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Abstract

Graphical models have proven useful in a wide variety of applications. How-

ever, too often the structure of the graphical model is secondary consideration

selected for convenience. This thesis makes the case that the chosen structure of the

graphical model is fundamental to the resultant analysis. The motivation for this

thesis stems from a desire to translate the dynamics described by domain experts

into customised statistical models. In this thesis I propose a toolkit for systematically

considering other model classes.

The domain of food insecurity motivates the development of models beyond

the BN. The examples are illustrated with four graphical model classes: Bayesian

Networks, Chain Event Graphs, Multi-regression Dynamic Models, and Flow Graphs.

We argue that the problem dynamics should be considered before selecting the model

class.

The tree-based Chain Event Graph class of models has proven to be par-

ticularly useful for applications in which experts describe a series of events. For

this class of models, full checks on the structure are developed, both in the form of

theoretical advances in a d-separation theorem and in technical model diagnostics.

The full d-separation criteria can be used to verify that the conditional independence

relationships implied by the graphs are consistent with the information expressed

only through its topology and colouring. The theorem also confirms that using CEG

d-separation, conditional independence relationships that cannot be represented by

the Bayesian network are expressible in the CEG. The suite of diagnostic monitors

check the accuracy of the forecasts that flow from the model. Examining increas-

ingly fine elements of the CEG structure o↵ers checks to see how well the model is

xi



consistent with observations.

Finally, we conclude by considering alternative graphical structures o↵ers

nuanced expressions of causation most suitable to certain statistical models. We

examine again the four classes of models to illustrate how causal concepts like

instrumental variables and intervention become richer in alternative classes of models.
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Chapter 1

Introduction

On their backs were vermiculate

patterns that were maps of the world

in its becoming. Maps and mazes.

The Road, Cormac McCarthy

1.1 Motivation

Graphical models have proven to be an invaluable tool for decision analysis and

causal inference. They have been used in a wide range of applications due to their

ease of interpretability and flexibility. The structure of graphical models can be

elicited directly from domain experts or found using structural learning algorithms.

The integrity of this structure ultimately a↵ects the success of the model. Specifically,

deriving the model structure from the dynamics as the domain expert describes

them creates germane models. The motivation for this thesis is to develop new

theorems, methodology, and applications that support drawing the structure of

graphical models directly from domain experts’ description of a problem.

Of these graphical models, the most well known and widely used is the

Bayesian Network (BN). The BN is a collection of conditional independence rela-

tionships among a set of random variables. However, sometimes the BN structure

is inadequate for the sort of problem dynamics exhibited by complex problems.

The problem may exhibit particular dynamics ill-suited to a BN, or asymmetries

that render the conditional probability tables of a BN nonsensical. Often, the BN

may need to be supplemented by context-specific conditional probabilities. These

challenges have prompted development of other models with customised semantics.

Rather than coercing natural language descriptions of a problem to fit the BN

structure, I propose that graphical structures can be drawn from a domain experts’

1



natural language description of a problem. These alternative structures prompt

the development of methodology analogous to that of the BN that is customised

to the described problem dynamics. The process by of deciding on the structure of

a graphical model is not straightforward (Korb and Nicholson, 2010). Describing

the process by which decision makers choose a custom structure is a the main

contribution of Chapter 3.

Two main contributions of this thesis focus on Chain Event Graphs (CEG)–a

class of models that expands BN machinery to a more flexible class of models. CEGs

use a tree-based structure to describe unfolding processes–a natural fit to descriptions

often given by domain experts. Additionally, the CEGs incorporate context-specific

probabilities into a single graphical representation. Discrete BNs represent a subclass

of CEGs. Many of the developments for CEGs have drawn from BN methodology.

Model selection (Freeman and Smith, 2011a), equivalence class (Görgen and Smith,

2018), evidence propogation w, causal inference (Thwaites and Smith, 2010) have all

been extended to the CEG. A number of applications have demonstrated the e�cacy

o↵ the CEG over other graphical models (Barclay et al., 2013; Barclay, 2014).

This thesis adds two contributions to this methodology. The first is a complete

d-separation theorem for the CEG in Chapter 4. This builds from the theorem

for simple CEGs from Thwaites and Smith (2015). D-separation theorems proved

foundational for BNs. It also contributes a new ancestral CEG construction as well

as a construction that shows the dependence between the random variables defined

directly from a CEG. The full d-separation theorem admits querying any elicited

CEG structure to verify that it represents the domain experts’ beliefs as a valid

CEG.

The second CEG contribution in Chapter 5 consists of a suite of diagnostic

monitors to evaluate the accuracy of the forecasts flowing from the CEG mon-

itor. These prequential monitors, so named for their verification of the predictive,

sequential forecasts generated by the model, can be used to detect discrepancies

in the structure from the existing fit to the data (Dawid, 1984, 1992; Dawid and

Studenỳ, 1999). These build on the work for diagnostic monitors for BNs defined

and demonstrated in Cowell et al. (1999) and rely on the message passing algorithm

from Collazo et al. (2018). The diagnostics o↵er a way to check di↵erent elements of

the structure of a CEG in an online learning environment.

After establishing these additional checks specifically for the CEG, Chapter 6

examines how customising structure a↵ects the nuances of causal inference. The final

contribution of this thesis examines examples of customised models and examines

how alternative structures prompt a new understanding of concepts like naive cause

and instrumental variables. Building on the work of causal inference in the Multi-

2



regression dynamic model, I prove that every edge in the graph can be thought of as

an instrumental variable (Wright, 1921, 1925; Bowden and Turkington, 1990). The

full d-separation theorem from Chapter 4 also allows a new definition of instrumental

variables for the CEG.

In summary, this work can be summarised by the following research questions:

1. How can customised graphical models be elicited from domain experts?

2. How can d-separation verify the conditional independences of the CEG?

3. How do model diagnostics check the elements of structure of a CEG?

4. How does using customised graphical models o↵er nuanced definitions of

causation?

1.2 Thesis Outline

Chapter 2 outlines basic notation in graphical models. After describing the semantics

of the Bayesian Network in Section 2.3.2, Section 2.4.1 describes the development

of a CEG from a tree-based model. The chapters concerning the importance of

customising models to domain expertise also draw on two other alternative models,

the Multi-regression dynamic model (MDM) and the Flow Graph. These models are

useful examples of specific natural language descriptions of a problem. Chapter 6

derives new results that show how these new model assumptions add new meaning

to cause in graphical systems. The chapter concludes with a discussion of various

graphical models.

Chapter 3 exhibits how the custom structure of a problem can be translated

from experts’ natural language description. General guidelines for selecting an

alternative model are proposed, and specific examples are given in the subsequent

sections. Each of the examples is drawn from natural language descriptions of a

program-specific challenge in food insecurity. The conditional independence state-

ments implied by the graph must concur with experts’ description. Checks for each

of the custom graphical models is given in each section of Chapter 3. While the

d-separation theorem makes these checks possible for the BN, full theorems are not

always available for the alternatives to the BN. Useful forecast checks for the MDM

are given in Section 3.3.3. The chapter concludes with guidelines for choosing the

most relevant model.

Verifying that the conditional independence statements implied by the CEG

concur with the intended statements has routinely been checked through several

theorems. These queries were first framed as logical and-or gates in Smith and
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Anderson (2008), and a theorem for the simple subclass of CEGs was defined in

Thwaites and Smith (2015). However, a full d-separation theorem analogous to that

of the BNs has not been known. In Chapter 4, I derive such a theorem. This can be

shown to confirm all of the conditional independence statements that can be read

from a BN in the CEG in addition to the queries that are unique to the CEG. The

theorem relies on the construction of an ancestral CEG whose definition appears for

the first time here.

After confirming the structure of the CEG, Chapter 5 discusses checks for

the forecasts from the model. We begin by reviewing the diagnostic monitors for the

BN in Section 5.3 and then define the CEG monitors in Section 5.4. Examples from

healthcare and radicalisation illustrate and elucidate these tools.

Chapter 6, explores how the custom models give rise to di↵erent notions of

causation. Section 6.2.1 discusses the importance of directional invariance across

an equivalence class of graphical models and the implications this has on causal

reasoning. Section 6.2.2 compares how notions of instrumental variables can be

interpreted in custom models. These two definitions are examined in the context of

the MDM and CEG in Sections 6.4 and 6.5 respectively.

In the final chapter, I review the contributions made by this thesis and discuss

areas of future work.
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Chapter 2

Di↵erent Semantics, Di↵erent

Models

...‘embrace the monsters’ and

explore alternative approaches to

representation.

David Gooding, ”Thinking Through

Computing”

2.1 Customised Model Semantics

Incorporating domain expertise is a fundamental tenet of statistical methodology.

Complex problems have di↵erent dependencies and functional relationships that may

not fit in an o↵-the-shelf model. Graphical models have been developed to depict

various di↵erent types of dependence relationships in systems. Probabilistic graphical

models have since emerged as a particularly powerful methodology for investigating

causal relationships.

The accessibility and interpretability of graphical models facilitates a useful

exchange between domain experts and statisticians. The small set of variables and

visual aid of the graph enables statisticians to translate the relationships to domain

experts easily (Pearl, 1986; Smith, 2010). Additionally, framing questions in terms of

proposed interventions o↵ers a useful focal point for domain experts because it relates

to what they might do in practice. In addition to their accessibility, graphs are also

useful for inference and learning. They represent an e�cient, compact version of the

joint distribution allows for e�cient posterior computation and model selection.
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2.2 Graphical Models

Among these classes of manipulated causal models, the framework of BNs and their

dynamic counterparts are the most widely used to explore causal hypotheses.

BNs represent the dependence structure between sets of random variables.

The methodology of BNs and their wide applications has been reviewed in Pearl

(2009); Lauritzen and Richardson (2002); Cowell et al. (2007); Korb and Nicholson

(2010). The random variables of a BN admits any distribution, allowing them to

incorporate either discrete or continuous variables. Many di↵erent variations of a BN

have been developed. Context-specific BNs take di↵erent probability distributions

for certain settings of the random variables (Boutilier et al., 1997). Time-varying

BNs alter their structure in a regular pattern to capture the dynamics of di↵erent

structures. The Dynamic Bayesian Network (DBN) extends the BN structure through

either discrete or continuous time. DBNs in particular have been used to model food

insecurity (Barons and Smith, 2014), an application I will examine in subsequent

chapters.

Despite the prevalence and success of BN methods, the BN is not always

an appropriate modelling choice. Expressing a process as a series of unfolding

events is often more natural to domain experts than thinking in terms of random

variables (Shafer, 1996). Rather than expressing a process as a series of random

variables, modelling it as events lends itself to the structure of a tree. Decision

trees proved foundational to decision and utility theory (Rai↵a, 1968). From this

development, influence diagrams emerged as a more succinct way to represent the

possibilities in the decision tree (Howard and Matheson, 2005). However, what

the representation gained in compactness it lost in expressiveness. Building on the

advancements from probability trees and the accessibility of influence diagrams,

Chain Event Graphs (CEGs) proposed a compact representation of the relationships

expressed in a large event tree (Smith and Anderson, 2008). Built from an event

tree, the CEG models conditional independence relationships through a colouring

known as stages. Dynamic analogues of the CEG have been developed (Barclay and

Nicholson, 2015; Collazo and Smith, 2018), as well as the Reduced Dynamic Chain

Event Graph (RDCEG) (Shenvi and Smith, 2018).

In addition to the dynamic analogues of the BN and the CEG, there are often

situations in which conditional independence structures are preserved across time.

Towards that end, Smith (1993) developed the Multi-regression Dynamic Model–a

class of multivariate state space time series models. The MDM borrows directly from

the linear dynamic model literature, and thus can incorporate seasonal trends and

interventions easily (Harvey, 1986; Quintana and West, 1987; West and Harrison,

1997; Durbin and Koopman, 2012). In their simplest form, MDMs link together
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univariate Bayesian dynamic linear regression models (DLMs) (Harrison and Stevens,

1976).

Recent advancements include model selection methods using integer program-

ming and a set of diagnostic monitors in Costa et al. (2015). Costa et al. (2017)

demonstrates the quick model selection algorithm for both cyclic and acyclic variants

of the MDM. Costa et al. (2019) defines a new class of MDM models that shows

the dependence structure across groups of individuals while maintaining individual

structures.

Another application of the MDM derives a corresponding undirected graph

that can be interpreted as an influence diagram (Queen, 1992). The MDM expresses

contemporaneous causal relationships for applications ranging from brain connectivity

(Costa et al., 2015), tra�c networks (Queen and Albers, 2009), to brand forecasting

(Queen, 1992). Zhao et al. (2016) defined a variant of the MDM, the dynamic

dependence network, that allows the connectivity to change over time.

Another example of a graphical model with semantics di↵erent to that of

the BN is the Flow Graph (FG). Motivated by applications where physical goods

flow through a network of actor interactions, the Flow Graph describes the state of

path flows through a network. The Flow Graph o↵ers an example of a structure

where model assumptions have been added that break the restrictions set by the BN

(Figueroa and Smith, 2007).

These four graphical models are the focus of this thesis and will be used

to illustrate food insecurity applications in Chapters 3 and 6. Additional types

of graphical models have emerged. Controlled regulatory graphs, composed of

hyperclusters, represent new dynamics that describe biological applications including

circadian regulation (Liverani and Smith, 2015). Chain graphs incorporate a series

of undirected and directed edges that also describe dynamics di↵erent to that of the

BN (Studenỳ, 2006).

2.2.1 Semi-graphoid axioms

The semi-graphoid axioms formalize the notion of irrelevance that underpins graph-

ical structures (Dawid, 2001). Pearl (1988) linked these axioms to a graphical

representation. These were first characterized in the context of probabilistic expert

systems (Studenỳ, 1989) and more generally in Smith (2010). Then, the axioms

were connected to dependency models (Studenỳ, 1993). Intuitively, these proper-

ties maintain that extraneous information remains irrelevant (Smith, 2010). These

axioms hold for all probabilities, which prompts looking at graphical models with

other meanings. i A semi-graphoid conditional independence model satisfies the four

axioms below.
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Definition 1 (Symmetry) The symmetry property requires that for three disjoint

measurements X,Y, and Z:

X ?? Y |Z , Y ?? X|Z

Definition 2 The decomposition property requires that for disjoint measurements

X,Y,W and Z:

X ?? (Y,W )|Z ) X ?? Y |Z and X ?? W |Z

Definition 3 The weak union property requires that for three disjoint measure-

ments X,Y,W and Z:

X ?? (Y [W )|Z ) X ?? Y |(Z [W )

Definition 4 The contraction property requires that for three disjoint measure-

ments X,Y,W and Z:

X ?? Y |Z and X ?? W |(Z [ Y ) ) X ?? (Y [W )|Z

These axioms can be used to derive additional rules about independence

(Dawid, 1979). The system can also be used to compare the expressiveness of

di↵erent graph forms (Pearl, 1988). The semi-graphoid axioms frame questions

of irrelevance in Chapter 3, o↵ering a way to confirm that the structure given by

domain experts is consistent with the dependence structure. In Chapter 4, the

functional form of the semi-graphoid axioms is used to prove results a�liated with

the d-separation theorem.

2.3 Probabilistic Graphical Models

2.3.1 Basic Graph Theory Definitions

A graph G = (V,E) is a finite set of vertices V and edges E. E is a set of ordered

pairs of distinct vertices, a subset of set V ⇥ V . Edges can be either directed or

undirected, but this thesis largely deals with directed graphs. An edge between two

vertices is directed when (vi, vj) 2 E but (vj , vi) /2 E A complete graph contains

all pairs of vertices in the edge set. A path in a graph is a sequence of vertices

v1, . . . , vn such that there is an edge between (vi, vi+1) 2 E for i 2 1, . . . , n� 1.

If there is a directed edge from vi pointing at vj then vj is the child and vi

is the parent. The parent and child sets of a set of vertices Vi 2 V (G) are denoted
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Pa(Vi) and Ch(Vi), respectively. We say parents are unmarried when there is not

an edge between two parents that share a common child. A graph is moralised

undirected edges are added between unmarried parents. If there is a directed path

from vi to vj then vi is the ancestor and vj is the descendant. The ancestor and

descendant sets of vertices Vi, Vj 2 V (G) are denoted An(Vi) and De(Vj). These sets

are the vertices v 2 V such that there is a directed path from vi 2 Vi to vj 2 Vj . It is

also convenient to denote the set of non-descendants Nd(v) = V \ (De(v) [ {v}).
A cycle is a path that begins and ends at the same vertex. A cycle is directed

if there is a directed path between each of the edges.

Definition 5 A directed acyclic graph (DAG) is a directed graph with no directed

cycles.

A graph is directed if all edges e 2 E are directed. A graph with both

directed and undirected edges is called a hybrid graph. A tree is a graph without

cycles that has a unique path between any two vertices. A directed tree is a

directed acyclic graph that has a tree as its underlying structure. Directed trees

are the basis of the CEG structure. The directed tree has one root vertex with no

parents and the remaining vertices have exactly one parent. The edges are directed

away from the root node.

DAGs form the basis for inference on probabilistic graphical models. One

question this thesis addresses is what the edges mean in a causal DAG. Domain

experts usually mean something by the edges in a DAG that may or may not be

compatible with the conditional independence interpretation. Customising graphical

models finesses the meaning of the edges in graphical models. For example, in the

CEG the edges represent the possible events emanating from a particular vertex.

Similarly, with models based on the Dynamic Linear Model (DLM), an edge means

that vi is an input of the function of vj . In the subsequent sections, these edge

definitions alter the underlying framework for causation.

2.3.2 Bayesian Networks

Bayesian Networks have proven to be a powerful method for representing conditional

independence relationships between random variables (Pearl, 1986; Cowell et al.,

2007).

The nodes of the graph indicate the random variables X = {X1, X2, . . . , Xn}
and the edges depict possible dependence structures. They are sometimes called

Bayesian belief networks or causal networks, although the latter terminology implies

additional model assumptions. Object oriented Bayesian Networks expand complex
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BNs and became widely used through the HUGIN software (Koller and Pfe↵er, 1997;

Jensen, 2014).

The BN can be thought of as sets of conditional independence statements.

Dawid and Studenỳ (1999) defines conditional independence in terms of factorisations.

BNs have a joint probability mass function p(x) on set of random variables that can

always be written as:

p(x) = p(x1, x2, . . . , xn) =
nY

i=1

p(xi|x1, . . . , xi�1). (2.1)

The ordered directed Markov property states that a random variable

is independent of its predecessors Pd(Xi) given its parents.

Xi ?? Pd(Xi)|Pa(Xi)

This allows Equation 2.1 to be written as a recursive factorization of conditional

probabilities

p(x) = p(x1)
nY

i=2

p(xi|Pa(xi)) (2.2)

where Pa(xi) indicates the parent set of xi.

Conditional independence is defined as follows

Definition 6 Random variables X, Y , and Z are conditionally independent if

and only if p(x, y) = p(x)p(y). The variables are conditionally independent given Z

if and only if

p(x, y|z) = p(x|z)p(y|z)

for all points other than those on a set of measure zero when p(z � 0).

The BNs and CEGs considered in this thesis are discrete models. The MDM

and FG rely on continuous joint probability mass function given in Section 2.4.2.

Definition 7 A Bayesian Network with probability distribution p(x) satisfies the

local Markov property with respect to the directed acyclic graph G if xi is inde-

pendent of its nondescendants Nd(xi) given its parents:

xi ?? Nd(xi)|(Pa(xi))

The local Markov property articulates the conditional independence relation-

ships from the missing edges of the graph G. Additional conditional independence

relationships can be deduced from the structure of a graph using the d-separation
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theorem, or the global directed Markov property, another formulation of the d-

separation theorem (Hammersley and Cli↵ord, 1971; Pearl, 1986; Geiger et al., 1990b;

Frydenberg, 1990a,b). This thesis uses the ancestral formulation of the global direc-

ted Markov property from Lauritzen et al. (1990). The construction of the ancestral

graph requires edges to be moralised, that is, adding an undirected edge between

two parent that have a common child.

Theorem 8 (d-separation for BNs) Given a DAG G with three disjoint sets of

vertices B1, B2, and C 2 V (G), B1 d-separates B2 given C, written as B1 ?d B2 if

there is no path from a vertex in B1 to a vertex in B2 when the set of vertices in C

is removed from the moralised ancestral graph
�
GAn(B1[B2[C)

�
m
.

The d-separation theorem for Bayesian Networks respects a graphical rep-

resentation for a given set of conditional independence relationships (Geiger et al.,

1990a; Lauritzen and Richardson, 2002; Cowell et al., 1999; Smith, 2010). Geiger

et al. (1990b) first proved that d-separation holds when the sample space of each

random variable in the set meets certain assumptions. Then, Pearl proved that

given a BN of Gaussian variables, for a query that failed d-separation, a probability

distribution could be constructed that showed dependence. This result was then

confirmed for binary variables, which also provided a counterexample for a BN with

discrete variables. These proofs all rely on the fact that conditional independence

relationships can be represented by a single, faithful BN. If the d-separation holds for

a particular query, then the variables are conditionally independent. The converse

is typically stated as a corollary: if the d-separation query is violated, then there

may be a setting of the probabilities that violate the conditional independence

relationship. The converse of d-separation does not necessarily hold for any BN with

context-specific conditional independence relationships.

Pearl (1986) derived an alternative form of the global directed Markov property

in terms of active pathways. Geiger and Pearl (1990) showed that this cannot be

improved upon, and thus proved the d-separation theorem. This theorem can be

used to check that the conditional independence relationships within the graph are

compatible with the domain expert’s description of the problem dynamics.

Definition 9 A Bayesian Network B on a set of random variables X = X1, X2, . . . ,

Xn is a directed, acyclic graph that admits a recursive factorization or equivalently,

a set of n� 1 conditional independence statements of the form

Xi ?? Pd(Xi)|Pa(Xi).

Bayesian Networks can also be thought of as set of conditional probability
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vectors (CPV) of the form p(xi|Pa(xi)). These CPV quantities can be elicited after

the structural conditional probability relationships are elicited from experts.

In addition to the Markov assumption, valid BNs also meet the faithfulness

assumption. Faithfulness means that there are no lurking dependence structures

among the random variables of the graph.

Definition 10 A Bayesian Network G is faithful if the distribution contains all

and only the conditional independence relationships implied by the Markov condition.

There is a set of DAGs that describes the same conditional independence

relationships. There are Markov equivalence classes of graphs that represent the

same conditional independence relationships. This means that the edges of a BN

cannot be interpreted as causal, as there may be an equivalent graph with the edge

reversed.

The Markov and faithfulness assumptions define a BN. The literature on

causation strongly emphasizes the importance of manipulation (Holland, 1986; Dawid,

2002; Pearl, 2009). For a BN to be considered causal, Pearl argued that any

intervention on a random variable Xi = x̂i should have the same e↵ect as conditioning

on a random variable according to the following intervention formula. External

manipulation of setting a value Xi = x̂i is denoted using the do operator, Xi =

do(xi) or sometimes using Xi||x̂i. The atomic intervention formula is given as

p(x�i||x̂i) =

8
><

>:

p(x1,...,xi,...,xn)

p(xi|Pa(xi))
if xi = x̂i

0 otherwise.
(2.3)

This formula shows that the variables that are downstream of Xi inherit the

values they would have taken if Xi = x̂i had occurred naturally. The upstream

variables are una↵ected. This assumption is quite strong, and often not applicable

to particular dynamics experts describe. For instance, interventions in controlled

regulatory networks a↵ects upstream variables as well as downstream ones (Liverani

and Smith, 2015).

Definition 11 A causal Bayesian Network B is causal if it admits the atomic

intervention formula given in Equation 2.3 for all variables Xi 2 V (B).

BNs have been adapted to several di↵erent variations. These can be used to

describe di↵erent dynamics, but they are also subject to the same assumptions about

faithfulness and intervention. Bayesian Networks have been adapted to Dynamic

Bayesian Networks. DBNs show the relationships between variables over time. The

BN structure repeats for each time step, and an additional set of edges shows the
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dependence structure between time steps. DBNs have been used to model food

insecurity for decision analysis (Barons and Smith, 2014).

Object oriented Bayesian Networks (OOBN) use the logic of circuits to model

complex, hierarchical problems with di↵erent classes (Koller and Pfe↵er, 1997; Korb

and Nicholson, 2010). The OOBNs can also incorporate temporal and spatial features,

as they have for an application studying ecological systems (Chee et al., 2016) .

The numerous variations of BNs are helpful for a range of applications.

However, restricting causal questions to the framework of conditional independence

of random variables is fundamentally limiting. Alternative graphical models allow us

to retain the interpretability and accessibility of graphical structures while allowing

for more nuanced representations of problem structure.

2.4 Alternative Graphical Models

The strength of the BN approach is well established in literature, but there have

been calls for alternative representations beyond the BN (Spirtes and Zhang, 2016).

Much of this thesis will look at expanding the toolkit of BN methodology to these

alternative representations. Doing so expands the variety of model classes to describe

dynamics identified by domain experts. Several such models have been developed,

and a few are highlighted in this Section. This is by no means exhaustive, but rather

to be taken as a sample of the alternative structures that could be devised and their

ramifications on causal inference.

2.4.1 Chain Event Graphs

Chain Event Graphs (CEGs) are one method for incorporating problems with

asymmetries and context-specific conditional independences (Smith and Anderson,

2008). Context-specific independence arises when a model exhibits independence

relationships for a particular setting of the parent values (Boutilier et al., 1997).

Definition 12 For disjoint sets X,Y, and C, X is conditionally independent

of Y given the particular context C = c if

p(X|c, Y ) = p(X|c).

In the BN setting, the conditional probability vectors must be given di↵erent

values for di↵erent contexts. The CEG o↵ers a cohesive way to encode all the possible

contexts in a single, coloured, tree-based model. In this thesis, trees refer to directed

trees. I review this construction in this section, first introducing event trees, then a

colouring, then a class of staged trees, then a much simpler graph derived from the
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staged tree–a CEG. An example of the CEG elicitation and construction is shown in

Chapter 3. Chapters 4 and 5 explore theoretical and methodological advancements

for the CEG.

Definition 13 A tree T = (V,E) is a connected, directed graph with no cycles.

In this definition, V and E denote the node and edge set respectively. The set

of vertices Pa(v) = {v0 | there is (v0, v) 2 E} represents the parents of v 2 V and

Ch(v) = {v0 | there is (v, v0) 2 E} denotes the children of v 2 V . It is often helpful

to distinguish between the vertices which are situations s 2 S and the leaf nodes

l 2 V \ S. Situations nodes are non-leaf nodes in the event tree. We can denote

the set of root-to-leaf paths in an event tree by ⇤(T ). ⇤(v) and ⇤(e) refer to

vertex-centred and edge-centred events, the subset of all root-to-leaf paths that

pass through either the vertex v or edge e. For a particular situation v 2 V and

its emanating edges E(v) = {(v, v0) 2 E|v0 2 Ch(v)}, define a floret as the pair

F(v) = (v,E(v)).

We next assign a probability distribution to this event tree with parameters

✓(e) = ✓(v, v0) corresponding to the edge e = (v, v0) 2 E. The components of

all floret parameter vectors sum to unity
P

e2E(v)
✓(e) = 1 for all e 2 E and

v 2 V . Each parameter ✓(e), e 2 E is a primitive probability. These primitive

probabilities serve a similar role to potentials in BNs. The pair (T ,✓T ) of a graph

T and all labels ✓T = (✓(e)|e 2 E) is called a probability tree. Building on the

definition of a probability tree as the pair (T ,✓T ) with graph T = (V,E) and labels

✓T = (✓(e)|e 2 E), now define a staged tree. The stagings represent context-specific

conditional independence in the CEG.

Definition 14 Two vertices representing situations v, v
0 2 S are in the same stage

u if and only if their floret distributions are equal up to a permutation of their

components ✓v = ✓v0.

Each stage is assigned a unique colour. An event tree can be transformed to a staged

tree by colouring the vertices according to their stage memberships. If all vertices

are either in the same stage or have pairwise di↵erent labels, then (T ,✓T ) is a staged

tree. The set of vertices of the staged tree is partitioned into equivalence classes of

vertices in the same stage, denoted as

U = {u ✓ V | v and v
0 are in the same stage for all v, v0 2 u}. (2.4)

There is a finer partition of events called positions w 2 W. Let T (v) ✓ T be

the event tree rooted at v 2 V and whose root-to-leaf paths are inherited from T .

Then the pair (T (v),✓T (v)) is a probability subtree of (T (v),✓T (v)).
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Definition 15 Two situations v, v
0 2 u which are in the same stage u 2 UT are

also in the same position if their subtrees (T (v),✓T (v)) and (T (v0),✓T (v0)) have the

same graph and the same set of edge labels.

Building on the concepts of stages and positions, a CEG can be constructed

from a staged event tree by merging situations that lie in the same position. The

leaves of the tree are subsumed into a sink node.

Definition 16 A Chain Event Graph C(T ) = (W, F ) is the pair of positions W
and accompanying edge set F . The vertex set W = WT is the set of positions in

the underlying tree T .Each position w inherits its colour u from the staged tree.

If all edges e = (v1, v01), e
0 = (v2, v02) 2 E and the vertices v1, v2 are in the same

position, then there is a corresponding edge {f, f 0} 2 F . The labels ✓(f) of edges

f 2 F are inherited from the corresponding edges in the staged tree. The labelled

graph (C(T ),✓T ) is a Chain Event Graph.

Within the model class of CEGs, there are subclasses of models with particular

properties. CEGs that are equivalent to BNs are stratified, as in Definition 17.

Definition 17 A CEG C is stratified if the ⇤(C) are identified with elements in the

product state space of the ordered set of random variables X = (X1, . . . , Xi, . . . , Xn)

where every component Xi has a set number of levels, Ki, such that each of the levels

is the same distance from the root node.

This thesis also concerns a second subclass of CEGs, the square-free CEGs.

The results derived in Chapter 4 apply to square-free CEGs.

Definition 18 A CEG C is square-free if it contains only graphs for which no two

situations lying on the same root-to-sink paths also lie in the same stage.

Model search algorithms

Various statistical methodologies for model selection, estimation, and message passing

methods have now been developed (Freeman and Smith, 2011a,b; Barclay et al.,

2013, 2014; Thwaites et al., 2008; Cowell and Smith, 2014; Collazo and Smith,

2015a; Collazo et al., 2018; Thwaites and Smith, 2015). Current search algorithms

have been developed for stratified CEGs that search the space of trees. These

include dynamic programming methods (Collazo et al., 2018) and an Agglomerative

Hierarchical Clustering (AHC) algorithm (Freeman and Smith, 2011a). A greedy

search algorithm may miss the optimal model, further reason to check the model

using our diagnostics in Chapter 5. The AHC algorithm often merges sparsely
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populated situations which may return a local rather than global optimum solution.

Further adaptations of these search methods have been developed including a search

method based on Bayesian Information Criterion (BIC) (Schwarz, 1987). These

algorithms have been implemented in Varando et al. (2020). Search for asymmetric

structures is currently being developed, as are extensions to search over a range of

variable orderings (Collazo et al., 2018).

Model selection algorithms may be used to find a Markov equivalent class of

models, and within this, a candidate model may be selected. Methods to identify

when two trees encode identical beliefs about the data have now been determined by

Görgen and Smith (2018). However, one omission within this technological toolbox

are routine diagnostics to apply to this class. The purpose of Chapter 5 is to fill the

gap.

Helpfully, the class of stratified CEGs encompasses the class of discrete,

context-specific BNs. From this stratified CEG, adaptations such as pruning edges

may be made at the suggestion of domain experts. Dynamic programming methods

can be used to find the maximum a posteriori CEG (Collazo et al., 2018). For a faster,

more scalable method, the Agglomerative Hierarchical Clustering (AHC) algorithm

may be used to search the possible colourings of the stages (Barclay et al., 2013).

The models returned by the ACH algorithm have been shown to be su�ciently close

to the generating model for a surprising number of examples (Barclay et al., 2013).

2.4.2 Multi-regression Dynamic Model

The Multi-regression Dynamic Model is a collection of time series that can be used to

describe the dynamics between processes (Smith, 1993; Costa, 2014; Costa et al., 2015).

The edges in a Dynamic Bayesian Network (DBN) model the dependence relationships

between time steps as in a BN. In contrast, the edges in a MDM represents the

e↵ective connectivity between the parent and child time series. This means that,

unlike the DBN, the MDM represents contemporaneous causal relationships.

The MDM exemplifies a graph where adding additional model assumptions

to the graphical representation o↵ers a custom version of the BN assumptions.

Definition 19 A collection of time series Yt = {Yt(1), . . . , Yt(i), . . . , Yt(n)} can be

considered a Multi-regression Dynamic Model (MDM) if the observation equa-

tions, a system equation, and initial information as given respectively in Equations

2.5, 2.6, and 2.7 adequately describe the system.

Each series in an MDM can be represented by an observation equation of
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the form:

Yt(r) = Ft(r)
0✓t(r) + vt(r) vt(r) ⇠ (0, Vt(r)), 1  r  n (2.5)

where ✓t = {✓t(1), . . . , ✓t(n)} are the state vectors determining the distribution of

Yt(r). Ft(r) is a known function of yt(r) for 1  r. That is, each observation

equation only depends on the past and current observations rather than the future

ones. Vt(r) are known scalar variance observations. These can be estimated from

available data or else elicited from experts. The indexing over r encodes the strict

ordering of the nodes that is so key for this problem.

The system equation is given by:

✓t = Gt✓t�1 +wt wt ⇠ (0,Wt); (2.6)

where Gt = blockdiag{Gt(1), . . . , Gt(n)} and wt has a general distribu-

tion. Each Gt(r) represents a pr ⇥ pr matrix. For a linear MDM, let Gt be

the identity matrix. The term wt represents the innovations of the latent regres-

sion coe�cients, that is the di↵erence between the observed and forecasted values.

Wt = blockdiag{Wt(1), . . . ,Wt(n)}, where each Wt(r) has dimensions pr⇥pr, where

pr is the number of parent of Yt(r).

Lastly, the initial information is expressed as:

(✓0|y0) ⇠ (m0, C0). (2.7)

where m0 is a vector of mean measurements of the observation and C0 is the

variance-covariance matrix where C0 = blockdiag{C0(1), . . . , C0(n)}.
Chapter 3 contains an example of how the MDM can be elicited. It also

explores the conditional independence relationships between di↵erent elements of

the model. Equivalence classes for the MDM are discussed in Chapter 6 along with

the di↵erent possible interventions the MDM may admit.

Existing applications of the MDM include brand forecasting (Queen, 1992),

brain connectivity (Costa, 2014; Costa et al., 2015), and tra�c flows (Queen and

Albers, 2009). The MDM has also been used in the context of decision analysis for

nuclear emergency response (Leonelli and Smith, 2013). A variant of the MDM, the

dynamic chain graph model (Anacleto and Queen, 2016) allows for more complex

dependence structures.
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2.4.3 Flow Graph

The Flow Graph o↵ers a graphical representation of the flow of goods through a

supply chain. A hierarchical flow network can be used to model a supply chain

with di↵erent levels. This flow of products through a network can be modelled by

a network of actors z(l, jl) where l specifies the hierarchy level and jl indicates the

number of actors in hierarchy level l. The edges between actors in the Flow Graphs

represents the transfer of mass from one actor to another in a subsequent level. This

graph cannot be construed as a BN because conservation of mass in the network is

assumed. This constraint induces other dependencies in a naive BN interpretation.

between actors in a given level. Intervening on the level of goods at one actor a↵ects

the levels of goods available to the remaining actors in the same level.

In order to translate the causal machinery of BNs to the Flow Graph, Figueroa

and Smith (2007) composed a graphical model where the elements of the system

are the possible path flows through the system rather than the individual actors.

This allows the system to be transferred instead as a set of multivariate multilevel

Dynamic Linear Models. Figueroa and Smith (2007) describes a new calculus for

intervention in the system.

Chapter 3 again includes an example of how a FG might be elicited from

experts. I briefly consider the causal ramifications of the two time slice DBN that

represents the path flows through the FG in Chapter 6. While intervention and a new

do calculus has been defined for the FG, translating elements like equivalence classes,

d-separation, and model selection to this this model remains an open question.

The aforementioned graphical models are the main ones considered in this

thesis, but they are only a small sample of possible graphs that could be customised to

particular dynamics. The controlled Regulatory Graph represents another instance

of a successful translation of described expert dynamics to a bespoke structure.

Liverani and Smith (2015) describes this new class of models with respect to biological

regulation mechanisms.
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Chapter 3

Structural Elicitation for

Customised Graphical

Representations

It’s just that occasionally the math

makes its own rules. The math gets

to do that if it wants to.

Middlegame, Seanan McGuire

Established methods for structural elicitation typically rely on code modelling

standard graphical models classes, most often Bayesian Networks. However, more

appropriate models may arise from asking the expert questions in common language

about what might relate to what and exploring the logical implications of the

statements. Only after identifying the best matching structure should this be

embellished into a fully quantified probability model. Examples of the e�cacy and

potential of this more flexible approach are shown below for four classes of graphical

models: Bayesian Networks, Chain Event Graphs, Multi-regression Dynamic Models,

and Flow Graphs. To be fully e↵ective any structural elicitation phase must first be

customised to an application and if necessary new types of structure with their own

bespoke semantics elicited.

3.1 Structural Elicitation

Expert elicitation is a powerful tool when modelling complex problems especially in

the common scenario when current probabilities are unknown and data is unavailable

for certain regions of the probability space. Such methods are now widely developed,
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well understood, and have been used to model systems in a variety of domains

including climate change, food insecurity, and nuclear risk assessment (Barons et al.;

Rougier and Crucifix, 2018; Hanea et al., 2006). Other methods for deriving the

structure of a problem via the gamification of a system have been developed. Scenario

testing has been shown to help refine the scope and context of a given problem

(Vervoort et al., 2014; Lord et al., 2016). However, eliciting expert probabilities

faithfully has proved to be a sensitive task, particularly in multivariate settings. First

eliciting structure is critical to the accuracy of the model, particularly as conducting

a probability elicitation is time and resource-intensive.

While there are several protocols for eliciting probability distributions such as

the Cooke method, SHELF, and IDEA protocols (Cooke, 1991; O’ Hagan and Oakley,

2014; Hanea et al., 2018; O’Hagan et al., 2006; Olaf, 2014), the process of determining

the appropriate underlying structure has not received the same attention. Protocols

for eliciting structural relationships between variables in the continuous range have

been developed (Bedford and Cooke, 2001) and basic guidelines for eliciting a discrete

Bayesian Network structure are available and well documented (Korb and Nicholson,

2010; Smith, 2010).

Borsuk and Reckhow (2001) describes a process for group elicitation that

includes a section on structure and decomposition. One early example of elicited

networks is the ALARM model (Beinlich et al., 1989). Other alternatives to the

laborious process of expert elicitation include: automating the process by drawing

from the literature (Nicholson et al., 2008). Causal machine learning algorithm

CaMML has been used to incorporate diverse expert information (Flores et al.,

2011).

These methods are widely applicable, but are rarely customised to structural

elicitation of models other than the BN. However, it is possible to develop customising

protocols to elicit structure, as illustrated through the case studies in this chapter.

3.1.1 Properties of Appropriate Structures

An appropriate model structure fulfils two criteria. Firstly, it should be compatible

with how experts naturally describe a process. Ideally, modellers should agree on a

structure using natural language. Assuming the domain experts and modeller have

an agreed upon natural language description, the most appropriate model class may

then be selected.

A compatible model should obey the temporal precedence established by the

expert for the given context. The conditional probabilities of the problem should

represent real possibilities in the given problem context. The elicited probabilities

should represent the actual mechanism. That is, given two candidate models, and
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one requires an additional layer of complexity to express the dynamics while another

describes it outright, the second model should be selected.

Secondly, any structure should ideally have the potential to eventually be

embellished through probabilistic elicitation into a full probability model. Sums and

products should obey the axioms of probability. The probability of any of the events

happening should sum to 1 for all elements of the graph. This should be rigorously

checked using natural language questions posed to the experts.

It is often essential to determine that the structure of a problem as desired by

a domain expert is actually consistent with the class of structural models considered.

For a full structural elicitation, the domain experts must be shown the essential

graph of the model class and confirm that the directionally ambiguous edges are

appropriate. If they cannot confirm this, this may prompt a discussion of determining

appropriate instrumental variables for each class. I will define instrumental variables

for the CEG in Chapter 6.

The following sections demonstrate how particular model classes confirm or

violate the properties described above. The logic and dynamics of Bayesian Networks

(BN) often do not match with an experts’ description of a problem. When this

happens, the customising approach illustrated below generates flexible models that

are a more accurate representation of the process described by the domain expert.

We show that these alternative graphical models often admit a supporting formal

framework and subsequent probabilistic model similar to a BN while more faithfully

representing the beliefs of the experts.

Towards this end, this chapter explores examples of real case studies that

are better-suited to eliciting bespoke structure. We illustrate how experts’ natural

language description of a problem can determine the structure of a model. Programs

to alleviate food insecurity in the United States serve as a running example. Even

within this domain, di↵erent problem dynamics are naturally more suited to par-

ticular structures, and eliciting these custom structures creates more compelling

models. These bespoke structures can subsequently be embellished into customised

probabilistic graphical models that support a full probabilistic description.

3.2 Eliciting Custom Structure

Structured expert elicitation begins with a natural language description of the

problem from domain experts. An expert describes the components of a system and

how they are related, and a structure often emerges organically. This process may be

aided by the use of informal graphs, a widespread practice. However, the methods

and diagrams used by the facilitators may not translate to full probability models.
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Nevertheless, there are certain well developed classes of graphical models that do

support this translation. The most popular and best supported by available software

is the Bayesian Network. However, other graphical frameworks have emerged, each

with its own representative advantages. These include event trees, chain event graphs,

and dynamic analogues of these (Collazo et al., 2018; Barclay and Nicholson, 2015).

This chapter describes some of the competing frameworks and suggest how one can

be selected over another.

3.2.1 Choosing an Appropriate Structure

Choosing between candidate structures may not be straightforward. Some domain

problems may be compatible with existing structures, while others might require

creating new classes of probabilistic graphical models. The task of developing a

bespoke graphical framework that supports a translation into a choice of probability

models is usually a labour-intensive one requiring some mathematical skills. While

some domain problems will require the modeller to undertake developing a customised

model class, there are also several such frameworks already built, forming a tool-kit

of di↵erent frameworks (Collazo et al., 2018; Smith, 1993; Figueroa and Smith, 2007;

Liverani and Smith, 2015; Lauritzen and Richardson, 2002). This chapter gives

guidelines below to help the modeller decide which of these methods most closely

match the problem explanation given by the domain experts.

As a running example, the drivers of food insecurity will be considered. The

illustrations used throughout the chapter are based on meetings with actual domain

experts. I have simplified these case studies so that I can illustrate the elicitation

process as clearly as possible. A meeting of advocates discusses the e↵ect of food

insecurity on long-term health outcomes. One advocate voices that food insecurity

stems from insu�cient resources to purchase food. The experts collectively attest

that the two main sources of food are personal funds like disposable income or

government benefit programs. The government benefit programs available to eligible

citizen include child nutrition programs that provide free school breakfast, lunch,

and after school snacks, the Supplemental Nutrition Assistance Program (SNAP),

and Temporary Assistance for Needy Families (TANF). From this discussion among

experts, modellers need to resolve the discussion into several key elements of the

system. One potential set of elements drawn from the expert discussion is shown

below:

• Government benefits, B: the rate at which a particular neighbourhood is

participating in all available government programs

• Disposable Income, I: the average amount of income available for purchasing
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food in the neighbourhood

• Food insecurity, F : the rate at which families and individuals in a neighbour-

hood experience insu�cient access to food

• Long-term health outcomes, H: measured by an overall health index defined

at the neighbourhood level.

There are several guiding principles to help modellers create a structure that

is faithful to the experts’ description as shown in Figure 3.2.

Scope One common di�culty that appears in many structural elicitation exercises

is the tendency of expert groups to think only in terms of measured quantities, rather

than underlying drivers. Food insecurity and poverty researchers often consider

elements of the system as documented for policy-makers, whereas those with a

first hand knowledge of food insecurity may consider a di↵erent set of drivers, like

personal trauma (Dowler and O’Connor, 2012; Chilton and Rose, 2009). Anecdotes

of food insecurity may often draw out key, overlooked features of the system, but a

well-defined problem scope is critical to prevent a drifting purpose. The responsibility

of guiding the conversation continually toward general representations instead of

o↵-the-shelf models falls to the facilitator.

Granularity Elicitations typically begin with a coarse description before refining

the system. Considering refinements and aggregations can help the experts’ opinions

of the key elements of the system to coalesce. For instance, rather than modelling all

the government benefits together in B, this variable could be removed and instead

encompassed by two variables: child nutrition programs, C, and financial support

for individuals S.

Because the experts are interested in the well being of the neighbourhood as

a whole, it is sensible to model the problem with aggregate rather than individual

benefits. The granularity of key elements depends on the modeller’s focus. Thinking of

the problem at di↵erent spatial levels may help to choose the appropriate granularity.

Potential interventions Another guiding principle during the structural elicita-

tion is ensuring that possible interventions are represented by the system components.

For instance, if the policy experts wanted to know what would happen after increas-

ing all benefit programs simultaneously, modelling benefits collectively as B would

be appropriate. But if they want to study what happens by intervening on child

nutrition programs, then separating this node into C, child nutrition programs and
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(a) BN of food insecurity at
the neighbourhood level

(b) Time series represent-
ation of food insecurity
drivers over time

(c) Hybrid representation of
food insecurity drivers

Figure 3.1: Three di↵erent representations of the dependence structure between
government benefits (B), disposable income (I), food insecurity (F), and long-term
health outcomes (H), customised to the experts’ beliefs.

allowing B to represent additional benefit programs would compose a more suitable

model.

Context Dependence As the key elements of the system emerge, testing the

structure by imagining these key elements in a di↵erent structure may either restrict

or elucidate additional model features. The drivers that cause food insecurity at the

neighbourhood level may vary greatly from those that provoke food insecurity at the

individual household level.

For this running example, the experts focus on the neighbourhood level. They

speak about each of the variables as the particular incidence rates for a neighbourhood.

The modeller could then draw a dependence structure for random variables from

their discussion about the dependence between these measurements. This structure

would be most conducive to a Bayesian Network. An example of one tentative BN

structure that has tried to accommodate these points in Figure 3.1a.

Importance of temporal processes Another key modelling decision is whether

or not to use a dynamic network model. Are the experts speaking about potential

interventions that are time-dependent or not? Do the key elements of the process

change drastically over time? Few elements of a system are ever truly static, but

dynamic models should only be chosen when the temporal element is crucial to the

experts’ description of the system as they are often more computationally intensive.

In contrast to the static example of measurements given above, suppose that

the experts believe that yearly fluctuations in disposable income I directly a↵ect the

rates of food insecurity F . This is a dynamic process. Another expert might draw
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on literature that shows the linear relationship between I and F . Using a standard

Bayesian Network for this problem description would not capture the temporal

information or the strength between each of the pairs of nodes. The quantities of

the graph here are not static random variables, but rather its nodes appear to be

representing processes. In this case, a more appropriate choice for the graphical

elements would be to represent them as time series Bt, It, Ft, Ht. This graph is shown

at a single time point in Figure 3.1b. The probabilistic model can be embellished

into a number of di↵erent stochastic descriptions as will be discussed later in this

chapter.

The meaning of the graph begins to change as the modeller learns more about

the structure of a problem. This chapter suggests ways in which modellers could

begin to frame di↵erent models for a desired context in terms of nodes and edges.

Nodes for general graphical models can be any mathematical objects suitable to the

given domain, provided that the system can be actually represented in terms of a

probabilistic distribution which is consistent with the meaning ascribed to the model

edges.

After establishing the nodes, the relationships between variables must be

represented. These are usually expressed in terms of oriented edges or colourings in

the vertices. Continuing with our toy example, the advocates promptly recognize

that government benefits and disposable income directly impact the state of food

insecurity. It also appears natural, as another expert attests, to associate the long-

term health as dependent on food insecurity. These three relationships provide the

graph in Figure 3.1a.

The experts comment that the available money for food purchasing directly

a↵ects how much food a family can buy, making directed edges a natural fit for B to

F and I to F . However, the relationship between long-term health outcomes and

disposable income is less clear. One advocate mentions that individuals and families

who are battling chronic illness or faced with an outstanding medical bill are less

likely to have disposable income, and thus more likely to be food insecure. However,

using the typical BN machinery, adding an edge between long-term health outcomes

and disposable income would induce a cycle in the graph and thus render the BN

inadmissible.

One common solution would be to simply ignore this information and proceed

only with the BN given previously. A second solution would be to embellish the

model into a dynamic representation that could formally associate this aspect of

the process by expressing instantaneous relationships in a single time slice of e↵ects

between nodes on di↵erent time slices. A time slice simply denotes the observations

of the variables at a given time point. Another method might be to incorporate an
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undirected edge that could be used to represent the ambiguous relationship between

I and H. The result is a hybrid graph with undirected and directed edges with its

own logic shown in Figure 3.1c.

Whatever semantic is chosen, edges should represent the experts’ natural

language description of the relationships. Returning to the instance in which the

experts speak about food insecurity as a time series, the edges represent regression

coe�cients as the system unfolds. As shown below, directed acyclic graphs (DAGs) are

particularly convenient for modelling. However, there are graphical representations

that permit cycles, should the modeller wish to focus on the cyclic nature of F and

H. The choice between the type and orientation of edge a↵ects the semantics of the

model as shown below.

3.2.2 Stating Irrelevancies and Checking Conditional Independence

Statements

Suppose the domain experts’ problem may be represented with a BN. Often, it is

more natural for experts to impart meaning to the edges present in a graphical

model. Unfortunately, it is the absence of edges that represent the conditional

independences. To facilitate a transparent elicitation process, these conditional

independence relationships can be expressed in a more accessible way as questions

about which variables are irrelevant to the other.

Domain experts who are not statistically trained do not naturally read

irrelevance statements from a BN. So it is often important to explicitly unpick each

compact irrelevance statement written in the graph and check its plausibility with

the domain expert.

Generally, suppose the domain expert believes that X is irrelevant for pre-

dicting Y given the measurement Z. That is, knowing the value of X provides no

additional information about Y given information about Z. These beliefs can be

written as X ?? Y |Z, read as X is independent of Y conditional on Z.

For our example, the missing edges indicate three conditional independence

relationships H ?? B |F , H ?? I |F and B ?? I. To check these, the modeller would

ask the following questions to the domain expert:

• If I know what the food insecurity status is, does knowing what the disposable

income is provide any additional information about long-term health?

• Assuming I know the food insecurity level, does the government benefit level

o↵er any more insight into the long-term health of a neighbourhood?

• Does knowing disposable income levels of a neighbourhood provide further

information about the government benefit level?
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This last question might prompt the expert to realize that indeed, disposable

income influences eligibility for government benefits, so an edge would be added

between B and I.

These questions can also be rephrased according to the semigraphoid axioms, a

simplified set of rules that hold for a given set of conditional independence statements.

It is helpful to include these as they provide a template for di↵erent rule-based styles

for other frameworks that capture types of natural language. More details can be

found in Smith (2010).

The symmetry axiom is given in Definition 1 This axiom asserts that assum-

ing Z is known, if X tells nothing new about Y , then knowing Y also provides no

information about X. The second, stronger semi-graphoid axiom is called perfect

composition (Pearl, 2014). This semi-graphoid axiom is equivalent to the decom-

position, weak union, and contradiction axioms given in Definitions 2, 3, and 4,

respectively.

Thus, for any four measurements X, Y , Z, and W :

Definition 20 Perfect composition requires that for any four measurements X,

Y , Z, and W :

X ?? (Y, Z) |W , X ?? Y | (W,Z) and X ?? Z |W

Colloquially, assumingW is known, then if neither Y nor Z provides additional

information about X, then two statements are equivalent. Firstly, if two pieces of

information, Y and Z do not o↵er information about X, then each one on its own

also does not help model X. Secondly, if one of the two is given initially alongside W ,

the remaining piece of information still does not provide any additional information

about X. Further axioms are recorded and proved in Pearl (2009). For the purposes

of elicitation, these axioms prompt common language questions which can be posed

to a domain expert to validate a graphical structure. Given the values of the vector of

variables in Z, learning the values of Y would not help the prediction of X. Note that

translating this statement into a predictive model implies that p(x | y, z) = p(x | z).
BNs encode collections of irrelevance statements that translate into a collection

of conditional independence relationships. This can be thought of as what variable

measurements are irrelevant to another. Relationships of the form X ?? Y |Z can be

read straight o↵ the graph as missing edges indicate conditional independence rela-

tionships. BNs obey the global Markov property, that each node is independent of its

non-descendants given its parents (Pearl, 2009). By identifying the non-descendants

and parents of each node, the entire collection of independence relationships is readily

apparent. To see this in our example, consider the node representing long-term
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health, H. In the BN in Figure 3.1a, {B, I} are its non-descendants, and F is its

parent, so then H ?? B |F and H ?? I |F .

The independences can be read from the graph using the d-separation cri-

teria. The conditional independence between three sets of variables A, B, and S is

determined using d-separation1. Investigating d-separation from the graph requires

inspecting the moralised ancestral graph of all variables of interest, denoted as

(GAn(A[B[S))
m (Pearl, 2009; Smith, 2010). This includes the nodes and edges of

the variables of interest and all their ancestors. Then, the graph is moralised by

drawing an undirected edge between all pairs of variables with common children

in the ancestral graph. After disorienting the graph (replacing directed edges on

the graph with undirected ones) and deleting the given node and its edges, the

conditional independence between variables of interest can be checked. If there is a

path between the variables, then they are dependent in the BN; otherwise they are

independent.

Pearl and Verma (1995) proved the d-separation theorem for BNs, definitively

stating the conditional independence queries that can be answered from the topology

of the BN in Figure 3.1a. Lauritzen (1996) provided an alternative formulation of the

d-separation criteria using the construction of an ancestral graph. This formulation

of the ancestral construction is somewhat more intuitive as it highlights dependence

structures due to shared ancestors.

The d-separation criteria and associated theorems formalize this process of

reading o↵ conditional independence relationships from a graph and is given in

Theorem 8.

As an example, consider the BN of the drivers of food insecurity shown in

Figure 3.1a. The d-separation theorem demonstrates that H is d-separated from B

and I given the separating set F . In the moralized graph, F d-separates every path

from the node H to a node in the set {B, I}. Thus, d-separation holds for any three

disjoint subsets of variables in the DAG.

Separation theorems have been found for more general classes of graphs

including chain graphs, ancestral graphs, and chain event graphs (Bouckaert and

Studenỳ., 1995; Andersson, 2001; Richardson and Spirtes, 2002). Another class of

graphical model, vines, weakens the notion of conditional independence to allow

for additional forms of dependence structure (Bedford and Cooke, 2002). Another

example of the use of these structures for Bayesian reference is given in Bedford

et al. (2016). The results of the separation theorem for BNs can also be used to

explore independence relationships in classes of graphs that are BNs with additional

restrictions such as those imposed by the Multi-regression Dynamic Models (Smith,

1The d in d-separation stands for dependence-separation.
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1993) and Flow Graphs (Figueroa and Smith, 2007).

When the structure is verified, it can then be embellished to a full probability

model, provided it meets the original assumptions of our model. Understanding the

relationship between the elicited conditional independence statements implied by the

graph ensures equivalent statements are not elicited, thereby reducing the number of

elicitation tasks. Even more importantly, the probabilities will respect the expert’s

structural hypotheses–hypotheses that are typically much more securely held than

their numerical probability assessment.

In a discrete BN, this process involves populating the conditional probability

tables with probabilities either elicited from experts or estimated from data. Altern-

atively, our food insecurity drivers example could be embellished to a full probability

representation of a continuous BN. Discrete BNs will be populated by conditional

independence tables that assign probabilities to all possible combinations of the

values of each term in the factorised joint probability density. New computational

approaches for continuous BNs allow for scalable inference and updating of the BN

in a high-dimensional, multivariate setting (Hanea et al., 2006). The probabilities

underpinning this model can be elicited using additional protocols and procedures

from other chapters of (Bedford et al., 2020).

3.3 Examples from Food Insecurity Policy

3.3.1 Bayesian Network

Structural elicitation for a Bayesian Network is well studied (Smith, 2010; Korb and

Nicholson, 2010). To see this process in action, consider a food insecurity example.

The United States Department of Agriculture (USDA) administers the national

School Breakfast Program (SBP), serving free or reduced price meals to eligible

students.

A key element of the system is understanding the programmatic operations.

Participation in SBP is not as high as it is for the school lunch program (Nolen and

Krey, 2015). The traditional model of breakfast service involves students eating in

the cafeteria before the beginning of school. Advocates began promoting alternative

models of service to increase school breakfast participation. These include: Grab

n Go, in which carts are placed through the school hallways and students select a

breakfast item en route to class, or Breakfast in the Classroom, where all students

eat together during the first period of the day. Only schools which have 80% of

students eligible for free or reduced lunch are eligible for universal school breakfast.

This means that breakfast is o↵ered to every child in the school, regardless of their

free or reduced status. This policy was implemented to reduce stigma of receiving a
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free meal.

The experts would also like to understand the e↵ects of not eating breakfast.

Advocates, principals, and teachers have hypothesized that eating a school breakfast

impacts scholastic achievement. Food-insecure children struggle to focus on their

studies. Experts posit that breakfast reduces absenteeism, as children and parents

have the added incentive of breakfast to arrive at school. Some evidence suggests

eating breakfast may also reduce disciplinary referrals, as hungry children are more

likely to misbehave.

The data for this problem comes from a set of schools who are all eligible

for universal breakfast, but some have chosen not to implement the program while

others have. As universal breakfast status can be used as a proxy for socio-economic

background of students attending a school, the population is narrowed to schools

with low socio-economic status. The group of experts do not describe a temporal

process here. They do not mention changes in breakfast participation throughout

the school year, yearly fluctuations, or a time series of participation rates. Thus, it

is natural for the modeller to begin with a BN approach. Given this information

about breakfast, led by a facilitator, the modeller could consolidate the discussion

into the following nodes:

• Xm Model of Service (Yes, No): indicates whether or not an alternative model

of service as been implemented

• Xu Universal (Yes, No): indicates whether or not an eligible school has opted

into universal service, as opposed to checking the economic status of the student

at each meal

• Xb Breakfast Participation (High, Medium, Low): the binned participation

rates at each school

• Xs Scholastic Achievement (High, Medium, Low): the standardized test score

for each school

• Xa Absenteeism (High, Low): the binned absenteeism rate for the year

• Xr Disciplinary Referrals (High, Low): absolute number of disciplinary referrals

This list of nodes is focused on understanding the e↵ects of school breakfast

participation and specific type of breakfast service model. Certainly there are other

reasons for absenteeism and disciplinary referrals besides whether or not a student had

a good breakfast, but these are beyond the scope of this model. How can modellers

determine the structure of this model from these measurable random variables? From
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(a) The original BN repres-
enting the e↵ects of model
of service on breakfast parti-
cipation and academic out-
comes

(b) The BN represents the
original BN with an edge ad-
ded through the described
verification process.

(c) The ancestral, moralized
DAG of the central BN.

Figure 3.2: Exploring the conditional independence relationships expressed by the
directed BN and its moralised analogue.

this set of nodes, the expert is queried about the possible relationship between all

possible sets of edges. For instance, the modeller could ask, does knowing whether or

not the school has opted into universal breakfast give any other information about

whether or not the school has implemented an alternative breakfast model? In this

case, the experts believe Xm does not give any additional information about Xu,

because the program model is subject to approval from the cafeteria managers and

teachers, whereas the decision to implement universal breakfast is primarily the

decision of the principal. Thus no edge is placed between Xm and Xu. Both Xm and

Xu are helpful in predicting Xb, so an arrow is drawn between each of these pairs.

Xs is a↵ected by Xb. These relationships can be seen in Figure 3.2a.

It is important to note that if the population of schools considered had

included all schools rather than those with a low socio-economic status, then Xu

would a↵ect Xs, Xa, and Xr because universal school lunch would then be a proxy

for low socio-economic status.

Suppose the domain experts know a school has a low breakfast rate, and they

want information about their absenteeism. Will knowing anything about scholastic

achievement provide any additional information about absenteeism? In order to check

this with d-separation, the modeller may examine the ancestral graph GAn(Xs,Xa,Xr)
,

the moralised graph (GAn(Xs,Xa,Xr)
)m shown in Figure 3.2c. If there is not a path

between Xs and Xa, then Xs is irrelevant to Xa. However, if there is a path between

Xs and Xa that does not pass through our given Xb, then the two variables are likely

to be dependent. Thus, the d-separation theorem checks the validity of the BN. The
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symmetry property also imparts a set of equivalent questions. For instance, suppose

the domain experts know a school has a low breakfast rate and they want to know

information about their scholastic achievement. Will additional information about

absenteeism be relevant to scholastic achievement? Asking such a question may

prompt our group of experts to consider that students who miss classes often perform

worse on exams. Revising the BN is in order, so the modeller add an additional edge

from Xa to Xs. The BN in Figure 3.2a represents the beliefs of the domain experts.

This encodes the following irrelevance statements:

• Knowing the model of service provides no additional information about whether

or not the school district has implemented universal breakfast.

• The model of service provides no additional information about scholastic

achievement, absenteeism, or referrals given information about the percentage

of students who eat breakfast.

• Knowing absenteeism rates provides no additional information about disciplin-

ary referrals given information about the breakfast participation rate.

• Knowing scholastic achievement rates provides no additional information about

disciplinary referrals given that information about the breakfast participation

and absentee rates.

When these irrelevance statements are checked, the domain experts realize

that there is an additional link in that absenteeism a↵ects scholastic achievements.

Thus the modeller draws an additional arrow between Xs and Xa as shown in

Figure 3.2b. The relationship between referrals and absenteeism is disputed in the

literature and among experts, so, at least in this first instance, the modeller omits

this edge.

Once the experts agree on the structure and verify it using the irrelevance

statements, then the modeller may elicit the conditional distributions. Taken together,

the BN represents a series of local judgements.

The joint probability mass function of the BN on the variablesX = {Xm, Xu, Xb, Xa}
given by Definition 2.1 is

p(x) = p(xm)p(xu)p(xb|xm, xu)p(xs|xb, xa)p(xa|xb)p(xr|xb)

for this example.

Many of these distributions may be estimated by data, and unknown quantities

may be supplied through structured expert elicitation. For instance, consider the

sample question: what is the probability that scholastic achievement is high given
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that breakfast participation rate is medium and the absentee rate is low? When the

conditional probability tables are completed, the BN can be used to estimate e↵ects

of intervention in the system according to Pearl (2009).

3.3.2 Chain Event Graph

To illustrate an instance when a bespoke representation is more appropriate than the

BN, consider the example of obtaining public benefits to address food insecurity. The

USDA’s Supplemental Nutrition Assistance Program (SNAP) provides funds for food

to qualifying families and individuals through Electronic Benefit Transfer (EBT).

Although 10.3% of Americans qualify for the program, Loveless (2010) estimates

that many more citizens are eligible for benefits than actually receive them. Policy

makers and advocates want to understand what systemic barriers might prevent

eligible people from accessing SNAP. The application process requires deciding to

apply, having su�cient documentation to apply (proof of citizenship, a permanent

address), a face to face interview, and correct processing of the application to receive

funds.

The structural elicitation phase includes speaking with domain experts to

gather a reasonably comprehensive list of steps in the process. Domain experts

include case workers, advocates, and individuals applying through the system. For

our example, Kaye et al. (2013) collected this information through interviews at

73 community based organizations in New York State and categorized it according

to access, eligibility, and benefit barriers. This qualitative information collection

is crucial to developing an accurate model. From the qualitative studies, the key

barriers were identified as:

• Face-to-face interviews not waived

• Same-day application not accepted

• Excessive documentation required

• Expedited benefit (available to households in emergency situations) not issued

• Failed to receive assistance with application documents

• Barriers experienced by special population: elderly and immigrant

• Ongoing food stamp not issued within 30 days

• EBT card functionality issues
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The events selected should be granular enough to encompass the key points

at which an applicant would drop out of the process, but coarse enough to minimize

model complexity. An important part of the qualitative analysis process includes

combining anecdotal evidence into similar groupings. For instance, the benefits

o�ce refused to waive the in-o�ce interview for an applicant who did not have

transportation to the application centre. In a separate instance, an interview was

not waived for a working single mother with four children who could not attend

because she was at work. While there are di↵erent contexts to each example, the

central problem is the failure to waive the face-to-face interview. This type of node

consolidation aids in reducing model complexity.

Discretising events can be a convenient way to clarify the model structure.

Checking that the discretisation covers all possible outcomes from that event ensures

that the model is an accurate representation of the problem. For our example, one

possible discretisation with four variables of the problem is:

• Xr: At-risk population? (Regular, Elderly, Immigrant)

– Regular: Households not part of an at-risk population

– Elderly: Household head is over 65

– Immigrant: Household head is a citizen, but immigration status of mem-

bers of the household is uncertain

• Xa: Decision to apply (Expedited, Regular application, Decides not to apply)

– Expedited: Same day applications, used in cases of emergency food

insecurity

– Regular application: The standard procedure

– Decides not to apply: Eligible households who elect not to apply for a

variety of reasons

• Xv: Application Verdict (Rejected, Accepted, Revision Required)

– Rejected: Failed application, no possibility of resubmission

– Accepted: Successful application

– Revision required: Application must be resubmitted because of missing

documentation, missed interview, or other reasons

• Xe: Utilizing an EBT card (Card successfully used for transactions, transaction

errors)
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– Card used for transactions: EBT arrives within the 30 day deadline and

is successfully used at a grocery store

– Transaction errors: Card either does not arrive or returns an error at the

grocery store

Figure 3.3 shows a simple BN approach to the natural language problem.

Assume that the conditional independence relationships have been checked and

that the modeller can now supply the conditional probabilities. Throughout this

process, note that some of the probabilities are nonsensical. For example, the

modeller must supply a probability for quantities like: the probability of having an

accepted application given that the eligible citizen decided not to apply, and the

probability of successfully utilizing EBT given that the application was rejected.

This probability setting sounds absurd to elicit structurally, and will be distracting

during the probability elicitation.

Figure 3.3: An inadmissible BN for the public benefits application process example.

The application process is di�cult to coerce into a BN because the problem

is highly asymmetrical. For instance, applicants with insu�cient documentation will

not have the chance to interview, and will not progress through the system. Now, if

the natural language of the experts describes this process as a series of events, then

these events have a natural ordering. Applicants must first decide to apply, then

receive a verdict, and finally use their EBT card. The notion of being a member

of an at-risk population does not have an explicit ordering, but the modeller can

reasonably order it before the other events as it may a↵ect how downstream events

unfold.

Collazo et al. (2018) show that ordering demographic information at the

beginning often coincides with higher scoring models during model selection for this

class of graphs. Shafer (1996) has argued that event trees are a more natural way

to express probabilistic quantities, so this problem may instead be expressed as an

event tree in Figure 3.4 according to the framework given in Section 2.4.1. In this

instance, there is an alternative graphical framework that provides a better way of

accommodating the information provided by the expert.

As defined in Section 2.4.1, the nodes of our event tree are called situations si 2
S indexed according to temporal precedence; they represent di↵erent outcomes faced
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Figure 3.4: Event tree depicting the outcomes of the benefit application process.

by applicants travelling through the system. The edges represent the probabilities

of di↵erent outcomes of each possible event occurring. The modeller can elicit the

probability of observing a unit travelling down each edge of the tree, ✓(e). The

probability of a unit travelling down each of those edges should sum to one for

each situation. The root-to-sink paths on the tree can be thought of as all possible

outcomes of the application procedure. Situations with the same colour on the

tree represent events whose outcomes have the same probabilities; these are in the

same stage as defined in Definition14. In Figure 3.5, leaf nodes showing terminating

outcomes are depicted in light grey.

The tree structure is naturally flexible just like the BN and can easily be

modified to accommodate natural language suggestions. For instance, suppose the

expert would like to add in a variable: the outcome of an interview process for

regular applicants (the expedited process is waived.) Adapting the model simply

requires adding two edges representing the outcome of the interview being successful

or rejected to the set of situations in which an applicant applies through the regular

route {s4, s7, s10}. This simple adjustment in the tree structure would require adding

a node to the BN as well as updating the conditional probability tables for the child

nodes.

Another feature of the staged event tree structure is that the context specific

independences are expressed directly in the tree structure. In this example, elderly

applicants are often less likely to apply for benefits because the dollar amount is often

too small a motivation for the perceived di�culty of the application. Immigrants are

also less likely to apply because, although citizenship is required to apply for benefits,

citizens with undocumented family members may fear citizenship repercussions of

applying for assistance.

These context-specific probabilities are modelled through the colourings of

the positions of the Chain Event Graph (CEG), rather than requiring separate BN
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Figure 3.5: Chain Event Graph representation of the benefits application process.

models with context-specific conditional independence relationships. Conditional

independence relationships can be read from the graph through the stage structure.

Two positions are in the same stage if they are the same colour. In order to draw a

condensed representation of the graph, define positions wk 2 W as in Definition 15.

This allows merging the stages for a more compact chain event graph representation,

called the Chain Event Graph (CEG), depicted in Figure 3.5.

In the same spirit as the Markov condition for BNs, a result for the CEG

can read statements of the form ‘the immediate future is independent of the past

given the present.’ Given that a unit reaches a position, what happens afterwards

is independent not only of all developments through which it was reached, but

also of the positions that logically cannot happen. These conditional independence

statements can be read o↵ the graph just as they can for BNs. Illustrating this

process requires new definitions about certain sets of positions in the CEG.

Definition 21 A set of positions W
0 ✓ W is a fine cut if disjoint union of events

centred on these vertices is the whole set of root-to-leaf paths.
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That is, none of the positions w 2 W
0 are up- or downstream of another and all of

the root-to-sink paths on C must pass through one of the positions in W
0.

Definition 22 A set of stages u 2 U denoted W
0 ✓ U is a cut if the set of positions

in the colouring w 2 u|u 2 U is a fine cut.

The definitions of fine cut and cut help to di↵erentiate the ‘past’ from the

‘future’ in the graph.

A cut-variable denoted XW can be thought of as an indicator variable used

to define the edges a unit passes through in the present.

Definition 23 The cut-variable XW is the corresponding set of positions W in a

cut or a fine cut and XW is measurable with respect to the probability space defined

by the CEG.

The past and future can be defined as a vector of random variables whose

vertices are located upstream or downstream. Denote the ‘past’ random variables as

Y�W = (Yw|w upstream of W )

and the ‘future’ by

YW� = (Yw0 |w0 downstream of W ).

Defining the random variables in a CEG sets up this formal definition of conditional

independences in a CEG:

Theorem 24 Let C = (W, F ) be a CEG and let W 0 ✓ W be a set of positions then

for any cut-variable XW 0, we find:

1. If W 0 is a fine cut then Y�W 0 ?? YW 0�|XW 0.

2. If W 0 is a cut then Y�W 0 ?? YW 0 |XW 0.

Proof can be found in Smith and Anderson (2008).

Theorem 24 explains how to read conditional independence from the CEG

structure. The next step is to validate the structure. Just as for the BN, natural

language questions from the semigraphoid axioms elucidate the conditional inde-

pendence relationships. At each cut, consider the conditional independence between

each pair of upstream and downstream variables. For instance, given that eligible

applicants apply for benefits, does knowing whether or not they are part of an at-risk

population provide any additional information about whether or not they apply for

expedited benefits? By perfect decomposition, does knowing that the candidate

received application assistance provide any information about whether or not they
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(a) A pseudo-ancestral CEG representing an independence between the query.

(b) A pseudo-ancestral CEG representing a dependence between the query.

Figure 3.6: Two uncoloured pseudo-ancestral CEGs

will receive the electronic benefits given that they had the correct documentation and

passed the interview? Does knowing that they had application assistance provide

any additional information about whether or not they passed the interview given

that they had the correct documentation? These queries validate the model and

may prompt further adaptations.

In the BN, Theorem 8 provides a systematic way to check all of the conditional

independence relationships. Thwaites and Smith (2015) proposed a new d-separation

theorem for simple, uncoloured CEGs. The full d-separation theorem for CEGs

will be discussed in Chapter 4. In a BN, the ancestral graph helps to address these

queries. The analogue of the ancestral graph for the CEG is given in Chapter 4.

Thwaites and Smith (2015) derived the precursor to the full ancestral graph of the

CEG– the pseudo-ancestral representation. Pseudo-ancestral graphs depict the nodes
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of interest and all the upstream variables, consolidating the downstream variables.

Moralizing the graph in a BN corresponds to removing the colourings of the CEG.

The examples in this chapter focus on the pseudo-ancestral representation, and the

development of the full ancestral graph will be shown in Chapter 4.

Is the ability to complete a transaction on the EBT card independent of

whether the applicant is a member of an at-risk population given that they completed

a successful regular application? The pseudo-ancestral graph as seen in Figure 3.6a,

shows the probability that ⇤ = {Regular, Accepted}. Being a part of the at-risk

population is independent of being able to utilize an EBT card because all the

possible pathways must pass through w10, identifying it as a single vertex composing

a fine cut.

On the other hand, testing the independence of the application verdict from

the selected method of application for at-risk immigrant population can be done

with the ancestral graph in Figure 3.6b. These are not independent because there is

no single vertex composing a fine cut.

One of the strengths of the CEG model is that it does not require any algebra,

but instead can be elicited entirely using coloured pictures. CEGs are of particular use

for problems that exhibit some asymmetry. After validating the structure, populating

the model with data or elicited probabilities provides a full statistical model that can

be used for inference, details can be found in Collazo et al. (2018). The CEG o↵ers

a class of models that is more general than BNs, enabling modellers to represent

context-specific independences. The model can also incorporate asymmetries as seen

in our non-stratified example.

The CEG is a powerful model particularly well-suited to expert elicitation,

as experts often convey information in a story, which naturally expands to an event

tree.

3.3.3 Multi-regression Dynamic Model

Our next two examples of customised classes of graphical models consider the problem

of assessing participation in the Summer Meals Program (SMP). SMP meal sites are

designated as either open or closed. Open sites do not have a set population like in a

school or particular program, but rather are open to the public and thus dependent

on walk-ins for the bulk of participation.

Although the need in the summer is severe, participation in the program

remains relatively low. Advocates generally agree that the two biggest obstacles to

program participation are a lack of awareness about the program, and unavailable

transportation to the site. These factors a↵ect meal participation which fluctuates

throughout the three months of summer holidays. Available data for meal parti-
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(a) The correct summary MDM graph (b) An inadmissible MDM summary graph

Figure 3.7: Two DAGs with equivalent BN representations, but unique Multi-
regression Dynamic Model representations

cipation records how many meals were served through the program at each day for

about three months in the summer. Transportation data records the number of

available buses. Awareness can be measured through texting data that records when

participants queried a government information line to receive information about

where the closest sites serving meals are. The Texas Department of Agriculture

collected text records for all phone calls made to the number in the summer of 2013.

Figure 3.9 incorporates this data into a dynamic linear model.

Advocates would most like to capture the e↵ect that awareness of SMP has on

available transportation, and that transportation in turn has on meal participation.

To simplify the elicitation, additional obstacles like low summer school enrolment,

poor food quality, and insu�cient recreational actives are not considered as primary

drivers of meal participation levels. The relationship between awareness and available

transportation is well documented, as is the relationship between transportation and

meal participation (Wilkerson and Krey, 2015).

The advocates emphasize drastic shifts in awareness, transportation, and meal

participation throughout the summer months. On public holidays and weekends,

there is a lack of public transportation and a corresponding sharp decline in meals.

This temporal aspect of the problem prompts the modeller to consider a time series

representation as the most natural class of graphical model.

To emphasize the importance of selecting a time series representation over

a BN, consider the limitations of the standard BN model. Suppose the advocates

agree on the general structure shown in the DAG in Figure 3.7a, as children and

parents must know about the meal before they take transportation to the meal.

Then in turn, they must travel to the meal before receiving the meal. However, if

the graph is interpreted as a BN, then Figure 3.7a only encodes the conditional

independence relationship M ?? A |T , which does not capture the ordering expressed

by the advocates. To further stress this point, Figure 3.7b shows a DAG with the

reverse ordering that encodes equivalent conditional independence relationships when

interpreted as a BN. As shown below, if these are summary graphs of MDMs whose

edges represent the strengths given in the model definition in Definition 19, then the

models are distinguishable.

41



The experts remark that a media campaign and corresponding surge in

awareness prompts a corresponding increase in the number of people travelling to

meal sites. These aspects of the problem, taken with those discussed above prompt

a consideration of each of the elements as time series. In order to capture the linear

relationship between variables that the experts have expressed, the edges of the

graph correspond to regression coe�cients between each parent and child node.

Assuming linear relationships exist between awareness and transportation and

transportation to the meal site and actual participation, the system can be described

as regressions in a time series vector Yt = {Yt(1), Yt(2), Yt(3)}. Let the time series of

the key measurements denote awareness by Yt(1), available transportation by Yt(2),

and summer meals participation by Yt(3). This model corresponds to another example

from our toolbox of alternative representations: the Multi-regression Dynamic Model,

the general definition of which is given in Definition 19.

This means that (Yt(r)|Y t�1
,Ft(r),✓t(r)) follows some distribution with

mean Ft(r)t0✓t(r) and variance Vt(r).

Modelling this behaviour requires dynamic linear models in which the parents

are the regression coe�cients for each series. For our example in Figure 3.7a, the

system and observation model equations are:

✓t(1) = ✓t�1(1) + wt(1) Yt(1) = ✓
(1)

t
(1) + vt(1)

✓t(2) = ✓t�1(2) + wt(2) Yt(2) = ✓
(1)

t
(2) + ✓

(2)

t
(2)Yt(1) + vt(2)

✓t(3) = ✓t�1(3) + wt(3) Yt(3) = ✓
(1)

t
(3) + ✓

(2)

t
(3)Yt(2) + vt(3)

The strengths of the parents are given by the regression coe�cients ✓(2)
t

(2)

for Yt(2) and ✓
(2)

t
(3) for Yt(3). The initial information {✓0} can be elicited from the

domain experts or taken from previous data observations.

Suppose after the experts agree on the structure, the modeller examines the

one step ahead forecasts, and notices errors on some days. Examining these days

might prompt the experts to recognize that the days of interest correspond to days

with a heat advisory. They suggest that the heat index throughout the summer also

a↵ects meal participation. This structural change can be quickly integrated into the

system by adding observation, system equations, and initial information to represent

the new model feature and updating the system for all downstream nodes. The

system equations and the initial information is given in Equation 19. Because the

ordering in the MDM is strict, and the heat index is a parent of meal participation,

meal participation is relabelled as Yt(4) and the heat index as its parent Yt(3).
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(a) A summary MDM graph with series repres-
enting awareness Yt(1), transportation Yt(2),
and meal participation Yt(3) respectively.

(b) A MDM summary graph with series repres-
enting awareness Yt(1), transportation Yt(2)
meal participation Yt(4) and the new heat in-
dex variable Yt(3)

Figure 3.8: A summary MDM graph after refining elicitation with experts including
the original variables plus a new series with the heat index.

✓t(4) = ✓t�1(4) + wt(4)

Yt(3) = ✓
(1)

t
(3) + vt(3)

Yt(4) = ✓
(1)

t
(4) + ✓

(3)

t
(4)Yt(2) + ✓

(2)

t
(4)Yt(3) + vt(3)

In this new model, the regression coe�cients ✓
(3)

t
(4) and ✓

(2)

t
(4) for meal

participation Yt(4) indicate the strengths of the edges in the summary graph in

Figure 3.8.

In this way, the natural language expressions of the domain experts can be

used to adjust the model.

Generally, particular observations of Yt(r) are denoted as yt(r). The MDM

ensures two critical conditional independence relationships. The first holds that if

??n

r=1 ✓t�1(r)|yt�1 (3.1)

then

??n

r=1 ✓t(r)|yt (3.2)

where yt�1(i) = {y1(i), . . . , yt�1(i)} and

✓t(r) ?? Y
t(r + 1), . . . , Y t(n)|Y t(1), . . . , Y t(r) (3.3)

Equation 3.2 demonstrates that the parameters{✓t�1(r)} are independent

of each other given the past data {yt�1} then {✓t(r)} is also independent of {yt}.
Given the initial parameters {✓0(r)} are independent, then they remain independent

as the series unfolds by induction according to Smith (1993).

In the summer meals example, the experts confirm that the independence
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between awareness, transportation, and meal participation is independent. That

is, ✓0(1) ?? ✓0(2) ?? ✓0(3). Awareness is measured by the amount of public media

generated, transportation is a measure of public transportation available, and the

participation rate is the number of meals served every day in the summer. The

domain experts agree that these can be independent of each other. Additionally,

Equation 3.3 ensures the following conditional independence relationships:

✓t(1) ?? {yt�1(2), yt�1(3)}|yt�1(1)

✓t(2) ?? y
t�1(3)|{yt�1(1), yt�1(2)}

An analogue of the d-separation theorem for MDMs identifies part of the

topology of the graph that ensures that these conditional independence statements

hold.

Theorem 25 For MDM {Yt} if the ancestral set xt(r) = {yt(1), . . . , yt(r)} d-

separates ✓t(r) from subsequent observations zt(r) = {yt(r + 1), . . . , yt(n)} for all

t 2 T , then the one-step ahead forecast holds :

p(yt|yt�1) =
Y

r

Z

✓t(r)
p{yt(r)|xt(r),yt�1(r),✓t(r)} p{✓t(r)|xt�1(r),yt�1(r)}d✓t

(3.4)

Proof. Consider the contrapositive: if the one-step ahead forecast does not hold,

then the ancestral set xt(r) must not d-separate ✓t(r) from zt(r). If the form of

Equation 3.4 does not hold, then either the first term p{yt(r)|xt(r),yt�1(r),✓t(r)} or

the second term p{✓t(r)|xt�1(r),yt�1(r)} must depend on zt(r). This would violate

the structure of the MDM, inducing arrows between ✓t(r) and zt(r). These new

arrows violate the d-separation condition.

This one step ahead forecast factorises according to the topology of the graph,

allowing an examination of the plots of each of the series. For this example, the one

step ahead forecast factorises:

p(yt|y) =
Z

✓t(1)
p{yt(1)|yt�1(1)✓t(1)} p{✓t(1)}d✓t(1)

⇥
Z

✓t(2)
p{yt(2)|y(1)t,yt�1(2),✓t(2)} p{✓t(2)|yt�1(1),yt�1(2)}d✓t(2)

⇥
Z

✓t(3)
p{yt(3)|y(1)t,y(2)t,yt�1(3),✓t(3)} p{✓t(3)|yt�1(1),yt�1(2),yt�1(3)}d✓t(3)

Examining plots of the errors of each forecast can help determine what further

structural adjustments should be made. For instance, in the Figure 3.9, awareness
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Figure 3.9: The logarithmic plot of awareness (as measured by calls to ask for meal
site locations) throughout the summer months. The open green dots are actual
observations; the filled brown dots are the one step ahead forecast.
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has a cyclical nature, as people are less likely to text for an address of a meal site on

weekends and holidays. This model can be adapted to include seasonal shifts using

the equations from West and Harrison (1997).

The implementation of this problem as an MDM rather than a BN maintains

the strength of the relationships between each series and its regressors, respecting

the natural language expression of the system by the domain experts. An additional

feature of the MDM is that this representation renders the edges causal in the sense

carefully argued in Queen and Albers (2009). For our model, note that while the

two DAGs in Figure 3.7 both represent At ?? Mt|Tt, and are thus indistinguishable,

the arrows in the MDM representation are unambiguous. The causal implications

of this are developed in Chapter 6. The MDM o↵ers a dynamic representation of a

system in which the regressors influence a node contemporaneously.

3.3.4 Flow Graph

Structures can be adapted to meet additional constraints, such as conservation of a

homogeneous mass transported in a system. However, these constraints motivate

employing yet another graph with di↵erent semantics to transparently express the

expert structural judgements. To illustrate how to derive this from a natural language

expression of a problem, consider the following example from the Summer Meals

Program (SMP).

SMP provides no-cost meals to children under 18 at schools and community-

based organisations during the summer months. SMP relies on food being procured

from vendors, prepared by sponsors, and served at sites. Participation in the program

is low, nationally 15% percent of eligible children use the program (Gundersen et al.,

2011). Sponsors, entities who provide and deliver meals, are reimbursed at a set rate

per participant, but sponsors often struggle to break even. One of the key possible

areas for cost cutting is the supply chain of the meals. Community organisers

hypothesize di↵erent interventions on each of these actors might help make the

program more sustainable such as:

• A school district serving as a sponsor (Austin ISD) is having trouble breaking

even. What happens when they partner with an external, more financially

robust sponsor (City Square) to provide meals to the school. What is the e↵ect

on the supply chain of meals to the Elementary and Intermediate schools?

• Several smaller sponsors (among them the Boys and Girls Club) are having

trouble breaking even and decide to create a collective to jointly purchase

meals from a vendor (Revolution Foods). How does the presence of the new

collective alter the flow of meals to the two Boys and Girls Club sites?
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• Two sites, say apartment complexes A and B are low-performing, and the

management decides to consolidate them. What is the long-term e↵ect on a

system?

• What happens when a sponsor, City Square, changes vendors from Revolution

Foods to Aramark?

• What happens when one sponsor, Austin ISD, no longer administers the

program and another sponsor, Boys and Girls Club takes responsibility for

delivering food to the Intermediate and High Schools?

Hearing the domain expert describe what types of intervention they would

like to be able to model can elucidate the critical elements of the structure. In this

example, the e↵ect of the supply and transportation of meals through the network

is key to the types of behaviour the modeller hopes to capture. This problem

can be framed as a set quantity of meals moving through the system. Key model

assumptions must always be checked with the domain expert. In this case, one of

the key assumptions is that the number of children who are in need of meals and

are likely to attend the program is relatively stable throughout the summer. This

is a reasonable assumption, particularly when modelling a set population such as

students in summer school or extracurricular programming. Community advocates

verify that the assumption is reasonable because all of these sites and sponsors need

a relatively set population in order to break even on the program.

Additionally, to estimate the e↵ect of the addition or removal of actors in the

system, it is important to assume that the number of meals for children in need is

conserved. Thus, if a sponsor and subsequent sites leave the program, then those

children will access food at another sponsor’s meal sites, provided transportation is

available. This assumption permits modelling particular interventions of interest,

where combining, removing, or adding actors to the system is of particular interest.

The dynamics of this particular problem involve the switching of ownership–what

happens when the path flow of meals through the system changes–either a sponsor

buys a meal from a di↵erent vendor, or a site turns to a di↵erent sponsor to supply

their meals. This is a key component of the problem, but unfortunately it renders

the problem intractable for the BN as shown below. However, Figueroa and Smith

(2007) discovered a methodology for re-framing this problem as a tractable variant of

a BN that simultaneously remains faithful to the dynamics of the problem described

above (Figueroa and Smith, 2007).

Modelling the process as a BN begins with identifying the actors involved. A

scenario for the key players in the city of Austin, Texas may consist of the following

players at the vendor, sponsor, and site level. Levels are denoted by z(i, j) where i
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indicate the level (vendor, sponsor, or site), and j di↵erentiates between actors on a

particular level. In this example the players are:

z(1, 1) Revolution Foods

z(1, 2) Aramark

z(2, 1) City Square

z(2, 2) Austin Independent School District

z(2, 3) Boys and Girls Club

z(3, 1) Apartment complex A

z(3, 2) Apartment complex B

z(3, 3) Elementary School

z(3, 4) Intermediate School

z(3, 5) High School

z(3, 6) Boys and Girls Club site A

z(3, 7) Boys and Girls Club site B
These actors compose the nodes of the network; the edges represent the flow

of meals between entities. For instance, vendor Aramark z(1, 2) prepares meals for

sponsors at Austin ISD, z(2, 2), who in turn dispenses them at the Intermediate

School, z(3, 4). Domain experts assume that each day, a set number of meals runs

through the system. This list of actors can be readily obtained from natural language

descriptions of the problem. Eliciting this information would simply require the

modeller to ask the domain experts to describe the flow of meals through each of the

actors in the system. This structural elicitation and resultant graph in Figure 3.10

are transparent to the expert, an advantage of customised modelling.

As the modeller begins to check the relationships encoded in the graphical

model elicited in Figure 3.10, the missing edges between actors in a given level means

that each of the sponsors is una↵ected by the meals being transported to and from

the other sponsors. However, this is not realistic for closed sites because knowing the

number of meals served at all but one sponsor gives perfect information about the

remaining sponsor, as the number of meals served by sponsors remains constant. For

instance, knowing how many meals are prepared by Aramark, z(1, 1), provides perfect

information about how many are prepared by Revolution Foods, z(1, 2), because

meals are conserved at each level, implying a directed line from z(1, 1) to z(1, 2).

Modelling this process graphically, as in Figure 3.10, induces severe dependencies in

the network when the process is modelled as a BN. Thus, the problem as the experts

have expressed it cannot be represented as a BN.

Decomposing the information in Figure 3.10 to into paths as shown in Figueroa

and Smith (2007), admits a representation as a Dynamic Bayesian Networks. Denote
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Figure 3.10: Flow Graph showing transfer of meals from vendors z(1, j), to sponsors
z(2, j), to sites z(3, j).

�0
t[l] = (�t(l, 1),�t(l, 2), . . . ,�t(l, nl)), where l = {1, 2, 3} as the node states vector

for each of the three levels, where �t(l, jl) represents the mass owned by player z(l, jl)

during time t. This probabilistic representation allows the modeller to retain the

advantages of the clear representation in Figure 3.10 to draw information about

the system from the experts as well as the computational convenience of the BN

machinery.

The full methodology for translating the hierarchical Flow Graph to the

dynamic Bayesian Network (DBN) representation is given in Figueroa and Smith

(2007), this chapter simply states the elements of the model that would need to be

a part of the probability elicitation. Information about the numbers of meals held

by each entity at each day during the summer can be represented by a time series

vector X 0
t = (X 0

t[1],X
0
t[2],X

0
t[3]), representing the number of meals at the vendor,

sponsor, and site levels respectively. Next, the paths of meals travelling from vendor

to meal site are represented as aggregates of the product amounts. The paths in this
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diagram are:

⇡(1) = {z(1, 1), z(2, 1), z(3, 2)} ⇡(2) = {z(1, 1), z(2, 1), z(3, 1)} (3.5)

⇡(3) = {z(1, 1), z(2, 3), z(3, 6)} ⇡(4) = {z(1, 1), z(2, 3), z(3, 7)}

⇡(5) = {z(1, 1), z(2, 3), z(3, 5)} ⇡(6) = {z(1, 1), z(2, 3), z(3, 4)}

⇡(7) = {z(1, 2), z(2, 2), z(3, 5)} ⇡(8) = {z(1, 2), z(2, 2), z(3, 4)}

⇡(9) = {z(1, 2), z(2, 2), z(3, 3)}

Fully embellishing this model involves eliciting the core states, the underlying

drivers of the number of meals passing through each of the actors. These can be

readily adapted to reflect the beliefs of di↵erent domain experts. For instance,

di↵erent school districts often follow di↵erent summer school schedules, so if the

advocates were interested in applying the model to a di↵erent region, it would simply

require updating the core state parameters. The information about the path flows is

most readily supplied through available data about the number of meals prepared,

transported, and served throughout the summer.

As with the MDM, the conditional independence relationships can be read

from the model. The dynamic linear model is essentially a Markov chain, so checking

the flow of items in the network only depends on the previous iteration. If not, then

the model must be adapted to express a Markov chain with memory. Furthermore,

validating the structure requires checking that the past observations of how much

stu↵ is in the model at each level are independent of future amounts given all of

the governing state parameters for that particular time-step. The one-step ahead

forecast allows a structural check similar to that of the MDM.

3.4 Discussion

The case studies in Section 3.3 show how drawing the structure from the experts’

natural language description motivates the development of more flexible models that

can highlight key features of a domain problem. The SBP example shows that a

BN is appropriate when the expert describes a problem as a set of elements that

depend on each other. The SNAP application example highlights the advantages of a

tree-based approach when the experts describe a series of events and outcomes. The

open SMP example shows how additional restrictions on the BN structure can draw

out the contemporaneous strengths between elements of the model that is crucial to

the experts’ description. Lastly, the flow of meals in a system shows how working

with the accessible representation of meal flow in a system can be translated into a

valid structure while remaining faithful to the assumptions expressed by the expert.
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A summary table is shown in Table 3.1 citing additional examples of applica-

tions of these bespoke graphical models examined in this chapter. References are

given for two classes of models, chain graphs and regulatory graphs that are not

explored in this chapter. This is of course a small subset of all the formal graphical

frameworks now available. These case studies and applications in the table are

examples from possible customised models.

Generally, allowing these representations to capture dynamics uniquely to a

given application cultivates more suitable representations. Just as the d-separation

theorem articulates the conditional independence relationships in the BN, analogous

theorems elucidate the dependence structure of custom representations. Each of these

examples of elicited structure has its own logic which can be verified by examining

the conditional independence statements and confirming with the expert that the

model accurately conveys the expert’s beliefs.

Carefully drawing structure from an expert’s natural language description is

not an exact science. This chapter o↵ers a few guidelines for when to use particular

models summarised in the flow chart in Figure 3.11. The examples discussed here are

far from exhaustive and Figure 3.11 also highlights areas of open research. Spirtes

and Zhang (2016) confirms that determining what new classes of models might

be more appropriate than a BN for a given domain. A full protocol for choosing

one customising model over another remains to be formalised. While software for

BN elicitation is ubiquitous, robust software for these alternative models is under

development.

Figure 3.11: Flow chart to guide picking an appropriate structure.

The premise of drawing the structure from a natural language description

rather than tweaking a model to fit an existing structure represents a substantial

51



Name Description When to use Applications

(Dynamic)
Bayesian
Network

Directed acyclic
graph of random
variables

Systems natur-
ally expressed
as dependence
structure between
random variables

Biological net-
works (Smith,
2010), ecolo-
gical conserva-
tion (Korb and
Nicholson, 2010)

(Dynamic)
Chain
Event
Graph

Derived from
event tree col-
oured to represent
conditional inde-
pendence

Asymmetric prob-
lems, problem de-
scription is told as
a series of unfold-
ing events

Healthcare out-
comes (Barclay
et al., 2014),
forensic evid-
ence (Collazo
et al., 2018)

Chain
Graphs

Hybrid graph
with directed and
undirected edges

Problem descrip-
tion has both dir-
ectional and am-
biguous relation-
ships

Mental
health (Cox
and Wermuth,
1993), social pro-
cesses (Cox and
Wermuth, 2014)

Flow Graph Hierarchical flow
network

Supply and de-
mand problems,
homogeneous
flows

Commodity sup-
ply (Figueroa and
Smith, 2007)

Multi-
regression
Dynamic
model

Collection of
regressions where
the parents are
the regressors

Contemporaneous
e↵ects between
time series

Marketing(Smith,
1993), tra�c
flows(Queen and
Albers, 2009),
neural fMRI activ-
ity(Costa et al.,
2015)

Regulatory
Graph

Graph customised
to regulatory hy-
potheses

Need to test a
regulatory hypo-
thesis

Biological control
mechanisms (Liv-
erani and Smith,
2015)

Table 3.1: Examples of customised graphical models.
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shift in how modellers elicit structure. Furthermore, inference on each of these

novel representations engenders customised notions of causation, as each of the full

probability representations of customised models admits its own causal algebras. The

causal e↵ects following intervention in a BN are well studied, and these methods can

be extended to custom classes of models discussed here. A thorough investigation of

causal algebras is beyond the scope of this chapter, but it o↵er further motivation

for careful attention to structure in the elicitation process. Chapter 6 shows how

each structural class admits a di↵erent interpretation of cause. Future work will

demonstrate how each structural class has its own causal algebra and that for

causation to be meaningful the underlying structure on which it is based needs

to properly reflect domain knowledge. Many open questions remain as to how to

customise structure elicitation.
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Chapter 4

Checking CEG Structure with

d-Separation Theorem

If you cud even jus see 1 thing clear

the woal of whats in it you cud see

every thing clear. But you never wil

get to see the woal of any thing

youre all ways in the middl of it

living it or moving through it

Riddley Walker, Russell Hoban

4.1 Background

The d-separation theorem for BNs has been used to systematically list and verify

the irrelevance statements implied by the graph. This has enabled advancements

in causal inference and decision modelling. However, the semantics of a BN are

not always suited to a given application. Deriving an ancestral construction and

accompanying d-separation theorem for CEGs permits a consistent querying of

context-specific conditional independence relationships within a single graphical

representation.

Separation theorems for CEGs were first formulated as configurations of

noisy-and gates (Smith and Anderson, 2008). The equivalence classes for CEGs

can be traversed via a polynomial equivalence class. One of the operators involved

in determining the polynomial equivalence class, the swap operator is crucial to

constructing the ancestral CEG class (Görgen and Smith, 2018). A separation

theorem for simple, uncoloured CEGs proved that the existence of a cut vertex

created conditions for d-separation (Thwaites and Smith, 2015). This chapter
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contributes a much more general d-separation theorem which can be applied to any

coloured, square-free CEG. It uses a novel ancestral graph construction for the CEG

analogous to ancestral constructions used in the querying of BNs.

The ancestral CEG construction is a DAG that can be used to verify the collec-

tion of conditional independence statements implied by the chain event graph construc-

ted from the staged event tree, C. In that sense, it can be used to ease the transition

to the full model with graphical and probabilistic components, (⌦(C), P (C,U,W)),

where ⌦(C) denotes the sample space of atomic events on C, U indicates the stages

of the graph, and W denotes the position structure. Only once this topology and

colouring is discovered will the full model (⌦(C), P (C,U,W)) be estimated. This

is extremely important when eliciting a CEG. Many dependence queries can be

examined, confirmed, or disputed by domain experts before the putative framework

is quantified. Adding this stage to the elicitation process helps us make sure, with

minimal e↵ort, that the actual, broad framework can be embellished into a full

probability model is faithful to the expert’s structural beliefs as discussed in Chapter

3. In this way, the modeller does not waste time eliciting probabilities on models

that are ultimately inappropriate.

In the Section 4.2, I present the technical prerequisites necessary for the

ancestral graph including intrinsic events, random variables, and ancestors within

the CEG. This includes preliminary results about dependence between the random

variables of a CEG. The full construction algorithm for the ancestral CEG graph as

a function of the query is given in Section 4.3. This novel construction of a graph

of a valid BN represents the conditional independence structures of a special class

of random variables measurable with respect to the event space generated by C.
Section 4.4, proves the su�ciency and necessity of CEG d-separation. Section 4.4.3

proves that under certain regularity conditions the method described in the ancestral

construct gives the full list of such statements. This new construction gives a

complete list of all irrelevance statements we can check to validate a CEG model

before we proceed to embellish it into a full probability specification with the necessary

addition of vectors of quantified conditional probabilities. Section 4.5 proves that

the d-separation queries in the BN can be addressed with an equivalent CEG. Thus,

the d-separation theorem for CEGs encompasses a much broader class of models. A

brief discussion of these results follows.
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4.2 Technical Prerequisites

4.2.1 Semi-graphoid Axioms and Properties of Conditional Inde-

pendence

The following properties are central to querying dependence relationships between

YB1 ,YB2 .YC1 .YC2 given subcomponents of the vector Y = (Y1, Y2, . . . , Ym) of random

variables where YB1 denotes the components of Y whose indices lie in the set

B1 ⇢ M = {1, 2, . . . ,m}. These properties hold for any random variable defined

on a discrete space. In particular, all the properties below hold irrespective of any

positivity conditions on the corresponding mass functions. This is important in our

context because there are often functional relationships between the sets of variables

of interest.

If a random variable YB1 is degenerate given a conditioning set YC1– that

is it takes a single value with probability 1– then the vector of the other random

variables YM\B1
are irrelevant to it. That is,

YB1 ?? YM\{B1[C1}|YC1 (4.1)

For any function f(YB1) of YB1 , then for all sub-vectors YB2 and conditioning

set YC1 ,

Property 26

YB1 ?? YB2 |YC1 , (YB1 , f(YB1)) ?? YB2 |YC1

Definition 27 The strong decomposition property for random vectors YB1 ,YB2 ,YC1 ,YC2

states that

YB1 ?? (YB2 ,YC1)|YC2 , YB1 ?? YB2 |YC1 ,YC2 and YB1 ?? YC1 |YC2 .

Property 28 (Symmetry property for random vectors) The symmetry prop-

erty states that

YB1 ?? YB2 |YC1 , YB2 ?? YB1 |YC1 .

Here we plan to derive necessary and su�cient conditions for two random

vectors given an amenable event to be independent of each other for all probability

models in C.
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4.2.2 Relevant Class of CEGs and their Probability Models

The results for ancestral graphs derived here pertain to minimal, square-free CEGs.

Here we show the probability model described by each graph. Recall from Chapter 2,

that the CEG C(T ) = (W, F ) is built from a staged tree T on a set of positions W
and corresponding edge set F . In this chapter, we will simplify C(T ) as C.

Recall a CEG C has an associated directed acyclic graph where V (C) is the
vertex set and F (C) is the edge set. As the CEG is formed from a directed tree, the

edge set includes a single root vertex w0 and a single sink vertex w1.

Positions in the same stage and edges with the same probability are coloured–

the remaining edges and positions are shown in the following diagrams as remaining

black and unfilled, although they each have a unique colour. Colouring the edges

allows us to express the conditional independence relationships implicit in C without

specifying a particular probability model.

In this chapter, W denotes the set of positions unique to a particular query

about conditional independence. Recall from Chapter 2 that the general notation

for CEGs is as follows. The non-sink vertices V (C) \ w1 form the set of positions

w 2 W(C). The stages, u 2 U(C), are subsets of the positions, W(C), where each

subset referred to as a stage corresponds to a unique vertex colour. If w 2 W(C) is
uncoloured then it lies in a stage u 2 U(C) such that u = {w}. On the other hand,

if w 2 W(C) is coloured and n(u) other positions share that colour then u 2 U(C)
consists of all those positions in W(C) sharing that colour.

Each CEG now acts as an index of a family of probability models P(C)
uniquely determined by the coloured graph C as follows. The set of atoms ! 2 ⌦(C)
of the finite event space of P(C) is constructed to be in one-to-one correspondence

to the set � 2 ⇤(C) of root to sink paths. Then each u 2 U(C) is assigned a strictly

positive probability vector ⇡(u) that has a length of the number of outgoing edges

from that stage, u. Each edge f 2 F (C) is associated to one of the components ⇡f of

{⇡(u) : u 2 U(C)}. For two edges f, f 0, the corresponding probabilities ⇡f = ⇡f 0 if

and only if the edges f, f 0 are coloured the same in C. The probability mass function

{pC(!) : ! 2 ⌦(C)} of P(C) is then defined by the formula:

pC(!(�)) =
Y

f2�
⇡f . (4.2)

In this way, once we specify the values of the strictly positive probability

vectors {⇡(u) : u 2 U}, the CEG C indexes a single probability model (⌦(C),P(C)).
On the other hand, until we specify {⇡(u) : u 2 U}, the DAG C represents a class of

probability models just as the graph of a BN does.

Each CEG C has a unique, minimal representation that maintains the order
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of edges in a CEG. Two di↵erent CEGs can represent the same class of probability

model. However there is a unique minimal CEG C that has the smallest number

of positions. We can construct a minimal CEG from one that is not minimal by

simply repeatedly merging two positions into a single position whenever the coloured

subtrees rooted at those positions are isomorphic, merging the subsequent edges and

vertices in these subtrees in the obvious way. We continue to do this until no such

pairs of positions exist.

Definition 29 A minimal CEG has no two positions whose subtrees are iso-

morphic.

It is easy to check that such an operation leaves the set of root-to-sink paths

and the sequence of colours on their edges the same in the unmerged and merged

CEG, ensuring that both the probability space and the probabilities assigned to its

atoms in Equation 4.2 are the same. All the CEGs we consider here will henceforth

be assumed to be minimal. We will later see that minimal CEGs are especially

important to prove the su�ciency of results given here that are based solely on the

topology of a graph. The results we derive here hold for square-free CEGs.

4.2.3 Random Variables of a CEG

Producing an analogue of the d-separation theorem requires first specifying subsets

of random variables related to the queries. When querying the DAG of a BN the

pre-specified set of variables represented in the vertex set of the DAG may be

queried. However, for a CEG this selection is not quite so straightforward because

it is originally specified in terms of an event tree and so only indirectly in terms of

random variables. Despite this, there are three types of variables which are central

to describing how a unit might traverse a CEG. These variables are good candidates

for useful dependence queries. The first set of random variables, measurable with

respect to ⌦(C) are the position incident variables.

Definition 30 For any position w 2 W(C) and the given path a unit traverses � 2 ⇤,

define an incident variable to be

I(w) =

8
<

:
1, {� : w 2 �}
0, {� : w 62 �}

(4.3)

Note that the incidence variable of the root node I(w0) ⌘ 1 is degenerate

because all root-to-leaf paths � go through the root.
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Definition 31 The position w 2 W(C) is a cut vertex when all root-to-sink paths

� 2 ⇤ pass through w. The set of all cut vertices is written as W0.

The second variable is associated with indicators on positions in the ancestral

graph, referred to as an ancestral incident variable. The ancestral graph is composed

of the ancestors of the query set An(W ) ✓ W. This can result in a graph with

positions that must be merged to be a minimal representation. This results in an

additional partition V of the positions that is finer than the stages but coarser than

the positions W(C) � V(C) � U(C). This additional partition V(C) accounts for the
positions in the same stage that cannot be merged in the full CEG as they have

di↵erent subsequent subtrees, but they can be merged when we take the ancestral

CEG on a subset of the original nodes in Section 4.4. Let

V(C) = {v1, . . . , vj , . . . , v#(v)}

be partition of the set of positions we get from merging the finer set of positions

An(W ) ✓ W(C) = {w1, . . . , wi, . . . , w#(w)}.

The ancestral position partition is no coarser than the stage partition

U(C) = {u1, . . . , uk, . . . , u#(u)}.

Each position corresponds to an ancestral position wi 2 vj and stage vj 2 uk.

For each ancestral position v, w(v) denotes the set of positions that have been merged

into the new ancestral position.

Note that when ancestral position v merges two positions w1, w2 2 vj then

these vertices are coloured the same w1, w2 2 uk and vj 2 uk. The need for the set of

ancestral positions will become clear as we construct the ancestral graph on a smaller

set of variables. Essentially, ancestral positions arise in our ancestral construction

when we have two positions in the same stage with the same subtrees that have had

some descendants removed.

Definition 32 For any ancestral position v 2 V, define the ancestral position

incident variable as

I(v|V) =

8
<

:
1, {� : v 2 �}
0, {� : v 62 �}

(4.4)

The incident variable and ancestral incident variable indicate whether or not

a unit has passed through the (ancestral) position. The actual edge the unit traverses
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is given by the floret variables, defined below.

Definition 33 For each w 2 W a floret variable is defined as

X(w) =

8
<

:
f(w), {� : w 2 �}
0, {� : w 62 �}.

For any directed path �, an X(w) is only initiated when its corresponding

I(w) = 1. Additionally, X(w) = w
0 instantiates I(w0) and this process carries on

recursively from the root to the sink until all the w 2 � are instantiated. For all other

w 2 W(C), I(w) = 0 and hence, X(w) will not be instantiated when considering

path �. Each random variable in C is defined for any position w and is measurable

with respect to ⌦(C). Note that for each w, the random variables I(w) and X(w)

are measurable with respect to the sigma field ⌦(C) whose atoms are the di↵erent

root to sink paths of C.
The colour of the stages and positions indicates that there are many depend-

ences between these random variables. However, all three types of random variable

with ⌦(C) are functions of the set of random variables {X(w) : w 2 W(C)}, which
in this sense gives a complete picture of the underlying processes. Henceforth, this

work considers only dependence queries associated with these variables.

4.2.4 Ancestors, Descendants, and Conditional Independence

This section translates the terminology for ancestors and descendants to the CEG.

In this section, the existence of a directed path in C from w to w
0 is denoted w � w

0.

For a set of positions W ✓ W(C) write

An(W ) ,
�
w : w 2 W or 9 w

0 2 W such that w � w
0 

An�(W ) ,
�
w : 9 w

0 2 W such that w � w
0 

De(W ) ,
�
w : w 2 W or 9 w

0 2 W such that w0 � w
 

to denote the ancestral set, non-ancestral set, and descendent set respectively of W

in C. Then, Nd(W ) is the non-descendent set of W and note that:

W ✓ An(W ) ✓ Nd(W ) ✓ W(C)

The set of positions in question is contained in the ancestral set which is

contained in the non-descendant set, which is contained in the set of all positions.

Notice that directly from the topology of C, we can determine whether or not w is in

any of the sets.
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Definition 34 For a a given position w 2 W(C), the ancestral floret and ances-

tral incident vectors, denoted X
An

�
(w)

and I
An

�
(w)

respectively, are the random

vectors whose components consists of

�
X(w0) : w0 � w

 
and

�
I(w0) : w0 � w

 
.

Definition 35 Similarly, for a a given position w 2 W(C), the non-descendant

floret and non-descendant incident vectors, denoted as XNd(w) and INd(w)

respectively, are the random vector whose components consist of

�
X(w0) : w0 2 Nd(w)

 
and

�
I(w0) : w0 2 Nd(w)

 
.

Knowing incidence at a position in C renders the incidence and floret of non-

descendant positions irrelevant to the floret variable in question in the sense of

Lemma 36.

Lemma 36 For all w 2 W(C)

X(w) ??
�
INd(w),XNd(w)

�
|I(w) (4.5)

Proof. Note that since INd(w) is by definition a function of XNd(w) from Properties

28 and 26 it is su�cient to prove that

X(w) ?? XNd(w)|I(w) (4.6)

which is equivalent to requiring both

X(w) ?? XNd(w)|I(w) = 0 (4.7)

and

X(w) ?? XNd(w)|I(w) = 1. (4.8)

Since by definition the event {X(w) = 0} implies that {I(w) = 0}, X(w) is degenerate

when I(w) = 0. Thus, Equation 4.7 is a direct consequence of Equation 4.1. Next

note that directly from the definition of a CEG,

X(w) ?? X
An

�
(w)

|I(w) = 1. (4.9)

Furthermore given a unit passes along a path � that reaches w so that I(w) = 1,
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again by definition, it cannot pass through or have passed through any positions in

Nd(w)\An�(w). So the event

{I(w) = 1} = {I(w) = 1} \
�
I(w0) = 0 : w0 2 Nd(w)\An�(w)

 
,

and consequently X
Nd(w)\An

�
(w)

= 0. Therefore,

X(w) ?? XNd(w)|{I(w) = 1},X
An

�
(w)

X(w) ?? X
Nd(w)\An

�
(w)

,X
An

�
(w)

|{I(w) = 1}

X(w) ?? X
Nd(w)\An

�
(w)

|X
An

�
(w)

, {I(w) = 1} \
�
I(w0) = 0 : w0 2 Nd(w)\An�(w)

 

X(w) ?? X
Nd(w)\An

�
(w)

|X
An

�
(w)

|{I(w) = 1} (4.10)

which is true trivially by Definition 1 and Equation 4.1 because X
Nd(w)\An

�
(w)

under

the conditioning event above is degenerate. Thus Equations 4.9 and 4.10 prove the

result by Property 26.

Lemma 36 expresses the independence of non-descendants from a floret

variable of a position given the incident variable. Additional results can be proved

by defining the parent set of positions.

Definition 37 For a a given position w
0 2 W(C), the parent floret and par-

ent incident vectors, denoted XPa(w0) and IPa(w0), are the random vectors whose

components are given by {w : (w,w0) 2 F (C)}.

Denote X
Pa(w0) , XW(C)\Pa(w0)[{w0}, the set of all incident variables not w0 and not

in this set.

Lemma 38 For any cut vertex wc 2 W0

I(wc) ?? X(wc) (4.11)

whilst for all w0 2 W(C)\W0

I(w0) ?? X
Pa(w0)|XPa(w0) (4.12)

Proof. If w0 2 W0 then I(w0) is degenerate so Equation 4.11 is a direct consequence

of Equation 4.1. The conditional independence in Equation 4.12 comes from noting

that by definition:

I(w) = sup
w2Pa(w0)

�
�
X(w) = (f, f 0)

 

where � is the indicator variable. � is a function of the parent floret variables
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leading into the cut vertex position w
0 2 W(C). So this property is also a result of

Equation 4.1

4.2.5 Intrinsic Events and Conditional Independence

There are certain events in ⇤ 2 ⌦(C) that are of particular interest. First, note that

the event ⇤ 2 ⌦(C) induces a subgraph C⇤ ✓ C. Events that can be represented by

the set of all the root to sink paths in the subgraph are called intrinsic. It is easy to

check that these events form a pi-system, that is they are closed under intersection.

All conditioned queries in a DAG are sets of queries conditioning on an intrinsic

event. Although a CEG has many non-intrinsic events, these correspond to events

that have no direct relationship to the graph defining the process.

Definition 39 A set of root-to-sink paths ⇤ in ⌦(C) defines an intrinsic event

if there is a subgraph C⇤ such that ⇤ consists of all the root to leaf paths in C that

pass through C⇤.

The ancestral CEG uses a smaller subset of ancestral positions vj 2 V(C) ✓
W(C), so we define amenable events as an analogue of intrinsic events for ancestral

CEGs. The ancestral graph will be defined in Section 4.3, but for the moment, but

the analogue of intrinsic events is introduced here.

Definition 40 A set of paths ⇤ in the ancestral graph Cm0
⇤An(W )

defines an amenable

event if Cm0
⇤An(W )

, which is itself a subgraph containing the root-to-sink paths contains

exactly the root-to-sink paths specified in ⇤.

Conditioning on an intrinsic event preserves the conditional independence

relationships on the subgraph. As d-separation is a graphical criterion, the results of

the d-separation theorem will be restricted to queries that induce amenable events

in the ancestral construction.

If C represents a semi-Markov process where units pass along one of its

paths then intrinsic and amenable events are natural to discuss. They represent the

typical conditioning events that might arise when there is only partial information

about a particular unit’s path. For example, if the positions in C represent certain

previous conditions of a patient, a doctor may learn from the patient’s records and

conversations with her a collection of some of the states she had passed through or

at least the colour of position. The doctor would then need to infer both the gaps in

this record and the possible future unfolding of the patient’s pathway.

Not all events are of this form. A simple example of an event that is non-

intrinsic can be seen in the graph of Figure 4.1. The event F = �(0,0),(1,1) induces the
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Figure 4.1: The event �(0,0),(1,1) where {X = 0, Y = 0} [ {X = 1, Y = 1} represents
a non-intrinsic event as the subgraph admits events not in the set such as {X =
0, Y = 1}.

subgraph that contains root-to-sink paths like �(0,1),(1,0) that are not in the original

event. There is no subgraph such that the event corresponds to all the root to sink

paths.

If the CEG represents a faithful BN, then by addressing the queries associated

with a CEG concerning amenable conditioning events we can query at least as

many implied conditional independent statements as we would if we were to use the

d-separation theorem on the BN directly.

The functional relationships between the random variables in a CEG renders

conditioning on intrinsic events quite subtle. The more specific the conditioning

event the more it will tend to force independences. One extremely important issue

here is that, directly from the definition of the incident variables, knowing incidence

at one position automatically imparts knowledge about incidence at a set of positions

the unit logically could not have passed through. (Note that definitions in this

section are defined for positions but also apply to ancestral positions.) Formally,

define the conditioning set C corresponding to the intrinsic event ⇤ in the following

way. T can be thought of as the trash set that no longer applies once we observe

the incidence of a particular position. T (C) represents the root-to-leaf paths of the

conditioning event.

{I(w) = 1 : w 2 C} )
�
I(w0) = 0 : w0 2 T (C)

 

where

T (C) ,
\

w2C

�
Nd(w)\An�(w) : w 2 C

 

is the set of all positions w 2 W(C) which are neither in the ancestor set nor in the

descendant set of all w 2 C. Note that

T (C)c , T (C) ,
[

w2C
{An(w) [De(w)} .

Conditioning on T (C) conditions on the root-to-leaf paths containing all w 2 C.

Unless the cardinality of C is small, T (C) defines a small event and T (C) contains
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most of the positions w 2 W(C).

{I(w) = 1 : w 2 C} ,
�
I(w) = 1, I(w0) = 0, w0 2 T (C)

 

T (C) may be the empty set and if not

a

w02T (C)

X(w0)| {I(w) = 1 : w 2 C}

and

X
T (C)

?? XT (C)| {I(w) = 1 : w 2 C} .

The implied conditional independences concerning X
T (C)

are trivial. Conditional on

{I(w) = 1 : w 2 C} the components of X
T (C)

are all mutually independent of each

other and also all independent of XT (C) because the values of all these variables

are known once this event happens. So the only conditional independences given

{I(w) = 1 : w 2 C} are those that concern the variables in XT (C). Henceforth we

will consider relationships only between these variables when conditioning on such

events.

4.3 Ancestral Graphs for the CEG

The ancestral construction enables us to answer dependence queries for sets of

variables conditioned on an intrinsic event. Proving the necessity of the d-separation

condition to show independence requires an additional construct that extends the

compact representation of the CEG to a valid BN whose vertices are random variables.

Framing dependence queries in terms of the random variables defined in Section 4.4

answers additional lemmas about the dependence structure based on ancestrality.

Proving d-separation for the BN will require the extended ancestral graph although

the CEG d-separation criteria requires only the CEG ancestral construction.

4.3.1 Ancestral CEGs

One novel construction we use in this thesis is the ancestral CEG CA(W ). Thwaites

and Smith (2015) determined that the existence of a cut vertex is a su�cient

condition to read conditional independence from a simple (uncoloured) CEG. The

novel ancestral construction in this section addresses queries about conditional

independences that arise from the colouring of the positions. This requires several

steps, notably incorporating the results associated with the swap operator from

Görgen and Smith (2018). The work in this chapter exploits these relatively new
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(a) A sample BN (b) Moralized BN

Figure 4.2: An example of an ancestral BN construction on binary variables
{X1, X2, X3.X4} corresponding to the ancestral CEG shown below

Figure 4.3: The CEG corresponding to Figure 4.2.
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results and enables us to give a new definition of context-specific ancestrality. The

ancestral construction requires some preliminary definitions.

Definition 41 For a CEG, C, the ancestral vertex and edge sets for the base

ancestral CEG, C0

An(W )
are defined as

V

⇣
C0

An(W )

⌘
= {V (C) \An(W )} [ {w1}

E

⇣
C0

An(W )

⌘
=
n�

w,w
0� |w,w0 2 V

⇣
C0

An(W )

⌘
^
�
w,w

0� 2 F (C)
o
[

n
(w,w1) |w 2 V

⇣
C0

An(W )

⌘
6 9w0 62 V

⇣
C0

An(W )

⌘o

That is, the vertex set is the set of ancestors of all the positions in the query plus a

new sink node. The edge set is given as in C, with the exception that if w /2 V (C0

An(W )
)

then e = (w,w0) is mapped to enter the new sink vertex w1 of C0

An(W )
.

Part of the construction of the ancestral CEG requires choosing the equivalent

graph with a particular order. Defining this order necessitates formalizing distance

between sets of positions on the graph.

Definition 42 For two non-overlapping sets of positions in the CEG, B1 and B2,

the distance d(B1, B2) is the sum of the lengths of the directed paths between each

position in each set divided by the total number of pathways between the two sets

given by

d(B1, B2) =

P
w12B1

P
w22B2

|�(w1, w2)|
#�(w1, w2)

.

Finding the optimal ordering requires the swap operator, one of the functions

necessary to traverse the equivalence class. The swap operator is analogous to arc

reversals in the BN. Algebraically, the swap operator changes the order of summation

in the interpolating polynomial of a CEG (Görgen and Smith, 2018). Unique to the

ancestral construction, positions can also be swapped when we look at the subgraphs

implied by the conditioning set. These graphs have singleton edges that may also be

swapped. We define a swap and a twin as in Görgen and Smith (2018).

Definition 43 A probability subtree (T ,⇥T )u ✓ (T ,⇥T ) is a twin if all root-to-leaf

paths consist of exactly two edges and all children of its root are in the same stage u.

Definition 44 Let (T ,⇥T ) be a staged tree with (T ,⇥T )u ✓ (T ,⇥T ) a twin around

stage u. Denote a tree polynomially equivalent to (S,⇥S)u ✓ (S,⇥S) The map

(T ,⇥T ) 7! (S,⇥S) is a swap if (S,⇥S) is a staged tree.

The motivation for the ancestral ordering stems from attempting to force cut-vertices

in the ancestral graph by juxtaposing B1 and B2 where possible.
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Definition 45 The ancestral ordering IAn(B1[B2[C) for non-overlapping sets of

positions in a query B1, B2 and C can be found by applying swaps in order to:

1. minimize d(B1, B2)

2. minimize min{d(B1, C), d(B2, C)}

The ancestral CEG requires examining the subgraphs induced by the con-

ditioning set. The set of vertices W = B1 [B2 [ C is composed of two query sets

B1 and B2 and the conditioning set C. The conditioning set C consists of positions

w
1

C
, w

2

C
, . . . w

#(C)

C
. Each position has a number of emanating edges. The product of

these numbers of emanating edges across all valid pathways gives us the number of

contexts we consider for the isomorphic subgraphs. Each conditioning context gives

rise to an induced subgraph.

Definition 46 For a given CEG C and query conditioning on the intrinsic event

⇤F involving the set of positions w 2 C with context X(w) = c, the conditioned

subgraph for a given context c is the set of pathways through the given context c,

denoted ⇤c.

Note that conditioned subgraphs are still valid CEGs because we are assuming

that each individual context happens with probability 1. In the ancestral CEG

construction, we will examine the subgraphs both upstream and downstream of each

conditioning set. If for all values of X(w) = c, ⇤c are isomorphic up to a relabelling

of the colours, we can merge the corresponding positions to a new node wc.

In the base ancestral CEG C
0

An(W )
, new ancestral positions may have arisen

from the consolidation of the conditioning context and the removal of the non-

descendants of the query set. Because it is a coloured subtree of C it may now

exhibit two positions w1, w2 2 W
⇣
C0

An(W )

⌘
where the sub-graphs rooted at w1 and

w2 respectively are colour isomorphic and have identical subtrees. If this is the case

then the same family could be represented by a graph with a new position merging

w1 and w2 into w12, for example. The final set of nodes in the ancestral CEG is the

minimal, conditioned subgraph version of Cm0
⇤An(W )

, is obtained by repeatedly merging

positions until this is no longer possible.

These preliminaries aside, the construction algorithm for the ancestral CEG

is as follows:

Definition 47 For disjoint query on sets of positions W = {B1 [ B2 [ C} an

ancestral CEG is constructed according to Algorithm 48

Algorithm 48 Given sets of positions W = {B1 [B2 [C}, construct the following

graph:
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(a) Conditioned subgraph for query X1 ??
X4|X3 = 0

(b) Conditioned subgraph for query X1 ??
X4|X3 = 1

(c) Conditioned subgraph for query X1 ??
X4|X2 = 0

(d) Conditioned subgraph for query X1 ??
X4|X2 = 1

Figure 4.4: Subgraphs shown for each conditioning context for Example 49 that
reveal isomorphic trees up to a relabelling of the colours.

1. Take the ancestral vertex and edge sets V

⇣
C0

An(W )

⌘
and E

⇣
C0

An(W )

⌘
.

2. Import the colouring for C0

An(W )
from C.

3. Examine the conditioned subgraphs Cc

⇤An(W )
for each context c 2 X(w) for

all w 2 C and merge w 2 C to a new node w
⇤
c if all subtrees upstream and

downstream of the set C are isomorphic. Denote this graph as C⇤An(W )
.

4. Select the graph from the equivalence class of C⇤An(W )
with the ancestral ordering

IAn(B1[B2[C) for the query.

5. Take the minimal graph by merging all ancestral positions, denoted Cm

⇤An(W )
.

6. Separate the ancestral graph into components with the cut vertices representing

the sink node of one component and the root of the subsequent component,

denoted Cm0
⇤An(W )

.

Dependence in a BN relies on having pathways that do not travel through the

conditioning set. In the CEG, dependent pathways must not need to traverse a cut

vertex in the ancestral CEG construction. The CEG d-separation process mirrors

the process for a BN, and permits a construction of a condensed ancestral graph.

These conditions give a non-trivial definition of ancestrality.
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(a) The merged graph for CG . (b) The merged and minimal graph for CG .

Figure 4.5: Construction of the ancestral CEG for the corresponding CEG of the
BN in Figure 4.2

Figure 4.6: The merged and minimal ancestral graph for query two in Example 49.
The ancestral graph was adapted from the conditioned subgraphs in Figure 4.4. No
new positions required merging and the resultant graph is minimal.

We will first show how the ancestral construction for a CEG equivalent with

a BN can be used to address the same queries.

Example 49 (Construction of an Ancestral CEG) Figure 4.2a shows an example of

a BN, G. Xi 2 {0, 1} for Xi 2 G. The equivalent CEG, CG, is shown in Figure 4.3.

This has the ancestral ordering X2 � X1 � X3 � X4 according to the algorithm in

Definition 45. From the moralized graph of the BN in Figure 4.2b we can read two

queries that we will test in CG: X1 ?? X4|{X3} and X1 6?? X4|{X2}. For the both

queries, X1 ?? X4|{X3}, the initial ancestral vertex and edge sets are given by V (CG)
and E(CG) respectively. The conditioned subgraphs for the two queries are given by

Figure 4.4. Figures 4.4a and 4.4b show the subgraph for query X1 ?? X4|{X3} where

we condition X3 = 0 and X3 = 1 respectively. The upstream and downstream subtrees

are isomorphic, so we merge positions wc = {w3, w4, w5, w6} shown in Figure 4.5a.

This merge creates ancestral positions that are in the same position, so the new

minimal graph for query X1 ?? X4|{X3} is shown in Figure 4.5b. When this graph

is separated into components at each of the cut vertices {w0, w12, wc} in Figure 4.5b,

this confirms that X1 ?? X4|{X3}, w12 ?? {w8, w10}|wc.
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For the second query, X1 6?? X4|{X2}, the merged and minimal graph is

shown in Figure 4.6. The ancestral positions again have the ancestral ordering

X2 � X1 � X3 � X4. When the graph in Figure 4.6 is separated into components

at the cut vertices w0 and w1, representing X2 and X1 respectively, there is still a

pathway from w1 to {w7, w8, w9, w10} representing X4.

4.3.2 A Valid BN for the CEG

The relationship between the incidence and floret variables of a CEG can form a

valid BN, denoted as B (C). To ensure that the dependence relationships between

the variables are valid, the extended ancestral graph is a function of the vertex and

edge sets derived in the ancestral construction.

Construct B(C) by indexing the ancestral positions vi 2 V(C) for i =

0, 1, 2, . . . , n in the ancestral ordering IAn(B1[B2[C). Then, order the 2n+1 variables

so that we introduce any non-root incident variable before its floret variable:

X(v0), I(v1), X(v1), I(v2), X(v2), . . . , I(vi), X(vi), . . . , I(vn), X(vn).

Definition 50 For disjoint sets B1, B2, C 2 C let the extended ancestral graph

B
⇣
Cm0
⇤An(W )

⌘
be the directed acyclic graph with vertex set inherited from the ancestral

CEG ⇤m0
An(B1[B2[C)

in the ancestral ordering IAn(B1[B2[C) with vertex set:

{X(v0), I(v1), X(v1), I(v2), X(v2), . . . , I(vi), X(vi), . . . , I(vn), X(vn)} .

X(v0) has no parents; X(vi) has as its single parent I(vi); I(vi) has no parents

if the set of positions is a cut vertex v
⇤
i
2 V0 and parents XPa(vi)

if otherwise. Pa (vi)

is the parent set of v0
i
in ⇤m0

An(B1[B2[C)
, vi 2 V

⇣
⇤m0
An(B1[B2[C)

⌘
.

Note here that, because ⇤m0
An(B1[B2[C)

is minimal, the vertex set may be of

smaller cardinality than An(W ) because the colouring may enable us to merge some

of the positions of C. This is because the colouring of the ancestral CEG encodes

more information than the extended ancestral graph, but the latter enables us to

leverage the d-separation theorem for BNs in the proof of d-separation for CEGs.

Lemma 51 B
⇣
⇤m0
An(B1[B2[C)

⌘
for any set W = {B1 [ B2 [ C} ✓ W(C) are valid

BNs.

Proof. This derives immediately from the definition of the DAG of a BN and the

Equations 4.10, 4.11, 4.12.

Lemma 51 confirms that d-separation for BNs applies to extended ancestral

graphs.
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4.4 Querying Conditional Independences on a CEG

4.4.1 A Theorem for D-separation in the CEG

Suppose disjoint subsets B1 and B2 are subsets of the positions W(C) and C represent

the set of positions with singleton edges emerging in the conditioned subgraphs of

⇤A(W ). The original intrinsic event becomes an amenable event in the ancestral

CEG and C represents the set of ancestral positions that are merged from the set of

original positions A(W ).

F (C|V) =
\

v2C
{I(v|V(C)) = 1}

We are interested in discovering whether or not on the basis of C we can assert

XB1 ?? XB2 |F (C|V) (4.13)

To do this we consider the ancestral graph of the subsets and the incidence

variable of the set of positions in question.

Definition 52 For non-overlapping sets of positions in B1, B2 2 W (C) and intrinsic

event F (C|V), B1 is d-separated from B2 written as B1 ?d B2|F (C|V) if there is no

directed pathway from the edge of floret FB1 to FB2 in CA(B1[B2[C).

In CEG d-separation, the construction of the ancestral graph attempts to

force a cut vertex to appear in the conditioned, ancestral subgraph. Choosing the

correct order via permissible swaps is equivalent to a query-specific moralization

process for a DAG of a BN.

4.4.2 Su�cient Conditions

Lemma 53 shows that d-separation in the CEG is a su�cient condition for XB1 ??
XB2 |F (C|V(C)).

Lemma 53 Given a query on a set of positions, W = {B1 [ B2 [ C}, if B1 ?d

B2|F (C|V(C)) in the ancestral subgraph Cm0
⇤An(W )

, then

XB1 ?? XB2 |F (C|V(C)).

Proof. If B1 ?d B2|F (C|V(C)) in Cm0
⇤An(W )

by the definition of CEG d-separation,

we know that there is no path from the edge floret F(w1) to F(w2) for any w1 2
B1 and w2 2 B2. The positions w1 and w2 are not in the same two-connected

component, because otherwise, this would violate the CEG d-separation definition.
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Figure 4.7: Types of paths in a CEG.

Consequently, X(w1) and X(w2) for any w1 2 B1 and w2 2 B2 belong to di↵erent

two-connected components by the construction of the extended ancestral graph,

B
⇣
Cm0
⇤An(W )

⌘
. XB1 ?? XB2 |F (C|V(C)) is confirmed by d-separation for BNs. There

are no edges between two-connected components in the extended ancestral graph. No

vertices in di↵erent two-connected components have a common child, so moralization

does not introduce any additional pathways.

4.4.3 Necessary Conditions

Demonstrating d-separation in the ancestral graph is linked to the existence of certain

types of pathways in C. We can define a set of pathways on C according to whether

they include subpaths involving either w1 2 B1 or w2 2 B2. These paths are shown

in Figure 4.7. Type IIa paths, denoted ⇤01 represent all the paths passing through

w2 2 B2 but not w1 2 B1. Type IIb paths, formally denoted ⇤00 represent all the

paths passing through neither w1 2 B1 nor w2 2 B2 that share edges with paths

that do go to w1 2 B1. Type IVa paths, denoted ⇤11 pass through both w1 2 B1

and w2 2 B2. Type IVb paths, denoted ⇤10 represent all the paths passing through

w1 2 B1 but not w2 2 B2 that share edges with paths that go from w1 to w2.

Type I subpaths pass through neither w1 2 B1 nor w2 2 B2 and do not share

any edges with subpaths going to w1. Type III subpaths pass through w1 2 B1,

but do not share any edges with subpaths from w1 to w2. These edge types will be

important for the proof of necessity. Figure 4.7 shows all path types in a CEG.

Formal definitions of the pathways are as follows for w1 2 B1, w2 2 B2:

�00 = {� 2 ⇤(C) : w1, w2, 62 � ^ 9e 2 � : e 2 �(w0, w1) [ �(w0, w2)}

⇤00 =
[

�00 2 ⇤(C) : w1, w2 62 �00 and e(�00) 2 �(w0, w2) for e 2 �00.
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�00 may also contain edges such that

e(�00) 2 �(w0, w1).

⇤01 =
[

�01 2 ⇤(C) : w1 62 �01 and w2 2 �01

and

e(�01) 2 �(w0, w2) for e 2 �01.

Again, �01 may also contain edges such that

e(�01) 2 �(w0, w1).

⇤10 =
[

�10 2 ⇤(C) : w1 2 �10 and w2 62 �10

and some edges

e(�10) 2 �(w1, w2) for e 2 �10.

�10 may also contain edges such that

e(�10) 2 �(w1, w2).

⇤11 =
[

�11 2 ⇤(C) : w1 2 �11 and w2 2 �11.

The union of these pathways represents all possible root-to-sink paths in the

CEG in the event that XB1 ?? XB2 . Lemma 54 means that we have independence

between two positions if we do not have pathways of Type I or III from Figure 4.7.

Lemma 54 If XB1 ?? XB2, then ⇤(CA(B1[B2[C)) = ⇤00 [ ⇤01 [ ⇤10 [ ⇤11

Proof. It su�ces to show that there are no paths of two types.

1. �
0
00

2 ⇤(C) such that w1, w2, 62 �
0
00

and @ e 2 �
0
00

such that e 2 �(w0, w2).

2. �
0
10

2 ⇤(C) such that w1 2 �
0
10

and w2 62 �
0
10

and @ e 2 �
0
10

such that e 2
�(w1, w2).

For the first type of the first path, let

X

�
0
002⇤0

00

⇡(�0
00) = ↵
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and X

�002⇤00

⇡(�00) +
X

�012⇤01

⇡(�01) = �

where ↵,� < 1. We can write

p

0

@
X

�012⇤01

⇡(�01)

1

A = ��

for some �  1 and probability p. Let P (I(w2) = 1|X(w1) = 0) = p.

P
�P

�012⇤01
⇡(�01)

�
P

�
0
002⇤0

00
⇡(�0

00
) +

P
�002⇤00

⇡(�00) +
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�

◆
p (4.14)

We could find values for ↵,�, �, p so this could hold, but for true independence

in the graph, this must hold for all possible values of ↵,�, p. We require that p > 0,

but in theory it is possible for ↵ = 0 or � = 0. If ↵ = 0, Equation 4.14 is satisfied

by � = p. In the case where � = 0, ↵ > 0, Equation 4.14 must hold 8↵,�, p 2 (0, 1)

such that ↵+� = 1. Consider the case when ↵ = 0.8,� = 0.1, p = 0.9. Then � = 8.1.

This is not possible, thus, there are no paths �0
00

2 ⇤0
00
.

For the second type of path,

P (I(w2) = 1|X(w1) = i) = p 8 i 2 0, 1, 2, . . .

But if 9�0
10
, then 9 an edge ei1 emanating from w1 such that ei1 62 �(w1, w2). Let

the edge label of X(w1) corresponding to this edge be m. Then

P (I(w2) = 1|X(w1) = m) = 0.

Hence there are no paths �0
01

2 ⇤0
01
.

This Lemma exposes two pathways that induce dependence in the CEG, Type

I and Type III paths.

Theorem 55 For a query on sets of disjoint positions W = {B1, B2, C} 2 W(C), if

XB1 ?? XB2 |F (C|V(C) )

B1 ?d B2|F (C|V(C)) in Cm0
⇤An(W )
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Proof.

Consider the contrapositive:

B1 6?d B2|F (C|V(C))

in Cm0
⇤An(W )

then

XB1 6?? XB2 |F (C|V(C)))

in C.
Note that for any v1 2 B1 and v2 2 B2, there is a path �(v1, v2). The

ancestral positions v1 and v2 are in the same two-connected component of Cm0
⇤An(W )

.

Now we want to show that if this is the case,

X(v1) ?? X(v2)

is certainly false. As

I(v1) 6?? I(v2) ) X(v1) 6?? X(v2), (4.15)

it su�ces to show that

I(v1) 6?? I(v2).

For each setting of values in the conditioning set c 2 C, it is su�cient to

verify that:

p(I(v2)|I(v1), c) 6= p(I(v2)|c).

If the intrinsic event F (C|V(C)) consolidates a cut to a single vertex in Cm0
⇤An(W )

,

then it must be either upstream or downstream of both B1 and B2. Otherwise, it

would have forced B1 and B2 in to di↵erent two connected components. Each cut

between B1 and B2 has at least two ancestral positions.

For each setting of values C = c, we can assign these probabilities in the

following way:

I(v1)\I(v2) 0 1

0 p00 p01 1� p1

1 p10 p11 p1

1� p2 p2

By definition I(v1) ?? I(v2) always in C when

p00p11 = p01p10. (4.16)
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All atomic probabilities have to be strictly positive p1, p2 > 0, so that

p11 = p1p2 > 0.

Otherwise, this violates the assumption that we have one root-to-sink path in the

ancestral CEG � : v1, v2 2 �. There are now three cases to consider.

The first case is when p1 = 1 –when by definition all root-to-sink paths must

pass through v1. Then

I(w1) ?? I(w2)

because

p00 + p01 = 1� p1 = 0.

However, the inverse of Equation 4.15 is not necessarily true. The independence of

the incident ancestral position vectors does not necessarily imply the independence

of the edge ancestral position vectors.

In this case, assume without loss of generality that v1 is the root node of

Cm0
⇤An(W )

because any situation where everything passes through it must be the root

node, and we do not have any squares. If the conditioning set of ancestral positions

C is consolidated to a single ancestral position in Cm0
⇤An(W )

, then it must be upstream

of both sets B1 and B2. Otherwise, this would create a cut vertex between the sets,

violating the assumption that there is a path between sets. If the set of ancestral

positions C is not consolidated to a single ancestral position in Cm0
⇤An(W )

, then, this tells

us that the minimal subgraphs either upstream or downstream of the conditioning

set with the ancestral ordering are not isomorphic. In either case, there are no

permissible swaps. For each path �(v1, v2), there must be a path in Cm0
⇤An(W )

that

passes through v1, but does not share any subpaths with the path �(v1, v2), denoted

�(v1, v2). There are no cut-vertices in the ancestral positions between B1 and B2,

so each set of ancestral positions at each length away from v0 has at least two

ancestral positions. Thus, �(v1, v2) can be constructed from the set of alternate

ancestral positions. Thus, there is a setting of the probabilities in Cm0
⇤An(W )

such that

X(v1) 6?? X(v2).

The second case is when p2 = 1 – when by definition all root-to-sink paths

must pass through v2. Then

I(v1) ?? I(v2)

because

p00 + p10 = 1� p2 = 0,

Without loss of generality, v2 is the sink node of a two-connected component

in Cm0
⇤An(W )

. By our default assumption, we know there exists a path �(v1, v2) for
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v1 2 B1 and v2 2 B2. Mirroring the argument above, every set of ancestral positions

at lengths away from the sink node has at least two ancestral positions in it. Thus,

we can construct an alternative path �(v1, v2) for v1 2 B1 and v2 2 B2 that does

not share any subpaths with �(v1, v2). There is a setting of the probabilities in

Cm0
⇤An(W )

such that X(v1) 6?? X(v2).

The final case occurs when

p1, p2 < 1.

This is the most interesting since now for

I(v1) ?? I(v2)

to hold we would need all the subsets of paths corresponding to

{I(v1) = i, I(v2) = j}

8 i, j = {0, 1} must be non empty. If they are empty, then to not violate

I(v1) ?? I(v2)

we would need a probability on the opposite side to be zero as well, which would

degenerate to one of the above cases.

In this case, the pathways in Cm0
⇤An(W )

still have two vertices in each level, and

thus we can always construct a pathway of Type I or III. From the contrapositive of

Lemma 54, we know that this implies

XB1 6?? XB2 |F (C|V(C)))

in C.

This construction allows us to identify topological configurations conducive

to reading o↵ the conditional independence relationships. Theorem 55 subsumes

the pre-existing theorems we have proved for these special cases. The following

established results now all follow as a special case:

Corollary 56 For B1, B2, wc 2 V (C) such that B1 \B2 = ; and wc is a cut vertex

such that B1 � wc � B2 then

X(B1) ?? X(B2)|I(wc)
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Proof. We begin by constructing Cm0
⇤An(W )

from the given assumptions. A(B1[B2[wc)

is the ancestral vertex set. Conditioning on I(wc) induces subgraphs that are

isomorphic downstream. If the trees were not isomorphic, there would not be a cut

vertex, wc. To determine the ancestral ordering IB1[B2[wc , there is always a series

of swaps that changes the ordering from B1 � wc � B2 to B1 � B2 � wc. Then,

the positions w 2 B2 inherit the colouring from wc and thus, w 2 B2 is merged to

a new cut vertex in the ancestral positions of the minimal Cm0
⇤An(W )

. This imposes

separation between all w1 2 B1 and w2 2 B2, and by the d-separation theorem for

CEGs, we can conclude that

X(B1) ?? X(B2)|I(wc)

Theorem 24 is a corollary of our ancestral construction.

Corollary 57 If W 0 is a fine cut, then

X�W 0 ?? XW 0�|IW 0

If W 0 is a cut, then

X�W 0 ?? XW 0 |IW 0

Proof. The ancestral vertex set is given by A(W 0) [ w1. In C0

A
, all edges from the

cut W 0 map to w1. This means that they all the downstream trees are isomorphic.

The upstream trees are isomorphic because W 0 is a fine cut. Thus W 0 is consolidated

to a single cut vertex wc which d-separates X�W 0 from XW 0�.

4.5 CEG D-separation Extends the BN D-separation

Every BN can be equivalently written as a CEG. This section demonstrates that

for this case, the d-separation theorem for CEGs simply replicates the results of

d-separation for a BN as expected.

Any dependence query of a BN answered by the d-separation theorem can also

be answered by constructing an equivalent CEG and performing CEG d-separation.

Any CEG equivalent to a BN will be stratified and coloured according to the existing

conditional independence relationships.

Theorem 58 For disjoint sets of random variables XB1 ,XB2 and XC in the BN

G, if XB1 ?d XB2 |XC in Gm0
A(XB1[XB2[XC)

, then for an equivalent CEG CG and

corresponding sets of positions W = {B1 [ B2 [ C} 2 W(CG) and intrinsic event
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F (C|V(CG)) corresponding to the original conditioning set of random variables in

CG, B1 ?d B2|F (C|V(CG)).

Proof.

First, we demonstrate that a query between two sets of variables can be

reduced to a collection of queries on individual random variables. That is, a query

on the set:

XB1 ?? XB2 |XC = xc.

can be reduced to a collection of queries of the form

Xi ?? Xj |XC = xc

for w1 2 B1 and w2 2 B2.

Xi,XB1\i ?? Xj ,XB2\j |XC = xc

By contraction

Xi,XB1\i ?? XB2\j |Xj ,XC = xc and Xi,XB1\i ?? Xj |XC = xc

By symmetry

XB2\j ?? Xi,XB1\i|Xj ,XC = xc and Xj ?? Xi,XB1\i|XC = xc

By strong decomposition

XB2\j ?? XB1\i|Xi, Xj ,XC = xc and XB2\j ?? Xi|XB1\i, Xj ,XC = xc and

Xj ?? XB1\i|XB2\j ,XC = xc and Xj ?? Xi|XC = xc

By symmetry

Xi ?? Xj |XC = xc and Xi ?? XB2\j |XB1\i, Xj ,XC = xc and

XB1\i ?? XB2\j |Xi, Xj ,XC = xc and XB1\i ?? Xj |Xi,XC = xc

Using this argument

XB1 ?? XB2 |XC
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is equivalent to statements of the form

Xi ?? Xj |XC = xc

By the BN d-separation theorem,

Xi ?d Xj |XC = xc

CG is a stratified CEG, so each set of positions corresponding to individual random

variables Xi, Xj , and XC , denoted W = {wXi [wXj [wXC} 2 W(CG) is at the same

level from the root node.

To construct Cm0
⇤An(W )

, we must determine the ancestral ordering IA(wXi
,wXj

,wXC
).

Assuming, without loss of generality that wXi � wXj , the three relevant orderings

are:

i) wXi � wXj � wXC

ii) wXi � wXC � wXj

iii) wXC � wXi � wXj

For case i), wXi � wXj � wXC , we want to show that there must be a

cut vertex in Cm0
⇤An(W )

between wXi and wXj . Because CG is stratified, the subtrees

conditioning on the event F (C|V(CG)) will consolidate to a single node. If not, this

would violate the assumption that CG is stratified. This forces the positions in wXC

to merge to a single cut vertex. The ancestral ordering must juxtapose wXi and

wXj . If not, then there is some other variable in G, say Xk, there would be result

in a path Xi, Xk, Xj . However, this chain would violate the initial assumption that

Xi ?d Xj |XC = xc Each colour in the set of positions wXj is the same. Otherwise,

this would induce a dependence in the graph and violate the initial assumption. The

subtrees from each position in wXj are identical. If they were not, this would induce

a moralised edge in the original ancestral BN. Thus, the positions in wXj can be

merged to a single vertex in the minimal ancestral graph, and when this graph is

separated into components, this confirms that wXi ?d wXj |XC = xc.

Again in case ii), when wXi � wXC � wXj , it is su�cient to show that there

is a cut vertex in the ancestral graph between wXi and wXj . Because the ancestral

ordering first seeks to minimize the di↵erence between wXi and wXj , we know that

there must be a chain in G, (Xi, XC , Xj). There must be no additional pathways

between Xi and Xj in G. Again, the subgraphs induced by conditioning on XC = xc

will necessarily induce isomorphic subtrees upstream and downstream. The positions

in XC merge to a single vertex, inducing a cut vertex between wXi and wXj . When
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the ancestral graph is separated into two-connected components, then this confirms

that wXi ?d wXj |XC = xc.

Finally, consider case iii) when wXC � wXi � wXj . The subtrees induced by

the conditioning set remove the branches where XC 6= xc. The remaining sets of

positions in wXj all have the same colour. Otherwise, there would be a chain or a

moralised edge into Xj . Because there is nothing downstream of wXj , the positions

in that set can be merged to a single vertex in the minimal ancestral graph. This

will again separate wXi and wXj into di↵erent two-connected components in the

ancestral graph and confirms that wXi ?d wXj |XC = xc.

4.6 Discussion

The results proved in the previous section provide a d-separation theorem directly

analogous to that of Pearl or Lauritzen, extending their work to a much larger class

of models. The d-separation theorem for CEGs can also be used for dynamic CEGs

and RDCEGs. The construct of the extended BN, while not strictly necessary for

the CEG, is a useful articulation of the random variables in a CEG. This has further

ramifications for explaining genuine cause and other mediation formulas in the CEG.
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Chapter 5

CEG Diagnostics

It’s not the note you play that’s the

wrong note—it’s the note you play

afterward that makes it right or

wrong.

Miles Davis

5.1 Background

Bayesian Networks are useful, widely implemented, and one of the best structural tools

to use when a set of predetermined measurement variables are available. However,

even when elaborated into Object Oriented Bayesian Networks, these structural

frameworks are not always ideal: see for example Koller and Pfe↵er (1997); Korb and

Nicholson (2010). These representations don’t always encode all of the symmetries

in a problem. Context-specific BNs emerged as one way to address this problem

(McAllester et al., 2004; Boutilier et al., 1997; Geiger and Heckerman, 1996), but

these approaches often abandon graphical representation of the symmetry.

Event trees respect the symmetries in a problem. However, one problem

with event trees is that they do not convey the information about conditional

independences encoded in a BN. The class of Chain Event Graphs was therefore

designed to express conditional independence relationships encoded in the colouring

(Smith and Anderson, 2008). This class of tree-based models is more general than the

BN; it includes the context-specific BNs, albeit depicted in a di↵erent but equivalent

way.

Chain Event Graphs (CEGs) are a useful graphical model representation.

They generalise the class of Bayesian Networks (BNs), representing context-specific

independence and graphical asymmetry. Furthermore it can be argued that because
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they are drawn from a tree-based structure, CEGs allow a more natural way to

express a series of unfolding events (Shafer, 1996).

As with other graphical models, CEGs are then populated with distributions,

often inferred by data. Typically, these parameters of the distribution can be

updated sequentially as more data becomes available. In this setting the routine

use of diagnostics is essential. They reveal problematic structural elements, expose

when changes in the data are no longer compatible with the model, or alternatively

demonstrate its plausibility.

Within the Bayesian paradigm the prequential diagnostics of Dawid (1984)

have proved particularly useful and simple to apply. These examine the one-step ahead

forecasts of each subsequent observation in a dataset to determine the compatibility

of the model with the data. In particular, prequential diagnostics determine how

well the model predicts future data based on past performance (Dawid, 1992). These

have been used successfully to provide diagnostics for the Bayesian Network class

(Cowell et al., 1999).

Prequential diagnostics have since been extended to other graphical models

including the Multi-regression Dynamic Model (Costa et al., 2015). Here I extend

them to CEGs. The prequential approach is especially attractive for use with this

class since its focus is on a model’s ability to forecast the future development of a

unit in the population given the past. This harmonises beautifully with the type of

modelling structure expressed by a CEG which encodes possible future pathways for

each unit.

In this chapter I describe the suite of diagnostic monitors developed for

detecting ill-fitting CEGs. Section 5.2 explains the meaning and estimation of the

Chain Event Graphs and their derivation from the staged trees. In Section 5.3,

I review the prequential diagnostics for the Bayesian Network (BN) and define

analogous diagnostics for the CEG in Section 5.4. Section 5.5 shows the diagnostics

applied to two di↵erent examples. First, the Christchurch Health and Development

Study (CHDS) example shows the process of households’ circumstances that may

result in a child being admitted to the hospital. This example demonstrates the

ability of the diagnostic monitors to di↵erentiate between candidate models including

a BN and two CEGs. The example in Section5.5.2 describes radicalisation data that

shows how individuals in a prison may choose to engage in radical activity. Our

second example shows how these diagnostics improve model interpretability as I

begin to scale the CEG. Together, these examples demonstrate how the diagnostics

highlight misspecifications in the structure.
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5.2 The Meaning and Estimation of CEGs

5.2.1 Christchurch Data Set

In this chapter I consider two examples to illustrate our methodology. The first has

the advantage that it has been subject to various di↵erent CEG models and so is

already well studied (Barclay and Nicholson, 2015; Cowell and Smith, 2014). The

study was conducted at the University of Otago, New Zealand (Fergusson et al.,

1986). It encompassed a five year longitudinal study of several explanatory variables

including:

• Xs: Family social background, a categorical variable di↵erentiating between

high and low levels according to educational, socio-economic, ethnic measures,

and information about the children’s birth.

• Xe: Family economic status, a categorical variable distinguishing between high

and low status with regard to standard of living.

• Xl: Family life events, a categorical variable signalising the existence of low (0

to 5 events), average (6 to 9 events) or high (10 or more events) number of

stressful events faced by a family over the five years.

• Xh: Hospital admissions, a binary variable indicating whether or not a child

in the household was hospitalised.

The aim of the CHDS study was to better understand how the di↵erent

variables above might relate to one another. Previous studies of the CHDS data

demonstrated the flexibility and expressiveness of the CEG model over the BN

(Barclay et al., 2013). We will demonstrate below how the diagnostics I develop here

pinpoint exactly how the CEG structure can model the processes better than a BN.

The partition specifying the stages a CEG is analogous to specifying condi-

tional independence asserted through the graph of a BN (Dawid, 1979; Studenỳ,

2002). Situations in the same stage are independent conditional on their respective

histories and the proofs of can be found in Smith and Anderson (2008); Thwaites

and Smith (2010).

For this chapter, we consider the class of stratified CEGs because they o↵er

the most direct comparison to a standard BN.

The CEGBN in Figure 5.1 on 86 encodes the same conditional independence

relationships as the BN in Figure 5.3 on page 89. The BN in Figure 5.3 models

that Xh is independent of Xe given Xl and Xs. CEGBN in Figure 5.1 encodes this

through the colouring in the set of stages representing Xh. For Xs = High (or Low),
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Figure 5.1: CEGBN, a CEG adapted from the BN used in previous CHDS study. Xs

corresponds to {w0}; Xe to {w1, w2}; Xl to {w3, w4, w5, w6}; and Xh to {w7, w8, w9}

the future development of Xl is not dependent on Xe The edges for both levels of

Xe go into the same stages. CEGAHC in Figure 5.2 represents the CEG found by

the Agglomerative Hierarchical Clustering (AHC) algorithm.

5.3 BN Prequential Diagnostics

5.3.1 BN Conjugate Dirichlet Analysis

A Bayesian Network G is given by a set of random variables Xi for {i 2 1, . . . , n},
each taking di↵erent values xk for {k 2 1, . . . ,Ki}. The possible configurations of

the parents of Xi are denoted ⇢i = j are {1, . . . , qi}. Although the methodology

presented here is generic, I will illustrate the use of the prequential methods using

the simplest and most widely used sort of prior for the CEG, the product Dirichlet,

where for each set of parents of node and values of Xi governed by parameter ✓ijk.

Thus suppose we observe yi = {y1, . . . , ym, . . . , yM}, a series of observations

for the variable Xi, where each possible value of each random variable is assigned

a Dirichlet prior D(↵1, . . . ,↵Ki). In a discrete BN, the entries in the conditional

probability tables for a particular parent setting sum to one over all possible levels of

the node. That is, the parameter for the ith node with the jth setting of the parents

for the kth value, ✓ij =
P

Ki
k=1

✓ijk = 1.

Setting a Dirichlet prior for each ✓ij , permits the conjugate posterior analysis.
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Figure 5.2: CEGAHC, The CEG for the CHDS data found using the AHC algorithm.
Xs corresponds to {w0}; Xe to {w1, w2}; Xl to {w3, w4, w5}; and Xh to {w6, w7, w8}

As data is accumulated about the system, the Dirichlet prior can be updated by

adding the counts of the observation to the prior. We can compute a reference

Dirichlet prior by taking the highest number of levels of a given variable (Xl gives an

e↵ective sample size of ↵ = 3 for the CHDS example) and dividing it by the number

of levels outgoing from each situation.

The prequential diagnostics compute the surprise of seeing each subsequent

observation given the past observations. Towards that end, our monitors use the

likelihood of observing the complete data y as given by Heckerman et al. (1995).

Assuming it was randomly sampled, the likelihood of the probability vectors is:

p(y|✓) = c

nY

i=1

qiY

j=1

KiY

k=1

✓
yijk

ijk

where c = Y !QKi
k=1 yijk!

, where Y =
P

Ki
k=1

yijk,. The parameter for each value and

parent pair for each node ✓ijk is governed by a Dirichlet distribution. Thus the prior

is given by:

p(✓) =
nY

i=1

qiY

j=1

�(
P

Ki
k=1

↵ijk)Q
Ki
k=1

�(↵ijk)

KiY

k=1

✓
↵ijk�1

ijk

Following the conjugate analysis, we obtain the following form of the posterior

distribution:
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p(✓|y) / p(y|✓)p(✓) = c

nY

i=1

qiY

j=1

�(
P

Ki
k=1

↵ijk + yijk)Q
Ki
k=1

�(↵ijk + yijk)

KiY

k=1

✓
yijk+↵ijk�1

ijk

Which gives us the closed form:

p(y) = c

Z

⇥

nY

i=1

qiY

j=1

�(
P

Ki
k=1

↵ijk + yijk)Q
Ki
k=1

�(↵ijk + yijk)

KiY

k=1

✓
↵ijk+yijk�1

ijk
d✓

p(y) = c

nY

i=1

qiY

j=1

�(↵+)Q
Ki
k=1

�(↵ijk)

Q
Ki
k=1

�(↵ijk + yijk))

�(↵+ + Y )
(5.1)

where ↵+ =
P

Ki
k=1

↵ijk.

5.3.2 Scoring Rules

In this chapter, in order to check the accuracy of the forecasts, we can use the

logarithmic scoring rule because of its close links to Bayesian inference through the

Bayes factor score.

The temporal ordering, denoted m = (1, . . . ,M), is taken in this case to be

the ordering in the dataset. The subsequent prequential methods we derive below

all rely on this ordering. Note that there may be scenarios in which we would like to

reorder the data by a covariate, or according to external information available about

how the sample was collected.

Let ym denote the mth observation of the data for which ym is observed at

a specific level of the random variable yk. Let pm denote the predictive density of

observing yk after learning from the first m� 1 cases. The logarithmic score of the

mth observation of Y taking the value yk is denoted:

Sm = � log pm(yk)

There are two methods of standardisation. Relative standardisation examines

the logarithmic di↵erence between the penalties under two di↵erent models. The

absolute di↵erence does not require an alternative model. Instead, we compute a

standardised test statistics Zm using the expectation Em and variance Vm following

Cowell et al. (1999):
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Em = �
KX

k=1

pm(yk) log pm(yk) (5.2)

Vm =
KX

k=1

pm(yk) log
2
pm(yk)� E

2

m (5.3)

ZM =

P
M

m=1
Sm �

P
M

m=1
EmqP

M

m=1
Vm

. (5.4)

For su�ciently large sample sizes under the model assumptions, for all but

small indices m, ZM will have an approximate standard Normal distribution if the

model could have plausibly generated the data.

Figure 5.3: BN CHDS: A BN obtained from previous studies of the CHDS data
(Barclay et al., 2013).

For the global monitors, we can now examine alternative models under the

relative standardisation technique. Our candidate models include the baseline BN

shown in Figure 5.3, a CEG based on the BN that includes additional information

in Figure 5.1, and another CEG found from the AHC algorithm in Figure 5.2.

This enables us to identify structural improvements with an increasingly fine set of

monitors.

5.3.3 Diagnostic Monitors for BNs

The prequential methods are similar to cross-validation, with the key di↵erence being

that they rely on information from the previous iterations, rather than predicting on

the variables excepting the one of interest.

Within a Bayesian framework these diagnostics are especially attractive,

because if the estimated conditionals are treated as one-step ahead predictives, then

the log marginal likelihood is simply the sum of these scores. So the prequential

methods then decompose an aggregate score into scores associated with di↵erent
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subsets of the contributions to the data. Each such subset can then be scrutinized

for its fidelity to the fitted model as it applies to that subset within the context of a

full Bayesian analysis.

When most e↵ective, the prequential approach is able to adopt an interpretable

and natural ordering of the observational data. When a temporal component is not

immediately obvious, it may be helpful to order the data according to some covariate

of the observables. For instance, modelling healthcare outcomes might benefit from

ordering the data according to the length of time each patient spent in the hospital.

The prequential approach is well suited to detect where the model is no longer a

good fit to the data.

The monitors discussed in Cowell et al. (1999) that we reproduce for the

BN include the global monitor for overall model fit, the node monitor to check the

probability distributions, and the parent-child monitor to assess the contribution of

individual parent settings. Cowell et al. (1999) also used a batch monitor, essentially

a chi-square test to detect significant di↵erences between observed and expected

counts of each variable. In the same spirit, we develop a situation monitor based on

expected and observed counts, but elsewhere we focus on the Bayesian monitors.

The monitors discussed in this section review the well-established BN monitors.

In the context of this thesis, the interpretation of the parent-child monitor for BNs

is a novel contribution as it assesses when a BN is not an adequate model. The

CHDS example illustrates this when the BN parent child monitor suggests that

the data has additional context-specific conditional independence information. The

implementation of these monitors in R is also a new contribution.

Global monitors The global monitor for BNs is defined as the logarithmic prob-

ability of the mth observation : � log pm(ym) after m� 1 cases are processed.

Definition 59 The overall global monitor for all M cases is:

GBN = � log
MY

m=1

pm(ym) = � log
MY

m=1

pm(ym|y1, . . . , ym�1) (5.5)

= � log p(y1 . . . , ym) = � log p(y). (5.6)

Calculating the global monitor for two di↵erent systems provides an immedi-

ately interpretable comparison between models. These monitors have been shown to

provide quick checks of BN structure against data. To illustrate, the log marginal

likelihood, equivalent to the global monitor, for BN CHDS is GBN = �2495.01. In

Section 5.5, we will see how this compares to the global monitor of competing models.
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XM Zmarg node Zcond node

Xs 1.708 0.1737

Xe 0.582 -1.560

Xl 2.953 2.454

Xh 0.340 -0.450

Table 5.1: Final BN node monitors for the CHDS example where |Z| > 1.96 suggests
an ill fit.

Node monitors The node monitor assesses the adequacy of the marginal and

conditional probability distributions for each node in the model.

Definition 60 The marginal node monitor is given by

Nmarg = � log pm(xk)

after m� 1 cases are processed.

This is calculated by ignoring the other evidence in the mth case after Xi is observed.

The unconditional node monitor checks the suitability of the probability distribution

of the node.

The conditional node monitor uses probabilities that are conditioned on

evidence in the mth case. To compute the conditional node monitor, all of the

evidence in E is propagated except for Xi = xi.

Definition 61 The conditional node monitor can be represented as:

Ncond = � log pm(xi|Em \Xi).

The conditional node monitor checks how well the model predicts each

node given the other evidence in the observation. First, we specified the conditional

probability tables, with ✓i after learning from the first m�1 cases. For the conditional

node monitors, we propagated the evidence from the other variables omitting the

node under consideration, and then queried the BN with the functions in the R

package gRain (Højsgaard, 2012).

For instance, to compute the conditional node monitor for Xh, we propagated

the evidence E = {Xs = High, Xe = High, Xl = High} and queried Xh according to

the structure in Figure 5.4a. The node monitors are then standardised according to

Equation 5.6.

Computing the final node monitors o↵ers a quick check to see which node

probability distributions might be incorrectly specified. The final node monitors for
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(a) The marginal and conditional node mon-
itor for Xl.

(b) CHDS BN: the parent-child monitor for
positions all possible parent settings of Xl

Figure 5.4: Node monitors detect ill-fitting distribution for Xl

the CHDS BN are shown in Table 5.1. The marginal and conditional node monitors

for Xs, Xe, and Xh are properly calibrated. However, we notice that the predictive

probability distribution appears to be misspecified for Xl. The plot in Figure 5.4a

confirms that both the marginal and conditional monitors indicate that we should

not trust the modelling of Xl. There are context specific conditional probability

distributions for Xl that should be adjusted.

As we will see in Section 5.2, the nodes of the BN are not exactly analogous to

the positions of a CEG. Additional checks on the stages and the situations composing

the stages will be required.

Parent-child monitors After identifying the problematic node, the parent-child

monitor can be used to pinpoint the configurations of the parent values which might

be associated with the misspecification.

Definition 62 For any node Xi in a BN (noting that this is distinct from the

situations and vertices v in a CEG), the parent-child monitor is defined as the

predictive posterior of the mth observation with parents ⇢ after learning from the

first m� 1 cases with parents ⇢:

R = pm(xi|Xm�1

pa(i) = ⇢).

Historically, the parent-child monitor has been used to confirm the e↵ects

of learning and the selected priors on the model (Cowell et al., 1999). The parent-

child monitor can also be used to assess the appropriateness of di↵erent priors on

individual nodes. We use it here to identify BNs that have context-specific probability
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distributions that could be remedied by re-expressing the problem as a CEG. A

good heuristic is that any predictive model with |Zm| > 1.96 should be viewed with

suspicion (Cowell et al., 2007). Following the example of Cowell et al. (2007), the

parent-child monitor is computed without a formal hypothesis test here, as that

would require the asymptotic theory. Instead, indicate we should be cautious, or

even reject the model.

In Figure 5.4b, we check the parent-child monitor for Xl given all possible

parent settings. This indicates that the household with Xs = Low and Xe = Low

are a particularly poor fit to the data. Because the parent-child monitor assesses

how sensitive a model is to particular setting, we use it here to indicate when a BN

should be adapted to a CEG model.

This section has reviewed the existing prequential diagnostics for a BN. While

these diagnostics are well established in the literature, they have been surprisingly

little used in practice. However, coding these monitors in the R package bnmonitoR

should elevate the profile of these diagnostics. The code for these diagnostics along

with an example that uses a dataset on lung cancer used in Cowell et al. (1999). The

BN diagnostics can be found at https://github.com/rachwhatsit/BNdiagnostics.

5.4 CEG Diagnostics

The monitors below explain what we might expect to see from the model in a

predictive space. Prequential monitors can pinpoint where and how forecasts from

candidate models deviate. The model fit might deviate because there can be two

di↵erent data generating processes, and in this situation we might want to use the

diagnostics to help explain why one model is a better fit than another. Additionally,

data exchangeability might not hold, or the data might have some other built up

dependence that the current structure does not capture. The diagnostics might reveal

that the Dirichlet is an inappropriate choice for the model and other distributions

might be needed. Certain copula families may be more appropriate for particular

structures as demonstrated by Elfadaly and Garthwaite (2013); Zapata-Vázquez

et al. (2014); Wilson et al. (2018); Elfadaly and Garthwaite (2017).

5.4.1 CEG Conjugate Dirichlet Analysis

Within a conjugate analysis, product Dirichlet-Multinomial distributions describe

the posterior and more importantly the predictive distributions we use in our

specific prequential analysis. Suppose we have either elicited or used model selection

techniques to acquire the CEG, C with K stages denoted u1, . . . , uK . Each stage

ui in C has floret parameters ✓i for i 2 1, . . . ,K. Edges in a stage are E(ui) =
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{fi1, . . . , fiKi} with labels ✓ij = ✓(fij) for j = 1, . . . ,Ki and i = 1, . . . ,K. Then

suppose we observe a sample Y = y. From this we know in part how many observed

counts arrive at each of the K stages. We denote the counts at each individual stage

as y = (y0, . . . ,yi, . . .yK) where yi = (yi1, . . . , yij , . . . , yiKi).

Assuming that the experiment was randomly sampled, then the floret para-

meter vector ✓i has a Multinomial distribution Multi(Ni,✓i) where Ni =
P

Ki
j=1

yij

whose mass function we denote as pi(yi|✓i). The separable form of the likelihood of

the probability vectors for stages u1, . . . , uK is given by:

p(y|✓) =
KY

i=1

pi(yi|✓i) =
KY

i=1

KiY

j=1

✓
yij

ij
.

The Dirichlet prior distribution for each of the stages is denoted as ↵i =

(↵i1, . . . ,↵iKi). Thus the prior is given by:

p(✓) =
KY

i=1

�(
P

Ki
j=1

↵ij)
Q

Ki
j=1

�(↵ij)

KiY

j=1

✓
↵ij�1

ij
.

Following the conjugate analysis in Collazo et al. (2018), under closed sampling

we obtain the following form for the posterior distribution:

p(✓|y) / p(y|✓)p(✓) =
KY

i=1

�(
P

Ki
j=1

↵ij)
Q

Ki
j=1

�(↵ij)

KiY

j=1

✓
yij+↵ij�1

ij

=
KY

i=1

p(✓i|yi) =
KY

i=1

�(
P

Ki
j=1

↵ij+)
Q

Ki
j=1

�(↵ij+)

KiY

j=1

✓
↵ij+�1

ij
.

where ↵i+ = ↵i + yi. Under closed sampling, then we can write the marginal

likelihood in closed form:

p(y) =

Z

⇥

KY

i=1

�(
P

Ki
j=1

↵ij)
Q

Ki
j=1

�(↵ij)

KiY

j=1

✓
yij+↵ij�1

ij
d✓

=
KY

i=1

�(
P

Ki
j=1

↵ij)

�(
P

Ki
j=1

↵ij+)

KiY

j=1

�(↵ij+)

�(↵ij)
.

log p(y) =
KX

i=1

2

4log�(↵̄i)� log�(↵̄i+)�

0

@
KiX

j=1

log�(↵ij)� log�(↵ij+)

1

A

3

5 (5.7)

where ↵̄i =
P

K

j=1
↵ij for all i 2 1, . . . ,K and ↵i+ = ↵i + yi.
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Xs Xe si wk UAHC UAHC1 UAHC2 UAHC3 UAHC4

High High s
1

l
w3

High Low s
2

l
w3

Low High s
3

l
w4

Low Low s
4

l
w5

Table 5.2: Possible stagings for the cut Xl.

5.4.2 Global Monitor

As shown in Section 5.3.3, the global monitor is the probability of observing all of

the evidence for a particular case m after processing m� 1 cases, Pm(Em). Evidence

for the CEG is defined as the root-to-leaf path containing the observation.

Definition 63 The overall CEG global monitor then is defined as the product of

observing each of the m cases:

GCEG = � log p(y1, . . . , ym) = � log p(y)

For a CEG, this is given by the marginal likelihood p(y) shown in Equation

5.7. The global monitor o↵ers an immediately interpretable comparison of candidate

models. It also defines a way to directly compare a CEG equivalent to a BN with a

CEG found using another method, as we see for the CHDS example in Section 5.5.

After making changes to finer aspects of the structure, the global monitor may be

computed to show improvements in the overall model.

5.4.3 Staging Monitors

Staging monitors are designed to identify problems with the staging of the colourings

for a given cut as defined in Definition 22. For the comparison to the BN diagnostics,

note that a cut in a stratified CEG is equivalent to a random variable in the BN.

This does not have an analogy to the BN monitors because it is designed to detect

discrepancies within the context-specific conditional independence relationships and

ordinary BNs do not accommodate such structure. However, it can be used on a CEG

representation equivalent to a BN to detect particular context-specific independences

within this class. The relevant sample size here simply refers to the index in the

dataset.

The set of situations {si 2 V (T )|si 2 wj for wj 2 W(C)} associated with

the positions of a cut are partitioned to compose the staging. For instance, in the

CHDS example, the cut representing Xl has four associated situations {s1
l
, s

2

l
, s

3

l
, s

4

l
}

that correspond to the contexts Xs = High and Xe = High, Xs = High and Xe =
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Low, Xs = Low and Xe = High, Xs = Low and Xe = Low, respectively. The stage

structure shown in Figure 5.2 has the partition

UAHC = {{s1
l
, s

2

l
, s

3

l
}, {s4

l
}}

This staging may change for di↵erent points in the dataset. Consider the set of

alternative stagings, denoted U
0 2 U to be the stagings that are one move on a

Hasse diagram away from the given staging. For the example CEG, the alternative

stagings we consider are shown in Table 5.2. The first alternative staging represents

all situations merged together, and the last three indicate the situations with another

stage removed from {s1
l
, s

2

l
, s

3

l
}. The staging may vary as forecasts flow from the

data, so the stagings and alternative stagings are indexed as Um and Um respectively.

Definition 64 For a given CEG with staging Um and data observations {y1,y2, . . . ,ym},
the CEG staging monitor is the staging predictive distributions, p(Um|ym�1).

The form of the one step ahead predictive allowing for first-order Markov

transitions between stages is given in Freeman and Smith (2011b). Because our

primary aim is to see if the model staging is an appropriate fit given the data, we

do not allow for transitions between stagings. However, for some applications, the

computation of the one step ahead predictive could be adjusted to account for known

transitions in the stage structure.

To assess the appropriateness of the staging to the data, we need the quantity:

p(Um = U
0|ym�1) / p(ym�1|Um�1 = U

0)p(Um�1 = U
0|ym�2)

=
p(ym�1|Um�1 = U

0)p(Um�1 = U
0|ym�2)P

U 02U p(ym�1|Um�1 = U 0)p(Um�1 = U 0|ym�2)
.

As shown in Freeman and Smith (2011b), P (Um�1 = U
0|ym�2) is available

at time t� 1 and

p(ym�1|Um�1 = U
0) =

Z

⇥m�1

p(ym�1|✓m�1, Um�1 = U
0)p(✓m�1|Um�1 = U

0)d✓m�1

=
KY

i=1

�(
P

Ki
j=1

↵
ij

m�1
)

�(
P

Ki
j=1

↵
ij+

m�1
)

KiY

j=1

�(↵ij+

m�1
)

�(↵ij

m�1
)
.

Here we have embedded the time index so that ↵ij

m�1
denotes ↵ij at observation

96



m�1 and ↵
ij+

m�1
denotes ↵ij+yij at observation m�1. The staging monitor identifies

places where the data is no longer a good fit for the existing stage structure.

The plots of the staging monitor depict p(Um = U
0|ym�1) for the assumed

stage U and each alternative staging U
0 over the number of observations in the

dataset. This allows us to see how the suitability of the model changes over time. If

one of the alternative stages emerges as the highest probability forecast, then this

indicates that the alternative staging in the model class should be used instead. If

no clear staging emerges, this indicates that the appropriate staging may be outside

the model class. This could indicate that the data-generating process draws from

di↵erent stagings at di↵erent times. This might necessitate the use of di↵erent

dependence structures. One example of such a dependence structure can be found in

Wilson et al. (2018).

We will see how this enables us to di↵erentiate between possible stagings in

the CHDS data in Section 5.5.

5.4.4 Position Monitors

The position monitors, as the nodes of the CEG, rely on the message passing

algorithm. Collazo and Smith (2015a) derived this algorithm, and the tree-based

nature of the CEG makes it much faster than the BN propagation algorithm.

The node monitors for a BN detect discrepancies in the probability distribution

specified for each node. For the CEG, we want to check the probability distributions

specified for each position. Mirroring the BN methodology, we will compute a

marginal and conditional probability.

To compute the marginal position monitor, Nmarg for the mth observation

in our dataset, we first compute the probability florets for each of the positions

based on the previous m � 1 observations in the dataset. Because positions only

apply to data that matches the appropriate upstream pathways of wi, the position

monitors are only computed for those observations. Then, we compute the marginal

probability of observing the mth observation for each of the values fk emerging from

the position wi. We compute these by summing the probability of each of the root

to sink paths that goes through the edge of interest fk. The relevant sample size

refers to the index in the subset of the data that arrives at each position.

Definition 65 The CEG marginal monitor is given by

Nmarg = � log pm(⇤(✓(wi) = fk))

The marginal monitor is then standardized against the actual observed value

of wi in the mth observation according to the Equation 5.2, 5.3, and 5.4.
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The conditional node monitor computes the probability of observing evidence

for the mth case after propagating evidence from the observations in the mth

observation, excluding the outcome in the position of interest wi. The conditional

node monitor was designed for BNs to check the appropriateness of a distribution for

a node conditional on the evidence for all the other nodes in the BN. As the CEG is

automatically conditioning on all of the upstream variables, the conditional monitors

for the positions of a CEG only provides information additional to the marginal node

monitor for certain structures defined below. Like the marginal position monitor

above, these are functions of observations within a given position of interest.

Whereas with the marginal monitor, we can compute the marginals from

the probability florets directly, we need to use message passing to pass the evidence

to update the probability florets for the conditional monitors. The propagation

algorithm for the CEG is given in Thwaites et al. (2008) with additional details in

Collazo et al. (2018). The propagation algorithm relies on evidence, which is the full

root-to-sink path in the CEG. The evidence for the mth observation is some subset

of the settings of random variables at the mth observation.

Evidence is propagated through a sub-graph of the CEG called the transporter.

The transporter inherits the probabilities ✓(wi) for the set of positions and edges in

the transporter. In the conditional monitor, we compute the pm from the probabilities

from the previous m� 1 cases. The probabilities are back-propagated, i.e. summed

at each position to compute the potential, �(wi) and then updated by dividing

each ✓(wi) by �(wi). Thus, if the potential for wi sums to one, then the updated

probabilities are the same as the original.

Definition 66 The CEG conditional position monitor is given by:

Ncond = � log pm(✓(wi) = fk|Em \ ✓(wi)).

The conditional monitors are then standardized according to Equations 5.2, 5.3, and

5.4. For our examples in Section 5.5, �(wi) = 1, so for our example, we need show

only the marginal monitors.

The position monitors can be compared to a BN node monitor to confirm

the suitability of the CEG structure. Within the CEG model class, it can detect

discrepancies within the specified probability distribution. If the marginal position

monitor indicates a poor fit, but the conditional position monitor indicates an

appropriate fit, then we may continue cautiously using the selected model. However,

if both the marginal and conditional position monitors indicate a poor fit, then we

may want to consider alternative models. The monitors are designed to be used

from the coarsest to finest, so we would only detect an issue with the position after
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confirming that the staging is appropriate. Thus the position monitor detects issues

that may be at or downstream of the position. Perhaps certain situations that are in

the same stage should not be in the same position. The position monitor can also be

used to detect when data has been generated from a model with additional positions

or information available.

5.4.5 Situation Monitors

At the finest level, the CEG is composed of situations defined in Section 5.2. A stage

ui in a CEG is composed of situations {s1, . . . , sk, . . . , sM} that are by definition

exchangeable. A situation monitor highlights situations when this exchangeability

assumption might be violated.

The prequential methods check the validity of the forecasts. To check the

forecasts from each of the stages in the structure, we need to compare the forecasts

coming from each of the di↵erent situations. The stage order monitor imposes a new

order to retain the prequential methodology. The leave one out stage monitor o↵ers

a quick check and additional aid to model transparency.

Leave one out stage monitor Using a method similar to the leave one out cross

validation, we can examine the Bayes factor contribution from the stage ui with

a particular situation s
0
k
removed, denoted f(y0

i,�k
), and compare it to the Bayes

factor contribution from the stage as a whole, f(yi) as above. We expect that the

stage with all contributing situations to be preferable to the one with the situation

removed. Thus, this o↵ers a quick check if any removing any situations leads to a

higher Bayes factor score. We refer to this as the leave one out monitor, given by

Q(uk, sk) = log f(yi,�k0)� log f(yi)

where the contribution from the stage with situation sk left out is

log f(yi,�k0) = log�(↵̄i)� log�(↵̄i+,�k0)�

0

@
KiX

j=1

log�(↵ij)� log�(↵ij+,�k)

1

A

where ↵i+,�k0 = ↵i + yi,�k. A quick visual check can plot the actual observed

proportions in each situation against the proportion we expect to see from the

predictive posterior with data from the stage of interest missing. We examine the

proportions of a particular level l = l
0 for each of the stages. The stages associated

with the variables that take extreme values are often of particular interest. For

instance, for Xh in the CHDS data, we consider the proportion of households for

which Xh = Yes.
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We could use this for more than two levels, but it would be more di�cult to

picture the discrepancy, and thus more di�cult to display and interpret the output.

Reducing the problem to a binary question allows us to leverage the properties of

the Dirichlet distribution closure to marginalisation (Collazo et al., 2018). We can

compute the conjugate posterior Beta(↵0
,�

0) = (↵+

�k0 ,�
+

�k0) with the situation s�k

removed and take the expectation n↵
0

(↵0+�0) where ↵
0 corresponds to the level of interest

l = l
0. We can compare this to the observed proportion of units where yi = l

0.

Situation order monitor To use a prequential check on the stage structure, we

can impose an ordering on the relevant situations I
M̃

= {s1, . . . , sm, . . . , sM}. This
ordering could correspond to some notion of severity of the situations. For instance,

in the CHDS data, we might order the situations in cut Xl according to increasing

adversity I(Xl) = Low, Average, High. Imposing this ordering ensures that the

corresponding residuals are independent.

For interpretability, reframe the data as Beta-Binomial distributed, where

we are interested in the number of counts of the ‘worst’ level. The one step ahead

predictives for each subsequent situation takes the counts of the data from the

preceding situations as its parameters. Let ↵�m = ↵i +
P

m�1

m=1
yim and ��m =

�i +
P

m�1

m=1
yim represent the count data from only the preceding situations. The

surprise of observing the number of counts yml of the ‘worst’ level in the subsequent

situation sm is given by:

p(ym,l) =
�(↵�m + ��m)

�(↵�m)�(��m)

✓
ym

yml

◆
�(↵�m + yml)�(��m + ym � yml)

�(↵�m + ��m + yml)

Computing this quantity for each situation in turn allows us to determine

when and if there is a certain point where the stage is a poor forecast for the

subsequent data.

5.5 Examples

To investigate the diagnostic applications, we use two additional examples. The first

example with the Christchurch Health and Development Study (CHDS) data is used

to extend the BN diagnostics to the CEG. This enables us to see precisely where and

how the CEG outperforms the BN, besides giving us a suite of diagnostics for general

CEGs. The second example on radicalisation shows how the diagnostics scale.
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5.5.1 CHDS

I have chosen this example because it has been subject to various di↵erent CEG

models and so is already well studied, see Barclay and Nicholson (2015); Cowell and

Smith (2014). The cohort study was conducted at the University of Otago, New

Zealand (Fergusson et al., 1986). The sample used in this thesis used the categories

derived from a latent class model (Barclay, 2014). Complete data was available for

890 households, and the analysis was performed on this sample. Description of the

relevant variables are given below:

• Xs: Family social background, a categorical variable di↵erentiating between

high and low levels according to educational, socio-economic, ethnic measures,

and information about the children’s birth.

• Xe: Family economic status, a categorical variable distinguishing between high

and low status with regard to standard of living.

• Xl: Family life events, a categorical variable signalising the existence of low (0

to 5 events), average (6 to 9 events) or high (10 or more events) number of

stressful events faced by a family over the five years.

• Xh: Hospital admissions, a binary variable indicating whether or not a child

in the household was hospitalised.

Other studies of the CHDS example have shown that the CEG give a much

higher MAP score than the BN model. In this chapter, we focus on the diagnostics

for stratified CEG models and show how the diagnostics can be used to explain why

the fit of the CEG is better. More explicitly, our diagnostics can be used to show

where predictions from the CEG model outperform those of the BN. To enable this

comparison, we will compare two CEGs and the original BN. Figure 5.1 shows a

CEGBN that encodes additional context-specific information from previous studies

(Collazo et al., 2018).

The log marginal likelihood of this model is Q(MCEGBN) = �2, 495.01. Under

the relative standardization method, we obtain a Bayes Factor of 2,421,748. This is

a tremendous improvement over the existing BN model already. With the assumed

variable ordering (Xs, Xe, Xl, Xh), the AHC algorithm returns the structure CEGAHC

in Figure 5.2. The marginal log likelihood for CEGAHC is -2478.49. This model

is an even more sizeable improvement over the original BN with a Bayes Factor

of 14,946,684. Comparing the two CEG models, the model generated by the AHC

algorithm is six times as likely to have been data generating model, with a Bayes

Factor of 6.172. This o↵ers strong evidence that CEGAHC is a more suitable model
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for the CHDS data than the equivalent BN representation in CEGBN. We will

nevertheless consider both as candidate models in order to demonstrate how our

monitors identify the di↵erences in the structure.

(a) CEGBN: the staging monitor for variable
Xl. This eventually recovers the optimal
staging found in CEGBN.

(b) CEGAHC: the staging monitor for vari-
able Xl depicting the selected staging as
the most likely one.

Figure 5.5: Staging monitors for two candidate CEG models. The staging with the
highest probabilitiy indicates the best fit.

The staging monitor examines the possible partitions of the stages, called

stagings at each cut in the tree. The staging monitor for CEGBN is shown in Figure

5.5a. It confirms that {Xs = High Xe = Low, Xs = Low Xe = High}, {Xs =

High Xe = High}, {Xs = Low Xe = Low} (denoted (1)(23)(4) emerges as the clear

preference for the staging.

We see that the model struggles to distinguish between {Xs = High Xe =

High, Xs = High Xe = Low}, {Xs = Low Xe = High}, {Xs = Low Xe = Low}
(denoted (12)(3)(4) ) and {Xs = High Xe = High, Xs = Low Xe = High}, {Xs = High

Xe = High}, {Xs = Low Xe = Low} (denoted (13)(2)(4)) in the early observations.

This suggests that an alternative model with a di↵erent stage structure might be

more suitable for the data.

However, the monitor for CEGAHC in Figure 5.5b, indicates a better fit

to the data. The current staging is given by {Xs = High Xe = Low, Xs = Low

Xe = High, Xs = High Xe = High }, {Xs = Low Xe = Low}, (denoted (123)(4)

in Figure 5.5b). This remains the most likely staging throughout the data. The

probability of the subsequent staging remaining the same based on the previous

observations consistently stays around 0.75 as each subsequent observation in the

dataset is realised.

To confirm the more accurate modelling of positions modelling context-specific

probability distributions of Xl in the candidate CEGs, we can check the position

monitors applied to CEGBN and CEGAHC in Figures 5.6a and 5.6b respectively. Both
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(a) CEGBN: the position monitor for posi-
tions w3, w4, w5, and w6 modelling Xl

(b) CEGAHC: the position monitor for
positions w3, w4, and w5 modelling Xl

Figure 5.6: Position monitors for two candidate CEG models.

models are acceptable, and a substantive improvement over the position monitor of

the original BN in Figure 5.4a.

After checking the staging, we turn our attention to the composition of the

stages themselves. We consider the situations for the best-fitting CEG, CEGAHC.

In this CEG, stages u0, u1, u2, and u4 only have one contributing situation, so we

examine u3, u5, u6, and u7. (Recall that stages are not labelled in Figure 5.2, but

can be identified by assigning sequential labels to the unique colours.) The leave one

out monitors return Bayes factor scores very close to zero, so we examine the plots

of the expected and observed proportions of the levels of interest. We consider the

proportion of Xl = High for u3 and Xh = Yes for stages u5, u6, and u7 in Figure 5.7.

While the staging and position monitors for u3 and w3 and w4 respectively

suggest that the probability distribution is a good fit for the data overall, the

situation monitor in Figure 5.7a suggest that we should be cautious about the

forecasts CEGAHC for families experiencing a high level of adverse events. If we

estimate the proportion of high adverse life events from households with either

high social and low economic or low social and high economic capital, we will

overestimate for households with high economic and social capital. Conversely, we

underestimate the proportion of high adverse life events when we examine the leave

one out proportions for s2 and s3.

Examining the prequential monitors here with the ordering of decreasing

capital I(Xl) = {s1, s2, s3} = {Xs = High Xe = High, Xs = High Xe = Low, Xs =

Low Xe = High } gives p(y2,High) = 0.028 and p(y2,High) = 0.102. This further

confirms that situations s1 and s2 are not exchangeable. To adjust the model, we

might consider the process by which families experience a number of life events. The
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(a) u3 LOO monitor (b) u5 LOO monitor (c) u6 LOO monitor (d) u7 LOO monitor

Figure 5.7: The observed (blue triangles) and expected (red dots) proportions of
households with high adverse life events (a) and children admitted to the hospital
(b,c,d) with the respective situations in Table 5.3 on page 104 removed.

u5 u6 u7

si Xs Xe Xl si Xs Xe Xl si Xs Xe Xl

s1 High High Low s1 High High Average s1 High High High

s2 High Low Low s2 High Low Average s2 High Low High

s3 Low High Average s3 Low High High

s4 Low High Low s4 Low Low Average

s5 Low Low Low s5 Low Low High

Table 5.3: Situations composing stages modelling Xh in stages u5, u6, and u7

leave one out monitor for u3 in particular suggests that something fundamentally

di↵erent might be contributing to adverse life events for families with high social

and high economic standing, one plausible explanation.

Stage u5 is composed of the situations listed in Table 5.3. This is the

moderately fortunate group. They are characterized by low life events and high

social standing. The prequential monitor is given by: p(y2,No) = 0.082, again with

no evidence of a structural issue.

Stage u6 represents people who have access to either social or economic capital

who experience an average number of life events, and families of individuals with

low socio-economic standing who experience a low number of life events. This group

has an average level of vulnerability. Examining the prequential stage monitors does

not reveal any particular poor fits to the data: p(y2,No) = 0.072 p(y3,No) = 0.272

p(y4,No) = 0.220 p(y5,No) = 0.075.

Finally, u7 represents the group with particularly unfortunate circumstances,

regardless of their socio-economic stressors. All of the families of individuals reporting

a high frequency of adverse life events contribute to this stage except for the group

with no access to social or economic credit. Again, the prequential monitors do

not indicate any situations of ill-fitting structure: p(y2,No) = 0.065 p(y3,No) = 0.243
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p(y4,No) = 0.050 p(y5,No) = 0.054.

For stages u5, u6, and u7, the leave one out monitors suggest that we should

be cautious about forecasts for situations where the observed proportion of hos-

pitalisations falls outside the bounds of our expected posterior. The monitors in

Figures 5.7b, 5.7c, and 5.7d tell us which situations are over and underestimating

hospitalisations, respectively.

5.5.2 Radicalisation Example

The radicalisation dataset examines the process by which individuals in a prison

population are likely to be radicalised. Because of the sensitive nature of this domain,

the data was constructed from a simulated model based on expert judgements

which were then calibrated to publicly available statistics within the UK. Detailed

information on the coding and simulation of the variables is available in Collazo and

Smith (2015b). The dataset was previously used to describe the e↵ect of non-local

priors (Collazo and Smith, 2015a). The dataset has 85,000 simulated observations.

The variables of interest are as follows:

• Xg Gender: Binary variable with values Male, and Female

• Xr Religion: Ternary variable with values Religious, Non-religious, and Non

recorded

• Xa Age: Ternary variable with values Old, Medium, Young

• Xo O↵ence: Values include i) Violence against another person ii) RBT Robbery

Burglary or Theft iii) Drug o↵ence iv) Sexual o↵ence v) other o↵ence

• Xn Nationality: Binary variable indicating if an individual is a British citizen

or a foreigner

• Xw Network: Indicates whether the individual has intense, frequent, or sporadic

engagement with known members of target criminal organisation

• Xe Engagement: Binary variable that indicates whether or not the individual

engages in radical activities.

In this second example, we illustrate how our diagnostics can be applied to a

much larger study.

The model was built to better explain the pathways that lead to criminal

engagement. So in this context, diagnostics are best used to examine how well the

situations are predicting engagement in radical activities, Xe. Due to the complexity
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stage n

u33 24

u34 350

u35 232

u36 72

u37 112

u38 46

u39 54

unull 190

Table 5.4: Number of situations in each of the stages modelling Xe

and number of variables, the CEG model of the radicalisation data encodes a much

richer space of causal hypotheses than the previous example. A Bayes factor model

selection with the AHC algorithm using the ordering assumed in the dataset returns

a CEG structure with a log marginal likelihood of �400007.3, which we use here as

a baseline to determine better fitting adjustments to the structure.

The stage partitioning for engagement Xe has six stages

U = {u33, u34, u35, u36, u37, u38, u39, unull}

and 1080 unique positions, a much richer model. unull represents the stage encom-

passing all situations that are unpopulated. This is a convenient and methodologically

sound way of processing the empty stages. A large number of situations is di�cult

to inspect for cohesion, so our diagnostics are particularly important here. The size

of each stage modelling engagement is shown in Table 5.4. Due to the high number

of situations in each stage, situations will be indexed according to their particular

stage. (That is, a situation s1 in u31 is a distinct vertex from s1 in u35.)

One of the key questions concerning the radicalisation dataset is whether or

not it is accurately captures radical engagement. The stages u33 and u38 contains

sparse situations where all engage in radical activities. Stage u34 contains situations

where no one engages in radical activities. Stage u35 contains several situations that

do engage in radical activities alongside a large number of more sparsely populated

situations that do not. Stages u36, u37 and u39 reflect the same pattern. The plots

of expected versus observed proportions when we leave a stage out are plotted in

Figure 5.8. Plots are only shown for three stages, u35, u36, and u37, as these are the

stages that exhibit situations that exhibit both levels of Xe.

In stage u35 each of the situations is sparsely populated (n < 15 observations).

Upon inspection of the dataset, the situations with all observed individuals engaging
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(a) Leave one out monitor for u35

(b) Leave one out monitor for u36

(c) Leave one out monitor for u37

Figure 5.8: Leave one out monitors for engagement, Xe. Large di↵erences between
the expected (red) and observed values (blue) indicate poor fit.
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in radical activities are all religious, British males, traits not shared by the situations

in which individuals do not engage. Because the counts of situations in stage u35 are

quite sparse and radical activity is not abundant, it is di�cult to tell if the situations

are exchangeable. However, the common traits seem to suggest that it would be

sensible to separate out the situations representing religious British males.

In stage u36 each of the situations is very sparsely populated (n < 5 observa-

tions). All of the situations that have no observations that engage in radical activities

have n = 1. Thus, the expected posterior for the leave one out method has been

heavily weighted by the situations containing individuals that do engage in radical

activity. Again, sparsity obscures the model fit here, but inspection reveals that in

u35, the situations with observations that do engage in radical activity are all male.

This pattern holds in the last stage we consider, u37. Again, the situations in

the stage that do engage in radical activities are all male. This suggests that there is

perhaps some additional information about the di↵erences between male and female

prisoners that is determining levels of radical engagement.

This second example shows that the diagnostics are particularly useful as our

model accommodates larger data sets. The changes to the situations and staging

structure can be adjusted and a new global monitor computed to show that the

diagnostics suggest genuine model improvements.

Notice here that engagement with these diagnostics helps us discover currently

articulated structure and help the domain experts to develop new hypotheses and

models to check.

5.6 Discussion

Our extension of the prequential diagnostics from Bayesian Networks to the more

general class of Chain Event Graphs has enables us to highlight places in which

the selected structure is a poor fit to the given data. We have demonstrated how

earlier analyses would have been much richer by employing these diagnostics and

drawing out the reasons for certain variables failing or why one model is preferred to

another. These monitors shown here are derived for stratified staged trees to build

on the existing diagnostics available for a BN, but these methodologies also work for

asymmetrical trees, a powerful example of CEG models.

These can also be applied to new classes of CEG like the dynamic CEG Barclay

and Nicholson (2015), where the ordering is explicit and need not be assumed from the

ordering of the data. We have only considered models from the AHC model selection

algorithm here, although we can apply these diagnostics to additional advancements

in model selection criteria. This work can also be extended to incorporate di↵erent
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score functions.

The code for these CEG diagnostics as well as the subsequent two examples

is available for download at https://github.com/rachwhatsit/cegmonitor. With the

addition of the stagedtrees packages, we have a convenient implementation of the

CEG software for practitioners.

Diagnostic monitors can be used to show how subsequent data performs when

configured with the initial model. They may also be used to highlight an underlying

dependence structure not captured by the existing CEG. As we have seen in the

second example, the diagnostics pick out particular places for refinement as well

as where situations in the model can be consolidated. The prequential diagnostics

shown here are a critical performance check and a useful addition to the suite of

CEG methods currently available.
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Chapter 6

Customised Causal Inference

“Focusing on what was done & what

followed should clarify cause &

e↵ects. Alas...”

Railsea, China Miéville

6.1 Background

As in Chapter 3, causal explanations of processes are often embedded in an expert’s

structural descriptions of a problem. These are often expressed in terms of an

intervention on the system, either externally by nature or internally by people

associated with the expert. There is now a wide literature about how such causal

hypotheses relate to the structural hypotheses associated with the BN. However

there is surprisingly little written about how these sorts of embeddings – critical if a

the model is going to be used to guide policy – apply when the underlying structure

is not a BN.

Statistical causation focuses largely on Bayesian Networks and frames causa-

tion as queries about independence among random variables. This rarely captures

the sort of mechanisms domain experts speak about when they talk about causation

(Cox and Wermuth, 2014). While the proliferation of structure discovery algorithms

has enabled domain experts to apply new classes of models to a variety of prob-

lems, causal explanations of these models have lagged behind. Paying attention

to the dynamics of the problem is particularly important to understand the causal

mechanisms of a process.

There are several clear frameworks for expressing causal inference, including

Granger causation from econometrics, the potential outcome framework of Rubin,

and Pearl’s interventional do calculus (Granger, 1969; Holland, 1986; ?). Each of
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these frameworks has a rich history of theory and applications. In particular, Pearl’s

BN approach is widely used. However, BNs represent a very small part of possible

models available for causal analysis. Additionally, the de facto assumption that all

modelling aspects are captured by a BN is rarely true. The faithfulness assumption

and requirements for a BN to be causal are particularly stringent. Across di↵erent

problem domains, certain features of a problem may render it intractable for a BN.

These features limit the notion of cause that can be expressed by the BN.

Instead, I argue that causal analysis should begin by mathematically de-

scribing the processes described by domain experts, as illustrated in Chapter 3

For interventional causation, modelling the intervention mechanism should then be

customised to the problem domain via this bespoke structural description (Aalen

et al., 2016). It can then be expressed as the mapping between an idle and controlled

system (Aoki, 1976; Materassi and Salapaka, 2016). The natural process as described

in the idle system is not necessarily expressible as a faithful BN, although the BN

can also be situated in this framework. This process allows controlled extensions to

other model classes that are genuinely faithful to a given domain to be developed.

Expressing the wide variety of causal relationships observed in nature requires

first respecting the underlying structure of the domain problem. The process of

determining a bespoke structure enhances transparency with the domain experts

and prompts more nuanced versions of causation in a system.

As stated in Chapter 3, these bespoke structures have now been developed

for a number of di↵erent structures beyond the common BN approach. There are

of course a large number of possible model classes, but for the purposes of this

thesis it is su�cient to consider four alternative models. Thwaites and Smith (2010)

developed a structure for tree-based Chain Event Graphs that can be used to describe

an unfolding process. The Multi-regression Dynamic Model describes the semantics

of a problem in which one time series a↵ects another (Smith, 1993). The Flow

Graph describes the movement of goods in a network where conservation of products

destroys the dependence structure of a Bayesian Network (Figueroa and Smith, 2007).

The elicitation of these models from domain experts has been described in Chapter

3.

The dynamics of problems suited to these graphical models are fundamentally

di↵erent from the underlying BN Pearl’s do calculus is based on. These systems

give rise to new definitions of causation in a graphical model. To date, there is not

a general catalogue of causal definitions in graphical models beyond that for BNs.

This chapter aims to fill that gap by examining how standardized, general definitions

of causation in a graphical model extend across new classes of graphs customised to

problem semantics.
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In this chapter after reviewing how the BN can be embedded in the more

general context of bespoke causation, I review methods in which models discussed in

the thesis have been similarly embedded. This discussion is restricted mainly to two

ideas: intervention and genuine cause. Interventional causation is key in economic

and epidemiological models and was developed independently by Pearl (2009) and

Spirtes et al. (2000) to deduce causal hypotheses based only on observations of the

idle systems. The procedure for interventional cause first determines which variables

can be causes of others and the formulae for how we might hypothesise the strength

of this e↵ect were it to be true.

My novel contribution demonstrates how the concept of genuine cause identi-

fication and its measurement applies to the CEG and the MDM in Sections 6.4.2 and

6.5.2, respectively. From the CEG, the definition of genuine cause is more nuanced

and flexible than that of the BN. Within the context of the MDM, the embedded

dynamics enable us to match the concept of a genuine causal hypothesis to the initial

elicited structure of the idle system.

The Section 6.2 describes general definitions of di↵erent levels of causation in

bespoke systems. Definitions for temporal precedence, instrumental variables, and

genuine cause are given in addition to customised interventions. The subsequent

sections consider how each of these ideas might be customised to di↵erent models.

Sections 6.3, 6.4, 6.5, and 6.6 explore BNs, CEGs, MDMs, and FGs respectively.

Many of these definitions in alternative representations represent open questions and

new areas of research, explored in the discussion in Section 6.7.

6.2 General Approaches to Custom Cause

Several sources have articulated di↵erent gradations of causation. Working solely in

the context of BNs, Pearl identifies a three rung ladder of causation: association,

intervention, and couterfactuals. Features are associated if they are related to some

extent; intervention enables us to measure an e↵ect if someone performs an action;

and counterfactuals enable hypothetical interventions in additional contexts.

This corresponds to the levels of causation articulated in Cox and Wermuth

(2014). In this framework, zero-level causation denotes association. First-level

causation is again concerned with intervention, including case control studies. Second-

level causation seeks to explain the dependencies observed in zero and first-level

causation. Second-level causation explains mechanisms, and ties in with broader

conceptions of causation from sociology and economics (Goldthorpe, 1998; Demiralp

and Hoover, 2003).

The Bradford Hill criteria describes generic criteria for causation formulated
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in an epidemiological setting (Hill, 1965). As many of the criteria are set in a clinical

trial setting, it is likely that Hill was interested in interventional causation. This

chapter focuses only on causal hypotheses that are motivated by the concept of

intervention in the modelled system. While his criteria are not su�cient on their

own to register a causal relationship, expressing them in statistical models o↵ers a

powerful way to incorporate domain expertise.

In the following sections, the proposed general definitions of cause will be

defined for a general DAG and in subsequent sections applied to particular models,

beginning with the BN.

6.2.1 Essential Graphs and Temporal Precedence

When speaking about causation, domain experts expect any potential causal can-

didates to occur before the e↵ect is observed. Temporal precedence is perhaps the

most basic of Hill’s criteria. Rather than assuming temporal precedence from the

directionality of a particular directed acyclic graph (DAG), G, a causal candidate

must be among the edges that are directionally invariant in a model. To articulate

this in a graphical model, begin by examining the partial order implied by the

essential graph of a DAG. The essential graph is a hybrid graph in which the only

directed edges are common across all graphs in the equivalence class. The undirected

edges change orientation within the equivalence class of DAGs.

Essential graphs, first named by Andersson et al. (1997), are chain graphs

that characterize all graphs in the Markov equivalence class. Essential graphs are

also sometimes known as completed patterns or complete pdags. Flesch and Lucas

(2007) examined the meaning of the essential arcs in the essential graph.

To find the essential graph E (G), suppose the given a structure G has been

found from a structural discovery algorithm or an expert elicitation. For general

definitions require G to be a DAG. No causal directionality between Xi and Xj

could be discriminated from a dataset of the process, however big if there are

two equivalent Markov graphs with Xi � Xj in one and Xj � Xi in the other.

Traversing the equivalence class of graphs and identifying the directionally invariant

edges determines the edges that are causal candidates. The methods for finding

the equivalence class are specific to the class of graphical models. For some classes

of models, the equivalence class and subsequent essential graph remains an open

question. Given the class of equivalent graphical models G, a partial order I can be

associated with the set of graphs.

Definition 67 For Xi, Xj 2 E (G), Xi precedes Y , written Xi � Xj, in a DAG

G if there is a directed path from Xi to Xj in the essential graph E (G) where the
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undirected edges are equivalent to both � and ⌫.

The associated partial ordering can then be used to determine which nodes

in the graph are causal candidates. This then motivates the naive causal definition

Definition 68 With respect to the class of graphical models G with partial order IG

and essential graph E (G), Xi naively causes Xj if there is a directed path from Xi

to Xj in the essential graph for Xi, Xj 2 E(G).

Naive cause can be used to determine what the causal candidates are in a given

structure G. Methods of finding the equivalence class and corresponding essential

graph for di↵erent graphs represents an open area of research. The link between

temporal precedence and essential graphs, while implicit in their construction, has

not been explicitly explored. Note that if Xi is not a naive cause of Xj it doesn’t

logically mean that Xi is not a cause of Xj . Rather, it means that there is no

evidence for a causal relationship in the given graph (Wermuth, 2017).

6.2.2 Instrumental Variables

Identifying naive cause and genuinely embedded cause helps distinguish spurious

associations from ones that could be causal from a relatively data rich environment.

Another technique for determining spurious association from genuine cause is using

instrumental variables.

Instrumental variables are a widely used technique in economics. Wright (1928)

first proposed the concept of instrumental variables, and Wright (1921) showed that

path analysis and instrumental variables were equivalent. An economics perspective

on instrumental variables can be found in Goldberger (1972) and Morgan et al. (1990),

while Bowden and Turkington (1990) o↵ers a technical look at their development.

Pearl (2009) reframed instrumental variables as genuine cause, di↵erentiating it from

spurious association. Instrumental variables can be thought of as approximations

for randomised controlled trials. A valid instrumental variable is exogenous and

relevant.

Definition 69 For disjoint random variables Xi, Xj, Xk, and context XU , say Xk

is an instrumental variable if

i) Xi 6?? Xk

ii) XU ?? Xk

iii) Xj ?? Xk|XU , Xi
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Intuitively, we can think of an instrumental variable Xk as being independent

of all variables with an influence on Xj that are not mediated by Xi where Xk is

not independent of Xi.

Definition 70 Xi is a genuine cause of Xj if there is a random variable Xk and

context XU in the model G that satisfies the definition of an instrumental variable.

The definitions above are given in terms of random variables. Sections 6.4.2

and 6.5.2 will examine how graphical models whose vertices are not necessarily

random variables can expand the definition of instrumental variables and genuine

cause. For instance, random variables are implicit in the event tree, but examining

the edge floret variables enables us to define genuine cause in the CEG.

6.2.3 Intervention

The previous sets of general definitions aim to distinguish between spurious association

and associations that may be causal. The second level of causation requires certain

sets of definitions to hold following an intervention in a system. Intervention also

allows us to estimate e↵ects in the controlled system. Total e↵ects assess the impact

of the intervention on the entire system. The average causal e↵ect takes the di↵erence

between the idle and controlled systems. Expanding these definitions of intervention

to models that are not BNs allows us to model interventions that are closer to the

actual underlying mechanisms.

Implicitly, Pearl maintains that possible interventions occur on a factorizable

joint distribution. For simplicity, this chapter restricts plausible interventions to ones

that are enacted on factorizations of the system. This restriction can be expanded

in future work to include other graphical forms.

Definition 71 A joint probability distribution is factorisable when it can be written

as a product of factors f(x) = f(x1) . . . f(xi) . . . f(xn)

Intervening on the factorization can be denoted several di↵erent ways. Pearl

uses do notation, do(Xi = xi), to describe when a random variable takes a particular

setting (?). Alternatively, this is sometimes written as Xi = x̂i or Xi||xi (Lauritzen,
1996) or Pman (Spirtes et al., 2000). The intervention notation in a BN represents

an external setting of the random variables. As we will see in subsequent sections,

sometimes domain experts want to model interventions that are not necessarily

settings of random variables. Adapting these semantics to new models allows us to

model interventions that are close to the mechanism described by domain experts.

Control theory o↵ers a general way of framing interventional cause as a map

between the idle and controlled systems. We define idle and controlled systems in
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terms of the filtrations. This partial (or in other cases, total) order I can be used

to construct a filtration, Ft which can be generally thought of as the observable

information at time t.

Definition 72 Graphical model G has an idle joint probability distribution repres-

ented by a filtered probability space (⌦,A,Ft, P ).

Definition 73 The controlled system can be represented by a filtered probability

space, (⌦,A,Ft, P̂ ) in which P̂ represents the new controlled probability distribution.

It is well documented if a BN is called causal, then after an intervention on

a variable in the system, upstream variables are una↵ected, downstream variables

are a↵ected as if the intervention had taken that value naturally, and variables not

downstream are una↵ected (Dawid, 2002; Dawid and Didelez, 2010; Eichler and

Didelez, 2007). The control mechanism a↵ects the downstream variables, that is

variables that happen after the intervention at time t. We formalize this for general

graphical models and their probability distributions.

Definition 74 A model G with sample space ⌦ exhibits idle determinism if

following intervention at time ti, the following holds:

i) All atoms in previous filtrations, {Ft<ti}, inherit the probability distribution

from the idle distribution, P . That is, P̂ (!i) = P (!i) 8!i 2 {Ft<ti}

ii) In Fti , the probability of the atomic intervention !̂ is one, and the probability

of all other atoms is set to zero in the controlled distribution. That is, P̂ (!̂) = 1

and P̂ (!i : {!i 2 Fti} \ !̂) = 0.

iii) In subsequent filtrations, Ft>ti containing the intervention !̂, there is a map �

between the idle and controlled distributions.

This property is not shared by all graphs in which we want to speak about

causation. For instance, the controlled regulatory graphs do not exhibit this property

(Liverani and Smith, 2015). However, defining idle determinism allows us to determine

when the domain expert is speaking about types of causation that meet this property.

There may be more general properties about intervention in classes of graphical

models, but focusing on the above definitions demonstrates then nuances of causation

in di↵erent model classes.

6.3 Bayesian Networks

BNs are a common modelling choice for causal inference. This section confirms that

these general definitions developed in Section 6.2 also apply to the BN.
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6.3.1 Naive cause

The essential graph of a BN is given by the skeleton of the BN with the only directed

edges as the ones invariant across the equivalence class. This basic requirement is

not trivial, even when interpreting a BN. In a BN, two graphs are equivalent if they

have the same v-structures. The v-structure, also called a collider occurs when two

unmarried parents share a common child. Changing the orientation of any arrow

that is undirected in the essential graph must not result in any new v-structures.

Figure 3.2 shows the original graph B elicited from domain experts in Section

3.3.1. In this particular example, the essential graph E (B) is the same as B as

reversing the arrows would result in additional v-structures. This graph gives us the

partial order I:

Xm � Xu � Xb � Xa � Xr � Xs.

Then, for example, we can say that for any directed paths, breakfast model Xm

naively causes breakfast participation rates Xb. Directed edges in the essential graph

of the BN are naively causal.

6.3.2 Intervention in the BN

Interventions in the BN correspond to an external intervention that manipulates a

given variable to a particular value. While this operation may only crudely capture

the causal mechanism, it is a widely used approach to causal questions. For a causal

BN in which xj is set to x̂j , the post-intervention joint probability mass function

of the remaining variables in the system is given by the total e↵ect formula in

Equation 6.1.

p(x�j ||x̂j) =

8
><

>:

p(x1, . . . , xj , . . . , xn)

p(xj |xPa(j))
if xj = x̂j

0 otherwise

(6.1)

Joint interventions in a BN may also be defined as an external manipulation of

a set of variablesXJ to a particular set of values X̂J . The compound post-intervention distribution

is given by Equation 6.2.

p(x�J ||x̂J) =

8
><

>:

p(x)Q
j2J p(xj |xPa(j))

if xj = xJ

0 otherwise

(6.2)

These post-intervention distributions represent interventions enacted on single

and compound elements of the original factorisation, meeting the general requirement

of considering interventions on factorisations.
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To confirm that the BN admits idle determinism, define a filtration compatible

with the partial ordering of a BN. A discrete BN has sample space

⌦ =
nY

i=1

Xi

where each of the atoms corresponds to a configuration of the values of the BN,

!i = {X1 = x
i

1, . . . , Xn = x
k

n}.

The probability space of each of these atoms is inherited from the conditional

probability tables. The sigma algebra is given by the power set of each of the possible

values of each Xi where Ni denotes the number of values each ith variable may take:

F1 = P(X = x
i

1,X�{1}), i 2 {1, N1}

F2 = P(X = x
i

1, X2 = x
j

2
,X�{1,2}), i 2 {1, N1}, j 2 {1, N2}, . . . ,

Fn = P(X = x
i

1, X2 = x
j

2
, . . . , Xn = x

k

n), i 2 {1, N1}, j 2 {1, N2}, k 2 {1, Nn}.

The BN meets the requirements of idle determinism outlined above. That is,

for an intervention at time ti 2 {1, n},

i) 8!i 2 {Ft<ti}, p(!i) = p̂(!i)

ii) 8!i 2 {Fti} : Xj = x̂j 2 !i, p̂(!i) = 1 and

8!i 2 {Fti} : Xj 6= x̂j 2 !i, p̂(!i) = 0

iii) 8!i 2 {Ft>ti} : Xj = x̂j 2 !i, p̂(!i) = �(p(!i)) and

8!i 2 {Ft>ti} : Xj 6= x̂j 2 !i, p̂(!i) = 0

where �(p(wi)) is the map given by the total e↵ect formula in Equation 6.1.

Then the total e↵ect of the manipulation alternatively do(Xj = x̂j) is the marginal

probability mass function of Y (X�j) using the probability mass function of Xj given

by Equation 6.1.

6.4 Chain Event Graphs

CEGs encompass a broader class of models than the BN by admitting context-

specific conditional independence and asymmetries. The vertices of the graphical

structure represent positions, and the edges represent the occurrence of events.
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Shafer (1996) posited that causality is more naturally expressed through trees than

by measurements of random variables.

6.4.1 Naive Cause

The essential graph of the CEG does not have a convenient graphical representation.

However, it does have a convenient polynomial representation (Görgen and Smith,

2018).

Definition 75 In a chain event graph, C, wi precedes wj, written wi � wj if across

all graphs in the equivalence class wi is closer to the root w0 than wj.

The essential graph for a CEG does not have a direct analogue. The res-

ults from Görgen and Smith (2018) characterized the statistical equivalence class.

Transformations known as swaps and resizes allow us to algebraically traverse the

equivalence class. Each CEG C has a total ordering, but true temporal precedence

must be considered across the Markov equivalence class.

Definition 76 For two positions wi and wj, wi naively causes wj if wi precedes

wj in all compatible partial orderings of the given CEG.

Future work could entail writing an algorithm that lists all of the CEGs in

the same equivalence class. The number of swaps that correspond to equivalent

interpolated polynomials can be determined by considering the number of levels of

nested brackets in the interpolating polynomial defined in Görgen and Smith (2018).

Within the partial ordering of a class of CEGs, positions that represent naively

causal relationships are invariant to swaps. An algorithm can articulate all of the

swaps from an interpolating polynomial of corresponding staged tree T . This partial

ordering, in turn, produces a list of naively causal edges.

6.4.2 Genuine Cause

Within the more generalized framework described above, I will next examine how

we might determine evidence of a genuine cause when instead of the underlying

structure is a CEG.

Definition 77 For sets of positions wA, wB, wC , wD 2 C, and intrinsic event there

is a genuine cause between sets of positions wC and wD if there exists a set of

instrumental positions wB and a context wA such that:

i) XC 6?? XB

ii) XA ?? XB
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iii) XD ?? XB|F ({A [ C}|V(C))

These dependence queries can be checked with the d-separation theorem from

Chapter 4. Genuine cause in the CEG context highlights the correspondence to a

RCT.

Example 78 Example 79 in Chapter 3 on page 121 does not have any instrumental

variables implicit in the graph. Let Xp be a new variable that suggests whether or not

clients are randomly sorted into groups that test a new application method. When we

let the new application method denote the set of instrumental positions for the context

in which we only focus on elderly immigrants, there is a genuine cause between the

decision to apply and receiving EBT. Let XA = Xr, XB = Xp, XC = Xa, and

XD = Xe.

This example illustrates the use of instrumental positions in an asymmetric

CEG. This cannot be represented by instrumental variables in a BN because of the

structural zeroes in the conditional probability tables.

6.4.3 Intervention in the CEG

Intervention in the CEG corresponds to the occurrence of an event rather than the

external setting of a variable as in the BN. The flexibility of the CEG to incorporate

context-specific information permits interventions with new experimental designs or

trials on a specific sub-population. Cowell and Smith (2014) argue that the process

of causal discovery applied to a BN can be mirrored for the CEG.

As in Collazo et al. (2018), the intervention formulae for a staged tree are

analogous to that of the BN. As in Section 2.4.1, let (T ,✓T ) be a probability tree.

Let T = (V,E) be the graph of that tree and let ê = (s, s0) 2 E be an edge between

situations of the graph. The e↵ect of the tree-atomic manipulation of forcing any

unit arriving at the situation s along edge ê produces a new (degenerate) probability

tree (T ,✓T )ê. This new tree has the same graph Tê = T , but the edge probability

of the enforced edge is set to one, ✓(ê) = 1, and the probabilities of all other edges

e
0 2 E(s) \ {ê} emanating from v are set to zero, ✓(e0) = 0. Otherwise, the new tree

inherits all edge probabilities from (T ,✓T ).

Every probability tree is a graphical representation of atoms ! 2 ⌦, the set of

all root-to-leaf paths. A tree-atomic manipulation changes the atomic probabilities

p✓(!) of every atom ! 2 ⌦ in that space which are associated with a path containing

the edge ê. The new probability of such an event is:

pê(! k ê) =
p✓(!)

✓(ê)
(6.3)
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and zero for all atoms ! associated with root-to-leaf paths passing through s

but not through the edge ê. This formula given in Equation 6.3 for the probability

mass function pê can be expressed using the new map �ê which enacts the tree-atomic

manipulation described above. This map meets the requirements for idle determinism

in Definition 74.

The e↵ects of this intervention can be seen in the example from Section 3.3.2.

Suppose we propose two di↵erent interventions at situation si and sj forcing

the units arriving at si and sj at the head of edges êi(si, s0i) and êj(sj , s0j) forcing

the units along each edge. Then the e↵ect of the joint intervention on the controlled

mass function is the composition of the two e↵ects:

pêiêj = �êj (pêi) = �êj (�êi(p))

The total e↵ect of a manipulation of an idle CEG as in Equation 6.3 is the probability

mass function of the manipulated CEG. The new formula for the probability mass

function pê can be expressed using a map �ê which enacts the tree-atomic manipu-

lation described in Equation 6.3. This map represents a new way of conceiving of

cause in a CEG.

Example 79 During a humanitarian crisis, emergency SNAP funds may be ad-

ministered as expedited SNAP. Given the original tree in Figure 3.4, the emergency

SNAP intervention corresponds to forcing units along the edges indicating expedited

results: (s1, s5), (s2, s8), and (s3, s11). The resultant subtree showing the possible paths

that unfold from the expedited applications is shown in Figure 6.1.

Figure 6.1: The staged tree shown for the emergency SNAP example.

The CEG is causal when the probabilities downstream remain the same after

an intervention. In Example 79, the modeller can confirm with domain experts
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that the three demographic groups considered still have di↵erent probabilities of

having their applications rejected, accepted, or resubmitted. The CEG in Figure

6.1 shows that the probabilities of expedited accepted applicants successfully using

Electronic Benefit Transfer (EBT) cards is the same regardless of demographic group.

Applicants who must resubmit their application report a di↵erent probability of

successful use, possibly due to inherited errors from the process upstream. If the

domain experts did not confirm this stage structure, then the original CEG in Figure

3.4 could not be considered causal.

Idle determinism in the CEG Idle determinism holds for interventions in the

CEG. The sample space of the CEG is all of the possible outcomes, each atom wi is

represented by a root-to-sink path � 2 ⇤(C). The sigma algebra of the CEG C is

the power set of all of the root-to-sink paths, P(⇤(C)). As the filtration for the BN

partitions the set adding a variable at each successive partition, the CEG adds an

additional set of positions at a particular depth from the root node. The filtration

of the CEG is given by the power set of the set of vertex centred events at a given

depth l = {1, . . . , N} where N is the length of the longest path in ⇤(C). We will

denote the set of positions Wl as the set of positions at depth l from the root.

F1 = P(⇤(w0)),F2 = P({⇤(W2)}), . . . ,FN = P({⇤(WN )}).

When an intervention occurs, say for some set of positions in Ŵ ✓ W
l̂
at

depth l̂, then idle determinism is satisfied:

i) !i 2 {F
l<l̂

}, p(!i) = p̂(!i)

ii) 8!i 2 F
l̂
, if !i 2 ⇤(W

l̂
), p̂(!i) = 1

8!i 2 F
l̂
, if !i 2 (⇤(W

l̂
))c, p̂(!i) = 0

iii) 8!i 2 {F
l>l̂

} : for some w 2 Ŵ
l̂
2 !i, p̂(!i) = �(!i)

8!i 2 {F
l>l̂

} : for some w 2 Ŵ
l̂
/2 !i, p̂(!i) = 0

For the subsequent filtrations, F
l>l̂

the downstream events are also zero. Upstream

filtrations F
l<l̂

are una↵ected. �(!̂i) is again given by the total e↵ect formula in

Equation 6.3.

Alternative interventions in the CEG Returning to the example of the SNAP

applications from Chapter 3 illustrates the flexibility of this new model class. The

standard CEG distribution described above corresponds to forcing all of the units

arriving at a vertex to travel down a particular edge. Possible interventions must
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be interpreted within the context of the graph. For instance, suppose we want to

compute the total e↵ect of forcing all applications to be expedited following a natural

disaster. This could not be modelled with the BN due to the structural zeroes from

the population that decides not to apply.

Other interventional dynamics arise from either adding a refinement to or

consolidating the sequence of events. For instance, suppose after speaking with

domain experts, lack of su�cient documentation is voiced as a serious barrier to the

application process. Then, we could add an additional position to the graph that

demonstrates whether or not an applicant has su�cient documentation. This could

not be modelled by the BN because of the asymmetries. Furthermore, it is easier to

add a position to the CEG than to add a node to the BN. This is because updating

the conditional probability tables of a BN requires editing not only the new node,

but all downstream nodes. Confirming with domain experts that this is the case

indicates whether a CEG is causal or not. If the CEG is not causal, then when used

for policy interventions it will often mislead. The CEG only requires adding the

probability on the new edges added to the graph. This allows for quick inference

that can be adjusted quickly with a group of experts.

6.5 Multi-regression Dynamic Models

6.5.1 Naive Cause

Figure 6.2: The full essential graph of the MDM shown for a single time slice at t.

In a MDM, there is an observational partial order and a full partial order.

The essential graph for the sample MDM shown in Figure 6.2 is equivalent to the

existing summary graph. The summary graph refers to the graph drawn for a single

time slice in which the nodes are instantiations of only the series vectors.

The full essential graph includes arrows from the core state values ✓t(m) to

the observation Yt(m) as shown in Figure 6.2. The full essential graph introduces a
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finer partition on the ordering of the series observational essential graph. While the

core state values precede the instantiation of the series, they are contemporaneous

with the series observation. Consequently, it makes sense to only consider the core

state values as causal candidates for the downstream observation series and not the

reverse. The core state values play a key role in developing a dynamic notion of

genuine cause as seen in Section 6.5.2. Each series observation depends on a set of

parents chosen from the preceding set of series variables, and this strict ordering

means that a unique MDM is its own essential graph as shown in Lemma 82.

Definition 80 In the essential graph drawn between the series, Yt(i) � Yt(j) there

is an observational partial order in a MDM if there is a directed path from Yt(i) to

Yt(j) in the series observational essential graph.

This partial order allows us to have contemporaneous naive cause, suitable as

the core state and series observation occur simultaneously. This partial ordering on

the series can again be used to define a naive cause.

Definition 81 Yt(i) naively causes Yt(j) if there is a directed path in the essential

graph of the MDM.

Lemma 82 The equivalence class of a MDM is a singleton.

Proof. By construction, as each series Yt(i) has its own corresponding core state

✓t(i), this creates a v-structure between this edge and Pa(Yt(i)). Because the MDM

is a valid BN, the set of v-structures determines the equivalence class.

Thus, each MDM is also its own essential graph. The strict ordering of the

MDM is more restrictive than the BN, but these stricter assumptions create more

powerful causal relationships.

In the Summer Meals Program example elicited in Section 3.3.3, the MDM

elicited from experts shown in Figure 6.2 is also the essential graph. The strict

temporal precedence agrees with the description given by domain experts.

6.5.2 Genuine Cause

The model assumptions of the MDM engender new notions of genuine cause in a

dynamic setting in addition to the naive cause. In the MDM setting, the core state

values of the parents of a series can be thought of as instrumental variables. The

core state vector of the parent series acts as a randomizing agent in the hypothetical

RCT. For the Summer Meals example in Section 3.3.3, the number of children

transported to the meal site directly a↵ects the number of meals eaten at the site.

Suppose the modeller set two versions of the MDM with di↵erent core state values for
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transportation to the meal site, as availability of buses changes depending on school

district. Then, observing proportionate changes in the number of children eating at

a meal site in both models would indicate that the model accurately captured the

causal mechanism between transporting children to the meal site and the number of

meals eaten.

Formally, Definition 83 establishes the core state of a parent series as an

instrumental variable. For the MDM, the associated context of the instrumental

variable can be thought of as the preceding core state variables. Setting the core state

value of the instrumental variable establishes the strength of the causal mechanism

between the two series in the MDM.

Definition 83 For two series vectors Yt(i) and Yt(j) where Yt(i) 2 pa(Yt(j)), ✓t(i)

is an instrumental variable of the genuine cause Yt(i) on Yt(j) for a set context U if:

i) Yt(i) 6?? ✓t(i)

ii) U ?? ✓t(i)

iii) Yt(j) ?? ✓t(i)|Yt(i), U

Lemma 84 Given an MDM, a cause between a series Yt(i) and its parents pa(Yt(i))

is genuinely causal.

Proof. By the model specifications in Definition 19, each series Yt(i) that is not a

root node has a set of parents pa(Yt(i)). The context can be defined as the preceding

observations of the core state values:

U = {✓t�1(1), . . . ,✓t�1(i� 1)} \ ✓t(pa(Yt(i)).

Then, ✓t(pa(Yt(i)) meets the requirements of an instrumental variable as

i) pa(Yt(i)) 6?? ✓t(pa(Yt(i)) by Equation 2.5,

ii) U ?? ✓t(pa(Yt(i)) by Result 1 of Smith (1993), and

iii) Yt(i) ?? ✓t(pa(Yt(i))|pa(Yt(i)), U .

Criteria iii) is true because a single time slice of the full MDM is a valid BN,

and pa(Yt(i)) d-separates Yt(i) from ✓t(pa(Yt(i)). Thus, an instrumental variable

✓t(pa(Yt(i)) can be constructed for every series with parents in the MDM.
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6.5.3 Intervention

In dynamic systems there is a vast array of ways in which we can intervene and each

of these can have a di↵erent consequence. Here for the MDM–because it can be

unfolded as a DBN with latent states, we can use standard BN intervention calculus

to read new causal algebras for the MDM corresponding to di↵erent interventions.

Intervention in the MDM can be customised to the sort of manipulation each time

series is subjected to. Interventions on the series Yt(i) and the underlying state

vectors ✓t(i) have been defined in Queen and Albers (2009).

The idle probability distribution for the series is given by

(Yt(i) |✓t(i)) ⇠ (Ft(i)
0✓t(i), Vt(i));

Definition 85 A series intervention on Yt(i) occurs in an atomic manipulation

on the series. It can occur on any number of and combination of the items in

the series Yt(1), . . . , Yt(i), . . . , Yt(i). Given intervention C, the post-intervention

distribution is given by

(Yt(i) |✓t(i), C) ⇠ (Ft(i)
0✓t(i) + ht(i), Vt(i) +Ht(i)).

The ability to intervene on di↵erent combinations of the series observations

enables us to customise the interventions to the dynamics described by domain

experts. The Summer Meals Program o↵ers an example of a series intervention.

Suppose that public transportation is cancelled at time t̂, then T
t̂
||t

t̂
. Generally,

Y
t̂
(j)||Ŷ

t̂
(j). This could occur for a one o↵ change. In our example, this could be a

cancelling of bus services for a public holiday.

Intervention for an ongoing series of observations represents another type of

intervention. For this after some time of intervention t̂, we set a value of a series for

ongoing t � t̂. This could occur when there is a time point where there is an ongoing

disruption to the service. For instance, the bus services could be cancelled for school

children following the end of summer school.

At some time of intervention t̂, we can propose an intervention to Y
t̂
(j) that

lasts for a period of time t̂1 < t < t̂2. For instance, a mid-summer awareness

campaign would increase the number of radio ads and text messages for the first

week after summer school, but then the awareness would resume to normal levels.

Another intervention corresponds to altering the variance of the observed

series. For instance, after summer school changes, the variability in the number of

children using public transportation and eating meals drastically increases.

Interventions may also occur on the core state values. The idle probability

distribution for the state vectors is given by:
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(✓t |✓t�1) ⇠ (Gt✓t�1,Wt);

Definition 86 A state vector intervention externally manipulates ✓t(i). As with

compound interventions in the BN, any number or combination of interventions on

✓t(1), . . . ,✓t(n) is possible. The post-state vector intervention distribution is given by

(✓t |✓t�1, C) ⇠ (G⇤
t✓t�1,W

⇤
t ).

Here, ht(i) and G⇤
t (i) represent the change in Yt(i) and Ht(i) and W ⇤

t (i)

represent the change in uncertainty (Queen and Albers, 2009).

The MDM can be customised to the types of intervention in dynamic linear

models. Queen and Albers (2009) explored both series and core state interventions,

but only for interventions on a single observation. Dynamic linear models accom-

modate periodic shifts. This can be used to show the e↵ect of serving weekend meals,

or the e↵ect of holidays on children eating summer meals.

6.6 Flow Graph

Where the MDM o↵ers a set of stricter model assumptions, the Flow Graph relaxes

those assumptions. The Flow Graph is not compatible with a Bayesian Network as

the additional mass conservation constraint induces severe dependencies. However,

relaxing this assumption enables us to model flows of goods through a network.

The details of the Flow Graph construction are given in Chapter 2. The flow

is first described as an Hierarchical Flow Network (HFN). This is then transformed to

a two time slice dynamic Bayesian Network (2TS-DBN) representation that expresses

the flows in terms of measurable random variables. As the 2TS-DBN representation

of the HFN is a valid BN, we can define an essential graph and naive cause.

6.6.1 Naive Cause

The additional constraints of the decomposed HFN to the 2TS-DBN has meaningful

ramifications for the essential graph and the extension of naive cause.

Lemma 87 The essential graph of the 2TS-DBN of the HFN is the undirected

skeleton of the 2TS-DBN.

Proof. The construction of the 2TS-DBN requires linked chains. There are no

v-structures. Thus, the essential graph is entirely undirected.

This undirected essential graph confirms that modelling intervention in a

flow is entirely reversible. Having an undirected essential graph is by design, as it
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allows for reversible flow depending on what actors in the network are subject to

intervention. This means that there are no naively causal candidates in the Flow

Graph.

6.6.2 Genuine Cause

The Flow Graph represents several open questions, one of which is what genuine

cause means in the context of the Flow Graph. Similarly to the MDM, I posit

that the structure of the Flow Graph is a valid representation of the conditional

independence relationships specified in Figueroa and Smith (2007) when the one-step

ahead forecasts hold. Instrumental variables in the Flow Graph are an open question.

The type of intervention in the FG alters the dependence structure and

specifies a directionality. Thus, di↵erent interventions have di↵erent genuine causes.

Interventions in dynamic systems take many forms and each of these types of

intervention may result in a unique genuine cause.

6.6.3 Intervention

The intervention breaks the Pearlean definition by manipulating the error variance.

The calculus of intervention for direct manipulation of the state random vector nodes

of the true process has been found in Figueroa and Smith (2007). The Flow Graph

admits a factorization of the path flows. This calculus works for changing path flows

as well as for interventions that remove nodes from the system.

Alternative intervention in the Flow Graph The unconventional dynamics

of the Flow Graph admit customised interventions. The dynamics of the example

of the transfer of meals from vendors to sponsors to sites from Chapter 3 prompt

di↵erent types of intervention. For instance, suppose two meal sites (perhaps a local

school and a nearby community centre) wanted to merge sites. This intervention

could not be modelled in the standard BN frame, but in the flow graph framework,

the post-interventional distribution could be computed after merging two actors on

the same level.

A second alternative intervention consists of removing or adding mass at a

particular level in the system. In the example from the Summer Meals Program,

this might correspond to a policy change to only reimburse meals for children aged

0-12 rather than the existing restrictions to supply meals for ages 0-18. Adding

mass to the system could correspond to a vendor receiving a donation of meals at

a particular time point. This intervention on the path flows would again lead to a

di↵erent post-interventional distribution.
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Directly intervening on the structure of the path flows would again yield a

custom intervention. If a sponsor changed vendors, this would directly alter the

structure of the Hierarchical Flow Network and the consequent path flows. The

richness of the Flow Graph admits interventions that align with the interventions

expressed by domain experts.

6.7 Discussion

This chapter broadens the understanding of causation in probabilistic graphical mod-

els with respect to temporal precedence, instrumental variables, and interventional

cause.

In causal inference with the BN, causal relationships are framed around a

known set of background variables. Particular settings of the random variables

correspond to di↵erent contexts, e↵ects, and causes. While this has proven useful

for causal inference, it is very restrictive with respect to the sort of dynamics

it can describe. This chapter demonstrates that describing causal relationships

within filtrations and defining a mapping between idle and controlled systems is

a more flexible way of describing this. Describing intervention in the BN and the

CEG demonstrates the suitability of filtrations to a discrete, tree-based structure.

Generalizations with the MDM and the Flow Graph show two examples of an

alternative setting for causation that hold for continuous domains. This chapter

describes the flexibility of interventions in each di↵erent class of model.
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Chapter 7

Discussion

The universe works on a math

equation that never even ever really

ends in the end

“Never Ending Math Equation,”

Modest Mouse

The new applications, methods, and theory addressed in this thesis opens

additional questions about causation and structure in customised graphical models.

Section 7.1 outlines the main contributions of this thesis. Section 7.2 explores a

particular area of inquiry related to CEG model selection. Section 7.3 describes

several areas of further inquiry that build from the work outlined in this thesis.

7.1 Summary

This thesis has sought to demonstrate the importance of selecting an appropriate

structure to probabilistic graphical modelling.

Chapter 3 provides a framework for conducting a qualitative structural

elicitation that accurately represents experts’ natural language description of a

problem. My main contribution in this chapter is merging domain expertise of

issues in the realm of food insecurity with appropriate model classes. Exploring the

di↵erent model classes within the domain of food insecurity exemplifies this process.

Checking the structure of the MDM with the one step ahead forecast represents a

novel contribution. Checking the CEG structure with the preliminary separation

theorems motivates the work of the full d-separation theorem in Chapter 4.

The full d-separation theorem for the CEG represents a substantial contri-

bution to CEG theory and methodology. The construction of the ancestral graph

provided relies on a new understanding of ancestrality in systems with context-specific
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independence. The full d-separation theorem allows for a much more flexible class of

models that admit asymmetries and context-specificity. D-separation for BNs only

holds for faithful BNs, making the CEG model class much less restrictive.

Chapter 5 o↵ers a practical advancement to CEG methodology. Prequential

diagnostics check the consistency of forecasts that flow from the model with structural

elements of the CEG. The contribution of two software packages bnmonitoR and

cegmonitoR form a useful addition to the toolkit available for modellers. The CEG

diagnostics can be used to check consistency between di↵erent cohorts, tying into

some of the wider ideas about causation.

Finally, Chapter 6 explores elements of causation that are necessarily widened

by model classes that are di↵erent from that of the BN. The concepts of essential

graphs, instrumental variables, and intervention o↵er di↵erent nuanced definitions

of causation across di↵erent model classes. In particular, I demonstrate that the

equivalence class of the MDM is a singleton, rendering all edges in the MDM as

instrumental variables. The full d-separation theorem for CEGs also allows us to

define instrumental variables for the CEG.

This chapter reviews one particular area of work underway on Beta Divergence

in Section 7.2, and then concludes with a look at areas of future work in Section 7.3.

7.2 Beta divergence

The traditional Bayes factor search for the CEGs uses the logarithmic score. The

logarithmic score is very sensitive to outliers.

The logarithmic score is associated with the Kullback-Leibler divergence.

Model search for the CEG can be conducted with beta-divergence instead of the

Kullback-Leibler divergence. The Agglomerative Hierarchical Search algorithm uses

the logarithmic score to determine the stage structure of the CEG. By varying the

parameter beta, we can determine how sensitive to outliers the model should be.

Preliminary work confirms that as beta goes to zero, we recover the same stage

structure as given by the logarithmic score. As beta increases, the AHC algorithm

returns a stage structure with an increasingly coarse staging. The Bayes factor search

tends to lump sparsely populated situations in the biggest stage to cut losses, an

issue that this remedies. In an online learning context, this means that the stage

structure is more resilient to outliers.

Simulations shows that increasing beta results in increasingly coarse CEG

stagings. Beta can be used to make a staging more robust to sparsely populated

situations.
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7.3 Future Work

The custom classes of models explored in Chapter 3 could each be developed into

their own elicitation protocols. Additional work could be done to translate natural

language into customised graphical models.

The CEG diagnostics form a practical addition to the CEG methodology.

These diangostics have already been extended to the DCEG and the RDCEG (Shenvi

and Smith, 2018). Beyond applications to the CEG, the diagnostics may be used

to address open questions around Bayesian model criticism for causal inference.

Prequential diagnostics have recently resurfaced in the literature as a way to assess

causal discrepancies in an online learning setting (Tran et al., 2016). Applying these

diagnostics across di↵erent cohorts or populations o↵ers a way to evaluate causal

relationships in a graph. The CEG diagnostics are particularly useful as they admit

context-specific conditional independence.

The full separation theorem for CEGs imparts a powerful representation of

context-specific conditional independence relationships. The new separation theorem

confirms that we can develop new models that relax the assumptions of the BN

to encompass broader models. Additional software development to traverse the

equivalence class of CEGs and identify both naive cause and genuine cause is in

progress.

Chapter 6 outlined examples of customised graphical models, a first step

towards developing a general theory of causal modelling. Future work could continue

to define general definitions of causation. New classes of graphical models present

further extensions of concepts like the essential graph. For example, the equivalence

class of the Flow Graph remains an open question. The Controlled Regulatory Graph

also prompts open questions about naive cause, instrumental variables, and the

features of custom intervention. These may prompt additional general definitions of

causation for custom models. As more custom models are developed, the framework

for causation can be continually revised to include new forms of control.
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