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Learning-Based Attitude Tracking Control with
High-Performance Parameter Estimation

Hongyang Dong, Xiaowei Zhao, Qinglei Hu, Haoyang Yang, and Pengyuan Qi

Abstract—This paper aims to handle the optimal attitude
tracking control tasks for rigid bodies via a reinforcement
learning-based control scheme, in which a constrained parameter
estimator is designed to compensate system uncertainties accu-
rately. This estimator guarantees the exponential convergence
of estimation errors and can strictly keep all instant estimates
always within pre-determined bounds. Based on it, a critic-
only adaptive dynamic programming (ADP) control strategy is
proposed to learn the optimal control policy with respect to a
user-defined cost function. The matching condition on reference
control signals, which is commonly employed in relevant ADP
design, is not required in the proposed control scheme. We prove
the uniform ultimate boundedness of the tracking errors and
critic weight’s estimation errors under finite excitation conditions
by Lyapunov-based analysis. Moreover, an easy-to-implement
initial control policy is designed to trigger the real-time learning
process. The effectiveness and advantages of the proposed method
are verified by both numerical simulations and hardware-in-loop
experimental tests.

Index Terms—Attitude tracking control; adaptive dynamic
programming; parameter estimation; adaptive control.

I. INTRODUCTION

The attitude control problem has aroused extensive attention
[1], [2], due to its essential applications in aerospace and
mechanical engineering. Various control techniques, such as
passivity-based control [3] and sliding mode control [4], [5],
have been successfully employed to solve attitude stabilization,
maneuver, and tracking control problems. However, these
methods usually lack the ability to balance the closed-loop
performance and control cost. Such a trade-off is important for
many practical tasks (e.g., fuel and electricity, which are con-
trol costs, are the most valuable resources for on-orbit satellites
especially in deep-space missions). In this sense, optimal
control is a more suitable choice. However, given the high
complexity of attitude control systems, analytically solving
the corresponding Hamilton-Jacobi-Bellman (HJB) equations
is challenging, especially in tracking cases. Ref. [6] presented
an inverse optimal approach for attitude regulation, which
avoided directly solving the HJB equation. Sharma and Tewari
[7] proposed an optimal solution for attitude maneuvers for a
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specific class of rigid bodies with diagonal inertia matrices.
Nevertheless, these elegant results require information on full
system dynamics. Due to various issues, including structure
changes, payload movement, and fuel consumption, parameter
uncertainties are common and inevitable problems that restrict
the applications of most existing optimal control methods.
For tracking cases, though adaptive control approaches, e.g.
[8], [9], can realize attitude tracking objectives subject to
uncertainties, these results have no optimizing abilities. They
thus may potentially lead to high control costs. Luo et al. [10]
extended the result in [6] and proposed an adaptive attitude
tracking controller based on the inverse optimal approach.
But this elegant result can only be applied to special cost
functions. To sum up, the incompatibility between optimizing
and adapting abilities has become a severe bottleneck in
the development of optimal attitude tracking control systems
subject to uncertain parameters.

Adaptive dynamic programming (ADP) [11], [12], [13],
[14], which is a class of control strategies based on rein-
forcement learning, is a promising tool to address the afore-
mentioned technical challenge. ADP has aroused enormous
interest and attention recently. Its fundamental principle is to
improve control policy by properly evaluating feedbacks from
environments, avoiding directly analytically solving the HJB
equations. In tracking cases, forgetting factors [15], [16] can
be employed in ADP to address the issue induced by the
nonautonomous nature of systems (which leads the original
cost functions to become ill-defined and time-varying). An
ADP-based model-free tracking control method was proposed
in [17], in which an approximated preview of the desired
reference trajectory was designed. To avoid introducing for-
getting factors into the cost functions, Kamalapurkar et al.
[18], [19] reformulated the optimal tracking problems to be
optimal stationary problems. They employed reference signals
as augmented states, addressing the issues induced by the
nonautonomous nature. A drawback of the excellent results in
[18], [19] is the requirement of explicit matching conditions
on reference signals, which are usually strong or subject to
the precise knowledge of system models. Moreover, there
are severe technical barriers to the design of ADP-based
controllers for attitude tracking problems: 1) General attitude
tracking control problems require tracking state trajectories
instead of reference control signals. Therefore, the reference
control signal is not prior information and must be deduced
by system dynamics. Thus, no explicit matching conditions
can be ensured subject to system uncertainties. 2) Parameter
uncertainties are inevitable issues of on-orbit spacecraft. This
issue leads to additional difficulties to design ADP-based atti-
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tude tracking controllers. Parameter estimators with inadequate
performance may result in inaccurate estimations of reference
control signals and significantly degrade the overall tracking
control performance.

Motivated by these facts and built upon the results in [20],
[12], [14], [18], [19], [21], we design a special ADP controller
for attitude tracking control tasks in this paper. A novel param-
eter estimator is proposed to estimate parameters. Based on it,
the optimal tracking control task is equivalently transformed
to an optimal stationary task. After that, a critic structure is
designed to learn control policies. The boundedness of the
closed-loop system is guaranteed via Lyapunov-based analysis.
We summarize this paper’s main contributions as follows.

1) A novel high-performance parameter estimator is de-
signed. Distinct from conventional adaptive estimation meth-
ods [22] and the advanced concurrent-learning-based methods
[23], [24], [25], our estimator has the ability to keep all
instantaneous estimates within pre-determined bounds strictly.
In addition, it ensures estimation errors converge to zero ex-
ponentially under relaxed excitation conditions. These features
are essential for the proposed ADP controller and also the
initial control policy.

2) In comparison with the ADP-based tracking control
approaches in [18], [19], our controller does not require
the explicit matching condition or prior knowledge on the
reference control signal. Instead, the reference control signal
is estimated online based on the estimator and employed to
reformulate the tracking dynamics. This framework enhances
the generality and flexibility of the whole control strategy.

3) Per practical implement concerns, we show that a pro-
portional derivative (PD)-like controller, along with the pro-
posed parameter estimator, can be employed to initialize the
online learning process. This also indicates that the proposed
controller can bring a commonly-employed tracking controller
the essential optimizing ability in real-time.

4) The effectiveness of our controller is verified by both
numerical simulations and hardware-in-loop experiments.

In the remainder of this paper, we formulate the considered
control problem in Sec. II. After that, the parameter estimator
and the ADP-based controller are proposed in Sec. III. Simu-
lation and experiment results are provided in Sec. IV, and then
we conclude our work in Sec. V.

II. PROBLEM FORMULATION

A. Problem Formulation
Notations: We employ ∥ · ∥ to denote the Euclidean norm.

Post-superscript ·x means a vector is expressed in a coordinate
system Fx. S(·) indicates the skew-symmetric matrice. In
addition, we employ λmin(·) and λmax(·) to denote a matrix’s
minimum and maximum eigenvalues, respectively.

Unit quaternions are employed to describe the attitude
model. We use Fb, Fi, and Fr to denote the body-fixed frame,
the inertial frame, and the reference frame, respectively. In
attitude tracking control problems, Fb is required to track the
motion of Fr, which renders the following error kinematics
and dynamics [26]

q̇br =
1

2
E(qbr)ω

b
br, E(qbr) =

[
−ξTbr

ζbrI3×3 + S(ξbr)

]
(1)

Jω̇bbr = −S(ωbbi)Jωbbi + J [S(ωbbr)ω
b
ri − C(qbr)ω̇

r
ri] + u (2)

where qbr = [ζbr, ξ
T
br]

T denotes a relative unit quaternion of Fb
w.r.t. Fr, and here ζbr = cos(ϑbr/2) and ξbr = sin(ϑbr/2)ebr
are called the quaternion qbr’s scalar part and vector part,
respectively, with ϑbr and ebr are the Euler eigenangle and
eigenaxis of qbr. Moreover, one has ζ2br + ξTbrξbr = 1.
One can refer to [26] for more detailed introduction and
explanation of the quaternion, the Euler eigenagle & eigneaxis,
and their relationships. In addition, ωbbr denotes the relative
angular velocity, ωrri is the reference angular velocity, ωbri
is the coordinate transformation of ωrri in Fb, u denotes the
control signal, and C(·) is the transformation matrix defined
by C(qbr) = I3×3 − 2ζbrS(ξbr) + 2S2(ξbr). The reference
quaternion qri and angular velocity ωrri are both user-defined
signals, satisfying q̇ri = 0.5E(qri)ω

r
ri and ωrri, ω̇

r
ri ∈ L∞.

Also, J denotes the inertia matrix, which is unknown for
controller design.

Following the strategy in [18], [19], the control input u is
decomposed to a virtual reference control signal ur and an
optimal part uo, such that u = ur + uo. Unlike [18], [19], in
which ur can be directly obtained through the assumption of
matching conditions, we construct the virtual reference control
signal to be

ur = JC(qbr)ω̇
r
ri + S(ωbri)Jω

b
ri = Yrθ (3)

where θ = [J11, J12, J13, J22, J23, J33]
T is a vector form of

J , and Yr is a regressor matrix. It is noteworthy that since the
analytical expression of JC(qbr)ω̇rri+S(ω

b
ri)Jω

b
ri is available,

one can deduce the expression of the regressor matrix Yr by
taking Jacoibian of JC(qbr)ω̇rri+S(ωbri)Jω

b
ri with respect to

θ, while without requiring any specific parameter value of θ.
Substituting ur back into (2) renders

Jω̇bbr = −S(ωbbi)(Jωbbi)+JS(ωbbr)ωbri+S(ωbri)Jωbri+uo (4)

One can readily verify that qbr → qI , ωbbr → 03×1 and
uo → 03×1 are the closed-loop system’s equilibrium, and
here qI = [1, 0, 0, 0]T. Thus, by designing ur, the original
attitude tracking control problem is reformulated by (1) and
(4). We aim to minimize the following performance metric by
designing uo.

U =

∫ ∞

0

[r(τ) + uTo (τ)Ruo(τ)]dτ (5)

here r = (qbr−qI)TQq(qbr−qI)T+(ωbbr)
TQωω

b
br, and Qq ∈

R4×4, Qω ∈ R3×3 and R ∈ R3×3 are positive-definite.
However, since θ is unknown, only its estimation can be

employed in the controller design. Therefore, ur also needs to
be estimated, formalized by ûr = Yr θ̂. Here ûr and θ̂ denote
the estimates of ur and θ, respectively. A novel parameter
estimator will be designed in Sec.III.A to address this issue.

B. Optimal Solution Analysis

To formulate the optimal attitude tracking control task, the
system model is re-organized to the following governing form

η̇ = F (η) +Guo (6)
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where η = [(qbr − qI)
T, (ωbbr)

T, (qri −
qI)

T, (ωrri)
T, (ω̇rri)

T]T = [ηT1 , η
T
2 , η

T
3 , η

T
4 , η

T
5 ]

T, and

F (η) =


0.5E(η1 + qI)η2

(Y + Yr)θ
0.5E(η3 + qI)η4

η5

 , G =


04×3

I3×3

04×3

03×3

 .
Besides, Y is a regressor matrix satisfying Y θ =

−S(ωbbi)(Jωbbi) + J [S(ωbbr)ω
b
ri − C(qbr)ω̇

r
ri].

Based on the cost index U , we define a cost function (or
called performance metric) in the following equation.

V =

∫ ∞

t

[r(τ) + uTo (τ)Ruo(τ)]dτ (7)

We denote the optimal control policy and cost function by
u∗o and V ∗, respectively. As discussed in [18], [19], V ∗ is
a time-invariant function of η, and it satisfies the so-called
Hamiltonian function [27], [28]:

H(η, uo,∇ηV ) = ∇T
η V [F +Guo] + r + uToRuo = 0 (8)

By taking the partial differential for Eq. (8), one can get the
closed-form optimal control policy: u∗o = −0.5R−1GT∇ηV

∗.
Then the HJB equation in terms of ∇ηV

∗ can be obtained by
introducing u∗o back into Eq. (8):

r +∇T
η V

∗F − 1

4
∇T
η V

∗GR−1GT∇ηV
∗ = 0 (9)

Conventional optimal control methods aim to directly solve
the analytical solutions for u∗o and V ∗. However, as discussed
in Introduction, such a task is challenging for the attitude
tracking systems subject to uncertainties. We address this non-
trivial task by adaptive dynamic programming (ADP) [27].
ADP is a state-of-the-art control method that combines the
ideas of reinforcement learning and dynamic programming
(DP), which learns through environment feedback instead of
directly solving optimal control problems. It addresses the
“curse of dimensionality” problem in DP. In this paper, a
special parameter-estimator-based ADP approach is developed
to learn the optimal solutions of Eq. (9), in which a novel
parameter estimator is designed for system uncertainty com-
pensation and a critic structure is introduced to estimate ∇ηV

∗

and u∗o.

III. PARAMETER-ESTIMATOR-BASED CRITIC-ONLY ADP

A. Parameter Estimator Design

The parameter estimator plays an essential role in the
attitude tracking control problem considered here. As shown
in the last section, system uncertainties influence the design
of both ur and uo. Besides, for many practical systems such
as on-orbit satellites, though the inertia matrix J is usually
unknown, it is trivial to have prior knowledge about its lower
and upper bounds based on the structure and component
information. To be specific, there exist θk,min, θk,max ∈ R,
such that θk ∈ (θk,min, θk,max), and here θk denotes the
kth entry, k = 1, 2, ..., 6. The estimates out of these bounds
make no sense and potentially degrade the performance of
the whole estimation process. Moreover, conventional online
estimators/identifiers usually require system states or control

signals to satisfy the persistence explication (PE) condition
[23] to guarantee precise estimation. However, such conditions
are quite strong and unattainable for attitude control systems.
To address these issues, we propose a parameter estimator
that achieves exponential convergence under relaxed excitation
conditions. Our design also ensures instant estimates are
always within pre-determined bounds.

Recalling the definition of the regressor matrix Y , the
original attitude tracking dynamics (2) can be re-organized
to a compact form: Jω̇br = Y θ + u. Then we construct the
following filtered variables

Ẏf (t) = −αYf (t) + Y (t), Yf (0) = 03×6

u̇f (t) = −αuf (t) + u(t), uf (0) = 03×1

ω̇f (t) = −αωf (t) + ωbbr(t), ωf (0) = (1/α)ωbbr(0)

(10)

where α is a user-defined positive constant. Based on Eq. (10),
one has

d

dt
(Jω̇f − Yfθ − uf ) = −α(Jω̇f − Yfθ − uf ) (11)

Therefore,
Jω̇f = Yfθ + uf + γ (12)

and here the term γ(t) = γ(0)e−αt is vanishing exponentially.
Based on Eqs. (10)-(12), the initial condition of γ satisfies

γ(0) = J [−αωf (0) + ωbbr(0)]− Yf (0)− uf (0)

Here Yf (0), uf (0) and ωf (0) are expected to be properly
chosen such that γ(0) = 0, which can further ensure ∀t ≥
0, γ(t) ≡ 0. One can readily verify that the settings given in
Eq. (10) satisfy such a requirement. Therefore, Eq. (12) shows

uf = Jω̇f − Yfθ (13)

The above equation indicates that the filtered signal uf
contains the information of unknown parameters. Another
important fact is that, ω̇f is available for the parameter
estimator design (since it only relies on the information of
ωbbr). These facts are our key motivations of employing the
filtering structure in Eq. (10).

In order to keep instantaneous estimates always within user-
defined bounds, we define a projection law in the following
equation.

θk = (θk,max − θk,min)sig(ψk) + θk,min (14)

with sig(·) : R → (0, 1) is the sigmoid function. We employ
the sigmoid function because it is a smooth function that can
project x ∈ (−∞,+∞) to sig(x) ∈ (0, 1). Other alternatives
can also be considered, such as the tanh function, but then
the projection law in Eq. (14) also needs to be re-designed.
Based on Eq. (14), one can see that θk on (θk,min, θk,max) is
projected to ψk on R, for k = 1, 2, ..., 6.

Theorem 1: Given the original attitude tracking model in
(2) and the filtered dynamics in (12), designing the following
parameter update law

˙̂
ψ(t) =− µ1(Y

T
θ (t)Yθ(t)θ̂(t)− Y T

θ (t)uf (t))

− µ2

l∑
i=1

(Y T
θ (ti)Yθ(ti)θ̂(t)− Y T

θ (ti)uf (ti))
(15)
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here µ1 and µ2 are positive constants, and θ̂ and ψ̂ are
respectively the orginal & projected estimates of θ. Yθ is an
auxiliary regressor matrix satisfying Yθθ = Jω̇f − Yfθ, and
ti denotes time indices with 0 ≤ ti ≤ t, i = 1, 2, ...l. Taking

θ̂k = (θk,max − θk,min)sig(ψ̂k) + θk,min (16)

with θ̂k and ψ̂k are the kth entries of θ̂ and ψ̂, respectively.
Then the estimation error is bounded, and all instantaneous
estimates are within the pre-determined bounds: ∀t ≥ 0,
θ̂k(t) ∈ (θk,min, θk,max). Moreover, if

∑l
i=1 Y

T
θ (ti)Yθ(ti) is

full-rank, one has θ̃ = θ̂ − θ exponentially converges to zero.
Proof: See Appendix A.
Remark 1: The idea of introducing both real-time

measurements [Y T
θ (t)Yθ(t)] and past measurements

[
∑l
i=1 Y

T
θ (ti)Yθ(ti)] into the estimation law is inspired

by the concurrent learning (CL) method proposed in [23],
[24]. This design ensures the convergence of θ̃ under
the requirement that

∑l
i=1 Y

T
θ (ti)Yθ(ti) is full-rank. This

requirement is much weaker than conventional online
estimation/identification methods, which require Yθ to satisfy
the persistent excitation condition.

Remark 2: Significantly distinct from the CL method and its
recent advances [23], [24], [25], [19], our parameter estimator
has the ability to keep all instantaneous estimates within
user-defined bounds. Moreover, we strictly prove that θ̃ can
converge exponentially under the projected framework. In
addition, the original CL method requires the information of
immeasurable state (which is ω̇bbr in our study). This issue is
addressed by the filtering structure in our design (as shown in
Eqs. (10)-(13)). All these important results show the proposed
estimator’s advantages and greatly enhance our ADP-based
control strategy’s performance and applicability.

B. Parameter-Estimator-Based ADP Controller Design
In this section, we design a parameter-estimator-based ADP

controller to approxiamte the optimal control policy. Accord-
ing to the Weierstrass approximation theorem, for η ∈ X ,
with X denotes a compact set, a set of basis functions
σ(η) = [σ1(η), σ2(η), ..., σp(η)]

T ∈ Rp can be employed to
approximate V ∗, formalized by

V ∗ =WTσ(η) + ϵ(η) (17)

where σi(η) satisfies σi(0) = 0 and (dσi/dη)|η=0 = 0, i =
1, 2, ..., p. Moreover, the vector W ∈ Rp is the weight of basis
functions, and the term ϵ(η) ∈ R denotes the error induced by
reconstruction. Based on that, we have

u∗o = −1

2
R−1GT(∇ησW +∇ηϵ) (18)

Given the reconstruction in Eqs. (17) and (18), the critic
aims to evaluate the unknown weight vector W such that the
following function can approximate the optimal cost function
V ∗ as in (17),

V = ŴTσ (19)

where Ŵ denotes the estimate of W . If Ŵ → W , the critic
can provide a good estimate for the Hamiltonian as follows.

Ĥ(η, u∗o, Ŵ
T∇T

η σ) = ŴT∇T
η σ(F̂ +Gu∗o) + r + (u∗o)

TRu∗o
(20)

Here F̂ is the guess of F in which θ is estimated by θ̂.
Moreover, we define δb in the following equation as the
approximation error of the Hamiltonian (or referred to as the
Bellman error).

δb = Ĥ(η, u∗o, Ŵ
T∇T

η σ)−H(η, u∗o,∇ηV
∗) (21)

Recall the fact that H(η, u∗o,∇ηV
∗) = 0, we have

δb = Ĥ(η, u∗o, Ŵ
T∇T

η σ)

A commonly-used strategy [20], [11], [12] for critic training
is updating ˙̂

W in order to minimize the squared Bellman
error E = 0.5δ2b , and an approximate control law: û =
−0.5R−1GT∇ησŴ is employed during the learning process.
Based on (20) and the normalized gradient descent algorithm,
one can minimize E by designing the following weight update
law [11], [12]

˙̂
W =− c1

1

(ϖT(t)ϖ(t) + 1)2
∂E

∂Ŵ

=− c1
ϖ

(ϖT(t)ϖ(t) + 1)2
(ϖTŴ + r + uToRuo)

(22)

where the positive constant c1 is user-defined, and ϖ =
∇T
η σ(F̂ +Guo). Recall the property of Hamiltonian, one can

show that Eq. (22) is equivalent to

˙̂
W = −c1

ϖ

(ϖT(t)ϖ(t) + 1)2
(ϖTW̃ +W∇T

η σF̃ − ϵH) (23)

where W̃ = Ŵ −W , F̃ = F̂ −F , and ϵH = −∇T
η ϵ(F +Gu∗o)

denotes the residual error [11], [12].
In this paper, we employ both past & real-time measure-

ments to update ˙̂
W . This is built upon the concurrent learning

(CL) approach [19], [23], [12], aiming to improve the critic
updating performance. Before providing the design details of
our ˙̂

W , we make several assumptions as follows.
Assumption 1: For η ∈ X , where X can be any compact

set, one has ϵ, ∇ηϵ and ϵH are bounded. Moreover, these
reconstruction and residual errors go to zero if sufficient basis
functions are selected.

Assumption 2: The variable D = ∇T
η σGRG

T∇ησ is
bounded. Therefore, there exists a constant bD > 0 so that
∥D∥ ≤ bD for η.

Assumption 3: The variable ϕ = ϖ/(ϖTϖ+ 1) follows an
finite excitation (FE) condition [23]. To be specific, there exist
tw1, tw2, cw with 0 ≤ tw1 ≤ tw2 ≤ t and cw > 0 such that∫ tw2

tw1
ϕ(τ)ϕT(τ)dτ ≥ cwIp×p.

Assumption 4: The initial control policy uo is admissible on
the whole state definition domain and can stabilize the system
(6) from any initial condition.

We note that the assumptions 1 & 2 are standard [20], [29],
[11], [12], [30]. The assumption 3 is mild for attitude tracking
dynamics. The last assumption is given the fact that the attitude
tracking system is controllable on the whole state definition
domain. More importantly, the assumption 4 ensures that the
initial controller can keep system states inside a compact set
X , which lays the foundation for the application of Weierstrass
approximation.
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For ease of notations, we define the following auxiliary vari-
ables ς = ϖTϖ + 1, φ1 = ϕϕT, and φ2 = ϕ(r + uToRuo)/ς .
Then we design the critic’s update law as follows,

˙̂
W (t) =− c1

ϖ

(ϖT(t)ϖ(t) + 1)2
(ϖTŴ + r + uToRuo)

− c2Ξ(t, tw2, tw1)
(24)

with c1, c2 > 0. In addition, Ξ(t, tw2, tw1) =
ξ1(tw2, tw1)Ŵ (t) + ξ2(tw2, tw1) with

ξ̇1(t, tw1) = −κξ1(t, tw1) + φ1(t), ξ1(tw1) = 0p×p (25)

ξ̇2(t, tw1) = −κξ2(t, tw1) + φ2(t), ξ2(tw1) = 0p×1 (26)

Based on the definition of Ξ, we have

Ξ(t, tw2, tw1) =

∫ tw2

tw1

e−κ(tw2−τ)(φ1(τ)Ŵ (t) + φ2(τ))dτ

= ξ1(tw2, tw1)W̃ (t) + Ω(tw2, tw1)
(27)

where ξ1(tw2, tw1) =
∫ tw2

tw1
e−κ(tw2−τ)ϕ(τ)ϕT(τ)dτ functions

as an information matrix which “stores” the information of
ϖ throughout the time interval [tw1, tw2], and Ω(tw2, tw1) =∫ tw2

tw1
e−κ(tw2−τ)[W∇ησ(τ)F̃ (τ) + ϵH(τ)]ϕ(τ)/ς(τ)dτ de-

notes a constant error vector. With the assumption 3, we have
ξ1(tw2, tw1) ≥ cΦ, and here cΦ = e−κ(tw2−tw1)cw. Based
on these preliminaries, we are ready to propose our ADP
controller.

Theorem 2: Considering the governing model in (6),
the estimator proposed in Theorem 1 with assumption of∑l
i=1 Φ(ti) is full-rank, and the critic-only ADP strategy

uo = −1

2
R−1GT∇ησŴ . (28)

Under Assumptions 1-4, designing the update law of critic
weights as (24). Then W̃ , ξbr and ωbbr are uniformly ultimately
bounded (UUB).

Proof: See Appendix B.
Remark 3: Theorem 2 shows that tracking errors and critic

weight’s estimation errors converge to a residual set bounded
by

√
b/bλ. It should be emphasized that this residual set can be

significantly reduced if sufficient basis functions are selected
such that ϵ,∇ηϵ, ϵH → 0. It also shrinks quickly with the
convergence of x.

Remark 4: By employing the past measurements to update
˙̂
W , the closed-loop system’s stability is ensured under an FE
condition. This design also allows us to replace the commonly-
used actor-critic structure in ADP with a simplified critic-only
structure. Besides, different from relevant results [12], [18],
[19], [21], our integral-form data collection approach makes
use of all incoming data, and it is also arguably easier to
implement.

Remark 5: It should be emphasized that the parameter
estimator designed in Sec. III.A plays an essential role in the
whole control strategy’s stability and performance. On the one
hand, as shown in Sec. III.A and Eq. (44), our estimator’s non-
certainty-equivalence (non-CE) feature introduces the negative
quadratic term of estimation error (i.e. −∥θ̃∥2) in the stability
analysis, which is indispensable to the closed-loop system’s
UUB. On the other hand, the exponential convergence feature

of ∥θ̃∥2 ensures the accurate estimation for the reference con-
trol signal ur, which is the key to achieving high-performance
tracking control.

Remark 6: This remark explains the difference between our
work and the studies in [11], [12]. Though these three studies
all employ the squared Bellman error to update the critic’s
weights, they have significant and different task-oriented de-
signs far beyond this backbone. Particularly, Ref. [11] focuses
on achieving H∞-based ADP control, and it also employs the
event-triggering strategy to reduce the potential communica-
tion burden in specific applications. Ref. [12] aims to address
the input saturation issue for an ADP-based controller and
shows the closed-loop stability subject to input saturation. In
contrast, our paper shows how to manage the optimal tracking
control problem subject to system uncertainties under the ADP
framework. The methods in [11], [12] cannot handle this
problem because they lack the ability to estimate uncertain pa-
rameters and reference control inputs, while such information
is crucial to ensure closed-loop stability. We propose a novel
estimator to estimate this information accurately and achieve
high-performance tracking. As explained in Remark 5, our
estimator’s non-CE and exponential convergence features are
essential for the closed-loop stability and the whole control
task. As an application-oriented study, we further explain
in Subsection III.C how to choose the initial control policy
for the optimal attitude tracking control problem considered
here. Moreover, hardware-in-loop experiments are conducted
in Section IV to test the performance of our estimator-based
ADP control method.

C. Construction of the Initial Control Policy

Same with many other online ADP control methods [12],
[18], [19], [21], an admissible initial control policy is needed
to trigger real-time learning. In this subsection, we show that
a PD-like controller

u = −kpξbr − kdω
b
br + Yr θ̂ (29)

is an admissible initial control policy, where kp and kd are
positive constants, and θ̃ is updated by our estimator. To
show the system stability under (29), we employ a candidate
Lyapunov function in the equation below.

Vpd = kp(1− ζbr)2+ kpξTbrξbr+
1

2
(ωbbr)

T(Jωbbr)+ ϱVI (30)

where ϱ is employed for analysis purposes and it satisfies ϱ >
maxt≥0{∥Yr(t)∥2}/(2µ2µθ). Since Yr is bounded, one can
always find such a proper ϱ. Recalling Eqs. (4), (39) and (29),
the time derivative of Vpd satisfies

V̇pd =− kd∥ωbbr∥2 − (ωbbr)
T(Yr θ̃) + ϱV̇I

≤− 0.5kd∥ωbbr∥2 − 0.5ϱµ2µθ∥θ̃∥2
(31)

So one has ωbbr ∈ L∞ ∩ L2. Then by analyzing ω̇bbr
and employing the Barbalat lemma, we can conclude that
limt→∞{ξbr, ωbbr} = 0.

This design indicates that one can choose the initial policy
for our parameter-estimator-based ADP controller as follows

uo = −kpξbr − kdω
b
br (32)
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Besides, this initial controller can be easily described
by a set of polynomial basis functions: σpd =
[ξbr1ω

b
br1, ξbr2ω

b
br2, ξbr3ω

b
br3,

1
2 (ω

b
br1)

2, 12 (ω
b
br2)

2, 12 (ω
b
br3)

2]T

with the corresponding weights to be Ŵpd =
[2r11kp, 2r22kp, 2r33kp, 2r11kd, 2r22kd, 2r33kd]

T, and
here ξbri, ωbbri and rii are the ith entries of ξbr,
ωbbr and R, respectively. One can readily verify that
uo = −0.5R−1GT∇ησpdŴpd is consistent with (32).

A remaining issue is that the assumption 1 requires
the boundedness of GT∇ησ for any η, thus σpd cannot
be directly employed to construct σ. Recalling the
fact that ∥ξbr∥ < 1, this boundedness requirement
can be satisfied by modifying σpd to be σpd =

[ξbr1ω
b
br1, ξbr2ω

b
br2, ξbr3ω

b
br3,

∫ ωb
br1

0
s(ω)dω,

∫ ωb
br2

0
s(ω)dω,∫ ωb

br3

0
s(ω)dω]T, where s(·) : R → R is defined by

s(x) =

{
x if abs(x) ≤ ks
kssign(x) if abs(x) > ks

(33)

and here ks is a user-defined positive constant. Then we have

uo =− 0.5R−1GT∇ησpdŴpd

=− kpξbr − kds(ω
b
br)

(34)

with s(ωbbr) = [s(ωbbr1), s(ω
b
br2), s(ω

b
br3)]

T. Eq. (34) ensures
that GT∇ησpd is always bounded and uo keeps the form in
(32) when |ωbbri| ≤ ks, i = 1, 2, 3. Actually, the controller
in (34) can also stabilize the system since θ̃ converge to zero
exponentially.

ADP-Based Controller
 (Section III.B)

Critic

Hamiltonian 
construction

(7)-(9)

Critic weight 
evaluation
(24)-(26)

Control 
policy update

(28) System Model
(1)-(2), (6)
(Section II)

High-Performance Parameter Estimator 
(Section III.A)

Parameter 
estimation (15)-(16)

Control 
signals

Filtering structure
(10)

States

States

Data collection & 
selection

Reference control 
signal evaluation

Estimated parameters and 
reference control signals

Figure 1: The main framework of our parameter-estimator-
based ADP control method.

All these results show that our control method can be
easily implemented by employing the parameter-estimator-
based PD-like controller for initialization. It also indicates
that our method can bring the essential optimizing ability
to a conventional control method. These facts indicate the
flexibility and versatility of our method.

Algorithm 1 Parameter-estimator-based ADP for attitude
tracking control.

Formalize the attitude tracking control problem via the quater-
nion description, as shown in Eqs. (1), (2) and (6).
Based on task requirements, construct the performance metric
as shown in Eq. (5).
Initialize user-defined parameters, including Qq , Qω , R, α,
µ1, µ2, c1, c2, κ, kp, kd, ks.
Set Yf (0), uf (0), ωf (0), θ̂(0), Ŵ (0), ξ1(0), and ξ2(0).
Initialize the terminal time Ts.

1: while t < Ts do
2: if t = 0 then
3: Set tw1 = 0 and apply the initial control policy uo(0)

in (32) to the system.
4: end if
5: Update the filtered variables in the estimator, i.e. Yf (t),

uf (t) and ωf (t), by (10).
6: Based on the measurements at time t, employ the

selection algorithm to maximize the eigenvalue of the
information matrix

∑l
i=1 Y

T
θ (ti)Yθ(ti).

7: Update the projected parameter estimate ψ̂(t) by (15).
8: Calculate the original parameter estimate θ̂(t) by (16).
9: if ξ1(tw2, tw1) is not full-rank then

10: Update tw2 by setting tw2 = t.
11: else
12: Set tw2 = tw2.
13: end if
14: Evaluate the weight vector Ŵ (t) by (24), (25) and (26).
15: Calculate the control input uo(t) via (28) and apply it

to the system.
16: end while

The main framework of our parameter-estimator-based ADP
controller is provided in Fig. 1, and the specific implementa-
tion steps are summarized in Algorithm 1.

Remark 7: We analyze the computational complexity of
our parameter-estimator-based ADP control method in this
remark. Given the estimation laws in Eqs. (10), (15), (16)
and the ADP-based control law in Eqs. (24)-(26) and (28),
one can see that a limited number of additional integral and
addition/subtraction operations are required in our method
compared with conventional control methods, such as the PD-
like controller. Particularly, the most time-costly operations
in our parameter estimator are from Eq. (10), which require
the users to calculate the filtered states via integral. As for
our ADP-based attitude tracking controller, its complexity
is directly related to the critic network’s size. Based on
the Weierstrass approximation theorem, the critic network’s
universal approximation and information processing abilities
usually increase as more basis functions are embedded in
it. But from (24)-(26), the size of the critic network also
quadratically increases the computational complexity, and a
trade-off is required in practical applications. The case studies
in Section IV show that a critic network with six quadratic-
form basis functions can already make a good approximation
to the potential optimal tracking control solution and render
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superior performance to popular attitude control methods.
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Figure 2: Results of qbr and ωbbr under different controllers.
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Figure 3: Simulation results of V .

IV. SIMULATION RESULTS

A. Numerical Simulations

Numerical simulation results are presented in this
subsection to show the performance of our control
method. We set θ = [20, 1.2, 0.9, 17, 1.4, 15]Tkg·m2, and
the reference signals satisfy qri(0) = qI , ω

r
ri(t) =

[0.1 sin(πt/12), 0.05 cos(πt/6),−0.1 sin(πt/12)]Trad/s. We
also set qbr(0) = [0.5916,−0.6, 0.2, 0.5]T, ωbbr(0) =
[0, 0, 0]Trad/s, and θ̂(0) = [10, 0, 0, 30, 0, 8]Tkg·m2. The up-
per and lower bounds of θ̂ are θmax = [25, 3, 2, 35, 3, 20]T

kg·m2 and θmax = [5,−1,−0.5, 12,−1, 5]Tkg·m2, respec-
tively. The cost function follows Qq = 10I4×4, Qw = 20I3×3

and R = 10I3×3. Control parameters for the proposed method
are chosen to be α = 0.05, µ1 = 5, µ2 = 20, c1 = 5,
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0

5

10

15

0 10 20 30 40 50
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0 10 20 30 40 50
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(d)

-6
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2
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Upper Bound
Lower Bound

Time (s)

Figure 4: Illustrations of parameter estimation.

Figure 5: 3D illustration of numerical simulations.

c2 = 2, κ = 0.1. Following the design and analysis in
Sec.III.C, a PD-like controller with kp = 4 and kd = 6 is
employed to trigger online learning, and we set σ = σpd with
ks = 0.3. Thus we have Ŵ (0) = [80, 80, 80, 120, 120, 120]T.
Besides, by monitoring the rank of ξ1, we set tw1 = 0s and
tw2 = 5s. After system states are stabilized (∥ξbr∥ < 0.01 and
∥ωbbr∥ < 0.002), we release the data stored in Ξ(t, tw2, tw1)
to reduce the residual error.

For comparison purpose, not only the proposed parameter-
estimator-based ADP method (denote as “PEADP”), but also
three other controllers are considered:

1) The Parameter-Estimator-based PD-like Controller (de-
note as “PEPD”). This is the initial control policy as discussed
in Sec. III.C. Comparing PEDP with PEADP can clearly show
the optimizing ability of the proposed method.

2) A Certainty Equivalence (CE)-based PD-Like Adaptive
Controller (denote as “CEPDA”). This controller also follows
the form u = −kpξbr − kdω

b
br + Yr θ̂, while θ̂ is updated by
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the widely-employed CE-based adaptive law ˙̂
θ = −kceY T

r ω
b
br,

where we set kce = 20 in simulations.
3) A Non-Certainty-Equivalence (Non-CE) Adaptive Con-

troller in [8] (denote as “NCEA”). This advanced adaptive
control method is deduced by the immersion and invariance
(I&I) philosophy [31], which has been demonstrated to have
improved closed-loop performance than conventional attitude
tracking control methods. One can refer to Ref. [8] for the
design details of NCEA, and the control parameters in the
simulation are chosen as kp = 0.5, kv = 2, α = 2.5, γ = 20.

Under all these settings, the time responses of qbr and
ωbbr are given in Fig. 2. One can observe that all the four
controllers ensure the boundedness of system tracking errors,
while due to the existence of uncertain parameters, CEPDA
leads to large residual errors. In contrast, PEPD guarantees the
precise convergence of qbr and ωbbr, which demonstrates the
effectiveness of the proposed parameter estimator. NCEA and
PEADP further ensure improved performance with smoother
trajectories and fewer fluctuations, and one can see that
PEADP permits higher convergence precision than NCEA.
Simulation results of V are illustrated in Fig. 3. It indicates
that the good performance of NCEA comes at the expense
of a high cost. In contrast, PEADP significantly reduces the
cost when compared with all the other controllers (reduced by
60.8%, 46.5% and 75.9% with respect to CEPDA, PEPD and
NCEA, respectively), which ensures its optimizing ability.

Parameter estimation performance is given in Fig. 4. Fig. 4.a
indicates that θ̃ quickly converge to zero, which is benefited
by introducing the information matrix

∑l
i=1 Y

T
θ (ti)Yθ(ti) into

the update law. Denoting λY = λmin{µ2

∑l
i=1 Y

T
θ (ti)Yθ(ti)},

Fig. 4.b further demonstrates the change of λY .
Figs. 4.c and 4.d show the function of the parameter

projection law, in which the convergence trajectories of θ̃2 and
θ̃3 with & without projection are employed as examples. One
can see that though the precise parameter estimation can be
ensured independent of the projection, the estimates escape the
prescribed bounds without the projection during the estimation
process. While employing the parameter projection mechanism
can always restrict the estimates to the pre-determined bounds,
and accordingly improve the convergence process.

A three-dimensional illustration on the frame Fr is given in
Fig. 5 to show the tracking process of Fb with respect to Fr
(illustrated by the trajectories of axes). In Fig. 5, the central
cube is used to show the origin of coordinate systems, and the
mutually perpendicular lines pointing from it denote the axes
of Fr. The axes moving trajectories from Fb to Fr under
PEPD, NCEA and PEADP are shown in Fig. 5 (CEPDA is
excluded in this illustration because it cannot guarantee the
precise convergence within 100s in the employed simulation
case). One can see that the PEADP approach proposed in
this paper renders smoother trajectories with fewer fluctuations
when compared with PEPD and NCEA.

For the case study considered in this subsection, the time
costs for the 100-second simulation runs (on a computer
with 2.9GHz Intel Core i7 and 16GB RAM) under different
controllers are illustrated in Fig. 6, which verify the analysis
in Remark 7. Particularly, the time costs of CEPDA and
PEPD are 0.7036s and 1.1639s, respectively, showing that

CEPDA PEPD NCEA PEADP
0

0.5

1

1.5

2

2.5

Figure 6: Time costs for 100-second simulations under differ-
ent controllers.

the computational burden caused by our parameter estimator
is quite small. Moreover, the time cost of our PEADP is
1.8399s, which is even smaller than that of the NCEA method
(2.0881s). In addition, the following subsection also verifies
that our method works perfectly fine in real-time hardware-in-
loop experiments. All these results indicate that the additional
computational burden induced by our PEADP (with respect to
other popular attitude controllers such as CEPDA and NCEA)
is mild and will have limited influence on its potential onboard
implementation.

B. Hardware-in-Loop Experiments

Hardware-in-loop (HL) experimental results are given in
this subsection to further demonstrate the features and effec-
tiveness of the proposed control method. The HL testbed is
illustrated in Fig. 7. Its main components include 1) A triaxial
turntable to simulate the attitude motion of spacecraft. 2) A re-
liable real-time simulation computer. Particularly, the weighted
pseudo-inverse algorithm designed in [32] is employed for
control allocation. 3) An ARM-based underlying control PCB.
4) Four reaction wheels serve as actuator simulators. With all
the hardware, the overall performance of control methods can
be comprehensively tested under practical measurement noises
and control signal disturbances.

The time step in experiments is 0.05s. Based on the
physical constraints of the testbed (the maximum reaction
wheel output is 0.1Nm, with the maximum slope to be
0.01Nm/s), the reference angular velocity is reset to be
ωrri(t) = [0.01 sin(0.1t), 0.02 sin(0.05t), 0.015 sin(0.08t)]T

rad/s. Correspondingly, control parameters are modified as
follows. For PEADP, we set c1 = 1 and c2 = 0.1. For PEPD,
we set kp = 0.1 and kd = 3. The NCEA method follows
kp = 0.05, kd = 0.2, α = 0.25 and γ = 5. All the other
settings are same as the ones in numerical simulations.

Experimental results of qbr and ωbr under different con-
trollers are illustrated in Fig. 8. One can see that PEADP still
has superior performance to all the other methods, permitting
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Figure 7: The hardware-in-loop testbed for experiments.

Figure 8: Experimental results of qbr and ωbbr under different
controllers.

a faster convergence process and better precision. It also
renders less overall cost as shown in Fig. 9. The 3D trajectory
illustration is given in Fig. 10. All these experiment results
further indicate the effectiveness and advantages of our control
method.

V. CONCLUSIONS

This paper developed a parameter-estimator-based ADP
control scheme for attitude tracking control tasks. The pro-
posed parameter estimator can ensure exponential convergence
and keep all instant estimates within user-defined bounds.
Based on it, a critic-only structure was proposed to learn the
optimal control policy w.r.t. the cost function. Both past &
real-time measurements were employed to improve the per-
formance of both parameter estimation and reference tracking.
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Figure 9: Experimental results of V .

The features and effectiveness of our method were illustrated
by not only numerical simulations but also hardware-in-
loop experiments, under comparisons with conventional and
advanced adaptive control methods. Deep RL methods, such
as deep deterministic policy gradient, will be investigated in
the future to realize data-driven, model-free tracking control
for more complicated on-orbit tasks. Considering measurement
models and optimal state estimation subject to measurement
errors is also an interesting topic that is worth investigating in
the future.

APPENDIX

A. Proof of Theorem 1

We define Φ(t) = Y T
θ (t)Yθ(t) for ease of notation. Recall-

ing the fact that uf = Yθθ, one has (15) satisfies

˙̂
ψ(t) = −µ1Φ(t)θ̃ − µ2[

l∑
i=1

Φ(ti)]θ̃(t) (35)
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Figure 10: 3D illustration of experimental results.

where θ̃ = θ̂ − θ. Based on it, we employ a storage function
in the equation below.

VI =(θk,max − θk,min)

6∑
k=1

[ψ̃k + ln(1 + e−ψ̃k−ψk)

− ψ̃ksig(ψk)− ln(1 + e−ψk)]

(36)

and here ψ̃k = ψ̂k −ψk. One can readily prove that VI → ∞
when ∥ψ̃∥ → ∞. Besides, we have

∂VI

∂ψ̃k
= (θk,max − θk,min)(sig(ψ̂k)− sig(ψk)) = θ̃k (37)

This indicate ψ̃k ≤ 0 if ∂VI/∂ψ̃k ≤ 0 and vice versa. Thus
VI is a valid Lyapunov candidate function of ψ̃. Therefore, V̇
satisfies,

V̇I(t) = −µ1∥Yθ(t)θ̃(t)∥2 − µ2θ̃
T(t)[

l∑
i=1

Φ(ti)]θ̃(t) (38)

One has VI(t) ≥ 0 and V̇I(t) ≤ 0, so VI ∈ L∞ and ψ̃ ∈ L∞.
Recalling (16), we have ∀t ≥ 0, θ̂k(t) ∈ (θk,min, θk,max).

Moreover, when
∑l
i=1 Φ(ti) is full-rank, we have µθ =

λmin[
∑l
i=1 Φ(ti)] > 0. Under this condition, one can further

obtain

V̇I(t) = −µ1∥Yθ(t)θ̃(t)∥2 − µ2µθ∥θ̃(t)∥2 (39)

We state that VI has an important property as described in
the following equation.

cmin∥θ̃∥2 ≤ VI ≤ cmax∥θ̃∥2 (40)

where cmin = inft≥0,k=1,2,...,6 γk(t), cmax =
supt≥0,k=1,2,...,6 γk(t), and here γk(t) =

(1 + e−ψ̃k(t)−ψk)2/[(θk,max − θk,min)e
−ψ̃k(t)−ψk ]. It is

noteworthy that, since ψ̃ ∈ L∞, cmin and cmax are bounded.
To prove (40), first we consider the right-hand side of it.
Define an auxiliary variable M(ψ̃k) = cmaxθ̃

2
k − (θkmax −

θkmin)[ψ̃k + ln(1 + e−(ψ̃k+ψk))− ψ̃ksig(ψk)− ln(1 + e−ψk)].
Then it can be verified that

∂M

∂ψ̃k
= θ̃k[

2cmax

γk
− 1] (41)

Thus if ψ̃k ≤ 0, one has ∂M/∂ψ̃k ≤ 0, and vice versa. These
facts indicate M(ψ̃k) ≥M(0) = 0 for all ψ̃k ∈ R. Therefore,
by summing up M(ψ̃) for all k, the right-hand side of (40)
is ensured, and similar analysis can be employed to prove the
other part. Combining the result of Eqs. (39) and (40), one
has

∥θ̃(t)∥2 ≤ VI(0)e
−µ2µθ/cmax

cmin
(42)

Thus θ̃ converges exponentially. The proof is complete.

B. Proof of Theorem 2

Considering the storage function in the equation below,

L = V ∗ + 0.5ρ1W̃
TW̃ + ρ2VI (43)

where ρ1 and ρ2 are positive constants.
L̇ is analyzed in (44), in which D = ∇T

η σGRG
T∇ησ

and b = 0.5∇T
η ϵGR

−1GT∇ηϵ + ρ1c1ϵ
2
H/(ϖ

Tϖ + 1)2 +
0.5∥(WT∇T

η σ + ∇T
η ϵ)GYr∥2 + 0.5ρ1c2∥Ω(tw1, tw2)∥2/cΦ.

Notice that the arithmetic-geometric mean inequality is em-
ployed in (44). Recalling the assumption 1, one has D ∈ L∞.
Furthermore, for η ∈ X , there exists positive constant bF so
that ∥W∇ησF̃/(1 + ϖTϖ + 1)∥ ≤ bF ∥θ̃∥. Therefore, by
setting ρ1 = 2bD/(c2cΦ) and ρ2 = (2b2F + 1)/(µ2µθ), L̇
satisfies

L̇ ≤− (qbr − qI)
TQq(qbr − qI)

T − (ωbbr)
TQωω

b
br

− 1

2
ρ1W̃

T(c1ϕϕ
T + c2cΦI)W̃ − 1

2
ρ2µ2µθ∥θ̃∥2 + b

(45)
We denote z = [(qbr − qI)

T, (ωbbr)
T, W̃T]T and bλ =

λmin{Qq, Qω, 0.5ρ1(c1ϕϕT + c2cΦI)}. Then Eq. (45) indi-
cates that L̇ ≤ 0 if ∥z∥ ≥

√
b/bλ.

Based on these results, the final step of this proof is
to guarantee that the hypersphere with a radius

√
b/bλ (in

the state definition domain) lies inside a compact X that is
required by the assumption 2. We denote this hypersphere by
S. Recalling the assumptions 1 & 2, one has the following
two facts: 1)

√
b/bλ is irrelevant to the size of X and 2) there

is no restriction on the upper bound of the size of X . Thus
there always exists a compact set X so that S ⊂ X . Moreover,
if η(0) ∈ X , then ∀t ≥ 0, η(t) ∈ S ⊂ X . This ensures the
UUB of qbr, ωbbr and W̃ . The proof is complete.
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