation can be written as follows

dp0

dt
¼ �2ep0 þ cp1;

dp1

dt
¼ 2ep0 � eþ bþ cð Þp1 þ 2cp2;

dp2

dt
¼ eþ bð Þp1 � 2cp2:

The steady state distribution p� is given by the eigenvector of
this system (when written in matrix form) corresponding to the
zero eigenvalue. We then consider the external force of infection
to be a function of the infection status of the other households, tak-
Fig. 5. Figure showing possible transitions between each individual in a population of n-
with k infectious individuals.

Table 3
State transitions for n-person SIS household model.

Event Symbol Sta

Infection ik mk;mkþ1ð Þ
Recovery rk mk�1;mkð Þ

6

ing the form given in Eq. 2. Using the SHH approximation, a can be
calculated and fed back into the model to obtain a new steady
state. Alternatively, the FPP approximation can be used to obtain
this value of a by finding the value of a that solves a1 �xð Þ ¼ a2 �xð Þ,
where �a �xð Þ is the system of equations obtained from the FPP
approximation.

As before, we are interested in which regions of parameter
space one method outperforms the other. To investigate this, we
take values of e; b, and c, varying each parameter one at a time.
We then find the corresponding steady state distribution, and we
then find the value of a corresponding to that steady state distribu-
tion (as described above). As there is not a monotonic relationship
between the KL divergence and a, the existence of an a that corre-
sponds to a value of e is not guaranteed. Instead, the value of a that
minimises the KL divergence of the master equations from the
steady state system corresponding to e is used.
3. Results

3.1. KL divergence from ME

Here we look at the KL divergence of the three methods from
the steady state distribution obtained by solving the full system
of master equations (Eq. 3) as the parameters vary for a fixed pop-
ulation size of 250 households. A higher KL Divergence indicates
the distribution is further from the ‘true’ master equation-
derived distribution.

We plot a heat map of the ratio of the two KL divergences, with
the colour map centred around 1 (both methods having equal KL
divergence). A KL divergence ratio greater than 1 corresponds to
the SHH approximation being more accurate (the red areas of the
heatmap), while a KL divergence ratio less than one corresponds
to the FPP approximation being more accurate (the blue areas of
the heatmap). The results of this can be seen in Fig. 6.

Fig. 6 shows that the areas with lower infection and higher
recovery parameter values correspond to a greater accuracy of
the FPP approximation, while lower recovery and greater infection
values correspond to a greater accuracy for the SHH approxima-
tion. It can also be useful to consider multiple metrics, to see if
any conclusions made are consistent across these different metrics.
We provide similar plots using different metrics for assessing accu-
racy in appendix A.4. Further analysis shows that using a moment
closure approximation provides more accurate results than either
the SHH and FPP approximations (results not shown). Due to the
relative difficulty in deriving systems of moment closure equa-
person households undergoing SIS dynamics. mk denotes the number of households

te Transition Rate

! mk � 1;mkþ1 þ 1ð Þ a
nN

Pn
i¼0imi

� �þ bk
n�1

� �
n� kð Þmk

! mk�1 þ 1;mk � 1ð Þ kcmk



Fig. 6. Ratio of KL Divergence of different approximations from the true steady state as parameters vary. Blue areas denote regions of parameter space where the Fokker–
Planck approximation outperformed the deterministic approximation, while red areas denote regions of parameter space where the deterministic approximation
outperformed the Fokker–Planck approximation. System consisted of 500 households of size 2.
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tions, particularly for more complex systems, it is not considered
here.

3.2. Phase portraits and correlation

It was observed that the FPP approximation works well in low
infection parameter regimes. Now we want to determine whether
there are any qualitative differences that explain these differences.
To do this, we look at the phase portraits of the system under low-
infection and high-infection parameter regimes. Each subplot in
Fig. 7 shows three different points plotted, as well as each phase
portrait. These are the steady state from the FPP approximation
(light blue dot), the true mean steady state obtained by solving
the full master equations (red dot), and the steady state obtained
by averaging the points on the simulated trajectory from the Gille-
spie algorithm (black dot). As shown in Fig. 7, the approximation is
much closer to the true solution than that obtained from the Gille-
spie algorithm.

Fig. 7 shows a stark contrast between the behaviour around the
steady state under the two different parameter regimes. The two
household state (2,0) and (1,1) do not appear to have a strong cor-
relation under the high infection regime (top row), while there is a
much stronger correlation between them under a low infection
parameter regime (bottom row). Specifically, as the proportion of
households in state (2,0) decreases, the proportion of households
in state (1,1) increases. Conversely, there is no clear trend when
looking at the trajectory around the steady state under the high
infection parameter regime.
7

From this, we hypothesised that households states (2,0) and
(1,1) were more correlated under low infection parameter regimes,
and would result in the FPP approximation being more accurate.
Fig. 8 shows the results of this, with a number of different param-
eter sets sampled and the KL divergence of each approximation
calculated.

As the correlation between the two states increases (from more
negative towards 0), the FPP approximation becomes less accurate
while the SHH approximation becomes more effective, with equal-
ity occurring around a correlation of �0:4 (Fig. 8). The same trend
is observed whether we calculate the correlation from simulated
trajectories (red and blue dots), or whether we approximate the
correlation by assuming a multinomial distribution with parame-
ters given by the steady state obtained using the FPP approxima-
tion (black and green dots).

The KL divergences for a population partitioned into households
of different sizes can be seen in Table 4, with the steady state dis-
tributions for households of sizes 2,3 and 4 shown in Fig. 9. We
denote the KL divergence of the distribution obtained under
approximation Q from the true steady state distribution P by
DKL PjjQð Þ. We let Q1 and Q2 denote the steady state distributions
obtained using the SHH and FPP approximations respectively.

Based on visual inspection of Fig. 9 and looking at the KL diver-
gences, the accuracy of the Fokker–Planck approximation relative
to the single household approximation appears to decrease as
household size increases.

We now return to the example described in the introduction —
how can we find appropriate parameters to simulate a system



Fig. 7. Phase portraits of SIS system with households of size 2 under different parameter regimes. Figures on the right are expanded copies of those on the left. The light blue
dot denotes the distribution obtained from the FPP approximation, the red dot is the true distribution, and the black dot is that obtained from the Gillespie Algorithm.

Fig. 8. Plot of the correlation between household states 2;0ð Þ and 1;1ð Þ (as
determined by simulations from the Gillespie algorithm (red and blue) and
assuming a multinomial distribution (black and green)), and the KL divergence of
the FPP and SHH approximations from the true steady state distribution for
N ¼ 400.

Table 4
KL divergence for each method under different household sizes using parameters
a ¼ 0:4, b ¼ 0:3 and c ¼ 0:45.

Household Size Number of Households DKL PjjQ1ð Þ DKL PjjQ2ð Þ
2 60 0:00381 2:35� 10�4

3 40 0:0035 0:00252
4 30 0:00384 0:0193
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parameterised at steady state forward in time? Defining e as in Eq.
2, we take e ¼ 0:05; b ¼ 0:1; c ¼ 0:15, with the aim of determining
a between–household rate of infection corresponding to e with the
same steady state distribution as this system.
8

The steady state distribution of this system is

p� ¼
p0

p1

p2

0B@
1CA ¼

1
2
1
3
1
6

0B@
1CA;

where pi denotes the probability of a household having i infectious
individuals at steady state. Rearranging Eq. 2, we can calculate the
corresponding value of a as being a ¼ 0:15.

However, we now put this value of a back into the master equa-
tion for the full system (Eq. 3), which gives us a steady state distri-
bution of

p� ¼
0:516
0:323
0:161

0B@
1CA:

The KL divergence of this steady state distribution from the true
steady state distribution can be calculated as DKL PjjQð Þ ¼ 5:16�
10�4, which compares to a KL divergence of 1:12� 10�5 for the
optimal value of a (the value which minimises the KL divergence).



Fig. 9. Steady state distributions obtained using the FPP and SHH approximations, with the true steady state as determined by solving the set of master equations for 2, 3 and
4 person households. The KL divergence of each approximation from the true steady state is given in the legend.
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If instead the Fokker–Planck peak approximation is used, taking a
such that a1 x�; y�ð Þ ¼ a2 x�; y�ð Þ, we get a KL divergence from the
true steady state distribution of 3:19� 10�4, which is lower than
that obtained by using the single household approximation.

The KL divergence for each approximation as we vary parame-
ters can be seen in Fig. 10. We observe the same trends we did pre-
viously, with the FPP approximation outperforming the SHH
approximation in regions of parameter space corresponding to
lower levels of infection.
4. Discussion

In this study we investigated the accuracy of different approxi-
mations to the steady state distribution of a system consisting of a
population of households undergoing stochastic SIS dynamics. It
was shown that at steady state, it is insufficient to consider the
stochastic dynamics of a single household (or equivalently, the
deterministic dynamics for the population of households). Instead,
a more refined model is required that considers all reactions
between households.

The difficulty with this new model lies in the complexity of the
system – it is no longer feasible to solve numerically in most situ-
ations. To that end, we looked at the accuracy and ease of
9

implementation of two different approximations, the single house-
hold approximation and the Fokker–Planck peak approximation.

In a low infection parameter regime, the FPP approximation
outperformed the SHH approximation, meaning the KL divergence
between the true solution (obtained numerically) and the solution
obtained from the FPP approximation was lower than that from the
SHH approximation. However, as we move into a higher infection
parameter regime (one with larger infection rates or smaller recov-
ery rates), the SHH outperforms the FPP approximation. This is
shown by varying two parameters at a time in Fig. 6. Thus, we
found that the accuracy of each approximation was closely related
to the prevalence associated with the region of parameter space we
are in. While it is an expected result that the SHH approximation
will perform better in a high infection parameter regime than in
a low infection parameter regime (as the different households
would synchronise more quickly), it is less clear as to whether
we would expect the SHH approximation to outperform the FPP
approximation in this scenario.

The FPP approximation works by taking the peak of the steady
state distribution produced using the Fokker–Planck equation. As
such, this approximation to the mean value is only valid when
the distribution is not skewed. However, we could expect the dis-
tribution to be more skewed when pushed into the corner of the
domain (corresponding to system state 0;0;Nð Þ), as here the
bounds of the region are having a larger impact on the steady state



Fig. 10. KL Divergence of the steady state obtained from FPP and SHH approximations when used to simulate a system forwards in time.
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distribution. This typically corresponds to a high infection param-
eter regime (as most households have two infectious individuals,
and very few have none). The SHH approximation does not depend
on the number of households in the system. As such, we may
expect this to perform less well at smaller population sizes.

Looking in closer detail at an example from each parameter
regime, it was observed that household states 2;0ð Þ and 1;1ð Þ in
systems in the low infection parameter regime were more strongly
correlated than those in a high infection parameter regime. This is
due to strong negative correlations (which are present between
susceptible and infectious individuals in stochastic models
Keeling and Rohani, 2008) primarily occurring along the diagonal
boundary of the domain. This suggested that the correlation
between household states may be a good statistic to identify which
approximation should be used, rather than having to investigate
the full 3-dimensional parameter space. While simulating trajecto-
ries with which to calculate the correlation can be costly, it can be
approximated by assuming the number of households in each state
follows a multinomial distribution. Fig. 8 shows that both methods
obtain similar KL divergences. It also shows that the FPP approxi-
mation is more accurate in high correlation parameter regimes,
while the SHH approximation is more accurate in low correlation
parameter regimes, with both methods performing similarly at a
correlation between �0.3 and �0.4. While there are some differ-
ences in the correlations obtained under each method, it is a broad
region of correlation values we are interested in, rather than speci-
fic values the correlation takes.
10
This behaviour can typically be explained by the way house-
holds move between states. A household cannot move between
states 2; 0ð Þ and 0;2ð Þ without first passing through 1;1ð Þ. In a
low infection parameter regime, most of the dynamics will be hap-
pening between household states 2;0ð Þ and 1;1ð Þ causing the cor-
relation between these household states to be stronger.
Conversely, in a high infection parameter regime, it is mostly inter-
action between household states 1;1ð Þ and 0;2ð Þ that will be occur-
ring, causing the correlation between these two states to be
stronger (and the correlation between 2;0ð Þ and 1;1ð Þ to be
weaker). However, we note that multiple household distributions
can produce the same prevalence while having different correla-
tions between household states 2;0ð Þ and 1;1ð Þ, and so prevalence
and correlation are not completely equivalent. This is particularly
noticeable in extreme scenarios whereby between–household
infection is largely replaced by a much higher level of within–
household infection. We note that correlation between household
states does not explain these edge cases any more successfully
than prevalence.

After analysing a system of 2-person households, a natural
extension was to consider larger household sizes. Due to computa-
tional constraints, only households up to size 4 were considered,
with the total population size remaining fixed. Fig. 9 shows that
for the parameter set considered, the FPP approximation outper-
formed the SHH approximation for populations of 2-person and
3-person households, but that the reverse was true for 4-person
households. It should be noted that the FPP KL divergence was sev-
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eral orders of magnitude lower for the 2-person household system,
but the KL divergence for both the FPP and SHH approximations
had the same order of magnitude when considering 3-person
households. This suggests the relative effectiveness of the FPP
approximation to the SHH approximation decreased as the house-
hold size increased. Therefore we conjecture that the accuracy of
one approximation relative to the other may depend on the com-
plexity of the system (as defined by the number of system states),
with the SHH approximation outperforming the FPP approxima-
tion in more complex systems.

Our motivation for investigating this problem was for simulat-
ing forward systems that have been parameterised at steady state.
In particular, we found that just using the SHH approximation to
obtain an between–household rate of infection, and then using this
between–household rate of infection to simulate the system for-
ward again to steady state didn’t produce the same steady state
we started at. Using the methodology we present here, there are
multiple ways of achieving this. In particular, we wanted to deter-
mine whether we could obtain a more accurate solution to this
problem using the FPP approximation. The results (displayed in
Fig. 10) are broadly consistent with the results obtained previ-
ously: the FPP approximation is more accurate in a low infection
parameter regime, while the SHH approximation is more accurate
than the FPP approximation in a higher infection parameter
regime.

There are a number of avenues not considered here that could
be considered in future work. Firstly, we only consider stochastic
SIS household structured models. Applying this methodology to a
wider range of models, such as SIR and SEIR models, would
increase its utility. However, difficulties will occur in finding exact
solutions to the master equations. One approach is to use a proxy
(e.g. simulating realisations using the Gillespie algorithm) for the
true solution. However, there will then be some error around any
results, and it is possible that this error could be greater than the
error in the approximations themselves making it difficult to
assess the validity of each approximation. Similarly, we considered
households of sizes 2,3 and 4. Further work should look at larger
household sizes to be sure that the trend (FPP becomes less accu-
rate, SHH becomes more accurate relative to FPP) continues. Distri-
butions of household sizes should also be investigated, to better
match real-world populations.

We considered two approximations in this work, the SHH and
FPP approximations. Whilst moment closure was not considered
here, it provides a more accurate approximation than the SHH
and FPP approximations at the expense of simplicity to derive.
Future work should look at other approximations to this system.
Finally, we have shown that correlation between households acts
as a good metric in determining which approximation is likely to
be more accurate. Further work should look into understanding
which correlations are most indicative of this when there are more
household states to consider.

For values of R0 close to 1, the FPP approximation may not pro-
vide valid solutions at all. As such, the FPP approximation should
only be used when R0 is sufficiently high. In this paper, we only
considered parameters that resulted in R0 > 1.05 to avoid any risk
of the FPP approximation not finding a valid approximation. The
results provided in Table 4 suggest the FPP approximation may
not be useful in more complicated systems (e.g. an SEIR model,
or a model with a larger household size) due to the decrease in
accuracy as the size of the state space increases.

In conclusion, we have shown that in order to accurately model
a population of households of size 2, it is necessary to fully con-
sider all interactions between states, even if just for analysing
the steady states of the model. We have shown that under certain
parameter regimes, the FPP approximation provides a more accu-
11
rate approximation than the SHH approximation and that in the
2-person household case, these parameter regimes are well classi-
fied by the correlation between two household states. There are
many future directions in which this work could be taken, includ-
ing investigating systems with a higher complexity (e.g. SEIR
model) and generalising the use of correlation as a metric to assess
the accuracy of each approximation.
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Appendix A. Appendices

A.1. Fokker–Planck derivation

The master equation for a population of N households of size
two, all undergoing SIS dynamics, can be written as follows

@pm;n

@t
¼ E1;�1 � 1
� �

am;npm;n þ E�1;1 � 1
� �

bm;npm;n þ E0;1 � 1
� �

cm;npm;n

þ E0;�1 � 1
� �

dm;npm;n;

with the following rates:

am;n ¼ a
N

nþ 2 N �m� nð Þð Þm

bm;n ¼ cn

cm;n ¼ a
2N

nþ 2 N �m� nð Þð Þ þ b
� �

n

dm;n ¼ 2c N �m� nð Þ;
We now want to derive the Fokker–Planck equation, a continu-

ous approximation to the master equation. To this end, we define
the following:

x ¼ m
N
; y ¼ n

N
; u x; y; tð Þ ¼ pm;n tð Þ;

A x; yð Þ ¼ am;n

N
; B x; yð Þ ¼ bm;n

N
C x; yð Þ ¼ cm;n

N
D x; yð Þ ¼ dm;n

N
:

Using this, we can write the master equation as follows

@u
@t

¼ N bE1;�1 � 1
� �

A x; yð Þu x; y; tð Þ þ N bE�1;1 � 1
� �

B x; yð Þu x; y; tð Þ

þ N bE0;1 � 1
� �

C x; yð Þu x; y; tð Þ þ N bE0;�1 � 1
� �

D x; yð Þu x; y; tð Þ;
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with

bEa;bf x; yð Þ ¼ f xþ a
N
; yþ b

N

� �
:

We can then calculate the multivariate Taylor expansion of this
operator up to second order.

bEa;b � 1þ a
N

@

@x
þ b
N

@

@y

þ 1
2!

a
N

� �2 @2

@x2
þ 2

a
N

� � b
N

� �
@2

@x@y
þ b

N

� �2
@2

@y2

" #
:

Substituting this into our master equation, we get

@u
@t ¼ N 1

N
@
@x � 1

N
@
@y þ 1

2N2
@2

@x2 � 2 @2

@x@y þ @2

@y2

n o� �
A x; yð Þu x; y; tð Þ

þN �1
N

@
@x þ 1

N
@
@y þ 1

2N2
@2

@x2 � 2 @2

@x@y þ @2

@y2

n o� �
B x; yð Þu x; y; tð Þ

þN 1
N

@
@y þ 1

2N2
@2

@y2

� �
C x; yð Þu x; y; tð Þ þ N �1

N
@
@y þ 1

2N2
@2

@y2

� �
D x; yð Þu x; y; tð Þ:

We can then combine terms into the matching derivatives, giv-
ing us the desired Fokker–Planck equation

@u
@t

¼ @

@x
A� Bð Þu x; yð Þf g þ @

@y
B� Aþ C � Dð Þu x; yð Þf g

þ 1
2N

@2

@x2
Aþ Bð Þu x; yð Þf g � 1

N
@2

@x@y
Aþ Bð Þu x; yð Þf g

þ 1
2N

@2

@y2
Aþ Bþ C þ Dð Þu x; yð Þf g:
A.2. Approximating solution from Fokker–Planck equation

We present the derivation of the FPP approximation from a FP
equation for the system, following the work presented in
Mendler et al. (2018).

Fokker–Planck equations take the following form

@p �x; tð Þ
@t

¼ �
X
i

@

@xi
f i �xð Þp �x; tð ÞÞ½ � þ 1

2N

X
i;j

@2

@xi@xj
Dij �xð Þp �x; tð Þ� �

: ð5Þ

We can manipulate the equation above in the following way

@p �x;tð Þ
@t ¼ �

X
i

@
@xi

f i barxð Þp barx; tð ÞÞ½ � þ 1
2N

X
i;j

@2

@xi@xj
Dij barxð Þp barx; tð Þ� �

¼ �
X
i

@
@xi

f i barxð Þp barx; tð Þ � 1
2N

X
j

@
@xj

Dij barxð Þp barx; tð Þ� �" #

¼ �
X
i

@
@xi

f i barxð Þp barx; tð Þ � 1
2N

X
j

Dij �xð Þ @p
@xj

� 1
2N

X
j

@Dij

@xj
p �x; tð Þ

" #

¼ �
X
i

@
@xi

f i �xð Þ � 1
2N

X
j

@Dij

@xj

 !
p �x; tð Þ � 1

2N

X
j

Dij �xð Þ @p
@xj

" #
:

In this form, the FPE takes the form of a continuity equation,
@p
@t ¼ � �r ��j, where

ji ¼ f i �xð Þ � 1
2N

X
j

@Dij

@xj

 !
p �x; tð Þ � 1

2N

X
j

Dij �xð Þ @p
@xj

is a probability current. We then define

�a �xð Þ ¼ f �xð Þ � 1
2N

X
ij

@Dij

@xj
�ei;

where �ei is a unit vector in the direction xi. We now consider the fol-
lowing system of ODES:
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d�x
dt

¼ �a �xð Þ:

This system is obtained by setting @p
@xj

¼ 0 8j, and so corresponds

to the maxima of the stationary probability density. Thus, to
approximate the probability density by these maxima, we simply
need to calculate steady states of this new system.

Applying this to our specific system, we obtain

�f ¼ B� A

A� Bþ D� C

� �
¼ �2axþ 2ax2 þ gyþ axy

2g þ 2a� 2gð Þx� 2ax2 � aþ bþ 3gð Þyþ a
2 y

2

 !
;

and the diffusion matrix

D ¼ Aþ B � Aþ Bð Þ
� Aþ Bð Þ Aþ Bþ C þ D

� �

¼ 2ax� 2ax2 þ cy� axy � 2ax� 2ax2 þ cy� axy
� �

� 2ax� 2ax2 þ cy� axy
� �

2c� 2ax2 þ aþ b� cð Þy� a
2 y

2 þ 2a� 2cð Þx� 2axy

 !
:

The FPP approximation is then obtained by solving the follow-
ing system of ODES:

d�x
dt

¼ �a �xð Þ;
A.3. n-Person households

As in the 2-person household case, we can derive the master
equation for SIS dynamics in the n-person household case, with
rates given in Table 3 as follows:

@pm

@t
¼
Xn�1

k¼0

E1;�1
k;kþ1 � 1

� �
ik;mpm þ

Xn�1

k¼0

E�1;1
k;kþ1 � 1

� �
rk;mpm;

where Ea;b
k1 ;k2

is a generalisation of the step operator we used before,

such that for k1 < k2,

Ea;b
k1 ;k2

f m1;m2; . . . ;mk1 ; . . . ;mk2 ; . . . ;mnþ1
� �

¼ f m1;m2; . . . ;mk1 þ a; . . . ;mk2 þ b; . . . ;mnþ1
� �

As we did in the n ¼ 2 case, we can derive the Fokker–Planck
equation. Doing this, we can define the deterministic drift vector
as the vector f with kth component

f k ¼ �
Xn
i¼0

Ii � Rið Þdi;k þ
Xn
i¼0

Ri � Iið Þdiþ1;k

" #
:

We can then define the diffusion matrix as the matrix D with
k; lð Þth component

Dkl ¼
Xn
i¼0

Ii þ Rið Þdi;kdi;l þ
Xn
i¼0

Ii þ Rið Þdi;kdiþ1;l þ
Xn
i¼0

Ii þ Rið Þdiþ1;kdi;l

þ
Xn
i¼0

Ii þ Rið Þdiþ1;kdiþ1;l;

which can then be used to calculate the FPP approximation for this
system.

A.4. Alternative metrics for assessing accuracy

We previously looked at how the KL divergence under each
approximation varies as we explore the parameter space. However,
there are a number of other metrics we could use instead of the KL
divergence. Here we consider how the steady state prevalence and
the variance of this prevalence changes as parameters vary. In



Fig. 11. Heatmaps showing the error in the prevalence (left column) and variance (right column) under the SHH (top row) and FPP (bottom row) approximations. Red areas
represent the approximation over-estimating the true value, while blue areas represent the approximation under-estimating the true value. Steady states were obtained for a
population of 500 households of size 2. In all four plots we take b ¼ 0:2.
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particular, we are interested in whether any of the approximations
systematically under- or over-estimate the true mean and vari-
ance. For each approximation, we calculate Dvar :¼ Varapprox
�VarTrue, and plot this difference as we vary a and b. We also do
the same for the error in the prevalence, with results for both the
prevalence and variance under each approximation shown in
Fig. 11. Unlike the results displayed in Fig. 6, here we instead cal-
culate an absolute error for each approximation, rather than the
error in one approximation relative to the other.

In Fig. 11, we see that the SHH approximation consistently over-
estimates the true prevalence of the system, while the FPP approx-
imation switches between over- and under-estimating the preva-
lence. However, we find that the FPP approximation only under-
estimates prevalence in regions of parameter space where R0 is
close to one (and so prevalence is low). Conversely, the FPP approx-
imation consistently under-estimates the variance, while the SHH
approximation switches between over- and under-estimating the
variance. However, we find that the SHH approximation only
over-estimates variance in regions of parameter space where R0

is close to one (and so prevalence is low).

A.5. Model code

All code used in producing these figures can be found athttps://
github.com/aholmes95/PhD/tree/master/Approximations%20Paper
13
References

Ball, Frank, Lyne, Owen, 2001. Stochastic multi-type sir epidemics among a
population partitioned into households. Adv. Appl. Prob. 33: 99–123.
doi:10.1017/S000186780001065X..

Ball, Frank, Mollison, Denis, Scalia-Tomba, Gianpaolo, 1997. Epidemics with two
levels of mixing. Ann. Appl. Probab., 7 (1): 46–89, 02 1997. doi:10.1214/aoap/
1034625252. url: https://doi.org/10.1214/aoap/1034625252..

Black, Andrew J., House, Thomas, Keeling, M.J., Ross, J.V., 2013. Epidemiological
consequences of household-based antiviral prophylaxis for pandemic influenza,
J. R. Soc. Interface 10 (81): 20121019, 2013. doi:10.1098/rsif.2012.1019. url:
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2012.1019..

Black, Andrew J, Thomas House, Matt J Keeling, Joshua V. Ross, 2014. The effect of
clumped population structure on the variability of spreading dynamics, J. Theor.
Biol., 359: 45–53. ISSN 0022–5193. doi:10.1016/j.jtbi.2014.05.042. url: https://
www.sciencedirect.com/science/article/pii/S0022519314003312..

Dickman, Ronald, Vidigal, Ronaldo, Jan 2002. Quasi-stationary distributions for
stochastic processes with an absorbing state. J. Phys. A: Math. Gen. 35 (5),
1147–1166. https://doi.org/10.1088/0305-4470/35/5/303. url:https://doi.org/
10.1088.

Dyson, Louise, Michael Marks, Oliver M. Crook, Oliver Sokana, AnthonyW. Solomon,
Alex Bishop, David C.W. Mabey, T Déirdre Hollingsworth, 2017. Targeted
Treatment of Yaws With Household Contact Tracing: How Much Do We Miss?
Am. J. Epidemiol. 187(4) (2017) 837–844. ISSN 0002–9262. doi:10.1093/aje/
kwx305. url:https://doi.org/10.1093/aje/kwx305..

Ball, Frank, Neal, Peter, 2002. A general model for stochastic sir epidemics with two
levels of mixing. Mathematical Biosciences, 180 (1): 73–102. ISSN 0025–5564.
doi:10.1016/S0025-5564(02)00125-6. url:http://
www.sciencedirect.com/science/article/pii/S0025556402001256..

Fraser, Christophe, Cummings, Derek A.T., Klinkenberg, Don, Burke, Donald S.,
Ferguson, Neil M., 2011. Influenza Transmission in Households During the 1918
Pandemic. Am. J. Epidemiol. 174 (5): 505–514.. ISSN 0002–9262. doi:10.1093/
aje/kwr122. url: https://doi.org/10.1093/aje/kwr122..

https://github.com/aholmes95/PhD/tree/master/Approximations%20Paper
https://github.com/aholmes95/PhD/tree/master/Approximations%20Paper
https://doi.org/10.1214/aoap/1034625252
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2012.1019
https://www.sciencedirect.com/science/article/pii/S0022519314003312
https://www.sciencedirect.com/science/article/pii/S0022519314003312
https://doi.org/10.1088/0305-4470/35/5/303
http://www.sciencedirect.com/science/article/pii/S0025556402001256
http://www.sciencedirect.com/science/article/pii/S0025556402001256
https://doi.org/10.1093/aje/kwr122


A. Holmes, M. Tildesley and L. Dyson Journal of Theoretical Biology 534 (2022) 110974
Gardiner, C.W., 2004. Handbook of stochastic methods for physics, chemistry and
the natural sciences, volume 13 of Springer Series in Synergetics. Springer-
Verlag, Berlin, third edition. ISBN 3-540-20882-8..

Hahl, Sayuri K., Kremling, Andreas, 2016. A comparison of deterministic and
stochastic modeling approaches for biochemical reaction systems: On fixed
points, means, and modes. Frontiers in Genetics, 7: 157. ISSN 1664–8021.
doi:10.3389/fgene.2016.00157. url: https://www.frontiersin.org/article/10.
3389/fgene.2016.00157..

Hilton, Joe, Keeling, Matt J., 2019. Incorporating household structure and
demography into models of endemic disease. J. R. Soc. Interface 16 (157),
20190317. https://doi.org/10.1098/rsif.2019.0317. url:https://
royalsocietypublishing.org/doi/abs/10.1098/rsif.2019.0317.

Holmes, A., Tildesley, M.J., Solomon, A.W., Mabey, D.C.W., Sokana, O., Marks, M.,
Dyson, L., 2020. Modeling treatment strategies to inform yaws eradication.
Emerg. Infect Dis. 26 (11), 2685–2693 [PubMed Central:PMC7588528]
DOI:10.3201/eid2611.191491.

House, T., Keeling, M.J., 2009. Household structure and infectious disease
transmission. Epidemiol. Infection 137 (5), 654–661. https://doi.org/10.1017/
S095026880800141.

Iman, Ronald L., 2014. Latin Hypercube Sampling. American Cancer Society. ISBN
9781118445112. doi:10.1002/9781118445112.stat03803. url:https://
onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat03803..

Keeling, Matt J., 2000. Metapopulation moments: coupling, stochasticity and
persistence. J. Anim. Ecol. 69 (5), 725–736. https://doi.org/10.1046/j.1365-
2656.2000.00430.x. url: https://besjournals.onlinelibrary.wiley.com/doi/abs/
10.1046/j.1365-2656.2000.00430.x.

Keeling, Matt J., Rohani, Pejman, 2008. Modeling Infectious Diseases in Humans and
Animals. Princeton University Press. ISBN 9780691116174, url: http://www.
jstor.org/stable/j.ctvcm4gk0.

Keeling, M.J., Ross, J.V., 2008. On methods for studying stochastic disease dynamics.
J. R. Soc. Interface 5 (19), 171–181. https://doi.org/10.1098/rsif.2007.1106. url:
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2007.1106.
14
Kinyanjui, T.M., Pellis, L., House, T., 2016. Information content of household-
stratified epidemics. Epidemics, 16: 17–26. ISSN 1755–4365. doi:10.1016/j.
epidem.2016.03.002. url: http://www.sciencedirect.com/science/article/pii/
S175543651630010X..

Kuehn, Christian, 2016. Moment Closure—A Brief Review, pages 253–271. Springer
International Publishing, Cham. ISBN 978-3-319-28028-8. doi:10.1007/978-3-
319-28028-8_13. url:https://doi.org/10.1007/978-3-319-28028-8_13..

Kullback, Solomon, Leibler, Richard, 1951. On information and sufficiency. Ann.
Math. Stat., 22: 79–86. doi:10.1214/aoms/1177729694..

Mendler, Marc, Johannes Falk, Barbara Drossel, 2018. Analysis of stochastic
bifurcations with phase portraits. PLOS ONE, 13 (4): 1–20. doi:10.1371/
journal.pone.0196126. url:https://doi.org/10.1371/journal.pone.0196126..

Mubayi, Anuj, Christopher Kribs, Viswanathan Arunachalam, Carlos Castillo-Chavez,
2019. Chapter 5 – studying complexity and risk through stochastic population
dynamics: Persistence, resonance, and extinction in ecosystems. In Arni S.R.
Srinivasa Rao and C.R. Rao, editors, Integrated Population Biology and Modeling,
Part B, volume 40 of Handbook of Statistics, pages 157 – 193. Elsevier, 2019.
doi:10.1016/bs.host.2018.11.001. url: http://www.sciencedirect.com/science/
article/pii/S0169716118300944..

Pellis, L., Ferguson, N.M., Fraser, C, 2009. Threshold parameters for a model of
epidemic spread among households and workplaces. Journal of the Royal
Society, Interface, 6 (40): 979–987. ISSN 1742–5689. doi:10.1098/
rsif.2008.0493. url: https://europepmc.org/articles/PMC2827443..

Ross, Joshua V., Thomas House, Matt J. Keeling, 2010. Calculation of disease
dynamics in a population of households. PLOS ONE, 5 (3): 1–9. doi:10.1371/
journal.pone.0009666. url: https://doi.org/10.1371/journal.pone.0009666..

Van Kampen, N.G., 2007. Stochastic processes in physics and chemistry. North
Holland.

Wu, Joseph T., Riley, Steven, Fraser, Christophe, Leung, Gabriel M., 2006. Reducing
the impact of the next influenza pandemic using household-based public health
interventions. PLOS Med., 3 (9): 1–9. doi:10.1371/journal.pmed.0030361. url:
https://doi.org/10.1371/journal.pmed.0030361..

https://www.frontiersin.org/article/10.3389/fgene.2016.00157
https://www.frontiersin.org/article/10.3389/fgene.2016.00157
https://doi.org/10.1098/rsif.2019.0317
http://refhub.elsevier.com/S0022-5193(21)00394-5/h0060
http://refhub.elsevier.com/S0022-5193(21)00394-5/h0060
http://refhub.elsevier.com/S0022-5193(21)00394-5/h0060
http://refhub.elsevier.com/S0022-5193(21)00394-5/h0060
https://doi.org/10.1017/S095026880800141
https://doi.org/10.1017/S095026880800141
https://doi.org/10.1046/j.1365-2656.2000.00430.x
https://doi.org/10.1046/j.1365-2656.2000.00430.x
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2656.2000.00430.x
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2656.2000.00430.x
http://www.jstor.org/stable/j.ctvcm4gk0
http://www.jstor.org/stable/j.ctvcm4gk0
https://doi.org/10.1098/rsif.2007.1106
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2007.1106
http://www.sciencedirect.com/science/article/pii/S175543651630010X
http://www.sciencedirect.com/science/article/pii/S175543651630010X
http://www.sciencedirect.com/science/article/pii/S0169716118300944
http://www.sciencedirect.com/science/article/pii/S0169716118300944
https://europepmc.org/articles/PMC2827443
https://doi.org/10.1371/journal.pone.0009666
http://refhub.elsevier.com/S0022-5193(21)00394-5/h0125
http://refhub.elsevier.com/S0022-5193(21)00394-5/h0125
https://doi.org/10.1371/journal.pmed.0030361

	Approximating steady state distributions for household structured epidemic models
	1 Introduction
	2 Methods
	2.1 Master equation
	2.2 Quasi-steady state
	2.2.1 Single household (SHH) approximation
	2.2.2 Fokker–Planck peak approximation

	2.3 Phase portraits and correlation
	2.4 n-Person households
	2.5 Simulating forward steady state master equations

	3 Results
	3.1 KL divergence from ME
	3.2 Phase portraits and correlation

	4 Discussion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Funding declaration
	Appendix A Appendices
	A.1 Fokker–Planck derivation
	A.2 Approximating solution from Fokker–Planck equation
	A.3 n-Person households
	A.4 Alternative metrics for assessing accuracy
	A.5 Model code

	References


